]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/swiotlb.c
swiotlb: update format
[mirror_ubuntu-artful-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4 22#include <linux/mm.h>
8bc3bcc9 23#include <linux/export.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
1da177e4
LT
32
33#include <asm/io.h>
1da177e4 34#include <asm/dma.h>
17e5ad6c 35#include <asm/scatterlist.h>
1da177e4
LT
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
a8522509 39#include <linux/iommu-helper.h>
1da177e4 40
ce5be5a1 41#define CREATE_TRACE_POINTS
2b2b614d
ZK
42#include <trace/events/swiotlb.h>
43
1da177e4
LT
44#define OFFSET(val,align) ((unsigned long) \
45 ( (val) & ( (align) - 1)))
46
0b9afede
AW
47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
48
49/*
50 * Minimum IO TLB size to bother booting with. Systems with mainly
51 * 64bit capable cards will only lightly use the swiotlb. If we can't
52 * allocate a contiguous 1MB, we're probably in trouble anyway.
53 */
54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
55
1da177e4
LT
56int swiotlb_force;
57
58/*
bfc5501f
KRW
59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
61 * API.
62 */
ff7204a7 63static phys_addr_t io_tlb_start, io_tlb_end;
1da177e4
LT
64
65/*
b595076a 66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
1da177e4
LT
67 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
68 */
69static unsigned long io_tlb_nslabs;
70
71/*
72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
73 */
74static unsigned long io_tlb_overflow = 32*1024;
75
ee3f6ba8 76static phys_addr_t io_tlb_overflow_buffer;
1da177e4
LT
77
78/*
79 * This is a free list describing the number of free entries available from
80 * each index
81 */
82static unsigned int *io_tlb_list;
83static unsigned int io_tlb_index;
84
85/*
86 * We need to save away the original address corresponding to a mapped entry
87 * for the sync operations.
88 */
bc40ac66 89static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
90
91/*
92 * Protect the above data structures in the map and unmap calls
93 */
94static DEFINE_SPINLOCK(io_tlb_lock);
95
5740afdb
FT
96static int late_alloc;
97
1da177e4
LT
98static int __init
99setup_io_tlb_npages(char *str)
100{
101 if (isdigit(*str)) {
e8579e72 102 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
103 /* avoid tail segment of size < IO_TLB_SEGSIZE */
104 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
105 }
106 if (*str == ',')
107 ++str;
b18485e7 108 if (!strcmp(str, "force"))
1da177e4 109 swiotlb_force = 1;
b18485e7 110
c729de8f 111 return 0;
1da177e4 112}
c729de8f 113early_param("swiotlb", setup_io_tlb_npages);
1da177e4
LT
114/* make io_tlb_overflow tunable too? */
115
f21ffe9f 116unsigned long swiotlb_nr_tbl(void)
5f98ecdb
FT
117{
118 return io_tlb_nslabs;
119}
f21ffe9f 120EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
c729de8f
YL
121
122/* default to 64MB */
123#define IO_TLB_DEFAULT_SIZE (64UL<<20)
124unsigned long swiotlb_size_or_default(void)
125{
126 unsigned long size;
127
128 size = io_tlb_nslabs << IO_TLB_SHIFT;
129
130 return size ? size : (IO_TLB_DEFAULT_SIZE);
131}
132
02ca646e 133/* Note that this doesn't work with highmem page */
70a7d3cc
JF
134static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
135 volatile void *address)
e08e1f7a 136{
862d196b 137 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
138}
139
ac2cbab2
YL
140static bool no_iotlb_memory;
141
ad32e8cb 142void swiotlb_print_info(void)
2e5b2b86 143{
ad32e8cb 144 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
ff7204a7 145 unsigned char *vstart, *vend;
2e5b2b86 146
ac2cbab2
YL
147 if (no_iotlb_memory) {
148 pr_warn("software IO TLB: No low mem\n");
149 return;
150 }
151
ff7204a7 152 vstart = phys_to_virt(io_tlb_start);
c40dba06 153 vend = phys_to_virt(io_tlb_end);
2e5b2b86 154
3af684c7 155 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
ff7204a7 156 (unsigned long long)io_tlb_start,
c40dba06 157 (unsigned long long)io_tlb_end,
ff7204a7 158 bytes >> 20, vstart, vend - 1);
2e5b2b86
IC
159}
160
ac2cbab2 161int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 162{
ee3f6ba8 163 void *v_overflow_buffer;
563aaf06 164 unsigned long i, bytes;
1da177e4 165
abbceff7 166 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 167
abbceff7 168 io_tlb_nslabs = nslabs;
ff7204a7
AD
169 io_tlb_start = __pa(tlb);
170 io_tlb_end = io_tlb_start + bytes;
1da177e4 171
ee3f6ba8
AD
172 /*
173 * Get the overflow emergency buffer
174 */
ac2cbab2
YL
175 v_overflow_buffer = alloc_bootmem_low_pages_nopanic(
176 PAGE_ALIGN(io_tlb_overflow));
ee3f6ba8 177 if (!v_overflow_buffer)
ac2cbab2 178 return -ENOMEM;
ee3f6ba8
AD
179
180 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
181
1da177e4
LT
182 /*
183 * Allocate and initialize the free list array. This array is used
184 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
185 * between io_tlb_start and io_tlb_end.
186 */
e79f86b2 187 io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
25667d67 188 for (i = 0; i < io_tlb_nslabs; i++)
1da177e4
LT
189 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
190 io_tlb_index = 0;
e79f86b2 191 io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
1da177e4 192
ad32e8cb
FT
193 if (verbose)
194 swiotlb_print_info();
ac2cbab2
YL
195
196 return 0;
1da177e4
LT
197}
198
abbceff7
FT
199/*
200 * Statically reserve bounce buffer space and initialize bounce buffer data
201 * structures for the software IO TLB used to implement the DMA API.
202 */
ac2cbab2
YL
203void __init
204swiotlb_init(int verbose)
abbceff7 205{
c729de8f 206 size_t default_size = IO_TLB_DEFAULT_SIZE;
ff7204a7 207 unsigned char *vstart;
abbceff7
FT
208 unsigned long bytes;
209
210 if (!io_tlb_nslabs) {
211 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
212 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
213 }
214
215 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
216
ac2cbab2
YL
217 /* Get IO TLB memory from the low pages */
218 vstart = alloc_bootmem_low_pages_nopanic(PAGE_ALIGN(bytes));
219 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
220 return;
abbceff7 221
ac2cbab2
YL
222 if (io_tlb_start)
223 free_bootmem(io_tlb_start,
224 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
225 pr_warn("Cannot allocate SWIOTLB buffer");
226 no_iotlb_memory = true;
1da177e4
LT
227}
228
0b9afede
AW
229/*
230 * Systems with larger DMA zones (those that don't support ISA) can
231 * initialize the swiotlb later using the slab allocator if needed.
232 * This should be just like above, but with some error catching.
233 */
234int
563aaf06 235swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 236{
74838b75 237 unsigned long bytes, req_nslabs = io_tlb_nslabs;
ff7204a7 238 unsigned char *vstart = NULL;
0b9afede 239 unsigned int order;
74838b75 240 int rc = 0;
0b9afede
AW
241
242 if (!io_tlb_nslabs) {
243 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
244 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
245 }
246
247 /*
248 * Get IO TLB memory from the low pages
249 */
563aaf06 250 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 251 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 252 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
253
254 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
ff7204a7
AD
255 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
256 order);
257 if (vstart)
0b9afede
AW
258 break;
259 order--;
260 }
261
ff7204a7 262 if (!vstart) {
74838b75
KRW
263 io_tlb_nslabs = req_nslabs;
264 return -ENOMEM;
265 }
563aaf06 266 if (order != get_order(bytes)) {
0b9afede
AW
267 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
268 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
269 io_tlb_nslabs = SLABS_PER_PAGE << order;
270 }
ff7204a7 271 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
74838b75 272 if (rc)
ff7204a7 273 free_pages((unsigned long)vstart, order);
74838b75
KRW
274 return rc;
275}
276
277int
278swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
279{
280 unsigned long i, bytes;
ee3f6ba8 281 unsigned char *v_overflow_buffer;
74838b75
KRW
282
283 bytes = nslabs << IO_TLB_SHIFT;
284
285 io_tlb_nslabs = nslabs;
ff7204a7
AD
286 io_tlb_start = virt_to_phys(tlb);
287 io_tlb_end = io_tlb_start + bytes;
74838b75 288
ff7204a7 289 memset(tlb, 0, bytes);
0b9afede 290
ee3f6ba8
AD
291 /*
292 * Get the overflow emergency buffer
293 */
294 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
295 get_order(io_tlb_overflow));
296 if (!v_overflow_buffer)
297 goto cleanup2;
298
299 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
300
0b9afede
AW
301 /*
302 * Allocate and initialize the free list array. This array is used
303 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
304 * between io_tlb_start and io_tlb_end.
305 */
306 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
307 get_order(io_tlb_nslabs * sizeof(int)));
308 if (!io_tlb_list)
ee3f6ba8 309 goto cleanup3;
0b9afede
AW
310
311 for (i = 0; i < io_tlb_nslabs; i++)
312 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
313 io_tlb_index = 0;
314
bc40ac66
BB
315 io_tlb_orig_addr = (phys_addr_t *)
316 __get_free_pages(GFP_KERNEL,
317 get_order(io_tlb_nslabs *
318 sizeof(phys_addr_t)));
0b9afede 319 if (!io_tlb_orig_addr)
ee3f6ba8 320 goto cleanup4;
0b9afede 321
bc40ac66 322 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
0b9afede 323
ad32e8cb 324 swiotlb_print_info();
0b9afede 325
5740afdb
FT
326 late_alloc = 1;
327
0b9afede
AW
328 return 0;
329
330cleanup4:
25667d67
TL
331 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
332 sizeof(int)));
0b9afede 333 io_tlb_list = NULL;
ee3f6ba8
AD
334cleanup3:
335 free_pages((unsigned long)v_overflow_buffer,
336 get_order(io_tlb_overflow));
337 io_tlb_overflow_buffer = 0;
0b9afede 338cleanup2:
c40dba06 339 io_tlb_end = 0;
ff7204a7 340 io_tlb_start = 0;
74838b75 341 io_tlb_nslabs = 0;
0b9afede
AW
342 return -ENOMEM;
343}
344
5740afdb
FT
345void __init swiotlb_free(void)
346{
ee3f6ba8 347 if (!io_tlb_orig_addr)
5740afdb
FT
348 return;
349
350 if (late_alloc) {
ee3f6ba8 351 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
5740afdb
FT
352 get_order(io_tlb_overflow));
353 free_pages((unsigned long)io_tlb_orig_addr,
354 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
355 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
356 sizeof(int)));
ff7204a7 357 free_pages((unsigned long)phys_to_virt(io_tlb_start),
5740afdb
FT
358 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
359 } else {
ee3f6ba8 360 free_bootmem_late(io_tlb_overflow_buffer,
e79f86b2 361 PAGE_ALIGN(io_tlb_overflow));
5740afdb 362 free_bootmem_late(__pa(io_tlb_orig_addr),
e79f86b2 363 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
5740afdb 364 free_bootmem_late(__pa(io_tlb_list),
e79f86b2 365 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
ff7204a7 366 free_bootmem_late(io_tlb_start,
e79f86b2 367 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
5740afdb 368 }
f21ffe9f 369 io_tlb_nslabs = 0;
5740afdb
FT
370}
371
02ca646e 372static int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 373{
ff7204a7 374 return paddr >= io_tlb_start && paddr < io_tlb_end;
640aebfe
FT
375}
376
fb05a379
BB
377/*
378 * Bounce: copy the swiotlb buffer back to the original dma location
379 */
af51a9f1
AD
380static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
381 size_t size, enum dma_data_direction dir)
fb05a379 382{
af51a9f1
AD
383 unsigned long pfn = PFN_DOWN(orig_addr);
384 unsigned char *vaddr = phys_to_virt(tlb_addr);
fb05a379
BB
385
386 if (PageHighMem(pfn_to_page(pfn))) {
387 /* The buffer does not have a mapping. Map it in and copy */
af51a9f1 388 unsigned int offset = orig_addr & ~PAGE_MASK;
fb05a379
BB
389 char *buffer;
390 unsigned int sz = 0;
391 unsigned long flags;
392
393 while (size) {
67131ad0 394 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
395
396 local_irq_save(flags);
c3eede8e 397 buffer = kmap_atomic(pfn_to_page(pfn));
fb05a379 398 if (dir == DMA_TO_DEVICE)
af51a9f1 399 memcpy(vaddr, buffer + offset, sz);
ef9b1893 400 else
af51a9f1 401 memcpy(buffer + offset, vaddr, sz);
c3eede8e 402 kunmap_atomic(buffer);
ef9b1893 403 local_irq_restore(flags);
fb05a379
BB
404
405 size -= sz;
406 pfn++;
af51a9f1 407 vaddr += sz;
fb05a379 408 offset = 0;
ef9b1893 409 }
af51a9f1
AD
410 } else if (dir == DMA_TO_DEVICE) {
411 memcpy(vaddr, phys_to_virt(orig_addr), size);
ef9b1893 412 } else {
af51a9f1 413 memcpy(phys_to_virt(orig_addr), vaddr, size);
ef9b1893 414 }
1b548f66
JF
415}
416
e05ed4d1
AD
417phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
418 dma_addr_t tbl_dma_addr,
419 phys_addr_t orig_addr, size_t size,
420 enum dma_data_direction dir)
1da177e4
LT
421{
422 unsigned long flags;
e05ed4d1 423 phys_addr_t tlb_addr;
1da177e4
LT
424 unsigned int nslots, stride, index, wrap;
425 int i;
681cc5cd
FT
426 unsigned long mask;
427 unsigned long offset_slots;
428 unsigned long max_slots;
429
ac2cbab2
YL
430 if (no_iotlb_memory)
431 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
432
681cc5cd 433 mask = dma_get_seg_boundary(hwdev);
681cc5cd 434
eb605a57
FT
435 tbl_dma_addr &= mask;
436
437 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
438
439 /*
440 * Carefully handle integer overflow which can occur when mask == ~0UL.
441 */
b15a3891
JB
442 max_slots = mask + 1
443 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
444 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
445
446 /*
447 * For mappings greater than a page, we limit the stride (and
448 * hence alignment) to a page size.
449 */
450 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
451 if (size > PAGE_SIZE)
452 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
453 else
454 stride = 1;
455
34814545 456 BUG_ON(!nslots);
1da177e4
LT
457
458 /*
459 * Find suitable number of IO TLB entries size that will fit this
460 * request and allocate a buffer from that IO TLB pool.
461 */
462 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
463 index = ALIGN(io_tlb_index, stride);
464 if (index >= io_tlb_nslabs)
465 index = 0;
466 wrap = index;
467
468 do {
a8522509
FT
469 while (iommu_is_span_boundary(index, nslots, offset_slots,
470 max_slots)) {
b15a3891
JB
471 index += stride;
472 if (index >= io_tlb_nslabs)
473 index = 0;
a7133a15
AM
474 if (index == wrap)
475 goto not_found;
476 }
477
478 /*
479 * If we find a slot that indicates we have 'nslots' number of
480 * contiguous buffers, we allocate the buffers from that slot
481 * and mark the entries as '0' indicating unavailable.
482 */
483 if (io_tlb_list[index] >= nslots) {
484 int count = 0;
485
486 for (i = index; i < (int) (index + nslots); i++)
487 io_tlb_list[i] = 0;
488 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
489 io_tlb_list[i] = ++count;
e05ed4d1 490 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 491
a7133a15
AM
492 /*
493 * Update the indices to avoid searching in the next
494 * round.
495 */
496 io_tlb_index = ((index + nslots) < io_tlb_nslabs
497 ? (index + nslots) : 0);
498
499 goto found;
500 }
501 index += stride;
502 if (index >= io_tlb_nslabs)
503 index = 0;
504 } while (index != wrap);
505
506not_found:
507 spin_unlock_irqrestore(&io_tlb_lock, flags);
783d0281 508 dev_warn(hwdev, "swiotlb buffer is full\n");
e05ed4d1 509 return SWIOTLB_MAP_ERROR;
a7133a15 510found:
1da177e4
LT
511 spin_unlock_irqrestore(&io_tlb_lock, flags);
512
513 /*
514 * Save away the mapping from the original address to the DMA address.
515 * This is needed when we sync the memory. Then we sync the buffer if
516 * needed.
517 */
bc40ac66 518 for (i = 0; i < nslots; i++)
e05ed4d1 519 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
1da177e4 520 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
af51a9f1 521 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
1da177e4 522
e05ed4d1 523 return tlb_addr;
1da177e4 524}
d7ef1533 525EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
1da177e4 526
eb605a57
FT
527/*
528 * Allocates bounce buffer and returns its kernel virtual address.
529 */
530
e05ed4d1
AD
531phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
532 enum dma_data_direction dir)
eb605a57 533{
ff7204a7 534 dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
eb605a57
FT
535
536 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
537}
538
1da177e4
LT
539/*
540 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
541 */
61ca08c3
AD
542void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
543 size_t size, enum dma_data_direction dir)
1da177e4
LT
544{
545 unsigned long flags;
546 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
61ca08c3
AD
547 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
548 phys_addr_t orig_addr = io_tlb_orig_addr[index];
1da177e4
LT
549
550 /*
551 * First, sync the memory before unmapping the entry
552 */
af51a9f1
AD
553 if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
554 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
555
556 /*
557 * Return the buffer to the free list by setting the corresponding
af901ca1 558 * entries to indicate the number of contiguous entries available.
1da177e4
LT
559 * While returning the entries to the free list, we merge the entries
560 * with slots below and above the pool being returned.
561 */
562 spin_lock_irqsave(&io_tlb_lock, flags);
563 {
564 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
565 io_tlb_list[index + nslots] : 0);
566 /*
567 * Step 1: return the slots to the free list, merging the
568 * slots with superceeding slots
569 */
570 for (i = index + nslots - 1; i >= index; i--)
571 io_tlb_list[i] = ++count;
572 /*
573 * Step 2: merge the returned slots with the preceding slots,
574 * if available (non zero)
575 */
576 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
577 io_tlb_list[i] = ++count;
578 }
579 spin_unlock_irqrestore(&io_tlb_lock, flags);
580}
d7ef1533 581EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
1da177e4 582
fbfda893
AD
583void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
584 size_t size, enum dma_data_direction dir,
585 enum dma_sync_target target)
1da177e4 586{
fbfda893
AD
587 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
588 phys_addr_t orig_addr = io_tlb_orig_addr[index];
bc40ac66 589
fbfda893 590 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
df336d1c 591
de69e0f0
JL
592 switch (target) {
593 case SYNC_FOR_CPU:
594 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 595 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 596 size, DMA_FROM_DEVICE);
34814545
ES
597 else
598 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
599 break;
600 case SYNC_FOR_DEVICE:
601 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 602 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 603 size, DMA_TO_DEVICE);
34814545
ES
604 else
605 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
606 break;
607 default:
1da177e4 608 BUG();
de69e0f0 609 }
1da177e4 610}
d7ef1533 611EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
1da177e4
LT
612
613void *
614swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 615 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 616{
563aaf06 617 dma_addr_t dev_addr;
1da177e4
LT
618 void *ret;
619 int order = get_order(size);
284901a9 620 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
621
622 if (hwdev && hwdev->coherent_dma_mask)
623 dma_mask = hwdev->coherent_dma_mask;
1da177e4 624
25667d67 625 ret = (void *)__get_free_pages(flags, order);
e05ed4d1
AD
626 if (ret) {
627 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
628 if (dev_addr + size - 1 > dma_mask) {
629 /*
630 * The allocated memory isn't reachable by the device.
631 */
632 free_pages((unsigned long) ret, order);
633 ret = NULL;
634 }
1da177e4
LT
635 }
636 if (!ret) {
637 /*
bfc5501f
KRW
638 * We are either out of memory or the device can't DMA to
639 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 640 * will grab memory from the lowest available address range.
1da177e4 641 */
e05ed4d1
AD
642 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
643 if (paddr == SWIOTLB_MAP_ERROR)
1da177e4 644 return NULL;
1da177e4 645
e05ed4d1
AD
646 ret = phys_to_virt(paddr);
647 dev_addr = phys_to_dma(hwdev, paddr);
1da177e4 648
61ca08c3
AD
649 /* Confirm address can be DMA'd by device */
650 if (dev_addr + size - 1 > dma_mask) {
651 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
652 (unsigned long long)dma_mask,
653 (unsigned long long)dev_addr);
a2b89b59 654
61ca08c3
AD
655 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
656 swiotlb_tbl_unmap_single(hwdev, paddr,
657 size, DMA_TO_DEVICE);
658 return NULL;
659 }
1da177e4 660 }
e05ed4d1 661
1da177e4 662 *dma_handle = dev_addr;
e05ed4d1
AD
663 memset(ret, 0, size);
664
1da177e4
LT
665 return ret;
666}
874d6a95 667EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
668
669void
670swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 671 dma_addr_t dev_addr)
1da177e4 672{
862d196b 673 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 674
aa24886e 675 WARN_ON(irqs_disabled());
02ca646e
FT
676 if (!is_swiotlb_buffer(paddr))
677 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 678 else
bfc5501f 679 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
61ca08c3 680 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
1da177e4 681}
874d6a95 682EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
683
684static void
22d48269
KRW
685swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
686 int do_panic)
1da177e4
LT
687{
688 /*
689 * Ran out of IOMMU space for this operation. This is very bad.
690 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 691 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
692 * When the mapping is small enough return a static buffer to limit
693 * the damage, or panic when the transfer is too big.
694 */
563aaf06 695 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
94b32486 696 "device %s\n", size, dev ? dev_name(dev) : "?");
1da177e4 697
c7084b35
CD
698 if (size <= io_tlb_overflow || !do_panic)
699 return;
700
701 if (dir == DMA_BIDIRECTIONAL)
702 panic("DMA: Random memory could be DMA accessed\n");
703 if (dir == DMA_FROM_DEVICE)
704 panic("DMA: Random memory could be DMA written\n");
705 if (dir == DMA_TO_DEVICE)
706 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
707}
708
709/*
710 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 711 * physical address to use is returned.
1da177e4
LT
712 *
713 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 714 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 715 */
f98eee8e
FT
716dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
717 unsigned long offset, size_t size,
718 enum dma_data_direction dir,
719 struct dma_attrs *attrs)
1da177e4 720{
e05ed4d1 721 phys_addr_t map, phys = page_to_phys(page) + offset;
862d196b 722 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4 723
34814545 724 BUG_ON(dir == DMA_NONE);
1da177e4 725 /*
ceb5ac32 726 * If the address happens to be in the device's DMA window,
1da177e4
LT
727 * we can safely return the device addr and not worry about bounce
728 * buffering it.
729 */
b9394647 730 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
1da177e4
LT
731 return dev_addr;
732
2b2b614d
ZK
733 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
734
e05ed4d1 735 /* Oh well, have to allocate and map a bounce buffer. */
f98eee8e 736 map = map_single(dev, phys, size, dir);
e05ed4d1 737 if (map == SWIOTLB_MAP_ERROR) {
f98eee8e 738 swiotlb_full(dev, size, dir, 1);
ee3f6ba8 739 return phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4
LT
740 }
741
e05ed4d1 742 dev_addr = phys_to_dma(dev, map);
1da177e4 743
e05ed4d1 744 /* Ensure that the address returned is DMA'ble */
fba99fa3 745 if (!dma_capable(dev, dev_addr, size)) {
61ca08c3 746 swiotlb_tbl_unmap_single(dev, map, size, dir);
ee3f6ba8 747 return phys_to_dma(dev, io_tlb_overflow_buffer);
fba99fa3 748 }
1da177e4
LT
749
750 return dev_addr;
751}
f98eee8e 752EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 753
1da177e4
LT
754/*
755 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 756 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
757 * other usages are undefined.
758 *
759 * After this call, reads by the cpu to the buffer are guaranteed to see
760 * whatever the device wrote there.
761 */
7fcebbd2 762static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
22d48269 763 size_t size, enum dma_data_direction dir)
1da177e4 764{
862d196b 765 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 766
34814545 767 BUG_ON(dir == DMA_NONE);
7fcebbd2 768
02ca646e 769 if (is_swiotlb_buffer(paddr)) {
61ca08c3 770 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
7fcebbd2
BB
771 return;
772 }
773
774 if (dir != DMA_FROM_DEVICE)
775 return;
776
02ca646e
FT
777 /*
778 * phys_to_virt doesn't work with hihgmem page but we could
779 * call dma_mark_clean() with hihgmem page here. However, we
780 * are fine since dma_mark_clean() is null on POWERPC. We can
781 * make dma_mark_clean() take a physical address if necessary.
782 */
783 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
784}
785
786void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
787 size_t size, enum dma_data_direction dir,
788 struct dma_attrs *attrs)
789{
790 unmap_single(hwdev, dev_addr, size, dir);
1da177e4 791}
f98eee8e 792EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 793
1da177e4
LT
794/*
795 * Make physical memory consistent for a single streaming mode DMA translation
796 * after a transfer.
797 *
ceb5ac32 798 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
799 * using the cpu, yet do not wish to teardown the dma mapping, you must
800 * call this function before doing so. At the next point you give the dma
1da177e4
LT
801 * address back to the card, you must first perform a
802 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
803 */
be6b0267 804static void
8270f3f1 805swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
d7ef1533
KRW
806 size_t size, enum dma_data_direction dir,
807 enum dma_sync_target target)
1da177e4 808{
862d196b 809 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 810
34814545 811 BUG_ON(dir == DMA_NONE);
380d6878 812
02ca646e 813 if (is_swiotlb_buffer(paddr)) {
fbfda893 814 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
380d6878
BB
815 return;
816 }
817
818 if (dir != DMA_FROM_DEVICE)
819 return;
820
02ca646e 821 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
822}
823
8270f3f1
JL
824void
825swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 826 size_t size, enum dma_data_direction dir)
8270f3f1 827{
de69e0f0 828 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 829}
874d6a95 830EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 831
1da177e4
LT
832void
833swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 834 size_t size, enum dma_data_direction dir)
1da177e4 835{
de69e0f0 836 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 837}
874d6a95 838EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
839
840/*
841 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 842 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
843 * interface. Here the scatter gather list elements are each tagged with the
844 * appropriate dma address and length. They are obtained via
845 * sg_dma_{address,length}(SG).
846 *
847 * NOTE: An implementation may be able to use a smaller number of
848 * DMA address/length pairs than there are SG table elements.
849 * (for example via virtual mapping capabilities)
850 * The routine returns the number of addr/length pairs actually
851 * used, at most nents.
852 *
ceb5ac32 853 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
854 * same here.
855 */
856int
309df0c5 857swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
160c1d8e 858 enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 859{
dbfd49fe 860 struct scatterlist *sg;
1da177e4
LT
861 int i;
862
34814545 863 BUG_ON(dir == DMA_NONE);
1da177e4 864
dbfd49fe 865 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 866 phys_addr_t paddr = sg_phys(sg);
862d196b 867 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 868
cf56e3f2 869 if (swiotlb_force ||
b9394647 870 !dma_capable(hwdev, dev_addr, sg->length)) {
e05ed4d1
AD
871 phys_addr_t map = map_single(hwdev, sg_phys(sg),
872 sg->length, dir);
873 if (map == SWIOTLB_MAP_ERROR) {
1da177e4
LT
874 /* Don't panic here, we expect map_sg users
875 to do proper error handling. */
876 swiotlb_full(hwdev, sg->length, dir, 0);
309df0c5
AK
877 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
878 attrs);
4d86ec7a 879 sg_dma_len(sgl) = 0;
1da177e4
LT
880 return 0;
881 }
e05ed4d1 882 sg->dma_address = phys_to_dma(hwdev, map);
1da177e4
LT
883 } else
884 sg->dma_address = dev_addr;
4d86ec7a 885 sg_dma_len(sg) = sg->length;
1da177e4
LT
886 }
887 return nelems;
888}
309df0c5
AK
889EXPORT_SYMBOL(swiotlb_map_sg_attrs);
890
891int
892swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
22d48269 893 enum dma_data_direction dir)
309df0c5
AK
894{
895 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
896}
874d6a95 897EXPORT_SYMBOL(swiotlb_map_sg);
1da177e4
LT
898
899/*
900 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 901 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
902 */
903void
309df0c5 904swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
160c1d8e 905 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 906{
dbfd49fe 907 struct scatterlist *sg;
1da177e4
LT
908 int i;
909
34814545 910 BUG_ON(dir == DMA_NONE);
1da177e4 911
7fcebbd2 912 for_each_sg(sgl, sg, nelems, i)
4d86ec7a 913 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
7fcebbd2 914
1da177e4 915}
309df0c5
AK
916EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
917
918void
919swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
22d48269 920 enum dma_data_direction dir)
309df0c5
AK
921{
922 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
923}
874d6a95 924EXPORT_SYMBOL(swiotlb_unmap_sg);
1da177e4
LT
925
926/*
927 * Make physical memory consistent for a set of streaming mode DMA translations
928 * after a transfer.
929 *
930 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
931 * and usage.
932 */
be6b0267 933static void
dbfd49fe 934swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
d7ef1533
KRW
935 int nelems, enum dma_data_direction dir,
936 enum dma_sync_target target)
1da177e4 937{
dbfd49fe 938 struct scatterlist *sg;
1da177e4
LT
939 int i;
940
380d6878
BB
941 for_each_sg(sgl, sg, nelems, i)
942 swiotlb_sync_single(hwdev, sg->dma_address,
4d86ec7a 943 sg_dma_len(sg), dir, target);
1da177e4
LT
944}
945
8270f3f1
JL
946void
947swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 948 int nelems, enum dma_data_direction dir)
8270f3f1 949{
de69e0f0 950 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 951}
874d6a95 952EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 953
1da177e4
LT
954void
955swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 956 int nelems, enum dma_data_direction dir)
1da177e4 957{
de69e0f0 958 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 959}
874d6a95 960EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
961
962int
8d8bb39b 963swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 964{
ee3f6ba8 965 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1da177e4 966}
874d6a95 967EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
968
969/*
17e5ad6c 970 * Return whether the given device DMA address mask can be supported
1da177e4 971 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 972 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
973 * this function.
974 */
975int
563aaf06 976swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 977{
c40dba06 978 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1da177e4 979}
1da177e4 980EXPORT_SYMBOL(swiotlb_dma_supported);