]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/swiotlb.c
swiotlb: Make internal bookkeeping functions have 'swiotlb_tbl' prefix.
[mirror_ubuntu-artful-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/module.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
1da177e4
LT
32
33#include <asm/io.h>
1da177e4 34#include <asm/dma.h>
17e5ad6c 35#include <asm/scatterlist.h>
1da177e4
LT
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
a8522509 39#include <linux/iommu-helper.h>
1da177e4
LT
40
41#define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
43
0b9afede
AW
44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45
46/*
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 */
51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52
de69e0f0
JL
53/*
54 * Enumeration for sync targets
55 */
56enum dma_sync_target {
57 SYNC_FOR_CPU = 0,
58 SYNC_FOR_DEVICE = 1,
59};
60
1da177e4
LT
61int swiotlb_force;
62
63/*
bfc5501f
KRW
64 * Used to do a quick range check in swiotlb_tbl_unmap_single and
65 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
66 * API.
67 */
68static char *io_tlb_start, *io_tlb_end;
69
70/*
71 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
72 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
73 */
74static unsigned long io_tlb_nslabs;
75
76/*
77 * When the IOMMU overflows we return a fallback buffer. This sets the size.
78 */
79static unsigned long io_tlb_overflow = 32*1024;
80
81void *io_tlb_overflow_buffer;
82
83/*
84 * This is a free list describing the number of free entries available from
85 * each index
86 */
87static unsigned int *io_tlb_list;
88static unsigned int io_tlb_index;
89
90/*
91 * We need to save away the original address corresponding to a mapped entry
92 * for the sync operations.
93 */
bc40ac66 94static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
95
96/*
97 * Protect the above data structures in the map and unmap calls
98 */
99static DEFINE_SPINLOCK(io_tlb_lock);
100
5740afdb
FT
101static int late_alloc;
102
1da177e4
LT
103static int __init
104setup_io_tlb_npages(char *str)
105{
106 if (isdigit(*str)) {
e8579e72 107 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
108 /* avoid tail segment of size < IO_TLB_SEGSIZE */
109 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
110 }
111 if (*str == ',')
112 ++str;
b18485e7 113 if (!strcmp(str, "force"))
1da177e4 114 swiotlb_force = 1;
b18485e7 115
1da177e4
LT
116 return 1;
117}
118__setup("swiotlb=", setup_io_tlb_npages);
119/* make io_tlb_overflow tunable too? */
120
02ca646e 121/* Note that this doesn't work with highmem page */
70a7d3cc
JF
122static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
123 volatile void *address)
e08e1f7a 124{
862d196b 125 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
126}
127
ad32e8cb 128void swiotlb_print_info(void)
2e5b2b86 129{
ad32e8cb 130 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
2e5b2b86 131 phys_addr_t pstart, pend;
2e5b2b86
IC
132
133 pstart = virt_to_phys(io_tlb_start);
134 pend = virt_to_phys(io_tlb_end);
135
2e5b2b86
IC
136 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
137 bytes >> 20, io_tlb_start, io_tlb_end);
70a7d3cc
JF
138 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
139 (unsigned long long)pstart,
140 (unsigned long long)pend);
2e5b2b86
IC
141}
142
abbceff7 143void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 144{
563aaf06 145 unsigned long i, bytes;
1da177e4 146
abbceff7 147 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 148
abbceff7
FT
149 io_tlb_nslabs = nslabs;
150 io_tlb_start = tlb;
563aaf06 151 io_tlb_end = io_tlb_start + bytes;
1da177e4
LT
152
153 /*
154 * Allocate and initialize the free list array. This array is used
155 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
156 * between io_tlb_start and io_tlb_end.
157 */
158 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
25667d67 159 for (i = 0; i < io_tlb_nslabs; i++)
1da177e4
LT
160 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
161 io_tlb_index = 0;
bc40ac66 162 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
1da177e4
LT
163
164 /*
165 * Get the overflow emergency buffer
166 */
167 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
563aaf06
JB
168 if (!io_tlb_overflow_buffer)
169 panic("Cannot allocate SWIOTLB overflow buffer!\n");
ad32e8cb
FT
170 if (verbose)
171 swiotlb_print_info();
1da177e4
LT
172}
173
abbceff7
FT
174/*
175 * Statically reserve bounce buffer space and initialize bounce buffer data
176 * structures for the software IO TLB used to implement the DMA API.
177 */
178void __init
179swiotlb_init_with_default_size(size_t default_size, int verbose)
180{
181 unsigned long bytes;
182
183 if (!io_tlb_nslabs) {
184 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
185 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
186 }
187
188 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
189
190 /*
191 * Get IO TLB memory from the low pages
192 */
193 io_tlb_start = alloc_bootmem_low_pages(bytes);
194 if (!io_tlb_start)
195 panic("Cannot allocate SWIOTLB buffer");
196
197 swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
198}
199
563aaf06 200void __init
ad32e8cb 201swiotlb_init(int verbose)
1da177e4 202{
ad32e8cb 203 swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
1da177e4
LT
204}
205
0b9afede
AW
206/*
207 * Systems with larger DMA zones (those that don't support ISA) can
208 * initialize the swiotlb later using the slab allocator if needed.
209 * This should be just like above, but with some error catching.
210 */
211int
563aaf06 212swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 213{
563aaf06 214 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
0b9afede
AW
215 unsigned int order;
216
217 if (!io_tlb_nslabs) {
218 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
219 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
220 }
221
222 /*
223 * Get IO TLB memory from the low pages
224 */
563aaf06 225 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 226 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 227 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
228
229 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
bb52196b
FT
230 io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
231 order);
0b9afede
AW
232 if (io_tlb_start)
233 break;
234 order--;
235 }
236
237 if (!io_tlb_start)
238 goto cleanup1;
239
563aaf06 240 if (order != get_order(bytes)) {
0b9afede
AW
241 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
242 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
243 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 244 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede 245 }
563aaf06
JB
246 io_tlb_end = io_tlb_start + bytes;
247 memset(io_tlb_start, 0, bytes);
0b9afede
AW
248
249 /*
250 * Allocate and initialize the free list array. This array is used
251 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
252 * between io_tlb_start and io_tlb_end.
253 */
254 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
255 get_order(io_tlb_nslabs * sizeof(int)));
256 if (!io_tlb_list)
257 goto cleanup2;
258
259 for (i = 0; i < io_tlb_nslabs; i++)
260 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
261 io_tlb_index = 0;
262
bc40ac66
BB
263 io_tlb_orig_addr = (phys_addr_t *)
264 __get_free_pages(GFP_KERNEL,
265 get_order(io_tlb_nslabs *
266 sizeof(phys_addr_t)));
0b9afede
AW
267 if (!io_tlb_orig_addr)
268 goto cleanup3;
269
bc40ac66 270 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
0b9afede
AW
271
272 /*
273 * Get the overflow emergency buffer
274 */
275 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
276 get_order(io_tlb_overflow));
277 if (!io_tlb_overflow_buffer)
278 goto cleanup4;
279
ad32e8cb 280 swiotlb_print_info();
0b9afede 281
5740afdb
FT
282 late_alloc = 1;
283
0b9afede
AW
284 return 0;
285
286cleanup4:
bc40ac66
BB
287 free_pages((unsigned long)io_tlb_orig_addr,
288 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
0b9afede
AW
289 io_tlb_orig_addr = NULL;
290cleanup3:
25667d67
TL
291 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
292 sizeof(int)));
0b9afede 293 io_tlb_list = NULL;
0b9afede 294cleanup2:
563aaf06 295 io_tlb_end = NULL;
0b9afede
AW
296 free_pages((unsigned long)io_tlb_start, order);
297 io_tlb_start = NULL;
298cleanup1:
299 io_tlb_nslabs = req_nslabs;
300 return -ENOMEM;
301}
302
5740afdb
FT
303void __init swiotlb_free(void)
304{
305 if (!io_tlb_overflow_buffer)
306 return;
307
308 if (late_alloc) {
309 free_pages((unsigned long)io_tlb_overflow_buffer,
310 get_order(io_tlb_overflow));
311 free_pages((unsigned long)io_tlb_orig_addr,
312 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
313 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
314 sizeof(int)));
315 free_pages((unsigned long)io_tlb_start,
316 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
317 } else {
318 free_bootmem_late(__pa(io_tlb_overflow_buffer),
319 io_tlb_overflow);
320 free_bootmem_late(__pa(io_tlb_orig_addr),
321 io_tlb_nslabs * sizeof(phys_addr_t));
322 free_bootmem_late(__pa(io_tlb_list),
323 io_tlb_nslabs * sizeof(int));
324 free_bootmem_late(__pa(io_tlb_start),
325 io_tlb_nslabs << IO_TLB_SHIFT);
326 }
327}
328
02ca646e 329static int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 330{
02ca646e
FT
331 return paddr >= virt_to_phys(io_tlb_start) &&
332 paddr < virt_to_phys(io_tlb_end);
640aebfe
FT
333}
334
fb05a379
BB
335/*
336 * Bounce: copy the swiotlb buffer back to the original dma location
337 */
338static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
339 enum dma_data_direction dir)
340{
341 unsigned long pfn = PFN_DOWN(phys);
342
343 if (PageHighMem(pfn_to_page(pfn))) {
344 /* The buffer does not have a mapping. Map it in and copy */
345 unsigned int offset = phys & ~PAGE_MASK;
346 char *buffer;
347 unsigned int sz = 0;
348 unsigned long flags;
349
350 while (size) {
67131ad0 351 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
352
353 local_irq_save(flags);
354 buffer = kmap_atomic(pfn_to_page(pfn),
355 KM_BOUNCE_READ);
356 if (dir == DMA_TO_DEVICE)
357 memcpy(dma_addr, buffer + offset, sz);
ef9b1893 358 else
fb05a379
BB
359 memcpy(buffer + offset, dma_addr, sz);
360 kunmap_atomic(buffer, KM_BOUNCE_READ);
ef9b1893 361 local_irq_restore(flags);
fb05a379
BB
362
363 size -= sz;
364 pfn++;
365 dma_addr += sz;
366 offset = 0;
ef9b1893
JF
367 }
368 } else {
ef9b1893 369 if (dir == DMA_TO_DEVICE)
fb05a379 370 memcpy(dma_addr, phys_to_virt(phys), size);
ef9b1893 371 else
fb05a379 372 memcpy(phys_to_virt(phys), dma_addr, size);
ef9b1893 373 }
1b548f66
JF
374}
375
eb605a57
FT
376void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
377 phys_addr_t phys, size_t size, int dir)
1da177e4
LT
378{
379 unsigned long flags;
380 char *dma_addr;
381 unsigned int nslots, stride, index, wrap;
382 int i;
681cc5cd
FT
383 unsigned long mask;
384 unsigned long offset_slots;
385 unsigned long max_slots;
386
387 mask = dma_get_seg_boundary(hwdev);
681cc5cd 388
eb605a57
FT
389 tbl_dma_addr &= mask;
390
391 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
392
393 /*
394 * Carefully handle integer overflow which can occur when mask == ~0UL.
395 */
b15a3891
JB
396 max_slots = mask + 1
397 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
398 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
399
400 /*
401 * For mappings greater than a page, we limit the stride (and
402 * hence alignment) to a page size.
403 */
404 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
405 if (size > PAGE_SIZE)
406 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
407 else
408 stride = 1;
409
34814545 410 BUG_ON(!nslots);
1da177e4
LT
411
412 /*
413 * Find suitable number of IO TLB entries size that will fit this
414 * request and allocate a buffer from that IO TLB pool.
415 */
416 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
417 index = ALIGN(io_tlb_index, stride);
418 if (index >= io_tlb_nslabs)
419 index = 0;
420 wrap = index;
421
422 do {
a8522509
FT
423 while (iommu_is_span_boundary(index, nslots, offset_slots,
424 max_slots)) {
b15a3891
JB
425 index += stride;
426 if (index >= io_tlb_nslabs)
427 index = 0;
a7133a15
AM
428 if (index == wrap)
429 goto not_found;
430 }
431
432 /*
433 * If we find a slot that indicates we have 'nslots' number of
434 * contiguous buffers, we allocate the buffers from that slot
435 * and mark the entries as '0' indicating unavailable.
436 */
437 if (io_tlb_list[index] >= nslots) {
438 int count = 0;
439
440 for (i = index; i < (int) (index + nslots); i++)
441 io_tlb_list[i] = 0;
442 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
443 io_tlb_list[i] = ++count;
444 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 445
a7133a15
AM
446 /*
447 * Update the indices to avoid searching in the next
448 * round.
449 */
450 io_tlb_index = ((index + nslots) < io_tlb_nslabs
451 ? (index + nslots) : 0);
452
453 goto found;
454 }
455 index += stride;
456 if (index >= io_tlb_nslabs)
457 index = 0;
458 } while (index != wrap);
459
460not_found:
461 spin_unlock_irqrestore(&io_tlb_lock, flags);
462 return NULL;
463found:
1da177e4
LT
464 spin_unlock_irqrestore(&io_tlb_lock, flags);
465
466 /*
467 * Save away the mapping from the original address to the DMA address.
468 * This is needed when we sync the memory. Then we sync the buffer if
469 * needed.
470 */
bc40ac66
BB
471 for (i = 0; i < nslots; i++)
472 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
1da177e4 473 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
fb05a379 474 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
1da177e4
LT
475
476 return dma_addr;
477}
478
eb605a57
FT
479/*
480 * Allocates bounce buffer and returns its kernel virtual address.
481 */
482
483static void *
484map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
485{
486 dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
487
488 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
489}
490
1da177e4
LT
491/*
492 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
493 */
494static void
bfc5501f
KRW
495swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
496 int dir)
1da177e4
LT
497{
498 unsigned long flags;
499 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
500 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
bc40ac66 501 phys_addr_t phys = io_tlb_orig_addr[index];
1da177e4
LT
502
503 /*
504 * First, sync the memory before unmapping the entry
505 */
bc40ac66 506 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
fb05a379 507 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
508
509 /*
510 * Return the buffer to the free list by setting the corresponding
af901ca1 511 * entries to indicate the number of contiguous entries available.
1da177e4
LT
512 * While returning the entries to the free list, we merge the entries
513 * with slots below and above the pool being returned.
514 */
515 spin_lock_irqsave(&io_tlb_lock, flags);
516 {
517 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
518 io_tlb_list[index + nslots] : 0);
519 /*
520 * Step 1: return the slots to the free list, merging the
521 * slots with superceeding slots
522 */
523 for (i = index + nslots - 1; i >= index; i--)
524 io_tlb_list[i] = ++count;
525 /*
526 * Step 2: merge the returned slots with the preceding slots,
527 * if available (non zero)
528 */
529 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
530 io_tlb_list[i] = ++count;
531 }
532 spin_unlock_irqrestore(&io_tlb_lock, flags);
533}
534
535static void
bfc5501f 536swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
de69e0f0 537 int dir, int target)
1da177e4 538{
bc40ac66
BB
539 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
540 phys_addr_t phys = io_tlb_orig_addr[index];
541
542 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
df336d1c 543
de69e0f0
JL
544 switch (target) {
545 case SYNC_FOR_CPU:
546 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 547 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
34814545
ES
548 else
549 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
550 break;
551 case SYNC_FOR_DEVICE:
552 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 553 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
34814545
ES
554 else
555 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
556 break;
557 default:
1da177e4 558 BUG();
de69e0f0 559 }
1da177e4
LT
560}
561
562void *
563swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 564 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 565{
563aaf06 566 dma_addr_t dev_addr;
1da177e4
LT
567 void *ret;
568 int order = get_order(size);
284901a9 569 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
570
571 if (hwdev && hwdev->coherent_dma_mask)
572 dma_mask = hwdev->coherent_dma_mask;
1da177e4 573
25667d67 574 ret = (void *)__get_free_pages(flags, order);
ac2b3e67 575 if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
1da177e4
LT
576 /*
577 * The allocated memory isn't reachable by the device.
1da177e4
LT
578 */
579 free_pages((unsigned long) ret, order);
580 ret = NULL;
581 }
582 if (!ret) {
583 /*
bfc5501f
KRW
584 * We are either out of memory or the device can't DMA to
585 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 586 * will grab memory from the lowest available address range.
1da177e4 587 */
bc40ac66 588 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
9dfda12b 589 if (!ret)
1da177e4 590 return NULL;
1da177e4
LT
591 }
592
593 memset(ret, 0, size);
70a7d3cc 594 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
1da177e4
LT
595
596 /* Confirm address can be DMA'd by device */
ac2b3e67 597 if (dev_addr + size - 1 > dma_mask) {
563aaf06 598 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
1e74f300 599 (unsigned long long)dma_mask,
563aaf06 600 (unsigned long long)dev_addr);
a2b89b59
FT
601
602 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
bfc5501f 603 swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
a2b89b59 604 return NULL;
1da177e4
LT
605 }
606 *dma_handle = dev_addr;
607 return ret;
608}
874d6a95 609EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
610
611void
612swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 613 dma_addr_t dev_addr)
1da177e4 614{
862d196b 615 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 616
aa24886e 617 WARN_ON(irqs_disabled());
02ca646e
FT
618 if (!is_swiotlb_buffer(paddr))
619 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 620 else
bfc5501f
KRW
621 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
622 swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
1da177e4 623}
874d6a95 624EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
625
626static void
627swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
628{
629 /*
630 * Ran out of IOMMU space for this operation. This is very bad.
631 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 632 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
633 * When the mapping is small enough return a static buffer to limit
634 * the damage, or panic when the transfer is too big.
635 */
563aaf06 636 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
94b32486 637 "device %s\n", size, dev ? dev_name(dev) : "?");
1da177e4 638
c7084b35
CD
639 if (size <= io_tlb_overflow || !do_panic)
640 return;
641
642 if (dir == DMA_BIDIRECTIONAL)
643 panic("DMA: Random memory could be DMA accessed\n");
644 if (dir == DMA_FROM_DEVICE)
645 panic("DMA: Random memory could be DMA written\n");
646 if (dir == DMA_TO_DEVICE)
647 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
648}
649
650/*
651 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 652 * physical address to use is returned.
1da177e4
LT
653 *
654 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 655 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 656 */
f98eee8e
FT
657dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
658 unsigned long offset, size_t size,
659 enum dma_data_direction dir,
660 struct dma_attrs *attrs)
1da177e4 661{
f98eee8e 662 phys_addr_t phys = page_to_phys(page) + offset;
862d196b 663 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4
LT
664 void *map;
665
34814545 666 BUG_ON(dir == DMA_NONE);
1da177e4 667 /*
ceb5ac32 668 * If the address happens to be in the device's DMA window,
1da177e4
LT
669 * we can safely return the device addr and not worry about bounce
670 * buffering it.
671 */
b9394647 672 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
1da177e4
LT
673 return dev_addr;
674
675 /*
676 * Oh well, have to allocate and map a bounce buffer.
677 */
f98eee8e 678 map = map_single(dev, phys, size, dir);
1da177e4 679 if (!map) {
f98eee8e 680 swiotlb_full(dev, size, dir, 1);
1da177e4
LT
681 map = io_tlb_overflow_buffer;
682 }
683
f98eee8e 684 dev_addr = swiotlb_virt_to_bus(dev, map);
1da177e4
LT
685
686 /*
687 * Ensure that the address returned is DMA'ble
688 */
b9394647 689 if (!dma_capable(dev, dev_addr, size))
1da177e4
LT
690 panic("map_single: bounce buffer is not DMA'ble");
691
692 return dev_addr;
693}
f98eee8e 694EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 695
1da177e4
LT
696/*
697 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 698 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
699 * other usages are undefined.
700 *
701 * After this call, reads by the cpu to the buffer are guaranteed to see
702 * whatever the device wrote there.
703 */
7fcebbd2
BB
704static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
705 size_t size, int dir)
1da177e4 706{
862d196b 707 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 708
34814545 709 BUG_ON(dir == DMA_NONE);
7fcebbd2 710
02ca646e 711 if (is_swiotlb_buffer(paddr)) {
bfc5501f 712 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
7fcebbd2
BB
713 return;
714 }
715
716 if (dir != DMA_FROM_DEVICE)
717 return;
718
02ca646e
FT
719 /*
720 * phys_to_virt doesn't work with hihgmem page but we could
721 * call dma_mark_clean() with hihgmem page here. However, we
722 * are fine since dma_mark_clean() is null on POWERPC. We can
723 * make dma_mark_clean() take a physical address if necessary.
724 */
725 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
726}
727
728void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
729 size_t size, enum dma_data_direction dir,
730 struct dma_attrs *attrs)
731{
732 unmap_single(hwdev, dev_addr, size, dir);
1da177e4 733}
f98eee8e 734EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 735
1da177e4
LT
736/*
737 * Make physical memory consistent for a single streaming mode DMA translation
738 * after a transfer.
739 *
ceb5ac32 740 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
741 * using the cpu, yet do not wish to teardown the dma mapping, you must
742 * call this function before doing so. At the next point you give the dma
1da177e4
LT
743 * address back to the card, you must first perform a
744 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
745 */
be6b0267 746static void
8270f3f1 747swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
de69e0f0 748 size_t size, int dir, int target)
1da177e4 749{
862d196b 750 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 751
34814545 752 BUG_ON(dir == DMA_NONE);
380d6878 753
02ca646e 754 if (is_swiotlb_buffer(paddr)) {
bfc5501f
KRW
755 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
756 target);
380d6878
BB
757 return;
758 }
759
760 if (dir != DMA_FROM_DEVICE)
761 return;
762
02ca646e 763 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
764}
765
8270f3f1
JL
766void
767swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 768 size_t size, enum dma_data_direction dir)
8270f3f1 769{
de69e0f0 770 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 771}
874d6a95 772EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 773
1da177e4
LT
774void
775swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 776 size_t size, enum dma_data_direction dir)
1da177e4 777{
de69e0f0 778 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 779}
874d6a95 780EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
781
782/*
783 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 784 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
785 * interface. Here the scatter gather list elements are each tagged with the
786 * appropriate dma address and length. They are obtained via
787 * sg_dma_{address,length}(SG).
788 *
789 * NOTE: An implementation may be able to use a smaller number of
790 * DMA address/length pairs than there are SG table elements.
791 * (for example via virtual mapping capabilities)
792 * The routine returns the number of addr/length pairs actually
793 * used, at most nents.
794 *
ceb5ac32 795 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
796 * same here.
797 */
798int
309df0c5 799swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
160c1d8e 800 enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 801{
dbfd49fe 802 struct scatterlist *sg;
1da177e4
LT
803 int i;
804
34814545 805 BUG_ON(dir == DMA_NONE);
1da177e4 806
dbfd49fe 807 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 808 phys_addr_t paddr = sg_phys(sg);
862d196b 809 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 810
cf56e3f2 811 if (swiotlb_force ||
b9394647 812 !dma_capable(hwdev, dev_addr, sg->length)) {
bc40ac66
BB
813 void *map = map_single(hwdev, sg_phys(sg),
814 sg->length, dir);
7e870233 815 if (!map) {
1da177e4
LT
816 /* Don't panic here, we expect map_sg users
817 to do proper error handling. */
818 swiotlb_full(hwdev, sg->length, dir, 0);
309df0c5
AK
819 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
820 attrs);
dbfd49fe 821 sgl[0].dma_length = 0;
1da177e4
LT
822 return 0;
823 }
70a7d3cc 824 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
1da177e4
LT
825 } else
826 sg->dma_address = dev_addr;
827 sg->dma_length = sg->length;
828 }
829 return nelems;
830}
309df0c5
AK
831EXPORT_SYMBOL(swiotlb_map_sg_attrs);
832
833int
834swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
835 int dir)
836{
837 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
838}
874d6a95 839EXPORT_SYMBOL(swiotlb_map_sg);
1da177e4
LT
840
841/*
842 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 843 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
844 */
845void
309df0c5 846swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
160c1d8e 847 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 848{
dbfd49fe 849 struct scatterlist *sg;
1da177e4
LT
850 int i;
851
34814545 852 BUG_ON(dir == DMA_NONE);
1da177e4 853
7fcebbd2
BB
854 for_each_sg(sgl, sg, nelems, i)
855 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
856
1da177e4 857}
309df0c5
AK
858EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
859
860void
861swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
862 int dir)
863{
864 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
865}
874d6a95 866EXPORT_SYMBOL(swiotlb_unmap_sg);
1da177e4
LT
867
868/*
869 * Make physical memory consistent for a set of streaming mode DMA translations
870 * after a transfer.
871 *
872 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
873 * and usage.
874 */
be6b0267 875static void
dbfd49fe 876swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
de69e0f0 877 int nelems, int dir, int target)
1da177e4 878{
dbfd49fe 879 struct scatterlist *sg;
1da177e4
LT
880 int i;
881
380d6878
BB
882 for_each_sg(sgl, sg, nelems, i)
883 swiotlb_sync_single(hwdev, sg->dma_address,
de69e0f0 884 sg->dma_length, dir, target);
1da177e4
LT
885}
886
8270f3f1
JL
887void
888swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 889 int nelems, enum dma_data_direction dir)
8270f3f1 890{
de69e0f0 891 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 892}
874d6a95 893EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 894
1da177e4
LT
895void
896swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 897 int nelems, enum dma_data_direction dir)
1da177e4 898{
de69e0f0 899 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 900}
874d6a95 901EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
902
903int
8d8bb39b 904swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 905{
70a7d3cc 906 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
1da177e4 907}
874d6a95 908EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
909
910/*
17e5ad6c 911 * Return whether the given device DMA address mask can be supported
1da177e4 912 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 913 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
914 * this function.
915 */
916int
563aaf06 917swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 918{
70a7d3cc 919 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
1da177e4 920}
1da177e4 921EXPORT_SYMBOL(swiotlb_dma_supported);