]> git.proxmox.com Git - mirror_zfs.git/blame - man/man5/zfs-module-parameters.5
Cache ddt_get_dedup_dspace() value if there was no ddt changes
[mirror_zfs.git] / man / man5 / zfs-module-parameters.5
CommitLineData
29714574
TF
1'\" te
2.\" Copyright (c) 2013 by Turbo Fredriksson <turbo@bayour.com>. All rights reserved.
3.\" The contents of this file are subject to the terms of the Common Development
4.\" and Distribution License (the "License"). You may not use this file except
5.\" in compliance with the License. You can obtain a copy of the license at
6.\" usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing.
7.\"
8.\" See the License for the specific language governing permissions and
9.\" limitations under the License. When distributing Covered Code, include this
10.\" CDDL HEADER in each file and include the License file at
11.\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this
12.\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your
13.\" own identifying information:
14.\" Portions Copyright [yyyy] [name of copyright owner]
15.TH ZFS-MODULE-PARAMETERS 5 "Nov 16, 2013"
16.SH NAME
17zfs\-module\-parameters \- ZFS module parameters
18.SH DESCRIPTION
19.sp
20.LP
21Description of the different parameters to the ZFS module.
22
23.SS "Module parameters"
24.sp
25.LP
26
6d836e6f
RE
27.sp
28.ne 2
29.na
30\fBignore_hole_birth\fR (int)
31.ad
32.RS 12n
33When set, the hole_birth optimization will not be used, and all holes will
34always be sent on zfs send. Useful if you suspect your datasets are affected
35by a bug in hole_birth.
36.sp
9ea9e0b9 37Use \fB1\fR for on (default) and \fB0\fR for off.
6d836e6f
RE
38.RE
39
29714574
TF
40.sp
41.ne 2
42.na
43\fBl2arc_feed_again\fR (int)
44.ad
45.RS 12n
83426735
D
46Turbo L2ARC warm-up. When the L2ARC is cold the fill interval will be set as
47fast as possible.
29714574
TF
48.sp
49Use \fB1\fR for yes (default) and \fB0\fR to disable.
50.RE
51
52.sp
53.ne 2
54.na
55\fBl2arc_feed_min_ms\fR (ulong)
56.ad
57.RS 12n
83426735
D
58Min feed interval in milliseconds. Requires \fBl2arc_feed_again=1\fR and only
59applicable in related situations.
29714574
TF
60.sp
61Default value: \fB200\fR.
62.RE
63
64.sp
65.ne 2
66.na
67\fBl2arc_feed_secs\fR (ulong)
68.ad
69.RS 12n
70Seconds between L2ARC writing
71.sp
72Default value: \fB1\fR.
73.RE
74
75.sp
76.ne 2
77.na
78\fBl2arc_headroom\fR (ulong)
79.ad
80.RS 12n
83426735
D
81How far through the ARC lists to search for L2ARC cacheable content, expressed
82as a multiplier of \fBl2arc_write_max\fR
29714574
TF
83.sp
84Default value: \fB2\fR.
85.RE
86
87.sp
88.ne 2
89.na
90\fBl2arc_headroom_boost\fR (ulong)
91.ad
92.RS 12n
83426735
D
93Scales \fBl2arc_headroom\fR by this percentage when L2ARC contents are being
94successfully compressed before writing. A value of 100 disables this feature.
29714574
TF
95.sp
96Default value: \fB200\fR.
97.RE
98
99.sp
100.ne 2
101.na
102\fBl2arc_nocompress\fR (int)
103.ad
104.RS 12n
105Skip compressing L2ARC buffers
106.sp
107Use \fB1\fR for yes and \fB0\fR for no (default).
108.RE
109
110.sp
111.ne 2
112.na
113\fBl2arc_noprefetch\fR (int)
114.ad
115.RS 12n
83426735
D
116Do not write buffers to L2ARC if they were prefetched but not used by
117applications
29714574
TF
118.sp
119Use \fB1\fR for yes (default) and \fB0\fR to disable.
120.RE
121
122.sp
123.ne 2
124.na
125\fBl2arc_norw\fR (int)
126.ad
127.RS 12n
128No reads during writes
129.sp
130Use \fB1\fR for yes and \fB0\fR for no (default).
131.RE
132
133.sp
134.ne 2
135.na
136\fBl2arc_write_boost\fR (ulong)
137.ad
138.RS 12n
83426735
D
139Cold L2ARC devices will have \fBl2arc_write_nax\fR increased by this amount
140while they remain cold.
29714574
TF
141.sp
142Default value: \fB8,388,608\fR.
143.RE
144
145.sp
146.ne 2
147.na
148\fBl2arc_write_max\fR (ulong)
149.ad
150.RS 12n
151Max write bytes per interval
152.sp
153Default value: \fB8,388,608\fR.
154.RE
155
99b14de4
ED
156.sp
157.ne 2
158.na
159\fBmetaslab_aliquot\fR (ulong)
160.ad
161.RS 12n
162Metaslab granularity, in bytes. This is roughly similar to what would be
163referred to as the "stripe size" in traditional RAID arrays. In normal
164operation, ZFS will try to write this amount of data to a top-level vdev
165before moving on to the next one.
166.sp
167Default value: \fB524,288\fR.
168.RE
169
f3a7f661
GW
170.sp
171.ne 2
172.na
173\fBmetaslab_bias_enabled\fR (int)
174.ad
175.RS 12n
176Enable metaslab group biasing based on its vdev's over- or under-utilization
177relative to the pool.
178.sp
179Use \fB1\fR for yes (default) and \fB0\fR for no.
180.RE
181
29714574
TF
182.sp
183.ne 2
184.na
aa7d06a9 185\fBmetaslab_debug_load\fR (int)
29714574
TF
186.ad
187.RS 12n
aa7d06a9
GW
188Load all metaslabs during pool import.
189.sp
190Use \fB1\fR for yes and \fB0\fR for no (default).
191.RE
192
193.sp
194.ne 2
195.na
196\fBmetaslab_debug_unload\fR (int)
197.ad
198.RS 12n
199Prevent metaslabs from being unloaded.
29714574
TF
200.sp
201Use \fB1\fR for yes and \fB0\fR for no (default).
202.RE
203
f3a7f661
GW
204.sp
205.ne 2
206.na
207\fBmetaslab_fragmentation_factor_enabled\fR (int)
208.ad
209.RS 12n
210Enable use of the fragmentation metric in computing metaslab weights.
211.sp
212Use \fB1\fR for yes (default) and \fB0\fR for no.
213.RE
214
b8bcca18
MA
215.sp
216.ne 2
217.na
218\fBmetaslabs_per_vdev\fR (int)
219.ad
220.RS 12n
221When a vdev is added, it will be divided into approximately (but no more than) this number of metaslabs.
222.sp
223Default value: \fB200\fR.
224.RE
225
f3a7f661
GW
226.sp
227.ne 2
228.na
229\fBmetaslab_preload_enabled\fR (int)
230.ad
231.RS 12n
232Enable metaslab group preloading.
233.sp
234Use \fB1\fR for yes (default) and \fB0\fR for no.
235.RE
236
237.sp
238.ne 2
239.na
240\fBmetaslab_lba_weighting_enabled\fR (int)
241.ad
242.RS 12n
243Give more weight to metaslabs with lower LBAs, assuming they have
244greater bandwidth as is typically the case on a modern constant
245angular velocity disk drive.
246.sp
247Use \fB1\fR for yes (default) and \fB0\fR for no.
248.RE
249
29714574
TF
250.sp
251.ne 2
252.na
253\fBspa_config_path\fR (charp)
254.ad
255.RS 12n
256SPA config file
257.sp
258Default value: \fB/etc/zfs/zpool.cache\fR.
259.RE
260
e8b96c60
MA
261.sp
262.ne 2
263.na
264\fBspa_asize_inflation\fR (int)
265.ad
266.RS 12n
267Multiplication factor used to estimate actual disk consumption from the
268size of data being written. The default value is a worst case estimate,
269but lower values may be valid for a given pool depending on its
270configuration. Pool administrators who understand the factors involved
271may wish to specify a more realistic inflation factor, particularly if
272they operate close to quota or capacity limits.
273.sp
83426735 274Default value: \fB24\fR.
e8b96c60
MA
275.RE
276
dea377c0
MA
277.sp
278.ne 2
279.na
280\fBspa_load_verify_data\fR (int)
281.ad
282.RS 12n
283Whether to traverse data blocks during an "extreme rewind" (\fB-X\fR)
284import. Use 0 to disable and 1 to enable.
285
286An extreme rewind import normally performs a full traversal of all
287blocks in the pool for verification. If this parameter is set to 0,
288the traversal skips non-metadata blocks. It can be toggled once the
289import has started to stop or start the traversal of non-metadata blocks.
290.sp
83426735 291Default value: \fB1\fR.
dea377c0
MA
292.RE
293
294.sp
295.ne 2
296.na
297\fBspa_load_verify_metadata\fR (int)
298.ad
299.RS 12n
300Whether to traverse blocks during an "extreme rewind" (\fB-X\fR)
301pool import. Use 0 to disable and 1 to enable.
302
303An extreme rewind import normally performs a full traversal of all
1c012083 304blocks in the pool for verification. If this parameter is set to 0,
dea377c0
MA
305the traversal is not performed. It can be toggled once the import has
306started to stop or start the traversal.
307.sp
83426735 308Default value: \fB1\fR.
dea377c0
MA
309.RE
310
311.sp
312.ne 2
313.na
314\fBspa_load_verify_maxinflight\fR (int)
315.ad
316.RS 12n
317Maximum concurrent I/Os during the traversal performed during an "extreme
318rewind" (\fB-X\fR) pool import.
319.sp
83426735 320Default value: \fB10000\fR.
dea377c0
MA
321.RE
322
6cde6435
BB
323.sp
324.ne 2
325.na
326\fBspa_slop_shift\fR (int)
327.ad
328.RS 12n
329Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space
330in the pool to be consumed. This ensures that we don't run the pool
331completely out of space, due to unaccounted changes (e.g. to the MOS).
332It also limits the worst-case time to allocate space. If we have
333less than this amount of free space, most ZPL operations (e.g. write,
334create) will return ENOSPC.
335.sp
83426735 336Default value: \fB5\fR.
6cde6435
BB
337.RE
338
29714574
TF
339.sp
340.ne 2
341.na
342\fBzfetch_array_rd_sz\fR (ulong)
343.ad
344.RS 12n
27b293be 345If prefetching is enabled, disable prefetching for reads larger than this size.
29714574
TF
346.sp
347Default value: \fB1,048,576\fR.
348.RE
349
350.sp
351.ne 2
352.na
7f60329a 353\fBzfetch_max_distance\fR (uint)
29714574
TF
354.ad
355.RS 12n
7f60329a 356Max bytes to prefetch per stream (default 8MB).
29714574 357.sp
7f60329a 358Default value: \fB8,388,608\fR.
29714574
TF
359.RE
360
361.sp
362.ne 2
363.na
364\fBzfetch_max_streams\fR (uint)
365.ad
366.RS 12n
27b293be 367Max number of streams per zfetch (prefetch streams per file).
29714574
TF
368.sp
369Default value: \fB8\fR.
370.RE
371
372.sp
373.ne 2
374.na
375\fBzfetch_min_sec_reap\fR (uint)
376.ad
377.RS 12n
27b293be 378Min time before an active prefetch stream can be reclaimed
29714574
TF
379.sp
380Default value: \fB2\fR.
381.RE
382
25458cbe
TC
383.sp
384.ne 2
385.na
386\fBzfs_arc_dnode_limit\fR (ulong)
387.ad
388.RS 12n
389When the number of bytes consumed by dnodes in the ARC exceeds this number of
9907cc1c
G
390bytes, try to unpin some of it in response to demand for non-metadata. This
391value acts as a floor to the amount of dnode metadata, and defaults to 0 which
392indicates that a percent which is based on \fBzfs_arc_dnode_limit_percent\fR of
393the ARC meta buffers that may be used for dnodes.
25458cbe
TC
394
395See also \fBzfs_arc_meta_prune\fR which serves a similar purpose but is used
396when the amount of metadata in the ARC exceeds \fBzfs_arc_meta_limit\fR rather
397than in response to overall demand for non-metadata.
398
399.sp
9907cc1c
G
400Default value: \fB0\fR.
401.RE
402
403.sp
404.ne 2
405.na
406\fBzfs_arc_dnode_limit_percent\fR (ulong)
407.ad
408.RS 12n
409Percentage that can be consumed by dnodes of ARC meta buffers.
410.sp
411See also \fBzfs_arc_dnode_limit\fR which serves a similar purpose but has a
412higher priority if set to nonzero value.
413.sp
414Default value: \fB10\fR.
25458cbe
TC
415.RE
416
417.sp
418.ne 2
419.na
420\fBzfs_arc_dnode_reduce_percent\fR (ulong)
421.ad
422.RS 12n
423Percentage of ARC dnodes to try to scan in response to demand for non-metadata
6146e17e 424when the number of bytes consumed by dnodes exceeds \fBzfs_arc_dnode_limit\fR.
25458cbe
TC
425
426.sp
427Default value: \fB10% of the number of dnodes in the ARC\fR.
428.RE
429
49ddb315
MA
430.sp
431.ne 2
432.na
433\fBzfs_arc_average_blocksize\fR (int)
434.ad
435.RS 12n
436The ARC's buffer hash table is sized based on the assumption of an average
437block size of \fBzfs_arc_average_blocksize\fR (default 8K). This works out
438to roughly 1MB of hash table per 1GB of physical memory with 8-byte pointers.
439For configurations with a known larger average block size this value can be
440increased to reduce the memory footprint.
441
442.sp
443Default value: \fB8192\fR.
444.RE
445
ca0bf58d
PS
446.sp
447.ne 2
448.na
449\fBzfs_arc_evict_batch_limit\fR (int)
450.ad
451.RS 12n
8f343973 452Number ARC headers to evict per sub-list before proceeding to another sub-list.
ca0bf58d
PS
453This batch-style operation prevents entire sub-lists from being evicted at once
454but comes at a cost of additional unlocking and locking.
455.sp
456Default value: \fB10\fR.
457.RE
458
29714574
TF
459.sp
460.ne 2
461.na
462\fBzfs_arc_grow_retry\fR (int)
463.ad
464.RS 12n
83426735
D
465After a memory pressure event the ARC will wait this many seconds before trying
466to resume growth
29714574
TF
467.sp
468Default value: \fB5\fR.
469.RE
470
471.sp
472.ne 2
473.na
7e8bddd0 474\fBzfs_arc_lotsfree_percent\fR (int)
29714574
TF
475.ad
476.RS 12n
7e8bddd0
BB
477Throttle I/O when free system memory drops below this percentage of total
478system memory. Setting this value to 0 will disable the throttle.
29714574 479.sp
7e8bddd0 480Default value: \fB10\fR.
29714574
TF
481.RE
482
483.sp
484.ne 2
485.na
7e8bddd0 486\fBzfs_arc_max\fR (ulong)
29714574
TF
487.ad
488.RS 12n
83426735
D
489Max arc size of ARC in bytes. If set to 0 then it will consume 1/2 of system
490RAM. This value must be at least 67108864 (64 megabytes).
491.sp
492This value can be changed dynamically with some caveats. It cannot be set back
493to 0 while running and reducing it below the current ARC size will not cause
494the ARC to shrink without memory pressure to induce shrinking.
29714574 495.sp
7e8bddd0 496Default value: \fB0\fR.
29714574
TF
497.RE
498
499.sp
500.ne 2
501.na
502\fBzfs_arc_meta_limit\fR (ulong)
503.ad
504.RS 12n
2cbb06b5
BB
505The maximum allowed size in bytes that meta data buffers are allowed to
506consume in the ARC. When this limit is reached meta data buffers will
507be reclaimed even if the overall arc_c_max has not been reached. This
9907cc1c
G
508value defaults to 0 which indicates that a percent which is based on
509\fBzfs_arc_meta_limit_percent\fR of the ARC may be used for meta data.
29714574 510.sp
83426735 511This value my be changed dynamically except that it cannot be set back to 0
9907cc1c 512for a specific percent of the ARC; it must be set to an explicit value.
83426735 513.sp
29714574
TF
514Default value: \fB0\fR.
515.RE
516
9907cc1c
G
517.sp
518.ne 2
519.na
520\fBzfs_arc_meta_limit_percent\fR (ulong)
521.ad
522.RS 12n
523Percentage of ARC buffers that can be used for meta data.
524
525See also \fBzfs_arc_meta_limit\fR which serves a similar purpose but has a
526higher priority if set to nonzero value.
527
528.sp
529Default value: \fB75\fR.
530.RE
531
ca0bf58d
PS
532.sp
533.ne 2
534.na
535\fBzfs_arc_meta_min\fR (ulong)
536.ad
537.RS 12n
538The minimum allowed size in bytes that meta data buffers may consume in
539the ARC. This value defaults to 0 which disables a floor on the amount
540of the ARC devoted meta data.
541.sp
542Default value: \fB0\fR.
543.RE
544
29714574
TF
545.sp
546.ne 2
547.na
548\fBzfs_arc_meta_prune\fR (int)
549.ad
550.RS 12n
2cbb06b5
BB
551The number of dentries and inodes to be scanned looking for entries
552which can be dropped. This may be required when the ARC reaches the
553\fBzfs_arc_meta_limit\fR because dentries and inodes can pin buffers
554in the ARC. Increasing this value will cause to dentry and inode caches
555to be pruned more aggressively. Setting this value to 0 will disable
556pruning the inode and dentry caches.
29714574 557.sp
2cbb06b5 558Default value: \fB10,000\fR.
29714574
TF
559.RE
560
bc888666
BB
561.sp
562.ne 2
563.na
564\fBzfs_arc_meta_adjust_restarts\fR (ulong)
565.ad
566.RS 12n
567The number of restart passes to make while scanning the ARC attempting
568the free buffers in order to stay below the \fBzfs_arc_meta_limit\fR.
569This value should not need to be tuned but is available to facilitate
570performance analysis.
571.sp
572Default value: \fB4096\fR.
573.RE
574
29714574
TF
575.sp
576.ne 2
577.na
578\fBzfs_arc_min\fR (ulong)
579.ad
580.RS 12n
581Min arc size
582.sp
583Default value: \fB100\fR.
584.RE
585
586.sp
587.ne 2
588.na
589\fBzfs_arc_min_prefetch_lifespan\fR (int)
590.ad
591.RS 12n
83426735
D
592Minimum time prefetched blocks are locked in the ARC, specified in jiffies.
593A value of 0 will default to 1 second.
29714574 594.sp
83426735 595Default value: \fB0\fR.
29714574
TF
596.RE
597
ca0bf58d
PS
598.sp
599.ne 2
600.na
601\fBzfs_arc_num_sublists_per_state\fR (int)
602.ad
603.RS 12n
604To allow more fine-grained locking, each ARC state contains a series
605of lists for both data and meta data objects. Locking is performed at
606the level of these "sub-lists". This parameters controls the number of
607sub-lists per ARC state.
608.sp
6146e17e 609Default value: \fB1\fR or the number of online CPUs, whichever is greater
ca0bf58d
PS
610.RE
611
612.sp
613.ne 2
614.na
615\fBzfs_arc_overflow_shift\fR (int)
616.ad
617.RS 12n
618The ARC size is considered to be overflowing if it exceeds the current
619ARC target size (arc_c) by a threshold determined by this parameter.
620The threshold is calculated as a fraction of arc_c using the formula
621"arc_c >> \fBzfs_arc_overflow_shift\fR".
622
623The default value of 8 causes the ARC to be considered to be overflowing
624if it exceeds the target size by 1/256th (0.3%) of the target size.
625
626When the ARC is overflowing, new buffer allocations are stalled until
627the reclaim thread catches up and the overflow condition no longer exists.
628.sp
629Default value: \fB8\fR.
630.RE
631
728d6ae9
BB
632.sp
633.ne 2
634.na
635
636\fBzfs_arc_p_min_shift\fR (int)
637.ad
638.RS 12n
639arc_c shift to calc min/max arc_p
640.sp
641Default value: \fB4\fR.
642.RE
643
89c8cac4
PS
644.sp
645.ne 2
646.na
647\fBzfs_arc_p_aggressive_disable\fR (int)
648.ad
649.RS 12n
650Disable aggressive arc_p growth
651.sp
652Use \fB1\fR for yes (default) and \fB0\fR to disable.
653.RE
654
62422785
PS
655.sp
656.ne 2
657.na
658\fBzfs_arc_p_dampener_disable\fR (int)
659.ad
660.RS 12n
661Disable arc_p adapt dampener
662.sp
663Use \fB1\fR for yes (default) and \fB0\fR to disable.
664.RE
665
29714574
TF
666.sp
667.ne 2
668.na
669\fBzfs_arc_shrink_shift\fR (int)
670.ad
671.RS 12n
672log2(fraction of arc to reclaim)
673.sp
674Default value: \fB5\fR.
675.RE
676
11f552fa
BB
677.sp
678.ne 2
679.na
680\fBzfs_arc_sys_free\fR (ulong)
681.ad
682.RS 12n
683The target number of bytes the ARC should leave as free memory on the system.
684Defaults to the larger of 1/64 of physical memory or 512K. Setting this
685option to a non-zero value will override the default.
686.sp
687Default value: \fB0\fR.
688.RE
689
29714574
TF
690.sp
691.ne 2
692.na
693\fBzfs_autoimport_disable\fR (int)
694.ad
695.RS 12n
27b293be 696Disable pool import at module load by ignoring the cache file (typically \fB/etc/zfs/zpool.cache\fR).
29714574 697.sp
70081096 698Use \fB1\fR for yes (default) and \fB0\fR for no.
29714574
TF
699.RE
700
3b36f831
BB
701.sp
702.ne 2
703.na
704\fBzfs_dbgmsg_enable\fR (int)
705.ad
706.RS 12n
707Internally ZFS keeps a small log to facilitate debugging. By default the log
708is disabled, to enable it set this option to 1. The contents of the log can
709be accessed by reading the /proc/spl/kstat/zfs/dbgmsg file. Writing 0 to
710this proc file clears the log.
711.sp
712Default value: \fB0\fR.
713.RE
714
715.sp
716.ne 2
717.na
718\fBzfs_dbgmsg_maxsize\fR (int)
719.ad
720.RS 12n
721The maximum size in bytes of the internal ZFS debug log.
722.sp
723Default value: \fB4M\fR.
724.RE
725
29714574
TF
726.sp
727.ne 2
728.na
729\fBzfs_dbuf_state_index\fR (int)
730.ad
731.RS 12n
83426735
D
732This feature is currently unused. It is normally used for controlling what
733reporting is available under /proc/spl/kstat/zfs.
29714574
TF
734.sp
735Default value: \fB0\fR.
736.RE
737
738.sp
739.ne 2
740.na
741\fBzfs_deadman_enabled\fR (int)
742.ad
743.RS 12n
83426735 744Enable deadman timer. See description below.
29714574
TF
745.sp
746Use \fB1\fR for yes (default) and \fB0\fR to disable.
747.RE
748
749.sp
750.ne 2
751.na
e8b96c60 752\fBzfs_deadman_synctime_ms\fR (ulong)
29714574
TF
753.ad
754.RS 12n
e8b96c60
MA
755Expiration time in milliseconds. This value has two meanings. First it is
756used to determine when the spa_deadman() logic should fire. By default the
757spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
758Secondly, the value determines if an I/O is considered "hung". Any I/O that
759has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
760in a zevent being logged.
29714574 761.sp
e8b96c60 762Default value: \fB1,000,000\fR.
29714574
TF
763.RE
764
765.sp
766.ne 2
767.na
768\fBzfs_dedup_prefetch\fR (int)
769.ad
770.RS 12n
771Enable prefetching dedup-ed blks
772.sp
0dfc7324 773Use \fB1\fR for yes and \fB0\fR to disable (default).
29714574
TF
774.RE
775
e8b96c60
MA
776.sp
777.ne 2
778.na
779\fBzfs_delay_min_dirty_percent\fR (int)
780.ad
781.RS 12n
782Start to delay each transaction once there is this amount of dirty data,
783expressed as a percentage of \fBzfs_dirty_data_max\fR.
784This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
785See the section "ZFS TRANSACTION DELAY".
786.sp
787Default value: \fB60\fR.
788.RE
789
790.sp
791.ne 2
792.na
793\fBzfs_delay_scale\fR (int)
794.ad
795.RS 12n
796This controls how quickly the transaction delay approaches infinity.
797Larger values cause longer delays for a given amount of dirty data.
798.sp
799For the smoothest delay, this value should be about 1 billion divided
800by the maximum number of operations per second. This will smoothly
801handle between 10x and 1/10th this number.
802.sp
803See the section "ZFS TRANSACTION DELAY".
804.sp
805Note: \fBzfs_delay_scale\fR * \fBzfs_dirty_data_max\fR must be < 2^64.
806.sp
807Default value: \fB500,000\fR.
808.RE
809
a966c564
K
810.sp
811.ne 2
812.na
813\fBzfs_delete_blocks\fR (ulong)
814.ad
815.RS 12n
816This is the used to define a large file for the purposes of delete. Files
817containing more than \fBzfs_delete_blocks\fR will be deleted asynchronously
818while smaller files are deleted synchronously. Decreasing this value will
819reduce the time spent in an unlink(2) system call at the expense of a longer
820delay before the freed space is available.
821.sp
822Default value: \fB20,480\fR.
823.RE
824
e8b96c60
MA
825.sp
826.ne 2
827.na
828\fBzfs_dirty_data_max\fR (int)
829.ad
830.RS 12n
831Determines the dirty space limit in bytes. Once this limit is exceeded, new
832writes are halted until space frees up. This parameter takes precedence
833over \fBzfs_dirty_data_max_percent\fR.
834See the section "ZFS TRANSACTION DELAY".
835.sp
836Default value: 10 percent of all memory, capped at \fBzfs_dirty_data_max_max\fR.
837.RE
838
839.sp
840.ne 2
841.na
842\fBzfs_dirty_data_max_max\fR (int)
843.ad
844.RS 12n
845Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed in bytes.
846This limit is only enforced at module load time, and will be ignored if
847\fBzfs_dirty_data_max\fR is later changed. This parameter takes
848precedence over \fBzfs_dirty_data_max_max_percent\fR. See the section
849"ZFS TRANSACTION DELAY".
850.sp
851Default value: 25% of physical RAM.
852.RE
853
854.sp
855.ne 2
856.na
857\fBzfs_dirty_data_max_max_percent\fR (int)
858.ad
859.RS 12n
860Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed as a
861percentage of physical RAM. This limit is only enforced at module load
862time, and will be ignored if \fBzfs_dirty_data_max\fR is later changed.
863The parameter \fBzfs_dirty_data_max_max\fR takes precedence over this
864one. See the section "ZFS TRANSACTION DELAY".
865.sp
83426735 866Default value: \fN25\fR.
e8b96c60
MA
867.RE
868
869.sp
870.ne 2
871.na
872\fBzfs_dirty_data_max_percent\fR (int)
873.ad
874.RS 12n
875Determines the dirty space limit, expressed as a percentage of all
876memory. Once this limit is exceeded, new writes are halted until space frees
877up. The parameter \fBzfs_dirty_data_max\fR takes precedence over this
878one. See the section "ZFS TRANSACTION DELAY".
879.sp
880Default value: 10%, subject to \fBzfs_dirty_data_max_max\fR.
881.RE
882
883.sp
884.ne 2
885.na
886\fBzfs_dirty_data_sync\fR (int)
887.ad
888.RS 12n
889Start syncing out a transaction group if there is at least this much dirty data.
890.sp
891Default value: \fB67,108,864\fR.
892.RE
893
1eeb4562
JX
894.sp
895.ne 2
896.na
897\fBzfs_fletcher_4_impl\fR (string)
898.ad
899.RS 12n
900Select a fletcher 4 implementation.
901.sp
35a76a03 902Supported selectors are: \fBfastest\fR, \fBscalar\fR, \fBsse2\fR, \fBssse3\fR,
24cdeaf1 903\fBavx2\fR, \fBavx512f\fR, and \fBaarch64_neon\fR.
70b258fc
GN
904All of the selectors except \fBfastest\fR and \fBscalar\fR require instruction
905set extensions to be available and will only appear if ZFS detects that they are
906present at runtime. If multiple implementations of fletcher 4 are available,
907the \fBfastest\fR will be chosen using a micro benchmark. Selecting \fBscalar\fR
908results in the original, CPU based calculation, being used. Selecting any option
909other than \fBfastest\fR and \fBscalar\fR results in vector instructions from
910the respective CPU instruction set being used.
1eeb4562
JX
911.sp
912Default value: \fBfastest\fR.
913.RE
914
ba5ad9a4
GW
915.sp
916.ne 2
917.na
918\fBzfs_free_bpobj_enabled\fR (int)
919.ad
920.RS 12n
921Enable/disable the processing of the free_bpobj object.
922.sp
923Default value: \fB1\fR.
924.RE
925
36283ca2
MG
926.sp
927.ne 2
928.na
929\fBzfs_free_max_blocks\fR (ulong)
930.ad
931.RS 12n
932Maximum number of blocks freed in a single txg.
933.sp
934Default value: \fB100,000\fR.
935.RE
936
e8b96c60
MA
937.sp
938.ne 2
939.na
940\fBzfs_vdev_async_read_max_active\fR (int)
941.ad
942.RS 12n
83426735 943Maximum asynchronous read I/Os active to each device.
e8b96c60
MA
944See the section "ZFS I/O SCHEDULER".
945.sp
946Default value: \fB3\fR.
947.RE
948
949.sp
950.ne 2
951.na
952\fBzfs_vdev_async_read_min_active\fR (int)
953.ad
954.RS 12n
955Minimum asynchronous read I/Os active to each device.
956See the section "ZFS I/O SCHEDULER".
957.sp
958Default value: \fB1\fR.
959.RE
960
961.sp
962.ne 2
963.na
964\fBzfs_vdev_async_write_active_max_dirty_percent\fR (int)
965.ad
966.RS 12n
967When the pool has more than
968\fBzfs_vdev_async_write_active_max_dirty_percent\fR dirty data, use
969\fBzfs_vdev_async_write_max_active\fR to limit active async writes. If
970the dirty data is between min and max, the active I/O limit is linearly
971interpolated. See the section "ZFS I/O SCHEDULER".
972.sp
973Default value: \fB60\fR.
974.RE
975
976.sp
977.ne 2
978.na
979\fBzfs_vdev_async_write_active_min_dirty_percent\fR (int)
980.ad
981.RS 12n
982When the pool has less than
983\fBzfs_vdev_async_write_active_min_dirty_percent\fR dirty data, use
984\fBzfs_vdev_async_write_min_active\fR to limit active async writes. If
985the dirty data is between min and max, the active I/O limit is linearly
986interpolated. See the section "ZFS I/O SCHEDULER".
987.sp
988Default value: \fB30\fR.
989.RE
990
991.sp
992.ne 2
993.na
994\fBzfs_vdev_async_write_max_active\fR (int)
995.ad
996.RS 12n
83426735 997Maximum asynchronous write I/Os active to each device.
e8b96c60
MA
998See the section "ZFS I/O SCHEDULER".
999.sp
1000Default value: \fB10\fR.
1001.RE
1002
1003.sp
1004.ne 2
1005.na
1006\fBzfs_vdev_async_write_min_active\fR (int)
1007.ad
1008.RS 12n
1009Minimum asynchronous write I/Os active to each device.
1010See the section "ZFS I/O SCHEDULER".
1011.sp
1012Default value: \fB1\fR.
1013.RE
1014
1015.sp
1016.ne 2
1017.na
1018\fBzfs_vdev_max_active\fR (int)
1019.ad
1020.RS 12n
1021The maximum number of I/Os active to each device. Ideally, this will be >=
1022the sum of each queue's max_active. It must be at least the sum of each
1023queue's min_active. See the section "ZFS I/O SCHEDULER".
1024.sp
1025Default value: \fB1,000\fR.
1026.RE
1027
1028.sp
1029.ne 2
1030.na
1031\fBzfs_vdev_scrub_max_active\fR (int)
1032.ad
1033.RS 12n
83426735 1034Maximum scrub I/Os active to each device.
e8b96c60
MA
1035See the section "ZFS I/O SCHEDULER".
1036.sp
1037Default value: \fB2\fR.
1038.RE
1039
1040.sp
1041.ne 2
1042.na
1043\fBzfs_vdev_scrub_min_active\fR (int)
1044.ad
1045.RS 12n
1046Minimum scrub I/Os active to each device.
1047See the section "ZFS I/O SCHEDULER".
1048.sp
1049Default value: \fB1\fR.
1050.RE
1051
1052.sp
1053.ne 2
1054.na
1055\fBzfs_vdev_sync_read_max_active\fR (int)
1056.ad
1057.RS 12n
83426735 1058Maximum synchronous read I/Os active to each device.
e8b96c60
MA
1059See the section "ZFS I/O SCHEDULER".
1060.sp
1061Default value: \fB10\fR.
1062.RE
1063
1064.sp
1065.ne 2
1066.na
1067\fBzfs_vdev_sync_read_min_active\fR (int)
1068.ad
1069.RS 12n
1070Minimum synchronous read I/Os active to each device.
1071See the section "ZFS I/O SCHEDULER".
1072.sp
1073Default value: \fB10\fR.
1074.RE
1075
1076.sp
1077.ne 2
1078.na
1079\fBzfs_vdev_sync_write_max_active\fR (int)
1080.ad
1081.RS 12n
83426735 1082Maximum synchronous write I/Os active to each device.
e8b96c60
MA
1083See the section "ZFS I/O SCHEDULER".
1084.sp
1085Default value: \fB10\fR.
1086.RE
1087
1088.sp
1089.ne 2
1090.na
1091\fBzfs_vdev_sync_write_min_active\fR (int)
1092.ad
1093.RS 12n
1094Minimum synchronous write I/Os active to each device.
1095See the section "ZFS I/O SCHEDULER".
1096.sp
1097Default value: \fB10\fR.
1098.RE
1099
3dfb57a3
DB
1100.sp
1101.ne 2
1102.na
1103\fBzfs_vdev_queue_depth_pct\fR (int)
1104.ad
1105.RS 12n
1106The queue depth percentage for each top-level virtual device.
1107Used in conjunction with zfs_vdev_async_max_active.
1108.sp
1109Default value: \fB1000\fR.
1110.RE
1111
29714574
TF
1112.sp
1113.ne 2
1114.na
1115\fBzfs_disable_dup_eviction\fR (int)
1116.ad
1117.RS 12n
1118Disable duplicate buffer eviction
1119.sp
1120Use \fB1\fR for yes and \fB0\fR for no (default).
1121.RE
1122
1123.sp
1124.ne 2
1125.na
1126\fBzfs_expire_snapshot\fR (int)
1127.ad
1128.RS 12n
1129Seconds to expire .zfs/snapshot
1130.sp
1131Default value: \fB300\fR.
1132.RE
1133
0500e835
BB
1134.sp
1135.ne 2
1136.na
1137\fBzfs_admin_snapshot\fR (int)
1138.ad
1139.RS 12n
1140Allow the creation, removal, or renaming of entries in the .zfs/snapshot
1141directory to cause the creation, destruction, or renaming of snapshots.
1142When enabled this functionality works both locally and over NFS exports
1143which have the 'no_root_squash' option set. This functionality is disabled
1144by default.
1145.sp
1146Use \fB1\fR for yes and \fB0\fR for no (default).
1147.RE
1148
29714574
TF
1149.sp
1150.ne 2
1151.na
1152\fBzfs_flags\fR (int)
1153.ad
1154.RS 12n
33b6dbbc
NB
1155Set additional debugging flags. The following flags may be bitwise-or'd
1156together.
1157.sp
1158.TS
1159box;
1160rB lB
1161lB lB
1162r l.
1163Value Symbolic Name
1164 Description
1165_
11661 ZFS_DEBUG_DPRINTF
1167 Enable dprintf entries in the debug log.
1168_
11692 ZFS_DEBUG_DBUF_VERIFY *
1170 Enable extra dbuf verifications.
1171_
11724 ZFS_DEBUG_DNODE_VERIFY *
1173 Enable extra dnode verifications.
1174_
11758 ZFS_DEBUG_SNAPNAMES
1176 Enable snapshot name verification.
1177_
117816 ZFS_DEBUG_MODIFY
1179 Check for illegally modified ARC buffers.
1180_
118132 ZFS_DEBUG_SPA
1182 Enable spa_dbgmsg entries in the debug log.
1183_
118464 ZFS_DEBUG_ZIO_FREE
1185 Enable verification of block frees.
1186_
1187128 ZFS_DEBUG_HISTOGRAM_VERIFY
1188 Enable extra spacemap histogram verifications.
1189.TE
1190.sp
1191* Requires debug build.
29714574 1192.sp
33b6dbbc 1193Default value: \fB0\fR.
29714574
TF
1194.RE
1195
fbeddd60
MA
1196.sp
1197.ne 2
1198.na
1199\fBzfs_free_leak_on_eio\fR (int)
1200.ad
1201.RS 12n
1202If destroy encounters an EIO while reading metadata (e.g. indirect
1203blocks), space referenced by the missing metadata can not be freed.
1204Normally this causes the background destroy to become "stalled", as
1205it is unable to make forward progress. While in this stalled state,
1206all remaining space to free from the error-encountering filesystem is
1207"temporarily leaked". Set this flag to cause it to ignore the EIO,
1208permanently leak the space from indirect blocks that can not be read,
1209and continue to free everything else that it can.
1210
1211The default, "stalling" behavior is useful if the storage partially
1212fails (i.e. some but not all i/os fail), and then later recovers. In
1213this case, we will be able to continue pool operations while it is
1214partially failed, and when it recovers, we can continue to free the
1215space, with no leaks. However, note that this case is actually
1216fairly rare.
1217
1218Typically pools either (a) fail completely (but perhaps temporarily,
1219e.g. a top-level vdev going offline), or (b) have localized,
1220permanent errors (e.g. disk returns the wrong data due to bit flip or
1221firmware bug). In case (a), this setting does not matter because the
1222pool will be suspended and the sync thread will not be able to make
1223forward progress regardless. In case (b), because the error is
1224permanent, the best we can do is leak the minimum amount of space,
1225which is what setting this flag will do. Therefore, it is reasonable
1226for this flag to normally be set, but we chose the more conservative
1227approach of not setting it, so that there is no possibility of
1228leaking space in the "partial temporary" failure case.
1229.sp
1230Default value: \fB0\fR.
1231.RE
1232
29714574
TF
1233.sp
1234.ne 2
1235.na
1236\fBzfs_free_min_time_ms\fR (int)
1237.ad
1238.RS 12n
6146e17e 1239During a \fBzfs destroy\fR operation using \fBfeature@async_destroy\fR a minimum
83426735 1240of this much time will be spent working on freeing blocks per txg.
29714574
TF
1241.sp
1242Default value: \fB1,000\fR.
1243.RE
1244
1245.sp
1246.ne 2
1247.na
1248\fBzfs_immediate_write_sz\fR (long)
1249.ad
1250.RS 12n
83426735 1251Largest data block to write to zil. Larger blocks will be treated as if the
6146e17e 1252dataset being written to had the property setting \fBlogbias=throughput\fR.
29714574
TF
1253.sp
1254Default value: \fB32,768\fR.
1255.RE
1256
f1512ee6
MA
1257.sp
1258.ne 2
1259.na
1260\fBzfs_max_recordsize\fR (int)
1261.ad
1262.RS 12n
1263We currently support block sizes from 512 bytes to 16MB. The benefits of
1264larger blocks, and thus larger IO, need to be weighed against the cost of
1265COWing a giant block to modify one byte. Additionally, very large blocks
1266can have an impact on i/o latency, and also potentially on the memory
1267allocator. Therefore, we do not allow the recordsize to be set larger than
1268zfs_max_recordsize (default 1MB). Larger blocks can be created by changing
1269this tunable, and pools with larger blocks can always be imported and used,
1270regardless of this setting.
1271.sp
1272Default value: \fB1,048,576\fR.
1273.RE
1274
29714574
TF
1275.sp
1276.ne 2
1277.na
1278\fBzfs_mdcomp_disable\fR (int)
1279.ad
1280.RS 12n
1281Disable meta data compression
1282.sp
1283Use \fB1\fR for yes and \fB0\fR for no (default).
1284.RE
1285
f3a7f661
GW
1286.sp
1287.ne 2
1288.na
1289\fBzfs_metaslab_fragmentation_threshold\fR (int)
1290.ad
1291.RS 12n
1292Allow metaslabs to keep their active state as long as their fragmentation
1293percentage is less than or equal to this value. An active metaslab that
1294exceeds this threshold will no longer keep its active status allowing
1295better metaslabs to be selected.
1296.sp
1297Default value: \fB70\fR.
1298.RE
1299
1300.sp
1301.ne 2
1302.na
1303\fBzfs_mg_fragmentation_threshold\fR (int)
1304.ad
1305.RS 12n
1306Metaslab groups are considered eligible for allocations if their
83426735 1307fragmentation metric (measured as a percentage) is less than or equal to
f3a7f661
GW
1308this value. If a metaslab group exceeds this threshold then it will be
1309skipped unless all metaslab groups within the metaslab class have also
1310crossed this threshold.
1311.sp
1312Default value: \fB85\fR.
1313.RE
1314
f4a4046b
TC
1315.sp
1316.ne 2
1317.na
1318\fBzfs_mg_noalloc_threshold\fR (int)
1319.ad
1320.RS 12n
1321Defines a threshold at which metaslab groups should be eligible for
1322allocations. The value is expressed as a percentage of free space
1323beyond which a metaslab group is always eligible for allocations.
1324If a metaslab group's free space is less than or equal to the
6b4e21c6 1325threshold, the allocator will avoid allocating to that group
f4a4046b
TC
1326unless all groups in the pool have reached the threshold. Once all
1327groups have reached the threshold, all groups are allowed to accept
1328allocations. The default value of 0 disables the feature and causes
1329all metaslab groups to be eligible for allocations.
1330
1331This parameter allows to deal with pools having heavily imbalanced
1332vdevs such as would be the case when a new vdev has been added.
1333Setting the threshold to a non-zero percentage will stop allocations
1334from being made to vdevs that aren't filled to the specified percentage
1335and allow lesser filled vdevs to acquire more allocations than they
1336otherwise would under the old \fBzfs_mg_alloc_failures\fR facility.
1337.sp
1338Default value: \fB0\fR.
1339.RE
1340
29714574
TF
1341.sp
1342.ne 2
1343.na
1344\fBzfs_no_scrub_io\fR (int)
1345.ad
1346.RS 12n
83426735
D
1347Set for no scrub I/O. This results in scrubs not actually scrubbing data and
1348simply doing a metadata crawl of the pool instead.
29714574
TF
1349.sp
1350Use \fB1\fR for yes and \fB0\fR for no (default).
1351.RE
1352
1353.sp
1354.ne 2
1355.na
1356\fBzfs_no_scrub_prefetch\fR (int)
1357.ad
1358.RS 12n
83426735 1359Set to disable block prefetching for scrubs.
29714574
TF
1360.sp
1361Use \fB1\fR for yes and \fB0\fR for no (default).
1362.RE
1363
29714574
TF
1364.sp
1365.ne 2
1366.na
1367\fBzfs_nocacheflush\fR (int)
1368.ad
1369.RS 12n
83426735
D
1370Disable cache flush operations on disks when writing. Beware, this may cause
1371corruption if disks re-order writes.
29714574
TF
1372.sp
1373Use \fB1\fR for yes and \fB0\fR for no (default).
1374.RE
1375
1376.sp
1377.ne 2
1378.na
1379\fBzfs_nopwrite_enabled\fR (int)
1380.ad
1381.RS 12n
1382Enable NOP writes
1383.sp
1384Use \fB1\fR for yes (default) and \fB0\fR to disable.
1385.RE
1386
1387.sp
1388.ne 2
1389.na
b738bc5a 1390\fBzfs_pd_bytes_max\fR (int)
29714574
TF
1391.ad
1392.RS 12n
83426735 1393The number of bytes which should be prefetched during a pool traversal
6146e17e 1394(eg: \fBzfs send\fR or other data crawling operations)
29714574 1395.sp
74aa2ba2 1396Default value: \fB52,428,800\fR.
29714574
TF
1397.RE
1398
1399.sp
1400.ne 2
1401.na
1402\fBzfs_prefetch_disable\fR (int)
1403.ad
1404.RS 12n
7f60329a
MA
1405This tunable disables predictive prefetch. Note that it leaves "prescient"
1406prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
1407prescient prefetch never issues i/os that end up not being needed, so it
1408can't hurt performance.
29714574
TF
1409.sp
1410Use \fB1\fR for yes and \fB0\fR for no (default).
1411.RE
1412
1413.sp
1414.ne 2
1415.na
1416\fBzfs_read_chunk_size\fR (long)
1417.ad
1418.RS 12n
1419Bytes to read per chunk
1420.sp
1421Default value: \fB1,048,576\fR.
1422.RE
1423
1424.sp
1425.ne 2
1426.na
1427\fBzfs_read_history\fR (int)
1428.ad
1429.RS 12n
83426735
D
1430Historic statistics for the last N reads will be available in
1431\fR/proc/spl/kstat/zfs/POOLNAME/reads\fB
29714574 1432.sp
83426735 1433Default value: \fB0\fR (no data is kept).
29714574
TF
1434.RE
1435
1436.sp
1437.ne 2
1438.na
1439\fBzfs_read_history_hits\fR (int)
1440.ad
1441.RS 12n
1442Include cache hits in read history
1443.sp
1444Use \fB1\fR for yes and \fB0\fR for no (default).
1445.RE
1446
1447.sp
1448.ne 2
1449.na
1450\fBzfs_recover\fR (int)
1451.ad
1452.RS 12n
1453Set to attempt to recover from fatal errors. This should only be used as a
1454last resort, as it typically results in leaked space, or worse.
1455.sp
1456Use \fB1\fR for yes and \fB0\fR for no (default).
1457.RE
1458
1459.sp
1460.ne 2
1461.na
1462\fBzfs_resilver_delay\fR (int)
1463.ad
1464.RS 12n
27b293be
TC
1465Number of ticks to delay prior to issuing a resilver I/O operation when
1466a non-resilver or non-scrub I/O operation has occurred within the past
1467\fBzfs_scan_idle\fR ticks.
29714574
TF
1468.sp
1469Default value: \fB2\fR.
1470.RE
1471
1472.sp
1473.ne 2
1474.na
1475\fBzfs_resilver_min_time_ms\fR (int)
1476.ad
1477.RS 12n
83426735
D
1478Resilvers are processed by the sync thread. While resilvering it will spend
1479at least this much time working on a resilver between txg flushes.
29714574
TF
1480.sp
1481Default value: \fB3,000\fR.
1482.RE
1483
1484.sp
1485.ne 2
1486.na
1487\fBzfs_scan_idle\fR (int)
1488.ad
1489.RS 12n
27b293be
TC
1490Idle window in clock ticks. During a scrub or a resilver, if
1491a non-scrub or non-resilver I/O operation has occurred during this
1492window, the next scrub or resilver operation is delayed by, respectively
1493\fBzfs_scrub_delay\fR or \fBzfs_resilver_delay\fR ticks.
29714574
TF
1494.sp
1495Default value: \fB50\fR.
1496.RE
1497
1498.sp
1499.ne 2
1500.na
1501\fBzfs_scan_min_time_ms\fR (int)
1502.ad
1503.RS 12n
83426735
D
1504Scrubs are processed by the sync thread. While scrubbing it will spend
1505at least this much time working on a scrub between txg flushes.
29714574
TF
1506.sp
1507Default value: \fB1,000\fR.
1508.RE
1509
1510.sp
1511.ne 2
1512.na
1513\fBzfs_scrub_delay\fR (int)
1514.ad
1515.RS 12n
27b293be
TC
1516Number of ticks to delay prior to issuing a scrub I/O operation when
1517a non-scrub or non-resilver I/O operation has occurred within the past
1518\fBzfs_scan_idle\fR ticks.
29714574
TF
1519.sp
1520Default value: \fB4\fR.
1521.RE
1522
fd8febbd
TF
1523.sp
1524.ne 2
1525.na
1526\fBzfs_send_corrupt_data\fR (int)
1527.ad
1528.RS 12n
83426735 1529Allow sending of corrupt data (ignore read/checksum errors when sending data)
fd8febbd
TF
1530.sp
1531Use \fB1\fR for yes and \fB0\fR for no (default).
1532.RE
1533
29714574
TF
1534.sp
1535.ne 2
1536.na
1537\fBzfs_sync_pass_deferred_free\fR (int)
1538.ad
1539.RS 12n
83426735 1540Flushing of data to disk is done in passes. Defer frees starting in this pass
29714574
TF
1541.sp
1542Default value: \fB2\fR.
1543.RE
1544
1545.sp
1546.ne 2
1547.na
1548\fBzfs_sync_pass_dont_compress\fR (int)
1549.ad
1550.RS 12n
1551Don't compress starting in this pass
1552.sp
1553Default value: \fB5\fR.
1554.RE
1555
1556.sp
1557.ne 2
1558.na
1559\fBzfs_sync_pass_rewrite\fR (int)
1560.ad
1561.RS 12n
83426735 1562Rewrite new block pointers starting in this pass
29714574
TF
1563.sp
1564Default value: \fB2\fR.
1565.RE
1566
1567.sp
1568.ne 2
1569.na
1570\fBzfs_top_maxinflight\fR (int)
1571.ad
1572.RS 12n
83426735
D
1573Max concurrent I/Os per top-level vdev (mirrors or raidz arrays) allowed during
1574scrub or resilver operations.
29714574
TF
1575.sp
1576Default value: \fB32\fR.
1577.RE
1578
1579.sp
1580.ne 2
1581.na
1582\fBzfs_txg_history\fR (int)
1583.ad
1584.RS 12n
83426735
D
1585Historic statistics for the last N txgs will be available in
1586\fR/proc/spl/kstat/zfs/POOLNAME/txgs\fB
29714574
TF
1587.sp
1588Default value: \fB0\fR.
1589.RE
1590
29714574
TF
1591.sp
1592.ne 2
1593.na
1594\fBzfs_txg_timeout\fR (int)
1595.ad
1596.RS 12n
83426735 1597Flush dirty data to disk at least every N seconds (maximum txg duration)
29714574
TF
1598.sp
1599Default value: \fB5\fR.
1600.RE
1601
1602.sp
1603.ne 2
1604.na
1605\fBzfs_vdev_aggregation_limit\fR (int)
1606.ad
1607.RS 12n
1608Max vdev I/O aggregation size
1609.sp
1610Default value: \fB131,072\fR.
1611.RE
1612
1613.sp
1614.ne 2
1615.na
1616\fBzfs_vdev_cache_bshift\fR (int)
1617.ad
1618.RS 12n
1619Shift size to inflate reads too
1620.sp
83426735 1621Default value: \fB16\fR (effectively 65536).
29714574
TF
1622.RE
1623
1624.sp
1625.ne 2
1626.na
1627\fBzfs_vdev_cache_max\fR (int)
1628.ad
1629.RS 12n
83426735
D
1630Inflate reads small than this value to meet the \fBzfs_vdev_cache_bshift\fR
1631size.
1632.sp
1633Default value: \fB16384\fR.
29714574
TF
1634.RE
1635
1636.sp
1637.ne 2
1638.na
1639\fBzfs_vdev_cache_size\fR (int)
1640.ad
1641.RS 12n
83426735
D
1642Total size of the per-disk cache in bytes.
1643.sp
1644Currently this feature is disabled as it has been found to not be helpful
1645for performance and in some cases harmful.
29714574
TF
1646.sp
1647Default value: \fB0\fR.
1648.RE
1649
29714574
TF
1650.sp
1651.ne 2
1652.na
9f500936 1653\fBzfs_vdev_mirror_rotating_inc\fR (int)
29714574
TF
1654.ad
1655.RS 12n
9f500936 1656A number by which the balancing algorithm increments the load calculation for
1657the purpose of selecting the least busy mirror member when an I/O immediately
1658follows its predecessor on rotational vdevs for the purpose of making decisions
1659based on load.
29714574 1660.sp
9f500936 1661Default value: \fB0\fR.
1662.RE
1663
1664.sp
1665.ne 2
1666.na
1667\fBzfs_vdev_mirror_rotating_seek_inc\fR (int)
1668.ad
1669.RS 12n
1670A number by which the balancing algorithm increments the load calculation for
1671the purpose of selecting the least busy mirror member when an I/O lacks
1672locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
1673this that are not immediately following the previous I/O are incremented by
1674half.
1675.sp
1676Default value: \fB5\fR.
1677.RE
1678
1679.sp
1680.ne 2
1681.na
1682\fBzfs_vdev_mirror_rotating_seek_offset\fR (int)
1683.ad
1684.RS 12n
1685The maximum distance for the last queued I/O in which the balancing algorithm
1686considers an I/O to have locality.
1687See the section "ZFS I/O SCHEDULER".
1688.sp
1689Default value: \fB1048576\fR.
1690.RE
1691
1692.sp
1693.ne 2
1694.na
1695\fBzfs_vdev_mirror_non_rotating_inc\fR (int)
1696.ad
1697.RS 12n
1698A number by which the balancing algorithm increments the load calculation for
1699the purpose of selecting the least busy mirror member on non-rotational vdevs
1700when I/Os do not immediately follow one another.
1701.sp
1702Default value: \fB0\fR.
1703.RE
1704
1705.sp
1706.ne 2
1707.na
1708\fBzfs_vdev_mirror_non_rotating_seek_inc\fR (int)
1709.ad
1710.RS 12n
1711A number by which the balancing algorithm increments the load calculation for
1712the purpose of selecting the least busy mirror member when an I/O lacks
1713locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
1714this that are not immediately following the previous I/O are incremented by
1715half.
1716.sp
1717Default value: \fB1\fR.
29714574
TF
1718.RE
1719
29714574
TF
1720.sp
1721.ne 2
1722.na
1723\fBzfs_vdev_read_gap_limit\fR (int)
1724.ad
1725.RS 12n
83426735
D
1726Aggregate read I/O operations if the gap on-disk between them is within this
1727threshold.
29714574
TF
1728.sp
1729Default value: \fB32,768\fR.
1730.RE
1731
1732.sp
1733.ne 2
1734.na
1735\fBzfs_vdev_scheduler\fR (charp)
1736.ad
1737.RS 12n
83426735 1738Set the Linux I/O scheduler on whole disk vdevs to this scheduler
29714574
TF
1739.sp
1740Default value: \fBnoop\fR.
1741.RE
1742
29714574
TF
1743.sp
1744.ne 2
1745.na
1746\fBzfs_vdev_write_gap_limit\fR (int)
1747.ad
1748.RS 12n
1749Aggregate write I/O over gap
1750.sp
1751Default value: \fB4,096\fR.
1752.RE
1753
ab9f4b0b
GN
1754.sp
1755.ne 2
1756.na
1757\fBzfs_vdev_raidz_impl\fR (string)
1758.ad
1759.RS 12n
c9187d86 1760Parameter for selecting raidz parity implementation to use.
ab9f4b0b
GN
1761
1762Options marked (always) below may be selected on module load as they are
1763supported on all systems.
1764The remaining options may only be set after the module is loaded, as they
1765are available only if the implementations are compiled in and supported
1766on the running system.
1767
1768Once the module is loaded, the content of
1769/sys/module/zfs/parameters/zfs_vdev_raidz_impl will show available options
1770with the currently selected one enclosed in [].
1771Possible options are:
1772 fastest - (always) implementation selected using built-in benchmark
1773 original - (always) original raidz implementation
1774 scalar - (always) scalar raidz implementation
ae25d222
GN
1775 sse2 - implementation using SSE2 instruction set (64bit x86 only)
1776 ssse3 - implementation using SSSE3 instruction set (64bit x86 only)
ab9f4b0b 1777 avx2 - implementation using AVX2 instruction set (64bit x86 only)
7f547f85
RD
1778 avx512f - implementation using AVX512F instruction set (64bit x86 only)
1779 avx512bw - implementation using AVX512F & AVX512BW instruction sets (64bit x86 only)
62a65a65
RD
1780 aarch64_neon - implementation using NEON (Aarch64/64 bit ARMv8 only)
1781 aarch64_neonx2 - implementation using NEON with more unrolling (Aarch64/64 bit ARMv8 only)
ab9f4b0b
GN
1782.sp
1783Default value: \fBfastest\fR.
1784.RE
1785
29714574
TF
1786.sp
1787.ne 2
1788.na
1789\fBzfs_zevent_cols\fR (int)
1790.ad
1791.RS 12n
83426735 1792When zevents are logged to the console use this as the word wrap width.
29714574
TF
1793.sp
1794Default value: \fB80\fR.
1795.RE
1796
1797.sp
1798.ne 2
1799.na
1800\fBzfs_zevent_console\fR (int)
1801.ad
1802.RS 12n
1803Log events to the console
1804.sp
1805Use \fB1\fR for yes and \fB0\fR for no (default).
1806.RE
1807
1808.sp
1809.ne 2
1810.na
1811\fBzfs_zevent_len_max\fR (int)
1812.ad
1813.RS 12n
83426735
D
1814Max event queue length. A value of 0 will result in a calculated value which
1815increases with the number of CPUs in the system (minimum 64 events). Events
1816in the queue can be viewed with the \fBzpool events\fR command.
29714574
TF
1817.sp
1818Default value: \fB0\fR.
1819.RE
1820
1821.sp
1822.ne 2
1823.na
1824\fBzil_replay_disable\fR (int)
1825.ad
1826.RS 12n
83426735
D
1827Disable intent logging replay. Can be disabled for recovery from corrupted
1828ZIL
29714574
TF
1829.sp
1830Use \fB1\fR for yes and \fB0\fR for no (default).
1831.RE
1832
1833.sp
1834.ne 2
1835.na
1836\fBzil_slog_limit\fR (ulong)
1837.ad
1838.RS 12n
1839Max commit bytes to separate log device
1840.sp
1841Default value: \fB1,048,576\fR.
1842.RE
1843
29714574
TF
1844.sp
1845.ne 2
1846.na
1847\fBzio_delay_max\fR (int)
1848.ad
1849.RS 12n
83426735 1850A zevent will be logged if a ZIO operation takes more than N milliseconds to
ab9f4b0b 1851complete. Note that this is only a logging facility, not a timeout on
83426735 1852operations.
29714574
TF
1853.sp
1854Default value: \fB30,000\fR.
1855.RE
1856
3dfb57a3
DB
1857.sp
1858.ne 2
1859.na
1860\fBzio_dva_throttle_enabled\fR (int)
1861.ad
1862.RS 12n
1863Throttle block allocations in the ZIO pipeline. This allows for
1864dynamic allocation distribution when devices are imbalanced.
1865.sp
76a87a90 1866Default value: \fB0\fR.
3dfb57a3
DB
1867.RE
1868
29714574
TF
1869.sp
1870.ne 2
1871.na
1872\fBzio_requeue_io_start_cut_in_line\fR (int)
1873.ad
1874.RS 12n
1875Prioritize requeued I/O
1876.sp
1877Default value: \fB0\fR.
1878.RE
1879
dcb6bed1
D
1880.sp
1881.ne 2
1882.na
1883\fBzio_taskq_batch_pct\fR (uint)
1884.ad
1885.RS 12n
1886Percentage of online CPUs (or CPU cores, etc) which will run a worker thread
1887for IO. These workers are responsible for IO work such as compression and
1888checksum calculations. Fractional number of CPUs will be rounded down.
1889.sp
1890The default value of 75 was chosen to avoid using all CPUs which can result in
1891latency issues and inconsistent application performance, especially when high
1892compression is enabled.
1893.sp
1894Default value: \fB75\fR.
1895.RE
1896
29714574
TF
1897.sp
1898.ne 2
1899.na
1900\fBzvol_inhibit_dev\fR (uint)
1901.ad
1902.RS 12n
83426735
D
1903Do not create zvol device nodes. This may slightly improve startup time on
1904systems with a very large number of zvols.
29714574
TF
1905.sp
1906Use \fB1\fR for yes and \fB0\fR for no (default).
1907.RE
1908
1909.sp
1910.ne 2
1911.na
1912\fBzvol_major\fR (uint)
1913.ad
1914.RS 12n
83426735 1915Major number for zvol block devices
29714574
TF
1916.sp
1917Default value: \fB230\fR.
1918.RE
1919
1920.sp
1921.ne 2
1922.na
1923\fBzvol_max_discard_blocks\fR (ulong)
1924.ad
1925.RS 12n
83426735
D
1926Discard (aka TRIM) operations done on zvols will be done in batches of this
1927many blocks, where block size is determined by the \fBvolblocksize\fR property
1928of a zvol.
29714574
TF
1929.sp
1930Default value: \fB16,384\fR.
1931.RE
1932
9965059a
BB
1933.sp
1934.ne 2
1935.na
1936\fBzvol_prefetch_bytes\fR (uint)
1937.ad
1938.RS 12n
1939When adding a zvol to the system prefetch \fBzvol_prefetch_bytes\fR
1940from the start and end of the volume. Prefetching these regions
1941of the volume is desirable because they are likely to be accessed
1942immediately by \fBblkid(8)\fR or by the kernel scanning for a partition
1943table.
1944.sp
1945Default value: \fB131,072\fR.
1946.RE
1947
e8b96c60
MA
1948.SH ZFS I/O SCHEDULER
1949ZFS issues I/O operations to leaf vdevs to satisfy and complete I/Os.
1950The I/O scheduler determines when and in what order those operations are
1951issued. The I/O scheduler divides operations into five I/O classes
1952prioritized in the following order: sync read, sync write, async read,
1953async write, and scrub/resilver. Each queue defines the minimum and
1954maximum number of concurrent operations that may be issued to the
1955device. In addition, the device has an aggregate maximum,
1956\fBzfs_vdev_max_active\fR. Note that the sum of the per-queue minimums
1957must not exceed the aggregate maximum. If the sum of the per-queue
1958maximums exceeds the aggregate maximum, then the number of active I/Os
1959may reach \fBzfs_vdev_max_active\fR, in which case no further I/Os will
1960be issued regardless of whether all per-queue minimums have been met.
1961.sp
1962For many physical devices, throughput increases with the number of
1963concurrent operations, but latency typically suffers. Further, physical
1964devices typically have a limit at which more concurrent operations have no
1965effect on throughput or can actually cause it to decrease.
1966.sp
1967The scheduler selects the next operation to issue by first looking for an
1968I/O class whose minimum has not been satisfied. Once all are satisfied and
1969the aggregate maximum has not been hit, the scheduler looks for classes
1970whose maximum has not been satisfied. Iteration through the I/O classes is
1971done in the order specified above. No further operations are issued if the
1972aggregate maximum number of concurrent operations has been hit or if there
1973are no operations queued for an I/O class that has not hit its maximum.
1974Every time an I/O is queued or an operation completes, the I/O scheduler
1975looks for new operations to issue.
1976.sp
1977In general, smaller max_active's will lead to lower latency of synchronous
1978operations. Larger max_active's may lead to higher overall throughput,
1979depending on underlying storage.
1980.sp
1981The ratio of the queues' max_actives determines the balance of performance
1982between reads, writes, and scrubs. E.g., increasing
1983\fBzfs_vdev_scrub_max_active\fR will cause the scrub or resilver to complete
1984more quickly, but reads and writes to have higher latency and lower throughput.
1985.sp
1986All I/O classes have a fixed maximum number of outstanding operations
1987except for the async write class. Asynchronous writes represent the data
1988that is committed to stable storage during the syncing stage for
1989transaction groups. Transaction groups enter the syncing state
1990periodically so the number of queued async writes will quickly burst up
1991and then bleed down to zero. Rather than servicing them as quickly as
1992possible, the I/O scheduler changes the maximum number of active async
1993write I/Os according to the amount of dirty data in the pool. Since
1994both throughput and latency typically increase with the number of
1995concurrent operations issued to physical devices, reducing the
1996burstiness in the number of concurrent operations also stabilizes the
1997response time of operations from other -- and in particular synchronous
1998-- queues. In broad strokes, the I/O scheduler will issue more
1999concurrent operations from the async write queue as there's more dirty
2000data in the pool.
2001.sp
2002Async Writes
2003.sp
2004The number of concurrent operations issued for the async write I/O class
2005follows a piece-wise linear function defined by a few adjustable points.
2006.nf
2007
2008 | o---------| <-- zfs_vdev_async_write_max_active
2009 ^ | /^ |
2010 | | / | |
2011active | / | |
2012 I/O | / | |
2013count | / | |
2014 | / | |
2015 |-------o | | <-- zfs_vdev_async_write_min_active
2016 0|_______^______|_________|
2017 0% | | 100% of zfs_dirty_data_max
2018 | |
2019 | `-- zfs_vdev_async_write_active_max_dirty_percent
2020 `--------- zfs_vdev_async_write_active_min_dirty_percent
2021
2022.fi
2023Until the amount of dirty data exceeds a minimum percentage of the dirty
2024data allowed in the pool, the I/O scheduler will limit the number of
2025concurrent operations to the minimum. As that threshold is crossed, the
2026number of concurrent operations issued increases linearly to the maximum at
2027the specified maximum percentage of the dirty data allowed in the pool.
2028.sp
2029Ideally, the amount of dirty data on a busy pool will stay in the sloped
2030part of the function between \fBzfs_vdev_async_write_active_min_dirty_percent\fR
2031and \fBzfs_vdev_async_write_active_max_dirty_percent\fR. If it exceeds the
2032maximum percentage, this indicates that the rate of incoming data is
2033greater than the rate that the backend storage can handle. In this case, we
2034must further throttle incoming writes, as described in the next section.
2035
2036.SH ZFS TRANSACTION DELAY
2037We delay transactions when we've determined that the backend storage
2038isn't able to accommodate the rate of incoming writes.
2039.sp
2040If there is already a transaction waiting, we delay relative to when
2041that transaction will finish waiting. This way the calculated delay time
2042is independent of the number of threads concurrently executing
2043transactions.
2044.sp
2045If we are the only waiter, wait relative to when the transaction
2046started, rather than the current time. This credits the transaction for
2047"time already served", e.g. reading indirect blocks.
2048.sp
2049The minimum time for a transaction to take is calculated as:
2050.nf
2051 min_time = zfs_delay_scale * (dirty - min) / (max - dirty)
2052 min_time is then capped at 100 milliseconds.
2053.fi
2054.sp
2055The delay has two degrees of freedom that can be adjusted via tunables. The
2056percentage of dirty data at which we start to delay is defined by
2057\fBzfs_delay_min_dirty_percent\fR. This should typically be at or above
2058\fBzfs_vdev_async_write_active_max_dirty_percent\fR so that we only start to
2059delay after writing at full speed has failed to keep up with the incoming write
2060rate. The scale of the curve is defined by \fBzfs_delay_scale\fR. Roughly speaking,
2061this variable determines the amount of delay at the midpoint of the curve.
2062.sp
2063.nf
2064delay
2065 10ms +-------------------------------------------------------------*+
2066 | *|
2067 9ms + *+
2068 | *|
2069 8ms + *+
2070 | * |
2071 7ms + * +
2072 | * |
2073 6ms + * +
2074 | * |
2075 5ms + * +
2076 | * |
2077 4ms + * +
2078 | * |
2079 3ms + * +
2080 | * |
2081 2ms + (midpoint) * +
2082 | | ** |
2083 1ms + v *** +
2084 | zfs_delay_scale ----------> ******** |
2085 0 +-------------------------------------*********----------------+
2086 0% <- zfs_dirty_data_max -> 100%
2087.fi
2088.sp
2089Note that since the delay is added to the outstanding time remaining on the
2090most recent transaction, the delay is effectively the inverse of IOPS.
2091Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
2092was chosen such that small changes in the amount of accumulated dirty data
2093in the first 3/4 of the curve yield relatively small differences in the
2094amount of delay.
2095.sp
2096The effects can be easier to understand when the amount of delay is
2097represented on a log scale:
2098.sp
2099.nf
2100delay
2101100ms +-------------------------------------------------------------++
2102 + +
2103 | |
2104 + *+
2105 10ms + *+
2106 + ** +
2107 | (midpoint) ** |
2108 + | ** +
2109 1ms + v **** +
2110 + zfs_delay_scale ----------> ***** +
2111 | **** |
2112 + **** +
2113100us + ** +
2114 + * +
2115 | * |
2116 + * +
2117 10us + * +
2118 + +
2119 | |
2120 + +
2121 +--------------------------------------------------------------+
2122 0% <- zfs_dirty_data_max -> 100%
2123.fi
2124.sp
2125Note here that only as the amount of dirty data approaches its limit does
2126the delay start to increase rapidly. The goal of a properly tuned system
2127should be to keep the amount of dirty data out of that range by first
2128ensuring that the appropriate limits are set for the I/O scheduler to reach
2129optimal throughput on the backend storage, and then by changing the value
2130of \fBzfs_delay_scale\fR to increase the steepness of the curve.