]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
userfaultfd: hugetlbfs: add UFFDIO_COPY support for shared mappings
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
1a1aad8a 35#include <linux/userfaultfd_k.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
9fee021d 55static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 56
3935baa9 57/*
31caf665
NH
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
3935baa9 60 */
c3f38a38 61DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 62
8382d914
DB
63/*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67static int num_fault_mutexes;
c672c7f2 68struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 69
7ca02d0a
MK
70/* Forward declaration */
71static int hugetlb_acct_memory(struct hstate *h, long delta);
72
90481622
DG
73static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74{
75 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77 spin_unlock(&spool->lock);
78
79 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
80 * remain, give up any reservations mased on minimum size and
81 * free the subpool */
82 if (free) {
83 if (spool->min_hpages != -1)
84 hugetlb_acct_memory(spool->hstate,
85 -spool->min_hpages);
90481622 86 kfree(spool);
7ca02d0a 87 }
90481622
DG
88}
89
7ca02d0a
MK
90struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91 long min_hpages)
90481622
DG
92{
93 struct hugepage_subpool *spool;
94
c6a91820 95 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
96 if (!spool)
97 return NULL;
98
99 spin_lock_init(&spool->lock);
100 spool->count = 1;
7ca02d0a
MK
101 spool->max_hpages = max_hpages;
102 spool->hstate = h;
103 spool->min_hpages = min_hpages;
104
105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106 kfree(spool);
107 return NULL;
108 }
109 spool->rsv_hpages = min_hpages;
90481622
DG
110
111 return spool;
112}
113
114void hugepage_put_subpool(struct hugepage_subpool *spool)
115{
116 spin_lock(&spool->lock);
117 BUG_ON(!spool->count);
118 spool->count--;
119 unlock_or_release_subpool(spool);
120}
121
1c5ecae3
MK
122/*
123 * Subpool accounting for allocating and reserving pages.
124 * Return -ENOMEM if there are not enough resources to satisfy the
125 * the request. Otherwise, return the number of pages by which the
126 * global pools must be adjusted (upward). The returned value may
127 * only be different than the passed value (delta) in the case where
128 * a subpool minimum size must be manitained.
129 */
130static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
131 long delta)
132{
1c5ecae3 133 long ret = delta;
90481622
DG
134
135 if (!spool)
1c5ecae3 136 return ret;
90481622
DG
137
138 spin_lock(&spool->lock);
1c5ecae3
MK
139
140 if (spool->max_hpages != -1) { /* maximum size accounting */
141 if ((spool->used_hpages + delta) <= spool->max_hpages)
142 spool->used_hpages += delta;
143 else {
144 ret = -ENOMEM;
145 goto unlock_ret;
146 }
90481622 147 }
90481622 148
09a95e29
MK
149 /* minimum size accounting */
150 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
151 if (delta > spool->rsv_hpages) {
152 /*
153 * Asking for more reserves than those already taken on
154 * behalf of subpool. Return difference.
155 */
156 ret = delta - spool->rsv_hpages;
157 spool->rsv_hpages = 0;
158 } else {
159 ret = 0; /* reserves already accounted for */
160 spool->rsv_hpages -= delta;
161 }
162 }
163
164unlock_ret:
165 spin_unlock(&spool->lock);
90481622
DG
166 return ret;
167}
168
1c5ecae3
MK
169/*
170 * Subpool accounting for freeing and unreserving pages.
171 * Return the number of global page reservations that must be dropped.
172 * The return value may only be different than the passed value (delta)
173 * in the case where a subpool minimum size must be maintained.
174 */
175static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
176 long delta)
177{
1c5ecae3
MK
178 long ret = delta;
179
90481622 180 if (!spool)
1c5ecae3 181 return delta;
90481622
DG
182
183 spin_lock(&spool->lock);
1c5ecae3
MK
184
185 if (spool->max_hpages != -1) /* maximum size accounting */
186 spool->used_hpages -= delta;
187
09a95e29
MK
188 /* minimum size accounting */
189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
190 if (spool->rsv_hpages + delta <= spool->min_hpages)
191 ret = 0;
192 else
193 ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195 spool->rsv_hpages += delta;
196 if (spool->rsv_hpages > spool->min_hpages)
197 spool->rsv_hpages = spool->min_hpages;
198 }
199
200 /*
201 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 * quota reference, free it now.
203 */
90481622 204 unlock_or_release_subpool(spool);
1c5ecae3
MK
205
206 return ret;
90481622
DG
207}
208
209static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210{
211 return HUGETLBFS_SB(inode->i_sb)->spool;
212}
213
214static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215{
496ad9aa 216 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
217}
218
96822904
AW
219/*
220 * Region tracking -- allows tracking of reservations and instantiated pages
221 * across the pages in a mapping.
84afd99b 222 *
1dd308a7
MK
223 * The region data structures are embedded into a resv_map and protected
224 * by a resv_map's lock. The set of regions within the resv_map represent
225 * reservations for huge pages, or huge pages that have already been
226 * instantiated within the map. The from and to elements are huge page
227 * indicies into the associated mapping. from indicates the starting index
228 * of the region. to represents the first index past the end of the region.
229 *
230 * For example, a file region structure with from == 0 and to == 4 represents
231 * four huge pages in a mapping. It is important to note that the to element
232 * represents the first element past the end of the region. This is used in
233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 *
235 * Interval notation of the form [from, to) will be used to indicate that
236 * the endpoint from is inclusive and to is exclusive.
96822904
AW
237 */
238struct file_region {
239 struct list_head link;
240 long from;
241 long to;
242};
243
1dd308a7
MK
244/*
245 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
246 * map. In the normal case, existing regions will be expanded
247 * to accommodate the specified range. Sufficient regions should
248 * exist for expansion due to the previous call to region_chg
249 * with the same range. However, it is possible that region_del
250 * could have been called after region_chg and modifed the map
251 * in such a way that no region exists to be expanded. In this
252 * case, pull a region descriptor from the cache associated with
253 * the map and use that for the new range.
cf3ad20b
MK
254 *
255 * Return the number of new huge pages added to the map. This
256 * number is greater than or equal to zero.
1dd308a7 257 */
1406ec9b 258static long region_add(struct resv_map *resv, long f, long t)
96822904 259{
1406ec9b 260 struct list_head *head = &resv->regions;
96822904 261 struct file_region *rg, *nrg, *trg;
cf3ad20b 262 long add = 0;
96822904 263
7b24d861 264 spin_lock(&resv->lock);
96822904
AW
265 /* Locate the region we are either in or before. */
266 list_for_each_entry(rg, head, link)
267 if (f <= rg->to)
268 break;
269
5e911373
MK
270 /*
271 * If no region exists which can be expanded to include the
272 * specified range, the list must have been modified by an
273 * interleving call to region_del(). Pull a region descriptor
274 * from the cache and use it for this range.
275 */
276 if (&rg->link == head || t < rg->from) {
277 VM_BUG_ON(resv->region_cache_count <= 0);
278
279 resv->region_cache_count--;
280 nrg = list_first_entry(&resv->region_cache, struct file_region,
281 link);
282 list_del(&nrg->link);
283
284 nrg->from = f;
285 nrg->to = t;
286 list_add(&nrg->link, rg->link.prev);
287
288 add += t - f;
289 goto out_locked;
290 }
291
96822904
AW
292 /* Round our left edge to the current segment if it encloses us. */
293 if (f > rg->from)
294 f = rg->from;
295
296 /* Check for and consume any regions we now overlap with. */
297 nrg = rg;
298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 if (&rg->link == head)
300 break;
301 if (rg->from > t)
302 break;
303
304 /* If this area reaches higher then extend our area to
305 * include it completely. If this is not the first area
306 * which we intend to reuse, free it. */
307 if (rg->to > t)
308 t = rg->to;
309 if (rg != nrg) {
cf3ad20b
MK
310 /* Decrement return value by the deleted range.
311 * Another range will span this area so that by
312 * end of routine add will be >= zero
313 */
314 add -= (rg->to - rg->from);
96822904
AW
315 list_del(&rg->link);
316 kfree(rg);
317 }
318 }
cf3ad20b
MK
319
320 add += (nrg->from - f); /* Added to beginning of region */
96822904 321 nrg->from = f;
cf3ad20b 322 add += t - nrg->to; /* Added to end of region */
96822904 323 nrg->to = t;
cf3ad20b 324
5e911373
MK
325out_locked:
326 resv->adds_in_progress--;
7b24d861 327 spin_unlock(&resv->lock);
cf3ad20b
MK
328 VM_BUG_ON(add < 0);
329 return add;
96822904
AW
330}
331
1dd308a7
MK
332/*
333 * Examine the existing reserve map and determine how many
334 * huge pages in the specified range [f, t) are NOT currently
335 * represented. This routine is called before a subsequent
336 * call to region_add that will actually modify the reserve
337 * map to add the specified range [f, t). region_chg does
338 * not change the number of huge pages represented by the
339 * map. However, if the existing regions in the map can not
340 * be expanded to represent the new range, a new file_region
341 * structure is added to the map as a placeholder. This is
342 * so that the subsequent region_add call will have all the
343 * regions it needs and will not fail.
344 *
5e911373
MK
345 * Upon entry, region_chg will also examine the cache of region descriptors
346 * associated with the map. If there are not enough descriptors cached, one
347 * will be allocated for the in progress add operation.
348 *
349 * Returns the number of huge pages that need to be added to the existing
350 * reservation map for the range [f, t). This number is greater or equal to
351 * zero. -ENOMEM is returned if a new file_region structure or cache entry
352 * is needed and can not be allocated.
1dd308a7 353 */
1406ec9b 354static long region_chg(struct resv_map *resv, long f, long t)
96822904 355{
1406ec9b 356 struct list_head *head = &resv->regions;
7b24d861 357 struct file_region *rg, *nrg = NULL;
96822904
AW
358 long chg = 0;
359
7b24d861
DB
360retry:
361 spin_lock(&resv->lock);
5e911373
MK
362retry_locked:
363 resv->adds_in_progress++;
364
365 /*
366 * Check for sufficient descriptors in the cache to accommodate
367 * the number of in progress add operations.
368 */
369 if (resv->adds_in_progress > resv->region_cache_count) {
370 struct file_region *trg;
371
372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 /* Must drop lock to allocate a new descriptor. */
374 resv->adds_in_progress--;
375 spin_unlock(&resv->lock);
376
377 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
378 if (!trg) {
379 kfree(nrg);
5e911373 380 return -ENOMEM;
dbe409e4 381 }
5e911373
MK
382
383 spin_lock(&resv->lock);
384 list_add(&trg->link, &resv->region_cache);
385 resv->region_cache_count++;
386 goto retry_locked;
387 }
388
96822904
AW
389 /* Locate the region we are before or in. */
390 list_for_each_entry(rg, head, link)
391 if (f <= rg->to)
392 break;
393
394 /* If we are below the current region then a new region is required.
395 * Subtle, allocate a new region at the position but make it zero
396 * size such that we can guarantee to record the reservation. */
397 if (&rg->link == head || t < rg->from) {
7b24d861 398 if (!nrg) {
5e911373 399 resv->adds_in_progress--;
7b24d861
DB
400 spin_unlock(&resv->lock);
401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402 if (!nrg)
403 return -ENOMEM;
404
405 nrg->from = f;
406 nrg->to = f;
407 INIT_LIST_HEAD(&nrg->link);
408 goto retry;
409 }
96822904 410
7b24d861
DB
411 list_add(&nrg->link, rg->link.prev);
412 chg = t - f;
413 goto out_nrg;
96822904
AW
414 }
415
416 /* Round our left edge to the current segment if it encloses us. */
417 if (f > rg->from)
418 f = rg->from;
419 chg = t - f;
420
421 /* Check for and consume any regions we now overlap with. */
422 list_for_each_entry(rg, rg->link.prev, link) {
423 if (&rg->link == head)
424 break;
425 if (rg->from > t)
7b24d861 426 goto out;
96822904 427
25985edc 428 /* We overlap with this area, if it extends further than
96822904
AW
429 * us then we must extend ourselves. Account for its
430 * existing reservation. */
431 if (rg->to > t) {
432 chg += rg->to - t;
433 t = rg->to;
434 }
435 chg -= rg->to - rg->from;
436 }
7b24d861
DB
437
438out:
439 spin_unlock(&resv->lock);
440 /* We already know we raced and no longer need the new region */
441 kfree(nrg);
442 return chg;
443out_nrg:
444 spin_unlock(&resv->lock);
96822904
AW
445 return chg;
446}
447
5e911373
MK
448/*
449 * Abort the in progress add operation. The adds_in_progress field
450 * of the resv_map keeps track of the operations in progress between
451 * calls to region_chg and region_add. Operations are sometimes
452 * aborted after the call to region_chg. In such cases, region_abort
453 * is called to decrement the adds_in_progress counter.
454 *
455 * NOTE: The range arguments [f, t) are not needed or used in this
456 * routine. They are kept to make reading the calling code easier as
457 * arguments will match the associated region_chg call.
458 */
459static void region_abort(struct resv_map *resv, long f, long t)
460{
461 spin_lock(&resv->lock);
462 VM_BUG_ON(!resv->region_cache_count);
463 resv->adds_in_progress--;
464 spin_unlock(&resv->lock);
465}
466
1dd308a7 467/*
feba16e2
MK
468 * Delete the specified range [f, t) from the reserve map. If the
469 * t parameter is LONG_MAX, this indicates that ALL regions after f
470 * should be deleted. Locate the regions which intersect [f, t)
471 * and either trim, delete or split the existing regions.
472 *
473 * Returns the number of huge pages deleted from the reserve map.
474 * In the normal case, the return value is zero or more. In the
475 * case where a region must be split, a new region descriptor must
476 * be allocated. If the allocation fails, -ENOMEM will be returned.
477 * NOTE: If the parameter t == LONG_MAX, then we will never split
478 * a region and possibly return -ENOMEM. Callers specifying
479 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 480 */
feba16e2 481static long region_del(struct resv_map *resv, long f, long t)
96822904 482{
1406ec9b 483 struct list_head *head = &resv->regions;
96822904 484 struct file_region *rg, *trg;
feba16e2
MK
485 struct file_region *nrg = NULL;
486 long del = 0;
96822904 487
feba16e2 488retry:
7b24d861 489 spin_lock(&resv->lock);
feba16e2 490 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
491 /*
492 * Skip regions before the range to be deleted. file_region
493 * ranges are normally of the form [from, to). However, there
494 * may be a "placeholder" entry in the map which is of the form
495 * (from, to) with from == to. Check for placeholder entries
496 * at the beginning of the range to be deleted.
497 */
498 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 499 continue;
dbe409e4 500
feba16e2 501 if (rg->from >= t)
96822904 502 break;
96822904 503
feba16e2
MK
504 if (f > rg->from && t < rg->to) { /* Must split region */
505 /*
506 * Check for an entry in the cache before dropping
507 * lock and attempting allocation.
508 */
509 if (!nrg &&
510 resv->region_cache_count > resv->adds_in_progress) {
511 nrg = list_first_entry(&resv->region_cache,
512 struct file_region,
513 link);
514 list_del(&nrg->link);
515 resv->region_cache_count--;
516 }
96822904 517
feba16e2
MK
518 if (!nrg) {
519 spin_unlock(&resv->lock);
520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521 if (!nrg)
522 return -ENOMEM;
523 goto retry;
524 }
525
526 del += t - f;
527
528 /* New entry for end of split region */
529 nrg->from = t;
530 nrg->to = rg->to;
531 INIT_LIST_HEAD(&nrg->link);
532
533 /* Original entry is trimmed */
534 rg->to = f;
535
536 list_add(&nrg->link, &rg->link);
537 nrg = NULL;
96822904 538 break;
feba16e2
MK
539 }
540
541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 del += rg->to - rg->from;
543 list_del(&rg->link);
544 kfree(rg);
545 continue;
546 }
547
548 if (f <= rg->from) { /* Trim beginning of region */
549 del += t - rg->from;
550 rg->from = t;
551 } else { /* Trim end of region */
552 del += rg->to - f;
553 rg->to = f;
554 }
96822904 555 }
7b24d861 556
7b24d861 557 spin_unlock(&resv->lock);
feba16e2
MK
558 kfree(nrg);
559 return del;
96822904
AW
560}
561
b5cec28d
MK
562/*
563 * A rare out of memory error was encountered which prevented removal of
564 * the reserve map region for a page. The huge page itself was free'ed
565 * and removed from the page cache. This routine will adjust the subpool
566 * usage count, and the global reserve count if needed. By incrementing
567 * these counts, the reserve map entry which could not be deleted will
568 * appear as a "reserved" entry instead of simply dangling with incorrect
569 * counts.
570 */
72e2936c 571void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
572{
573 struct hugepage_subpool *spool = subpool_inode(inode);
574 long rsv_adjust;
575
576 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 577 if (rsv_adjust) {
b5cec28d
MK
578 struct hstate *h = hstate_inode(inode);
579
580 hugetlb_acct_memory(h, 1);
581 }
582}
583
1dd308a7
MK
584/*
585 * Count and return the number of huge pages in the reserve map
586 * that intersect with the range [f, t).
587 */
1406ec9b 588static long region_count(struct resv_map *resv, long f, long t)
84afd99b 589{
1406ec9b 590 struct list_head *head = &resv->regions;
84afd99b
AW
591 struct file_region *rg;
592 long chg = 0;
593
7b24d861 594 spin_lock(&resv->lock);
84afd99b
AW
595 /* Locate each segment we overlap with, and count that overlap. */
596 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
597 long seg_from;
598 long seg_to;
84afd99b
AW
599
600 if (rg->to <= f)
601 continue;
602 if (rg->from >= t)
603 break;
604
605 seg_from = max(rg->from, f);
606 seg_to = min(rg->to, t);
607
608 chg += seg_to - seg_from;
609 }
7b24d861 610 spin_unlock(&resv->lock);
84afd99b
AW
611
612 return chg;
613}
614
e7c4b0bf
AW
615/*
616 * Convert the address within this vma to the page offset within
617 * the mapping, in pagecache page units; huge pages here.
618 */
a5516438
AK
619static pgoff_t vma_hugecache_offset(struct hstate *h,
620 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 621{
a5516438
AK
622 return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
624}
625
0fe6e20b
NH
626pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 unsigned long address)
628{
629 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630}
dee41079 631EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 632
08fba699
MG
633/*
634 * Return the size of the pages allocated when backing a VMA. In the majority
635 * cases this will be same size as used by the page table entries.
636 */
637unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638{
639 struct hstate *hstate;
640
641 if (!is_vm_hugetlb_page(vma))
642 return PAGE_SIZE;
643
644 hstate = hstate_vma(vma);
645
2415cf12 646 return 1UL << huge_page_shift(hstate);
08fba699 647}
f340ca0f 648EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 649
3340289d
MG
650/*
651 * Return the page size being used by the MMU to back a VMA. In the majority
652 * of cases, the page size used by the kernel matches the MMU size. On
653 * architectures where it differs, an architecture-specific version of this
654 * function is required.
655 */
656#ifndef vma_mmu_pagesize
657unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658{
659 return vma_kernel_pagesize(vma);
660}
661#endif
662
84afd99b
AW
663/*
664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
665 * bits of the reservation map pointer, which are always clear due to
666 * alignment.
667 */
668#define HPAGE_RESV_OWNER (1UL << 0)
669#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 670#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 671
a1e78772
MG
672/*
673 * These helpers are used to track how many pages are reserved for
674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675 * is guaranteed to have their future faults succeed.
676 *
677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678 * the reserve counters are updated with the hugetlb_lock held. It is safe
679 * to reset the VMA at fork() time as it is not in use yet and there is no
680 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
681 *
682 * The private mapping reservation is represented in a subtly different
683 * manner to a shared mapping. A shared mapping has a region map associated
684 * with the underlying file, this region map represents the backing file
685 * pages which have ever had a reservation assigned which this persists even
686 * after the page is instantiated. A private mapping has a region map
687 * associated with the original mmap which is attached to all VMAs which
688 * reference it, this region map represents those offsets which have consumed
689 * reservation ie. where pages have been instantiated.
a1e78772 690 */
e7c4b0bf
AW
691static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692{
693 return (unsigned long)vma->vm_private_data;
694}
695
696static void set_vma_private_data(struct vm_area_struct *vma,
697 unsigned long value)
698{
699 vma->vm_private_data = (void *)value;
700}
701
9119a41e 702struct resv_map *resv_map_alloc(void)
84afd99b
AW
703{
704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707 if (!resv_map || !rg) {
708 kfree(resv_map);
709 kfree(rg);
84afd99b 710 return NULL;
5e911373 711 }
84afd99b
AW
712
713 kref_init(&resv_map->refs);
7b24d861 714 spin_lock_init(&resv_map->lock);
84afd99b
AW
715 INIT_LIST_HEAD(&resv_map->regions);
716
5e911373
MK
717 resv_map->adds_in_progress = 0;
718
719 INIT_LIST_HEAD(&resv_map->region_cache);
720 list_add(&rg->link, &resv_map->region_cache);
721 resv_map->region_cache_count = 1;
722
84afd99b
AW
723 return resv_map;
724}
725
9119a41e 726void resv_map_release(struct kref *ref)
84afd99b
AW
727{
728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
729 struct list_head *head = &resv_map->region_cache;
730 struct file_region *rg, *trg;
84afd99b
AW
731
732 /* Clear out any active regions before we release the map. */
feba16e2 733 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
734
735 /* ... and any entries left in the cache */
736 list_for_each_entry_safe(rg, trg, head, link) {
737 list_del(&rg->link);
738 kfree(rg);
739 }
740
741 VM_BUG_ON(resv_map->adds_in_progress);
742
84afd99b
AW
743 kfree(resv_map);
744}
745
4e35f483
JK
746static inline struct resv_map *inode_resv_map(struct inode *inode)
747{
748 return inode->i_mapping->private_data;
749}
750
84afd99b 751static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 752{
81d1b09c 753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
754 if (vma->vm_flags & VM_MAYSHARE) {
755 struct address_space *mapping = vma->vm_file->f_mapping;
756 struct inode *inode = mapping->host;
757
758 return inode_resv_map(inode);
759
760 } else {
84afd99b
AW
761 return (struct resv_map *)(get_vma_private_data(vma) &
762 ~HPAGE_RESV_MASK);
4e35f483 763 }
a1e78772
MG
764}
765
84afd99b 766static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 767{
81d1b09c
SL
768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 770
84afd99b
AW
771 set_vma_private_data(vma, (get_vma_private_data(vma) &
772 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
773}
774
775static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776{
81d1b09c
SL
777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
779
780 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
781}
782
783static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784{
81d1b09c 785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
786
787 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
788}
789
04f2cbe3 790/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
791void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792{
81d1b09c 793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 794 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
795 vma->vm_private_data = (void *)0;
796}
797
798/* Returns true if the VMA has associated reserve pages */
559ec2f8 799static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 800{
af0ed73e
JK
801 if (vma->vm_flags & VM_NORESERVE) {
802 /*
803 * This address is already reserved by other process(chg == 0),
804 * so, we should decrement reserved count. Without decrementing,
805 * reserve count remains after releasing inode, because this
806 * allocated page will go into page cache and is regarded as
807 * coming from reserved pool in releasing step. Currently, we
808 * don't have any other solution to deal with this situation
809 * properly, so add work-around here.
810 */
811 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 812 return true;
af0ed73e 813 else
559ec2f8 814 return false;
af0ed73e 815 }
a63884e9
JK
816
817 /* Shared mappings always use reserves */
1fb1b0e9
MK
818 if (vma->vm_flags & VM_MAYSHARE) {
819 /*
820 * We know VM_NORESERVE is not set. Therefore, there SHOULD
821 * be a region map for all pages. The only situation where
822 * there is no region map is if a hole was punched via
823 * fallocate. In this case, there really are no reverves to
824 * use. This situation is indicated if chg != 0.
825 */
826 if (chg)
827 return false;
828 else
829 return true;
830 }
a63884e9
JK
831
832 /*
833 * Only the process that called mmap() has reserves for
834 * private mappings.
835 */
67961f9d
MK
836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 /*
838 * Like the shared case above, a hole punch or truncate
839 * could have been performed on the private mapping.
840 * Examine the value of chg to determine if reserves
841 * actually exist or were previously consumed.
842 * Very Subtle - The value of chg comes from a previous
843 * call to vma_needs_reserves(). The reserve map for
844 * private mappings has different (opposite) semantics
845 * than that of shared mappings. vma_needs_reserves()
846 * has already taken this difference in semantics into
847 * account. Therefore, the meaning of chg is the same
848 * as in the shared case above. Code could easily be
849 * combined, but keeping it separate draws attention to
850 * subtle differences.
851 */
852 if (chg)
853 return false;
854 else
855 return true;
856 }
a63884e9 857
559ec2f8 858 return false;
a1e78772
MG
859}
860
a5516438 861static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
862{
863 int nid = page_to_nid(page);
0edaecfa 864 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
865 h->free_huge_pages++;
866 h->free_huge_pages_node[nid]++;
1da177e4
LT
867}
868
bf50bab2
NH
869static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
870{
871 struct page *page;
872
c8721bbb
NH
873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874 if (!is_migrate_isolate_page(page))
875 break;
876 /*
877 * if 'non-isolated free hugepage' not found on the list,
878 * the allocation fails.
879 */
880 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 881 return NULL;
0edaecfa 882 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 883 set_page_refcounted(page);
bf50bab2
NH
884 h->free_huge_pages--;
885 h->free_huge_pages_node[nid]--;
886 return page;
887}
888
86cdb465
NH
889/* Movability of hugepages depends on migration support. */
890static inline gfp_t htlb_alloc_mask(struct hstate *h)
891{
100873d7 892 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
893 return GFP_HIGHUSER_MOVABLE;
894 else
895 return GFP_HIGHUSER;
896}
897
a5516438
AK
898static struct page *dequeue_huge_page_vma(struct hstate *h,
899 struct vm_area_struct *vma,
af0ed73e
JK
900 unsigned long address, int avoid_reserve,
901 long chg)
1da177e4 902{
b1c12cbc 903 struct page *page = NULL;
480eccf9 904 struct mempolicy *mpol;
19770b32 905 nodemask_t *nodemask;
c0ff7453 906 struct zonelist *zonelist;
dd1a239f
MG
907 struct zone *zone;
908 struct zoneref *z;
cc9a6c87 909 unsigned int cpuset_mems_cookie;
1da177e4 910
a1e78772
MG
911 /*
912 * A child process with MAP_PRIVATE mappings created by their parent
913 * have no page reserves. This check ensures that reservations are
914 * not "stolen". The child may still get SIGKILLed
915 */
af0ed73e 916 if (!vma_has_reserves(vma, chg) &&
a5516438 917 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 918 goto err;
a1e78772 919
04f2cbe3 920 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 921 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 922 goto err;
04f2cbe3 923
9966c4bb 924retry_cpuset:
d26914d1 925 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 926 zonelist = huge_zonelist(vma, address,
86cdb465 927 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 928
19770b32
MG
929 for_each_zone_zonelist_nodemask(zone, z, zonelist,
930 MAX_NR_ZONES - 1, nodemask) {
344736f2 931 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
932 page = dequeue_huge_page_node(h, zone_to_nid(zone));
933 if (page) {
af0ed73e
JK
934 if (avoid_reserve)
935 break;
936 if (!vma_has_reserves(vma, chg))
937 break;
938
07443a85 939 SetPagePrivate(page);
af0ed73e 940 h->resv_huge_pages--;
bf50bab2
NH
941 break;
942 }
3abf7afd 943 }
1da177e4 944 }
cc9a6c87 945
52cd3b07 946 mpol_cond_put(mpol);
d26914d1 947 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 948 goto retry_cpuset;
1da177e4 949 return page;
cc9a6c87
MG
950
951err:
cc9a6c87 952 return NULL;
1da177e4
LT
953}
954
1cac6f2c
LC
955/*
956 * common helper functions for hstate_next_node_to_{alloc|free}.
957 * We may have allocated or freed a huge page based on a different
958 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
959 * be outside of *nodes_allowed. Ensure that we use an allowed
960 * node for alloc or free.
961 */
962static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
963{
0edaf86c 964 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
965 VM_BUG_ON(nid >= MAX_NUMNODES);
966
967 return nid;
968}
969
970static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
971{
972 if (!node_isset(nid, *nodes_allowed))
973 nid = next_node_allowed(nid, nodes_allowed);
974 return nid;
975}
976
977/*
978 * returns the previously saved node ["this node"] from which to
979 * allocate a persistent huge page for the pool and advance the
980 * next node from which to allocate, handling wrap at end of node
981 * mask.
982 */
983static int hstate_next_node_to_alloc(struct hstate *h,
984 nodemask_t *nodes_allowed)
985{
986 int nid;
987
988 VM_BUG_ON(!nodes_allowed);
989
990 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
991 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
992
993 return nid;
994}
995
996/*
997 * helper for free_pool_huge_page() - return the previously saved
998 * node ["this node"] from which to free a huge page. Advance the
999 * next node id whether or not we find a free huge page to free so
1000 * that the next attempt to free addresses the next node.
1001 */
1002static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1003{
1004 int nid;
1005
1006 VM_BUG_ON(!nodes_allowed);
1007
1008 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1009 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1010
1011 return nid;
1012}
1013
1014#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1015 for (nr_nodes = nodes_weight(*mask); \
1016 nr_nodes > 0 && \
1017 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1018 nr_nodes--)
1019
1020#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1021 for (nr_nodes = nodes_weight(*mask); \
1022 nr_nodes > 0 && \
1023 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1024 nr_nodes--)
1025
461a7184 1026#if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
d08de8e2
GS
1027 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1028 defined(CONFIG_CMA))
944d9fec 1029static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1030 unsigned int order)
944d9fec
LC
1031{
1032 int i;
1033 int nr_pages = 1 << order;
1034 struct page *p = page + 1;
1035
c8cc708a 1036 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1037 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1038 clear_compound_head(p);
944d9fec 1039 set_page_refcounted(p);
944d9fec
LC
1040 }
1041
1042 set_compound_order(page, 0);
1043 __ClearPageHead(page);
1044}
1045
d00181b9 1046static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1047{
1048 free_contig_range(page_to_pfn(page), 1 << order);
1049}
1050
1051static int __alloc_gigantic_page(unsigned long start_pfn,
1052 unsigned long nr_pages)
1053{
1054 unsigned long end_pfn = start_pfn + nr_pages;
1055 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1056}
1057
f44b2dda
JK
1058static bool pfn_range_valid_gigantic(struct zone *z,
1059 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1060{
1061 unsigned long i, end_pfn = start_pfn + nr_pages;
1062 struct page *page;
1063
1064 for (i = start_pfn; i < end_pfn; i++) {
1065 if (!pfn_valid(i))
1066 return false;
1067
1068 page = pfn_to_page(i);
1069
f44b2dda
JK
1070 if (page_zone(page) != z)
1071 return false;
1072
944d9fec
LC
1073 if (PageReserved(page))
1074 return false;
1075
1076 if (page_count(page) > 0)
1077 return false;
1078
1079 if (PageHuge(page))
1080 return false;
1081 }
1082
1083 return true;
1084}
1085
1086static bool zone_spans_last_pfn(const struct zone *zone,
1087 unsigned long start_pfn, unsigned long nr_pages)
1088{
1089 unsigned long last_pfn = start_pfn + nr_pages - 1;
1090 return zone_spans_pfn(zone, last_pfn);
1091}
1092
d00181b9 1093static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1094{
1095 unsigned long nr_pages = 1 << order;
1096 unsigned long ret, pfn, flags;
1097 struct zone *z;
1098
1099 z = NODE_DATA(nid)->node_zones;
1100 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1101 spin_lock_irqsave(&z->lock, flags);
1102
1103 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1104 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
f44b2dda 1105 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
944d9fec
LC
1106 /*
1107 * We release the zone lock here because
1108 * alloc_contig_range() will also lock the zone
1109 * at some point. If there's an allocation
1110 * spinning on this lock, it may win the race
1111 * and cause alloc_contig_range() to fail...
1112 */
1113 spin_unlock_irqrestore(&z->lock, flags);
1114 ret = __alloc_gigantic_page(pfn, nr_pages);
1115 if (!ret)
1116 return pfn_to_page(pfn);
1117 spin_lock_irqsave(&z->lock, flags);
1118 }
1119 pfn += nr_pages;
1120 }
1121
1122 spin_unlock_irqrestore(&z->lock, flags);
1123 }
1124
1125 return NULL;
1126}
1127
1128static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1129static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1130
1131static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1132{
1133 struct page *page;
1134
1135 page = alloc_gigantic_page(nid, huge_page_order(h));
1136 if (page) {
1137 prep_compound_gigantic_page(page, huge_page_order(h));
1138 prep_new_huge_page(h, page, nid);
1139 }
1140
1141 return page;
1142}
1143
1144static int alloc_fresh_gigantic_page(struct hstate *h,
1145 nodemask_t *nodes_allowed)
1146{
1147 struct page *page = NULL;
1148 int nr_nodes, node;
1149
1150 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1151 page = alloc_fresh_gigantic_page_node(h, node);
1152 if (page)
1153 return 1;
1154 }
1155
1156 return 0;
1157}
1158
1159static inline bool gigantic_page_supported(void) { return true; }
1160#else
1161static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1162static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1163static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1164 unsigned int order) { }
944d9fec
LC
1165static inline int alloc_fresh_gigantic_page(struct hstate *h,
1166 nodemask_t *nodes_allowed) { return 0; }
1167#endif
1168
a5516438 1169static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1170{
1171 int i;
a5516438 1172
944d9fec
LC
1173 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1174 return;
18229df5 1175
a5516438
AK
1176 h->nr_huge_pages--;
1177 h->nr_huge_pages_node[page_to_nid(page)]--;
1178 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1179 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1180 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1181 1 << PG_active | 1 << PG_private |
1182 1 << PG_writeback);
6af2acb6 1183 }
309381fe 1184 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1185 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1186 set_page_refcounted(page);
944d9fec
LC
1187 if (hstate_is_gigantic(h)) {
1188 destroy_compound_gigantic_page(page, huge_page_order(h));
1189 free_gigantic_page(page, huge_page_order(h));
1190 } else {
944d9fec
LC
1191 __free_pages(page, huge_page_order(h));
1192 }
6af2acb6
AL
1193}
1194
e5ff2159
AK
1195struct hstate *size_to_hstate(unsigned long size)
1196{
1197 struct hstate *h;
1198
1199 for_each_hstate(h) {
1200 if (huge_page_size(h) == size)
1201 return h;
1202 }
1203 return NULL;
1204}
1205
bcc54222
NH
1206/*
1207 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1208 * to hstate->hugepage_activelist.)
1209 *
1210 * This function can be called for tail pages, but never returns true for them.
1211 */
1212bool page_huge_active(struct page *page)
1213{
1214 VM_BUG_ON_PAGE(!PageHuge(page), page);
1215 return PageHead(page) && PagePrivate(&page[1]);
1216}
1217
1218/* never called for tail page */
1219static void set_page_huge_active(struct page *page)
1220{
1221 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1222 SetPagePrivate(&page[1]);
1223}
1224
1225static void clear_page_huge_active(struct page *page)
1226{
1227 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228 ClearPagePrivate(&page[1]);
1229}
1230
8f1d26d0 1231void free_huge_page(struct page *page)
27a85ef1 1232{
a5516438
AK
1233 /*
1234 * Can't pass hstate in here because it is called from the
1235 * compound page destructor.
1236 */
e5ff2159 1237 struct hstate *h = page_hstate(page);
7893d1d5 1238 int nid = page_to_nid(page);
90481622
DG
1239 struct hugepage_subpool *spool =
1240 (struct hugepage_subpool *)page_private(page);
07443a85 1241 bool restore_reserve;
27a85ef1 1242
e5df70ab 1243 set_page_private(page, 0);
23be7468 1244 page->mapping = NULL;
b4330afb
MK
1245 VM_BUG_ON_PAGE(page_count(page), page);
1246 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1247 restore_reserve = PagePrivate(page);
16c794b4 1248 ClearPagePrivate(page);
27a85ef1 1249
1c5ecae3
MK
1250 /*
1251 * A return code of zero implies that the subpool will be under its
1252 * minimum size if the reservation is not restored after page is free.
1253 * Therefore, force restore_reserve operation.
1254 */
1255 if (hugepage_subpool_put_pages(spool, 1) == 0)
1256 restore_reserve = true;
1257
27a85ef1 1258 spin_lock(&hugetlb_lock);
bcc54222 1259 clear_page_huge_active(page);
6d76dcf4
AK
1260 hugetlb_cgroup_uncharge_page(hstate_index(h),
1261 pages_per_huge_page(h), page);
07443a85
JK
1262 if (restore_reserve)
1263 h->resv_huge_pages++;
1264
944d9fec 1265 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1266 /* remove the page from active list */
1267 list_del(&page->lru);
a5516438
AK
1268 update_and_free_page(h, page);
1269 h->surplus_huge_pages--;
1270 h->surplus_huge_pages_node[nid]--;
7893d1d5 1271 } else {
5d3a551c 1272 arch_clear_hugepage_flags(page);
a5516438 1273 enqueue_huge_page(h, page);
7893d1d5 1274 }
27a85ef1
DG
1275 spin_unlock(&hugetlb_lock);
1276}
1277
a5516438 1278static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1279{
0edaecfa 1280 INIT_LIST_HEAD(&page->lru);
f1e61557 1281 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1282 spin_lock(&hugetlb_lock);
9dd540e2 1283 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1284 h->nr_huge_pages++;
1285 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1286 spin_unlock(&hugetlb_lock);
1287 put_page(page); /* free it into the hugepage allocator */
1288}
1289
d00181b9 1290static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1291{
1292 int i;
1293 int nr_pages = 1 << order;
1294 struct page *p = page + 1;
1295
1296 /* we rely on prep_new_huge_page to set the destructor */
1297 set_compound_order(page, order);
ef5a22be 1298 __ClearPageReserved(page);
de09d31d 1299 __SetPageHead(page);
20a0307c 1300 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1301 /*
1302 * For gigantic hugepages allocated through bootmem at
1303 * boot, it's safer to be consistent with the not-gigantic
1304 * hugepages and clear the PG_reserved bit from all tail pages
1305 * too. Otherwse drivers using get_user_pages() to access tail
1306 * pages may get the reference counting wrong if they see
1307 * PG_reserved set on a tail page (despite the head page not
1308 * having PG_reserved set). Enforcing this consistency between
1309 * head and tail pages allows drivers to optimize away a check
1310 * on the head page when they need know if put_page() is needed
1311 * after get_user_pages().
1312 */
1313 __ClearPageReserved(p);
58a84aa9 1314 set_page_count(p, 0);
1d798ca3 1315 set_compound_head(p, page);
20a0307c 1316 }
b4330afb 1317 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1318}
1319
7795912c
AM
1320/*
1321 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1322 * transparent huge pages. See the PageTransHuge() documentation for more
1323 * details.
1324 */
20a0307c
WF
1325int PageHuge(struct page *page)
1326{
20a0307c
WF
1327 if (!PageCompound(page))
1328 return 0;
1329
1330 page = compound_head(page);
f1e61557 1331 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1332}
43131e14
NH
1333EXPORT_SYMBOL_GPL(PageHuge);
1334
27c73ae7
AA
1335/*
1336 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1337 * normal or transparent huge pages.
1338 */
1339int PageHeadHuge(struct page *page_head)
1340{
27c73ae7
AA
1341 if (!PageHead(page_head))
1342 return 0;
1343
758f66a2 1344 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1345}
27c73ae7 1346
13d60f4b
ZY
1347pgoff_t __basepage_index(struct page *page)
1348{
1349 struct page *page_head = compound_head(page);
1350 pgoff_t index = page_index(page_head);
1351 unsigned long compound_idx;
1352
1353 if (!PageHuge(page_head))
1354 return page_index(page);
1355
1356 if (compound_order(page_head) >= MAX_ORDER)
1357 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1358 else
1359 compound_idx = page - page_head;
1360
1361 return (index << compound_order(page_head)) + compound_idx;
1362}
1363
a5516438 1364static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1365{
1da177e4 1366 struct page *page;
f96efd58 1367
96db800f 1368 page = __alloc_pages_node(nid,
86cdb465 1369 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1370 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1371 huge_page_order(h));
1da177e4 1372 if (page) {
a5516438 1373 prep_new_huge_page(h, page, nid);
1da177e4 1374 }
63b4613c
NA
1375
1376 return page;
1377}
1378
b2261026
JK
1379static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1380{
1381 struct page *page;
1382 int nr_nodes, node;
1383 int ret = 0;
1384
1385 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1386 page = alloc_fresh_huge_page_node(h, node);
1387 if (page) {
1388 ret = 1;
1389 break;
1390 }
1391 }
1392
1393 if (ret)
1394 count_vm_event(HTLB_BUDDY_PGALLOC);
1395 else
1396 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1397
1398 return ret;
1399}
1400
e8c5c824
LS
1401/*
1402 * Free huge page from pool from next node to free.
1403 * Attempt to keep persistent huge pages more or less
1404 * balanced over allowed nodes.
1405 * Called with hugetlb_lock locked.
1406 */
6ae11b27
LS
1407static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1408 bool acct_surplus)
e8c5c824 1409{
b2261026 1410 int nr_nodes, node;
e8c5c824
LS
1411 int ret = 0;
1412
b2261026 1413 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1414 /*
1415 * If we're returning unused surplus pages, only examine
1416 * nodes with surplus pages.
1417 */
b2261026
JK
1418 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1419 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1420 struct page *page =
b2261026 1421 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1422 struct page, lru);
1423 list_del(&page->lru);
1424 h->free_huge_pages--;
b2261026 1425 h->free_huge_pages_node[node]--;
685f3457
LS
1426 if (acct_surplus) {
1427 h->surplus_huge_pages--;
b2261026 1428 h->surplus_huge_pages_node[node]--;
685f3457 1429 }
e8c5c824
LS
1430 update_and_free_page(h, page);
1431 ret = 1;
9a76db09 1432 break;
e8c5c824 1433 }
b2261026 1434 }
e8c5c824
LS
1435
1436 return ret;
1437}
1438
c8721bbb
NH
1439/*
1440 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1441 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1442 * number of free hugepages would be reduced below the number of reserved
1443 * hugepages.
c8721bbb 1444 */
082d5b6b 1445static int dissolve_free_huge_page(struct page *page)
c8721bbb 1446{
082d5b6b
GS
1447 int rc = 0;
1448
c8721bbb
NH
1449 spin_lock(&hugetlb_lock);
1450 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1451 struct page *head = compound_head(page);
1452 struct hstate *h = page_hstate(head);
1453 int nid = page_to_nid(head);
082d5b6b
GS
1454 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1455 rc = -EBUSY;
1456 goto out;
1457 }
2247bb33 1458 list_del(&head->lru);
c8721bbb
NH
1459 h->free_huge_pages--;
1460 h->free_huge_pages_node[nid]--;
c1470b33 1461 h->max_huge_pages--;
2247bb33 1462 update_and_free_page(h, head);
c8721bbb 1463 }
082d5b6b 1464out:
c8721bbb 1465 spin_unlock(&hugetlb_lock);
082d5b6b 1466 return rc;
c8721bbb
NH
1467}
1468
1469/*
1470 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1471 * make specified memory blocks removable from the system.
2247bb33
GS
1472 * Note that this will dissolve a free gigantic hugepage completely, if any
1473 * part of it lies within the given range.
082d5b6b
GS
1474 * Also note that if dissolve_free_huge_page() returns with an error, all
1475 * free hugepages that were dissolved before that error are lost.
c8721bbb 1476 */
082d5b6b 1477int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1478{
c8721bbb 1479 unsigned long pfn;
eb03aa00 1480 struct page *page;
082d5b6b 1481 int rc = 0;
c8721bbb 1482
d0177639 1483 if (!hugepages_supported())
082d5b6b 1484 return rc;
d0177639 1485
eb03aa00
GS
1486 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1487 page = pfn_to_page(pfn);
1488 if (PageHuge(page) && !page_count(page)) {
1489 rc = dissolve_free_huge_page(page);
1490 if (rc)
1491 break;
1492 }
1493 }
082d5b6b
GS
1494
1495 return rc;
c8721bbb
NH
1496}
1497
099730d6
DH
1498/*
1499 * There are 3 ways this can get called:
1500 * 1. With vma+addr: we use the VMA's memory policy
1501 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1502 * page from any node, and let the buddy allocator itself figure
1503 * it out.
1504 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1505 * strictly from 'nid'
1506 */
1507static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1508 struct vm_area_struct *vma, unsigned long addr, int nid)
1509{
1510 int order = huge_page_order(h);
1511 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1512 unsigned int cpuset_mems_cookie;
1513
1514 /*
1515 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1516 * have one, we use the 'nid' argument.
1517 *
1518 * The mempolicy stuff below has some non-inlined bits
1519 * and calls ->vm_ops. That makes it hard to optimize at
1520 * compile-time, even when NUMA is off and it does
1521 * nothing. This helps the compiler optimize it out.
099730d6 1522 */
e0ec90ee 1523 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1524 /*
1525 * If a specific node is requested, make sure to
1526 * get memory from there, but only when a node
1527 * is explicitly specified.
1528 */
1529 if (nid != NUMA_NO_NODE)
1530 gfp |= __GFP_THISNODE;
1531 /*
1532 * Make sure to call something that can handle
1533 * nid=NUMA_NO_NODE
1534 */
1535 return alloc_pages_node(nid, gfp, order);
1536 }
1537
1538 /*
1539 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1540 * allocate a huge page with it. We will only reach this
1541 * when CONFIG_NUMA=y.
099730d6
DH
1542 */
1543 do {
1544 struct page *page;
1545 struct mempolicy *mpol;
1546 struct zonelist *zl;
1547 nodemask_t *nodemask;
1548
1549 cpuset_mems_cookie = read_mems_allowed_begin();
1550 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1551 mpol_cond_put(mpol);
1552 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1553 if (page)
1554 return page;
1555 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1556
1557 return NULL;
1558}
1559
1560/*
1561 * There are two ways to allocate a huge page:
1562 * 1. When you have a VMA and an address (like a fault)
1563 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1564 *
1565 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1566 * this case which signifies that the allocation should be done with
1567 * respect for the VMA's memory policy.
1568 *
1569 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1570 * implies that memory policies will not be taken in to account.
1571 */
1572static struct page *__alloc_buddy_huge_page(struct hstate *h,
1573 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1574{
1575 struct page *page;
bf50bab2 1576 unsigned int r_nid;
7893d1d5 1577
bae7f4ae 1578 if (hstate_is_gigantic(h))
aa888a74
AK
1579 return NULL;
1580
099730d6
DH
1581 /*
1582 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1583 * This makes sure the caller is picking _one_ of the modes with which
1584 * we can call this function, not both.
1585 */
1586 if (vma || (addr != -1)) {
e0ec90ee
DH
1587 VM_WARN_ON_ONCE(addr == -1);
1588 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1589 }
d1c3fb1f
NA
1590 /*
1591 * Assume we will successfully allocate the surplus page to
1592 * prevent racing processes from causing the surplus to exceed
1593 * overcommit
1594 *
1595 * This however introduces a different race, where a process B
1596 * tries to grow the static hugepage pool while alloc_pages() is
1597 * called by process A. B will only examine the per-node
1598 * counters in determining if surplus huge pages can be
1599 * converted to normal huge pages in adjust_pool_surplus(). A
1600 * won't be able to increment the per-node counter, until the
1601 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1602 * no more huge pages can be converted from surplus to normal
1603 * state (and doesn't try to convert again). Thus, we have a
1604 * case where a surplus huge page exists, the pool is grown, and
1605 * the surplus huge page still exists after, even though it
1606 * should just have been converted to a normal huge page. This
1607 * does not leak memory, though, as the hugepage will be freed
1608 * once it is out of use. It also does not allow the counters to
1609 * go out of whack in adjust_pool_surplus() as we don't modify
1610 * the node values until we've gotten the hugepage and only the
1611 * per-node value is checked there.
1612 */
1613 spin_lock(&hugetlb_lock);
a5516438 1614 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1615 spin_unlock(&hugetlb_lock);
1616 return NULL;
1617 } else {
a5516438
AK
1618 h->nr_huge_pages++;
1619 h->surplus_huge_pages++;
d1c3fb1f
NA
1620 }
1621 spin_unlock(&hugetlb_lock);
1622
099730d6 1623 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1624
1625 spin_lock(&hugetlb_lock);
7893d1d5 1626 if (page) {
0edaecfa 1627 INIT_LIST_HEAD(&page->lru);
bf50bab2 1628 r_nid = page_to_nid(page);
f1e61557 1629 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1630 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1631 /*
1632 * We incremented the global counters already
1633 */
bf50bab2
NH
1634 h->nr_huge_pages_node[r_nid]++;
1635 h->surplus_huge_pages_node[r_nid]++;
3b116300 1636 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1637 } else {
a5516438
AK
1638 h->nr_huge_pages--;
1639 h->surplus_huge_pages--;
3b116300 1640 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1641 }
d1c3fb1f 1642 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1643
1644 return page;
1645}
1646
099730d6
DH
1647/*
1648 * Allocate a huge page from 'nid'. Note, 'nid' may be
1649 * NUMA_NO_NODE, which means that it may be allocated
1650 * anywhere.
1651 */
e0ec90ee 1652static
099730d6
DH
1653struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1654{
1655 unsigned long addr = -1;
1656
1657 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1658}
1659
1660/*
1661 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1662 */
e0ec90ee 1663static
099730d6
DH
1664struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1665 struct vm_area_struct *vma, unsigned long addr)
1666{
1667 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1668}
1669
bf50bab2
NH
1670/*
1671 * This allocation function is useful in the context where vma is irrelevant.
1672 * E.g. soft-offlining uses this function because it only cares physical
1673 * address of error page.
1674 */
1675struct page *alloc_huge_page_node(struct hstate *h, int nid)
1676{
4ef91848 1677 struct page *page = NULL;
bf50bab2
NH
1678
1679 spin_lock(&hugetlb_lock);
4ef91848
JK
1680 if (h->free_huge_pages - h->resv_huge_pages > 0)
1681 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1682 spin_unlock(&hugetlb_lock);
1683
94ae8ba7 1684 if (!page)
099730d6 1685 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1686
1687 return page;
1688}
1689
e4e574b7 1690/*
25985edc 1691 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1692 * of size 'delta'.
1693 */
a5516438 1694static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1695{
1696 struct list_head surplus_list;
1697 struct page *page, *tmp;
1698 int ret, i;
1699 int needed, allocated;
28073b02 1700 bool alloc_ok = true;
e4e574b7 1701
a5516438 1702 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1703 if (needed <= 0) {
a5516438 1704 h->resv_huge_pages += delta;
e4e574b7 1705 return 0;
ac09b3a1 1706 }
e4e574b7
AL
1707
1708 allocated = 0;
1709 INIT_LIST_HEAD(&surplus_list);
1710
1711 ret = -ENOMEM;
1712retry:
1713 spin_unlock(&hugetlb_lock);
1714 for (i = 0; i < needed; i++) {
099730d6 1715 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1716 if (!page) {
1717 alloc_ok = false;
1718 break;
1719 }
e4e574b7
AL
1720 list_add(&page->lru, &surplus_list);
1721 }
28073b02 1722 allocated += i;
e4e574b7
AL
1723
1724 /*
1725 * After retaking hugetlb_lock, we need to recalculate 'needed'
1726 * because either resv_huge_pages or free_huge_pages may have changed.
1727 */
1728 spin_lock(&hugetlb_lock);
a5516438
AK
1729 needed = (h->resv_huge_pages + delta) -
1730 (h->free_huge_pages + allocated);
28073b02
HD
1731 if (needed > 0) {
1732 if (alloc_ok)
1733 goto retry;
1734 /*
1735 * We were not able to allocate enough pages to
1736 * satisfy the entire reservation so we free what
1737 * we've allocated so far.
1738 */
1739 goto free;
1740 }
e4e574b7
AL
1741 /*
1742 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1743 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1744 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1745 * allocator. Commit the entire reservation here to prevent another
1746 * process from stealing the pages as they are added to the pool but
1747 * before they are reserved.
e4e574b7
AL
1748 */
1749 needed += allocated;
a5516438 1750 h->resv_huge_pages += delta;
e4e574b7 1751 ret = 0;
a9869b83 1752
19fc3f0a 1753 /* Free the needed pages to the hugetlb pool */
e4e574b7 1754 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1755 if ((--needed) < 0)
1756 break;
a9869b83
NH
1757 /*
1758 * This page is now managed by the hugetlb allocator and has
1759 * no users -- drop the buddy allocator's reference.
1760 */
1761 put_page_testzero(page);
309381fe 1762 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1763 enqueue_huge_page(h, page);
19fc3f0a 1764 }
28073b02 1765free:
b0365c8d 1766 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1767
1768 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1769 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1770 put_page(page);
a9869b83 1771 spin_lock(&hugetlb_lock);
e4e574b7
AL
1772
1773 return ret;
1774}
1775
1776/*
e5bbc8a6
MK
1777 * This routine has two main purposes:
1778 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1779 * in unused_resv_pages. This corresponds to the prior adjustments made
1780 * to the associated reservation map.
1781 * 2) Free any unused surplus pages that may have been allocated to satisfy
1782 * the reservation. As many as unused_resv_pages may be freed.
1783 *
1784 * Called with hugetlb_lock held. However, the lock could be dropped (and
1785 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1786 * we must make sure nobody else can claim pages we are in the process of
1787 * freeing. Do this by ensuring resv_huge_page always is greater than the
1788 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1789 */
a5516438
AK
1790static void return_unused_surplus_pages(struct hstate *h,
1791 unsigned long unused_resv_pages)
e4e574b7 1792{
e4e574b7
AL
1793 unsigned long nr_pages;
1794
aa888a74 1795 /* Cannot return gigantic pages currently */
bae7f4ae 1796 if (hstate_is_gigantic(h))
e5bbc8a6 1797 goto out;
aa888a74 1798
e5bbc8a6
MK
1799 /*
1800 * Part (or even all) of the reservation could have been backed
1801 * by pre-allocated pages. Only free surplus pages.
1802 */
a5516438 1803 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1804
685f3457
LS
1805 /*
1806 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1807 * evenly across all nodes with memory. Iterate across these nodes
1808 * until we can no longer free unreserved surplus pages. This occurs
1809 * when the nodes with surplus pages have no free pages.
1810 * free_pool_huge_page() will balance the the freed pages across the
1811 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1812 *
1813 * Note that we decrement resv_huge_pages as we free the pages. If
1814 * we drop the lock, resv_huge_pages will still be sufficiently large
1815 * to cover subsequent pages we may free.
685f3457
LS
1816 */
1817 while (nr_pages--) {
e5bbc8a6
MK
1818 h->resv_huge_pages--;
1819 unused_resv_pages--;
8cebfcd0 1820 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1821 goto out;
7848a4bf 1822 cond_resched_lock(&hugetlb_lock);
e4e574b7 1823 }
e5bbc8a6
MK
1824
1825out:
1826 /* Fully uncommit the reservation */
1827 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1828}
1829
5e911373 1830
c37f9fb1 1831/*
feba16e2 1832 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1833 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1834 *
1835 * vma_needs_reservation is called to determine if the huge page at addr
1836 * within the vma has an associated reservation. If a reservation is
1837 * needed, the value 1 is returned. The caller is then responsible for
1838 * managing the global reservation and subpool usage counts. After
1839 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1840 * to add the page to the reservation map. If the page allocation fails,
1841 * the reservation must be ended instead of committed. vma_end_reservation
1842 * is called in such cases.
cf3ad20b
MK
1843 *
1844 * In the normal case, vma_commit_reservation returns the same value
1845 * as the preceding vma_needs_reservation call. The only time this
1846 * is not the case is if a reserve map was changed between calls. It
1847 * is the responsibility of the caller to notice the difference and
1848 * take appropriate action.
96b96a96
MK
1849 *
1850 * vma_add_reservation is used in error paths where a reservation must
1851 * be restored when a newly allocated huge page must be freed. It is
1852 * to be called after calling vma_needs_reservation to determine if a
1853 * reservation exists.
c37f9fb1 1854 */
5e911373
MK
1855enum vma_resv_mode {
1856 VMA_NEEDS_RESV,
1857 VMA_COMMIT_RESV,
feba16e2 1858 VMA_END_RESV,
96b96a96 1859 VMA_ADD_RESV,
5e911373 1860};
cf3ad20b
MK
1861static long __vma_reservation_common(struct hstate *h,
1862 struct vm_area_struct *vma, unsigned long addr,
5e911373 1863 enum vma_resv_mode mode)
c37f9fb1 1864{
4e35f483
JK
1865 struct resv_map *resv;
1866 pgoff_t idx;
cf3ad20b 1867 long ret;
c37f9fb1 1868
4e35f483
JK
1869 resv = vma_resv_map(vma);
1870 if (!resv)
84afd99b 1871 return 1;
c37f9fb1 1872
4e35f483 1873 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1874 switch (mode) {
1875 case VMA_NEEDS_RESV:
cf3ad20b 1876 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1877 break;
1878 case VMA_COMMIT_RESV:
1879 ret = region_add(resv, idx, idx + 1);
1880 break;
feba16e2 1881 case VMA_END_RESV:
5e911373
MK
1882 region_abort(resv, idx, idx + 1);
1883 ret = 0;
1884 break;
96b96a96
MK
1885 case VMA_ADD_RESV:
1886 if (vma->vm_flags & VM_MAYSHARE)
1887 ret = region_add(resv, idx, idx + 1);
1888 else {
1889 region_abort(resv, idx, idx + 1);
1890 ret = region_del(resv, idx, idx + 1);
1891 }
1892 break;
5e911373
MK
1893 default:
1894 BUG();
1895 }
84afd99b 1896
4e35f483 1897 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1898 return ret;
67961f9d
MK
1899 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1900 /*
1901 * In most cases, reserves always exist for private mappings.
1902 * However, a file associated with mapping could have been
1903 * hole punched or truncated after reserves were consumed.
1904 * As subsequent fault on such a range will not use reserves.
1905 * Subtle - The reserve map for private mappings has the
1906 * opposite meaning than that of shared mappings. If NO
1907 * entry is in the reserve map, it means a reservation exists.
1908 * If an entry exists in the reserve map, it means the
1909 * reservation has already been consumed. As a result, the
1910 * return value of this routine is the opposite of the
1911 * value returned from reserve map manipulation routines above.
1912 */
1913 if (ret)
1914 return 0;
1915 else
1916 return 1;
1917 }
4e35f483 1918 else
cf3ad20b 1919 return ret < 0 ? ret : 0;
c37f9fb1 1920}
cf3ad20b
MK
1921
1922static long vma_needs_reservation(struct hstate *h,
a5516438 1923 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1924{
5e911373 1925 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1926}
84afd99b 1927
cf3ad20b
MK
1928static long vma_commit_reservation(struct hstate *h,
1929 struct vm_area_struct *vma, unsigned long addr)
1930{
5e911373
MK
1931 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1932}
1933
feba16e2 1934static void vma_end_reservation(struct hstate *h,
5e911373
MK
1935 struct vm_area_struct *vma, unsigned long addr)
1936{
feba16e2 1937 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1938}
1939
96b96a96
MK
1940static long vma_add_reservation(struct hstate *h,
1941 struct vm_area_struct *vma, unsigned long addr)
1942{
1943 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1944}
1945
1946/*
1947 * This routine is called to restore a reservation on error paths. In the
1948 * specific error paths, a huge page was allocated (via alloc_huge_page)
1949 * and is about to be freed. If a reservation for the page existed,
1950 * alloc_huge_page would have consumed the reservation and set PagePrivate
1951 * in the newly allocated page. When the page is freed via free_huge_page,
1952 * the global reservation count will be incremented if PagePrivate is set.
1953 * However, free_huge_page can not adjust the reserve map. Adjust the
1954 * reserve map here to be consistent with global reserve count adjustments
1955 * to be made by free_huge_page.
1956 */
1957static void restore_reserve_on_error(struct hstate *h,
1958 struct vm_area_struct *vma, unsigned long address,
1959 struct page *page)
1960{
1961 if (unlikely(PagePrivate(page))) {
1962 long rc = vma_needs_reservation(h, vma, address);
1963
1964 if (unlikely(rc < 0)) {
1965 /*
1966 * Rare out of memory condition in reserve map
1967 * manipulation. Clear PagePrivate so that
1968 * global reserve count will not be incremented
1969 * by free_huge_page. This will make it appear
1970 * as though the reservation for this page was
1971 * consumed. This may prevent the task from
1972 * faulting in the page at a later time. This
1973 * is better than inconsistent global huge page
1974 * accounting of reserve counts.
1975 */
1976 ClearPagePrivate(page);
1977 } else if (rc) {
1978 rc = vma_add_reservation(h, vma, address);
1979 if (unlikely(rc < 0))
1980 /*
1981 * See above comment about rare out of
1982 * memory condition.
1983 */
1984 ClearPagePrivate(page);
1985 } else
1986 vma_end_reservation(h, vma, address);
1987 }
1988}
1989
70c3547e 1990struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1991 unsigned long addr, int avoid_reserve)
1da177e4 1992{
90481622 1993 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1994 struct hstate *h = hstate_vma(vma);
348ea204 1995 struct page *page;
d85f69b0
MK
1996 long map_chg, map_commit;
1997 long gbl_chg;
6d76dcf4
AK
1998 int ret, idx;
1999 struct hugetlb_cgroup *h_cg;
a1e78772 2000
6d76dcf4 2001 idx = hstate_index(h);
a1e78772 2002 /*
d85f69b0
MK
2003 * Examine the region/reserve map to determine if the process
2004 * has a reservation for the page to be allocated. A return
2005 * code of zero indicates a reservation exists (no change).
a1e78772 2006 */
d85f69b0
MK
2007 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2008 if (map_chg < 0)
76dcee75 2009 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2010
2011 /*
2012 * Processes that did not create the mapping will have no
2013 * reserves as indicated by the region/reserve map. Check
2014 * that the allocation will not exceed the subpool limit.
2015 * Allocations for MAP_NORESERVE mappings also need to be
2016 * checked against any subpool limit.
2017 */
2018 if (map_chg || avoid_reserve) {
2019 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2020 if (gbl_chg < 0) {
feba16e2 2021 vma_end_reservation(h, vma, addr);
76dcee75 2022 return ERR_PTR(-ENOSPC);
5e911373 2023 }
1da177e4 2024
d85f69b0
MK
2025 /*
2026 * Even though there was no reservation in the region/reserve
2027 * map, there could be reservations associated with the
2028 * subpool that can be used. This would be indicated if the
2029 * return value of hugepage_subpool_get_pages() is zero.
2030 * However, if avoid_reserve is specified we still avoid even
2031 * the subpool reservations.
2032 */
2033 if (avoid_reserve)
2034 gbl_chg = 1;
2035 }
2036
6d76dcf4 2037 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2038 if (ret)
2039 goto out_subpool_put;
2040
1da177e4 2041 spin_lock(&hugetlb_lock);
d85f69b0
MK
2042 /*
2043 * glb_chg is passed to indicate whether or not a page must be taken
2044 * from the global free pool (global change). gbl_chg == 0 indicates
2045 * a reservation exists for the allocation.
2046 */
2047 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2048 if (!page) {
94ae8ba7 2049 spin_unlock(&hugetlb_lock);
099730d6 2050 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2051 if (!page)
2052 goto out_uncharge_cgroup;
a88c7695
NH
2053 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2054 SetPagePrivate(page);
2055 h->resv_huge_pages--;
2056 }
79dbb236
AK
2057 spin_lock(&hugetlb_lock);
2058 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2059 /* Fall through */
68842c9b 2060 }
81a6fcae
JK
2061 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2062 spin_unlock(&hugetlb_lock);
348ea204 2063
90481622 2064 set_page_private(page, (unsigned long)spool);
90d8b7e6 2065
d85f69b0
MK
2066 map_commit = vma_commit_reservation(h, vma, addr);
2067 if (unlikely(map_chg > map_commit)) {
33039678
MK
2068 /*
2069 * The page was added to the reservation map between
2070 * vma_needs_reservation and vma_commit_reservation.
2071 * This indicates a race with hugetlb_reserve_pages.
2072 * Adjust for the subpool count incremented above AND
2073 * in hugetlb_reserve_pages for the same page. Also,
2074 * the reservation count added in hugetlb_reserve_pages
2075 * no longer applies.
2076 */
2077 long rsv_adjust;
2078
2079 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2080 hugetlb_acct_memory(h, -rsv_adjust);
2081 }
90d8b7e6 2082 return page;
8f34af6f
JZ
2083
2084out_uncharge_cgroup:
2085 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2086out_subpool_put:
d85f69b0 2087 if (map_chg || avoid_reserve)
8f34af6f 2088 hugepage_subpool_put_pages(spool, 1);
feba16e2 2089 vma_end_reservation(h, vma, addr);
8f34af6f 2090 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2091}
2092
74060e4d
NH
2093/*
2094 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2095 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2096 * where no ERR_VALUE is expected to be returned.
2097 */
2098struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2099 unsigned long addr, int avoid_reserve)
2100{
2101 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2102 if (IS_ERR(page))
2103 page = NULL;
2104 return page;
2105}
2106
91f47662 2107int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2108{
2109 struct huge_bootmem_page *m;
b2261026 2110 int nr_nodes, node;
aa888a74 2111
b2261026 2112 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2113 void *addr;
2114
8b89a116
GS
2115 addr = memblock_virt_alloc_try_nid_nopanic(
2116 huge_page_size(h), huge_page_size(h),
2117 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2118 if (addr) {
2119 /*
2120 * Use the beginning of the huge page to store the
2121 * huge_bootmem_page struct (until gather_bootmem
2122 * puts them into the mem_map).
2123 */
2124 m = addr;
91f47662 2125 goto found;
aa888a74 2126 }
aa888a74
AK
2127 }
2128 return 0;
2129
2130found:
df994ead 2131 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2132 /* Put them into a private list first because mem_map is not up yet */
2133 list_add(&m->list, &huge_boot_pages);
2134 m->hstate = h;
2135 return 1;
2136}
2137
d00181b9
KS
2138static void __init prep_compound_huge_page(struct page *page,
2139 unsigned int order)
18229df5
AW
2140{
2141 if (unlikely(order > (MAX_ORDER - 1)))
2142 prep_compound_gigantic_page(page, order);
2143 else
2144 prep_compound_page(page, order);
2145}
2146
aa888a74
AK
2147/* Put bootmem huge pages into the standard lists after mem_map is up */
2148static void __init gather_bootmem_prealloc(void)
2149{
2150 struct huge_bootmem_page *m;
2151
2152 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2153 struct hstate *h = m->hstate;
ee8f248d
BB
2154 struct page *page;
2155
2156#ifdef CONFIG_HIGHMEM
2157 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2158 memblock_free_late(__pa(m),
2159 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2160#else
2161 page = virt_to_page(m);
2162#endif
aa888a74 2163 WARN_ON(page_count(page) != 1);
18229df5 2164 prep_compound_huge_page(page, h->order);
ef5a22be 2165 WARN_ON(PageReserved(page));
aa888a74 2166 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2167 /*
2168 * If we had gigantic hugepages allocated at boot time, we need
2169 * to restore the 'stolen' pages to totalram_pages in order to
2170 * fix confusing memory reports from free(1) and another
2171 * side-effects, like CommitLimit going negative.
2172 */
bae7f4ae 2173 if (hstate_is_gigantic(h))
3dcc0571 2174 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2175 }
2176}
2177
8faa8b07 2178static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2179{
2180 unsigned long i;
a5516438 2181
e5ff2159 2182 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2183 if (hstate_is_gigantic(h)) {
aa888a74
AK
2184 if (!alloc_bootmem_huge_page(h))
2185 break;
9b5e5d0f 2186 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2187 &node_states[N_MEMORY]))
1da177e4 2188 break;
1da177e4 2189 }
8faa8b07 2190 h->max_huge_pages = i;
e5ff2159
AK
2191}
2192
2193static void __init hugetlb_init_hstates(void)
2194{
2195 struct hstate *h;
2196
2197 for_each_hstate(h) {
641844f5
NH
2198 if (minimum_order > huge_page_order(h))
2199 minimum_order = huge_page_order(h);
2200
8faa8b07 2201 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2202 if (!hstate_is_gigantic(h))
8faa8b07 2203 hugetlb_hstate_alloc_pages(h);
e5ff2159 2204 }
641844f5 2205 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2206}
2207
4abd32db
AK
2208static char * __init memfmt(char *buf, unsigned long n)
2209{
2210 if (n >= (1UL << 30))
2211 sprintf(buf, "%lu GB", n >> 30);
2212 else if (n >= (1UL << 20))
2213 sprintf(buf, "%lu MB", n >> 20);
2214 else
2215 sprintf(buf, "%lu KB", n >> 10);
2216 return buf;
2217}
2218
e5ff2159
AK
2219static void __init report_hugepages(void)
2220{
2221 struct hstate *h;
2222
2223 for_each_hstate(h) {
4abd32db 2224 char buf[32];
ffb22af5 2225 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2226 memfmt(buf, huge_page_size(h)),
2227 h->free_huge_pages);
e5ff2159
AK
2228 }
2229}
2230
1da177e4 2231#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2232static void try_to_free_low(struct hstate *h, unsigned long count,
2233 nodemask_t *nodes_allowed)
1da177e4 2234{
4415cc8d
CL
2235 int i;
2236
bae7f4ae 2237 if (hstate_is_gigantic(h))
aa888a74
AK
2238 return;
2239
6ae11b27 2240 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2241 struct page *page, *next;
a5516438
AK
2242 struct list_head *freel = &h->hugepage_freelists[i];
2243 list_for_each_entry_safe(page, next, freel, lru) {
2244 if (count >= h->nr_huge_pages)
6b0c880d 2245 return;
1da177e4
LT
2246 if (PageHighMem(page))
2247 continue;
2248 list_del(&page->lru);
e5ff2159 2249 update_and_free_page(h, page);
a5516438
AK
2250 h->free_huge_pages--;
2251 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2252 }
2253 }
2254}
2255#else
6ae11b27
LS
2256static inline void try_to_free_low(struct hstate *h, unsigned long count,
2257 nodemask_t *nodes_allowed)
1da177e4
LT
2258{
2259}
2260#endif
2261
20a0307c
WF
2262/*
2263 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2264 * balanced by operating on them in a round-robin fashion.
2265 * Returns 1 if an adjustment was made.
2266 */
6ae11b27
LS
2267static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2268 int delta)
20a0307c 2269{
b2261026 2270 int nr_nodes, node;
20a0307c
WF
2271
2272 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2273
b2261026
JK
2274 if (delta < 0) {
2275 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2276 if (h->surplus_huge_pages_node[node])
2277 goto found;
e8c5c824 2278 }
b2261026
JK
2279 } else {
2280 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2281 if (h->surplus_huge_pages_node[node] <
2282 h->nr_huge_pages_node[node])
2283 goto found;
e8c5c824 2284 }
b2261026
JK
2285 }
2286 return 0;
20a0307c 2287
b2261026
JK
2288found:
2289 h->surplus_huge_pages += delta;
2290 h->surplus_huge_pages_node[node] += delta;
2291 return 1;
20a0307c
WF
2292}
2293
a5516438 2294#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2295static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2296 nodemask_t *nodes_allowed)
1da177e4 2297{
7893d1d5 2298 unsigned long min_count, ret;
1da177e4 2299
944d9fec 2300 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2301 return h->max_huge_pages;
2302
7893d1d5
AL
2303 /*
2304 * Increase the pool size
2305 * First take pages out of surplus state. Then make up the
2306 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2307 *
d15c7c09 2308 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2309 * to convert a surplus huge page to a normal huge page. That is
2310 * not critical, though, it just means the overall size of the
2311 * pool might be one hugepage larger than it needs to be, but
2312 * within all the constraints specified by the sysctls.
7893d1d5 2313 */
1da177e4 2314 spin_lock(&hugetlb_lock);
a5516438 2315 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2316 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2317 break;
2318 }
2319
a5516438 2320 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2321 /*
2322 * If this allocation races such that we no longer need the
2323 * page, free_huge_page will handle it by freeing the page
2324 * and reducing the surplus.
2325 */
2326 spin_unlock(&hugetlb_lock);
649920c6
JH
2327
2328 /* yield cpu to avoid soft lockup */
2329 cond_resched();
2330
944d9fec
LC
2331 if (hstate_is_gigantic(h))
2332 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2333 else
2334 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2335 spin_lock(&hugetlb_lock);
2336 if (!ret)
2337 goto out;
2338
536240f2
MG
2339 /* Bail for signals. Probably ctrl-c from user */
2340 if (signal_pending(current))
2341 goto out;
7893d1d5 2342 }
7893d1d5
AL
2343
2344 /*
2345 * Decrease the pool size
2346 * First return free pages to the buddy allocator (being careful
2347 * to keep enough around to satisfy reservations). Then place
2348 * pages into surplus state as needed so the pool will shrink
2349 * to the desired size as pages become free.
d1c3fb1f
NA
2350 *
2351 * By placing pages into the surplus state independent of the
2352 * overcommit value, we are allowing the surplus pool size to
2353 * exceed overcommit. There are few sane options here. Since
d15c7c09 2354 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2355 * though, we'll note that we're not allowed to exceed surplus
2356 * and won't grow the pool anywhere else. Not until one of the
2357 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2358 */
a5516438 2359 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2360 min_count = max(count, min_count);
6ae11b27 2361 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2362 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2363 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2364 break;
55f67141 2365 cond_resched_lock(&hugetlb_lock);
1da177e4 2366 }
a5516438 2367 while (count < persistent_huge_pages(h)) {
6ae11b27 2368 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2369 break;
2370 }
2371out:
a5516438 2372 ret = persistent_huge_pages(h);
1da177e4 2373 spin_unlock(&hugetlb_lock);
7893d1d5 2374 return ret;
1da177e4
LT
2375}
2376
a3437870
NA
2377#define HSTATE_ATTR_RO(_name) \
2378 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2379
2380#define HSTATE_ATTR(_name) \
2381 static struct kobj_attribute _name##_attr = \
2382 __ATTR(_name, 0644, _name##_show, _name##_store)
2383
2384static struct kobject *hugepages_kobj;
2385static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2386
9a305230
LS
2387static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2388
2389static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2390{
2391 int i;
9a305230 2392
a3437870 2393 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2394 if (hstate_kobjs[i] == kobj) {
2395 if (nidp)
2396 *nidp = NUMA_NO_NODE;
a3437870 2397 return &hstates[i];
9a305230
LS
2398 }
2399
2400 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2401}
2402
06808b08 2403static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2404 struct kobj_attribute *attr, char *buf)
2405{
9a305230
LS
2406 struct hstate *h;
2407 unsigned long nr_huge_pages;
2408 int nid;
2409
2410 h = kobj_to_hstate(kobj, &nid);
2411 if (nid == NUMA_NO_NODE)
2412 nr_huge_pages = h->nr_huge_pages;
2413 else
2414 nr_huge_pages = h->nr_huge_pages_node[nid];
2415
2416 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2417}
adbe8726 2418
238d3c13
DR
2419static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2420 struct hstate *h, int nid,
2421 unsigned long count, size_t len)
a3437870
NA
2422{
2423 int err;
bad44b5b 2424 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2425
944d9fec 2426 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2427 err = -EINVAL;
2428 goto out;
2429 }
2430
9a305230
LS
2431 if (nid == NUMA_NO_NODE) {
2432 /*
2433 * global hstate attribute
2434 */
2435 if (!(obey_mempolicy &&
2436 init_nodemask_of_mempolicy(nodes_allowed))) {
2437 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2438 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2439 }
2440 } else if (nodes_allowed) {
2441 /*
2442 * per node hstate attribute: adjust count to global,
2443 * but restrict alloc/free to the specified node.
2444 */
2445 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2446 init_nodemask_of_node(nodes_allowed, nid);
2447 } else
8cebfcd0 2448 nodes_allowed = &node_states[N_MEMORY];
9a305230 2449
06808b08 2450 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2451
8cebfcd0 2452 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2453 NODEMASK_FREE(nodes_allowed);
2454
2455 return len;
adbe8726
EM
2456out:
2457 NODEMASK_FREE(nodes_allowed);
2458 return err;
06808b08
LS
2459}
2460
238d3c13
DR
2461static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2462 struct kobject *kobj, const char *buf,
2463 size_t len)
2464{
2465 struct hstate *h;
2466 unsigned long count;
2467 int nid;
2468 int err;
2469
2470 err = kstrtoul(buf, 10, &count);
2471 if (err)
2472 return err;
2473
2474 h = kobj_to_hstate(kobj, &nid);
2475 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2476}
2477
06808b08
LS
2478static ssize_t nr_hugepages_show(struct kobject *kobj,
2479 struct kobj_attribute *attr, char *buf)
2480{
2481 return nr_hugepages_show_common(kobj, attr, buf);
2482}
2483
2484static ssize_t nr_hugepages_store(struct kobject *kobj,
2485 struct kobj_attribute *attr, const char *buf, size_t len)
2486{
238d3c13 2487 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2488}
2489HSTATE_ATTR(nr_hugepages);
2490
06808b08
LS
2491#ifdef CONFIG_NUMA
2492
2493/*
2494 * hstate attribute for optionally mempolicy-based constraint on persistent
2495 * huge page alloc/free.
2496 */
2497static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2498 struct kobj_attribute *attr, char *buf)
2499{
2500 return nr_hugepages_show_common(kobj, attr, buf);
2501}
2502
2503static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2504 struct kobj_attribute *attr, const char *buf, size_t len)
2505{
238d3c13 2506 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2507}
2508HSTATE_ATTR(nr_hugepages_mempolicy);
2509#endif
2510
2511
a3437870
NA
2512static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2513 struct kobj_attribute *attr, char *buf)
2514{
9a305230 2515 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2516 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2517}
adbe8726 2518
a3437870
NA
2519static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2520 struct kobj_attribute *attr, const char *buf, size_t count)
2521{
2522 int err;
2523 unsigned long input;
9a305230 2524 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2525
bae7f4ae 2526 if (hstate_is_gigantic(h))
adbe8726
EM
2527 return -EINVAL;
2528
3dbb95f7 2529 err = kstrtoul(buf, 10, &input);
a3437870 2530 if (err)
73ae31e5 2531 return err;
a3437870
NA
2532
2533 spin_lock(&hugetlb_lock);
2534 h->nr_overcommit_huge_pages = input;
2535 spin_unlock(&hugetlb_lock);
2536
2537 return count;
2538}
2539HSTATE_ATTR(nr_overcommit_hugepages);
2540
2541static ssize_t free_hugepages_show(struct kobject *kobj,
2542 struct kobj_attribute *attr, char *buf)
2543{
9a305230
LS
2544 struct hstate *h;
2545 unsigned long free_huge_pages;
2546 int nid;
2547
2548 h = kobj_to_hstate(kobj, &nid);
2549 if (nid == NUMA_NO_NODE)
2550 free_huge_pages = h->free_huge_pages;
2551 else
2552 free_huge_pages = h->free_huge_pages_node[nid];
2553
2554 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2555}
2556HSTATE_ATTR_RO(free_hugepages);
2557
2558static ssize_t resv_hugepages_show(struct kobject *kobj,
2559 struct kobj_attribute *attr, char *buf)
2560{
9a305230 2561 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2562 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2563}
2564HSTATE_ATTR_RO(resv_hugepages);
2565
2566static ssize_t surplus_hugepages_show(struct kobject *kobj,
2567 struct kobj_attribute *attr, char *buf)
2568{
9a305230
LS
2569 struct hstate *h;
2570 unsigned long surplus_huge_pages;
2571 int nid;
2572
2573 h = kobj_to_hstate(kobj, &nid);
2574 if (nid == NUMA_NO_NODE)
2575 surplus_huge_pages = h->surplus_huge_pages;
2576 else
2577 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2578
2579 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2580}
2581HSTATE_ATTR_RO(surplus_hugepages);
2582
2583static struct attribute *hstate_attrs[] = {
2584 &nr_hugepages_attr.attr,
2585 &nr_overcommit_hugepages_attr.attr,
2586 &free_hugepages_attr.attr,
2587 &resv_hugepages_attr.attr,
2588 &surplus_hugepages_attr.attr,
06808b08
LS
2589#ifdef CONFIG_NUMA
2590 &nr_hugepages_mempolicy_attr.attr,
2591#endif
a3437870
NA
2592 NULL,
2593};
2594
2595static struct attribute_group hstate_attr_group = {
2596 .attrs = hstate_attrs,
2597};
2598
094e9539
JM
2599static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2600 struct kobject **hstate_kobjs,
2601 struct attribute_group *hstate_attr_group)
a3437870
NA
2602{
2603 int retval;
972dc4de 2604 int hi = hstate_index(h);
a3437870 2605
9a305230
LS
2606 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2607 if (!hstate_kobjs[hi])
a3437870
NA
2608 return -ENOMEM;
2609
9a305230 2610 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2611 if (retval)
9a305230 2612 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2613
2614 return retval;
2615}
2616
2617static void __init hugetlb_sysfs_init(void)
2618{
2619 struct hstate *h;
2620 int err;
2621
2622 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2623 if (!hugepages_kobj)
2624 return;
2625
2626 for_each_hstate(h) {
9a305230
LS
2627 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2628 hstate_kobjs, &hstate_attr_group);
a3437870 2629 if (err)
ffb22af5 2630 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2631 }
2632}
2633
9a305230
LS
2634#ifdef CONFIG_NUMA
2635
2636/*
2637 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2638 * with node devices in node_devices[] using a parallel array. The array
2639 * index of a node device or _hstate == node id.
2640 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2641 * the base kernel, on the hugetlb module.
2642 */
2643struct node_hstate {
2644 struct kobject *hugepages_kobj;
2645 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2646};
b4e289a6 2647static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2648
2649/*
10fbcf4c 2650 * A subset of global hstate attributes for node devices
9a305230
LS
2651 */
2652static struct attribute *per_node_hstate_attrs[] = {
2653 &nr_hugepages_attr.attr,
2654 &free_hugepages_attr.attr,
2655 &surplus_hugepages_attr.attr,
2656 NULL,
2657};
2658
2659static struct attribute_group per_node_hstate_attr_group = {
2660 .attrs = per_node_hstate_attrs,
2661};
2662
2663/*
10fbcf4c 2664 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2665 * Returns node id via non-NULL nidp.
2666 */
2667static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2668{
2669 int nid;
2670
2671 for (nid = 0; nid < nr_node_ids; nid++) {
2672 struct node_hstate *nhs = &node_hstates[nid];
2673 int i;
2674 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2675 if (nhs->hstate_kobjs[i] == kobj) {
2676 if (nidp)
2677 *nidp = nid;
2678 return &hstates[i];
2679 }
2680 }
2681
2682 BUG();
2683 return NULL;
2684}
2685
2686/*
10fbcf4c 2687 * Unregister hstate attributes from a single node device.
9a305230
LS
2688 * No-op if no hstate attributes attached.
2689 */
3cd8b44f 2690static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2691{
2692 struct hstate *h;
10fbcf4c 2693 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2694
2695 if (!nhs->hugepages_kobj)
9b5e5d0f 2696 return; /* no hstate attributes */
9a305230 2697
972dc4de
AK
2698 for_each_hstate(h) {
2699 int idx = hstate_index(h);
2700 if (nhs->hstate_kobjs[idx]) {
2701 kobject_put(nhs->hstate_kobjs[idx]);
2702 nhs->hstate_kobjs[idx] = NULL;
9a305230 2703 }
972dc4de 2704 }
9a305230
LS
2705
2706 kobject_put(nhs->hugepages_kobj);
2707 nhs->hugepages_kobj = NULL;
2708}
2709
9a305230
LS
2710
2711/*
10fbcf4c 2712 * Register hstate attributes for a single node device.
9a305230
LS
2713 * No-op if attributes already registered.
2714 */
3cd8b44f 2715static void hugetlb_register_node(struct node *node)
9a305230
LS
2716{
2717 struct hstate *h;
10fbcf4c 2718 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2719 int err;
2720
2721 if (nhs->hugepages_kobj)
2722 return; /* already allocated */
2723
2724 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2725 &node->dev.kobj);
9a305230
LS
2726 if (!nhs->hugepages_kobj)
2727 return;
2728
2729 for_each_hstate(h) {
2730 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2731 nhs->hstate_kobjs,
2732 &per_node_hstate_attr_group);
2733 if (err) {
ffb22af5
AM
2734 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2735 h->name, node->dev.id);
9a305230
LS
2736 hugetlb_unregister_node(node);
2737 break;
2738 }
2739 }
2740}
2741
2742/*
9b5e5d0f 2743 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2744 * devices of nodes that have memory. All on-line nodes should have
2745 * registered their associated device by this time.
9a305230 2746 */
7d9ca000 2747static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2748{
2749 int nid;
2750
8cebfcd0 2751 for_each_node_state(nid, N_MEMORY) {
8732794b 2752 struct node *node = node_devices[nid];
10fbcf4c 2753 if (node->dev.id == nid)
9a305230
LS
2754 hugetlb_register_node(node);
2755 }
2756
2757 /*
10fbcf4c 2758 * Let the node device driver know we're here so it can
9a305230
LS
2759 * [un]register hstate attributes on node hotplug.
2760 */
2761 register_hugetlbfs_with_node(hugetlb_register_node,
2762 hugetlb_unregister_node);
2763}
2764#else /* !CONFIG_NUMA */
2765
2766static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2767{
2768 BUG();
2769 if (nidp)
2770 *nidp = -1;
2771 return NULL;
2772}
2773
9a305230
LS
2774static void hugetlb_register_all_nodes(void) { }
2775
2776#endif
2777
a3437870
NA
2778static int __init hugetlb_init(void)
2779{
8382d914
DB
2780 int i;
2781
457c1b27 2782 if (!hugepages_supported())
0ef89d25 2783 return 0;
a3437870 2784
e11bfbfc
NP
2785 if (!size_to_hstate(default_hstate_size)) {
2786 default_hstate_size = HPAGE_SIZE;
2787 if (!size_to_hstate(default_hstate_size))
2788 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2789 }
972dc4de 2790 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2791 if (default_hstate_max_huge_pages) {
2792 if (!default_hstate.max_huge_pages)
2793 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2794 }
a3437870
NA
2795
2796 hugetlb_init_hstates();
aa888a74 2797 gather_bootmem_prealloc();
a3437870
NA
2798 report_hugepages();
2799
2800 hugetlb_sysfs_init();
9a305230 2801 hugetlb_register_all_nodes();
7179e7bf 2802 hugetlb_cgroup_file_init();
9a305230 2803
8382d914
DB
2804#ifdef CONFIG_SMP
2805 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2806#else
2807 num_fault_mutexes = 1;
2808#endif
c672c7f2 2809 hugetlb_fault_mutex_table =
8382d914 2810 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2811 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2812
2813 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2814 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2815 return 0;
2816}
3e89e1c5 2817subsys_initcall(hugetlb_init);
a3437870
NA
2818
2819/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2820void __init hugetlb_bad_size(void)
2821{
2822 parsed_valid_hugepagesz = false;
2823}
2824
d00181b9 2825void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2826{
2827 struct hstate *h;
8faa8b07
AK
2828 unsigned long i;
2829
a3437870 2830 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2831 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2832 return;
2833 }
47d38344 2834 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2835 BUG_ON(order == 0);
47d38344 2836 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2837 h->order = order;
2838 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2839 h->nr_huge_pages = 0;
2840 h->free_huge_pages = 0;
2841 for (i = 0; i < MAX_NUMNODES; ++i)
2842 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2843 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2844 h->next_nid_to_alloc = first_memory_node;
2845 h->next_nid_to_free = first_memory_node;
a3437870
NA
2846 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2847 huge_page_size(h)/1024);
8faa8b07 2848
a3437870
NA
2849 parsed_hstate = h;
2850}
2851
e11bfbfc 2852static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2853{
2854 unsigned long *mhp;
8faa8b07 2855 static unsigned long *last_mhp;
a3437870 2856
9fee021d
VT
2857 if (!parsed_valid_hugepagesz) {
2858 pr_warn("hugepages = %s preceded by "
2859 "an unsupported hugepagesz, ignoring\n", s);
2860 parsed_valid_hugepagesz = true;
2861 return 1;
2862 }
a3437870 2863 /*
47d38344 2864 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2865 * so this hugepages= parameter goes to the "default hstate".
2866 */
9fee021d 2867 else if (!hugetlb_max_hstate)
a3437870
NA
2868 mhp = &default_hstate_max_huge_pages;
2869 else
2870 mhp = &parsed_hstate->max_huge_pages;
2871
8faa8b07 2872 if (mhp == last_mhp) {
598d8091 2873 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2874 return 1;
2875 }
2876
a3437870
NA
2877 if (sscanf(s, "%lu", mhp) <= 0)
2878 *mhp = 0;
2879
8faa8b07
AK
2880 /*
2881 * Global state is always initialized later in hugetlb_init.
2882 * But we need to allocate >= MAX_ORDER hstates here early to still
2883 * use the bootmem allocator.
2884 */
47d38344 2885 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2886 hugetlb_hstate_alloc_pages(parsed_hstate);
2887
2888 last_mhp = mhp;
2889
a3437870
NA
2890 return 1;
2891}
e11bfbfc
NP
2892__setup("hugepages=", hugetlb_nrpages_setup);
2893
2894static int __init hugetlb_default_setup(char *s)
2895{
2896 default_hstate_size = memparse(s, &s);
2897 return 1;
2898}
2899__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2900
8a213460
NA
2901static unsigned int cpuset_mems_nr(unsigned int *array)
2902{
2903 int node;
2904 unsigned int nr = 0;
2905
2906 for_each_node_mask(node, cpuset_current_mems_allowed)
2907 nr += array[node];
2908
2909 return nr;
2910}
2911
2912#ifdef CONFIG_SYSCTL
06808b08
LS
2913static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2914 struct ctl_table *table, int write,
2915 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2916{
e5ff2159 2917 struct hstate *h = &default_hstate;
238d3c13 2918 unsigned long tmp = h->max_huge_pages;
08d4a246 2919 int ret;
e5ff2159 2920
457c1b27 2921 if (!hugepages_supported())
86613628 2922 return -EOPNOTSUPP;
457c1b27 2923
e5ff2159
AK
2924 table->data = &tmp;
2925 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2926 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2927 if (ret)
2928 goto out;
e5ff2159 2929
238d3c13
DR
2930 if (write)
2931 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2932 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2933out:
2934 return ret;
1da177e4 2935}
396faf03 2936
06808b08
LS
2937int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2938 void __user *buffer, size_t *length, loff_t *ppos)
2939{
2940
2941 return hugetlb_sysctl_handler_common(false, table, write,
2942 buffer, length, ppos);
2943}
2944
2945#ifdef CONFIG_NUMA
2946int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2947 void __user *buffer, size_t *length, loff_t *ppos)
2948{
2949 return hugetlb_sysctl_handler_common(true, table, write,
2950 buffer, length, ppos);
2951}
2952#endif /* CONFIG_NUMA */
2953
a3d0c6aa 2954int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2955 void __user *buffer,
a3d0c6aa
NA
2956 size_t *length, loff_t *ppos)
2957{
a5516438 2958 struct hstate *h = &default_hstate;
e5ff2159 2959 unsigned long tmp;
08d4a246 2960 int ret;
e5ff2159 2961
457c1b27 2962 if (!hugepages_supported())
86613628 2963 return -EOPNOTSUPP;
457c1b27 2964
c033a93c 2965 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2966
bae7f4ae 2967 if (write && hstate_is_gigantic(h))
adbe8726
EM
2968 return -EINVAL;
2969
e5ff2159
AK
2970 table->data = &tmp;
2971 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2972 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2973 if (ret)
2974 goto out;
e5ff2159
AK
2975
2976 if (write) {
2977 spin_lock(&hugetlb_lock);
2978 h->nr_overcommit_huge_pages = tmp;
2979 spin_unlock(&hugetlb_lock);
2980 }
08d4a246
MH
2981out:
2982 return ret;
a3d0c6aa
NA
2983}
2984
1da177e4
LT
2985#endif /* CONFIG_SYSCTL */
2986
e1759c21 2987void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2988{
a5516438 2989 struct hstate *h = &default_hstate;
457c1b27
NA
2990 if (!hugepages_supported())
2991 return;
e1759c21 2992 seq_printf(m,
4f98a2fe
RR
2993 "HugePages_Total: %5lu\n"
2994 "HugePages_Free: %5lu\n"
2995 "HugePages_Rsvd: %5lu\n"
2996 "HugePages_Surp: %5lu\n"
2997 "Hugepagesize: %8lu kB\n",
a5516438
AK
2998 h->nr_huge_pages,
2999 h->free_huge_pages,
3000 h->resv_huge_pages,
3001 h->surplus_huge_pages,
3002 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
3003}
3004
3005int hugetlb_report_node_meminfo(int nid, char *buf)
3006{
a5516438 3007 struct hstate *h = &default_hstate;
457c1b27
NA
3008 if (!hugepages_supported())
3009 return 0;
1da177e4
LT
3010 return sprintf(buf,
3011 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3012 "Node %d HugePages_Free: %5u\n"
3013 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3014 nid, h->nr_huge_pages_node[nid],
3015 nid, h->free_huge_pages_node[nid],
3016 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3017}
3018
949f7ec5
DR
3019void hugetlb_show_meminfo(void)
3020{
3021 struct hstate *h;
3022 int nid;
3023
457c1b27
NA
3024 if (!hugepages_supported())
3025 return;
3026
949f7ec5
DR
3027 for_each_node_state(nid, N_MEMORY)
3028 for_each_hstate(h)
3029 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3030 nid,
3031 h->nr_huge_pages_node[nid],
3032 h->free_huge_pages_node[nid],
3033 h->surplus_huge_pages_node[nid],
3034 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3035}
3036
5d317b2b
NH
3037void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3038{
3039 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3040 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3041}
3042
1da177e4
LT
3043/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3044unsigned long hugetlb_total_pages(void)
3045{
d0028588
WL
3046 struct hstate *h;
3047 unsigned long nr_total_pages = 0;
3048
3049 for_each_hstate(h)
3050 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3051 return nr_total_pages;
1da177e4 3052}
1da177e4 3053
a5516438 3054static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3055{
3056 int ret = -ENOMEM;
3057
3058 spin_lock(&hugetlb_lock);
3059 /*
3060 * When cpuset is configured, it breaks the strict hugetlb page
3061 * reservation as the accounting is done on a global variable. Such
3062 * reservation is completely rubbish in the presence of cpuset because
3063 * the reservation is not checked against page availability for the
3064 * current cpuset. Application can still potentially OOM'ed by kernel
3065 * with lack of free htlb page in cpuset that the task is in.
3066 * Attempt to enforce strict accounting with cpuset is almost
3067 * impossible (or too ugly) because cpuset is too fluid that
3068 * task or memory node can be dynamically moved between cpusets.
3069 *
3070 * The change of semantics for shared hugetlb mapping with cpuset is
3071 * undesirable. However, in order to preserve some of the semantics,
3072 * we fall back to check against current free page availability as
3073 * a best attempt and hopefully to minimize the impact of changing
3074 * semantics that cpuset has.
3075 */
3076 if (delta > 0) {
a5516438 3077 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3078 goto out;
3079
a5516438
AK
3080 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3081 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3082 goto out;
3083 }
3084 }
3085
3086 ret = 0;
3087 if (delta < 0)
a5516438 3088 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3089
3090out:
3091 spin_unlock(&hugetlb_lock);
3092 return ret;
3093}
3094
84afd99b
AW
3095static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3096{
f522c3ac 3097 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3098
3099 /*
3100 * This new VMA should share its siblings reservation map if present.
3101 * The VMA will only ever have a valid reservation map pointer where
3102 * it is being copied for another still existing VMA. As that VMA
25985edc 3103 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3104 * after this open call completes. It is therefore safe to take a
3105 * new reference here without additional locking.
3106 */
4e35f483 3107 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3108 kref_get(&resv->refs);
84afd99b
AW
3109}
3110
a1e78772
MG
3111static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3112{
a5516438 3113 struct hstate *h = hstate_vma(vma);
f522c3ac 3114 struct resv_map *resv = vma_resv_map(vma);
90481622 3115 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3116 unsigned long reserve, start, end;
1c5ecae3 3117 long gbl_reserve;
84afd99b 3118
4e35f483
JK
3119 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3120 return;
84afd99b 3121
4e35f483
JK
3122 start = vma_hugecache_offset(h, vma, vma->vm_start);
3123 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3124
4e35f483 3125 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3126
4e35f483
JK
3127 kref_put(&resv->refs, resv_map_release);
3128
3129 if (reserve) {
1c5ecae3
MK
3130 /*
3131 * Decrement reserve counts. The global reserve count may be
3132 * adjusted if the subpool has a minimum size.
3133 */
3134 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3135 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3136 }
a1e78772
MG
3137}
3138
1da177e4
LT
3139/*
3140 * We cannot handle pagefaults against hugetlb pages at all. They cause
3141 * handle_mm_fault() to try to instantiate regular-sized pages in the
3142 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3143 * this far.
3144 */
d0217ac0 3145static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
3146{
3147 BUG();
d0217ac0 3148 return 0;
1da177e4
LT
3149}
3150
f0f37e2f 3151const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3152 .fault = hugetlb_vm_op_fault,
84afd99b 3153 .open = hugetlb_vm_op_open,
a1e78772 3154 .close = hugetlb_vm_op_close,
1da177e4
LT
3155};
3156
1e8f889b
DG
3157static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3158 int writable)
63551ae0
DG
3159{
3160 pte_t entry;
3161
1e8f889b 3162 if (writable) {
106c992a
GS
3163 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3164 vma->vm_page_prot)));
63551ae0 3165 } else {
106c992a
GS
3166 entry = huge_pte_wrprotect(mk_huge_pte(page,
3167 vma->vm_page_prot));
63551ae0
DG
3168 }
3169 entry = pte_mkyoung(entry);
3170 entry = pte_mkhuge(entry);
d9ed9faa 3171 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3172
3173 return entry;
3174}
3175
1e8f889b
DG
3176static void set_huge_ptep_writable(struct vm_area_struct *vma,
3177 unsigned long address, pte_t *ptep)
3178{
3179 pte_t entry;
3180
106c992a 3181 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3182 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3183 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3184}
3185
4a705fef
NH
3186static int is_hugetlb_entry_migration(pte_t pte)
3187{
3188 swp_entry_t swp;
3189
3190 if (huge_pte_none(pte) || pte_present(pte))
3191 return 0;
3192 swp = pte_to_swp_entry(pte);
3193 if (non_swap_entry(swp) && is_migration_entry(swp))
3194 return 1;
3195 else
3196 return 0;
3197}
3198
3199static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3200{
3201 swp_entry_t swp;
3202
3203 if (huge_pte_none(pte) || pte_present(pte))
3204 return 0;
3205 swp = pte_to_swp_entry(pte);
3206 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3207 return 1;
3208 else
3209 return 0;
3210}
1e8f889b 3211
63551ae0
DG
3212int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3213 struct vm_area_struct *vma)
3214{
3215 pte_t *src_pte, *dst_pte, entry;
3216 struct page *ptepage;
1c59827d 3217 unsigned long addr;
1e8f889b 3218 int cow;
a5516438
AK
3219 struct hstate *h = hstate_vma(vma);
3220 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3221 unsigned long mmun_start; /* For mmu_notifiers */
3222 unsigned long mmun_end; /* For mmu_notifiers */
3223 int ret = 0;
1e8f889b
DG
3224
3225 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3226
e8569dd2
AS
3227 mmun_start = vma->vm_start;
3228 mmun_end = vma->vm_end;
3229 if (cow)
3230 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3231
a5516438 3232 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3233 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
3234 src_pte = huge_pte_offset(src, addr);
3235 if (!src_pte)
3236 continue;
a5516438 3237 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3238 if (!dst_pte) {
3239 ret = -ENOMEM;
3240 break;
3241 }
c5c99429
LW
3242
3243 /* If the pagetables are shared don't copy or take references */
3244 if (dst_pte == src_pte)
3245 continue;
3246
cb900f41
KS
3247 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3248 src_ptl = huge_pte_lockptr(h, src, src_pte);
3249 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3250 entry = huge_ptep_get(src_pte);
3251 if (huge_pte_none(entry)) { /* skip none entry */
3252 ;
3253 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3254 is_hugetlb_entry_hwpoisoned(entry))) {
3255 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3256
3257 if (is_write_migration_entry(swp_entry) && cow) {
3258 /*
3259 * COW mappings require pages in both
3260 * parent and child to be set to read.
3261 */
3262 make_migration_entry_read(&swp_entry);
3263 entry = swp_entry_to_pte(swp_entry);
3264 set_huge_pte_at(src, addr, src_pte, entry);
3265 }
3266 set_huge_pte_at(dst, addr, dst_pte, entry);
3267 } else {
34ee645e 3268 if (cow) {
7f2e9525 3269 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3270 mmu_notifier_invalidate_range(src, mmun_start,
3271 mmun_end);
3272 }
0253d634 3273 entry = huge_ptep_get(src_pte);
1c59827d
HD
3274 ptepage = pte_page(entry);
3275 get_page(ptepage);
53f9263b 3276 page_dup_rmap(ptepage, true);
1c59827d 3277 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3278 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3279 }
cb900f41
KS
3280 spin_unlock(src_ptl);
3281 spin_unlock(dst_ptl);
63551ae0 3282 }
63551ae0 3283
e8569dd2
AS
3284 if (cow)
3285 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3286
3287 return ret;
63551ae0
DG
3288}
3289
24669e58
AK
3290void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3291 unsigned long start, unsigned long end,
3292 struct page *ref_page)
63551ae0
DG
3293{
3294 struct mm_struct *mm = vma->vm_mm;
3295 unsigned long address;
c7546f8f 3296 pte_t *ptep;
63551ae0 3297 pte_t pte;
cb900f41 3298 spinlock_t *ptl;
63551ae0 3299 struct page *page;
a5516438
AK
3300 struct hstate *h = hstate_vma(vma);
3301 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3302 const unsigned long mmun_start = start; /* For mmu_notifiers */
3303 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3304
63551ae0 3305 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3306 BUG_ON(start & ~huge_page_mask(h));
3307 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3308
07e32661
AK
3309 /*
3310 * This is a hugetlb vma, all the pte entries should point
3311 * to huge page.
3312 */
3313 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3314 tlb_start_vma(tlb, vma);
2ec74c3e 3315 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3316 address = start;
569f48b8 3317 for (; address < end; address += sz) {
c7546f8f 3318 ptep = huge_pte_offset(mm, address);
4c887265 3319 if (!ptep)
c7546f8f
DG
3320 continue;
3321
cb900f41 3322 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3323 if (huge_pmd_unshare(mm, &address, ptep)) {
3324 spin_unlock(ptl);
3325 continue;
3326 }
39dde65c 3327
6629326b 3328 pte = huge_ptep_get(ptep);
31d49da5
AK
3329 if (huge_pte_none(pte)) {
3330 spin_unlock(ptl);
3331 continue;
3332 }
6629326b
HD
3333
3334 /*
9fbc1f63
NH
3335 * Migrating hugepage or HWPoisoned hugepage is already
3336 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3337 */
9fbc1f63 3338 if (unlikely(!pte_present(pte))) {
106c992a 3339 huge_pte_clear(mm, address, ptep);
31d49da5
AK
3340 spin_unlock(ptl);
3341 continue;
8c4894c6 3342 }
6629326b
HD
3343
3344 page = pte_page(pte);
04f2cbe3
MG
3345 /*
3346 * If a reference page is supplied, it is because a specific
3347 * page is being unmapped, not a range. Ensure the page we
3348 * are about to unmap is the actual page of interest.
3349 */
3350 if (ref_page) {
31d49da5
AK
3351 if (page != ref_page) {
3352 spin_unlock(ptl);
3353 continue;
3354 }
04f2cbe3
MG
3355 /*
3356 * Mark the VMA as having unmapped its page so that
3357 * future faults in this VMA will fail rather than
3358 * looking like data was lost
3359 */
3360 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3361 }
3362
c7546f8f 3363 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3364 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3365 if (huge_pte_dirty(pte))
6649a386 3366 set_page_dirty(page);
9e81130b 3367
5d317b2b 3368 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3369 page_remove_rmap(page, true);
31d49da5 3370
cb900f41 3371 spin_unlock(ptl);
e77b0852 3372 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3373 /*
3374 * Bail out after unmapping reference page if supplied
3375 */
3376 if (ref_page)
3377 break;
fe1668ae 3378 }
2ec74c3e 3379 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3380 tlb_end_vma(tlb, vma);
1da177e4 3381}
63551ae0 3382
d833352a
MG
3383void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3384 struct vm_area_struct *vma, unsigned long start,
3385 unsigned long end, struct page *ref_page)
3386{
3387 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3388
3389 /*
3390 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3391 * test will fail on a vma being torn down, and not grab a page table
3392 * on its way out. We're lucky that the flag has such an appropriate
3393 * name, and can in fact be safely cleared here. We could clear it
3394 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3395 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3396 * because in the context this is called, the VMA is about to be
c8c06efa 3397 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3398 */
3399 vma->vm_flags &= ~VM_MAYSHARE;
3400}
3401
502717f4 3402void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3403 unsigned long end, struct page *ref_page)
502717f4 3404{
24669e58
AK
3405 struct mm_struct *mm;
3406 struct mmu_gather tlb;
3407
3408 mm = vma->vm_mm;
3409
2b047252 3410 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3411 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3412 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3413}
3414
04f2cbe3
MG
3415/*
3416 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3417 * mappping it owns the reserve page for. The intention is to unmap the page
3418 * from other VMAs and let the children be SIGKILLed if they are faulting the
3419 * same region.
3420 */
2f4612af
DB
3421static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3422 struct page *page, unsigned long address)
04f2cbe3 3423{
7526674d 3424 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3425 struct vm_area_struct *iter_vma;
3426 struct address_space *mapping;
04f2cbe3
MG
3427 pgoff_t pgoff;
3428
3429 /*
3430 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3431 * from page cache lookup which is in HPAGE_SIZE units.
3432 */
7526674d 3433 address = address & huge_page_mask(h);
36e4f20a
MH
3434 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3435 vma->vm_pgoff;
93c76a3d 3436 mapping = vma->vm_file->f_mapping;
04f2cbe3 3437
4eb2b1dc
MG
3438 /*
3439 * Take the mapping lock for the duration of the table walk. As
3440 * this mapping should be shared between all the VMAs,
3441 * __unmap_hugepage_range() is called as the lock is already held
3442 */
83cde9e8 3443 i_mmap_lock_write(mapping);
6b2dbba8 3444 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3445 /* Do not unmap the current VMA */
3446 if (iter_vma == vma)
3447 continue;
3448
2f84a899
MG
3449 /*
3450 * Shared VMAs have their own reserves and do not affect
3451 * MAP_PRIVATE accounting but it is possible that a shared
3452 * VMA is using the same page so check and skip such VMAs.
3453 */
3454 if (iter_vma->vm_flags & VM_MAYSHARE)
3455 continue;
3456
04f2cbe3
MG
3457 /*
3458 * Unmap the page from other VMAs without their own reserves.
3459 * They get marked to be SIGKILLed if they fault in these
3460 * areas. This is because a future no-page fault on this VMA
3461 * could insert a zeroed page instead of the data existing
3462 * from the time of fork. This would look like data corruption
3463 */
3464 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3465 unmap_hugepage_range(iter_vma, address,
3466 address + huge_page_size(h), page);
04f2cbe3 3467 }
83cde9e8 3468 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3469}
3470
0fe6e20b
NH
3471/*
3472 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3473 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3474 * cannot race with other handlers or page migration.
3475 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3476 */
1e8f889b 3477static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3478 unsigned long address, pte_t *ptep,
3479 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3480{
3999f52e 3481 pte_t pte;
a5516438 3482 struct hstate *h = hstate_vma(vma);
1e8f889b 3483 struct page *old_page, *new_page;
ad4404a2 3484 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3485 unsigned long mmun_start; /* For mmu_notifiers */
3486 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3487
3999f52e 3488 pte = huge_ptep_get(ptep);
1e8f889b
DG
3489 old_page = pte_page(pte);
3490
04f2cbe3 3491retry_avoidcopy:
1e8f889b
DG
3492 /* If no-one else is actually using this page, avoid the copy
3493 * and just make the page writable */
37a2140d 3494 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3495 page_move_anon_rmap(old_page, vma);
1e8f889b 3496 set_huge_ptep_writable(vma, address, ptep);
83c54070 3497 return 0;
1e8f889b
DG
3498 }
3499
04f2cbe3
MG
3500 /*
3501 * If the process that created a MAP_PRIVATE mapping is about to
3502 * perform a COW due to a shared page count, attempt to satisfy
3503 * the allocation without using the existing reserves. The pagecache
3504 * page is used to determine if the reserve at this address was
3505 * consumed or not. If reserves were used, a partial faulted mapping
3506 * at the time of fork() could consume its reserves on COW instead
3507 * of the full address range.
3508 */
5944d011 3509 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3510 old_page != pagecache_page)
3511 outside_reserve = 1;
3512
09cbfeaf 3513 get_page(old_page);
b76c8cfb 3514
ad4404a2
DB
3515 /*
3516 * Drop page table lock as buddy allocator may be called. It will
3517 * be acquired again before returning to the caller, as expected.
3518 */
cb900f41 3519 spin_unlock(ptl);
04f2cbe3 3520 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3521
2fc39cec 3522 if (IS_ERR(new_page)) {
04f2cbe3
MG
3523 /*
3524 * If a process owning a MAP_PRIVATE mapping fails to COW,
3525 * it is due to references held by a child and an insufficient
3526 * huge page pool. To guarantee the original mappers
3527 * reliability, unmap the page from child processes. The child
3528 * may get SIGKILLed if it later faults.
3529 */
3530 if (outside_reserve) {
09cbfeaf 3531 put_page(old_page);
04f2cbe3 3532 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3533 unmap_ref_private(mm, vma, old_page, address);
3534 BUG_ON(huge_pte_none(pte));
3535 spin_lock(ptl);
3536 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3537 if (likely(ptep &&
3538 pte_same(huge_ptep_get(ptep), pte)))
3539 goto retry_avoidcopy;
3540 /*
3541 * race occurs while re-acquiring page table
3542 * lock, and our job is done.
3543 */
3544 return 0;
04f2cbe3
MG
3545 }
3546
ad4404a2
DB
3547 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3548 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3549 goto out_release_old;
1e8f889b
DG
3550 }
3551
0fe6e20b
NH
3552 /*
3553 * When the original hugepage is shared one, it does not have
3554 * anon_vma prepared.
3555 */
44e2aa93 3556 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3557 ret = VM_FAULT_OOM;
3558 goto out_release_all;
44e2aa93 3559 }
0fe6e20b 3560
47ad8475
AA
3561 copy_user_huge_page(new_page, old_page, address, vma,
3562 pages_per_huge_page(h));
0ed361de 3563 __SetPageUptodate(new_page);
bcc54222 3564 set_page_huge_active(new_page);
1e8f889b 3565
2ec74c3e
SG
3566 mmun_start = address & huge_page_mask(h);
3567 mmun_end = mmun_start + huge_page_size(h);
3568 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3569
b76c8cfb 3570 /*
cb900f41 3571 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3572 * before the page tables are altered
3573 */
cb900f41 3574 spin_lock(ptl);
a5516438 3575 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 3576 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3577 ClearPagePrivate(new_page);
3578
1e8f889b 3579 /* Break COW */
8fe627ec 3580 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3581 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3582 set_huge_pte_at(mm, address, ptep,
3583 make_huge_pte(vma, new_page, 1));
d281ee61 3584 page_remove_rmap(old_page, true);
cd67f0d2 3585 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3586 /* Make the old page be freed below */
3587 new_page = old_page;
3588 }
cb900f41 3589 spin_unlock(ptl);
2ec74c3e 3590 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3591out_release_all:
96b96a96 3592 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3593 put_page(new_page);
ad4404a2 3594out_release_old:
09cbfeaf 3595 put_page(old_page);
8312034f 3596
ad4404a2
DB
3597 spin_lock(ptl); /* Caller expects lock to be held */
3598 return ret;
1e8f889b
DG
3599}
3600
04f2cbe3 3601/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3602static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3603 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3604{
3605 struct address_space *mapping;
e7c4b0bf 3606 pgoff_t idx;
04f2cbe3
MG
3607
3608 mapping = vma->vm_file->f_mapping;
a5516438 3609 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3610
3611 return find_lock_page(mapping, idx);
3612}
3613
3ae77f43
HD
3614/*
3615 * Return whether there is a pagecache page to back given address within VMA.
3616 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3617 */
3618static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3619 struct vm_area_struct *vma, unsigned long address)
3620{
3621 struct address_space *mapping;
3622 pgoff_t idx;
3623 struct page *page;
3624
3625 mapping = vma->vm_file->f_mapping;
3626 idx = vma_hugecache_offset(h, vma, address);
3627
3628 page = find_get_page(mapping, idx);
3629 if (page)
3630 put_page(page);
3631 return page != NULL;
3632}
3633
ab76ad54
MK
3634int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3635 pgoff_t idx)
3636{
3637 struct inode *inode = mapping->host;
3638 struct hstate *h = hstate_inode(inode);
3639 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3640
3641 if (err)
3642 return err;
3643 ClearPagePrivate(page);
3644
3645 spin_lock(&inode->i_lock);
3646 inode->i_blocks += blocks_per_huge_page(h);
3647 spin_unlock(&inode->i_lock);
3648 return 0;
3649}
3650
a1ed3dda 3651static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3652 struct address_space *mapping, pgoff_t idx,
3653 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3654{
a5516438 3655 struct hstate *h = hstate_vma(vma);
ac9b9c66 3656 int ret = VM_FAULT_SIGBUS;
409eb8c2 3657 int anon_rmap = 0;
4c887265 3658 unsigned long size;
4c887265 3659 struct page *page;
1e8f889b 3660 pte_t new_pte;
cb900f41 3661 spinlock_t *ptl;
4c887265 3662
04f2cbe3
MG
3663 /*
3664 * Currently, we are forced to kill the process in the event the
3665 * original mapper has unmapped pages from the child due to a failed
25985edc 3666 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3667 */
3668 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3669 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3670 current->pid);
04f2cbe3
MG
3671 return ret;
3672 }
3673
4c887265
AL
3674 /*
3675 * Use page lock to guard against racing truncation
3676 * before we get page_table_lock.
3677 */
6bda666a
CL
3678retry:
3679 page = find_lock_page(mapping, idx);
3680 if (!page) {
a5516438 3681 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3682 if (idx >= size)
3683 goto out;
1a1aad8a
MK
3684
3685 /*
3686 * Check for page in userfault range
3687 */
3688 if (userfaultfd_missing(vma)) {
3689 u32 hash;
3690 struct vm_fault vmf = {
3691 .vma = vma,
3692 .address = address,
3693 .flags = flags,
3694 /*
3695 * Hard to debug if it ends up being
3696 * used by a callee that assumes
3697 * something about the other
3698 * uninitialized fields... same as in
3699 * memory.c
3700 */
3701 };
3702
3703 /*
3704 * hugetlb_fault_mutex must be dropped before
3705 * handling userfault. Reacquire after handling
3706 * fault to make calling code simpler.
3707 */
3708 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3709 idx, address);
3710 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3711 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3712 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3713 goto out;
3714 }
3715
04f2cbe3 3716 page = alloc_huge_page(vma, address, 0);
2fc39cec 3717 if (IS_ERR(page)) {
76dcee75
AK
3718 ret = PTR_ERR(page);
3719 if (ret == -ENOMEM)
3720 ret = VM_FAULT_OOM;
3721 else
3722 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3723 goto out;
3724 }
47ad8475 3725 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3726 __SetPageUptodate(page);
bcc54222 3727 set_page_huge_active(page);
ac9b9c66 3728
f83a275d 3729 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3730 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3731 if (err) {
3732 put_page(page);
6bda666a
CL
3733 if (err == -EEXIST)
3734 goto retry;
3735 goto out;
3736 }
23be7468 3737 } else {
6bda666a 3738 lock_page(page);
0fe6e20b
NH
3739 if (unlikely(anon_vma_prepare(vma))) {
3740 ret = VM_FAULT_OOM;
3741 goto backout_unlocked;
3742 }
409eb8c2 3743 anon_rmap = 1;
23be7468 3744 }
0fe6e20b 3745 } else {
998b4382
NH
3746 /*
3747 * If memory error occurs between mmap() and fault, some process
3748 * don't have hwpoisoned swap entry for errored virtual address.
3749 * So we need to block hugepage fault by PG_hwpoison bit check.
3750 */
3751 if (unlikely(PageHWPoison(page))) {
32f84528 3752 ret = VM_FAULT_HWPOISON |
972dc4de 3753 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3754 goto backout_unlocked;
3755 }
6bda666a 3756 }
1e8f889b 3757
57303d80
AW
3758 /*
3759 * If we are going to COW a private mapping later, we examine the
3760 * pending reservations for this page now. This will ensure that
3761 * any allocations necessary to record that reservation occur outside
3762 * the spinlock.
3763 */
5e911373 3764 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3765 if (vma_needs_reservation(h, vma, address) < 0) {
3766 ret = VM_FAULT_OOM;
3767 goto backout_unlocked;
3768 }
5e911373 3769 /* Just decrements count, does not deallocate */
feba16e2 3770 vma_end_reservation(h, vma, address);
5e911373 3771 }
57303d80 3772
8bea8052 3773 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3774 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3775 if (idx >= size)
3776 goto backout;
3777
83c54070 3778 ret = 0;
7f2e9525 3779 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3780 goto backout;
3781
07443a85
JK
3782 if (anon_rmap) {
3783 ClearPagePrivate(page);
409eb8c2 3784 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3785 } else
53f9263b 3786 page_dup_rmap(page, true);
1e8f889b
DG
3787 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3788 && (vma->vm_flags & VM_SHARED)));
3789 set_huge_pte_at(mm, address, ptep, new_pte);
3790
5d317b2b 3791 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3792 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3793 /* Optimization, do the COW without a second fault */
3999f52e 3794 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3795 }
3796
cb900f41 3797 spin_unlock(ptl);
4c887265
AL
3798 unlock_page(page);
3799out:
ac9b9c66 3800 return ret;
4c887265
AL
3801
3802backout:
cb900f41 3803 spin_unlock(ptl);
2b26736c 3804backout_unlocked:
4c887265 3805 unlock_page(page);
96b96a96 3806 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3807 put_page(page);
3808 goto out;
ac9b9c66
HD
3809}
3810
8382d914 3811#ifdef CONFIG_SMP
c672c7f2 3812u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3813 struct vm_area_struct *vma,
3814 struct address_space *mapping,
3815 pgoff_t idx, unsigned long address)
3816{
3817 unsigned long key[2];
3818 u32 hash;
3819
3820 if (vma->vm_flags & VM_SHARED) {
3821 key[0] = (unsigned long) mapping;
3822 key[1] = idx;
3823 } else {
3824 key[0] = (unsigned long) mm;
3825 key[1] = address >> huge_page_shift(h);
3826 }
3827
3828 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3829
3830 return hash & (num_fault_mutexes - 1);
3831}
3832#else
3833/*
3834 * For uniprocesor systems we always use a single mutex, so just
3835 * return 0 and avoid the hashing overhead.
3836 */
c672c7f2 3837u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3838 struct vm_area_struct *vma,
3839 struct address_space *mapping,
3840 pgoff_t idx, unsigned long address)
3841{
3842 return 0;
3843}
3844#endif
3845
86e5216f 3846int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3847 unsigned long address, unsigned int flags)
86e5216f 3848{
8382d914 3849 pte_t *ptep, entry;
cb900f41 3850 spinlock_t *ptl;
1e8f889b 3851 int ret;
8382d914
DB
3852 u32 hash;
3853 pgoff_t idx;
0fe6e20b 3854 struct page *page = NULL;
57303d80 3855 struct page *pagecache_page = NULL;
a5516438 3856 struct hstate *h = hstate_vma(vma);
8382d914 3857 struct address_space *mapping;
0f792cf9 3858 int need_wait_lock = 0;
86e5216f 3859
1e16a539
KH
3860 address &= huge_page_mask(h);
3861
fd6a03ed
NH
3862 ptep = huge_pte_offset(mm, address);
3863 if (ptep) {
3864 entry = huge_ptep_get(ptep);
290408d4 3865 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3866 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3867 return 0;
3868 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3869 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3870 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3871 } else {
3872 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3873 if (!ptep)
3874 return VM_FAULT_OOM;
fd6a03ed
NH
3875 }
3876
8382d914
DB
3877 mapping = vma->vm_file->f_mapping;
3878 idx = vma_hugecache_offset(h, vma, address);
3879
3935baa9
DG
3880 /*
3881 * Serialize hugepage allocation and instantiation, so that we don't
3882 * get spurious allocation failures if two CPUs race to instantiate
3883 * the same page in the page cache.
3884 */
c672c7f2
MK
3885 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3886 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3887
7f2e9525
GS
3888 entry = huge_ptep_get(ptep);
3889 if (huge_pte_none(entry)) {
8382d914 3890 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3891 goto out_mutex;
3935baa9 3892 }
86e5216f 3893
83c54070 3894 ret = 0;
1e8f889b 3895
0f792cf9
NH
3896 /*
3897 * entry could be a migration/hwpoison entry at this point, so this
3898 * check prevents the kernel from going below assuming that we have
3899 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3900 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3901 * handle it.
3902 */
3903 if (!pte_present(entry))
3904 goto out_mutex;
3905
57303d80
AW
3906 /*
3907 * If we are going to COW the mapping later, we examine the pending
3908 * reservations for this page now. This will ensure that any
3909 * allocations necessary to record that reservation occur outside the
3910 * spinlock. For private mappings, we also lookup the pagecache
3911 * page now as it is used to determine if a reservation has been
3912 * consumed.
3913 */
106c992a 3914 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3915 if (vma_needs_reservation(h, vma, address) < 0) {
3916 ret = VM_FAULT_OOM;
b4d1d99f 3917 goto out_mutex;
2b26736c 3918 }
5e911373 3919 /* Just decrements count, does not deallocate */
feba16e2 3920 vma_end_reservation(h, vma, address);
57303d80 3921
f83a275d 3922 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3923 pagecache_page = hugetlbfs_pagecache_page(h,
3924 vma, address);
3925 }
3926
0f792cf9
NH
3927 ptl = huge_pte_lock(h, mm, ptep);
3928
3929 /* Check for a racing update before calling hugetlb_cow */
3930 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3931 goto out_ptl;
3932
56c9cfb1
NH
3933 /*
3934 * hugetlb_cow() requires page locks of pte_page(entry) and
3935 * pagecache_page, so here we need take the former one
3936 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3937 */
3938 page = pte_page(entry);
3939 if (page != pagecache_page)
0f792cf9
NH
3940 if (!trylock_page(page)) {
3941 need_wait_lock = 1;
3942 goto out_ptl;
3943 }
b4d1d99f 3944
0f792cf9 3945 get_page(page);
b4d1d99f 3946
788c7df4 3947 if (flags & FAULT_FLAG_WRITE) {
106c992a 3948 if (!huge_pte_write(entry)) {
3999f52e
AK
3949 ret = hugetlb_cow(mm, vma, address, ptep,
3950 pagecache_page, ptl);
0f792cf9 3951 goto out_put_page;
b4d1d99f 3952 }
106c992a 3953 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3954 }
3955 entry = pte_mkyoung(entry);
788c7df4
HD
3956 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3957 flags & FAULT_FLAG_WRITE))
4b3073e1 3958 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3959out_put_page:
3960 if (page != pagecache_page)
3961 unlock_page(page);
3962 put_page(page);
cb900f41
KS
3963out_ptl:
3964 spin_unlock(ptl);
57303d80
AW
3965
3966 if (pagecache_page) {
3967 unlock_page(pagecache_page);
3968 put_page(pagecache_page);
3969 }
b4d1d99f 3970out_mutex:
c672c7f2 3971 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3972 /*
3973 * Generally it's safe to hold refcount during waiting page lock. But
3974 * here we just wait to defer the next page fault to avoid busy loop and
3975 * the page is not used after unlocked before returning from the current
3976 * page fault. So we are safe from accessing freed page, even if we wait
3977 * here without taking refcount.
3978 */
3979 if (need_wait_lock)
3980 wait_on_page_locked(page);
1e8f889b 3981 return ret;
86e5216f
AL
3982}
3983
8fb5debc
MK
3984/*
3985 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3986 * modifications for huge pages.
3987 */
3988int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3989 pte_t *dst_pte,
3990 struct vm_area_struct *dst_vma,
3991 unsigned long dst_addr,
3992 unsigned long src_addr,
3993 struct page **pagep)
3994{
1c9e8def 3995 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
3996 struct hstate *h = hstate_vma(dst_vma);
3997 pte_t _dst_pte;
3998 spinlock_t *ptl;
3999 int ret;
4000 struct page *page;
4001
4002 if (!*pagep) {
4003 ret = -ENOMEM;
4004 page = alloc_huge_page(dst_vma, dst_addr, 0);
4005 if (IS_ERR(page))
4006 goto out;
4007
4008 ret = copy_huge_page_from_user(page,
4009 (const void __user *) src_addr,
810a56b9 4010 pages_per_huge_page(h), false);
8fb5debc
MK
4011
4012 /* fallback to copy_from_user outside mmap_sem */
4013 if (unlikely(ret)) {
4014 ret = -EFAULT;
4015 *pagep = page;
4016 /* don't free the page */
4017 goto out;
4018 }
4019 } else {
4020 page = *pagep;
4021 *pagep = NULL;
4022 }
4023
4024 /*
4025 * The memory barrier inside __SetPageUptodate makes sure that
4026 * preceding stores to the page contents become visible before
4027 * the set_pte_at() write.
4028 */
4029 __SetPageUptodate(page);
4030 set_page_huge_active(page);
4031
1c9e8def
MK
4032 /*
4033 * If shared, add to page cache
4034 */
4035 if (vm_shared) {
4036 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4037 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4038
4039 ret = huge_add_to_page_cache(page, mapping, idx);
4040 if (ret)
4041 goto out_release_nounlock;
4042 }
4043
8fb5debc
MK
4044 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4045 spin_lock(ptl);
4046
4047 ret = -EEXIST;
4048 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4049 goto out_release_unlock;
4050
1c9e8def
MK
4051 if (vm_shared) {
4052 page_dup_rmap(page, true);
4053 } else {
4054 ClearPagePrivate(page);
4055 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4056 }
8fb5debc
MK
4057
4058 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4059 if (dst_vma->vm_flags & VM_WRITE)
4060 _dst_pte = huge_pte_mkdirty(_dst_pte);
4061 _dst_pte = pte_mkyoung(_dst_pte);
4062
4063 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4064
4065 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4066 dst_vma->vm_flags & VM_WRITE);
4067 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4068
4069 /* No need to invalidate - it was non-present before */
4070 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4071
4072 spin_unlock(ptl);
1c9e8def
MK
4073 if (vm_shared)
4074 unlock_page(page);
8fb5debc
MK
4075 ret = 0;
4076out:
4077 return ret;
4078out_release_unlock:
4079 spin_unlock(ptl);
1c9e8def
MK
4080out_release_nounlock:
4081 if (vm_shared)
4082 unlock_page(page);
8fb5debc
MK
4083 put_page(page);
4084 goto out;
4085}
4086
28a35716
ML
4087long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4088 struct page **pages, struct vm_area_struct **vmas,
4089 unsigned long *position, unsigned long *nr_pages,
87ffc118 4090 long i, unsigned int flags, int *nonblocking)
63551ae0 4091{
d5d4b0aa
KC
4092 unsigned long pfn_offset;
4093 unsigned long vaddr = *position;
28a35716 4094 unsigned long remainder = *nr_pages;
a5516438 4095 struct hstate *h = hstate_vma(vma);
63551ae0 4096
63551ae0 4097 while (vaddr < vma->vm_end && remainder) {
4c887265 4098 pte_t *pte;
cb900f41 4099 spinlock_t *ptl = NULL;
2a15efc9 4100 int absent;
4c887265 4101 struct page *page;
63551ae0 4102
02057967
DR
4103 /*
4104 * If we have a pending SIGKILL, don't keep faulting pages and
4105 * potentially allocating memory.
4106 */
4107 if (unlikely(fatal_signal_pending(current))) {
4108 remainder = 0;
4109 break;
4110 }
4111
4c887265
AL
4112 /*
4113 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4114 * each hugepage. We have to make sure we get the
4c887265 4115 * first, for the page indexing below to work.
cb900f41
KS
4116 *
4117 * Note that page table lock is not held when pte is null.
4c887265 4118 */
a5516438 4119 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
4120 if (pte)
4121 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4122 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4123
4124 /*
4125 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4126 * an error where there's an empty slot with no huge pagecache
4127 * to back it. This way, we avoid allocating a hugepage, and
4128 * the sparse dumpfile avoids allocating disk blocks, but its
4129 * huge holes still show up with zeroes where they need to be.
2a15efc9 4130 */
3ae77f43
HD
4131 if (absent && (flags & FOLL_DUMP) &&
4132 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4133 if (pte)
4134 spin_unlock(ptl);
2a15efc9
HD
4135 remainder = 0;
4136 break;
4137 }
63551ae0 4138
9cc3a5bd
NH
4139 /*
4140 * We need call hugetlb_fault for both hugepages under migration
4141 * (in which case hugetlb_fault waits for the migration,) and
4142 * hwpoisoned hugepages (in which case we need to prevent the
4143 * caller from accessing to them.) In order to do this, we use
4144 * here is_swap_pte instead of is_hugetlb_entry_migration and
4145 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4146 * both cases, and because we can't follow correct pages
4147 * directly from any kind of swap entries.
4148 */
4149 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4150 ((flags & FOLL_WRITE) &&
4151 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4152 int ret;
87ffc118 4153 unsigned int fault_flags = 0;
63551ae0 4154
cb900f41
KS
4155 if (pte)
4156 spin_unlock(ptl);
87ffc118
AA
4157 if (flags & FOLL_WRITE)
4158 fault_flags |= FAULT_FLAG_WRITE;
4159 if (nonblocking)
4160 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4161 if (flags & FOLL_NOWAIT)
4162 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4163 FAULT_FLAG_RETRY_NOWAIT;
4164 if (flags & FOLL_TRIED) {
4165 VM_WARN_ON_ONCE(fault_flags &
4166 FAULT_FLAG_ALLOW_RETRY);
4167 fault_flags |= FAULT_FLAG_TRIED;
4168 }
4169 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4170 if (ret & VM_FAULT_ERROR) {
4171 remainder = 0;
4172 break;
4173 }
4174 if (ret & VM_FAULT_RETRY) {
4175 if (nonblocking)
4176 *nonblocking = 0;
4177 *nr_pages = 0;
4178 /*
4179 * VM_FAULT_RETRY must not return an
4180 * error, it will return zero
4181 * instead.
4182 *
4183 * No need to update "position" as the
4184 * caller will not check it after
4185 * *nr_pages is set to 0.
4186 */
4187 return i;
4188 }
4189 continue;
4c887265
AL
4190 }
4191
a5516438 4192 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4193 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4194same_page:
d6692183 4195 if (pages) {
2a15efc9 4196 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4197 get_page(pages[i]);
d6692183 4198 }
63551ae0
DG
4199
4200 if (vmas)
4201 vmas[i] = vma;
4202
4203 vaddr += PAGE_SIZE;
d5d4b0aa 4204 ++pfn_offset;
63551ae0
DG
4205 --remainder;
4206 ++i;
d5d4b0aa 4207 if (vaddr < vma->vm_end && remainder &&
a5516438 4208 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4209 /*
4210 * We use pfn_offset to avoid touching the pageframes
4211 * of this compound page.
4212 */
4213 goto same_page;
4214 }
cb900f41 4215 spin_unlock(ptl);
63551ae0 4216 }
28a35716 4217 *nr_pages = remainder;
87ffc118
AA
4218 /*
4219 * setting position is actually required only if remainder is
4220 * not zero but it's faster not to add a "if (remainder)"
4221 * branch.
4222 */
63551ae0
DG
4223 *position = vaddr;
4224
2a15efc9 4225 return i ? i : -EFAULT;
63551ae0 4226}
8f860591 4227
5491ae7b
AK
4228#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4229/*
4230 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4231 * implement this.
4232 */
4233#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4234#endif
4235
7da4d641 4236unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4237 unsigned long address, unsigned long end, pgprot_t newprot)
4238{
4239 struct mm_struct *mm = vma->vm_mm;
4240 unsigned long start = address;
4241 pte_t *ptep;
4242 pte_t pte;
a5516438 4243 struct hstate *h = hstate_vma(vma);
7da4d641 4244 unsigned long pages = 0;
8f860591
ZY
4245
4246 BUG_ON(address >= end);
4247 flush_cache_range(vma, address, end);
4248
a5338093 4249 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4250 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4251 for (; address < end; address += huge_page_size(h)) {
cb900f41 4252 spinlock_t *ptl;
8f860591
ZY
4253 ptep = huge_pte_offset(mm, address);
4254 if (!ptep)
4255 continue;
cb900f41 4256 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4257 if (huge_pmd_unshare(mm, &address, ptep)) {
4258 pages++;
cb900f41 4259 spin_unlock(ptl);
39dde65c 4260 continue;
7da4d641 4261 }
a8bda28d
NH
4262 pte = huge_ptep_get(ptep);
4263 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4264 spin_unlock(ptl);
4265 continue;
4266 }
4267 if (unlikely(is_hugetlb_entry_migration(pte))) {
4268 swp_entry_t entry = pte_to_swp_entry(pte);
4269
4270 if (is_write_migration_entry(entry)) {
4271 pte_t newpte;
4272
4273 make_migration_entry_read(&entry);
4274 newpte = swp_entry_to_pte(entry);
4275 set_huge_pte_at(mm, address, ptep, newpte);
4276 pages++;
4277 }
4278 spin_unlock(ptl);
4279 continue;
4280 }
4281 if (!huge_pte_none(pte)) {
8f860591 4282 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4283 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4284 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4285 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4286 pages++;
8f860591 4287 }
cb900f41 4288 spin_unlock(ptl);
8f860591 4289 }
d833352a 4290 /*
c8c06efa 4291 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4292 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4293 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4294 * and that page table be reused and filled with junk.
4295 */
5491ae7b 4296 flush_hugetlb_tlb_range(vma, start, end);
34ee645e 4297 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 4298 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4299 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4300
4301 return pages << h->order;
8f860591
ZY
4302}
4303
a1e78772
MG
4304int hugetlb_reserve_pages(struct inode *inode,
4305 long from, long to,
5a6fe125 4306 struct vm_area_struct *vma,
ca16d140 4307 vm_flags_t vm_flags)
e4e574b7 4308{
17c9d12e 4309 long ret, chg;
a5516438 4310 struct hstate *h = hstate_inode(inode);
90481622 4311 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4312 struct resv_map *resv_map;
1c5ecae3 4313 long gbl_reserve;
e4e574b7 4314
17c9d12e
MG
4315 /*
4316 * Only apply hugepage reservation if asked. At fault time, an
4317 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4318 * without using reserves
17c9d12e 4319 */
ca16d140 4320 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4321 return 0;
4322
a1e78772
MG
4323 /*
4324 * Shared mappings base their reservation on the number of pages that
4325 * are already allocated on behalf of the file. Private mappings need
4326 * to reserve the full area even if read-only as mprotect() may be
4327 * called to make the mapping read-write. Assume !vma is a shm mapping
4328 */
9119a41e 4329 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4330 resv_map = inode_resv_map(inode);
9119a41e 4331
1406ec9b 4332 chg = region_chg(resv_map, from, to);
9119a41e
JK
4333
4334 } else {
4335 resv_map = resv_map_alloc();
17c9d12e
MG
4336 if (!resv_map)
4337 return -ENOMEM;
4338
a1e78772 4339 chg = to - from;
84afd99b 4340
17c9d12e
MG
4341 set_vma_resv_map(vma, resv_map);
4342 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4343 }
4344
c50ac050
DH
4345 if (chg < 0) {
4346 ret = chg;
4347 goto out_err;
4348 }
8a630112 4349
1c5ecae3
MK
4350 /*
4351 * There must be enough pages in the subpool for the mapping. If
4352 * the subpool has a minimum size, there may be some global
4353 * reservations already in place (gbl_reserve).
4354 */
4355 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4356 if (gbl_reserve < 0) {
c50ac050
DH
4357 ret = -ENOSPC;
4358 goto out_err;
4359 }
5a6fe125
MG
4360
4361 /*
17c9d12e 4362 * Check enough hugepages are available for the reservation.
90481622 4363 * Hand the pages back to the subpool if there are not
5a6fe125 4364 */
1c5ecae3 4365 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4366 if (ret < 0) {
1c5ecae3
MK
4367 /* put back original number of pages, chg */
4368 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4369 goto out_err;
68842c9b 4370 }
17c9d12e
MG
4371
4372 /*
4373 * Account for the reservations made. Shared mappings record regions
4374 * that have reservations as they are shared by multiple VMAs.
4375 * When the last VMA disappears, the region map says how much
4376 * the reservation was and the page cache tells how much of
4377 * the reservation was consumed. Private mappings are per-VMA and
4378 * only the consumed reservations are tracked. When the VMA
4379 * disappears, the original reservation is the VMA size and the
4380 * consumed reservations are stored in the map. Hence, nothing
4381 * else has to be done for private mappings here
4382 */
33039678
MK
4383 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4384 long add = region_add(resv_map, from, to);
4385
4386 if (unlikely(chg > add)) {
4387 /*
4388 * pages in this range were added to the reserve
4389 * map between region_chg and region_add. This
4390 * indicates a race with alloc_huge_page. Adjust
4391 * the subpool and reserve counts modified above
4392 * based on the difference.
4393 */
4394 long rsv_adjust;
4395
4396 rsv_adjust = hugepage_subpool_put_pages(spool,
4397 chg - add);
4398 hugetlb_acct_memory(h, -rsv_adjust);
4399 }
4400 }
a43a8c39 4401 return 0;
c50ac050 4402out_err:
5e911373
MK
4403 if (!vma || vma->vm_flags & VM_MAYSHARE)
4404 region_abort(resv_map, from, to);
f031dd27
JK
4405 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4406 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4407 return ret;
a43a8c39
KC
4408}
4409
b5cec28d
MK
4410long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4411 long freed)
a43a8c39 4412{
a5516438 4413 struct hstate *h = hstate_inode(inode);
4e35f483 4414 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4415 long chg = 0;
90481622 4416 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4417 long gbl_reserve;
45c682a6 4418
b5cec28d
MK
4419 if (resv_map) {
4420 chg = region_del(resv_map, start, end);
4421 /*
4422 * region_del() can fail in the rare case where a region
4423 * must be split and another region descriptor can not be
4424 * allocated. If end == LONG_MAX, it will not fail.
4425 */
4426 if (chg < 0)
4427 return chg;
4428 }
4429
45c682a6 4430 spin_lock(&inode->i_lock);
e4c6f8be 4431 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4432 spin_unlock(&inode->i_lock);
4433
1c5ecae3
MK
4434 /*
4435 * If the subpool has a minimum size, the number of global
4436 * reservations to be released may be adjusted.
4437 */
4438 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4439 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4440
4441 return 0;
a43a8c39 4442}
93f70f90 4443
3212b535
SC
4444#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4445static unsigned long page_table_shareable(struct vm_area_struct *svma,
4446 struct vm_area_struct *vma,
4447 unsigned long addr, pgoff_t idx)
4448{
4449 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4450 svma->vm_start;
4451 unsigned long sbase = saddr & PUD_MASK;
4452 unsigned long s_end = sbase + PUD_SIZE;
4453
4454 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4455 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4456 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4457
4458 /*
4459 * match the virtual addresses, permission and the alignment of the
4460 * page table page.
4461 */
4462 if (pmd_index(addr) != pmd_index(saddr) ||
4463 vm_flags != svm_flags ||
4464 sbase < svma->vm_start || svma->vm_end < s_end)
4465 return 0;
4466
4467 return saddr;
4468}
4469
31aafb45 4470static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4471{
4472 unsigned long base = addr & PUD_MASK;
4473 unsigned long end = base + PUD_SIZE;
4474
4475 /*
4476 * check on proper vm_flags and page table alignment
4477 */
4478 if (vma->vm_flags & VM_MAYSHARE &&
4479 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4480 return true;
4481 return false;
3212b535
SC
4482}
4483
4484/*
4485 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4486 * and returns the corresponding pte. While this is not necessary for the
4487 * !shared pmd case because we can allocate the pmd later as well, it makes the
4488 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4489 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4490 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4491 * bad pmd for sharing.
4492 */
4493pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4494{
4495 struct vm_area_struct *vma = find_vma(mm, addr);
4496 struct address_space *mapping = vma->vm_file->f_mapping;
4497 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4498 vma->vm_pgoff;
4499 struct vm_area_struct *svma;
4500 unsigned long saddr;
4501 pte_t *spte = NULL;
4502 pte_t *pte;
cb900f41 4503 spinlock_t *ptl;
3212b535
SC
4504
4505 if (!vma_shareable(vma, addr))
4506 return (pte_t *)pmd_alloc(mm, pud, addr);
4507
83cde9e8 4508 i_mmap_lock_write(mapping);
3212b535
SC
4509 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4510 if (svma == vma)
4511 continue;
4512
4513 saddr = page_table_shareable(svma, vma, addr, idx);
4514 if (saddr) {
4515 spte = huge_pte_offset(svma->vm_mm, saddr);
4516 if (spte) {
4517 get_page(virt_to_page(spte));
4518 break;
4519 }
4520 }
4521 }
4522
4523 if (!spte)
4524 goto out;
4525
8bea8052 4526 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4527 if (pud_none(*pud)) {
3212b535
SC
4528 pud_populate(mm, pud,
4529 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4530 mm_inc_nr_pmds(mm);
dc6c9a35 4531 } else {
3212b535 4532 put_page(virt_to_page(spte));
dc6c9a35 4533 }
cb900f41 4534 spin_unlock(ptl);
3212b535
SC
4535out:
4536 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4537 i_mmap_unlock_write(mapping);
3212b535
SC
4538 return pte;
4539}
4540
4541/*
4542 * unmap huge page backed by shared pte.
4543 *
4544 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4545 * indicated by page_count > 1, unmap is achieved by clearing pud and
4546 * decrementing the ref count. If count == 1, the pte page is not shared.
4547 *
cb900f41 4548 * called with page table lock held.
3212b535
SC
4549 *
4550 * returns: 1 successfully unmapped a shared pte page
4551 * 0 the underlying pte page is not shared, or it is the last user
4552 */
4553int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4554{
4555 pgd_t *pgd = pgd_offset(mm, *addr);
4556 pud_t *pud = pud_offset(pgd, *addr);
4557
4558 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4559 if (page_count(virt_to_page(ptep)) == 1)
4560 return 0;
4561
4562 pud_clear(pud);
4563 put_page(virt_to_page(ptep));
dc6c9a35 4564 mm_dec_nr_pmds(mm);
3212b535
SC
4565 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4566 return 1;
4567}
9e5fc74c
SC
4568#define want_pmd_share() (1)
4569#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4570pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4571{
4572 return NULL;
4573}
e81f2d22
ZZ
4574
4575int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4576{
4577 return 0;
4578}
9e5fc74c 4579#define want_pmd_share() (0)
3212b535
SC
4580#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4581
9e5fc74c
SC
4582#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4583pte_t *huge_pte_alloc(struct mm_struct *mm,
4584 unsigned long addr, unsigned long sz)
4585{
4586 pgd_t *pgd;
4587 pud_t *pud;
4588 pte_t *pte = NULL;
4589
4590 pgd = pgd_offset(mm, addr);
4591 pud = pud_alloc(mm, pgd, addr);
4592 if (pud) {
4593 if (sz == PUD_SIZE) {
4594 pte = (pte_t *)pud;
4595 } else {
4596 BUG_ON(sz != PMD_SIZE);
4597 if (want_pmd_share() && pud_none(*pud))
4598 pte = huge_pmd_share(mm, addr, pud);
4599 else
4600 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4601 }
4602 }
4e666314 4603 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4604
4605 return pte;
4606}
4607
4608pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4609{
4610 pgd_t *pgd;
4611 pud_t *pud;
4612 pmd_t *pmd = NULL;
4613
4614 pgd = pgd_offset(mm, addr);
4615 if (pgd_present(*pgd)) {
4616 pud = pud_offset(pgd, addr);
4617 if (pud_present(*pud)) {
4618 if (pud_huge(*pud))
4619 return (pte_t *)pud;
4620 pmd = pmd_offset(pud, addr);
4621 }
4622 }
4623 return (pte_t *) pmd;
4624}
4625
61f77eda
NH
4626#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4627
4628/*
4629 * These functions are overwritable if your architecture needs its own
4630 * behavior.
4631 */
4632struct page * __weak
4633follow_huge_addr(struct mm_struct *mm, unsigned long address,
4634 int write)
4635{
4636 return ERR_PTR(-EINVAL);
4637}
4638
4639struct page * __weak
9e5fc74c 4640follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4641 pmd_t *pmd, int flags)
9e5fc74c 4642{
e66f17ff
NH
4643 struct page *page = NULL;
4644 spinlock_t *ptl;
4645retry:
4646 ptl = pmd_lockptr(mm, pmd);
4647 spin_lock(ptl);
4648 /*
4649 * make sure that the address range covered by this pmd is not
4650 * unmapped from other threads.
4651 */
4652 if (!pmd_huge(*pmd))
4653 goto out;
4654 if (pmd_present(*pmd)) {
97534127 4655 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4656 if (flags & FOLL_GET)
4657 get_page(page);
4658 } else {
4659 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4660 spin_unlock(ptl);
4661 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4662 goto retry;
4663 }
4664 /*
4665 * hwpoisoned entry is treated as no_page_table in
4666 * follow_page_mask().
4667 */
4668 }
4669out:
4670 spin_unlock(ptl);
9e5fc74c
SC
4671 return page;
4672}
4673
61f77eda 4674struct page * __weak
9e5fc74c 4675follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4676 pud_t *pud, int flags)
9e5fc74c 4677{
e66f17ff
NH
4678 if (flags & FOLL_GET)
4679 return NULL;
9e5fc74c 4680
e66f17ff 4681 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4682}
4683
d5bd9106
AK
4684#ifdef CONFIG_MEMORY_FAILURE
4685
93f70f90
NH
4686/*
4687 * This function is called from memory failure code.
93f70f90 4688 */
6de2b1aa 4689int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
4690{
4691 struct hstate *h = page_hstate(hpage);
4692 int nid = page_to_nid(hpage);
6de2b1aa 4693 int ret = -EBUSY;
93f70f90
NH
4694
4695 spin_lock(&hugetlb_lock);
7e1f049e
NH
4696 /*
4697 * Just checking !page_huge_active is not enough, because that could be
4698 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4699 */
4700 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
4701 /*
4702 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4703 * but dangling hpage->lru can trigger list-debug warnings
4704 * (this happens when we call unpoison_memory() on it),
4705 * so let it point to itself with list_del_init().
4706 */
4707 list_del_init(&hpage->lru);
8c6c2ecb 4708 set_page_refcounted(hpage);
6de2b1aa
NH
4709 h->free_huge_pages--;
4710 h->free_huge_pages_node[nid]--;
4711 ret = 0;
4712 }
93f70f90 4713 spin_unlock(&hugetlb_lock);
6de2b1aa 4714 return ret;
93f70f90 4715}
6de2b1aa 4716#endif
31caf665
NH
4717
4718bool isolate_huge_page(struct page *page, struct list_head *list)
4719{
bcc54222
NH
4720 bool ret = true;
4721
309381fe 4722 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4723 spin_lock(&hugetlb_lock);
bcc54222
NH
4724 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4725 ret = false;
4726 goto unlock;
4727 }
4728 clear_page_huge_active(page);
31caf665 4729 list_move_tail(&page->lru, list);
bcc54222 4730unlock:
31caf665 4731 spin_unlock(&hugetlb_lock);
bcc54222 4732 return ret;
31caf665
NH
4733}
4734
4735void putback_active_hugepage(struct page *page)
4736{
309381fe 4737 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4738 spin_lock(&hugetlb_lock);
bcc54222 4739 set_page_huge_active(page);
31caf665
NH
4740 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4741 spin_unlock(&hugetlb_lock);
4742 put_page(page);
4743}