]> git.proxmox.com Git - mirror_zfs.git/blame - man/man5/zfs-module-parameters.5
OpenZFS 7745 - print error if lzc_* is called before libzfs_core_init
[mirror_zfs.git] / man / man5 / zfs-module-parameters.5
CommitLineData
29714574
TF
1'\" te
2.\" Copyright (c) 2013 by Turbo Fredriksson <turbo@bayour.com>. All rights reserved.
3.\" The contents of this file are subject to the terms of the Common Development
4.\" and Distribution License (the "License"). You may not use this file except
5.\" in compliance with the License. You can obtain a copy of the license at
6.\" usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing.
7.\"
8.\" See the License for the specific language governing permissions and
9.\" limitations under the License. When distributing Covered Code, include this
10.\" CDDL HEADER in each file and include the License file at
11.\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this
12.\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your
13.\" own identifying information:
14.\" Portions Copyright [yyyy] [name of copyright owner]
15.TH ZFS-MODULE-PARAMETERS 5 "Nov 16, 2013"
16.SH NAME
17zfs\-module\-parameters \- ZFS module parameters
18.SH DESCRIPTION
19.sp
20.LP
21Description of the different parameters to the ZFS module.
22
23.SS "Module parameters"
24.sp
25.LP
26
6d836e6f
RE
27.sp
28.ne 2
29.na
30\fBignore_hole_birth\fR (int)
31.ad
32.RS 12n
33When set, the hole_birth optimization will not be used, and all holes will
34always be sent on zfs send. Useful if you suspect your datasets are affected
35by a bug in hole_birth.
36.sp
9ea9e0b9 37Use \fB1\fR for on (default) and \fB0\fR for off.
6d836e6f
RE
38.RE
39
29714574
TF
40.sp
41.ne 2
42.na
43\fBl2arc_feed_again\fR (int)
44.ad
45.RS 12n
83426735
D
46Turbo L2ARC warm-up. When the L2ARC is cold the fill interval will be set as
47fast as possible.
29714574
TF
48.sp
49Use \fB1\fR for yes (default) and \fB0\fR to disable.
50.RE
51
52.sp
53.ne 2
54.na
55\fBl2arc_feed_min_ms\fR (ulong)
56.ad
57.RS 12n
83426735
D
58Min feed interval in milliseconds. Requires \fBl2arc_feed_again=1\fR and only
59applicable in related situations.
29714574
TF
60.sp
61Default value: \fB200\fR.
62.RE
63
64.sp
65.ne 2
66.na
67\fBl2arc_feed_secs\fR (ulong)
68.ad
69.RS 12n
70Seconds between L2ARC writing
71.sp
72Default value: \fB1\fR.
73.RE
74
75.sp
76.ne 2
77.na
78\fBl2arc_headroom\fR (ulong)
79.ad
80.RS 12n
83426735
D
81How far through the ARC lists to search for L2ARC cacheable content, expressed
82as a multiplier of \fBl2arc_write_max\fR
29714574
TF
83.sp
84Default value: \fB2\fR.
85.RE
86
87.sp
88.ne 2
89.na
90\fBl2arc_headroom_boost\fR (ulong)
91.ad
92.RS 12n
83426735
D
93Scales \fBl2arc_headroom\fR by this percentage when L2ARC contents are being
94successfully compressed before writing. A value of 100 disables this feature.
29714574
TF
95.sp
96Default value: \fB200\fR.
97.RE
98
99.sp
100.ne 2
101.na
102\fBl2arc_nocompress\fR (int)
103.ad
104.RS 12n
105Skip compressing L2ARC buffers
106.sp
107Use \fB1\fR for yes and \fB0\fR for no (default).
108.RE
109
110.sp
111.ne 2
112.na
113\fBl2arc_noprefetch\fR (int)
114.ad
115.RS 12n
83426735
D
116Do not write buffers to L2ARC if they were prefetched but not used by
117applications
29714574
TF
118.sp
119Use \fB1\fR for yes (default) and \fB0\fR to disable.
120.RE
121
122.sp
123.ne 2
124.na
125\fBl2arc_norw\fR (int)
126.ad
127.RS 12n
128No reads during writes
129.sp
130Use \fB1\fR for yes and \fB0\fR for no (default).
131.RE
132
133.sp
134.ne 2
135.na
136\fBl2arc_write_boost\fR (ulong)
137.ad
138.RS 12n
83426735
D
139Cold L2ARC devices will have \fBl2arc_write_nax\fR increased by this amount
140while they remain cold.
29714574
TF
141.sp
142Default value: \fB8,388,608\fR.
143.RE
144
145.sp
146.ne 2
147.na
148\fBl2arc_write_max\fR (ulong)
149.ad
150.RS 12n
151Max write bytes per interval
152.sp
153Default value: \fB8,388,608\fR.
154.RE
155
99b14de4
ED
156.sp
157.ne 2
158.na
159\fBmetaslab_aliquot\fR (ulong)
160.ad
161.RS 12n
162Metaslab granularity, in bytes. This is roughly similar to what would be
163referred to as the "stripe size" in traditional RAID arrays. In normal
164operation, ZFS will try to write this amount of data to a top-level vdev
165before moving on to the next one.
166.sp
167Default value: \fB524,288\fR.
168.RE
169
f3a7f661
GW
170.sp
171.ne 2
172.na
173\fBmetaslab_bias_enabled\fR (int)
174.ad
175.RS 12n
176Enable metaslab group biasing based on its vdev's over- or under-utilization
177relative to the pool.
178.sp
179Use \fB1\fR for yes (default) and \fB0\fR for no.
180.RE
181
4e21fd06
DB
182.sp
183.ne 2
184.na
185\fBzfs_metaslab_segment_weight_enabled\fR (int)
186.ad
187.RS 12n
188Enable/disable segment-based metaslab selection.
189.sp
190Use \fB1\fR for yes (default) and \fB0\fR for no.
191.RE
192
193.sp
194.ne 2
195.na
196\fBzfs_metaslab_switch_threshold\fR (int)
197.ad
198.RS 12n
199When using segment-based metaslab selection, continue allocating
200from the active metaslab until \fBlzfs_metaslab_switch_threshold\fR
201worth of buckets have been exhausted.
202.sp
203Default value: \fB2\fR.
204.RE
205
29714574
TF
206.sp
207.ne 2
208.na
aa7d06a9 209\fBmetaslab_debug_load\fR (int)
29714574
TF
210.ad
211.RS 12n
aa7d06a9
GW
212Load all metaslabs during pool import.
213.sp
214Use \fB1\fR for yes and \fB0\fR for no (default).
215.RE
216
217.sp
218.ne 2
219.na
220\fBmetaslab_debug_unload\fR (int)
221.ad
222.RS 12n
223Prevent metaslabs from being unloaded.
29714574
TF
224.sp
225Use \fB1\fR for yes and \fB0\fR for no (default).
226.RE
227
f3a7f661
GW
228.sp
229.ne 2
230.na
231\fBmetaslab_fragmentation_factor_enabled\fR (int)
232.ad
233.RS 12n
234Enable use of the fragmentation metric in computing metaslab weights.
235.sp
236Use \fB1\fR for yes (default) and \fB0\fR for no.
237.RE
238
b8bcca18
MA
239.sp
240.ne 2
241.na
242\fBmetaslabs_per_vdev\fR (int)
243.ad
244.RS 12n
245When a vdev is added, it will be divided into approximately (but no more than) this number of metaslabs.
246.sp
247Default value: \fB200\fR.
248.RE
249
f3a7f661
GW
250.sp
251.ne 2
252.na
253\fBmetaslab_preload_enabled\fR (int)
254.ad
255.RS 12n
256Enable metaslab group preloading.
257.sp
258Use \fB1\fR for yes (default) and \fB0\fR for no.
259.RE
260
261.sp
262.ne 2
263.na
264\fBmetaslab_lba_weighting_enabled\fR (int)
265.ad
266.RS 12n
267Give more weight to metaslabs with lower LBAs, assuming they have
268greater bandwidth as is typically the case on a modern constant
269angular velocity disk drive.
270.sp
271Use \fB1\fR for yes (default) and \fB0\fR for no.
272.RE
273
29714574
TF
274.sp
275.ne 2
276.na
277\fBspa_config_path\fR (charp)
278.ad
279.RS 12n
280SPA config file
281.sp
282Default value: \fB/etc/zfs/zpool.cache\fR.
283.RE
284
e8b96c60
MA
285.sp
286.ne 2
287.na
288\fBspa_asize_inflation\fR (int)
289.ad
290.RS 12n
291Multiplication factor used to estimate actual disk consumption from the
292size of data being written. The default value is a worst case estimate,
293but lower values may be valid for a given pool depending on its
294configuration. Pool administrators who understand the factors involved
295may wish to specify a more realistic inflation factor, particularly if
296they operate close to quota or capacity limits.
297.sp
83426735 298Default value: \fB24\fR.
e8b96c60
MA
299.RE
300
dea377c0
MA
301.sp
302.ne 2
303.na
304\fBspa_load_verify_data\fR (int)
305.ad
306.RS 12n
307Whether to traverse data blocks during an "extreme rewind" (\fB-X\fR)
308import. Use 0 to disable and 1 to enable.
309
310An extreme rewind import normally performs a full traversal of all
311blocks in the pool for verification. If this parameter is set to 0,
312the traversal skips non-metadata blocks. It can be toggled once the
313import has started to stop or start the traversal of non-metadata blocks.
314.sp
83426735 315Default value: \fB1\fR.
dea377c0
MA
316.RE
317
318.sp
319.ne 2
320.na
321\fBspa_load_verify_metadata\fR (int)
322.ad
323.RS 12n
324Whether to traverse blocks during an "extreme rewind" (\fB-X\fR)
325pool import. Use 0 to disable and 1 to enable.
326
327An extreme rewind import normally performs a full traversal of all
1c012083 328blocks in the pool for verification. If this parameter is set to 0,
dea377c0
MA
329the traversal is not performed. It can be toggled once the import has
330started to stop or start the traversal.
331.sp
83426735 332Default value: \fB1\fR.
dea377c0
MA
333.RE
334
335.sp
336.ne 2
337.na
338\fBspa_load_verify_maxinflight\fR (int)
339.ad
340.RS 12n
341Maximum concurrent I/Os during the traversal performed during an "extreme
342rewind" (\fB-X\fR) pool import.
343.sp
83426735 344Default value: \fB10000\fR.
dea377c0
MA
345.RE
346
6cde6435
BB
347.sp
348.ne 2
349.na
350\fBspa_slop_shift\fR (int)
351.ad
352.RS 12n
353Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space
354in the pool to be consumed. This ensures that we don't run the pool
355completely out of space, due to unaccounted changes (e.g. to the MOS).
356It also limits the worst-case time to allocate space. If we have
357less than this amount of free space, most ZPL operations (e.g. write,
358create) will return ENOSPC.
359.sp
83426735 360Default value: \fB5\fR.
6cde6435
BB
361.RE
362
29714574
TF
363.sp
364.ne 2
365.na
366\fBzfetch_array_rd_sz\fR (ulong)
367.ad
368.RS 12n
27b293be 369If prefetching is enabled, disable prefetching for reads larger than this size.
29714574
TF
370.sp
371Default value: \fB1,048,576\fR.
372.RE
373
374.sp
375.ne 2
376.na
7f60329a 377\fBzfetch_max_distance\fR (uint)
29714574
TF
378.ad
379.RS 12n
7f60329a 380Max bytes to prefetch per stream (default 8MB).
29714574 381.sp
7f60329a 382Default value: \fB8,388,608\fR.
29714574
TF
383.RE
384
385.sp
386.ne 2
387.na
388\fBzfetch_max_streams\fR (uint)
389.ad
390.RS 12n
27b293be 391Max number of streams per zfetch (prefetch streams per file).
29714574
TF
392.sp
393Default value: \fB8\fR.
394.RE
395
396.sp
397.ne 2
398.na
399\fBzfetch_min_sec_reap\fR (uint)
400.ad
401.RS 12n
27b293be 402Min time before an active prefetch stream can be reclaimed
29714574
TF
403.sp
404Default value: \fB2\fR.
405.RE
406
25458cbe
TC
407.sp
408.ne 2
409.na
410\fBzfs_arc_dnode_limit\fR (ulong)
411.ad
412.RS 12n
413When the number of bytes consumed by dnodes in the ARC exceeds this number of
9907cc1c
G
414bytes, try to unpin some of it in response to demand for non-metadata. This
415value acts as a floor to the amount of dnode metadata, and defaults to 0 which
416indicates that a percent which is based on \fBzfs_arc_dnode_limit_percent\fR of
417the ARC meta buffers that may be used for dnodes.
25458cbe
TC
418
419See also \fBzfs_arc_meta_prune\fR which serves a similar purpose but is used
420when the amount of metadata in the ARC exceeds \fBzfs_arc_meta_limit\fR rather
421than in response to overall demand for non-metadata.
422
423.sp
9907cc1c
G
424Default value: \fB0\fR.
425.RE
426
427.sp
428.ne 2
429.na
430\fBzfs_arc_dnode_limit_percent\fR (ulong)
431.ad
432.RS 12n
433Percentage that can be consumed by dnodes of ARC meta buffers.
434.sp
435See also \fBzfs_arc_dnode_limit\fR which serves a similar purpose but has a
436higher priority if set to nonzero value.
437.sp
438Default value: \fB10\fR.
25458cbe
TC
439.RE
440
441.sp
442.ne 2
443.na
444\fBzfs_arc_dnode_reduce_percent\fR (ulong)
445.ad
446.RS 12n
447Percentage of ARC dnodes to try to scan in response to demand for non-metadata
6146e17e 448when the number of bytes consumed by dnodes exceeds \fBzfs_arc_dnode_limit\fR.
25458cbe
TC
449
450.sp
451Default value: \fB10% of the number of dnodes in the ARC\fR.
452.RE
453
49ddb315
MA
454.sp
455.ne 2
456.na
457\fBzfs_arc_average_blocksize\fR (int)
458.ad
459.RS 12n
460The ARC's buffer hash table is sized based on the assumption of an average
461block size of \fBzfs_arc_average_blocksize\fR (default 8K). This works out
462to roughly 1MB of hash table per 1GB of physical memory with 8-byte pointers.
463For configurations with a known larger average block size this value can be
464increased to reduce the memory footprint.
465
466.sp
467Default value: \fB8192\fR.
468.RE
469
ca0bf58d
PS
470.sp
471.ne 2
472.na
473\fBzfs_arc_evict_batch_limit\fR (int)
474.ad
475.RS 12n
8f343973 476Number ARC headers to evict per sub-list before proceeding to another sub-list.
ca0bf58d
PS
477This batch-style operation prevents entire sub-lists from being evicted at once
478but comes at a cost of additional unlocking and locking.
479.sp
480Default value: \fB10\fR.
481.RE
482
29714574
TF
483.sp
484.ne 2
485.na
486\fBzfs_arc_grow_retry\fR (int)
487.ad
488.RS 12n
83426735
D
489After a memory pressure event the ARC will wait this many seconds before trying
490to resume growth
29714574
TF
491.sp
492Default value: \fB5\fR.
493.RE
494
495.sp
496.ne 2
497.na
7e8bddd0 498\fBzfs_arc_lotsfree_percent\fR (int)
29714574
TF
499.ad
500.RS 12n
7e8bddd0
BB
501Throttle I/O when free system memory drops below this percentage of total
502system memory. Setting this value to 0 will disable the throttle.
29714574 503.sp
7e8bddd0 504Default value: \fB10\fR.
29714574
TF
505.RE
506
507.sp
508.ne 2
509.na
7e8bddd0 510\fBzfs_arc_max\fR (ulong)
29714574
TF
511.ad
512.RS 12n
83426735
D
513Max arc size of ARC in bytes. If set to 0 then it will consume 1/2 of system
514RAM. This value must be at least 67108864 (64 megabytes).
515.sp
516This value can be changed dynamically with some caveats. It cannot be set back
517to 0 while running and reducing it below the current ARC size will not cause
518the ARC to shrink without memory pressure to induce shrinking.
29714574 519.sp
7e8bddd0 520Default value: \fB0\fR.
29714574
TF
521.RE
522
523.sp
524.ne 2
525.na
526\fBzfs_arc_meta_limit\fR (ulong)
527.ad
528.RS 12n
2cbb06b5
BB
529The maximum allowed size in bytes that meta data buffers are allowed to
530consume in the ARC. When this limit is reached meta data buffers will
531be reclaimed even if the overall arc_c_max has not been reached. This
9907cc1c
G
532value defaults to 0 which indicates that a percent which is based on
533\fBzfs_arc_meta_limit_percent\fR of the ARC may be used for meta data.
29714574 534.sp
83426735 535This value my be changed dynamically except that it cannot be set back to 0
9907cc1c 536for a specific percent of the ARC; it must be set to an explicit value.
83426735 537.sp
29714574
TF
538Default value: \fB0\fR.
539.RE
540
9907cc1c
G
541.sp
542.ne 2
543.na
544\fBzfs_arc_meta_limit_percent\fR (ulong)
545.ad
546.RS 12n
547Percentage of ARC buffers that can be used for meta data.
548
549See also \fBzfs_arc_meta_limit\fR which serves a similar purpose but has a
550higher priority if set to nonzero value.
551
552.sp
553Default value: \fB75\fR.
554.RE
555
ca0bf58d
PS
556.sp
557.ne 2
558.na
559\fBzfs_arc_meta_min\fR (ulong)
560.ad
561.RS 12n
562The minimum allowed size in bytes that meta data buffers may consume in
563the ARC. This value defaults to 0 which disables a floor on the amount
564of the ARC devoted meta data.
565.sp
566Default value: \fB0\fR.
567.RE
568
29714574
TF
569.sp
570.ne 2
571.na
572\fBzfs_arc_meta_prune\fR (int)
573.ad
574.RS 12n
2cbb06b5
BB
575The number of dentries and inodes to be scanned looking for entries
576which can be dropped. This may be required when the ARC reaches the
577\fBzfs_arc_meta_limit\fR because dentries and inodes can pin buffers
578in the ARC. Increasing this value will cause to dentry and inode caches
579to be pruned more aggressively. Setting this value to 0 will disable
580pruning the inode and dentry caches.
29714574 581.sp
2cbb06b5 582Default value: \fB10,000\fR.
29714574
TF
583.RE
584
bc888666
BB
585.sp
586.ne 2
587.na
588\fBzfs_arc_meta_adjust_restarts\fR (ulong)
589.ad
590.RS 12n
591The number of restart passes to make while scanning the ARC attempting
592the free buffers in order to stay below the \fBzfs_arc_meta_limit\fR.
593This value should not need to be tuned but is available to facilitate
594performance analysis.
595.sp
596Default value: \fB4096\fR.
597.RE
598
29714574
TF
599.sp
600.ne 2
601.na
602\fBzfs_arc_min\fR (ulong)
603.ad
604.RS 12n
605Min arc size
606.sp
607Default value: \fB100\fR.
608.RE
609
610.sp
611.ne 2
612.na
613\fBzfs_arc_min_prefetch_lifespan\fR (int)
614.ad
615.RS 12n
83426735
D
616Minimum time prefetched blocks are locked in the ARC, specified in jiffies.
617A value of 0 will default to 1 second.
29714574 618.sp
83426735 619Default value: \fB0\fR.
29714574
TF
620.RE
621
ca0bf58d
PS
622.sp
623.ne 2
624.na
625\fBzfs_arc_num_sublists_per_state\fR (int)
626.ad
627.RS 12n
628To allow more fine-grained locking, each ARC state contains a series
629of lists for both data and meta data objects. Locking is performed at
630the level of these "sub-lists". This parameters controls the number of
631sub-lists per ARC state.
632.sp
6146e17e 633Default value: \fB1\fR or the number of online CPUs, whichever is greater
ca0bf58d
PS
634.RE
635
636.sp
637.ne 2
638.na
639\fBzfs_arc_overflow_shift\fR (int)
640.ad
641.RS 12n
642The ARC size is considered to be overflowing if it exceeds the current
643ARC target size (arc_c) by a threshold determined by this parameter.
644The threshold is calculated as a fraction of arc_c using the formula
645"arc_c >> \fBzfs_arc_overflow_shift\fR".
646
647The default value of 8 causes the ARC to be considered to be overflowing
648if it exceeds the target size by 1/256th (0.3%) of the target size.
649
650When the ARC is overflowing, new buffer allocations are stalled until
651the reclaim thread catches up and the overflow condition no longer exists.
652.sp
653Default value: \fB8\fR.
654.RE
655
728d6ae9
BB
656.sp
657.ne 2
658.na
659
660\fBzfs_arc_p_min_shift\fR (int)
661.ad
662.RS 12n
663arc_c shift to calc min/max arc_p
664.sp
665Default value: \fB4\fR.
666.RE
667
89c8cac4
PS
668.sp
669.ne 2
670.na
671\fBzfs_arc_p_aggressive_disable\fR (int)
672.ad
673.RS 12n
674Disable aggressive arc_p growth
675.sp
676Use \fB1\fR for yes (default) and \fB0\fR to disable.
677.RE
678
62422785
PS
679.sp
680.ne 2
681.na
682\fBzfs_arc_p_dampener_disable\fR (int)
683.ad
684.RS 12n
685Disable arc_p adapt dampener
686.sp
687Use \fB1\fR for yes (default) and \fB0\fR to disable.
688.RE
689
29714574
TF
690.sp
691.ne 2
692.na
693\fBzfs_arc_shrink_shift\fR (int)
694.ad
695.RS 12n
696log2(fraction of arc to reclaim)
697.sp
698Default value: \fB5\fR.
699.RE
700
11f552fa
BB
701.sp
702.ne 2
703.na
704\fBzfs_arc_sys_free\fR (ulong)
705.ad
706.RS 12n
707The target number of bytes the ARC should leave as free memory on the system.
708Defaults to the larger of 1/64 of physical memory or 512K. Setting this
709option to a non-zero value will override the default.
710.sp
711Default value: \fB0\fR.
712.RE
713
29714574
TF
714.sp
715.ne 2
716.na
717\fBzfs_autoimport_disable\fR (int)
718.ad
719.RS 12n
27b293be 720Disable pool import at module load by ignoring the cache file (typically \fB/etc/zfs/zpool.cache\fR).
29714574 721.sp
70081096 722Use \fB1\fR for yes (default) and \fB0\fR for no.
29714574
TF
723.RE
724
3b36f831
BB
725.sp
726.ne 2
727.na
728\fBzfs_dbgmsg_enable\fR (int)
729.ad
730.RS 12n
731Internally ZFS keeps a small log to facilitate debugging. By default the log
732is disabled, to enable it set this option to 1. The contents of the log can
733be accessed by reading the /proc/spl/kstat/zfs/dbgmsg file. Writing 0 to
734this proc file clears the log.
735.sp
736Default value: \fB0\fR.
737.RE
738
739.sp
740.ne 2
741.na
742\fBzfs_dbgmsg_maxsize\fR (int)
743.ad
744.RS 12n
745The maximum size in bytes of the internal ZFS debug log.
746.sp
747Default value: \fB4M\fR.
748.RE
749
29714574
TF
750.sp
751.ne 2
752.na
753\fBzfs_dbuf_state_index\fR (int)
754.ad
755.RS 12n
83426735
D
756This feature is currently unused. It is normally used for controlling what
757reporting is available under /proc/spl/kstat/zfs.
29714574
TF
758.sp
759Default value: \fB0\fR.
760.RE
761
762.sp
763.ne 2
764.na
765\fBzfs_deadman_enabled\fR (int)
766.ad
767.RS 12n
83426735 768Enable deadman timer. See description below.
29714574
TF
769.sp
770Use \fB1\fR for yes (default) and \fB0\fR to disable.
771.RE
772
773.sp
774.ne 2
775.na
e8b96c60 776\fBzfs_deadman_synctime_ms\fR (ulong)
29714574
TF
777.ad
778.RS 12n
e8b96c60
MA
779Expiration time in milliseconds. This value has two meanings. First it is
780used to determine when the spa_deadman() logic should fire. By default the
781spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
782Secondly, the value determines if an I/O is considered "hung". Any I/O that
783has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
784in a zevent being logged.
29714574 785.sp
e8b96c60 786Default value: \fB1,000,000\fR.
29714574
TF
787.RE
788
789.sp
790.ne 2
791.na
792\fBzfs_dedup_prefetch\fR (int)
793.ad
794.RS 12n
795Enable prefetching dedup-ed blks
796.sp
0dfc7324 797Use \fB1\fR for yes and \fB0\fR to disable (default).
29714574
TF
798.RE
799
e8b96c60
MA
800.sp
801.ne 2
802.na
803\fBzfs_delay_min_dirty_percent\fR (int)
804.ad
805.RS 12n
806Start to delay each transaction once there is this amount of dirty data,
807expressed as a percentage of \fBzfs_dirty_data_max\fR.
808This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
809See the section "ZFS TRANSACTION DELAY".
810.sp
811Default value: \fB60\fR.
812.RE
813
814.sp
815.ne 2
816.na
817\fBzfs_delay_scale\fR (int)
818.ad
819.RS 12n
820This controls how quickly the transaction delay approaches infinity.
821Larger values cause longer delays for a given amount of dirty data.
822.sp
823For the smoothest delay, this value should be about 1 billion divided
824by the maximum number of operations per second. This will smoothly
825handle between 10x and 1/10th this number.
826.sp
827See the section "ZFS TRANSACTION DELAY".
828.sp
829Note: \fBzfs_delay_scale\fR * \fBzfs_dirty_data_max\fR must be < 2^64.
830.sp
831Default value: \fB500,000\fR.
832.RE
833
a966c564
K
834.sp
835.ne 2
836.na
837\fBzfs_delete_blocks\fR (ulong)
838.ad
839.RS 12n
840This is the used to define a large file for the purposes of delete. Files
841containing more than \fBzfs_delete_blocks\fR will be deleted asynchronously
842while smaller files are deleted synchronously. Decreasing this value will
843reduce the time spent in an unlink(2) system call at the expense of a longer
844delay before the freed space is available.
845.sp
846Default value: \fB20,480\fR.
847.RE
848
e8b96c60
MA
849.sp
850.ne 2
851.na
852\fBzfs_dirty_data_max\fR (int)
853.ad
854.RS 12n
855Determines the dirty space limit in bytes. Once this limit is exceeded, new
856writes are halted until space frees up. This parameter takes precedence
857over \fBzfs_dirty_data_max_percent\fR.
858See the section "ZFS TRANSACTION DELAY".
859.sp
860Default value: 10 percent of all memory, capped at \fBzfs_dirty_data_max_max\fR.
861.RE
862
863.sp
864.ne 2
865.na
866\fBzfs_dirty_data_max_max\fR (int)
867.ad
868.RS 12n
869Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed in bytes.
870This limit is only enforced at module load time, and will be ignored if
871\fBzfs_dirty_data_max\fR is later changed. This parameter takes
872precedence over \fBzfs_dirty_data_max_max_percent\fR. See the section
873"ZFS TRANSACTION DELAY".
874.sp
875Default value: 25% of physical RAM.
876.RE
877
878.sp
879.ne 2
880.na
881\fBzfs_dirty_data_max_max_percent\fR (int)
882.ad
883.RS 12n
884Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed as a
885percentage of physical RAM. This limit is only enforced at module load
886time, and will be ignored if \fBzfs_dirty_data_max\fR is later changed.
887The parameter \fBzfs_dirty_data_max_max\fR takes precedence over this
888one. See the section "ZFS TRANSACTION DELAY".
889.sp
9ef3906a 890Default value: \fB25\fR.
e8b96c60
MA
891.RE
892
893.sp
894.ne 2
895.na
896\fBzfs_dirty_data_max_percent\fR (int)
897.ad
898.RS 12n
899Determines the dirty space limit, expressed as a percentage of all
900memory. Once this limit is exceeded, new writes are halted until space frees
901up. The parameter \fBzfs_dirty_data_max\fR takes precedence over this
902one. See the section "ZFS TRANSACTION DELAY".
903.sp
904Default value: 10%, subject to \fBzfs_dirty_data_max_max\fR.
905.RE
906
907.sp
908.ne 2
909.na
910\fBzfs_dirty_data_sync\fR (int)
911.ad
912.RS 12n
913Start syncing out a transaction group if there is at least this much dirty data.
914.sp
915Default value: \fB67,108,864\fR.
916.RE
917
1eeb4562
JX
918.sp
919.ne 2
920.na
921\fBzfs_fletcher_4_impl\fR (string)
922.ad
923.RS 12n
924Select a fletcher 4 implementation.
925.sp
35a76a03 926Supported selectors are: \fBfastest\fR, \fBscalar\fR, \fBsse2\fR, \fBssse3\fR,
24cdeaf1 927\fBavx2\fR, \fBavx512f\fR, and \fBaarch64_neon\fR.
70b258fc
GN
928All of the selectors except \fBfastest\fR and \fBscalar\fR require instruction
929set extensions to be available and will only appear if ZFS detects that they are
930present at runtime. If multiple implementations of fletcher 4 are available,
931the \fBfastest\fR will be chosen using a micro benchmark. Selecting \fBscalar\fR
932results in the original, CPU based calculation, being used. Selecting any option
933other than \fBfastest\fR and \fBscalar\fR results in vector instructions from
934the respective CPU instruction set being used.
1eeb4562
JX
935.sp
936Default value: \fBfastest\fR.
937.RE
938
ba5ad9a4
GW
939.sp
940.ne 2
941.na
942\fBzfs_free_bpobj_enabled\fR (int)
943.ad
944.RS 12n
945Enable/disable the processing of the free_bpobj object.
946.sp
947Default value: \fB1\fR.
948.RE
949
36283ca2
MG
950.sp
951.ne 2
952.na
953\fBzfs_free_max_blocks\fR (ulong)
954.ad
955.RS 12n
956Maximum number of blocks freed in a single txg.
957.sp
958Default value: \fB100,000\fR.
959.RE
960
e8b96c60
MA
961.sp
962.ne 2
963.na
964\fBzfs_vdev_async_read_max_active\fR (int)
965.ad
966.RS 12n
83426735 967Maximum asynchronous read I/Os active to each device.
e8b96c60
MA
968See the section "ZFS I/O SCHEDULER".
969.sp
970Default value: \fB3\fR.
971.RE
972
973.sp
974.ne 2
975.na
976\fBzfs_vdev_async_read_min_active\fR (int)
977.ad
978.RS 12n
979Minimum asynchronous read I/Os active to each device.
980See the section "ZFS I/O SCHEDULER".
981.sp
982Default value: \fB1\fR.
983.RE
984
985.sp
986.ne 2
987.na
988\fBzfs_vdev_async_write_active_max_dirty_percent\fR (int)
989.ad
990.RS 12n
991When the pool has more than
992\fBzfs_vdev_async_write_active_max_dirty_percent\fR dirty data, use
993\fBzfs_vdev_async_write_max_active\fR to limit active async writes. If
994the dirty data is between min and max, the active I/O limit is linearly
995interpolated. See the section "ZFS I/O SCHEDULER".
996.sp
997Default value: \fB60\fR.
998.RE
999
1000.sp
1001.ne 2
1002.na
1003\fBzfs_vdev_async_write_active_min_dirty_percent\fR (int)
1004.ad
1005.RS 12n
1006When the pool has less than
1007\fBzfs_vdev_async_write_active_min_dirty_percent\fR dirty data, use
1008\fBzfs_vdev_async_write_min_active\fR to limit active async writes. If
1009the dirty data is between min and max, the active I/O limit is linearly
1010interpolated. See the section "ZFS I/O SCHEDULER".
1011.sp
1012Default value: \fB30\fR.
1013.RE
1014
1015.sp
1016.ne 2
1017.na
1018\fBzfs_vdev_async_write_max_active\fR (int)
1019.ad
1020.RS 12n
83426735 1021Maximum asynchronous write I/Os active to each device.
e8b96c60
MA
1022See the section "ZFS I/O SCHEDULER".
1023.sp
1024Default value: \fB10\fR.
1025.RE
1026
1027.sp
1028.ne 2
1029.na
1030\fBzfs_vdev_async_write_min_active\fR (int)
1031.ad
1032.RS 12n
1033Minimum asynchronous write I/Os active to each device.
1034See the section "ZFS I/O SCHEDULER".
1035.sp
1036Default value: \fB1\fR.
1037.RE
1038
1039.sp
1040.ne 2
1041.na
1042\fBzfs_vdev_max_active\fR (int)
1043.ad
1044.RS 12n
1045The maximum number of I/Os active to each device. Ideally, this will be >=
1046the sum of each queue's max_active. It must be at least the sum of each
1047queue's min_active. See the section "ZFS I/O SCHEDULER".
1048.sp
1049Default value: \fB1,000\fR.
1050.RE
1051
1052.sp
1053.ne 2
1054.na
1055\fBzfs_vdev_scrub_max_active\fR (int)
1056.ad
1057.RS 12n
83426735 1058Maximum scrub I/Os active to each device.
e8b96c60
MA
1059See the section "ZFS I/O SCHEDULER".
1060.sp
1061Default value: \fB2\fR.
1062.RE
1063
1064.sp
1065.ne 2
1066.na
1067\fBzfs_vdev_scrub_min_active\fR (int)
1068.ad
1069.RS 12n
1070Minimum scrub I/Os active to each device.
1071See the section "ZFS I/O SCHEDULER".
1072.sp
1073Default value: \fB1\fR.
1074.RE
1075
1076.sp
1077.ne 2
1078.na
1079\fBzfs_vdev_sync_read_max_active\fR (int)
1080.ad
1081.RS 12n
83426735 1082Maximum synchronous read I/Os active to each device.
e8b96c60
MA
1083See the section "ZFS I/O SCHEDULER".
1084.sp
1085Default value: \fB10\fR.
1086.RE
1087
1088.sp
1089.ne 2
1090.na
1091\fBzfs_vdev_sync_read_min_active\fR (int)
1092.ad
1093.RS 12n
1094Minimum synchronous read I/Os active to each device.
1095See the section "ZFS I/O SCHEDULER".
1096.sp
1097Default value: \fB10\fR.
1098.RE
1099
1100.sp
1101.ne 2
1102.na
1103\fBzfs_vdev_sync_write_max_active\fR (int)
1104.ad
1105.RS 12n
83426735 1106Maximum synchronous write I/Os active to each device.
e8b96c60
MA
1107See the section "ZFS I/O SCHEDULER".
1108.sp
1109Default value: \fB10\fR.
1110.RE
1111
1112.sp
1113.ne 2
1114.na
1115\fBzfs_vdev_sync_write_min_active\fR (int)
1116.ad
1117.RS 12n
1118Minimum synchronous write I/Os active to each device.
1119See the section "ZFS I/O SCHEDULER".
1120.sp
1121Default value: \fB10\fR.
1122.RE
1123
3dfb57a3
DB
1124.sp
1125.ne 2
1126.na
1127\fBzfs_vdev_queue_depth_pct\fR (int)
1128.ad
1129.RS 12n
1130The queue depth percentage for each top-level virtual device.
1131Used in conjunction with zfs_vdev_async_max_active.
1132.sp
1133Default value: \fB1000\fR.
1134.RE
1135
29714574
TF
1136.sp
1137.ne 2
1138.na
1139\fBzfs_disable_dup_eviction\fR (int)
1140.ad
1141.RS 12n
1142Disable duplicate buffer eviction
1143.sp
1144Use \fB1\fR for yes and \fB0\fR for no (default).
1145.RE
1146
1147.sp
1148.ne 2
1149.na
1150\fBzfs_expire_snapshot\fR (int)
1151.ad
1152.RS 12n
1153Seconds to expire .zfs/snapshot
1154.sp
1155Default value: \fB300\fR.
1156.RE
1157
0500e835
BB
1158.sp
1159.ne 2
1160.na
1161\fBzfs_admin_snapshot\fR (int)
1162.ad
1163.RS 12n
1164Allow the creation, removal, or renaming of entries in the .zfs/snapshot
1165directory to cause the creation, destruction, or renaming of snapshots.
1166When enabled this functionality works both locally and over NFS exports
1167which have the 'no_root_squash' option set. This functionality is disabled
1168by default.
1169.sp
1170Use \fB1\fR for yes and \fB0\fR for no (default).
1171.RE
1172
29714574
TF
1173.sp
1174.ne 2
1175.na
1176\fBzfs_flags\fR (int)
1177.ad
1178.RS 12n
33b6dbbc
NB
1179Set additional debugging flags. The following flags may be bitwise-or'd
1180together.
1181.sp
1182.TS
1183box;
1184rB lB
1185lB lB
1186r l.
1187Value Symbolic Name
1188 Description
1189_
11901 ZFS_DEBUG_DPRINTF
1191 Enable dprintf entries in the debug log.
1192_
11932 ZFS_DEBUG_DBUF_VERIFY *
1194 Enable extra dbuf verifications.
1195_
11964 ZFS_DEBUG_DNODE_VERIFY *
1197 Enable extra dnode verifications.
1198_
11998 ZFS_DEBUG_SNAPNAMES
1200 Enable snapshot name verification.
1201_
120216 ZFS_DEBUG_MODIFY
1203 Check for illegally modified ARC buffers.
1204_
120532 ZFS_DEBUG_SPA
1206 Enable spa_dbgmsg entries in the debug log.
1207_
120864 ZFS_DEBUG_ZIO_FREE
1209 Enable verification of block frees.
1210_
1211128 ZFS_DEBUG_HISTOGRAM_VERIFY
1212 Enable extra spacemap histogram verifications.
1213.TE
1214.sp
1215* Requires debug build.
29714574 1216.sp
33b6dbbc 1217Default value: \fB0\fR.
29714574
TF
1218.RE
1219
fbeddd60
MA
1220.sp
1221.ne 2
1222.na
1223\fBzfs_free_leak_on_eio\fR (int)
1224.ad
1225.RS 12n
1226If destroy encounters an EIO while reading metadata (e.g. indirect
1227blocks), space referenced by the missing metadata can not be freed.
1228Normally this causes the background destroy to become "stalled", as
1229it is unable to make forward progress. While in this stalled state,
1230all remaining space to free from the error-encountering filesystem is
1231"temporarily leaked". Set this flag to cause it to ignore the EIO,
1232permanently leak the space from indirect blocks that can not be read,
1233and continue to free everything else that it can.
1234
1235The default, "stalling" behavior is useful if the storage partially
1236fails (i.e. some but not all i/os fail), and then later recovers. In
1237this case, we will be able to continue pool operations while it is
1238partially failed, and when it recovers, we can continue to free the
1239space, with no leaks. However, note that this case is actually
1240fairly rare.
1241
1242Typically pools either (a) fail completely (but perhaps temporarily,
1243e.g. a top-level vdev going offline), or (b) have localized,
1244permanent errors (e.g. disk returns the wrong data due to bit flip or
1245firmware bug). In case (a), this setting does not matter because the
1246pool will be suspended and the sync thread will not be able to make
1247forward progress regardless. In case (b), because the error is
1248permanent, the best we can do is leak the minimum amount of space,
1249which is what setting this flag will do. Therefore, it is reasonable
1250for this flag to normally be set, but we chose the more conservative
1251approach of not setting it, so that there is no possibility of
1252leaking space in the "partial temporary" failure case.
1253.sp
1254Default value: \fB0\fR.
1255.RE
1256
29714574
TF
1257.sp
1258.ne 2
1259.na
1260\fBzfs_free_min_time_ms\fR (int)
1261.ad
1262.RS 12n
6146e17e 1263During a \fBzfs destroy\fR operation using \fBfeature@async_destroy\fR a minimum
83426735 1264of this much time will be spent working on freeing blocks per txg.
29714574
TF
1265.sp
1266Default value: \fB1,000\fR.
1267.RE
1268
1269.sp
1270.ne 2
1271.na
1272\fBzfs_immediate_write_sz\fR (long)
1273.ad
1274.RS 12n
83426735 1275Largest data block to write to zil. Larger blocks will be treated as if the
6146e17e 1276dataset being written to had the property setting \fBlogbias=throughput\fR.
29714574
TF
1277.sp
1278Default value: \fB32,768\fR.
1279.RE
1280
f1512ee6
MA
1281.sp
1282.ne 2
1283.na
1284\fBzfs_max_recordsize\fR (int)
1285.ad
1286.RS 12n
1287We currently support block sizes from 512 bytes to 16MB. The benefits of
1288larger blocks, and thus larger IO, need to be weighed against the cost of
1289COWing a giant block to modify one byte. Additionally, very large blocks
1290can have an impact on i/o latency, and also potentially on the memory
1291allocator. Therefore, we do not allow the recordsize to be set larger than
1292zfs_max_recordsize (default 1MB). Larger blocks can be created by changing
1293this tunable, and pools with larger blocks can always be imported and used,
1294regardless of this setting.
1295.sp
1296Default value: \fB1,048,576\fR.
1297.RE
1298
29714574
TF
1299.sp
1300.ne 2
1301.na
1302\fBzfs_mdcomp_disable\fR (int)
1303.ad
1304.RS 12n
1305Disable meta data compression
1306.sp
1307Use \fB1\fR for yes and \fB0\fR for no (default).
1308.RE
1309
f3a7f661
GW
1310.sp
1311.ne 2
1312.na
1313\fBzfs_metaslab_fragmentation_threshold\fR (int)
1314.ad
1315.RS 12n
1316Allow metaslabs to keep their active state as long as their fragmentation
1317percentage is less than or equal to this value. An active metaslab that
1318exceeds this threshold will no longer keep its active status allowing
1319better metaslabs to be selected.
1320.sp
1321Default value: \fB70\fR.
1322.RE
1323
1324.sp
1325.ne 2
1326.na
1327\fBzfs_mg_fragmentation_threshold\fR (int)
1328.ad
1329.RS 12n
1330Metaslab groups are considered eligible for allocations if their
83426735 1331fragmentation metric (measured as a percentage) is less than or equal to
f3a7f661
GW
1332this value. If a metaslab group exceeds this threshold then it will be
1333skipped unless all metaslab groups within the metaslab class have also
1334crossed this threshold.
1335.sp
1336Default value: \fB85\fR.
1337.RE
1338
f4a4046b
TC
1339.sp
1340.ne 2
1341.na
1342\fBzfs_mg_noalloc_threshold\fR (int)
1343.ad
1344.RS 12n
1345Defines a threshold at which metaslab groups should be eligible for
1346allocations. The value is expressed as a percentage of free space
1347beyond which a metaslab group is always eligible for allocations.
1348If a metaslab group's free space is less than or equal to the
6b4e21c6 1349threshold, the allocator will avoid allocating to that group
f4a4046b
TC
1350unless all groups in the pool have reached the threshold. Once all
1351groups have reached the threshold, all groups are allowed to accept
1352allocations. The default value of 0 disables the feature and causes
1353all metaslab groups to be eligible for allocations.
1354
1355This parameter allows to deal with pools having heavily imbalanced
1356vdevs such as would be the case when a new vdev has been added.
1357Setting the threshold to a non-zero percentage will stop allocations
1358from being made to vdevs that aren't filled to the specified percentage
1359and allow lesser filled vdevs to acquire more allocations than they
1360otherwise would under the old \fBzfs_mg_alloc_failures\fR facility.
1361.sp
1362Default value: \fB0\fR.
1363.RE
1364
29714574
TF
1365.sp
1366.ne 2
1367.na
1368\fBzfs_no_scrub_io\fR (int)
1369.ad
1370.RS 12n
83426735
D
1371Set for no scrub I/O. This results in scrubs not actually scrubbing data and
1372simply doing a metadata crawl of the pool instead.
29714574
TF
1373.sp
1374Use \fB1\fR for yes and \fB0\fR for no (default).
1375.RE
1376
1377.sp
1378.ne 2
1379.na
1380\fBzfs_no_scrub_prefetch\fR (int)
1381.ad
1382.RS 12n
83426735 1383Set to disable block prefetching for scrubs.
29714574
TF
1384.sp
1385Use \fB1\fR for yes and \fB0\fR for no (default).
1386.RE
1387
29714574
TF
1388.sp
1389.ne 2
1390.na
1391\fBzfs_nocacheflush\fR (int)
1392.ad
1393.RS 12n
83426735
D
1394Disable cache flush operations on disks when writing. Beware, this may cause
1395corruption if disks re-order writes.
29714574
TF
1396.sp
1397Use \fB1\fR for yes and \fB0\fR for no (default).
1398.RE
1399
1400.sp
1401.ne 2
1402.na
1403\fBzfs_nopwrite_enabled\fR (int)
1404.ad
1405.RS 12n
1406Enable NOP writes
1407.sp
1408Use \fB1\fR for yes (default) and \fB0\fR to disable.
1409.RE
1410
1411.sp
1412.ne 2
1413.na
b738bc5a 1414\fBzfs_pd_bytes_max\fR (int)
29714574
TF
1415.ad
1416.RS 12n
83426735 1417The number of bytes which should be prefetched during a pool traversal
6146e17e 1418(eg: \fBzfs send\fR or other data crawling operations)
29714574 1419.sp
74aa2ba2 1420Default value: \fB52,428,800\fR.
29714574
TF
1421.RE
1422
1423.sp
1424.ne 2
1425.na
1426\fBzfs_prefetch_disable\fR (int)
1427.ad
1428.RS 12n
7f60329a
MA
1429This tunable disables predictive prefetch. Note that it leaves "prescient"
1430prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
1431prescient prefetch never issues i/os that end up not being needed, so it
1432can't hurt performance.
29714574
TF
1433.sp
1434Use \fB1\fR for yes and \fB0\fR for no (default).
1435.RE
1436
1437.sp
1438.ne 2
1439.na
1440\fBzfs_read_chunk_size\fR (long)
1441.ad
1442.RS 12n
1443Bytes to read per chunk
1444.sp
1445Default value: \fB1,048,576\fR.
1446.RE
1447
1448.sp
1449.ne 2
1450.na
1451\fBzfs_read_history\fR (int)
1452.ad
1453.RS 12n
83426735
D
1454Historic statistics for the last N reads will be available in
1455\fR/proc/spl/kstat/zfs/POOLNAME/reads\fB
29714574 1456.sp
83426735 1457Default value: \fB0\fR (no data is kept).
29714574
TF
1458.RE
1459
1460.sp
1461.ne 2
1462.na
1463\fBzfs_read_history_hits\fR (int)
1464.ad
1465.RS 12n
1466Include cache hits in read history
1467.sp
1468Use \fB1\fR for yes and \fB0\fR for no (default).
1469.RE
1470
1471.sp
1472.ne 2
1473.na
1474\fBzfs_recover\fR (int)
1475.ad
1476.RS 12n
1477Set to attempt to recover from fatal errors. This should only be used as a
1478last resort, as it typically results in leaked space, or worse.
1479.sp
1480Use \fB1\fR for yes and \fB0\fR for no (default).
1481.RE
1482
1483.sp
1484.ne 2
1485.na
1486\fBzfs_resilver_delay\fR (int)
1487.ad
1488.RS 12n
27b293be
TC
1489Number of ticks to delay prior to issuing a resilver I/O operation when
1490a non-resilver or non-scrub I/O operation has occurred within the past
1491\fBzfs_scan_idle\fR ticks.
29714574
TF
1492.sp
1493Default value: \fB2\fR.
1494.RE
1495
1496.sp
1497.ne 2
1498.na
1499\fBzfs_resilver_min_time_ms\fR (int)
1500.ad
1501.RS 12n
83426735
D
1502Resilvers are processed by the sync thread. While resilvering it will spend
1503at least this much time working on a resilver between txg flushes.
29714574
TF
1504.sp
1505Default value: \fB3,000\fR.
1506.RE
1507
1508.sp
1509.ne 2
1510.na
1511\fBzfs_scan_idle\fR (int)
1512.ad
1513.RS 12n
27b293be
TC
1514Idle window in clock ticks. During a scrub or a resilver, if
1515a non-scrub or non-resilver I/O operation has occurred during this
1516window, the next scrub or resilver operation is delayed by, respectively
1517\fBzfs_scrub_delay\fR or \fBzfs_resilver_delay\fR ticks.
29714574
TF
1518.sp
1519Default value: \fB50\fR.
1520.RE
1521
1522.sp
1523.ne 2
1524.na
1525\fBzfs_scan_min_time_ms\fR (int)
1526.ad
1527.RS 12n
83426735
D
1528Scrubs are processed by the sync thread. While scrubbing it will spend
1529at least this much time working on a scrub between txg flushes.
29714574
TF
1530.sp
1531Default value: \fB1,000\fR.
1532.RE
1533
1534.sp
1535.ne 2
1536.na
1537\fBzfs_scrub_delay\fR (int)
1538.ad
1539.RS 12n
27b293be
TC
1540Number of ticks to delay prior to issuing a scrub I/O operation when
1541a non-scrub or non-resilver I/O operation has occurred within the past
1542\fBzfs_scan_idle\fR ticks.
29714574
TF
1543.sp
1544Default value: \fB4\fR.
1545.RE
1546
fd8febbd
TF
1547.sp
1548.ne 2
1549.na
1550\fBzfs_send_corrupt_data\fR (int)
1551.ad
1552.RS 12n
83426735 1553Allow sending of corrupt data (ignore read/checksum errors when sending data)
fd8febbd
TF
1554.sp
1555Use \fB1\fR for yes and \fB0\fR for no (default).
1556.RE
1557
29714574
TF
1558.sp
1559.ne 2
1560.na
1561\fBzfs_sync_pass_deferred_free\fR (int)
1562.ad
1563.RS 12n
83426735 1564Flushing of data to disk is done in passes. Defer frees starting in this pass
29714574
TF
1565.sp
1566Default value: \fB2\fR.
1567.RE
1568
1569.sp
1570.ne 2
1571.na
1572\fBzfs_sync_pass_dont_compress\fR (int)
1573.ad
1574.RS 12n
1575Don't compress starting in this pass
1576.sp
1577Default value: \fB5\fR.
1578.RE
1579
1580.sp
1581.ne 2
1582.na
1583\fBzfs_sync_pass_rewrite\fR (int)
1584.ad
1585.RS 12n
83426735 1586Rewrite new block pointers starting in this pass
29714574
TF
1587.sp
1588Default value: \fB2\fR.
1589.RE
1590
1591.sp
1592.ne 2
1593.na
1594\fBzfs_top_maxinflight\fR (int)
1595.ad
1596.RS 12n
83426735
D
1597Max concurrent I/Os per top-level vdev (mirrors or raidz arrays) allowed during
1598scrub or resilver operations.
29714574
TF
1599.sp
1600Default value: \fB32\fR.
1601.RE
1602
1603.sp
1604.ne 2
1605.na
1606\fBzfs_txg_history\fR (int)
1607.ad
1608.RS 12n
83426735
D
1609Historic statistics for the last N txgs will be available in
1610\fR/proc/spl/kstat/zfs/POOLNAME/txgs\fB
29714574
TF
1611.sp
1612Default value: \fB0\fR.
1613.RE
1614
29714574
TF
1615.sp
1616.ne 2
1617.na
1618\fBzfs_txg_timeout\fR (int)
1619.ad
1620.RS 12n
83426735 1621Flush dirty data to disk at least every N seconds (maximum txg duration)
29714574
TF
1622.sp
1623Default value: \fB5\fR.
1624.RE
1625
1626.sp
1627.ne 2
1628.na
1629\fBzfs_vdev_aggregation_limit\fR (int)
1630.ad
1631.RS 12n
1632Max vdev I/O aggregation size
1633.sp
1634Default value: \fB131,072\fR.
1635.RE
1636
1637.sp
1638.ne 2
1639.na
1640\fBzfs_vdev_cache_bshift\fR (int)
1641.ad
1642.RS 12n
1643Shift size to inflate reads too
1644.sp
83426735 1645Default value: \fB16\fR (effectively 65536).
29714574
TF
1646.RE
1647
1648.sp
1649.ne 2
1650.na
1651\fBzfs_vdev_cache_max\fR (int)
1652.ad
1653.RS 12n
83426735
D
1654Inflate reads small than this value to meet the \fBzfs_vdev_cache_bshift\fR
1655size.
1656.sp
1657Default value: \fB16384\fR.
29714574
TF
1658.RE
1659
1660.sp
1661.ne 2
1662.na
1663\fBzfs_vdev_cache_size\fR (int)
1664.ad
1665.RS 12n
83426735
D
1666Total size of the per-disk cache in bytes.
1667.sp
1668Currently this feature is disabled as it has been found to not be helpful
1669for performance and in some cases harmful.
29714574
TF
1670.sp
1671Default value: \fB0\fR.
1672.RE
1673
29714574
TF
1674.sp
1675.ne 2
1676.na
9f500936 1677\fBzfs_vdev_mirror_rotating_inc\fR (int)
29714574
TF
1678.ad
1679.RS 12n
9f500936 1680A number by which the balancing algorithm increments the load calculation for
1681the purpose of selecting the least busy mirror member when an I/O immediately
1682follows its predecessor on rotational vdevs for the purpose of making decisions
1683based on load.
29714574 1684.sp
9f500936 1685Default value: \fB0\fR.
1686.RE
1687
1688.sp
1689.ne 2
1690.na
1691\fBzfs_vdev_mirror_rotating_seek_inc\fR (int)
1692.ad
1693.RS 12n
1694A number by which the balancing algorithm increments the load calculation for
1695the purpose of selecting the least busy mirror member when an I/O lacks
1696locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
1697this that are not immediately following the previous I/O are incremented by
1698half.
1699.sp
1700Default value: \fB5\fR.
1701.RE
1702
1703.sp
1704.ne 2
1705.na
1706\fBzfs_vdev_mirror_rotating_seek_offset\fR (int)
1707.ad
1708.RS 12n
1709The maximum distance for the last queued I/O in which the balancing algorithm
1710considers an I/O to have locality.
1711See the section "ZFS I/O SCHEDULER".
1712.sp
1713Default value: \fB1048576\fR.
1714.RE
1715
1716.sp
1717.ne 2
1718.na
1719\fBzfs_vdev_mirror_non_rotating_inc\fR (int)
1720.ad
1721.RS 12n
1722A number by which the balancing algorithm increments the load calculation for
1723the purpose of selecting the least busy mirror member on non-rotational vdevs
1724when I/Os do not immediately follow one another.
1725.sp
1726Default value: \fB0\fR.
1727.RE
1728
1729.sp
1730.ne 2
1731.na
1732\fBzfs_vdev_mirror_non_rotating_seek_inc\fR (int)
1733.ad
1734.RS 12n
1735A number by which the balancing algorithm increments the load calculation for
1736the purpose of selecting the least busy mirror member when an I/O lacks
1737locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
1738this that are not immediately following the previous I/O are incremented by
1739half.
1740.sp
1741Default value: \fB1\fR.
29714574
TF
1742.RE
1743
29714574
TF
1744.sp
1745.ne 2
1746.na
1747\fBzfs_vdev_read_gap_limit\fR (int)
1748.ad
1749.RS 12n
83426735
D
1750Aggregate read I/O operations if the gap on-disk between them is within this
1751threshold.
29714574
TF
1752.sp
1753Default value: \fB32,768\fR.
1754.RE
1755
1756.sp
1757.ne 2
1758.na
1759\fBzfs_vdev_scheduler\fR (charp)
1760.ad
1761.RS 12n
83426735 1762Set the Linux I/O scheduler on whole disk vdevs to this scheduler
29714574
TF
1763.sp
1764Default value: \fBnoop\fR.
1765.RE
1766
29714574
TF
1767.sp
1768.ne 2
1769.na
1770\fBzfs_vdev_write_gap_limit\fR (int)
1771.ad
1772.RS 12n
1773Aggregate write I/O over gap
1774.sp
1775Default value: \fB4,096\fR.
1776.RE
1777
ab9f4b0b
GN
1778.sp
1779.ne 2
1780.na
1781\fBzfs_vdev_raidz_impl\fR (string)
1782.ad
1783.RS 12n
c9187d86 1784Parameter for selecting raidz parity implementation to use.
ab9f4b0b
GN
1785
1786Options marked (always) below may be selected on module load as they are
1787supported on all systems.
1788The remaining options may only be set after the module is loaded, as they
1789are available only if the implementations are compiled in and supported
1790on the running system.
1791
1792Once the module is loaded, the content of
1793/sys/module/zfs/parameters/zfs_vdev_raidz_impl will show available options
1794with the currently selected one enclosed in [].
1795Possible options are:
1796 fastest - (always) implementation selected using built-in benchmark
1797 original - (always) original raidz implementation
1798 scalar - (always) scalar raidz implementation
ae25d222
GN
1799 sse2 - implementation using SSE2 instruction set (64bit x86 only)
1800 ssse3 - implementation using SSSE3 instruction set (64bit x86 only)
ab9f4b0b 1801 avx2 - implementation using AVX2 instruction set (64bit x86 only)
7f547f85
RD
1802 avx512f - implementation using AVX512F instruction set (64bit x86 only)
1803 avx512bw - implementation using AVX512F & AVX512BW instruction sets (64bit x86 only)
62a65a65
RD
1804 aarch64_neon - implementation using NEON (Aarch64/64 bit ARMv8 only)
1805 aarch64_neonx2 - implementation using NEON with more unrolling (Aarch64/64 bit ARMv8 only)
ab9f4b0b
GN
1806.sp
1807Default value: \fBfastest\fR.
1808.RE
1809
29714574
TF
1810.sp
1811.ne 2
1812.na
1813\fBzfs_zevent_cols\fR (int)
1814.ad
1815.RS 12n
83426735 1816When zevents are logged to the console use this as the word wrap width.
29714574
TF
1817.sp
1818Default value: \fB80\fR.
1819.RE
1820
1821.sp
1822.ne 2
1823.na
1824\fBzfs_zevent_console\fR (int)
1825.ad
1826.RS 12n
1827Log events to the console
1828.sp
1829Use \fB1\fR for yes and \fB0\fR for no (default).
1830.RE
1831
1832.sp
1833.ne 2
1834.na
1835\fBzfs_zevent_len_max\fR (int)
1836.ad
1837.RS 12n
83426735
D
1838Max event queue length. A value of 0 will result in a calculated value which
1839increases with the number of CPUs in the system (minimum 64 events). Events
1840in the queue can be viewed with the \fBzpool events\fR command.
29714574
TF
1841.sp
1842Default value: \fB0\fR.
1843.RE
1844
1845.sp
1846.ne 2
1847.na
1848\fBzil_replay_disable\fR (int)
1849.ad
1850.RS 12n
83426735
D
1851Disable intent logging replay. Can be disabled for recovery from corrupted
1852ZIL
29714574
TF
1853.sp
1854Use \fB1\fR for yes and \fB0\fR for no (default).
1855.RE
1856
1857.sp
1858.ne 2
1859.na
1860\fBzil_slog_limit\fR (ulong)
1861.ad
1862.RS 12n
1863Max commit bytes to separate log device
1864.sp
1865Default value: \fB1,048,576\fR.
1866.RE
1867
29714574
TF
1868.sp
1869.ne 2
1870.na
1871\fBzio_delay_max\fR (int)
1872.ad
1873.RS 12n
83426735 1874A zevent will be logged if a ZIO operation takes more than N milliseconds to
ab9f4b0b 1875complete. Note that this is only a logging facility, not a timeout on
83426735 1876operations.
29714574
TF
1877.sp
1878Default value: \fB30,000\fR.
1879.RE
1880
3dfb57a3
DB
1881.sp
1882.ne 2
1883.na
1884\fBzio_dva_throttle_enabled\fR (int)
1885.ad
1886.RS 12n
1887Throttle block allocations in the ZIO pipeline. This allows for
1888dynamic allocation distribution when devices are imbalanced.
1889.sp
27f2b90d 1890Default value: \fB1\fR.
3dfb57a3
DB
1891.RE
1892
29714574
TF
1893.sp
1894.ne 2
1895.na
1896\fBzio_requeue_io_start_cut_in_line\fR (int)
1897.ad
1898.RS 12n
1899Prioritize requeued I/O
1900.sp
1901Default value: \fB0\fR.
1902.RE
1903
dcb6bed1
D
1904.sp
1905.ne 2
1906.na
1907\fBzio_taskq_batch_pct\fR (uint)
1908.ad
1909.RS 12n
1910Percentage of online CPUs (or CPU cores, etc) which will run a worker thread
1911for IO. These workers are responsible for IO work such as compression and
1912checksum calculations. Fractional number of CPUs will be rounded down.
1913.sp
1914The default value of 75 was chosen to avoid using all CPUs which can result in
1915latency issues and inconsistent application performance, especially when high
1916compression is enabled.
1917.sp
1918Default value: \fB75\fR.
1919.RE
1920
29714574
TF
1921.sp
1922.ne 2
1923.na
1924\fBzvol_inhibit_dev\fR (uint)
1925.ad
1926.RS 12n
83426735
D
1927Do not create zvol device nodes. This may slightly improve startup time on
1928systems with a very large number of zvols.
29714574
TF
1929.sp
1930Use \fB1\fR for yes and \fB0\fR for no (default).
1931.RE
1932
1933.sp
1934.ne 2
1935.na
1936\fBzvol_major\fR (uint)
1937.ad
1938.RS 12n
83426735 1939Major number for zvol block devices
29714574
TF
1940.sp
1941Default value: \fB230\fR.
1942.RE
1943
1944.sp
1945.ne 2
1946.na
1947\fBzvol_max_discard_blocks\fR (ulong)
1948.ad
1949.RS 12n
83426735
D
1950Discard (aka TRIM) operations done on zvols will be done in batches of this
1951many blocks, where block size is determined by the \fBvolblocksize\fR property
1952of a zvol.
29714574
TF
1953.sp
1954Default value: \fB16,384\fR.
1955.RE
1956
9965059a
BB
1957.sp
1958.ne 2
1959.na
1960\fBzvol_prefetch_bytes\fR (uint)
1961.ad
1962.RS 12n
1963When adding a zvol to the system prefetch \fBzvol_prefetch_bytes\fR
1964from the start and end of the volume. Prefetching these regions
1965of the volume is desirable because they are likely to be accessed
1966immediately by \fBblkid(8)\fR or by the kernel scanning for a partition
1967table.
1968.sp
1969Default value: \fB131,072\fR.
1970.RE
1971
e8b96c60
MA
1972.SH ZFS I/O SCHEDULER
1973ZFS issues I/O operations to leaf vdevs to satisfy and complete I/Os.
1974The I/O scheduler determines when and in what order those operations are
1975issued. The I/O scheduler divides operations into five I/O classes
1976prioritized in the following order: sync read, sync write, async read,
1977async write, and scrub/resilver. Each queue defines the minimum and
1978maximum number of concurrent operations that may be issued to the
1979device. In addition, the device has an aggregate maximum,
1980\fBzfs_vdev_max_active\fR. Note that the sum of the per-queue minimums
1981must not exceed the aggregate maximum. If the sum of the per-queue
1982maximums exceeds the aggregate maximum, then the number of active I/Os
1983may reach \fBzfs_vdev_max_active\fR, in which case no further I/Os will
1984be issued regardless of whether all per-queue minimums have been met.
1985.sp
1986For many physical devices, throughput increases with the number of
1987concurrent operations, but latency typically suffers. Further, physical
1988devices typically have a limit at which more concurrent operations have no
1989effect on throughput or can actually cause it to decrease.
1990.sp
1991The scheduler selects the next operation to issue by first looking for an
1992I/O class whose minimum has not been satisfied. Once all are satisfied and
1993the aggregate maximum has not been hit, the scheduler looks for classes
1994whose maximum has not been satisfied. Iteration through the I/O classes is
1995done in the order specified above. No further operations are issued if the
1996aggregate maximum number of concurrent operations has been hit or if there
1997are no operations queued for an I/O class that has not hit its maximum.
1998Every time an I/O is queued or an operation completes, the I/O scheduler
1999looks for new operations to issue.
2000.sp
2001In general, smaller max_active's will lead to lower latency of synchronous
2002operations. Larger max_active's may lead to higher overall throughput,
2003depending on underlying storage.
2004.sp
2005The ratio of the queues' max_actives determines the balance of performance
2006between reads, writes, and scrubs. E.g., increasing
2007\fBzfs_vdev_scrub_max_active\fR will cause the scrub or resilver to complete
2008more quickly, but reads and writes to have higher latency and lower throughput.
2009.sp
2010All I/O classes have a fixed maximum number of outstanding operations
2011except for the async write class. Asynchronous writes represent the data
2012that is committed to stable storage during the syncing stage for
2013transaction groups. Transaction groups enter the syncing state
2014periodically so the number of queued async writes will quickly burst up
2015and then bleed down to zero. Rather than servicing them as quickly as
2016possible, the I/O scheduler changes the maximum number of active async
2017write I/Os according to the amount of dirty data in the pool. Since
2018both throughput and latency typically increase with the number of
2019concurrent operations issued to physical devices, reducing the
2020burstiness in the number of concurrent operations also stabilizes the
2021response time of operations from other -- and in particular synchronous
2022-- queues. In broad strokes, the I/O scheduler will issue more
2023concurrent operations from the async write queue as there's more dirty
2024data in the pool.
2025.sp
2026Async Writes
2027.sp
2028The number of concurrent operations issued for the async write I/O class
2029follows a piece-wise linear function defined by a few adjustable points.
2030.nf
2031
2032 | o---------| <-- zfs_vdev_async_write_max_active
2033 ^ | /^ |
2034 | | / | |
2035active | / | |
2036 I/O | / | |
2037count | / | |
2038 | / | |
2039 |-------o | | <-- zfs_vdev_async_write_min_active
2040 0|_______^______|_________|
2041 0% | | 100% of zfs_dirty_data_max
2042 | |
2043 | `-- zfs_vdev_async_write_active_max_dirty_percent
2044 `--------- zfs_vdev_async_write_active_min_dirty_percent
2045
2046.fi
2047Until the amount of dirty data exceeds a minimum percentage of the dirty
2048data allowed in the pool, the I/O scheduler will limit the number of
2049concurrent operations to the minimum. As that threshold is crossed, the
2050number of concurrent operations issued increases linearly to the maximum at
2051the specified maximum percentage of the dirty data allowed in the pool.
2052.sp
2053Ideally, the amount of dirty data on a busy pool will stay in the sloped
2054part of the function between \fBzfs_vdev_async_write_active_min_dirty_percent\fR
2055and \fBzfs_vdev_async_write_active_max_dirty_percent\fR. If it exceeds the
2056maximum percentage, this indicates that the rate of incoming data is
2057greater than the rate that the backend storage can handle. In this case, we
2058must further throttle incoming writes, as described in the next section.
2059
2060.SH ZFS TRANSACTION DELAY
2061We delay transactions when we've determined that the backend storage
2062isn't able to accommodate the rate of incoming writes.
2063.sp
2064If there is already a transaction waiting, we delay relative to when
2065that transaction will finish waiting. This way the calculated delay time
2066is independent of the number of threads concurrently executing
2067transactions.
2068.sp
2069If we are the only waiter, wait relative to when the transaction
2070started, rather than the current time. This credits the transaction for
2071"time already served", e.g. reading indirect blocks.
2072.sp
2073The minimum time for a transaction to take is calculated as:
2074.nf
2075 min_time = zfs_delay_scale * (dirty - min) / (max - dirty)
2076 min_time is then capped at 100 milliseconds.
2077.fi
2078.sp
2079The delay has two degrees of freedom that can be adjusted via tunables. The
2080percentage of dirty data at which we start to delay is defined by
2081\fBzfs_delay_min_dirty_percent\fR. This should typically be at or above
2082\fBzfs_vdev_async_write_active_max_dirty_percent\fR so that we only start to
2083delay after writing at full speed has failed to keep up with the incoming write
2084rate. The scale of the curve is defined by \fBzfs_delay_scale\fR. Roughly speaking,
2085this variable determines the amount of delay at the midpoint of the curve.
2086.sp
2087.nf
2088delay
2089 10ms +-------------------------------------------------------------*+
2090 | *|
2091 9ms + *+
2092 | *|
2093 8ms + *+
2094 | * |
2095 7ms + * +
2096 | * |
2097 6ms + * +
2098 | * |
2099 5ms + * +
2100 | * |
2101 4ms + * +
2102 | * |
2103 3ms + * +
2104 | * |
2105 2ms + (midpoint) * +
2106 | | ** |
2107 1ms + v *** +
2108 | zfs_delay_scale ----------> ******** |
2109 0 +-------------------------------------*********----------------+
2110 0% <- zfs_dirty_data_max -> 100%
2111.fi
2112.sp
2113Note that since the delay is added to the outstanding time remaining on the
2114most recent transaction, the delay is effectively the inverse of IOPS.
2115Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
2116was chosen such that small changes in the amount of accumulated dirty data
2117in the first 3/4 of the curve yield relatively small differences in the
2118amount of delay.
2119.sp
2120The effects can be easier to understand when the amount of delay is
2121represented on a log scale:
2122.sp
2123.nf
2124delay
2125100ms +-------------------------------------------------------------++
2126 + +
2127 | |
2128 + *+
2129 10ms + *+
2130 + ** +
2131 | (midpoint) ** |
2132 + | ** +
2133 1ms + v **** +
2134 + zfs_delay_scale ----------> ***** +
2135 | **** |
2136 + **** +
2137100us + ** +
2138 + * +
2139 | * |
2140 + * +
2141 10us + * +
2142 + +
2143 | |
2144 + +
2145 +--------------------------------------------------------------+
2146 0% <- zfs_dirty_data_max -> 100%
2147.fi
2148.sp
2149Note here that only as the amount of dirty data approaches its limit does
2150the delay start to increase rapidly. The goal of a properly tuned system
2151should be to keep the amount of dirty data out of that range by first
2152ensuring that the appropriate limits are set for the I/O scheduler to reach
2153optimal throughput on the backend storage, and then by changing the value
2154of \fBzfs_delay_scale\fR to increase the steepness of the curve.