]> git.proxmox.com Git - mirror_zfs.git/blame - man/man5/zfs-module-parameters.5
Correct zpool_vdev_remove() error message
[mirror_zfs.git] / man / man5 / zfs-module-parameters.5
CommitLineData
29714574
TF
1'\" te
2.\" Copyright (c) 2013 by Turbo Fredriksson <turbo@bayour.com>. All rights reserved.
3.\" The contents of this file are subject to the terms of the Common Development
4.\" and Distribution License (the "License"). You may not use this file except
5.\" in compliance with the License. You can obtain a copy of the license at
6.\" usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing.
7.\"
8.\" See the License for the specific language governing permissions and
9.\" limitations under the License. When distributing Covered Code, include this
10.\" CDDL HEADER in each file and include the License file at
11.\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this
12.\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your
13.\" own identifying information:
14.\" Portions Copyright [yyyy] [name of copyright owner]
15.TH ZFS-MODULE-PARAMETERS 5 "Nov 16, 2013"
16.SH NAME
17zfs\-module\-parameters \- ZFS module parameters
18.SH DESCRIPTION
19.sp
20.LP
21Description of the different parameters to the ZFS module.
22
23.SS "Module parameters"
24.sp
25.LP
26
6d836e6f
RE
27.sp
28.ne 2
29.na
30\fBignore_hole_birth\fR (int)
31.ad
32.RS 12n
33When set, the hole_birth optimization will not be used, and all holes will
34always be sent on zfs send. Useful if you suspect your datasets are affected
35by a bug in hole_birth.
36.sp
9ea9e0b9 37Use \fB1\fR for on (default) and \fB0\fR for off.
6d836e6f
RE
38.RE
39
29714574
TF
40.sp
41.ne 2
42.na
43\fBl2arc_feed_again\fR (int)
44.ad
45.RS 12n
83426735
D
46Turbo L2ARC warm-up. When the L2ARC is cold the fill interval will be set as
47fast as possible.
29714574
TF
48.sp
49Use \fB1\fR for yes (default) and \fB0\fR to disable.
50.RE
51
52.sp
53.ne 2
54.na
55\fBl2arc_feed_min_ms\fR (ulong)
56.ad
57.RS 12n
83426735
D
58Min feed interval in milliseconds. Requires \fBl2arc_feed_again=1\fR and only
59applicable in related situations.
29714574
TF
60.sp
61Default value: \fB200\fR.
62.RE
63
64.sp
65.ne 2
66.na
67\fBl2arc_feed_secs\fR (ulong)
68.ad
69.RS 12n
70Seconds between L2ARC writing
71.sp
72Default value: \fB1\fR.
73.RE
74
75.sp
76.ne 2
77.na
78\fBl2arc_headroom\fR (ulong)
79.ad
80.RS 12n
83426735
D
81How far through the ARC lists to search for L2ARC cacheable content, expressed
82as a multiplier of \fBl2arc_write_max\fR
29714574
TF
83.sp
84Default value: \fB2\fR.
85.RE
86
87.sp
88.ne 2
89.na
90\fBl2arc_headroom_boost\fR (ulong)
91.ad
92.RS 12n
83426735
D
93Scales \fBl2arc_headroom\fR by this percentage when L2ARC contents are being
94successfully compressed before writing. A value of 100 disables this feature.
29714574
TF
95.sp
96Default value: \fB200\fR.
97.RE
98
99.sp
100.ne 2
101.na
102\fBl2arc_nocompress\fR (int)
103.ad
104.RS 12n
105Skip compressing L2ARC buffers
106.sp
107Use \fB1\fR for yes and \fB0\fR for no (default).
108.RE
109
110.sp
111.ne 2
112.na
113\fBl2arc_noprefetch\fR (int)
114.ad
115.RS 12n
83426735
D
116Do not write buffers to L2ARC if they were prefetched but not used by
117applications
29714574
TF
118.sp
119Use \fB1\fR for yes (default) and \fB0\fR to disable.
120.RE
121
122.sp
123.ne 2
124.na
125\fBl2arc_norw\fR (int)
126.ad
127.RS 12n
128No reads during writes
129.sp
130Use \fB1\fR for yes and \fB0\fR for no (default).
131.RE
132
133.sp
134.ne 2
135.na
136\fBl2arc_write_boost\fR (ulong)
137.ad
138.RS 12n
83426735
D
139Cold L2ARC devices will have \fBl2arc_write_nax\fR increased by this amount
140while they remain cold.
29714574
TF
141.sp
142Default value: \fB8,388,608\fR.
143.RE
144
145.sp
146.ne 2
147.na
148\fBl2arc_write_max\fR (ulong)
149.ad
150.RS 12n
151Max write bytes per interval
152.sp
153Default value: \fB8,388,608\fR.
154.RE
155
99b14de4
ED
156.sp
157.ne 2
158.na
159\fBmetaslab_aliquot\fR (ulong)
160.ad
161.RS 12n
162Metaslab granularity, in bytes. This is roughly similar to what would be
163referred to as the "stripe size" in traditional RAID arrays. In normal
164operation, ZFS will try to write this amount of data to a top-level vdev
165before moving on to the next one.
166.sp
167Default value: \fB524,288\fR.
168.RE
169
f3a7f661
GW
170.sp
171.ne 2
172.na
173\fBmetaslab_bias_enabled\fR (int)
174.ad
175.RS 12n
176Enable metaslab group biasing based on its vdev's over- or under-utilization
177relative to the pool.
178.sp
179Use \fB1\fR for yes (default) and \fB0\fR for no.
180.RE
181
29714574
TF
182.sp
183.ne 2
184.na
aa7d06a9 185\fBmetaslab_debug_load\fR (int)
29714574
TF
186.ad
187.RS 12n
aa7d06a9
GW
188Load all metaslabs during pool import.
189.sp
190Use \fB1\fR for yes and \fB0\fR for no (default).
191.RE
192
193.sp
194.ne 2
195.na
196\fBmetaslab_debug_unload\fR (int)
197.ad
198.RS 12n
199Prevent metaslabs from being unloaded.
29714574
TF
200.sp
201Use \fB1\fR for yes and \fB0\fR for no (default).
202.RE
203
f3a7f661
GW
204.sp
205.ne 2
206.na
207\fBmetaslab_fragmentation_factor_enabled\fR (int)
208.ad
209.RS 12n
210Enable use of the fragmentation metric in computing metaslab weights.
211.sp
212Use \fB1\fR for yes (default) and \fB0\fR for no.
213.RE
214
b8bcca18
MA
215.sp
216.ne 2
217.na
218\fBmetaslabs_per_vdev\fR (int)
219.ad
220.RS 12n
221When a vdev is added, it will be divided into approximately (but no more than) this number of metaslabs.
222.sp
223Default value: \fB200\fR.
224.RE
225
f3a7f661
GW
226.sp
227.ne 2
228.na
229\fBmetaslab_preload_enabled\fR (int)
230.ad
231.RS 12n
232Enable metaslab group preloading.
233.sp
234Use \fB1\fR for yes (default) and \fB0\fR for no.
235.RE
236
237.sp
238.ne 2
239.na
240\fBmetaslab_lba_weighting_enabled\fR (int)
241.ad
242.RS 12n
243Give more weight to metaslabs with lower LBAs, assuming they have
244greater bandwidth as is typically the case on a modern constant
245angular velocity disk drive.
246.sp
247Use \fB1\fR for yes (default) and \fB0\fR for no.
248.RE
249
29714574
TF
250.sp
251.ne 2
252.na
253\fBspa_config_path\fR (charp)
254.ad
255.RS 12n
256SPA config file
257.sp
258Default value: \fB/etc/zfs/zpool.cache\fR.
259.RE
260
e8b96c60
MA
261.sp
262.ne 2
263.na
264\fBspa_asize_inflation\fR (int)
265.ad
266.RS 12n
267Multiplication factor used to estimate actual disk consumption from the
268size of data being written. The default value is a worst case estimate,
269but lower values may be valid for a given pool depending on its
270configuration. Pool administrators who understand the factors involved
271may wish to specify a more realistic inflation factor, particularly if
272they operate close to quota or capacity limits.
273.sp
83426735 274Default value: \fB24\fR.
e8b96c60
MA
275.RE
276
dea377c0
MA
277.sp
278.ne 2
279.na
280\fBspa_load_verify_data\fR (int)
281.ad
282.RS 12n
283Whether to traverse data blocks during an "extreme rewind" (\fB-X\fR)
284import. Use 0 to disable and 1 to enable.
285
286An extreme rewind import normally performs a full traversal of all
287blocks in the pool for verification. If this parameter is set to 0,
288the traversal skips non-metadata blocks. It can be toggled once the
289import has started to stop or start the traversal of non-metadata blocks.
290.sp
83426735 291Default value: \fB1\fR.
dea377c0
MA
292.RE
293
294.sp
295.ne 2
296.na
297\fBspa_load_verify_metadata\fR (int)
298.ad
299.RS 12n
300Whether to traverse blocks during an "extreme rewind" (\fB-X\fR)
301pool import. Use 0 to disable and 1 to enable.
302
303An extreme rewind import normally performs a full traversal of all
1c012083 304blocks in the pool for verification. If this parameter is set to 0,
dea377c0
MA
305the traversal is not performed. It can be toggled once the import has
306started to stop or start the traversal.
307.sp
83426735 308Default value: \fB1\fR.
dea377c0
MA
309.RE
310
311.sp
312.ne 2
313.na
314\fBspa_load_verify_maxinflight\fR (int)
315.ad
316.RS 12n
317Maximum concurrent I/Os during the traversal performed during an "extreme
318rewind" (\fB-X\fR) pool import.
319.sp
83426735 320Default value: \fB10000\fR.
dea377c0
MA
321.RE
322
6cde6435
BB
323.sp
324.ne 2
325.na
326\fBspa_slop_shift\fR (int)
327.ad
328.RS 12n
329Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space
330in the pool to be consumed. This ensures that we don't run the pool
331completely out of space, due to unaccounted changes (e.g. to the MOS).
332It also limits the worst-case time to allocate space. If we have
333less than this amount of free space, most ZPL operations (e.g. write,
334create) will return ENOSPC.
335.sp
83426735 336Default value: \fB5\fR.
6cde6435
BB
337.RE
338
29714574
TF
339.sp
340.ne 2
341.na
342\fBzfetch_array_rd_sz\fR (ulong)
343.ad
344.RS 12n
27b293be 345If prefetching is enabled, disable prefetching for reads larger than this size.
29714574
TF
346.sp
347Default value: \fB1,048,576\fR.
348.RE
349
350.sp
351.ne 2
352.na
7f60329a 353\fBzfetch_max_distance\fR (uint)
29714574
TF
354.ad
355.RS 12n
7f60329a 356Max bytes to prefetch per stream (default 8MB).
29714574 357.sp
7f60329a 358Default value: \fB8,388,608\fR.
29714574
TF
359.RE
360
361.sp
362.ne 2
363.na
364\fBzfetch_max_streams\fR (uint)
365.ad
366.RS 12n
27b293be 367Max number of streams per zfetch (prefetch streams per file).
29714574
TF
368.sp
369Default value: \fB8\fR.
370.RE
371
372.sp
373.ne 2
374.na
375\fBzfetch_min_sec_reap\fR (uint)
376.ad
377.RS 12n
27b293be 378Min time before an active prefetch stream can be reclaimed
29714574
TF
379.sp
380Default value: \fB2\fR.
381.RE
382
25458cbe
TC
383.sp
384.ne 2
385.na
386\fBzfs_arc_dnode_limit\fR (ulong)
387.ad
388.RS 12n
389When the number of bytes consumed by dnodes in the ARC exceeds this number of
9907cc1c
G
390bytes, try to unpin some of it in response to demand for non-metadata. This
391value acts as a floor to the amount of dnode metadata, and defaults to 0 which
392indicates that a percent which is based on \fBzfs_arc_dnode_limit_percent\fR of
393the ARC meta buffers that may be used for dnodes.
25458cbe
TC
394
395See also \fBzfs_arc_meta_prune\fR which serves a similar purpose but is used
396when the amount of metadata in the ARC exceeds \fBzfs_arc_meta_limit\fR rather
397than in response to overall demand for non-metadata.
398
399.sp
9907cc1c
G
400Default value: \fB0\fR.
401.RE
402
403.sp
404.ne 2
405.na
406\fBzfs_arc_dnode_limit_percent\fR (ulong)
407.ad
408.RS 12n
409Percentage that can be consumed by dnodes of ARC meta buffers.
410.sp
411See also \fBzfs_arc_dnode_limit\fR which serves a similar purpose but has a
412higher priority if set to nonzero value.
413.sp
414Default value: \fB10\fR.
25458cbe
TC
415.RE
416
417.sp
418.ne 2
419.na
420\fBzfs_arc_dnode_reduce_percent\fR (ulong)
421.ad
422.RS 12n
423Percentage of ARC dnodes to try to scan in response to demand for non-metadata
424when the number of bytes consumed by dnodes exceeds \fBzfs_arc_dnode_limit\fB.
425
426.sp
427Default value: \fB10% of the number of dnodes in the ARC\fR.
428.RE
429
49ddb315
MA
430.sp
431.ne 2
432.na
433\fBzfs_arc_average_blocksize\fR (int)
434.ad
435.RS 12n
436The ARC's buffer hash table is sized based on the assumption of an average
437block size of \fBzfs_arc_average_blocksize\fR (default 8K). This works out
438to roughly 1MB of hash table per 1GB of physical memory with 8-byte pointers.
439For configurations with a known larger average block size this value can be
440increased to reduce the memory footprint.
441
442.sp
443Default value: \fB8192\fR.
444.RE
445
ca0bf58d
PS
446.sp
447.ne 2
448.na
449\fBzfs_arc_evict_batch_limit\fR (int)
450.ad
451.RS 12n
8f343973 452Number ARC headers to evict per sub-list before proceeding to another sub-list.
ca0bf58d
PS
453This batch-style operation prevents entire sub-lists from being evicted at once
454but comes at a cost of additional unlocking and locking.
455.sp
456Default value: \fB10\fR.
457.RE
458
29714574
TF
459.sp
460.ne 2
461.na
462\fBzfs_arc_grow_retry\fR (int)
463.ad
464.RS 12n
83426735
D
465After a memory pressure event the ARC will wait this many seconds before trying
466to resume growth
29714574
TF
467.sp
468Default value: \fB5\fR.
469.RE
470
471.sp
472.ne 2
473.na
7e8bddd0 474\fBzfs_arc_lotsfree_percent\fR (int)
29714574
TF
475.ad
476.RS 12n
7e8bddd0
BB
477Throttle I/O when free system memory drops below this percentage of total
478system memory. Setting this value to 0 will disable the throttle.
29714574 479.sp
7e8bddd0 480Default value: \fB10\fR.
29714574
TF
481.RE
482
483.sp
484.ne 2
485.na
7e8bddd0 486\fBzfs_arc_max\fR (ulong)
29714574
TF
487.ad
488.RS 12n
83426735
D
489Max arc size of ARC in bytes. If set to 0 then it will consume 1/2 of system
490RAM. This value must be at least 67108864 (64 megabytes).
491.sp
492This value can be changed dynamically with some caveats. It cannot be set back
493to 0 while running and reducing it below the current ARC size will not cause
494the ARC to shrink without memory pressure to induce shrinking.
29714574 495.sp
7e8bddd0 496Default value: \fB0\fR.
29714574
TF
497.RE
498
499.sp
500.ne 2
501.na
502\fBzfs_arc_meta_limit\fR (ulong)
503.ad
504.RS 12n
2cbb06b5
BB
505The maximum allowed size in bytes that meta data buffers are allowed to
506consume in the ARC. When this limit is reached meta data buffers will
507be reclaimed even if the overall arc_c_max has not been reached. This
9907cc1c
G
508value defaults to 0 which indicates that a percent which is based on
509\fBzfs_arc_meta_limit_percent\fR of the ARC may be used for meta data.
29714574 510.sp
83426735 511This value my be changed dynamically except that it cannot be set back to 0
9907cc1c 512for a specific percent of the ARC; it must be set to an explicit value.
83426735 513.sp
29714574
TF
514Default value: \fB0\fR.
515.RE
516
9907cc1c
G
517.sp
518.ne 2
519.na
520\fBzfs_arc_meta_limit_percent\fR (ulong)
521.ad
522.RS 12n
523Percentage of ARC buffers that can be used for meta data.
524
525See also \fBzfs_arc_meta_limit\fR which serves a similar purpose but has a
526higher priority if set to nonzero value.
527
528.sp
529Default value: \fB75\fR.
530.RE
531
ca0bf58d
PS
532.sp
533.ne 2
534.na
535\fBzfs_arc_meta_min\fR (ulong)
536.ad
537.RS 12n
538The minimum allowed size in bytes that meta data buffers may consume in
539the ARC. This value defaults to 0 which disables a floor on the amount
540of the ARC devoted meta data.
541.sp
542Default value: \fB0\fR.
543.RE
544
29714574
TF
545.sp
546.ne 2
547.na
548\fBzfs_arc_meta_prune\fR (int)
549.ad
550.RS 12n
2cbb06b5
BB
551The number of dentries and inodes to be scanned looking for entries
552which can be dropped. This may be required when the ARC reaches the
553\fBzfs_arc_meta_limit\fR because dentries and inodes can pin buffers
554in the ARC. Increasing this value will cause to dentry and inode caches
555to be pruned more aggressively. Setting this value to 0 will disable
556pruning the inode and dentry caches.
29714574 557.sp
2cbb06b5 558Default value: \fB10,000\fR.
29714574
TF
559.RE
560
bc888666
BB
561.sp
562.ne 2
563.na
564\fBzfs_arc_meta_adjust_restarts\fR (ulong)
565.ad
566.RS 12n
567The number of restart passes to make while scanning the ARC attempting
568the free buffers in order to stay below the \fBzfs_arc_meta_limit\fR.
569This value should not need to be tuned but is available to facilitate
570performance analysis.
571.sp
572Default value: \fB4096\fR.
573.RE
574
29714574
TF
575.sp
576.ne 2
577.na
578\fBzfs_arc_min\fR (ulong)
579.ad
580.RS 12n
581Min arc size
582.sp
583Default value: \fB100\fR.
584.RE
585
586.sp
587.ne 2
588.na
589\fBzfs_arc_min_prefetch_lifespan\fR (int)
590.ad
591.RS 12n
83426735
D
592Minimum time prefetched blocks are locked in the ARC, specified in jiffies.
593A value of 0 will default to 1 second.
29714574 594.sp
83426735 595Default value: \fB0\fR.
29714574
TF
596.RE
597
ca0bf58d
PS
598.sp
599.ne 2
600.na
601\fBzfs_arc_num_sublists_per_state\fR (int)
602.ad
603.RS 12n
604To allow more fine-grained locking, each ARC state contains a series
605of lists for both data and meta data objects. Locking is performed at
606the level of these "sub-lists". This parameters controls the number of
607sub-lists per ARC state.
608.sp
83426735 609Default value: \fR1\fB or the number of online CPUs, whichever is greater
ca0bf58d
PS
610.RE
611
612.sp
613.ne 2
614.na
615\fBzfs_arc_overflow_shift\fR (int)
616.ad
617.RS 12n
618The ARC size is considered to be overflowing if it exceeds the current
619ARC target size (arc_c) by a threshold determined by this parameter.
620The threshold is calculated as a fraction of arc_c using the formula
621"arc_c >> \fBzfs_arc_overflow_shift\fR".
622
623The default value of 8 causes the ARC to be considered to be overflowing
624if it exceeds the target size by 1/256th (0.3%) of the target size.
625
626When the ARC is overflowing, new buffer allocations are stalled until
627the reclaim thread catches up and the overflow condition no longer exists.
628.sp
629Default value: \fB8\fR.
630.RE
631
728d6ae9
BB
632.sp
633.ne 2
634.na
635
636\fBzfs_arc_p_min_shift\fR (int)
637.ad
638.RS 12n
639arc_c shift to calc min/max arc_p
640.sp
641Default value: \fB4\fR.
642.RE
643
89c8cac4
PS
644.sp
645.ne 2
646.na
647\fBzfs_arc_p_aggressive_disable\fR (int)
648.ad
649.RS 12n
650Disable aggressive arc_p growth
651.sp
652Use \fB1\fR for yes (default) and \fB0\fR to disable.
653.RE
654
62422785
PS
655.sp
656.ne 2
657.na
658\fBzfs_arc_p_dampener_disable\fR (int)
659.ad
660.RS 12n
661Disable arc_p adapt dampener
662.sp
663Use \fB1\fR for yes (default) and \fB0\fR to disable.
664.RE
665
29714574
TF
666.sp
667.ne 2
668.na
669\fBzfs_arc_shrink_shift\fR (int)
670.ad
671.RS 12n
672log2(fraction of arc to reclaim)
673.sp
674Default value: \fB5\fR.
675.RE
676
11f552fa
BB
677.sp
678.ne 2
679.na
680\fBzfs_arc_sys_free\fR (ulong)
681.ad
682.RS 12n
683The target number of bytes the ARC should leave as free memory on the system.
684Defaults to the larger of 1/64 of physical memory or 512K. Setting this
685option to a non-zero value will override the default.
686.sp
687Default value: \fB0\fR.
688.RE
689
29714574
TF
690.sp
691.ne 2
692.na
693\fBzfs_autoimport_disable\fR (int)
694.ad
695.RS 12n
27b293be 696Disable pool import at module load by ignoring the cache file (typically \fB/etc/zfs/zpool.cache\fR).
29714574 697.sp
70081096 698Use \fB1\fR for yes (default) and \fB0\fR for no.
29714574
TF
699.RE
700
3b36f831
BB
701.sp
702.ne 2
703.na
704\fBzfs_dbgmsg_enable\fR (int)
705.ad
706.RS 12n
707Internally ZFS keeps a small log to facilitate debugging. By default the log
708is disabled, to enable it set this option to 1. The contents of the log can
709be accessed by reading the /proc/spl/kstat/zfs/dbgmsg file. Writing 0 to
710this proc file clears the log.
711.sp
712Default value: \fB0\fR.
713.RE
714
715.sp
716.ne 2
717.na
718\fBzfs_dbgmsg_maxsize\fR (int)
719.ad
720.RS 12n
721The maximum size in bytes of the internal ZFS debug log.
722.sp
723Default value: \fB4M\fR.
724.RE
725
29714574
TF
726.sp
727.ne 2
728.na
729\fBzfs_dbuf_state_index\fR (int)
730.ad
731.RS 12n
83426735
D
732This feature is currently unused. It is normally used for controlling what
733reporting is available under /proc/spl/kstat/zfs.
29714574
TF
734.sp
735Default value: \fB0\fR.
736.RE
737
738.sp
739.ne 2
740.na
741\fBzfs_deadman_enabled\fR (int)
742.ad
743.RS 12n
83426735 744Enable deadman timer. See description below.
29714574
TF
745.sp
746Use \fB1\fR for yes (default) and \fB0\fR to disable.
747.RE
748
749.sp
750.ne 2
751.na
e8b96c60 752\fBzfs_deadman_synctime_ms\fR (ulong)
29714574
TF
753.ad
754.RS 12n
e8b96c60
MA
755Expiration time in milliseconds. This value has two meanings. First it is
756used to determine when the spa_deadman() logic should fire. By default the
757spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
758Secondly, the value determines if an I/O is considered "hung". Any I/O that
759has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
760in a zevent being logged.
29714574 761.sp
e8b96c60 762Default value: \fB1,000,000\fR.
29714574
TF
763.RE
764
765.sp
766.ne 2
767.na
768\fBzfs_dedup_prefetch\fR (int)
769.ad
770.RS 12n
771Enable prefetching dedup-ed blks
772.sp
0dfc7324 773Use \fB1\fR for yes and \fB0\fR to disable (default).
29714574
TF
774.RE
775
e8b96c60
MA
776.sp
777.ne 2
778.na
779\fBzfs_delay_min_dirty_percent\fR (int)
780.ad
781.RS 12n
782Start to delay each transaction once there is this amount of dirty data,
783expressed as a percentage of \fBzfs_dirty_data_max\fR.
784This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
785See the section "ZFS TRANSACTION DELAY".
786.sp
787Default value: \fB60\fR.
788.RE
789
790.sp
791.ne 2
792.na
793\fBzfs_delay_scale\fR (int)
794.ad
795.RS 12n
796This controls how quickly the transaction delay approaches infinity.
797Larger values cause longer delays for a given amount of dirty data.
798.sp
799For the smoothest delay, this value should be about 1 billion divided
800by the maximum number of operations per second. This will smoothly
801handle between 10x and 1/10th this number.
802.sp
803See the section "ZFS TRANSACTION DELAY".
804.sp
805Note: \fBzfs_delay_scale\fR * \fBzfs_dirty_data_max\fR must be < 2^64.
806.sp
807Default value: \fB500,000\fR.
808.RE
809
a966c564
K
810.sp
811.ne 2
812.na
813\fBzfs_delete_blocks\fR (ulong)
814.ad
815.RS 12n
816This is the used to define a large file for the purposes of delete. Files
817containing more than \fBzfs_delete_blocks\fR will be deleted asynchronously
818while smaller files are deleted synchronously. Decreasing this value will
819reduce the time spent in an unlink(2) system call at the expense of a longer
820delay before the freed space is available.
821.sp
822Default value: \fB20,480\fR.
823.RE
824
e8b96c60
MA
825.sp
826.ne 2
827.na
828\fBzfs_dirty_data_max\fR (int)
829.ad
830.RS 12n
831Determines the dirty space limit in bytes. Once this limit is exceeded, new
832writes are halted until space frees up. This parameter takes precedence
833over \fBzfs_dirty_data_max_percent\fR.
834See the section "ZFS TRANSACTION DELAY".
835.sp
836Default value: 10 percent of all memory, capped at \fBzfs_dirty_data_max_max\fR.
837.RE
838
839.sp
840.ne 2
841.na
842\fBzfs_dirty_data_max_max\fR (int)
843.ad
844.RS 12n
845Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed in bytes.
846This limit is only enforced at module load time, and will be ignored if
847\fBzfs_dirty_data_max\fR is later changed. This parameter takes
848precedence over \fBzfs_dirty_data_max_max_percent\fR. See the section
849"ZFS TRANSACTION DELAY".
850.sp
851Default value: 25% of physical RAM.
852.RE
853
854.sp
855.ne 2
856.na
857\fBzfs_dirty_data_max_max_percent\fR (int)
858.ad
859.RS 12n
860Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed as a
861percentage of physical RAM. This limit is only enforced at module load
862time, and will be ignored if \fBzfs_dirty_data_max\fR is later changed.
863The parameter \fBzfs_dirty_data_max_max\fR takes precedence over this
864one. See the section "ZFS TRANSACTION DELAY".
865.sp
83426735 866Default value: \fN25\fR.
e8b96c60
MA
867.RE
868
869.sp
870.ne 2
871.na
872\fBzfs_dirty_data_max_percent\fR (int)
873.ad
874.RS 12n
875Determines the dirty space limit, expressed as a percentage of all
876memory. Once this limit is exceeded, new writes are halted until space frees
877up. The parameter \fBzfs_dirty_data_max\fR takes precedence over this
878one. See the section "ZFS TRANSACTION DELAY".
879.sp
880Default value: 10%, subject to \fBzfs_dirty_data_max_max\fR.
881.RE
882
883.sp
884.ne 2
885.na
886\fBzfs_dirty_data_sync\fR (int)
887.ad
888.RS 12n
889Start syncing out a transaction group if there is at least this much dirty data.
890.sp
891Default value: \fB67,108,864\fR.
892.RE
893
1eeb4562
JX
894.sp
895.ne 2
896.na
897\fBzfs_fletcher_4_impl\fR (string)
898.ad
899.RS 12n
900Select a fletcher 4 implementation.
901.sp
35a76a03 902Supported selectors are: \fBfastest\fR, \fBscalar\fR, \fBsse2\fR, \fBssse3\fR,
70b258fc
GN
903\fBavx2\fR, and \fBavx512f\fR.
904All of the selectors except \fBfastest\fR and \fBscalar\fR require instruction
905set extensions to be available and will only appear if ZFS detects that they are
906present at runtime. If multiple implementations of fletcher 4 are available,
907the \fBfastest\fR will be chosen using a micro benchmark. Selecting \fBscalar\fR
908results in the original, CPU based calculation, being used. Selecting any option
909other than \fBfastest\fR and \fBscalar\fR results in vector instructions from
910the respective CPU instruction set being used.
1eeb4562
JX
911.sp
912Default value: \fBfastest\fR.
913.RE
914
ba5ad9a4
GW
915.sp
916.ne 2
917.na
918\fBzfs_free_bpobj_enabled\fR (int)
919.ad
920.RS 12n
921Enable/disable the processing of the free_bpobj object.
922.sp
923Default value: \fB1\fR.
924.RE
925
36283ca2
MG
926.sp
927.ne 2
928.na
929\fBzfs_free_max_blocks\fR (ulong)
930.ad
931.RS 12n
932Maximum number of blocks freed in a single txg.
933.sp
934Default value: \fB100,000\fR.
935.RE
936
e8b96c60
MA
937.sp
938.ne 2
939.na
940\fBzfs_vdev_async_read_max_active\fR (int)
941.ad
942.RS 12n
83426735 943Maximum asynchronous read I/Os active to each device.
e8b96c60
MA
944See the section "ZFS I/O SCHEDULER".
945.sp
946Default value: \fB3\fR.
947.RE
948
949.sp
950.ne 2
951.na
952\fBzfs_vdev_async_read_min_active\fR (int)
953.ad
954.RS 12n
955Minimum asynchronous read I/Os active to each device.
956See the section "ZFS I/O SCHEDULER".
957.sp
958Default value: \fB1\fR.
959.RE
960
961.sp
962.ne 2
963.na
964\fBzfs_vdev_async_write_active_max_dirty_percent\fR (int)
965.ad
966.RS 12n
967When the pool has more than
968\fBzfs_vdev_async_write_active_max_dirty_percent\fR dirty data, use
969\fBzfs_vdev_async_write_max_active\fR to limit active async writes. If
970the dirty data is between min and max, the active I/O limit is linearly
971interpolated. See the section "ZFS I/O SCHEDULER".
972.sp
973Default value: \fB60\fR.
974.RE
975
976.sp
977.ne 2
978.na
979\fBzfs_vdev_async_write_active_min_dirty_percent\fR (int)
980.ad
981.RS 12n
982When the pool has less than
983\fBzfs_vdev_async_write_active_min_dirty_percent\fR dirty data, use
984\fBzfs_vdev_async_write_min_active\fR to limit active async writes. If
985the dirty data is between min and max, the active I/O limit is linearly
986interpolated. See the section "ZFS I/O SCHEDULER".
987.sp
988Default value: \fB30\fR.
989.RE
990
991.sp
992.ne 2
993.na
994\fBzfs_vdev_async_write_max_active\fR (int)
995.ad
996.RS 12n
83426735 997Maximum asynchronous write I/Os active to each device.
e8b96c60
MA
998See the section "ZFS I/O SCHEDULER".
999.sp
1000Default value: \fB10\fR.
1001.RE
1002
1003.sp
1004.ne 2
1005.na
1006\fBzfs_vdev_async_write_min_active\fR (int)
1007.ad
1008.RS 12n
1009Minimum asynchronous write I/Os active to each device.
1010See the section "ZFS I/O SCHEDULER".
1011.sp
1012Default value: \fB1\fR.
1013.RE
1014
1015.sp
1016.ne 2
1017.na
1018\fBzfs_vdev_max_active\fR (int)
1019.ad
1020.RS 12n
1021The maximum number of I/Os active to each device. Ideally, this will be >=
1022the sum of each queue's max_active. It must be at least the sum of each
1023queue's min_active. See the section "ZFS I/O SCHEDULER".
1024.sp
1025Default value: \fB1,000\fR.
1026.RE
1027
1028.sp
1029.ne 2
1030.na
1031\fBzfs_vdev_scrub_max_active\fR (int)
1032.ad
1033.RS 12n
83426735 1034Maximum scrub I/Os active to each device.
e8b96c60
MA
1035See the section "ZFS I/O SCHEDULER".
1036.sp
1037Default value: \fB2\fR.
1038.RE
1039
1040.sp
1041.ne 2
1042.na
1043\fBzfs_vdev_scrub_min_active\fR (int)
1044.ad
1045.RS 12n
1046Minimum scrub I/Os active to each device.
1047See the section "ZFS I/O SCHEDULER".
1048.sp
1049Default value: \fB1\fR.
1050.RE
1051
1052.sp
1053.ne 2
1054.na
1055\fBzfs_vdev_sync_read_max_active\fR (int)
1056.ad
1057.RS 12n
83426735 1058Maximum synchronous read I/Os active to each device.
e8b96c60
MA
1059See the section "ZFS I/O SCHEDULER".
1060.sp
1061Default value: \fB10\fR.
1062.RE
1063
1064.sp
1065.ne 2
1066.na
1067\fBzfs_vdev_sync_read_min_active\fR (int)
1068.ad
1069.RS 12n
1070Minimum synchronous read I/Os active to each device.
1071See the section "ZFS I/O SCHEDULER".
1072.sp
1073Default value: \fB10\fR.
1074.RE
1075
1076.sp
1077.ne 2
1078.na
1079\fBzfs_vdev_sync_write_max_active\fR (int)
1080.ad
1081.RS 12n
83426735 1082Maximum synchronous write I/Os active to each device.
e8b96c60
MA
1083See the section "ZFS I/O SCHEDULER".
1084.sp
1085Default value: \fB10\fR.
1086.RE
1087
1088.sp
1089.ne 2
1090.na
1091\fBzfs_vdev_sync_write_min_active\fR (int)
1092.ad
1093.RS 12n
1094Minimum synchronous write I/Os active to each device.
1095See the section "ZFS I/O SCHEDULER".
1096.sp
1097Default value: \fB10\fR.
1098.RE
1099
29714574
TF
1100.sp
1101.ne 2
1102.na
1103\fBzfs_disable_dup_eviction\fR (int)
1104.ad
1105.RS 12n
1106Disable duplicate buffer eviction
1107.sp
1108Use \fB1\fR for yes and \fB0\fR for no (default).
1109.RE
1110
1111.sp
1112.ne 2
1113.na
1114\fBzfs_expire_snapshot\fR (int)
1115.ad
1116.RS 12n
1117Seconds to expire .zfs/snapshot
1118.sp
1119Default value: \fB300\fR.
1120.RE
1121
0500e835
BB
1122.sp
1123.ne 2
1124.na
1125\fBzfs_admin_snapshot\fR (int)
1126.ad
1127.RS 12n
1128Allow the creation, removal, or renaming of entries in the .zfs/snapshot
1129directory to cause the creation, destruction, or renaming of snapshots.
1130When enabled this functionality works both locally and over NFS exports
1131which have the 'no_root_squash' option set. This functionality is disabled
1132by default.
1133.sp
1134Use \fB1\fR for yes and \fB0\fR for no (default).
1135.RE
1136
29714574
TF
1137.sp
1138.ne 2
1139.na
1140\fBzfs_flags\fR (int)
1141.ad
1142.RS 12n
33b6dbbc
NB
1143Set additional debugging flags. The following flags may be bitwise-or'd
1144together.
1145.sp
1146.TS
1147box;
1148rB lB
1149lB lB
1150r l.
1151Value Symbolic Name
1152 Description
1153_
11541 ZFS_DEBUG_DPRINTF
1155 Enable dprintf entries in the debug log.
1156_
11572 ZFS_DEBUG_DBUF_VERIFY *
1158 Enable extra dbuf verifications.
1159_
11604 ZFS_DEBUG_DNODE_VERIFY *
1161 Enable extra dnode verifications.
1162_
11638 ZFS_DEBUG_SNAPNAMES
1164 Enable snapshot name verification.
1165_
116616 ZFS_DEBUG_MODIFY
1167 Check for illegally modified ARC buffers.
1168_
116932 ZFS_DEBUG_SPA
1170 Enable spa_dbgmsg entries in the debug log.
1171_
117264 ZFS_DEBUG_ZIO_FREE
1173 Enable verification of block frees.
1174_
1175128 ZFS_DEBUG_HISTOGRAM_VERIFY
1176 Enable extra spacemap histogram verifications.
1177.TE
1178.sp
1179* Requires debug build.
29714574 1180.sp
33b6dbbc 1181Default value: \fB0\fR.
29714574
TF
1182.RE
1183
fbeddd60
MA
1184.sp
1185.ne 2
1186.na
1187\fBzfs_free_leak_on_eio\fR (int)
1188.ad
1189.RS 12n
1190If destroy encounters an EIO while reading metadata (e.g. indirect
1191blocks), space referenced by the missing metadata can not be freed.
1192Normally this causes the background destroy to become "stalled", as
1193it is unable to make forward progress. While in this stalled state,
1194all remaining space to free from the error-encountering filesystem is
1195"temporarily leaked". Set this flag to cause it to ignore the EIO,
1196permanently leak the space from indirect blocks that can not be read,
1197and continue to free everything else that it can.
1198
1199The default, "stalling" behavior is useful if the storage partially
1200fails (i.e. some but not all i/os fail), and then later recovers. In
1201this case, we will be able to continue pool operations while it is
1202partially failed, and when it recovers, we can continue to free the
1203space, with no leaks. However, note that this case is actually
1204fairly rare.
1205
1206Typically pools either (a) fail completely (but perhaps temporarily,
1207e.g. a top-level vdev going offline), or (b) have localized,
1208permanent errors (e.g. disk returns the wrong data due to bit flip or
1209firmware bug). In case (a), this setting does not matter because the
1210pool will be suspended and the sync thread will not be able to make
1211forward progress regardless. In case (b), because the error is
1212permanent, the best we can do is leak the minimum amount of space,
1213which is what setting this flag will do. Therefore, it is reasonable
1214for this flag to normally be set, but we chose the more conservative
1215approach of not setting it, so that there is no possibility of
1216leaking space in the "partial temporary" failure case.
1217.sp
1218Default value: \fB0\fR.
1219.RE
1220
29714574
TF
1221.sp
1222.ne 2
1223.na
1224\fBzfs_free_min_time_ms\fR (int)
1225.ad
1226.RS 12n
83426735
D
1227During a \fRzfs destroy\fB operation using \fRfeature@async_destroy\fB a minimum
1228of this much time will be spent working on freeing blocks per txg.
29714574
TF
1229.sp
1230Default value: \fB1,000\fR.
1231.RE
1232
1233.sp
1234.ne 2
1235.na
1236\fBzfs_immediate_write_sz\fR (long)
1237.ad
1238.RS 12n
83426735
D
1239Largest data block to write to zil. Larger blocks will be treated as if the
1240dataset being written to had the property setting \fRlogbias=throughput\fB.
29714574
TF
1241.sp
1242Default value: \fB32,768\fR.
1243.RE
1244
f1512ee6
MA
1245.sp
1246.ne 2
1247.na
1248\fBzfs_max_recordsize\fR (int)
1249.ad
1250.RS 12n
1251We currently support block sizes from 512 bytes to 16MB. The benefits of
1252larger blocks, and thus larger IO, need to be weighed against the cost of
1253COWing a giant block to modify one byte. Additionally, very large blocks
1254can have an impact on i/o latency, and also potentially on the memory
1255allocator. Therefore, we do not allow the recordsize to be set larger than
1256zfs_max_recordsize (default 1MB). Larger blocks can be created by changing
1257this tunable, and pools with larger blocks can always be imported and used,
1258regardless of this setting.
1259.sp
1260Default value: \fB1,048,576\fR.
1261.RE
1262
29714574
TF
1263.sp
1264.ne 2
1265.na
1266\fBzfs_mdcomp_disable\fR (int)
1267.ad
1268.RS 12n
1269Disable meta data compression
1270.sp
1271Use \fB1\fR for yes and \fB0\fR for no (default).
1272.RE
1273
f3a7f661
GW
1274.sp
1275.ne 2
1276.na
1277\fBzfs_metaslab_fragmentation_threshold\fR (int)
1278.ad
1279.RS 12n
1280Allow metaslabs to keep their active state as long as their fragmentation
1281percentage is less than or equal to this value. An active metaslab that
1282exceeds this threshold will no longer keep its active status allowing
1283better metaslabs to be selected.
1284.sp
1285Default value: \fB70\fR.
1286.RE
1287
1288.sp
1289.ne 2
1290.na
1291\fBzfs_mg_fragmentation_threshold\fR (int)
1292.ad
1293.RS 12n
1294Metaslab groups are considered eligible for allocations if their
83426735 1295fragmentation metric (measured as a percentage) is less than or equal to
f3a7f661
GW
1296this value. If a metaslab group exceeds this threshold then it will be
1297skipped unless all metaslab groups within the metaslab class have also
1298crossed this threshold.
1299.sp
1300Default value: \fB85\fR.
1301.RE
1302
f4a4046b
TC
1303.sp
1304.ne 2
1305.na
1306\fBzfs_mg_noalloc_threshold\fR (int)
1307.ad
1308.RS 12n
1309Defines a threshold at which metaslab groups should be eligible for
1310allocations. The value is expressed as a percentage of free space
1311beyond which a metaslab group is always eligible for allocations.
1312If a metaslab group's free space is less than or equal to the
6b4e21c6 1313threshold, the allocator will avoid allocating to that group
f4a4046b
TC
1314unless all groups in the pool have reached the threshold. Once all
1315groups have reached the threshold, all groups are allowed to accept
1316allocations. The default value of 0 disables the feature and causes
1317all metaslab groups to be eligible for allocations.
1318
1319This parameter allows to deal with pools having heavily imbalanced
1320vdevs such as would be the case when a new vdev has been added.
1321Setting the threshold to a non-zero percentage will stop allocations
1322from being made to vdevs that aren't filled to the specified percentage
1323and allow lesser filled vdevs to acquire more allocations than they
1324otherwise would under the old \fBzfs_mg_alloc_failures\fR facility.
1325.sp
1326Default value: \fB0\fR.
1327.RE
1328
29714574
TF
1329.sp
1330.ne 2
1331.na
1332\fBzfs_no_scrub_io\fR (int)
1333.ad
1334.RS 12n
83426735
D
1335Set for no scrub I/O. This results in scrubs not actually scrubbing data and
1336simply doing a metadata crawl of the pool instead.
29714574
TF
1337.sp
1338Use \fB1\fR for yes and \fB0\fR for no (default).
1339.RE
1340
1341.sp
1342.ne 2
1343.na
1344\fBzfs_no_scrub_prefetch\fR (int)
1345.ad
1346.RS 12n
83426735 1347Set to disable block prefetching for scrubs.
29714574
TF
1348.sp
1349Use \fB1\fR for yes and \fB0\fR for no (default).
1350.RE
1351
29714574
TF
1352.sp
1353.ne 2
1354.na
1355\fBzfs_nocacheflush\fR (int)
1356.ad
1357.RS 12n
83426735
D
1358Disable cache flush operations on disks when writing. Beware, this may cause
1359corruption if disks re-order writes.
29714574
TF
1360.sp
1361Use \fB1\fR for yes and \fB0\fR for no (default).
1362.RE
1363
1364.sp
1365.ne 2
1366.na
1367\fBzfs_nopwrite_enabled\fR (int)
1368.ad
1369.RS 12n
1370Enable NOP writes
1371.sp
1372Use \fB1\fR for yes (default) and \fB0\fR to disable.
1373.RE
1374
1375.sp
1376.ne 2
1377.na
b738bc5a 1378\fBzfs_pd_bytes_max\fR (int)
29714574
TF
1379.ad
1380.RS 12n
83426735
D
1381The number of bytes which should be prefetched during a pool traversal
1382(eg: \fRzfs send\fB or other data crawling operations)
29714574 1383.sp
74aa2ba2 1384Default value: \fB52,428,800\fR.
29714574
TF
1385.RE
1386
1387.sp
1388.ne 2
1389.na
1390\fBzfs_prefetch_disable\fR (int)
1391.ad
1392.RS 12n
7f60329a
MA
1393This tunable disables predictive prefetch. Note that it leaves "prescient"
1394prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
1395prescient prefetch never issues i/os that end up not being needed, so it
1396can't hurt performance.
29714574
TF
1397.sp
1398Use \fB1\fR for yes and \fB0\fR for no (default).
1399.RE
1400
1401.sp
1402.ne 2
1403.na
1404\fBzfs_read_chunk_size\fR (long)
1405.ad
1406.RS 12n
1407Bytes to read per chunk
1408.sp
1409Default value: \fB1,048,576\fR.
1410.RE
1411
1412.sp
1413.ne 2
1414.na
1415\fBzfs_read_history\fR (int)
1416.ad
1417.RS 12n
83426735
D
1418Historic statistics for the last N reads will be available in
1419\fR/proc/spl/kstat/zfs/POOLNAME/reads\fB
29714574 1420.sp
83426735 1421Default value: \fB0\fR (no data is kept).
29714574
TF
1422.RE
1423
1424.sp
1425.ne 2
1426.na
1427\fBzfs_read_history_hits\fR (int)
1428.ad
1429.RS 12n
1430Include cache hits in read history
1431.sp
1432Use \fB1\fR for yes and \fB0\fR for no (default).
1433.RE
1434
1435.sp
1436.ne 2
1437.na
1438\fBzfs_recover\fR (int)
1439.ad
1440.RS 12n
1441Set to attempt to recover from fatal errors. This should only be used as a
1442last resort, as it typically results in leaked space, or worse.
1443.sp
1444Use \fB1\fR for yes and \fB0\fR for no (default).
1445.RE
1446
1447.sp
1448.ne 2
1449.na
1450\fBzfs_resilver_delay\fR (int)
1451.ad
1452.RS 12n
27b293be
TC
1453Number of ticks to delay prior to issuing a resilver I/O operation when
1454a non-resilver or non-scrub I/O operation has occurred within the past
1455\fBzfs_scan_idle\fR ticks.
29714574
TF
1456.sp
1457Default value: \fB2\fR.
1458.RE
1459
1460.sp
1461.ne 2
1462.na
1463\fBzfs_resilver_min_time_ms\fR (int)
1464.ad
1465.RS 12n
83426735
D
1466Resilvers are processed by the sync thread. While resilvering it will spend
1467at least this much time working on a resilver between txg flushes.
29714574
TF
1468.sp
1469Default value: \fB3,000\fR.
1470.RE
1471
1472.sp
1473.ne 2
1474.na
1475\fBzfs_scan_idle\fR (int)
1476.ad
1477.RS 12n
27b293be
TC
1478Idle window in clock ticks. During a scrub or a resilver, if
1479a non-scrub or non-resilver I/O operation has occurred during this
1480window, the next scrub or resilver operation is delayed by, respectively
1481\fBzfs_scrub_delay\fR or \fBzfs_resilver_delay\fR ticks.
29714574
TF
1482.sp
1483Default value: \fB50\fR.
1484.RE
1485
1486.sp
1487.ne 2
1488.na
1489\fBzfs_scan_min_time_ms\fR (int)
1490.ad
1491.RS 12n
83426735
D
1492Scrubs are processed by the sync thread. While scrubbing it will spend
1493at least this much time working on a scrub between txg flushes.
29714574
TF
1494.sp
1495Default value: \fB1,000\fR.
1496.RE
1497
1498.sp
1499.ne 2
1500.na
1501\fBzfs_scrub_delay\fR (int)
1502.ad
1503.RS 12n
27b293be
TC
1504Number of ticks to delay prior to issuing a scrub I/O operation when
1505a non-scrub or non-resilver I/O operation has occurred within the past
1506\fBzfs_scan_idle\fR ticks.
29714574
TF
1507.sp
1508Default value: \fB4\fR.
1509.RE
1510
fd8febbd
TF
1511.sp
1512.ne 2
1513.na
1514\fBzfs_send_corrupt_data\fR (int)
1515.ad
1516.RS 12n
83426735 1517Allow sending of corrupt data (ignore read/checksum errors when sending data)
fd8febbd
TF
1518.sp
1519Use \fB1\fR for yes and \fB0\fR for no (default).
1520.RE
1521
29714574
TF
1522.sp
1523.ne 2
1524.na
1525\fBzfs_sync_pass_deferred_free\fR (int)
1526.ad
1527.RS 12n
83426735 1528Flushing of data to disk is done in passes. Defer frees starting in this pass
29714574
TF
1529.sp
1530Default value: \fB2\fR.
1531.RE
1532
1533.sp
1534.ne 2
1535.na
1536\fBzfs_sync_pass_dont_compress\fR (int)
1537.ad
1538.RS 12n
1539Don't compress starting in this pass
1540.sp
1541Default value: \fB5\fR.
1542.RE
1543
1544.sp
1545.ne 2
1546.na
1547\fBzfs_sync_pass_rewrite\fR (int)
1548.ad
1549.RS 12n
83426735 1550Rewrite new block pointers starting in this pass
29714574
TF
1551.sp
1552Default value: \fB2\fR.
1553.RE
1554
1555.sp
1556.ne 2
1557.na
1558\fBzfs_top_maxinflight\fR (int)
1559.ad
1560.RS 12n
83426735
D
1561Max concurrent I/Os per top-level vdev (mirrors or raidz arrays) allowed during
1562scrub or resilver operations.
29714574
TF
1563.sp
1564Default value: \fB32\fR.
1565.RE
1566
1567.sp
1568.ne 2
1569.na
1570\fBzfs_txg_history\fR (int)
1571.ad
1572.RS 12n
83426735
D
1573Historic statistics for the last N txgs will be available in
1574\fR/proc/spl/kstat/zfs/POOLNAME/txgs\fB
29714574
TF
1575.sp
1576Default value: \fB0\fR.
1577.RE
1578
29714574
TF
1579.sp
1580.ne 2
1581.na
1582\fBzfs_txg_timeout\fR (int)
1583.ad
1584.RS 12n
83426735 1585Flush dirty data to disk at least every N seconds (maximum txg duration)
29714574
TF
1586.sp
1587Default value: \fB5\fR.
1588.RE
1589
1590.sp
1591.ne 2
1592.na
1593\fBzfs_vdev_aggregation_limit\fR (int)
1594.ad
1595.RS 12n
1596Max vdev I/O aggregation size
1597.sp
1598Default value: \fB131,072\fR.
1599.RE
1600
1601.sp
1602.ne 2
1603.na
1604\fBzfs_vdev_cache_bshift\fR (int)
1605.ad
1606.RS 12n
1607Shift size to inflate reads too
1608.sp
83426735 1609Default value: \fB16\fR (effectively 65536).
29714574
TF
1610.RE
1611
1612.sp
1613.ne 2
1614.na
1615\fBzfs_vdev_cache_max\fR (int)
1616.ad
1617.RS 12n
83426735
D
1618Inflate reads small than this value to meet the \fBzfs_vdev_cache_bshift\fR
1619size.
1620.sp
1621Default value: \fB16384\fR.
29714574
TF
1622.RE
1623
1624.sp
1625.ne 2
1626.na
1627\fBzfs_vdev_cache_size\fR (int)
1628.ad
1629.RS 12n
83426735
D
1630Total size of the per-disk cache in bytes.
1631.sp
1632Currently this feature is disabled as it has been found to not be helpful
1633for performance and in some cases harmful.
29714574
TF
1634.sp
1635Default value: \fB0\fR.
1636.RE
1637
29714574
TF
1638.sp
1639.ne 2
1640.na
9f500936 1641\fBzfs_vdev_mirror_rotating_inc\fR (int)
29714574
TF
1642.ad
1643.RS 12n
9f500936 1644A number by which the balancing algorithm increments the load calculation for
1645the purpose of selecting the least busy mirror member when an I/O immediately
1646follows its predecessor on rotational vdevs for the purpose of making decisions
1647based on load.
29714574 1648.sp
9f500936 1649Default value: \fB0\fR.
1650.RE
1651
1652.sp
1653.ne 2
1654.na
1655\fBzfs_vdev_mirror_rotating_seek_inc\fR (int)
1656.ad
1657.RS 12n
1658A number by which the balancing algorithm increments the load calculation for
1659the purpose of selecting the least busy mirror member when an I/O lacks
1660locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
1661this that are not immediately following the previous I/O are incremented by
1662half.
1663.sp
1664Default value: \fB5\fR.
1665.RE
1666
1667.sp
1668.ne 2
1669.na
1670\fBzfs_vdev_mirror_rotating_seek_offset\fR (int)
1671.ad
1672.RS 12n
1673The maximum distance for the last queued I/O in which the balancing algorithm
1674considers an I/O to have locality.
1675See the section "ZFS I/O SCHEDULER".
1676.sp
1677Default value: \fB1048576\fR.
1678.RE
1679
1680.sp
1681.ne 2
1682.na
1683\fBzfs_vdev_mirror_non_rotating_inc\fR (int)
1684.ad
1685.RS 12n
1686A number by which the balancing algorithm increments the load calculation for
1687the purpose of selecting the least busy mirror member on non-rotational vdevs
1688when I/Os do not immediately follow one another.
1689.sp
1690Default value: \fB0\fR.
1691.RE
1692
1693.sp
1694.ne 2
1695.na
1696\fBzfs_vdev_mirror_non_rotating_seek_inc\fR (int)
1697.ad
1698.RS 12n
1699A number by which the balancing algorithm increments the load calculation for
1700the purpose of selecting the least busy mirror member when an I/O lacks
1701locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
1702this that are not immediately following the previous I/O are incremented by
1703half.
1704.sp
1705Default value: \fB1\fR.
29714574
TF
1706.RE
1707
29714574
TF
1708.sp
1709.ne 2
1710.na
1711\fBzfs_vdev_read_gap_limit\fR (int)
1712.ad
1713.RS 12n
83426735
D
1714Aggregate read I/O operations if the gap on-disk between them is within this
1715threshold.
29714574
TF
1716.sp
1717Default value: \fB32,768\fR.
1718.RE
1719
1720.sp
1721.ne 2
1722.na
1723\fBzfs_vdev_scheduler\fR (charp)
1724.ad
1725.RS 12n
83426735 1726Set the Linux I/O scheduler on whole disk vdevs to this scheduler
29714574
TF
1727.sp
1728Default value: \fBnoop\fR.
1729.RE
1730
29714574
TF
1731.sp
1732.ne 2
1733.na
1734\fBzfs_vdev_write_gap_limit\fR (int)
1735.ad
1736.RS 12n
1737Aggregate write I/O over gap
1738.sp
1739Default value: \fB4,096\fR.
1740.RE
1741
ab9f4b0b
GN
1742.sp
1743.ne 2
1744.na
1745\fBzfs_vdev_raidz_impl\fR (string)
1746.ad
1747.RS 12n
c9187d86 1748Parameter for selecting raidz parity implementation to use.
ab9f4b0b
GN
1749
1750Options marked (always) below may be selected on module load as they are
1751supported on all systems.
1752The remaining options may only be set after the module is loaded, as they
1753are available only if the implementations are compiled in and supported
1754on the running system.
1755
1756Once the module is loaded, the content of
1757/sys/module/zfs/parameters/zfs_vdev_raidz_impl will show available options
1758with the currently selected one enclosed in [].
1759Possible options are:
1760 fastest - (always) implementation selected using built-in benchmark
1761 original - (always) original raidz implementation
1762 scalar - (always) scalar raidz implementation
ae25d222
GN
1763 sse2 - implementation using SSE2 instruction set (64bit x86 only)
1764 ssse3 - implementation using SSSE3 instruction set (64bit x86 only)
ab9f4b0b
GN
1765 avx2 - implementation using AVX2 instruction set (64bit x86 only)
1766.sp
1767Default value: \fBfastest\fR.
1768.RE
1769
29714574
TF
1770.sp
1771.ne 2
1772.na
1773\fBzfs_zevent_cols\fR (int)
1774.ad
1775.RS 12n
83426735 1776When zevents are logged to the console use this as the word wrap width.
29714574
TF
1777.sp
1778Default value: \fB80\fR.
1779.RE
1780
1781.sp
1782.ne 2
1783.na
1784\fBzfs_zevent_console\fR (int)
1785.ad
1786.RS 12n
1787Log events to the console
1788.sp
1789Use \fB1\fR for yes and \fB0\fR for no (default).
1790.RE
1791
1792.sp
1793.ne 2
1794.na
1795\fBzfs_zevent_len_max\fR (int)
1796.ad
1797.RS 12n
83426735
D
1798Max event queue length. A value of 0 will result in a calculated value which
1799increases with the number of CPUs in the system (minimum 64 events). Events
1800in the queue can be viewed with the \fBzpool events\fR command.
29714574
TF
1801.sp
1802Default value: \fB0\fR.
1803.RE
1804
1805.sp
1806.ne 2
1807.na
1808\fBzil_replay_disable\fR (int)
1809.ad
1810.RS 12n
83426735
D
1811Disable intent logging replay. Can be disabled for recovery from corrupted
1812ZIL
29714574
TF
1813.sp
1814Use \fB1\fR for yes and \fB0\fR for no (default).
1815.RE
1816
1817.sp
1818.ne 2
1819.na
1820\fBzil_slog_limit\fR (ulong)
1821.ad
1822.RS 12n
1823Max commit bytes to separate log device
1824.sp
1825Default value: \fB1,048,576\fR.
1826.RE
1827
29714574
TF
1828.sp
1829.ne 2
1830.na
1831\fBzio_delay_max\fR (int)
1832.ad
1833.RS 12n
83426735 1834A zevent will be logged if a ZIO operation takes more than N milliseconds to
ab9f4b0b 1835complete. Note that this is only a logging facility, not a timeout on
83426735 1836operations.
29714574
TF
1837.sp
1838Default value: \fB30,000\fR.
1839.RE
1840
29714574
TF
1841.sp
1842.ne 2
1843.na
1844\fBzio_requeue_io_start_cut_in_line\fR (int)
1845.ad
1846.RS 12n
1847Prioritize requeued I/O
1848.sp
1849Default value: \fB0\fR.
1850.RE
1851
dcb6bed1
D
1852.sp
1853.ne 2
1854.na
1855\fBzio_taskq_batch_pct\fR (uint)
1856.ad
1857.RS 12n
1858Percentage of online CPUs (or CPU cores, etc) which will run a worker thread
1859for IO. These workers are responsible for IO work such as compression and
1860checksum calculations. Fractional number of CPUs will be rounded down.
1861.sp
1862The default value of 75 was chosen to avoid using all CPUs which can result in
1863latency issues and inconsistent application performance, especially when high
1864compression is enabled.
1865.sp
1866Default value: \fB75\fR.
1867.RE
1868
29714574
TF
1869.sp
1870.ne 2
1871.na
1872\fBzvol_inhibit_dev\fR (uint)
1873.ad
1874.RS 12n
83426735
D
1875Do not create zvol device nodes. This may slightly improve startup time on
1876systems with a very large number of zvols.
29714574
TF
1877.sp
1878Use \fB1\fR for yes and \fB0\fR for no (default).
1879.RE
1880
1881.sp
1882.ne 2
1883.na
1884\fBzvol_major\fR (uint)
1885.ad
1886.RS 12n
83426735 1887Major number for zvol block devices
29714574
TF
1888.sp
1889Default value: \fB230\fR.
1890.RE
1891
1892.sp
1893.ne 2
1894.na
1895\fBzvol_max_discard_blocks\fR (ulong)
1896.ad
1897.RS 12n
83426735
D
1898Discard (aka TRIM) operations done on zvols will be done in batches of this
1899many blocks, where block size is determined by the \fBvolblocksize\fR property
1900of a zvol.
29714574
TF
1901.sp
1902Default value: \fB16,384\fR.
1903.RE
1904
9965059a
BB
1905.sp
1906.ne 2
1907.na
1908\fBzvol_prefetch_bytes\fR (uint)
1909.ad
1910.RS 12n
1911When adding a zvol to the system prefetch \fBzvol_prefetch_bytes\fR
1912from the start and end of the volume. Prefetching these regions
1913of the volume is desirable because they are likely to be accessed
1914immediately by \fBblkid(8)\fR or by the kernel scanning for a partition
1915table.
1916.sp
1917Default value: \fB131,072\fR.
1918.RE
1919
e8b96c60
MA
1920.SH ZFS I/O SCHEDULER
1921ZFS issues I/O operations to leaf vdevs to satisfy and complete I/Os.
1922The I/O scheduler determines when and in what order those operations are
1923issued. The I/O scheduler divides operations into five I/O classes
1924prioritized in the following order: sync read, sync write, async read,
1925async write, and scrub/resilver. Each queue defines the minimum and
1926maximum number of concurrent operations that may be issued to the
1927device. In addition, the device has an aggregate maximum,
1928\fBzfs_vdev_max_active\fR. Note that the sum of the per-queue minimums
1929must not exceed the aggregate maximum. If the sum of the per-queue
1930maximums exceeds the aggregate maximum, then the number of active I/Os
1931may reach \fBzfs_vdev_max_active\fR, in which case no further I/Os will
1932be issued regardless of whether all per-queue minimums have been met.
1933.sp
1934For many physical devices, throughput increases with the number of
1935concurrent operations, but latency typically suffers. Further, physical
1936devices typically have a limit at which more concurrent operations have no
1937effect on throughput or can actually cause it to decrease.
1938.sp
1939The scheduler selects the next operation to issue by first looking for an
1940I/O class whose minimum has not been satisfied. Once all are satisfied and
1941the aggregate maximum has not been hit, the scheduler looks for classes
1942whose maximum has not been satisfied. Iteration through the I/O classes is
1943done in the order specified above. No further operations are issued if the
1944aggregate maximum number of concurrent operations has been hit or if there
1945are no operations queued for an I/O class that has not hit its maximum.
1946Every time an I/O is queued or an operation completes, the I/O scheduler
1947looks for new operations to issue.
1948.sp
1949In general, smaller max_active's will lead to lower latency of synchronous
1950operations. Larger max_active's may lead to higher overall throughput,
1951depending on underlying storage.
1952.sp
1953The ratio of the queues' max_actives determines the balance of performance
1954between reads, writes, and scrubs. E.g., increasing
1955\fBzfs_vdev_scrub_max_active\fR will cause the scrub or resilver to complete
1956more quickly, but reads and writes to have higher latency and lower throughput.
1957.sp
1958All I/O classes have a fixed maximum number of outstanding operations
1959except for the async write class. Asynchronous writes represent the data
1960that is committed to stable storage during the syncing stage for
1961transaction groups. Transaction groups enter the syncing state
1962periodically so the number of queued async writes will quickly burst up
1963and then bleed down to zero. Rather than servicing them as quickly as
1964possible, the I/O scheduler changes the maximum number of active async
1965write I/Os according to the amount of dirty data in the pool. Since
1966both throughput and latency typically increase with the number of
1967concurrent operations issued to physical devices, reducing the
1968burstiness in the number of concurrent operations also stabilizes the
1969response time of operations from other -- and in particular synchronous
1970-- queues. In broad strokes, the I/O scheduler will issue more
1971concurrent operations from the async write queue as there's more dirty
1972data in the pool.
1973.sp
1974Async Writes
1975.sp
1976The number of concurrent operations issued for the async write I/O class
1977follows a piece-wise linear function defined by a few adjustable points.
1978.nf
1979
1980 | o---------| <-- zfs_vdev_async_write_max_active
1981 ^ | /^ |
1982 | | / | |
1983active | / | |
1984 I/O | / | |
1985count | / | |
1986 | / | |
1987 |-------o | | <-- zfs_vdev_async_write_min_active
1988 0|_______^______|_________|
1989 0% | | 100% of zfs_dirty_data_max
1990 | |
1991 | `-- zfs_vdev_async_write_active_max_dirty_percent
1992 `--------- zfs_vdev_async_write_active_min_dirty_percent
1993
1994.fi
1995Until the amount of dirty data exceeds a minimum percentage of the dirty
1996data allowed in the pool, the I/O scheduler will limit the number of
1997concurrent operations to the minimum. As that threshold is crossed, the
1998number of concurrent operations issued increases linearly to the maximum at
1999the specified maximum percentage of the dirty data allowed in the pool.
2000.sp
2001Ideally, the amount of dirty data on a busy pool will stay in the sloped
2002part of the function between \fBzfs_vdev_async_write_active_min_dirty_percent\fR
2003and \fBzfs_vdev_async_write_active_max_dirty_percent\fR. If it exceeds the
2004maximum percentage, this indicates that the rate of incoming data is
2005greater than the rate that the backend storage can handle. In this case, we
2006must further throttle incoming writes, as described in the next section.
2007
2008.SH ZFS TRANSACTION DELAY
2009We delay transactions when we've determined that the backend storage
2010isn't able to accommodate the rate of incoming writes.
2011.sp
2012If there is already a transaction waiting, we delay relative to when
2013that transaction will finish waiting. This way the calculated delay time
2014is independent of the number of threads concurrently executing
2015transactions.
2016.sp
2017If we are the only waiter, wait relative to when the transaction
2018started, rather than the current time. This credits the transaction for
2019"time already served", e.g. reading indirect blocks.
2020.sp
2021The minimum time for a transaction to take is calculated as:
2022.nf
2023 min_time = zfs_delay_scale * (dirty - min) / (max - dirty)
2024 min_time is then capped at 100 milliseconds.
2025.fi
2026.sp
2027The delay has two degrees of freedom that can be adjusted via tunables. The
2028percentage of dirty data at which we start to delay is defined by
2029\fBzfs_delay_min_dirty_percent\fR. This should typically be at or above
2030\fBzfs_vdev_async_write_active_max_dirty_percent\fR so that we only start to
2031delay after writing at full speed has failed to keep up with the incoming write
2032rate. The scale of the curve is defined by \fBzfs_delay_scale\fR. Roughly speaking,
2033this variable determines the amount of delay at the midpoint of the curve.
2034.sp
2035.nf
2036delay
2037 10ms +-------------------------------------------------------------*+
2038 | *|
2039 9ms + *+
2040 | *|
2041 8ms + *+
2042 | * |
2043 7ms + * +
2044 | * |
2045 6ms + * +
2046 | * |
2047 5ms + * +
2048 | * |
2049 4ms + * +
2050 | * |
2051 3ms + * +
2052 | * |
2053 2ms + (midpoint) * +
2054 | | ** |
2055 1ms + v *** +
2056 | zfs_delay_scale ----------> ******** |
2057 0 +-------------------------------------*********----------------+
2058 0% <- zfs_dirty_data_max -> 100%
2059.fi
2060.sp
2061Note that since the delay is added to the outstanding time remaining on the
2062most recent transaction, the delay is effectively the inverse of IOPS.
2063Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
2064was chosen such that small changes in the amount of accumulated dirty data
2065in the first 3/4 of the curve yield relatively small differences in the
2066amount of delay.
2067.sp
2068The effects can be easier to understand when the amount of delay is
2069represented on a log scale:
2070.sp
2071.nf
2072delay
2073100ms +-------------------------------------------------------------++
2074 + +
2075 | |
2076 + *+
2077 10ms + *+
2078 + ** +
2079 | (midpoint) ** |
2080 + | ** +
2081 1ms + v **** +
2082 + zfs_delay_scale ----------> ***** +
2083 | **** |
2084 + **** +
2085100us + ** +
2086 + * +
2087 | * |
2088 + * +
2089 10us + * +
2090 + +
2091 | |
2092 + +
2093 +--------------------------------------------------------------+
2094 0% <- zfs_dirty_data_max -> 100%
2095.fi
2096.sp
2097Note here that only as the amount of dirty data approaches its limit does
2098the delay start to increase rapidly. The goal of a properly tuned system
2099should be to keep the amount of dirty data out of that range by first
2100ensuring that the appropriate limits are set for the I/O scheduler to reach
2101optimal throughput on the backend storage, and then by changing the value
2102of \fBzfs_delay_scale\fR to increase the steepness of the curve.