]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/swiotlb.c
xen/balloon: set a mapping for ballooned out pages
[mirror_ubuntu-artful-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4 22#include <linux/mm.h>
8bc3bcc9 23#include <linux/export.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
1da177e4
LT
32
33#include <asm/io.h>
1da177e4 34#include <asm/dma.h>
17e5ad6c 35#include <asm/scatterlist.h>
1da177e4
LT
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
a8522509 39#include <linux/iommu-helper.h>
1da177e4
LT
40
41#define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
43
0b9afede
AW
44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45
46/*
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 */
51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52
1da177e4
LT
53int swiotlb_force;
54
55/*
bfc5501f
KRW
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
58 * API.
59 */
ff7204a7 60static phys_addr_t io_tlb_start, io_tlb_end;
1da177e4
LT
61
62/*
b595076a 63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
1da177e4
LT
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
65 */
66static unsigned long io_tlb_nslabs;
67
68/*
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
70 */
71static unsigned long io_tlb_overflow = 32*1024;
72
ee3f6ba8 73static phys_addr_t io_tlb_overflow_buffer;
1da177e4
LT
74
75/*
76 * This is a free list describing the number of free entries available from
77 * each index
78 */
79static unsigned int *io_tlb_list;
80static unsigned int io_tlb_index;
81
82/*
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
85 */
bc40ac66 86static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
87
88/*
89 * Protect the above data structures in the map and unmap calls
90 */
91static DEFINE_SPINLOCK(io_tlb_lock);
92
5740afdb
FT
93static int late_alloc;
94
1da177e4
LT
95static int __init
96setup_io_tlb_npages(char *str)
97{
98 if (isdigit(*str)) {
e8579e72 99 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102 }
103 if (*str == ',')
104 ++str;
b18485e7 105 if (!strcmp(str, "force"))
1da177e4 106 swiotlb_force = 1;
b18485e7 107
c729de8f 108 return 0;
1da177e4 109}
c729de8f 110early_param("swiotlb", setup_io_tlb_npages);
1da177e4
LT
111/* make io_tlb_overflow tunable too? */
112
f21ffe9f 113unsigned long swiotlb_nr_tbl(void)
5f98ecdb
FT
114{
115 return io_tlb_nslabs;
116}
f21ffe9f 117EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
c729de8f
YL
118
119/* default to 64MB */
120#define IO_TLB_DEFAULT_SIZE (64UL<<20)
121unsigned long swiotlb_size_or_default(void)
122{
123 unsigned long size;
124
125 size = io_tlb_nslabs << IO_TLB_SHIFT;
126
127 return size ? size : (IO_TLB_DEFAULT_SIZE);
128}
129
02ca646e 130/* Note that this doesn't work with highmem page */
70a7d3cc
JF
131static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
132 volatile void *address)
e08e1f7a 133{
862d196b 134 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
135}
136
ac2cbab2
YL
137static bool no_iotlb_memory;
138
ad32e8cb 139void swiotlb_print_info(void)
2e5b2b86 140{
ad32e8cb 141 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
ff7204a7 142 unsigned char *vstart, *vend;
2e5b2b86 143
ac2cbab2
YL
144 if (no_iotlb_memory) {
145 pr_warn("software IO TLB: No low mem\n");
146 return;
147 }
148
ff7204a7 149 vstart = phys_to_virt(io_tlb_start);
c40dba06 150 vend = phys_to_virt(io_tlb_end);
2e5b2b86 151
3af684c7 152 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
ff7204a7 153 (unsigned long long)io_tlb_start,
c40dba06 154 (unsigned long long)io_tlb_end,
ff7204a7 155 bytes >> 20, vstart, vend - 1);
2e5b2b86
IC
156}
157
ac2cbab2 158int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 159{
ee3f6ba8 160 void *v_overflow_buffer;
563aaf06 161 unsigned long i, bytes;
1da177e4 162
abbceff7 163 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 164
abbceff7 165 io_tlb_nslabs = nslabs;
ff7204a7
AD
166 io_tlb_start = __pa(tlb);
167 io_tlb_end = io_tlb_start + bytes;
1da177e4 168
ee3f6ba8
AD
169 /*
170 * Get the overflow emergency buffer
171 */
ac2cbab2
YL
172 v_overflow_buffer = alloc_bootmem_low_pages_nopanic(
173 PAGE_ALIGN(io_tlb_overflow));
ee3f6ba8 174 if (!v_overflow_buffer)
ac2cbab2 175 return -ENOMEM;
ee3f6ba8
AD
176
177 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
178
1da177e4
LT
179 /*
180 * Allocate and initialize the free list array. This array is used
181 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
182 * between io_tlb_start and io_tlb_end.
183 */
e79f86b2 184 io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
25667d67 185 for (i = 0; i < io_tlb_nslabs; i++)
1da177e4
LT
186 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
187 io_tlb_index = 0;
e79f86b2 188 io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
1da177e4 189
ad32e8cb
FT
190 if (verbose)
191 swiotlb_print_info();
ac2cbab2
YL
192
193 return 0;
1da177e4
LT
194}
195
abbceff7
FT
196/*
197 * Statically reserve bounce buffer space and initialize bounce buffer data
198 * structures for the software IO TLB used to implement the DMA API.
199 */
ac2cbab2
YL
200void __init
201swiotlb_init(int verbose)
abbceff7 202{
c729de8f 203 size_t default_size = IO_TLB_DEFAULT_SIZE;
ff7204a7 204 unsigned char *vstart;
abbceff7
FT
205 unsigned long bytes;
206
207 if (!io_tlb_nslabs) {
208 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
209 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
210 }
211
212 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
213
ac2cbab2
YL
214 /* Get IO TLB memory from the low pages */
215 vstart = alloc_bootmem_low_pages_nopanic(PAGE_ALIGN(bytes));
216 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
217 return;
abbceff7 218
ac2cbab2
YL
219 if (io_tlb_start)
220 free_bootmem(io_tlb_start,
221 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
222 pr_warn("Cannot allocate SWIOTLB buffer");
223 no_iotlb_memory = true;
1da177e4
LT
224}
225
0b9afede
AW
226/*
227 * Systems with larger DMA zones (those that don't support ISA) can
228 * initialize the swiotlb later using the slab allocator if needed.
229 * This should be just like above, but with some error catching.
230 */
231int
563aaf06 232swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 233{
74838b75 234 unsigned long bytes, req_nslabs = io_tlb_nslabs;
ff7204a7 235 unsigned char *vstart = NULL;
0b9afede 236 unsigned int order;
74838b75 237 int rc = 0;
0b9afede
AW
238
239 if (!io_tlb_nslabs) {
240 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
241 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
242 }
243
244 /*
245 * Get IO TLB memory from the low pages
246 */
563aaf06 247 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 248 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 249 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
250
251 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
ff7204a7
AD
252 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
253 order);
254 if (vstart)
0b9afede
AW
255 break;
256 order--;
257 }
258
ff7204a7 259 if (!vstart) {
74838b75
KRW
260 io_tlb_nslabs = req_nslabs;
261 return -ENOMEM;
262 }
563aaf06 263 if (order != get_order(bytes)) {
0b9afede
AW
264 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
265 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
266 io_tlb_nslabs = SLABS_PER_PAGE << order;
267 }
ff7204a7 268 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
74838b75 269 if (rc)
ff7204a7 270 free_pages((unsigned long)vstart, order);
74838b75
KRW
271 return rc;
272}
273
274int
275swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
276{
277 unsigned long i, bytes;
ee3f6ba8 278 unsigned char *v_overflow_buffer;
74838b75
KRW
279
280 bytes = nslabs << IO_TLB_SHIFT;
281
282 io_tlb_nslabs = nslabs;
ff7204a7
AD
283 io_tlb_start = virt_to_phys(tlb);
284 io_tlb_end = io_tlb_start + bytes;
74838b75 285
ff7204a7 286 memset(tlb, 0, bytes);
0b9afede 287
ee3f6ba8
AD
288 /*
289 * Get the overflow emergency buffer
290 */
291 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
292 get_order(io_tlb_overflow));
293 if (!v_overflow_buffer)
294 goto cleanup2;
295
296 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
297
0b9afede
AW
298 /*
299 * Allocate and initialize the free list array. This array is used
300 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
301 * between io_tlb_start and io_tlb_end.
302 */
303 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
304 get_order(io_tlb_nslabs * sizeof(int)));
305 if (!io_tlb_list)
ee3f6ba8 306 goto cleanup3;
0b9afede
AW
307
308 for (i = 0; i < io_tlb_nslabs; i++)
309 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
310 io_tlb_index = 0;
311
bc40ac66
BB
312 io_tlb_orig_addr = (phys_addr_t *)
313 __get_free_pages(GFP_KERNEL,
314 get_order(io_tlb_nslabs *
315 sizeof(phys_addr_t)));
0b9afede 316 if (!io_tlb_orig_addr)
ee3f6ba8 317 goto cleanup4;
0b9afede 318
bc40ac66 319 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
0b9afede 320
ad32e8cb 321 swiotlb_print_info();
0b9afede 322
5740afdb
FT
323 late_alloc = 1;
324
0b9afede
AW
325 return 0;
326
327cleanup4:
25667d67
TL
328 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
329 sizeof(int)));
0b9afede 330 io_tlb_list = NULL;
ee3f6ba8
AD
331cleanup3:
332 free_pages((unsigned long)v_overflow_buffer,
333 get_order(io_tlb_overflow));
334 io_tlb_overflow_buffer = 0;
0b9afede 335cleanup2:
c40dba06 336 io_tlb_end = 0;
ff7204a7 337 io_tlb_start = 0;
74838b75 338 io_tlb_nslabs = 0;
0b9afede
AW
339 return -ENOMEM;
340}
341
5740afdb
FT
342void __init swiotlb_free(void)
343{
ee3f6ba8 344 if (!io_tlb_orig_addr)
5740afdb
FT
345 return;
346
347 if (late_alloc) {
ee3f6ba8 348 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
5740afdb
FT
349 get_order(io_tlb_overflow));
350 free_pages((unsigned long)io_tlb_orig_addr,
351 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
352 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
353 sizeof(int)));
ff7204a7 354 free_pages((unsigned long)phys_to_virt(io_tlb_start),
5740afdb
FT
355 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
356 } else {
ee3f6ba8 357 free_bootmem_late(io_tlb_overflow_buffer,
e79f86b2 358 PAGE_ALIGN(io_tlb_overflow));
5740afdb 359 free_bootmem_late(__pa(io_tlb_orig_addr),
e79f86b2 360 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
5740afdb 361 free_bootmem_late(__pa(io_tlb_list),
e79f86b2 362 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
ff7204a7 363 free_bootmem_late(io_tlb_start,
e79f86b2 364 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
5740afdb 365 }
f21ffe9f 366 io_tlb_nslabs = 0;
5740afdb
FT
367}
368
02ca646e 369static int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 370{
ff7204a7 371 return paddr >= io_tlb_start && paddr < io_tlb_end;
640aebfe
FT
372}
373
fb05a379
BB
374/*
375 * Bounce: copy the swiotlb buffer back to the original dma location
376 */
af51a9f1
AD
377static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
378 size_t size, enum dma_data_direction dir)
fb05a379 379{
af51a9f1
AD
380 unsigned long pfn = PFN_DOWN(orig_addr);
381 unsigned char *vaddr = phys_to_virt(tlb_addr);
fb05a379
BB
382
383 if (PageHighMem(pfn_to_page(pfn))) {
384 /* The buffer does not have a mapping. Map it in and copy */
af51a9f1 385 unsigned int offset = orig_addr & ~PAGE_MASK;
fb05a379
BB
386 char *buffer;
387 unsigned int sz = 0;
388 unsigned long flags;
389
390 while (size) {
67131ad0 391 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
392
393 local_irq_save(flags);
c3eede8e 394 buffer = kmap_atomic(pfn_to_page(pfn));
fb05a379 395 if (dir == DMA_TO_DEVICE)
af51a9f1 396 memcpy(vaddr, buffer + offset, sz);
ef9b1893 397 else
af51a9f1 398 memcpy(buffer + offset, vaddr, sz);
c3eede8e 399 kunmap_atomic(buffer);
ef9b1893 400 local_irq_restore(flags);
fb05a379
BB
401
402 size -= sz;
403 pfn++;
af51a9f1 404 vaddr += sz;
fb05a379 405 offset = 0;
ef9b1893 406 }
af51a9f1
AD
407 } else if (dir == DMA_TO_DEVICE) {
408 memcpy(vaddr, phys_to_virt(orig_addr), size);
ef9b1893 409 } else {
af51a9f1 410 memcpy(phys_to_virt(orig_addr), vaddr, size);
ef9b1893 411 }
1b548f66
JF
412}
413
e05ed4d1
AD
414phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
415 dma_addr_t tbl_dma_addr,
416 phys_addr_t orig_addr, size_t size,
417 enum dma_data_direction dir)
1da177e4
LT
418{
419 unsigned long flags;
e05ed4d1 420 phys_addr_t tlb_addr;
1da177e4
LT
421 unsigned int nslots, stride, index, wrap;
422 int i;
681cc5cd
FT
423 unsigned long mask;
424 unsigned long offset_slots;
425 unsigned long max_slots;
426
ac2cbab2
YL
427 if (no_iotlb_memory)
428 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
429
681cc5cd 430 mask = dma_get_seg_boundary(hwdev);
681cc5cd 431
eb605a57
FT
432 tbl_dma_addr &= mask;
433
434 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
435
436 /*
437 * Carefully handle integer overflow which can occur when mask == ~0UL.
438 */
b15a3891
JB
439 max_slots = mask + 1
440 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
441 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
442
443 /*
444 * For mappings greater than a page, we limit the stride (and
445 * hence alignment) to a page size.
446 */
447 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
448 if (size > PAGE_SIZE)
449 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
450 else
451 stride = 1;
452
34814545 453 BUG_ON(!nslots);
1da177e4
LT
454
455 /*
456 * Find suitable number of IO TLB entries size that will fit this
457 * request and allocate a buffer from that IO TLB pool.
458 */
459 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
460 index = ALIGN(io_tlb_index, stride);
461 if (index >= io_tlb_nslabs)
462 index = 0;
463 wrap = index;
464
465 do {
a8522509
FT
466 while (iommu_is_span_boundary(index, nslots, offset_slots,
467 max_slots)) {
b15a3891
JB
468 index += stride;
469 if (index >= io_tlb_nslabs)
470 index = 0;
a7133a15
AM
471 if (index == wrap)
472 goto not_found;
473 }
474
475 /*
476 * If we find a slot that indicates we have 'nslots' number of
477 * contiguous buffers, we allocate the buffers from that slot
478 * and mark the entries as '0' indicating unavailable.
479 */
480 if (io_tlb_list[index] >= nslots) {
481 int count = 0;
482
483 for (i = index; i < (int) (index + nslots); i++)
484 io_tlb_list[i] = 0;
485 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
486 io_tlb_list[i] = ++count;
e05ed4d1 487 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 488
a7133a15
AM
489 /*
490 * Update the indices to avoid searching in the next
491 * round.
492 */
493 io_tlb_index = ((index + nslots) < io_tlb_nslabs
494 ? (index + nslots) : 0);
495
496 goto found;
497 }
498 index += stride;
499 if (index >= io_tlb_nslabs)
500 index = 0;
501 } while (index != wrap);
502
503not_found:
504 spin_unlock_irqrestore(&io_tlb_lock, flags);
e05ed4d1 505 return SWIOTLB_MAP_ERROR;
a7133a15 506found:
1da177e4
LT
507 spin_unlock_irqrestore(&io_tlb_lock, flags);
508
509 /*
510 * Save away the mapping from the original address to the DMA address.
511 * This is needed when we sync the memory. Then we sync the buffer if
512 * needed.
513 */
bc40ac66 514 for (i = 0; i < nslots; i++)
e05ed4d1 515 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
1da177e4 516 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
af51a9f1 517 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
1da177e4 518
e05ed4d1 519 return tlb_addr;
1da177e4 520}
d7ef1533 521EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
1da177e4 522
eb605a57
FT
523/*
524 * Allocates bounce buffer and returns its kernel virtual address.
525 */
526
e05ed4d1
AD
527phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
528 enum dma_data_direction dir)
eb605a57 529{
ff7204a7 530 dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
eb605a57
FT
531
532 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
533}
534
1da177e4
LT
535/*
536 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
537 */
61ca08c3
AD
538void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
539 size_t size, enum dma_data_direction dir)
1da177e4
LT
540{
541 unsigned long flags;
542 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
61ca08c3
AD
543 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
544 phys_addr_t orig_addr = io_tlb_orig_addr[index];
1da177e4
LT
545
546 /*
547 * First, sync the memory before unmapping the entry
548 */
af51a9f1
AD
549 if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
550 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
551
552 /*
553 * Return the buffer to the free list by setting the corresponding
af901ca1 554 * entries to indicate the number of contiguous entries available.
1da177e4
LT
555 * While returning the entries to the free list, we merge the entries
556 * with slots below and above the pool being returned.
557 */
558 spin_lock_irqsave(&io_tlb_lock, flags);
559 {
560 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
561 io_tlb_list[index + nslots] : 0);
562 /*
563 * Step 1: return the slots to the free list, merging the
564 * slots with superceeding slots
565 */
566 for (i = index + nslots - 1; i >= index; i--)
567 io_tlb_list[i] = ++count;
568 /*
569 * Step 2: merge the returned slots with the preceding slots,
570 * if available (non zero)
571 */
572 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
573 io_tlb_list[i] = ++count;
574 }
575 spin_unlock_irqrestore(&io_tlb_lock, flags);
576}
d7ef1533 577EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
1da177e4 578
fbfda893
AD
579void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
580 size_t size, enum dma_data_direction dir,
581 enum dma_sync_target target)
1da177e4 582{
fbfda893
AD
583 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
584 phys_addr_t orig_addr = io_tlb_orig_addr[index];
bc40ac66 585
fbfda893 586 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
df336d1c 587
de69e0f0
JL
588 switch (target) {
589 case SYNC_FOR_CPU:
590 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 591 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 592 size, DMA_FROM_DEVICE);
34814545
ES
593 else
594 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
595 break;
596 case SYNC_FOR_DEVICE:
597 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 598 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 599 size, DMA_TO_DEVICE);
34814545
ES
600 else
601 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
602 break;
603 default:
1da177e4 604 BUG();
de69e0f0 605 }
1da177e4 606}
d7ef1533 607EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
1da177e4
LT
608
609void *
610swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 611 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 612{
563aaf06 613 dma_addr_t dev_addr;
1da177e4
LT
614 void *ret;
615 int order = get_order(size);
284901a9 616 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
617
618 if (hwdev && hwdev->coherent_dma_mask)
619 dma_mask = hwdev->coherent_dma_mask;
1da177e4 620
25667d67 621 ret = (void *)__get_free_pages(flags, order);
e05ed4d1
AD
622 if (ret) {
623 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
624 if (dev_addr + size - 1 > dma_mask) {
625 /*
626 * The allocated memory isn't reachable by the device.
627 */
628 free_pages((unsigned long) ret, order);
629 ret = NULL;
630 }
1da177e4
LT
631 }
632 if (!ret) {
633 /*
bfc5501f
KRW
634 * We are either out of memory or the device can't DMA to
635 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 636 * will grab memory from the lowest available address range.
1da177e4 637 */
e05ed4d1
AD
638 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
639 if (paddr == SWIOTLB_MAP_ERROR)
1da177e4 640 return NULL;
1da177e4 641
e05ed4d1
AD
642 ret = phys_to_virt(paddr);
643 dev_addr = phys_to_dma(hwdev, paddr);
1da177e4 644
61ca08c3
AD
645 /* Confirm address can be DMA'd by device */
646 if (dev_addr + size - 1 > dma_mask) {
647 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
648 (unsigned long long)dma_mask,
649 (unsigned long long)dev_addr);
a2b89b59 650
61ca08c3
AD
651 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
652 swiotlb_tbl_unmap_single(hwdev, paddr,
653 size, DMA_TO_DEVICE);
654 return NULL;
655 }
1da177e4 656 }
e05ed4d1 657
1da177e4 658 *dma_handle = dev_addr;
e05ed4d1
AD
659 memset(ret, 0, size);
660
1da177e4
LT
661 return ret;
662}
874d6a95 663EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
664
665void
666swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 667 dma_addr_t dev_addr)
1da177e4 668{
862d196b 669 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 670
aa24886e 671 WARN_ON(irqs_disabled());
02ca646e
FT
672 if (!is_swiotlb_buffer(paddr))
673 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 674 else
bfc5501f 675 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
61ca08c3 676 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
1da177e4 677}
874d6a95 678EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
679
680static void
22d48269
KRW
681swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
682 int do_panic)
1da177e4
LT
683{
684 /*
685 * Ran out of IOMMU space for this operation. This is very bad.
686 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 687 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
688 * When the mapping is small enough return a static buffer to limit
689 * the damage, or panic when the transfer is too big.
690 */
563aaf06 691 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
94b32486 692 "device %s\n", size, dev ? dev_name(dev) : "?");
1da177e4 693
c7084b35
CD
694 if (size <= io_tlb_overflow || !do_panic)
695 return;
696
697 if (dir == DMA_BIDIRECTIONAL)
698 panic("DMA: Random memory could be DMA accessed\n");
699 if (dir == DMA_FROM_DEVICE)
700 panic("DMA: Random memory could be DMA written\n");
701 if (dir == DMA_TO_DEVICE)
702 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
703}
704
705/*
706 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 707 * physical address to use is returned.
1da177e4
LT
708 *
709 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 710 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 711 */
f98eee8e
FT
712dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
713 unsigned long offset, size_t size,
714 enum dma_data_direction dir,
715 struct dma_attrs *attrs)
1da177e4 716{
e05ed4d1 717 phys_addr_t map, phys = page_to_phys(page) + offset;
862d196b 718 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4 719
34814545 720 BUG_ON(dir == DMA_NONE);
1da177e4 721 /*
ceb5ac32 722 * If the address happens to be in the device's DMA window,
1da177e4
LT
723 * we can safely return the device addr and not worry about bounce
724 * buffering it.
725 */
b9394647 726 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
1da177e4
LT
727 return dev_addr;
728
e05ed4d1 729 /* Oh well, have to allocate and map a bounce buffer. */
f98eee8e 730 map = map_single(dev, phys, size, dir);
e05ed4d1 731 if (map == SWIOTLB_MAP_ERROR) {
f98eee8e 732 swiotlb_full(dev, size, dir, 1);
ee3f6ba8 733 return phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4
LT
734 }
735
e05ed4d1 736 dev_addr = phys_to_dma(dev, map);
1da177e4 737
e05ed4d1 738 /* Ensure that the address returned is DMA'ble */
fba99fa3 739 if (!dma_capable(dev, dev_addr, size)) {
61ca08c3 740 swiotlb_tbl_unmap_single(dev, map, size, dir);
ee3f6ba8 741 return phys_to_dma(dev, io_tlb_overflow_buffer);
fba99fa3 742 }
1da177e4
LT
743
744 return dev_addr;
745}
f98eee8e 746EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 747
1da177e4
LT
748/*
749 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 750 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
751 * other usages are undefined.
752 *
753 * After this call, reads by the cpu to the buffer are guaranteed to see
754 * whatever the device wrote there.
755 */
7fcebbd2 756static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
22d48269 757 size_t size, enum dma_data_direction dir)
1da177e4 758{
862d196b 759 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 760
34814545 761 BUG_ON(dir == DMA_NONE);
7fcebbd2 762
02ca646e 763 if (is_swiotlb_buffer(paddr)) {
61ca08c3 764 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
7fcebbd2
BB
765 return;
766 }
767
768 if (dir != DMA_FROM_DEVICE)
769 return;
770
02ca646e
FT
771 /*
772 * phys_to_virt doesn't work with hihgmem page but we could
773 * call dma_mark_clean() with hihgmem page here. However, we
774 * are fine since dma_mark_clean() is null on POWERPC. We can
775 * make dma_mark_clean() take a physical address if necessary.
776 */
777 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
778}
779
780void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
781 size_t size, enum dma_data_direction dir,
782 struct dma_attrs *attrs)
783{
784 unmap_single(hwdev, dev_addr, size, dir);
1da177e4 785}
f98eee8e 786EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 787
1da177e4
LT
788/*
789 * Make physical memory consistent for a single streaming mode DMA translation
790 * after a transfer.
791 *
ceb5ac32 792 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
793 * using the cpu, yet do not wish to teardown the dma mapping, you must
794 * call this function before doing so. At the next point you give the dma
1da177e4
LT
795 * address back to the card, you must first perform a
796 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
797 */
be6b0267 798static void
8270f3f1 799swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
d7ef1533
KRW
800 size_t size, enum dma_data_direction dir,
801 enum dma_sync_target target)
1da177e4 802{
862d196b 803 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 804
34814545 805 BUG_ON(dir == DMA_NONE);
380d6878 806
02ca646e 807 if (is_swiotlb_buffer(paddr)) {
fbfda893 808 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
380d6878
BB
809 return;
810 }
811
812 if (dir != DMA_FROM_DEVICE)
813 return;
814
02ca646e 815 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
816}
817
8270f3f1
JL
818void
819swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 820 size_t size, enum dma_data_direction dir)
8270f3f1 821{
de69e0f0 822 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 823}
874d6a95 824EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 825
1da177e4
LT
826void
827swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 828 size_t size, enum dma_data_direction dir)
1da177e4 829{
de69e0f0 830 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 831}
874d6a95 832EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
833
834/*
835 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 836 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
837 * interface. Here the scatter gather list elements are each tagged with the
838 * appropriate dma address and length. They are obtained via
839 * sg_dma_{address,length}(SG).
840 *
841 * NOTE: An implementation may be able to use a smaller number of
842 * DMA address/length pairs than there are SG table elements.
843 * (for example via virtual mapping capabilities)
844 * The routine returns the number of addr/length pairs actually
845 * used, at most nents.
846 *
ceb5ac32 847 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
848 * same here.
849 */
850int
309df0c5 851swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
160c1d8e 852 enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 853{
dbfd49fe 854 struct scatterlist *sg;
1da177e4
LT
855 int i;
856
34814545 857 BUG_ON(dir == DMA_NONE);
1da177e4 858
dbfd49fe 859 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 860 phys_addr_t paddr = sg_phys(sg);
862d196b 861 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 862
cf56e3f2 863 if (swiotlb_force ||
b9394647 864 !dma_capable(hwdev, dev_addr, sg->length)) {
e05ed4d1
AD
865 phys_addr_t map = map_single(hwdev, sg_phys(sg),
866 sg->length, dir);
867 if (map == SWIOTLB_MAP_ERROR) {
1da177e4
LT
868 /* Don't panic here, we expect map_sg users
869 to do proper error handling. */
870 swiotlb_full(hwdev, sg->length, dir, 0);
309df0c5
AK
871 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
872 attrs);
dbfd49fe 873 sgl[0].dma_length = 0;
1da177e4
LT
874 return 0;
875 }
e05ed4d1 876 sg->dma_address = phys_to_dma(hwdev, map);
1da177e4
LT
877 } else
878 sg->dma_address = dev_addr;
879 sg->dma_length = sg->length;
880 }
881 return nelems;
882}
309df0c5
AK
883EXPORT_SYMBOL(swiotlb_map_sg_attrs);
884
885int
886swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
22d48269 887 enum dma_data_direction dir)
309df0c5
AK
888{
889 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
890}
874d6a95 891EXPORT_SYMBOL(swiotlb_map_sg);
1da177e4
LT
892
893/*
894 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 895 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
896 */
897void
309df0c5 898swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
160c1d8e 899 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 900{
dbfd49fe 901 struct scatterlist *sg;
1da177e4
LT
902 int i;
903
34814545 904 BUG_ON(dir == DMA_NONE);
1da177e4 905
7fcebbd2
BB
906 for_each_sg(sgl, sg, nelems, i)
907 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
908
1da177e4 909}
309df0c5
AK
910EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
911
912void
913swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
22d48269 914 enum dma_data_direction dir)
309df0c5
AK
915{
916 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
917}
874d6a95 918EXPORT_SYMBOL(swiotlb_unmap_sg);
1da177e4
LT
919
920/*
921 * Make physical memory consistent for a set of streaming mode DMA translations
922 * after a transfer.
923 *
924 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
925 * and usage.
926 */
be6b0267 927static void
dbfd49fe 928swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
d7ef1533
KRW
929 int nelems, enum dma_data_direction dir,
930 enum dma_sync_target target)
1da177e4 931{
dbfd49fe 932 struct scatterlist *sg;
1da177e4
LT
933 int i;
934
380d6878
BB
935 for_each_sg(sgl, sg, nelems, i)
936 swiotlb_sync_single(hwdev, sg->dma_address,
de69e0f0 937 sg->dma_length, dir, target);
1da177e4
LT
938}
939
8270f3f1
JL
940void
941swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 942 int nelems, enum dma_data_direction dir)
8270f3f1 943{
de69e0f0 944 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 945}
874d6a95 946EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 947
1da177e4
LT
948void
949swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 950 int nelems, enum dma_data_direction dir)
1da177e4 951{
de69e0f0 952 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 953}
874d6a95 954EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
955
956int
8d8bb39b 957swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 958{
ee3f6ba8 959 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1da177e4 960}
874d6a95 961EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
962
963/*
17e5ad6c 964 * Return whether the given device DMA address mask can be supported
1da177e4 965 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 966 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
967 * this function.
968 */
969int
563aaf06 970swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 971{
c40dba06 972 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1da177e4 973}
1da177e4 974EXPORT_SYMBOL(swiotlb_dma_supported);