]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/swiotlb.c
swiotlb: add swiotlb_tbl_map_single library function
[mirror_ubuntu-artful-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/module.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
1da177e4
LT
32
33#include <asm/io.h>
1da177e4 34#include <asm/dma.h>
17e5ad6c 35#include <asm/scatterlist.h>
1da177e4
LT
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
a8522509 39#include <linux/iommu-helper.h>
1da177e4
LT
40
41#define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
43
0b9afede
AW
44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45
46/*
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 */
51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52
de69e0f0
JL
53/*
54 * Enumeration for sync targets
55 */
56enum dma_sync_target {
57 SYNC_FOR_CPU = 0,
58 SYNC_FOR_DEVICE = 1,
59};
60
1da177e4
LT
61int swiotlb_force;
62
63/*
ceb5ac32
BB
64 * Used to do a quick range check in unmap_single and
65 * sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
66 * API.
67 */
68static char *io_tlb_start, *io_tlb_end;
69
70/*
71 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
72 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
73 */
74static unsigned long io_tlb_nslabs;
75
76/*
77 * When the IOMMU overflows we return a fallback buffer. This sets the size.
78 */
79static unsigned long io_tlb_overflow = 32*1024;
80
81void *io_tlb_overflow_buffer;
82
83/*
84 * This is a free list describing the number of free entries available from
85 * each index
86 */
87static unsigned int *io_tlb_list;
88static unsigned int io_tlb_index;
89
90/*
91 * We need to save away the original address corresponding to a mapped entry
92 * for the sync operations.
93 */
bc40ac66 94static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
95
96/*
97 * Protect the above data structures in the map and unmap calls
98 */
99static DEFINE_SPINLOCK(io_tlb_lock);
100
5740afdb
FT
101static int late_alloc;
102
1da177e4
LT
103static int __init
104setup_io_tlb_npages(char *str)
105{
106 if (isdigit(*str)) {
e8579e72 107 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
108 /* avoid tail segment of size < IO_TLB_SEGSIZE */
109 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
110 }
111 if (*str == ',')
112 ++str;
b18485e7 113 if (!strcmp(str, "force"))
1da177e4 114 swiotlb_force = 1;
b18485e7 115
1da177e4
LT
116 return 1;
117}
118__setup("swiotlb=", setup_io_tlb_npages);
119/* make io_tlb_overflow tunable too? */
120
02ca646e 121/* Note that this doesn't work with highmem page */
70a7d3cc
JF
122static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
123 volatile void *address)
e08e1f7a 124{
862d196b 125 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
126}
127
ad32e8cb 128void swiotlb_print_info(void)
2e5b2b86 129{
ad32e8cb 130 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
2e5b2b86 131 phys_addr_t pstart, pend;
2e5b2b86
IC
132
133 pstart = virt_to_phys(io_tlb_start);
134 pend = virt_to_phys(io_tlb_end);
135
2e5b2b86
IC
136 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
137 bytes >> 20, io_tlb_start, io_tlb_end);
70a7d3cc
JF
138 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
139 (unsigned long long)pstart,
140 (unsigned long long)pend);
2e5b2b86
IC
141}
142
1da177e4
LT
143/*
144 * Statically reserve bounce buffer space and initialize bounce buffer data
17e5ad6c 145 * structures for the software IO TLB used to implement the DMA API.
1da177e4 146 */
563aaf06 147void __init
ad32e8cb 148swiotlb_init_with_default_size(size_t default_size, int verbose)
1da177e4 149{
563aaf06 150 unsigned long i, bytes;
1da177e4
LT
151
152 if (!io_tlb_nslabs) {
e8579e72 153 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
1da177e4
LT
154 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
155 }
156
563aaf06
JB
157 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
158
1da177e4
LT
159 /*
160 * Get IO TLB memory from the low pages
161 */
3885123d 162 io_tlb_start = alloc_bootmem_low_pages(bytes);
1da177e4
LT
163 if (!io_tlb_start)
164 panic("Cannot allocate SWIOTLB buffer");
563aaf06 165 io_tlb_end = io_tlb_start + bytes;
1da177e4
LT
166
167 /*
168 * Allocate and initialize the free list array. This array is used
169 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
170 * between io_tlb_start and io_tlb_end.
171 */
172 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
25667d67 173 for (i = 0; i < io_tlb_nslabs; i++)
1da177e4
LT
174 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
175 io_tlb_index = 0;
bc40ac66 176 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
1da177e4
LT
177
178 /*
179 * Get the overflow emergency buffer
180 */
181 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
563aaf06
JB
182 if (!io_tlb_overflow_buffer)
183 panic("Cannot allocate SWIOTLB overflow buffer!\n");
ad32e8cb
FT
184 if (verbose)
185 swiotlb_print_info();
1da177e4
LT
186}
187
563aaf06 188void __init
ad32e8cb 189swiotlb_init(int verbose)
1da177e4 190{
ad32e8cb 191 swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
1da177e4
LT
192}
193
0b9afede
AW
194/*
195 * Systems with larger DMA zones (those that don't support ISA) can
196 * initialize the swiotlb later using the slab allocator if needed.
197 * This should be just like above, but with some error catching.
198 */
199int
563aaf06 200swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 201{
563aaf06 202 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
0b9afede
AW
203 unsigned int order;
204
205 if (!io_tlb_nslabs) {
206 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
207 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
208 }
209
210 /*
211 * Get IO TLB memory from the low pages
212 */
563aaf06 213 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 214 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 215 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
216
217 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
bb52196b
FT
218 io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
219 order);
0b9afede
AW
220 if (io_tlb_start)
221 break;
222 order--;
223 }
224
225 if (!io_tlb_start)
226 goto cleanup1;
227
563aaf06 228 if (order != get_order(bytes)) {
0b9afede
AW
229 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
230 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
231 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 232 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede 233 }
563aaf06
JB
234 io_tlb_end = io_tlb_start + bytes;
235 memset(io_tlb_start, 0, bytes);
0b9afede
AW
236
237 /*
238 * Allocate and initialize the free list array. This array is used
239 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
240 * between io_tlb_start and io_tlb_end.
241 */
242 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
243 get_order(io_tlb_nslabs * sizeof(int)));
244 if (!io_tlb_list)
245 goto cleanup2;
246
247 for (i = 0; i < io_tlb_nslabs; i++)
248 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
249 io_tlb_index = 0;
250
bc40ac66
BB
251 io_tlb_orig_addr = (phys_addr_t *)
252 __get_free_pages(GFP_KERNEL,
253 get_order(io_tlb_nslabs *
254 sizeof(phys_addr_t)));
0b9afede
AW
255 if (!io_tlb_orig_addr)
256 goto cleanup3;
257
bc40ac66 258 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
0b9afede
AW
259
260 /*
261 * Get the overflow emergency buffer
262 */
263 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
264 get_order(io_tlb_overflow));
265 if (!io_tlb_overflow_buffer)
266 goto cleanup4;
267
ad32e8cb 268 swiotlb_print_info();
0b9afede 269
5740afdb
FT
270 late_alloc = 1;
271
0b9afede
AW
272 return 0;
273
274cleanup4:
bc40ac66
BB
275 free_pages((unsigned long)io_tlb_orig_addr,
276 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
0b9afede
AW
277 io_tlb_orig_addr = NULL;
278cleanup3:
25667d67
TL
279 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
280 sizeof(int)));
0b9afede 281 io_tlb_list = NULL;
0b9afede 282cleanup2:
563aaf06 283 io_tlb_end = NULL;
0b9afede
AW
284 free_pages((unsigned long)io_tlb_start, order);
285 io_tlb_start = NULL;
286cleanup1:
287 io_tlb_nslabs = req_nslabs;
288 return -ENOMEM;
289}
290
5740afdb
FT
291void __init swiotlb_free(void)
292{
293 if (!io_tlb_overflow_buffer)
294 return;
295
296 if (late_alloc) {
297 free_pages((unsigned long)io_tlb_overflow_buffer,
298 get_order(io_tlb_overflow));
299 free_pages((unsigned long)io_tlb_orig_addr,
300 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
301 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
302 sizeof(int)));
303 free_pages((unsigned long)io_tlb_start,
304 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
305 } else {
306 free_bootmem_late(__pa(io_tlb_overflow_buffer),
307 io_tlb_overflow);
308 free_bootmem_late(__pa(io_tlb_orig_addr),
309 io_tlb_nslabs * sizeof(phys_addr_t));
310 free_bootmem_late(__pa(io_tlb_list),
311 io_tlb_nslabs * sizeof(int));
312 free_bootmem_late(__pa(io_tlb_start),
313 io_tlb_nslabs << IO_TLB_SHIFT);
314 }
315}
316
02ca646e 317static int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 318{
02ca646e
FT
319 return paddr >= virt_to_phys(io_tlb_start) &&
320 paddr < virt_to_phys(io_tlb_end);
640aebfe
FT
321}
322
fb05a379
BB
323/*
324 * Bounce: copy the swiotlb buffer back to the original dma location
325 */
326static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
327 enum dma_data_direction dir)
328{
329 unsigned long pfn = PFN_DOWN(phys);
330
331 if (PageHighMem(pfn_to_page(pfn))) {
332 /* The buffer does not have a mapping. Map it in and copy */
333 unsigned int offset = phys & ~PAGE_MASK;
334 char *buffer;
335 unsigned int sz = 0;
336 unsigned long flags;
337
338 while (size) {
67131ad0 339 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
340
341 local_irq_save(flags);
342 buffer = kmap_atomic(pfn_to_page(pfn),
343 KM_BOUNCE_READ);
344 if (dir == DMA_TO_DEVICE)
345 memcpy(dma_addr, buffer + offset, sz);
ef9b1893 346 else
fb05a379
BB
347 memcpy(buffer + offset, dma_addr, sz);
348 kunmap_atomic(buffer, KM_BOUNCE_READ);
ef9b1893 349 local_irq_restore(flags);
fb05a379
BB
350
351 size -= sz;
352 pfn++;
353 dma_addr += sz;
354 offset = 0;
ef9b1893
JF
355 }
356 } else {
ef9b1893 357 if (dir == DMA_TO_DEVICE)
fb05a379 358 memcpy(dma_addr, phys_to_virt(phys), size);
ef9b1893 359 else
fb05a379 360 memcpy(phys_to_virt(phys), dma_addr, size);
ef9b1893 361 }
1b548f66
JF
362}
363
eb605a57
FT
364void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
365 phys_addr_t phys, size_t size, int dir)
1da177e4
LT
366{
367 unsigned long flags;
368 char *dma_addr;
369 unsigned int nslots, stride, index, wrap;
370 int i;
681cc5cd
FT
371 unsigned long mask;
372 unsigned long offset_slots;
373 unsigned long max_slots;
374
375 mask = dma_get_seg_boundary(hwdev);
681cc5cd 376
eb605a57
FT
377 tbl_dma_addr &= mask;
378
379 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
380
381 /*
382 * Carefully handle integer overflow which can occur when mask == ~0UL.
383 */
b15a3891
JB
384 max_slots = mask + 1
385 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
386 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
387
388 /*
389 * For mappings greater than a page, we limit the stride (and
390 * hence alignment) to a page size.
391 */
392 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
393 if (size > PAGE_SIZE)
394 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
395 else
396 stride = 1;
397
34814545 398 BUG_ON(!nslots);
1da177e4
LT
399
400 /*
401 * Find suitable number of IO TLB entries size that will fit this
402 * request and allocate a buffer from that IO TLB pool.
403 */
404 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
405 index = ALIGN(io_tlb_index, stride);
406 if (index >= io_tlb_nslabs)
407 index = 0;
408 wrap = index;
409
410 do {
a8522509
FT
411 while (iommu_is_span_boundary(index, nslots, offset_slots,
412 max_slots)) {
b15a3891
JB
413 index += stride;
414 if (index >= io_tlb_nslabs)
415 index = 0;
a7133a15
AM
416 if (index == wrap)
417 goto not_found;
418 }
419
420 /*
421 * If we find a slot that indicates we have 'nslots' number of
422 * contiguous buffers, we allocate the buffers from that slot
423 * and mark the entries as '0' indicating unavailable.
424 */
425 if (io_tlb_list[index] >= nslots) {
426 int count = 0;
427
428 for (i = index; i < (int) (index + nslots); i++)
429 io_tlb_list[i] = 0;
430 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
431 io_tlb_list[i] = ++count;
432 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 433
a7133a15
AM
434 /*
435 * Update the indices to avoid searching in the next
436 * round.
437 */
438 io_tlb_index = ((index + nslots) < io_tlb_nslabs
439 ? (index + nslots) : 0);
440
441 goto found;
442 }
443 index += stride;
444 if (index >= io_tlb_nslabs)
445 index = 0;
446 } while (index != wrap);
447
448not_found:
449 spin_unlock_irqrestore(&io_tlb_lock, flags);
450 return NULL;
451found:
1da177e4
LT
452 spin_unlock_irqrestore(&io_tlb_lock, flags);
453
454 /*
455 * Save away the mapping from the original address to the DMA address.
456 * This is needed when we sync the memory. Then we sync the buffer if
457 * needed.
458 */
bc40ac66
BB
459 for (i = 0; i < nslots; i++)
460 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
1da177e4 461 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
fb05a379 462 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
1da177e4
LT
463
464 return dma_addr;
465}
466
eb605a57
FT
467/*
468 * Allocates bounce buffer and returns its kernel virtual address.
469 */
470
471static void *
472map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
473{
474 dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
475
476 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
477}
478
1da177e4
LT
479/*
480 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
481 */
482static void
7fcebbd2 483do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
1da177e4
LT
484{
485 unsigned long flags;
486 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
487 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
bc40ac66 488 phys_addr_t phys = io_tlb_orig_addr[index];
1da177e4
LT
489
490 /*
491 * First, sync the memory before unmapping the entry
492 */
bc40ac66 493 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
fb05a379 494 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
495
496 /*
497 * Return the buffer to the free list by setting the corresponding
af901ca1 498 * entries to indicate the number of contiguous entries available.
1da177e4
LT
499 * While returning the entries to the free list, we merge the entries
500 * with slots below and above the pool being returned.
501 */
502 spin_lock_irqsave(&io_tlb_lock, flags);
503 {
504 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
505 io_tlb_list[index + nslots] : 0);
506 /*
507 * Step 1: return the slots to the free list, merging the
508 * slots with superceeding slots
509 */
510 for (i = index + nslots - 1; i >= index; i--)
511 io_tlb_list[i] = ++count;
512 /*
513 * Step 2: merge the returned slots with the preceding slots,
514 * if available (non zero)
515 */
516 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
517 io_tlb_list[i] = ++count;
518 }
519 spin_unlock_irqrestore(&io_tlb_lock, flags);
520}
521
522static void
de69e0f0
JL
523sync_single(struct device *hwdev, char *dma_addr, size_t size,
524 int dir, int target)
1da177e4 525{
bc40ac66
BB
526 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
527 phys_addr_t phys = io_tlb_orig_addr[index];
528
529 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
df336d1c 530
de69e0f0
JL
531 switch (target) {
532 case SYNC_FOR_CPU:
533 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 534 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
34814545
ES
535 else
536 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
537 break;
538 case SYNC_FOR_DEVICE:
539 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 540 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
34814545
ES
541 else
542 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
543 break;
544 default:
1da177e4 545 BUG();
de69e0f0 546 }
1da177e4
LT
547}
548
549void *
550swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 551 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 552{
563aaf06 553 dma_addr_t dev_addr;
1da177e4
LT
554 void *ret;
555 int order = get_order(size);
284901a9 556 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
557
558 if (hwdev && hwdev->coherent_dma_mask)
559 dma_mask = hwdev->coherent_dma_mask;
1da177e4 560
25667d67 561 ret = (void *)__get_free_pages(flags, order);
ac2b3e67 562 if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
1da177e4
LT
563 /*
564 * The allocated memory isn't reachable by the device.
1da177e4
LT
565 */
566 free_pages((unsigned long) ret, order);
567 ret = NULL;
568 }
569 if (!ret) {
570 /*
571 * We are either out of memory or the device can't DMA
ceb5ac32
BB
572 * to GFP_DMA memory; fall back on map_single(), which
573 * will grab memory from the lowest available address range.
1da177e4 574 */
bc40ac66 575 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
9dfda12b 576 if (!ret)
1da177e4 577 return NULL;
1da177e4
LT
578 }
579
580 memset(ret, 0, size);
70a7d3cc 581 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
1da177e4
LT
582
583 /* Confirm address can be DMA'd by device */
ac2b3e67 584 if (dev_addr + size - 1 > dma_mask) {
563aaf06 585 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
1e74f300 586 (unsigned long long)dma_mask,
563aaf06 587 (unsigned long long)dev_addr);
a2b89b59
FT
588
589 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
7fcebbd2 590 do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
a2b89b59 591 return NULL;
1da177e4
LT
592 }
593 *dma_handle = dev_addr;
594 return ret;
595}
874d6a95 596EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
597
598void
599swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 600 dma_addr_t dev_addr)
1da177e4 601{
862d196b 602 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 603
aa24886e 604 WARN_ON(irqs_disabled());
02ca646e
FT
605 if (!is_swiotlb_buffer(paddr))
606 free_pages((unsigned long)vaddr, get_order(size));
1da177e4
LT
607 else
608 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
7fcebbd2 609 do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
1da177e4 610}
874d6a95 611EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
612
613static void
614swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
615{
616 /*
617 * Ran out of IOMMU space for this operation. This is very bad.
618 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 619 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
620 * When the mapping is small enough return a static buffer to limit
621 * the damage, or panic when the transfer is too big.
622 */
563aaf06 623 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
94b32486 624 "device %s\n", size, dev ? dev_name(dev) : "?");
1da177e4 625
c7084b35
CD
626 if (size <= io_tlb_overflow || !do_panic)
627 return;
628
629 if (dir == DMA_BIDIRECTIONAL)
630 panic("DMA: Random memory could be DMA accessed\n");
631 if (dir == DMA_FROM_DEVICE)
632 panic("DMA: Random memory could be DMA written\n");
633 if (dir == DMA_TO_DEVICE)
634 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
635}
636
637/*
638 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 639 * physical address to use is returned.
1da177e4
LT
640 *
641 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 642 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 643 */
f98eee8e
FT
644dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
645 unsigned long offset, size_t size,
646 enum dma_data_direction dir,
647 struct dma_attrs *attrs)
1da177e4 648{
f98eee8e 649 phys_addr_t phys = page_to_phys(page) + offset;
862d196b 650 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4
LT
651 void *map;
652
34814545 653 BUG_ON(dir == DMA_NONE);
1da177e4 654 /*
ceb5ac32 655 * If the address happens to be in the device's DMA window,
1da177e4
LT
656 * we can safely return the device addr and not worry about bounce
657 * buffering it.
658 */
b9394647 659 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
1da177e4
LT
660 return dev_addr;
661
662 /*
663 * Oh well, have to allocate and map a bounce buffer.
664 */
f98eee8e 665 map = map_single(dev, phys, size, dir);
1da177e4 666 if (!map) {
f98eee8e 667 swiotlb_full(dev, size, dir, 1);
1da177e4
LT
668 map = io_tlb_overflow_buffer;
669 }
670
f98eee8e 671 dev_addr = swiotlb_virt_to_bus(dev, map);
1da177e4
LT
672
673 /*
674 * Ensure that the address returned is DMA'ble
675 */
b9394647 676 if (!dma_capable(dev, dev_addr, size))
1da177e4
LT
677 panic("map_single: bounce buffer is not DMA'ble");
678
679 return dev_addr;
680}
f98eee8e 681EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 682
1da177e4
LT
683/*
684 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 685 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
686 * other usages are undefined.
687 *
688 * After this call, reads by the cpu to the buffer are guaranteed to see
689 * whatever the device wrote there.
690 */
7fcebbd2
BB
691static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
692 size_t size, int dir)
1da177e4 693{
862d196b 694 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 695
34814545 696 BUG_ON(dir == DMA_NONE);
7fcebbd2 697
02ca646e
FT
698 if (is_swiotlb_buffer(paddr)) {
699 do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
7fcebbd2
BB
700 return;
701 }
702
703 if (dir != DMA_FROM_DEVICE)
704 return;
705
02ca646e
FT
706 /*
707 * phys_to_virt doesn't work with hihgmem page but we could
708 * call dma_mark_clean() with hihgmem page here. However, we
709 * are fine since dma_mark_clean() is null on POWERPC. We can
710 * make dma_mark_clean() take a physical address if necessary.
711 */
712 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
713}
714
715void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
716 size_t size, enum dma_data_direction dir,
717 struct dma_attrs *attrs)
718{
719 unmap_single(hwdev, dev_addr, size, dir);
1da177e4 720}
f98eee8e 721EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 722
1da177e4
LT
723/*
724 * Make physical memory consistent for a single streaming mode DMA translation
725 * after a transfer.
726 *
ceb5ac32 727 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
728 * using the cpu, yet do not wish to teardown the dma mapping, you must
729 * call this function before doing so. At the next point you give the dma
1da177e4
LT
730 * address back to the card, you must first perform a
731 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
732 */
be6b0267 733static void
8270f3f1 734swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
de69e0f0 735 size_t size, int dir, int target)
1da177e4 736{
862d196b 737 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 738
34814545 739 BUG_ON(dir == DMA_NONE);
380d6878 740
02ca646e
FT
741 if (is_swiotlb_buffer(paddr)) {
742 sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
380d6878
BB
743 return;
744 }
745
746 if (dir != DMA_FROM_DEVICE)
747 return;
748
02ca646e 749 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
750}
751
8270f3f1
JL
752void
753swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 754 size_t size, enum dma_data_direction dir)
8270f3f1 755{
de69e0f0 756 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 757}
874d6a95 758EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 759
1da177e4
LT
760void
761swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 762 size_t size, enum dma_data_direction dir)
1da177e4 763{
de69e0f0 764 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 765}
874d6a95 766EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
767
768/*
769 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 770 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
771 * interface. Here the scatter gather list elements are each tagged with the
772 * appropriate dma address and length. They are obtained via
773 * sg_dma_{address,length}(SG).
774 *
775 * NOTE: An implementation may be able to use a smaller number of
776 * DMA address/length pairs than there are SG table elements.
777 * (for example via virtual mapping capabilities)
778 * The routine returns the number of addr/length pairs actually
779 * used, at most nents.
780 *
ceb5ac32 781 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
782 * same here.
783 */
784int
309df0c5 785swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
160c1d8e 786 enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 787{
dbfd49fe 788 struct scatterlist *sg;
1da177e4
LT
789 int i;
790
34814545 791 BUG_ON(dir == DMA_NONE);
1da177e4 792
dbfd49fe 793 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 794 phys_addr_t paddr = sg_phys(sg);
862d196b 795 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 796
cf56e3f2 797 if (swiotlb_force ||
b9394647 798 !dma_capable(hwdev, dev_addr, sg->length)) {
bc40ac66
BB
799 void *map = map_single(hwdev, sg_phys(sg),
800 sg->length, dir);
7e870233 801 if (!map) {
1da177e4
LT
802 /* Don't panic here, we expect map_sg users
803 to do proper error handling. */
804 swiotlb_full(hwdev, sg->length, dir, 0);
309df0c5
AK
805 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
806 attrs);
dbfd49fe 807 sgl[0].dma_length = 0;
1da177e4
LT
808 return 0;
809 }
70a7d3cc 810 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
1da177e4
LT
811 } else
812 sg->dma_address = dev_addr;
813 sg->dma_length = sg->length;
814 }
815 return nelems;
816}
309df0c5
AK
817EXPORT_SYMBOL(swiotlb_map_sg_attrs);
818
819int
820swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
821 int dir)
822{
823 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
824}
874d6a95 825EXPORT_SYMBOL(swiotlb_map_sg);
1da177e4
LT
826
827/*
828 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 829 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
830 */
831void
309df0c5 832swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
160c1d8e 833 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 834{
dbfd49fe 835 struct scatterlist *sg;
1da177e4
LT
836 int i;
837
34814545 838 BUG_ON(dir == DMA_NONE);
1da177e4 839
7fcebbd2
BB
840 for_each_sg(sgl, sg, nelems, i)
841 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
842
1da177e4 843}
309df0c5
AK
844EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
845
846void
847swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
848 int dir)
849{
850 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
851}
874d6a95 852EXPORT_SYMBOL(swiotlb_unmap_sg);
1da177e4
LT
853
854/*
855 * Make physical memory consistent for a set of streaming mode DMA translations
856 * after a transfer.
857 *
858 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
859 * and usage.
860 */
be6b0267 861static void
dbfd49fe 862swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
de69e0f0 863 int nelems, int dir, int target)
1da177e4 864{
dbfd49fe 865 struct scatterlist *sg;
1da177e4
LT
866 int i;
867
380d6878
BB
868 for_each_sg(sgl, sg, nelems, i)
869 swiotlb_sync_single(hwdev, sg->dma_address,
de69e0f0 870 sg->dma_length, dir, target);
1da177e4
LT
871}
872
8270f3f1
JL
873void
874swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 875 int nelems, enum dma_data_direction dir)
8270f3f1 876{
de69e0f0 877 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 878}
874d6a95 879EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 880
1da177e4
LT
881void
882swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 883 int nelems, enum dma_data_direction dir)
1da177e4 884{
de69e0f0 885 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 886}
874d6a95 887EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
888
889int
8d8bb39b 890swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 891{
70a7d3cc 892 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
1da177e4 893}
874d6a95 894EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
895
896/*
17e5ad6c 897 * Return whether the given device DMA address mask can be supported
1da177e4 898 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 899 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
900 * this function.
901 */
902int
563aaf06 903swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 904{
70a7d3cc 905 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
1da177e4 906}
1da177e4 907EXPORT_SYMBOL(swiotlb_dma_supported);