]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mbind: add BUG_ON(!vma) in new_vma_page()
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
1da177e4 63
7ee3d4e8 64#include <asm/sections.h>
1da177e4 65#include <asm/tlbflush.h>
ac924c60 66#include <asm/div64.h>
1da177e4
LT
67#include "internal.h"
68
c8e251fa
CS
69/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70static DEFINE_MUTEX(pcp_batch_high_lock);
71
72812019
LS
72#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73DEFINE_PER_CPU(int, numa_node);
74EXPORT_PER_CPU_SYMBOL(numa_node);
75#endif
76
7aac7898
LS
77#ifdef CONFIG_HAVE_MEMORYLESS_NODES
78/*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86#endif
87
1da177e4 88/*
13808910 89 * Array of node states.
1da177e4 90 */
13808910
CL
91nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
92 [N_POSSIBLE] = NODE_MASK_ALL,
93 [N_ONLINE] = { { [0] = 1UL } },
94#ifndef CONFIG_NUMA
95 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
96#ifdef CONFIG_HIGHMEM
97 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
98#endif
99#ifdef CONFIG_MOVABLE_NODE
100 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
101#endif
102 [N_CPU] = { { [0] = 1UL } },
103#endif /* NUMA */
104};
105EXPORT_SYMBOL(node_states);
106
c3d5f5f0
JL
107/* Protect totalram_pages and zone->managed_pages */
108static DEFINE_SPINLOCK(managed_page_count_lock);
109
6c231b7b 110unsigned long totalram_pages __read_mostly;
cb45b0e9 111unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
112/*
113 * When calculating the number of globally allowed dirty pages, there
114 * is a certain number of per-zone reserves that should not be
115 * considered dirtyable memory. This is the sum of those reserves
116 * over all existing zones that contribute dirtyable memory.
117 */
118unsigned long dirty_balance_reserve __read_mostly;
119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
452aa699
RW
123#ifdef CONFIG_PM_SLEEP
124/*
125 * The following functions are used by the suspend/hibernate code to temporarily
126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127 * while devices are suspended. To avoid races with the suspend/hibernate code,
128 * they should always be called with pm_mutex held (gfp_allowed_mask also should
129 * only be modified with pm_mutex held, unless the suspend/hibernate code is
130 * guaranteed not to run in parallel with that modification).
131 */
c9e664f1
RW
132
133static gfp_t saved_gfp_mask;
134
135void pm_restore_gfp_mask(void)
452aa699
RW
136{
137 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
138 if (saved_gfp_mask) {
139 gfp_allowed_mask = saved_gfp_mask;
140 saved_gfp_mask = 0;
141 }
452aa699
RW
142}
143
c9e664f1 144void pm_restrict_gfp_mask(void)
452aa699 145{
452aa699 146 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
147 WARN_ON(saved_gfp_mask);
148 saved_gfp_mask = gfp_allowed_mask;
149 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 150}
f90ac398
MG
151
152bool pm_suspended_storage(void)
153{
154 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
155 return false;
156 return true;
157}
452aa699
RW
158#endif /* CONFIG_PM_SLEEP */
159
d9c23400
MG
160#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161int pageblock_order __read_mostly;
162#endif
163
d98c7a09 164static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 165
1da177e4
LT
166/*
167 * results with 256, 32 in the lowmem_reserve sysctl:
168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169 * 1G machine -> (16M dma, 784M normal, 224M high)
170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
173 *
174 * TBD: should special case ZONE_DMA32 machines here - in those we normally
175 * don't need any ZONE_NORMAL reservation
1da177e4 176 */
2f1b6248 177int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 178#ifdef CONFIG_ZONE_DMA
2f1b6248 179 256,
4b51d669 180#endif
fb0e7942 181#ifdef CONFIG_ZONE_DMA32
2f1b6248 182 256,
fb0e7942 183#endif
e53ef38d 184#ifdef CONFIG_HIGHMEM
2a1e274a 185 32,
e53ef38d 186#endif
2a1e274a 187 32,
2f1b6248 188};
1da177e4
LT
189
190EXPORT_SYMBOL(totalram_pages);
1da177e4 191
15ad7cdc 192static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 193#ifdef CONFIG_ZONE_DMA
2f1b6248 194 "DMA",
4b51d669 195#endif
fb0e7942 196#ifdef CONFIG_ZONE_DMA32
2f1b6248 197 "DMA32",
fb0e7942 198#endif
2f1b6248 199 "Normal",
e53ef38d 200#ifdef CONFIG_HIGHMEM
2a1e274a 201 "HighMem",
e53ef38d 202#endif
2a1e274a 203 "Movable",
2f1b6248
CL
204};
205
1da177e4 206int min_free_kbytes = 1024;
5f12733e 207int user_min_free_kbytes;
1da177e4 208
2c85f51d
JB
209static unsigned long __meminitdata nr_kernel_pages;
210static unsigned long __meminitdata nr_all_pages;
a3142c8e 211static unsigned long __meminitdata dma_reserve;
1da177e4 212
0ee332c1
TH
213#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
214static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
215static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __initdata required_kernelcore;
217static unsigned long __initdata required_movablecore;
218static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
219
220/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
221int movable_zone;
222EXPORT_SYMBOL(movable_zone);
223#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 224
418508c1
MS
225#if MAX_NUMNODES > 1
226int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 227int nr_online_nodes __read_mostly = 1;
418508c1 228EXPORT_SYMBOL(nr_node_ids);
62bc62a8 229EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
230#endif
231
9ef9acb0
MG
232int page_group_by_mobility_disabled __read_mostly;
233
ee6f509c 234void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 235{
49255c61
MG
236
237 if (unlikely(page_group_by_mobility_disabled))
238 migratetype = MIGRATE_UNMOVABLE;
239
b2a0ac88
MG
240 set_pageblock_flags_group(page, (unsigned long)migratetype,
241 PB_migrate, PB_migrate_end);
242}
243
7f33d49a
RW
244bool oom_killer_disabled __read_mostly;
245
13e7444b 246#ifdef CONFIG_DEBUG_VM
c6a57e19 247static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 248{
bdc8cb98
DH
249 int ret = 0;
250 unsigned seq;
251 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 252 unsigned long sp, start_pfn;
c6a57e19 253
bdc8cb98
DH
254 do {
255 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
256 start_pfn = zone->zone_start_pfn;
257 sp = zone->spanned_pages;
108bcc96 258 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
259 ret = 1;
260 } while (zone_span_seqretry(zone, seq));
261
b5e6a5a2
CS
262 if (ret)
263 pr_err("page %lu outside zone [ %lu - %lu ]\n",
264 pfn, start_pfn, start_pfn + sp);
265
bdc8cb98 266 return ret;
c6a57e19
DH
267}
268
269static int page_is_consistent(struct zone *zone, struct page *page)
270{
14e07298 271 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 272 return 0;
1da177e4 273 if (zone != page_zone(page))
c6a57e19
DH
274 return 0;
275
276 return 1;
277}
278/*
279 * Temporary debugging check for pages not lying within a given zone.
280 */
281static int bad_range(struct zone *zone, struct page *page)
282{
283 if (page_outside_zone_boundaries(zone, page))
1da177e4 284 return 1;
c6a57e19
DH
285 if (!page_is_consistent(zone, page))
286 return 1;
287
1da177e4
LT
288 return 0;
289}
13e7444b
NP
290#else
291static inline int bad_range(struct zone *zone, struct page *page)
292{
293 return 0;
294}
295#endif
296
224abf92 297static void bad_page(struct page *page)
1da177e4 298{
d936cf9b
HD
299 static unsigned long resume;
300 static unsigned long nr_shown;
301 static unsigned long nr_unshown;
302
2a7684a2
WF
303 /* Don't complain about poisoned pages */
304 if (PageHWPoison(page)) {
22b751c3 305 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
306 return;
307 }
308
d936cf9b
HD
309 /*
310 * Allow a burst of 60 reports, then keep quiet for that minute;
311 * or allow a steady drip of one report per second.
312 */
313 if (nr_shown == 60) {
314 if (time_before(jiffies, resume)) {
315 nr_unshown++;
316 goto out;
317 }
318 if (nr_unshown) {
1e9e6365
HD
319 printk(KERN_ALERT
320 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
321 nr_unshown);
322 nr_unshown = 0;
323 }
324 nr_shown = 0;
325 }
326 if (nr_shown++ == 0)
327 resume = jiffies + 60 * HZ;
328
1e9e6365 329 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 330 current->comm, page_to_pfn(page));
718a3821 331 dump_page(page);
3dc14741 332
4f31888c 333 print_modules();
1da177e4 334 dump_stack();
d936cf9b 335out:
8cc3b392 336 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 337 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 338 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
339}
340
1da177e4
LT
341/*
342 * Higher-order pages are called "compound pages". They are structured thusly:
343 *
344 * The first PAGE_SIZE page is called the "head page".
345 *
346 * The remaining PAGE_SIZE pages are called "tail pages".
347 *
6416b9fa
WSH
348 * All pages have PG_compound set. All tail pages have their ->first_page
349 * pointing at the head page.
1da177e4 350 *
41d78ba5
HD
351 * The first tail page's ->lru.next holds the address of the compound page's
352 * put_page() function. Its ->lru.prev holds the order of allocation.
353 * This usage means that zero-order pages may not be compound.
1da177e4 354 */
d98c7a09
HD
355
356static void free_compound_page(struct page *page)
357{
d85f3385 358 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
359}
360
01ad1c08 361void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
362{
363 int i;
364 int nr_pages = 1 << order;
365
366 set_compound_page_dtor(page, free_compound_page);
367 set_compound_order(page, order);
368 __SetPageHead(page);
369 for (i = 1; i < nr_pages; i++) {
370 struct page *p = page + i;
18229df5 371 __SetPageTail(p);
58a84aa9 372 set_page_count(p, 0);
18229df5
AW
373 p->first_page = page;
374 }
375}
376
59ff4216 377/* update __split_huge_page_refcount if you change this function */
8cc3b392 378static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
379{
380 int i;
381 int nr_pages = 1 << order;
8cc3b392 382 int bad = 0;
1da177e4 383
0bb2c763 384 if (unlikely(compound_order(page) != order)) {
224abf92 385 bad_page(page);
8cc3b392
HD
386 bad++;
387 }
1da177e4 388
6d777953 389 __ClearPageHead(page);
8cc3b392 390
18229df5
AW
391 for (i = 1; i < nr_pages; i++) {
392 struct page *p = page + i;
1da177e4 393
e713a21d 394 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 395 bad_page(page);
8cc3b392
HD
396 bad++;
397 }
d85f3385 398 __ClearPageTail(p);
1da177e4 399 }
8cc3b392
HD
400
401 return bad;
1da177e4 402}
1da177e4 403
17cf4406
NP
404static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
405{
406 int i;
407
6626c5d5
AM
408 /*
409 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
410 * and __GFP_HIGHMEM from hard or soft interrupt context.
411 */
725d704e 412 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
413 for (i = 0; i < (1 << order); i++)
414 clear_highpage(page + i);
415}
416
c0a32fc5
SG
417#ifdef CONFIG_DEBUG_PAGEALLOC
418unsigned int _debug_guardpage_minorder;
419
420static int __init debug_guardpage_minorder_setup(char *buf)
421{
422 unsigned long res;
423
424 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
425 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
426 return 0;
427 }
428 _debug_guardpage_minorder = res;
429 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
430 return 0;
431}
432__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
433
434static inline void set_page_guard_flag(struct page *page)
435{
436 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
437}
438
439static inline void clear_page_guard_flag(struct page *page)
440{
441 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
442}
443#else
444static inline void set_page_guard_flag(struct page *page) { }
445static inline void clear_page_guard_flag(struct page *page) { }
446#endif
447
6aa3001b
AM
448static inline void set_page_order(struct page *page, int order)
449{
4c21e2f2 450 set_page_private(page, order);
676165a8 451 __SetPageBuddy(page);
1da177e4
LT
452}
453
454static inline void rmv_page_order(struct page *page)
455{
676165a8 456 __ClearPageBuddy(page);
4c21e2f2 457 set_page_private(page, 0);
1da177e4
LT
458}
459
460/*
461 * Locate the struct page for both the matching buddy in our
462 * pair (buddy1) and the combined O(n+1) page they form (page).
463 *
464 * 1) Any buddy B1 will have an order O twin B2 which satisfies
465 * the following equation:
466 * B2 = B1 ^ (1 << O)
467 * For example, if the starting buddy (buddy2) is #8 its order
468 * 1 buddy is #10:
469 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
470 *
471 * 2) Any buddy B will have an order O+1 parent P which
472 * satisfies the following equation:
473 * P = B & ~(1 << O)
474 *
d6e05edc 475 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 476 */
1da177e4 477static inline unsigned long
43506fad 478__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 479{
43506fad 480 return page_idx ^ (1 << order);
1da177e4
LT
481}
482
483/*
484 * This function checks whether a page is free && is the buddy
485 * we can do coalesce a page and its buddy if
13e7444b 486 * (a) the buddy is not in a hole &&
676165a8 487 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
488 * (c) a page and its buddy have the same order &&
489 * (d) a page and its buddy are in the same zone.
676165a8 490 *
5f24ce5f
AA
491 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
492 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 493 *
676165a8 494 * For recording page's order, we use page_private(page).
1da177e4 495 */
cb2b95e1
AW
496static inline int page_is_buddy(struct page *page, struct page *buddy,
497 int order)
1da177e4 498{
14e07298 499 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 500 return 0;
13e7444b 501
cb2b95e1
AW
502 if (page_zone_id(page) != page_zone_id(buddy))
503 return 0;
504
c0a32fc5
SG
505 if (page_is_guard(buddy) && page_order(buddy) == order) {
506 VM_BUG_ON(page_count(buddy) != 0);
507 return 1;
508 }
509
cb2b95e1 510 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 511 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 512 return 1;
676165a8 513 }
6aa3001b 514 return 0;
1da177e4
LT
515}
516
517/*
518 * Freeing function for a buddy system allocator.
519 *
520 * The concept of a buddy system is to maintain direct-mapped table
521 * (containing bit values) for memory blocks of various "orders".
522 * The bottom level table contains the map for the smallest allocatable
523 * units of memory (here, pages), and each level above it describes
524 * pairs of units from the levels below, hence, "buddies".
525 * At a high level, all that happens here is marking the table entry
526 * at the bottom level available, and propagating the changes upward
527 * as necessary, plus some accounting needed to play nicely with other
528 * parts of the VM system.
529 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 530 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 531 * order is recorded in page_private(page) field.
1da177e4 532 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
533 * other. That is, if we allocate a small block, and both were
534 * free, the remainder of the region must be split into blocks.
1da177e4 535 * If a block is freed, and its buddy is also free, then this
5f63b720 536 * triggers coalescing into a block of larger size.
1da177e4 537 *
6d49e352 538 * -- nyc
1da177e4
LT
539 */
540
48db57f8 541static inline void __free_one_page(struct page *page,
ed0ae21d
MG
542 struct zone *zone, unsigned int order,
543 int migratetype)
1da177e4
LT
544{
545 unsigned long page_idx;
6dda9d55 546 unsigned long combined_idx;
43506fad 547 unsigned long uninitialized_var(buddy_idx);
6dda9d55 548 struct page *buddy;
1da177e4 549
d29bb978
CS
550 VM_BUG_ON(!zone_is_initialized(zone));
551
224abf92 552 if (unlikely(PageCompound(page)))
8cc3b392
HD
553 if (unlikely(destroy_compound_page(page, order)))
554 return;
1da177e4 555
ed0ae21d
MG
556 VM_BUG_ON(migratetype == -1);
557
1da177e4
LT
558 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
559
f2260e6b 560 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 561 VM_BUG_ON(bad_range(zone, page));
1da177e4 562
1da177e4 563 while (order < MAX_ORDER-1) {
43506fad
KC
564 buddy_idx = __find_buddy_index(page_idx, order);
565 buddy = page + (buddy_idx - page_idx);
cb2b95e1 566 if (!page_is_buddy(page, buddy, order))
3c82d0ce 567 break;
c0a32fc5
SG
568 /*
569 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
570 * merge with it and move up one order.
571 */
572 if (page_is_guard(buddy)) {
573 clear_page_guard_flag(buddy);
574 set_page_private(page, 0);
d1ce749a
BZ
575 __mod_zone_freepage_state(zone, 1 << order,
576 migratetype);
c0a32fc5
SG
577 } else {
578 list_del(&buddy->lru);
579 zone->free_area[order].nr_free--;
580 rmv_page_order(buddy);
581 }
43506fad 582 combined_idx = buddy_idx & page_idx;
1da177e4
LT
583 page = page + (combined_idx - page_idx);
584 page_idx = combined_idx;
585 order++;
586 }
587 set_page_order(page, order);
6dda9d55
CZ
588
589 /*
590 * If this is not the largest possible page, check if the buddy
591 * of the next-highest order is free. If it is, it's possible
592 * that pages are being freed that will coalesce soon. In case,
593 * that is happening, add the free page to the tail of the list
594 * so it's less likely to be used soon and more likely to be merged
595 * as a higher order page
596 */
b7f50cfa 597 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 598 struct page *higher_page, *higher_buddy;
43506fad
KC
599 combined_idx = buddy_idx & page_idx;
600 higher_page = page + (combined_idx - page_idx);
601 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 602 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
603 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
604 list_add_tail(&page->lru,
605 &zone->free_area[order].free_list[migratetype]);
606 goto out;
607 }
608 }
609
610 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
611out:
1da177e4
LT
612 zone->free_area[order].nr_free++;
613}
614
224abf92 615static inline int free_pages_check(struct page *page)
1da177e4 616{
92be2e33
NP
617 if (unlikely(page_mapcount(page) |
618 (page->mapping != NULL) |
a3af9c38 619 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
620 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
621 (mem_cgroup_bad_page_check(page)))) {
224abf92 622 bad_page(page);
79f4b7bf 623 return 1;
8cc3b392 624 }
22b751c3 625 page_nid_reset_last(page);
79f4b7bf
HD
626 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
627 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
628 return 0;
1da177e4
LT
629}
630
631/*
5f8dcc21 632 * Frees a number of pages from the PCP lists
1da177e4 633 * Assumes all pages on list are in same zone, and of same order.
207f36ee 634 * count is the number of pages to free.
1da177e4
LT
635 *
636 * If the zone was previously in an "all pages pinned" state then look to
637 * see if this freeing clears that state.
638 *
639 * And clear the zone's pages_scanned counter, to hold off the "all pages are
640 * pinned" detection logic.
641 */
5f8dcc21
MG
642static void free_pcppages_bulk(struct zone *zone, int count,
643 struct per_cpu_pages *pcp)
1da177e4 644{
5f8dcc21 645 int migratetype = 0;
a6f9edd6 646 int batch_free = 0;
72853e29 647 int to_free = count;
5f8dcc21 648
c54ad30c 649 spin_lock(&zone->lock);
93e4a89a 650 zone->all_unreclaimable = 0;
1da177e4 651 zone->pages_scanned = 0;
f2260e6b 652
72853e29 653 while (to_free) {
48db57f8 654 struct page *page;
5f8dcc21
MG
655 struct list_head *list;
656
657 /*
a6f9edd6
MG
658 * Remove pages from lists in a round-robin fashion. A
659 * batch_free count is maintained that is incremented when an
660 * empty list is encountered. This is so more pages are freed
661 * off fuller lists instead of spinning excessively around empty
662 * lists
5f8dcc21
MG
663 */
664 do {
a6f9edd6 665 batch_free++;
5f8dcc21
MG
666 if (++migratetype == MIGRATE_PCPTYPES)
667 migratetype = 0;
668 list = &pcp->lists[migratetype];
669 } while (list_empty(list));
48db57f8 670
1d16871d
NK
671 /* This is the only non-empty list. Free them all. */
672 if (batch_free == MIGRATE_PCPTYPES)
673 batch_free = to_free;
674
a6f9edd6 675 do {
770c8aaa
BZ
676 int mt; /* migratetype of the to-be-freed page */
677
a6f9edd6
MG
678 page = list_entry(list->prev, struct page, lru);
679 /* must delete as __free_one_page list manipulates */
680 list_del(&page->lru);
b12c4ad1 681 mt = get_freepage_migratetype(page);
a7016235 682 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
683 __free_one_page(page, zone, 0, mt);
684 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 685 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
687 if (is_migrate_cma(mt))
688 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
689 }
72853e29 690 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 691 }
c54ad30c 692 spin_unlock(&zone->lock);
1da177e4
LT
693}
694
ed0ae21d
MG
695static void free_one_page(struct zone *zone, struct page *page, int order,
696 int migratetype)
1da177e4 697{
006d22d9 698 spin_lock(&zone->lock);
93e4a89a 699 zone->all_unreclaimable = 0;
006d22d9 700 zone->pages_scanned = 0;
f2260e6b 701
ed0ae21d 702 __free_one_page(page, zone, order, migratetype);
194159fb 703 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 705 spin_unlock(&zone->lock);
48db57f8
NP
706}
707
ec95f53a 708static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 709{
1da177e4 710 int i;
8cc3b392 711 int bad = 0;
1da177e4 712
b413d48a 713 trace_mm_page_free(page, order);
b1eeab67
VN
714 kmemcheck_free_shadow(page, order);
715
8dd60a3a
AA
716 if (PageAnon(page))
717 page->mapping = NULL;
718 for (i = 0; i < (1 << order); i++)
719 bad += free_pages_check(page + i);
8cc3b392 720 if (bad)
ec95f53a 721 return false;
689bcebf 722
3ac7fe5a 723 if (!PageHighMem(page)) {
b8af2941
PK
724 debug_check_no_locks_freed(page_address(page),
725 PAGE_SIZE << order);
3ac7fe5a
TG
726 debug_check_no_obj_freed(page_address(page),
727 PAGE_SIZE << order);
728 }
dafb1367 729 arch_free_page(page, order);
48db57f8 730 kernel_map_pages(page, 1 << order, 0);
dafb1367 731
ec95f53a
KM
732 return true;
733}
734
735static void __free_pages_ok(struct page *page, unsigned int order)
736{
737 unsigned long flags;
95e34412 738 int migratetype;
ec95f53a
KM
739
740 if (!free_pages_prepare(page, order))
741 return;
742
c54ad30c 743 local_irq_save(flags);
f8891e5e 744 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
745 migratetype = get_pageblock_migratetype(page);
746 set_freepage_migratetype(page, migratetype);
747 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 748 local_irq_restore(flags);
1da177e4
LT
749}
750
170a5a7e 751void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 752{
c3993076 753 unsigned int nr_pages = 1 << order;
e2d0bd2b 754 struct page *p = page;
c3993076 755 unsigned int loop;
a226f6c8 756
e2d0bd2b
YL
757 prefetchw(p);
758 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
759 prefetchw(p + 1);
c3993076
JW
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
a226f6c8 762 }
e2d0bd2b
YL
763 __ClearPageReserved(p);
764 set_page_count(p, 0);
c3993076 765
e2d0bd2b 766 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
767 set_page_refcounted(page);
768 __free_pages(page, order);
a226f6c8
DH
769}
770
47118af0 771#ifdef CONFIG_CMA
9cf510a5 772/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
773void __init init_cma_reserved_pageblock(struct page *page)
774{
775 unsigned i = pageblock_nr_pages;
776 struct page *p = page;
777
778 do {
779 __ClearPageReserved(p);
780 set_page_count(p, 0);
781 } while (++p, --i);
782
783 set_page_refcounted(page);
784 set_pageblock_migratetype(page, MIGRATE_CMA);
785 __free_pages(page, pageblock_order);
3dcc0571 786 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
787}
788#endif
1da177e4
LT
789
790/*
791 * The order of subdivision here is critical for the IO subsystem.
792 * Please do not alter this order without good reasons and regression
793 * testing. Specifically, as large blocks of memory are subdivided,
794 * the order in which smaller blocks are delivered depends on the order
795 * they're subdivided in this function. This is the primary factor
796 * influencing the order in which pages are delivered to the IO
797 * subsystem according to empirical testing, and this is also justified
798 * by considering the behavior of a buddy system containing a single
799 * large block of memory acted on by a series of small allocations.
800 * This behavior is a critical factor in sglist merging's success.
801 *
6d49e352 802 * -- nyc
1da177e4 803 */
085cc7d5 804static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
805 int low, int high, struct free_area *area,
806 int migratetype)
1da177e4
LT
807{
808 unsigned long size = 1 << high;
809
810 while (high > low) {
811 area--;
812 high--;
813 size >>= 1;
725d704e 814 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
815
816#ifdef CONFIG_DEBUG_PAGEALLOC
817 if (high < debug_guardpage_minorder()) {
818 /*
819 * Mark as guard pages (or page), that will allow to
820 * merge back to allocator when buddy will be freed.
821 * Corresponding page table entries will not be touched,
822 * pages will stay not present in virtual address space
823 */
824 INIT_LIST_HEAD(&page[size].lru);
825 set_page_guard_flag(&page[size]);
826 set_page_private(&page[size], high);
827 /* Guard pages are not available for any usage */
d1ce749a
BZ
828 __mod_zone_freepage_state(zone, -(1 << high),
829 migratetype);
c0a32fc5
SG
830 continue;
831 }
832#endif
b2a0ac88 833 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
834 area->nr_free++;
835 set_page_order(&page[size], high);
836 }
1da177e4
LT
837}
838
1da177e4
LT
839/*
840 * This page is about to be returned from the page allocator
841 */
2a7684a2 842static inline int check_new_page(struct page *page)
1da177e4 843{
92be2e33
NP
844 if (unlikely(page_mapcount(page) |
845 (page->mapping != NULL) |
a3af9c38 846 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
847 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
848 (mem_cgroup_bad_page_check(page)))) {
224abf92 849 bad_page(page);
689bcebf 850 return 1;
8cc3b392 851 }
2a7684a2
WF
852 return 0;
853}
854
855static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
856{
857 int i;
858
859 for (i = 0; i < (1 << order); i++) {
860 struct page *p = page + i;
861 if (unlikely(check_new_page(p)))
862 return 1;
863 }
689bcebf 864
4c21e2f2 865 set_page_private(page, 0);
7835e98b 866 set_page_refcounted(page);
cc102509
NP
867
868 arch_alloc_page(page, order);
1da177e4 869 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
870
871 if (gfp_flags & __GFP_ZERO)
872 prep_zero_page(page, order, gfp_flags);
873
874 if (order && (gfp_flags & __GFP_COMP))
875 prep_compound_page(page, order);
876
689bcebf 877 return 0;
1da177e4
LT
878}
879
56fd56b8
MG
880/*
881 * Go through the free lists for the given migratetype and remove
882 * the smallest available page from the freelists
883 */
728ec980
MG
884static inline
885struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
886 int migratetype)
887{
888 unsigned int current_order;
b8af2941 889 struct free_area *area;
56fd56b8
MG
890 struct page *page;
891
892 /* Find a page of the appropriate size in the preferred list */
893 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
894 area = &(zone->free_area[current_order]);
895 if (list_empty(&area->free_list[migratetype]))
896 continue;
897
898 page = list_entry(area->free_list[migratetype].next,
899 struct page, lru);
900 list_del(&page->lru);
901 rmv_page_order(page);
902 area->nr_free--;
56fd56b8
MG
903 expand(zone, page, order, current_order, area, migratetype);
904 return page;
905 }
906
907 return NULL;
908}
909
910
b2a0ac88
MG
911/*
912 * This array describes the order lists are fallen back to when
913 * the free lists for the desirable migrate type are depleted
914 */
47118af0
MN
915static int fallbacks[MIGRATE_TYPES][4] = {
916 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
917 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
918#ifdef CONFIG_CMA
919 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
920 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
921#else
922 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
923#endif
6d4a4916 924 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 925#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 926 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 927#endif
b2a0ac88
MG
928};
929
c361be55
MG
930/*
931 * Move the free pages in a range to the free lists of the requested type.
d9c23400 932 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
933 * boundary. If alignment is required, use move_freepages_block()
934 */
435b405c 935int move_freepages(struct zone *zone,
b69a7288
AB
936 struct page *start_page, struct page *end_page,
937 int migratetype)
c361be55
MG
938{
939 struct page *page;
940 unsigned long order;
d100313f 941 int pages_moved = 0;
c361be55
MG
942
943#ifndef CONFIG_HOLES_IN_ZONE
944 /*
945 * page_zone is not safe to call in this context when
946 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
947 * anyway as we check zone boundaries in move_freepages_block().
948 * Remove at a later date when no bug reports exist related to
ac0e5b7a 949 * grouping pages by mobility
c361be55
MG
950 */
951 BUG_ON(page_zone(start_page) != page_zone(end_page));
952#endif
953
954 for (page = start_page; page <= end_page;) {
344c790e
AL
955 /* Make sure we are not inadvertently changing nodes */
956 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
957
c361be55
MG
958 if (!pfn_valid_within(page_to_pfn(page))) {
959 page++;
960 continue;
961 }
962
963 if (!PageBuddy(page)) {
964 page++;
965 continue;
966 }
967
968 order = page_order(page);
84be48d8
KS
969 list_move(&page->lru,
970 &zone->free_area[order].free_list[migratetype]);
95e34412 971 set_freepage_migratetype(page, migratetype);
c361be55 972 page += 1 << order;
d100313f 973 pages_moved += 1 << order;
c361be55
MG
974 }
975
d100313f 976 return pages_moved;
c361be55
MG
977}
978
ee6f509c 979int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 980 int migratetype)
c361be55
MG
981{
982 unsigned long start_pfn, end_pfn;
983 struct page *start_page, *end_page;
984
985 start_pfn = page_to_pfn(page);
d9c23400 986 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 987 start_page = pfn_to_page(start_pfn);
d9c23400
MG
988 end_page = start_page + pageblock_nr_pages - 1;
989 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
990
991 /* Do not cross zone boundaries */
108bcc96 992 if (!zone_spans_pfn(zone, start_pfn))
c361be55 993 start_page = page;
108bcc96 994 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
995 return 0;
996
997 return move_freepages(zone, start_page, end_page, migratetype);
998}
999
2f66a68f
MG
1000static void change_pageblock_range(struct page *pageblock_page,
1001 int start_order, int migratetype)
1002{
1003 int nr_pageblocks = 1 << (start_order - pageblock_order);
1004
1005 while (nr_pageblocks--) {
1006 set_pageblock_migratetype(pageblock_page, migratetype);
1007 pageblock_page += pageblock_nr_pages;
1008 }
1009}
1010
fef903ef
SB
1011/*
1012 * If breaking a large block of pages, move all free pages to the preferred
1013 * allocation list. If falling back for a reclaimable kernel allocation, be
1014 * more aggressive about taking ownership of free pages.
1015 *
1016 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1017 * nor move CMA pages to different free lists. We don't want unmovable pages
1018 * to be allocated from MIGRATE_CMA areas.
1019 *
1020 * Returns the new migratetype of the pageblock (or the same old migratetype
1021 * if it was unchanged).
1022 */
1023static int try_to_steal_freepages(struct zone *zone, struct page *page,
1024 int start_type, int fallback_type)
1025{
1026 int current_order = page_order(page);
1027
1028 if (is_migrate_cma(fallback_type))
1029 return fallback_type;
1030
1031 /* Take ownership for orders >= pageblock_order */
1032 if (current_order >= pageblock_order) {
1033 change_pageblock_range(page, current_order, start_type);
1034 return start_type;
1035 }
1036
1037 if (current_order >= pageblock_order / 2 ||
1038 start_type == MIGRATE_RECLAIMABLE ||
1039 page_group_by_mobility_disabled) {
1040 int pages;
1041
1042 pages = move_freepages_block(zone, page, start_type);
1043
1044 /* Claim the whole block if over half of it is free */
1045 if (pages >= (1 << (pageblock_order-1)) ||
1046 page_group_by_mobility_disabled) {
1047
1048 set_pageblock_migratetype(page, start_type);
1049 return start_type;
1050 }
1051
1052 }
1053
1054 return fallback_type;
1055}
1056
b2a0ac88 1057/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1058static inline struct page *
1059__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1060{
b8af2941 1061 struct free_area *area;
b2a0ac88
MG
1062 int current_order;
1063 struct page *page;
fef903ef 1064 int migratetype, new_type, i;
b2a0ac88
MG
1065
1066 /* Find the largest possible block of pages in the other list */
1067 for (current_order = MAX_ORDER-1; current_order >= order;
1068 --current_order) {
6d4a4916 1069 for (i = 0;; i++) {
b2a0ac88
MG
1070 migratetype = fallbacks[start_migratetype][i];
1071
56fd56b8
MG
1072 /* MIGRATE_RESERVE handled later if necessary */
1073 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1074 break;
e010487d 1075
b2a0ac88
MG
1076 area = &(zone->free_area[current_order]);
1077 if (list_empty(&area->free_list[migratetype]))
1078 continue;
1079
1080 page = list_entry(area->free_list[migratetype].next,
1081 struct page, lru);
1082 area->nr_free--;
1083
fef903ef
SB
1084 new_type = try_to_steal_freepages(zone, page,
1085 start_migratetype,
1086 migratetype);
b2a0ac88
MG
1087
1088 /* Remove the page from the freelists */
1089 list_del(&page->lru);
1090 rmv_page_order(page);
b2a0ac88 1091
fef903ef
SB
1092 /*
1093 * Borrow the excess buddy pages as well, irrespective
1094 * of whether we stole freepages, or took ownership of
1095 * the pageblock or not.
1096 *
1097 * Exception: When borrowing from MIGRATE_CMA, release
1098 * the excess buddy pages to CMA itself.
1099 */
47118af0
MN
1100 expand(zone, page, order, current_order, area,
1101 is_migrate_cma(migratetype)
1102 ? migratetype : start_migratetype);
e0fff1bd 1103
f92310c1
SB
1104 trace_mm_page_alloc_extfrag(page, order,
1105 current_order, start_migratetype, migratetype,
1106 new_type == start_migratetype);
e0fff1bd 1107
b2a0ac88
MG
1108 return page;
1109 }
1110 }
1111
728ec980 1112 return NULL;
b2a0ac88
MG
1113}
1114
56fd56b8 1115/*
1da177e4
LT
1116 * Do the hard work of removing an element from the buddy allocator.
1117 * Call me with the zone->lock already held.
1118 */
b2a0ac88
MG
1119static struct page *__rmqueue(struct zone *zone, unsigned int order,
1120 int migratetype)
1da177e4 1121{
1da177e4
LT
1122 struct page *page;
1123
728ec980 1124retry_reserve:
56fd56b8 1125 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1126
728ec980 1127 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1128 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1129
728ec980
MG
1130 /*
1131 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1132 * is used because __rmqueue_smallest is an inline function
1133 * and we want just one call site
1134 */
1135 if (!page) {
1136 migratetype = MIGRATE_RESERVE;
1137 goto retry_reserve;
1138 }
1139 }
1140
0d3d062a 1141 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1142 return page;
1da177e4
LT
1143}
1144
5f63b720 1145/*
1da177e4
LT
1146 * Obtain a specified number of elements from the buddy allocator, all under
1147 * a single hold of the lock, for efficiency. Add them to the supplied list.
1148 * Returns the number of new pages which were placed at *list.
1149 */
5f63b720 1150static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1151 unsigned long count, struct list_head *list,
e084b2d9 1152 int migratetype, int cold)
1da177e4 1153{
47118af0 1154 int mt = migratetype, i;
5f63b720 1155
c54ad30c 1156 spin_lock(&zone->lock);
1da177e4 1157 for (i = 0; i < count; ++i) {
b2a0ac88 1158 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1159 if (unlikely(page == NULL))
1da177e4 1160 break;
81eabcbe
MG
1161
1162 /*
1163 * Split buddy pages returned by expand() are received here
1164 * in physical page order. The page is added to the callers and
1165 * list and the list head then moves forward. From the callers
1166 * perspective, the linked list is ordered by page number in
1167 * some conditions. This is useful for IO devices that can
1168 * merge IO requests if the physical pages are ordered
1169 * properly.
1170 */
e084b2d9
MG
1171 if (likely(cold == 0))
1172 list_add(&page->lru, list);
1173 else
1174 list_add_tail(&page->lru, list);
47118af0
MN
1175 if (IS_ENABLED(CONFIG_CMA)) {
1176 mt = get_pageblock_migratetype(page);
194159fb 1177 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1178 mt = migratetype;
1179 }
b12c4ad1 1180 set_freepage_migratetype(page, mt);
81eabcbe 1181 list = &page->lru;
d1ce749a
BZ
1182 if (is_migrate_cma(mt))
1183 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1184 -(1 << order));
1da177e4 1185 }
f2260e6b 1186 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1187 spin_unlock(&zone->lock);
085cc7d5 1188 return i;
1da177e4
LT
1189}
1190
4ae7c039 1191#ifdef CONFIG_NUMA
8fce4d8e 1192/*
4037d452
CL
1193 * Called from the vmstat counter updater to drain pagesets of this
1194 * currently executing processor on remote nodes after they have
1195 * expired.
1196 *
879336c3
CL
1197 * Note that this function must be called with the thread pinned to
1198 * a single processor.
8fce4d8e 1199 */
4037d452 1200void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1201{
4ae7c039 1202 unsigned long flags;
4037d452 1203 int to_drain;
998d39cb 1204 unsigned long batch;
4ae7c039 1205
4037d452 1206 local_irq_save(flags);
998d39cb
CS
1207 batch = ACCESS_ONCE(pcp->batch);
1208 if (pcp->count >= batch)
1209 to_drain = batch;
4037d452
CL
1210 else
1211 to_drain = pcp->count;
2a13515c
KM
1212 if (to_drain > 0) {
1213 free_pcppages_bulk(zone, to_drain, pcp);
1214 pcp->count -= to_drain;
1215 }
4037d452 1216 local_irq_restore(flags);
4ae7c039
CL
1217}
1218#endif
1219
9f8f2172
CL
1220/*
1221 * Drain pages of the indicated processor.
1222 *
1223 * The processor must either be the current processor and the
1224 * thread pinned to the current processor or a processor that
1225 * is not online.
1226 */
1227static void drain_pages(unsigned int cpu)
1da177e4 1228{
c54ad30c 1229 unsigned long flags;
1da177e4 1230 struct zone *zone;
1da177e4 1231
ee99c71c 1232 for_each_populated_zone(zone) {
1da177e4 1233 struct per_cpu_pageset *pset;
3dfa5721 1234 struct per_cpu_pages *pcp;
1da177e4 1235
99dcc3e5
CL
1236 local_irq_save(flags);
1237 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1238
1239 pcp = &pset->pcp;
2ff754fa
DR
1240 if (pcp->count) {
1241 free_pcppages_bulk(zone, pcp->count, pcp);
1242 pcp->count = 0;
1243 }
3dfa5721 1244 local_irq_restore(flags);
1da177e4
LT
1245 }
1246}
1da177e4 1247
9f8f2172
CL
1248/*
1249 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1250 */
1251void drain_local_pages(void *arg)
1252{
1253 drain_pages(smp_processor_id());
1254}
1255
1256/*
74046494
GBY
1257 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1258 *
1259 * Note that this code is protected against sending an IPI to an offline
1260 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1261 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1262 * nothing keeps CPUs from showing up after we populated the cpumask and
1263 * before the call to on_each_cpu_mask().
9f8f2172
CL
1264 */
1265void drain_all_pages(void)
1266{
74046494
GBY
1267 int cpu;
1268 struct per_cpu_pageset *pcp;
1269 struct zone *zone;
1270
1271 /*
1272 * Allocate in the BSS so we wont require allocation in
1273 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1274 */
1275 static cpumask_t cpus_with_pcps;
1276
1277 /*
1278 * We don't care about racing with CPU hotplug event
1279 * as offline notification will cause the notified
1280 * cpu to drain that CPU pcps and on_each_cpu_mask
1281 * disables preemption as part of its processing
1282 */
1283 for_each_online_cpu(cpu) {
1284 bool has_pcps = false;
1285 for_each_populated_zone(zone) {
1286 pcp = per_cpu_ptr(zone->pageset, cpu);
1287 if (pcp->pcp.count) {
1288 has_pcps = true;
1289 break;
1290 }
1291 }
1292 if (has_pcps)
1293 cpumask_set_cpu(cpu, &cpus_with_pcps);
1294 else
1295 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1296 }
1297 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1298}
1299
296699de 1300#ifdef CONFIG_HIBERNATION
1da177e4
LT
1301
1302void mark_free_pages(struct zone *zone)
1303{
f623f0db
RW
1304 unsigned long pfn, max_zone_pfn;
1305 unsigned long flags;
b2a0ac88 1306 int order, t;
1da177e4
LT
1307 struct list_head *curr;
1308
8080fc03 1309 if (zone_is_empty(zone))
1da177e4
LT
1310 return;
1311
1312 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1313
108bcc96 1314 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1315 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1316 if (pfn_valid(pfn)) {
1317 struct page *page = pfn_to_page(pfn);
1318
7be98234
RW
1319 if (!swsusp_page_is_forbidden(page))
1320 swsusp_unset_page_free(page);
f623f0db 1321 }
1da177e4 1322
b2a0ac88
MG
1323 for_each_migratetype_order(order, t) {
1324 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1325 unsigned long i;
1da177e4 1326
f623f0db
RW
1327 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1328 for (i = 0; i < (1UL << order); i++)
7be98234 1329 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1330 }
b2a0ac88 1331 }
1da177e4
LT
1332 spin_unlock_irqrestore(&zone->lock, flags);
1333}
e2c55dc8 1334#endif /* CONFIG_PM */
1da177e4 1335
1da177e4
LT
1336/*
1337 * Free a 0-order page
fc91668e 1338 * cold == 1 ? free a cold page : free a hot page
1da177e4 1339 */
fc91668e 1340void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1341{
1342 struct zone *zone = page_zone(page);
1343 struct per_cpu_pages *pcp;
1344 unsigned long flags;
5f8dcc21 1345 int migratetype;
1da177e4 1346
ec95f53a 1347 if (!free_pages_prepare(page, 0))
689bcebf
HD
1348 return;
1349
5f8dcc21 1350 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1351 set_freepage_migratetype(page, migratetype);
1da177e4 1352 local_irq_save(flags);
f8891e5e 1353 __count_vm_event(PGFREE);
da456f14 1354
5f8dcc21
MG
1355 /*
1356 * We only track unmovable, reclaimable and movable on pcp lists.
1357 * Free ISOLATE pages back to the allocator because they are being
1358 * offlined but treat RESERVE as movable pages so we can get those
1359 * areas back if necessary. Otherwise, we may have to free
1360 * excessively into the page allocator
1361 */
1362 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1363 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1364 free_one_page(zone, page, 0, migratetype);
1365 goto out;
1366 }
1367 migratetype = MIGRATE_MOVABLE;
1368 }
1369
99dcc3e5 1370 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1371 if (cold)
5f8dcc21 1372 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1373 else
5f8dcc21 1374 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1375 pcp->count++;
48db57f8 1376 if (pcp->count >= pcp->high) {
998d39cb
CS
1377 unsigned long batch = ACCESS_ONCE(pcp->batch);
1378 free_pcppages_bulk(zone, batch, pcp);
1379 pcp->count -= batch;
48db57f8 1380 }
5f8dcc21
MG
1381
1382out:
1da177e4 1383 local_irq_restore(flags);
1da177e4
LT
1384}
1385
cc59850e
KK
1386/*
1387 * Free a list of 0-order pages
1388 */
1389void free_hot_cold_page_list(struct list_head *list, int cold)
1390{
1391 struct page *page, *next;
1392
1393 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1394 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1395 free_hot_cold_page(page, cold);
1396 }
1397}
1398
8dfcc9ba
NP
1399/*
1400 * split_page takes a non-compound higher-order page, and splits it into
1401 * n (1<<order) sub-pages: page[0..n]
1402 * Each sub-page must be freed individually.
1403 *
1404 * Note: this is probably too low level an operation for use in drivers.
1405 * Please consult with lkml before using this in your driver.
1406 */
1407void split_page(struct page *page, unsigned int order)
1408{
1409 int i;
1410
725d704e
NP
1411 VM_BUG_ON(PageCompound(page));
1412 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1413
1414#ifdef CONFIG_KMEMCHECK
1415 /*
1416 * Split shadow pages too, because free(page[0]) would
1417 * otherwise free the whole shadow.
1418 */
1419 if (kmemcheck_page_is_tracked(page))
1420 split_page(virt_to_page(page[0].shadow), order);
1421#endif
1422
7835e98b
NP
1423 for (i = 1; i < (1 << order); i++)
1424 set_page_refcounted(page + i);
8dfcc9ba 1425}
5853ff23 1426EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1427
8fb74b9f 1428static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1429{
748446bb
MG
1430 unsigned long watermark;
1431 struct zone *zone;
2139cbe6 1432 int mt;
748446bb
MG
1433
1434 BUG_ON(!PageBuddy(page));
1435
1436 zone = page_zone(page);
2e30abd1 1437 mt = get_pageblock_migratetype(page);
748446bb 1438
194159fb 1439 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1440 /* Obey watermarks as if the page was being allocated */
1441 watermark = low_wmark_pages(zone) + (1 << order);
1442 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1443 return 0;
1444
8fb74b9f 1445 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1446 }
748446bb
MG
1447
1448 /* Remove page from free list */
1449 list_del(&page->lru);
1450 zone->free_area[order].nr_free--;
1451 rmv_page_order(page);
2139cbe6 1452
8fb74b9f 1453 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1454 if (order >= pageblock_order - 1) {
1455 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1456 for (; page < endpage; page += pageblock_nr_pages) {
1457 int mt = get_pageblock_migratetype(page);
194159fb 1458 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1459 set_pageblock_migratetype(page,
1460 MIGRATE_MOVABLE);
1461 }
748446bb
MG
1462 }
1463
8fb74b9f 1464 return 1UL << order;
1fb3f8ca
MG
1465}
1466
1467/*
1468 * Similar to split_page except the page is already free. As this is only
1469 * being used for migration, the migratetype of the block also changes.
1470 * As this is called with interrupts disabled, the caller is responsible
1471 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1472 * are enabled.
1473 *
1474 * Note: this is probably too low level an operation for use in drivers.
1475 * Please consult with lkml before using this in your driver.
1476 */
1477int split_free_page(struct page *page)
1478{
1479 unsigned int order;
1480 int nr_pages;
1481
1fb3f8ca
MG
1482 order = page_order(page);
1483
8fb74b9f 1484 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1485 if (!nr_pages)
1486 return 0;
1487
1488 /* Split into individual pages */
1489 set_page_refcounted(page);
1490 split_page(page, order);
1491 return nr_pages;
748446bb
MG
1492}
1493
1da177e4
LT
1494/*
1495 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1496 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1497 * or two.
1498 */
0a15c3e9
MG
1499static inline
1500struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1501 struct zone *zone, int order, gfp_t gfp_flags,
1502 int migratetype)
1da177e4
LT
1503{
1504 unsigned long flags;
689bcebf 1505 struct page *page;
1da177e4
LT
1506 int cold = !!(gfp_flags & __GFP_COLD);
1507
689bcebf 1508again:
48db57f8 1509 if (likely(order == 0)) {
1da177e4 1510 struct per_cpu_pages *pcp;
5f8dcc21 1511 struct list_head *list;
1da177e4 1512
1da177e4 1513 local_irq_save(flags);
99dcc3e5
CL
1514 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1515 list = &pcp->lists[migratetype];
5f8dcc21 1516 if (list_empty(list)) {
535131e6 1517 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1518 pcp->batch, list,
e084b2d9 1519 migratetype, cold);
5f8dcc21 1520 if (unlikely(list_empty(list)))
6fb332fa 1521 goto failed;
535131e6 1522 }
b92a6edd 1523
5f8dcc21
MG
1524 if (cold)
1525 page = list_entry(list->prev, struct page, lru);
1526 else
1527 page = list_entry(list->next, struct page, lru);
1528
b92a6edd
MG
1529 list_del(&page->lru);
1530 pcp->count--;
7fb1d9fc 1531 } else {
dab48dab
AM
1532 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1533 /*
1534 * __GFP_NOFAIL is not to be used in new code.
1535 *
1536 * All __GFP_NOFAIL callers should be fixed so that they
1537 * properly detect and handle allocation failures.
1538 *
1539 * We most definitely don't want callers attempting to
4923abf9 1540 * allocate greater than order-1 page units with
dab48dab
AM
1541 * __GFP_NOFAIL.
1542 */
4923abf9 1543 WARN_ON_ONCE(order > 1);
dab48dab 1544 }
1da177e4 1545 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1546 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1547 spin_unlock(&zone->lock);
1548 if (!page)
1549 goto failed;
d1ce749a
BZ
1550 __mod_zone_freepage_state(zone, -(1 << order),
1551 get_pageblock_migratetype(page));
1da177e4
LT
1552 }
1553
81c0a2bb 1554 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
f8891e5e 1555 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1556 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1557 local_irq_restore(flags);
1da177e4 1558
725d704e 1559 VM_BUG_ON(bad_range(zone, page));
17cf4406 1560 if (prep_new_page(page, order, gfp_flags))
a74609fa 1561 goto again;
1da177e4 1562 return page;
a74609fa
NP
1563
1564failed:
1565 local_irq_restore(flags);
a74609fa 1566 return NULL;
1da177e4
LT
1567}
1568
933e312e
AM
1569#ifdef CONFIG_FAIL_PAGE_ALLOC
1570
b2588c4b 1571static struct {
933e312e
AM
1572 struct fault_attr attr;
1573
1574 u32 ignore_gfp_highmem;
1575 u32 ignore_gfp_wait;
54114994 1576 u32 min_order;
933e312e
AM
1577} fail_page_alloc = {
1578 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1579 .ignore_gfp_wait = 1,
1580 .ignore_gfp_highmem = 1,
54114994 1581 .min_order = 1,
933e312e
AM
1582};
1583
1584static int __init setup_fail_page_alloc(char *str)
1585{
1586 return setup_fault_attr(&fail_page_alloc.attr, str);
1587}
1588__setup("fail_page_alloc=", setup_fail_page_alloc);
1589
deaf386e 1590static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1591{
54114994 1592 if (order < fail_page_alloc.min_order)
deaf386e 1593 return false;
933e312e 1594 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1595 return false;
933e312e 1596 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1597 return false;
933e312e 1598 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1599 return false;
933e312e
AM
1600
1601 return should_fail(&fail_page_alloc.attr, 1 << order);
1602}
1603
1604#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1605
1606static int __init fail_page_alloc_debugfs(void)
1607{
f4ae40a6 1608 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1609 struct dentry *dir;
933e312e 1610
dd48c085
AM
1611 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1612 &fail_page_alloc.attr);
1613 if (IS_ERR(dir))
1614 return PTR_ERR(dir);
933e312e 1615
b2588c4b
AM
1616 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1617 &fail_page_alloc.ignore_gfp_wait))
1618 goto fail;
1619 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1620 &fail_page_alloc.ignore_gfp_highmem))
1621 goto fail;
1622 if (!debugfs_create_u32("min-order", mode, dir,
1623 &fail_page_alloc.min_order))
1624 goto fail;
1625
1626 return 0;
1627fail:
dd48c085 1628 debugfs_remove_recursive(dir);
933e312e 1629
b2588c4b 1630 return -ENOMEM;
933e312e
AM
1631}
1632
1633late_initcall(fail_page_alloc_debugfs);
1634
1635#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1636
1637#else /* CONFIG_FAIL_PAGE_ALLOC */
1638
deaf386e 1639static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1640{
deaf386e 1641 return false;
933e312e
AM
1642}
1643
1644#endif /* CONFIG_FAIL_PAGE_ALLOC */
1645
1da177e4 1646/*
88f5acf8 1647 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1648 * of the allocation.
1649 */
88f5acf8
MG
1650static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1651 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1652{
1653 /* free_pages my go negative - that's OK */
d23ad423 1654 long min = mark;
2cfed075 1655 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1656 int o;
026b0814 1657 long free_cma = 0;
1da177e4 1658
df0a6daa 1659 free_pages -= (1 << order) - 1;
7fb1d9fc 1660 if (alloc_flags & ALLOC_HIGH)
1da177e4 1661 min -= min / 2;
7fb1d9fc 1662 if (alloc_flags & ALLOC_HARDER)
1da177e4 1663 min -= min / 4;
d95ea5d1
BZ
1664#ifdef CONFIG_CMA
1665 /* If allocation can't use CMA areas don't use free CMA pages */
1666 if (!(alloc_flags & ALLOC_CMA))
026b0814 1667 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1668#endif
026b0814
TS
1669
1670 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1671 return false;
1da177e4
LT
1672 for (o = 0; o < order; o++) {
1673 /* At the next order, this order's pages become unavailable */
1674 free_pages -= z->free_area[o].nr_free << o;
1675
1676 /* Require fewer higher order pages to be free */
1677 min >>= 1;
1678
1679 if (free_pages <= min)
88f5acf8 1680 return false;
1da177e4 1681 }
88f5acf8
MG
1682 return true;
1683}
1684
1685bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1686 int classzone_idx, int alloc_flags)
1687{
1688 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1689 zone_page_state(z, NR_FREE_PAGES));
1690}
1691
1692bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1693 int classzone_idx, int alloc_flags)
1694{
1695 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1696
1697 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1698 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1699
1700 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1701 free_pages);
1da177e4
LT
1702}
1703
9276b1bc
PJ
1704#ifdef CONFIG_NUMA
1705/*
1706 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1707 * skip over zones that are not allowed by the cpuset, or that have
1708 * been recently (in last second) found to be nearly full. See further
1709 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1710 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1711 *
1712 * If the zonelist cache is present in the passed in zonelist, then
1713 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1714 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1715 *
1716 * If the zonelist cache is not available for this zonelist, does
1717 * nothing and returns NULL.
1718 *
1719 * If the fullzones BITMAP in the zonelist cache is stale (more than
1720 * a second since last zap'd) then we zap it out (clear its bits.)
1721 *
1722 * We hold off even calling zlc_setup, until after we've checked the
1723 * first zone in the zonelist, on the theory that most allocations will
1724 * be satisfied from that first zone, so best to examine that zone as
1725 * quickly as we can.
1726 */
1727static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1728{
1729 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1730 nodemask_t *allowednodes; /* zonelist_cache approximation */
1731
1732 zlc = zonelist->zlcache_ptr;
1733 if (!zlc)
1734 return NULL;
1735
f05111f5 1736 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1737 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1738 zlc->last_full_zap = jiffies;
1739 }
1740
1741 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1742 &cpuset_current_mems_allowed :
4b0ef1fe 1743 &node_states[N_MEMORY];
9276b1bc
PJ
1744 return allowednodes;
1745}
1746
1747/*
1748 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1749 * if it is worth looking at further for free memory:
1750 * 1) Check that the zone isn't thought to be full (doesn't have its
1751 * bit set in the zonelist_cache fullzones BITMAP).
1752 * 2) Check that the zones node (obtained from the zonelist_cache
1753 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1754 * Return true (non-zero) if zone is worth looking at further, or
1755 * else return false (zero) if it is not.
1756 *
1757 * This check -ignores- the distinction between various watermarks,
1758 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1759 * found to be full for any variation of these watermarks, it will
1760 * be considered full for up to one second by all requests, unless
1761 * we are so low on memory on all allowed nodes that we are forced
1762 * into the second scan of the zonelist.
1763 *
1764 * In the second scan we ignore this zonelist cache and exactly
1765 * apply the watermarks to all zones, even it is slower to do so.
1766 * We are low on memory in the second scan, and should leave no stone
1767 * unturned looking for a free page.
1768 */
dd1a239f 1769static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1770 nodemask_t *allowednodes)
1771{
1772 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1773 int i; /* index of *z in zonelist zones */
1774 int n; /* node that zone *z is on */
1775
1776 zlc = zonelist->zlcache_ptr;
1777 if (!zlc)
1778 return 1;
1779
dd1a239f 1780 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1781 n = zlc->z_to_n[i];
1782
1783 /* This zone is worth trying if it is allowed but not full */
1784 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1785}
1786
1787/*
1788 * Given 'z' scanning a zonelist, set the corresponding bit in
1789 * zlc->fullzones, so that subsequent attempts to allocate a page
1790 * from that zone don't waste time re-examining it.
1791 */
dd1a239f 1792static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1793{
1794 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1795 int i; /* index of *z in zonelist zones */
1796
1797 zlc = zonelist->zlcache_ptr;
1798 if (!zlc)
1799 return;
1800
dd1a239f 1801 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1802
1803 set_bit(i, zlc->fullzones);
1804}
1805
76d3fbf8
MG
1806/*
1807 * clear all zones full, called after direct reclaim makes progress so that
1808 * a zone that was recently full is not skipped over for up to a second
1809 */
1810static void zlc_clear_zones_full(struct zonelist *zonelist)
1811{
1812 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1813
1814 zlc = zonelist->zlcache_ptr;
1815 if (!zlc)
1816 return;
1817
1818 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1819}
1820
81c0a2bb
JW
1821static bool zone_local(struct zone *local_zone, struct zone *zone)
1822{
1823 return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
1824}
1825
957f822a
DR
1826static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1827{
1828 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1829}
1830
1831static void __paginginit init_zone_allows_reclaim(int nid)
1832{
1833 int i;
1834
1835 for_each_online_node(i)
6b187d02 1836 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1837 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1838 else
957f822a 1839 zone_reclaim_mode = 1;
957f822a
DR
1840}
1841
9276b1bc
PJ
1842#else /* CONFIG_NUMA */
1843
1844static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1845{
1846 return NULL;
1847}
1848
dd1a239f 1849static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1850 nodemask_t *allowednodes)
1851{
1852 return 1;
1853}
1854
dd1a239f 1855static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1856{
1857}
76d3fbf8
MG
1858
1859static void zlc_clear_zones_full(struct zonelist *zonelist)
1860{
1861}
957f822a 1862
81c0a2bb
JW
1863static bool zone_local(struct zone *local_zone, struct zone *zone)
1864{
1865 return true;
1866}
1867
957f822a
DR
1868static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1869{
1870 return true;
1871}
1872
1873static inline void init_zone_allows_reclaim(int nid)
1874{
1875}
9276b1bc
PJ
1876#endif /* CONFIG_NUMA */
1877
7fb1d9fc 1878/*
0798e519 1879 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1880 * a page.
1881 */
1882static struct page *
19770b32 1883get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1884 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1885 struct zone *preferred_zone, int migratetype)
753ee728 1886{
dd1a239f 1887 struct zoneref *z;
7fb1d9fc 1888 struct page *page = NULL;
54a6eb5c 1889 int classzone_idx;
5117f45d 1890 struct zone *zone;
9276b1bc
PJ
1891 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1892 int zlc_active = 0; /* set if using zonelist_cache */
1893 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1894
19770b32 1895 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1896zonelist_scan:
7fb1d9fc 1897 /*
9276b1bc 1898 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1899 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1900 */
19770b32
MG
1901 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1902 high_zoneidx, nodemask) {
e085dbc5
JW
1903 unsigned long mark;
1904
e5adfffc 1905 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1906 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1907 continue;
7fb1d9fc 1908 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1909 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1910 continue;
e085dbc5 1911 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
e66f0972 1912 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
e085dbc5 1913 goto try_this_zone;
81c0a2bb
JW
1914 /*
1915 * Distribute pages in proportion to the individual
1916 * zone size to ensure fair page aging. The zone a
1917 * page was allocated in should have no effect on the
1918 * time the page has in memory before being reclaimed.
1919 *
1920 * When zone_reclaim_mode is enabled, try to stay in
1921 * local zones in the fastpath. If that fails, the
1922 * slowpath is entered, which will do another pass
1923 * starting with the local zones, but ultimately fall
1924 * back to remote zones that do not partake in the
1925 * fairness round-robin cycle of this zonelist.
1926 */
1927 if (alloc_flags & ALLOC_WMARK_LOW) {
1928 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1929 continue;
1930 if (zone_reclaim_mode &&
1931 !zone_local(preferred_zone, zone))
1932 continue;
1933 }
a756cf59
JW
1934 /*
1935 * When allocating a page cache page for writing, we
1936 * want to get it from a zone that is within its dirty
1937 * limit, such that no single zone holds more than its
1938 * proportional share of globally allowed dirty pages.
1939 * The dirty limits take into account the zone's
1940 * lowmem reserves and high watermark so that kswapd
1941 * should be able to balance it without having to
1942 * write pages from its LRU list.
1943 *
1944 * This may look like it could increase pressure on
1945 * lower zones by failing allocations in higher zones
1946 * before they are full. But the pages that do spill
1947 * over are limited as the lower zones are protected
1948 * by this very same mechanism. It should not become
1949 * a practical burden to them.
1950 *
1951 * XXX: For now, allow allocations to potentially
1952 * exceed the per-zone dirty limit in the slowpath
1953 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1954 * which is important when on a NUMA setup the allowed
1955 * zones are together not big enough to reach the
1956 * global limit. The proper fix for these situations
1957 * will require awareness of zones in the
1958 * dirty-throttling and the flusher threads.
1959 */
1960 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1961 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1962 goto this_zone_full;
7fb1d9fc 1963
e085dbc5
JW
1964 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1965 if (!zone_watermark_ok(zone, order, mark,
1966 classzone_idx, alloc_flags)) {
fa5e084e
MG
1967 int ret;
1968
e5adfffc
KS
1969 if (IS_ENABLED(CONFIG_NUMA) &&
1970 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1971 /*
1972 * we do zlc_setup if there are multiple nodes
1973 * and before considering the first zone allowed
1974 * by the cpuset.
1975 */
1976 allowednodes = zlc_setup(zonelist, alloc_flags);
1977 zlc_active = 1;
1978 did_zlc_setup = 1;
1979 }
1980
957f822a
DR
1981 if (zone_reclaim_mode == 0 ||
1982 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1983 goto this_zone_full;
1984
cd38b115
MG
1985 /*
1986 * As we may have just activated ZLC, check if the first
1987 * eligible zone has failed zone_reclaim recently.
1988 */
e5adfffc 1989 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1990 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1991 continue;
1992
fa5e084e
MG
1993 ret = zone_reclaim(zone, gfp_mask, order);
1994 switch (ret) {
1995 case ZONE_RECLAIM_NOSCAN:
1996 /* did not scan */
cd38b115 1997 continue;
fa5e084e
MG
1998 case ZONE_RECLAIM_FULL:
1999 /* scanned but unreclaimable */
cd38b115 2000 continue;
fa5e084e
MG
2001 default:
2002 /* did we reclaim enough */
fed2719e 2003 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2004 classzone_idx, alloc_flags))
fed2719e
MG
2005 goto try_this_zone;
2006
2007 /*
2008 * Failed to reclaim enough to meet watermark.
2009 * Only mark the zone full if checking the min
2010 * watermark or if we failed to reclaim just
2011 * 1<<order pages or else the page allocator
2012 * fastpath will prematurely mark zones full
2013 * when the watermark is between the low and
2014 * min watermarks.
2015 */
2016 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2017 ret == ZONE_RECLAIM_SOME)
9276b1bc 2018 goto this_zone_full;
fed2719e
MG
2019
2020 continue;
0798e519 2021 }
7fb1d9fc
RS
2022 }
2023
fa5e084e 2024try_this_zone:
3dd28266
MG
2025 page = buffered_rmqueue(preferred_zone, zone, order,
2026 gfp_mask, migratetype);
0798e519 2027 if (page)
7fb1d9fc 2028 break;
9276b1bc 2029this_zone_full:
e5adfffc 2030 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 2031 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2032 }
9276b1bc 2033
e5adfffc 2034 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2035 /* Disable zlc cache for second zonelist scan */
2036 zlc_active = 0;
2037 goto zonelist_scan;
2038 }
b121186a
AS
2039
2040 if (page)
2041 /*
2042 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2043 * necessary to allocate the page. The expectation is
2044 * that the caller is taking steps that will free more
2045 * memory. The caller should avoid the page being used
2046 * for !PFMEMALLOC purposes.
2047 */
2048 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2049
7fb1d9fc 2050 return page;
753ee728
MH
2051}
2052
29423e77
DR
2053/*
2054 * Large machines with many possible nodes should not always dump per-node
2055 * meminfo in irq context.
2056 */
2057static inline bool should_suppress_show_mem(void)
2058{
2059 bool ret = false;
2060
2061#if NODES_SHIFT > 8
2062 ret = in_interrupt();
2063#endif
2064 return ret;
2065}
2066
a238ab5b
DH
2067static DEFINE_RATELIMIT_STATE(nopage_rs,
2068 DEFAULT_RATELIMIT_INTERVAL,
2069 DEFAULT_RATELIMIT_BURST);
2070
2071void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2072{
a238ab5b
DH
2073 unsigned int filter = SHOW_MEM_FILTER_NODES;
2074
c0a32fc5
SG
2075 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2076 debug_guardpage_minorder() > 0)
a238ab5b
DH
2077 return;
2078
4b59e6c4
DR
2079 /*
2080 * Walking all memory to count page types is very expensive and should
2081 * be inhibited in non-blockable contexts.
2082 */
2083 if (!(gfp_mask & __GFP_WAIT))
2084 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2085
a238ab5b
DH
2086 /*
2087 * This documents exceptions given to allocations in certain
2088 * contexts that are allowed to allocate outside current's set
2089 * of allowed nodes.
2090 */
2091 if (!(gfp_mask & __GFP_NOMEMALLOC))
2092 if (test_thread_flag(TIF_MEMDIE) ||
2093 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2094 filter &= ~SHOW_MEM_FILTER_NODES;
2095 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2096 filter &= ~SHOW_MEM_FILTER_NODES;
2097
2098 if (fmt) {
3ee9a4f0
JP
2099 struct va_format vaf;
2100 va_list args;
2101
a238ab5b 2102 va_start(args, fmt);
3ee9a4f0
JP
2103
2104 vaf.fmt = fmt;
2105 vaf.va = &args;
2106
2107 pr_warn("%pV", &vaf);
2108
a238ab5b
DH
2109 va_end(args);
2110 }
2111
3ee9a4f0
JP
2112 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2113 current->comm, order, gfp_mask);
a238ab5b
DH
2114
2115 dump_stack();
2116 if (!should_suppress_show_mem())
2117 show_mem(filter);
2118}
2119
11e33f6a
MG
2120static inline int
2121should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2122 unsigned long did_some_progress,
11e33f6a 2123 unsigned long pages_reclaimed)
1da177e4 2124{
11e33f6a
MG
2125 /* Do not loop if specifically requested */
2126 if (gfp_mask & __GFP_NORETRY)
2127 return 0;
1da177e4 2128
f90ac398
MG
2129 /* Always retry if specifically requested */
2130 if (gfp_mask & __GFP_NOFAIL)
2131 return 1;
2132
2133 /*
2134 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2135 * making forward progress without invoking OOM. Suspend also disables
2136 * storage devices so kswapd will not help. Bail if we are suspending.
2137 */
2138 if (!did_some_progress && pm_suspended_storage())
2139 return 0;
2140
11e33f6a
MG
2141 /*
2142 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2143 * means __GFP_NOFAIL, but that may not be true in other
2144 * implementations.
2145 */
2146 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2147 return 1;
2148
2149 /*
2150 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2151 * specified, then we retry until we no longer reclaim any pages
2152 * (above), or we've reclaimed an order of pages at least as
2153 * large as the allocation's order. In both cases, if the
2154 * allocation still fails, we stop retrying.
2155 */
2156 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2157 return 1;
cf40bd16 2158
11e33f6a
MG
2159 return 0;
2160}
933e312e 2161
11e33f6a
MG
2162static inline struct page *
2163__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2164 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2165 nodemask_t *nodemask, struct zone *preferred_zone,
2166 int migratetype)
11e33f6a
MG
2167{
2168 struct page *page;
2169
2170 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2171 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2172 schedule_timeout_uninterruptible(1);
1da177e4
LT
2173 return NULL;
2174 }
6b1de916 2175
11e33f6a
MG
2176 /*
2177 * Go through the zonelist yet one more time, keep very high watermark
2178 * here, this is only to catch a parallel oom killing, we must fail if
2179 * we're still under heavy pressure.
2180 */
2181 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2182 order, zonelist, high_zoneidx,
5117f45d 2183 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2184 preferred_zone, migratetype);
7fb1d9fc 2185 if (page)
11e33f6a
MG
2186 goto out;
2187
4365a567
KH
2188 if (!(gfp_mask & __GFP_NOFAIL)) {
2189 /* The OOM killer will not help higher order allocs */
2190 if (order > PAGE_ALLOC_COSTLY_ORDER)
2191 goto out;
03668b3c
DR
2192 /* The OOM killer does not needlessly kill tasks for lowmem */
2193 if (high_zoneidx < ZONE_NORMAL)
2194 goto out;
4365a567
KH
2195 /*
2196 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2197 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2198 * The caller should handle page allocation failure by itself if
2199 * it specifies __GFP_THISNODE.
2200 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2201 */
2202 if (gfp_mask & __GFP_THISNODE)
2203 goto out;
2204 }
11e33f6a 2205 /* Exhausted what can be done so it's blamo time */
08ab9b10 2206 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2207
2208out:
2209 clear_zonelist_oom(zonelist, gfp_mask);
2210 return page;
2211}
2212
56de7263
MG
2213#ifdef CONFIG_COMPACTION
2214/* Try memory compaction for high-order allocations before reclaim */
2215static struct page *
2216__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2217 struct zonelist *zonelist, enum zone_type high_zoneidx,
2218 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2219 int migratetype, bool sync_migration,
c67fe375 2220 bool *contended_compaction, bool *deferred_compaction,
66199712 2221 unsigned long *did_some_progress)
56de7263 2222{
66199712 2223 if (!order)
56de7263
MG
2224 return NULL;
2225
aff62249 2226 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2227 *deferred_compaction = true;
2228 return NULL;
2229 }
2230
c06b1fca 2231 current->flags |= PF_MEMALLOC;
56de7263 2232 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2233 nodemask, sync_migration,
8fb74b9f 2234 contended_compaction);
c06b1fca 2235 current->flags &= ~PF_MEMALLOC;
56de7263 2236
1fb3f8ca 2237 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2238 struct page *page;
2239
56de7263
MG
2240 /* Page migration frees to the PCP lists but we want merging */
2241 drain_pages(get_cpu());
2242 put_cpu();
2243
2244 page = get_page_from_freelist(gfp_mask, nodemask,
2245 order, zonelist, high_zoneidx,
cfd19c5a
MG
2246 alloc_flags & ~ALLOC_NO_WATERMARKS,
2247 preferred_zone, migratetype);
56de7263 2248 if (page) {
62997027 2249 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2250 preferred_zone->compact_considered = 0;
2251 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2252 if (order >= preferred_zone->compact_order_failed)
2253 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2254 count_vm_event(COMPACTSUCCESS);
2255 return page;
2256 }
2257
2258 /*
2259 * It's bad if compaction run occurs and fails.
2260 * The most likely reason is that pages exist,
2261 * but not enough to satisfy watermarks.
2262 */
2263 count_vm_event(COMPACTFAIL);
66199712
MG
2264
2265 /*
2266 * As async compaction considers a subset of pageblocks, only
2267 * defer if the failure was a sync compaction failure.
2268 */
2269 if (sync_migration)
aff62249 2270 defer_compaction(preferred_zone, order);
56de7263
MG
2271
2272 cond_resched();
2273 }
2274
2275 return NULL;
2276}
2277#else
2278static inline struct page *
2279__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2280 struct zonelist *zonelist, enum zone_type high_zoneidx,
2281 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2282 int migratetype, bool sync_migration,
c67fe375 2283 bool *contended_compaction, bool *deferred_compaction,
66199712 2284 unsigned long *did_some_progress)
56de7263
MG
2285{
2286 return NULL;
2287}
2288#endif /* CONFIG_COMPACTION */
2289
bba90710
MS
2290/* Perform direct synchronous page reclaim */
2291static int
2292__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2293 nodemask_t *nodemask)
11e33f6a 2294{
11e33f6a 2295 struct reclaim_state reclaim_state;
bba90710 2296 int progress;
11e33f6a
MG
2297
2298 cond_resched();
2299
2300 /* We now go into synchronous reclaim */
2301 cpuset_memory_pressure_bump();
c06b1fca 2302 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2303 lockdep_set_current_reclaim_state(gfp_mask);
2304 reclaim_state.reclaimed_slab = 0;
c06b1fca 2305 current->reclaim_state = &reclaim_state;
11e33f6a 2306
bba90710 2307 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2308
c06b1fca 2309 current->reclaim_state = NULL;
11e33f6a 2310 lockdep_clear_current_reclaim_state();
c06b1fca 2311 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2312
2313 cond_resched();
2314
bba90710
MS
2315 return progress;
2316}
2317
2318/* The really slow allocator path where we enter direct reclaim */
2319static inline struct page *
2320__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2321 struct zonelist *zonelist, enum zone_type high_zoneidx,
2322 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2323 int migratetype, unsigned long *did_some_progress)
2324{
2325 struct page *page = NULL;
2326 bool drained = false;
2327
2328 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2329 nodemask);
9ee493ce
MG
2330 if (unlikely(!(*did_some_progress)))
2331 return NULL;
11e33f6a 2332
76d3fbf8 2333 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2334 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2335 zlc_clear_zones_full(zonelist);
2336
9ee493ce
MG
2337retry:
2338 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2339 zonelist, high_zoneidx,
cfd19c5a
MG
2340 alloc_flags & ~ALLOC_NO_WATERMARKS,
2341 preferred_zone, migratetype);
9ee493ce
MG
2342
2343 /*
2344 * If an allocation failed after direct reclaim, it could be because
2345 * pages are pinned on the per-cpu lists. Drain them and try again
2346 */
2347 if (!page && !drained) {
2348 drain_all_pages();
2349 drained = true;
2350 goto retry;
2351 }
2352
11e33f6a
MG
2353 return page;
2354}
2355
1da177e4 2356/*
11e33f6a
MG
2357 * This is called in the allocator slow-path if the allocation request is of
2358 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2359 */
11e33f6a
MG
2360static inline struct page *
2361__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2362 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2363 nodemask_t *nodemask, struct zone *preferred_zone,
2364 int migratetype)
11e33f6a
MG
2365{
2366 struct page *page;
2367
2368 do {
2369 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2370 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2371 preferred_zone, migratetype);
11e33f6a
MG
2372
2373 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2374 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2375 } while (!page && (gfp_mask & __GFP_NOFAIL));
2376
2377 return page;
2378}
2379
81c0a2bb
JW
2380static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2381 struct zonelist *zonelist,
2382 enum zone_type high_zoneidx,
2383 struct zone *preferred_zone)
1da177e4 2384{
dd1a239f
MG
2385 struct zoneref *z;
2386 struct zone *zone;
1da177e4 2387
81c0a2bb
JW
2388 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2389 if (!(gfp_mask & __GFP_NO_KSWAPD))
2390 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2391 /*
2392 * Only reset the batches of zones that were actually
2393 * considered in the fast path, we don't want to
2394 * thrash fairness information for zones that are not
2395 * actually part of this zonelist's round-robin cycle.
2396 */
2397 if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
2398 continue;
2399 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2400 high_wmark_pages(zone) -
2401 low_wmark_pages(zone) -
2402 zone_page_state(zone, NR_ALLOC_BATCH));
2403 }
11e33f6a 2404}
cf40bd16 2405
341ce06f
PZ
2406static inline int
2407gfp_to_alloc_flags(gfp_t gfp_mask)
2408{
341ce06f
PZ
2409 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2410 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2411
a56f57ff 2412 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2413 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2414
341ce06f
PZ
2415 /*
2416 * The caller may dip into page reserves a bit more if the caller
2417 * cannot run direct reclaim, or if the caller has realtime scheduling
2418 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2419 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2420 */
e6223a3b 2421 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2422
341ce06f 2423 if (!wait) {
5c3240d9
AA
2424 /*
2425 * Not worth trying to allocate harder for
2426 * __GFP_NOMEMALLOC even if it can't schedule.
2427 */
2428 if (!(gfp_mask & __GFP_NOMEMALLOC))
2429 alloc_flags |= ALLOC_HARDER;
523b9458 2430 /*
341ce06f
PZ
2431 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2432 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2433 */
341ce06f 2434 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2435 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2436 alloc_flags |= ALLOC_HARDER;
2437
b37f1dd0
MG
2438 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2439 if (gfp_mask & __GFP_MEMALLOC)
2440 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2441 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2442 alloc_flags |= ALLOC_NO_WATERMARKS;
2443 else if (!in_interrupt() &&
2444 ((current->flags & PF_MEMALLOC) ||
2445 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2446 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2447 }
d95ea5d1
BZ
2448#ifdef CONFIG_CMA
2449 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2450 alloc_flags |= ALLOC_CMA;
2451#endif
341ce06f
PZ
2452 return alloc_flags;
2453}
2454
072bb0aa
MG
2455bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2456{
b37f1dd0 2457 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2458}
2459
11e33f6a
MG
2460static inline struct page *
2461__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2462 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2463 nodemask_t *nodemask, struct zone *preferred_zone,
2464 int migratetype)
11e33f6a
MG
2465{
2466 const gfp_t wait = gfp_mask & __GFP_WAIT;
2467 struct page *page = NULL;
2468 int alloc_flags;
2469 unsigned long pages_reclaimed = 0;
2470 unsigned long did_some_progress;
77f1fe6b 2471 bool sync_migration = false;
66199712 2472 bool deferred_compaction = false;
c67fe375 2473 bool contended_compaction = false;
1da177e4 2474
72807a74
MG
2475 /*
2476 * In the slowpath, we sanity check order to avoid ever trying to
2477 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2478 * be using allocators in order of preference for an area that is
2479 * too large.
2480 */
1fc28b70
MG
2481 if (order >= MAX_ORDER) {
2482 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2483 return NULL;
1fc28b70 2484 }
1da177e4 2485
952f3b51
CL
2486 /*
2487 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2488 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2489 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2490 * using a larger set of nodes after it has established that the
2491 * allowed per node queues are empty and that nodes are
2492 * over allocated.
2493 */
e5adfffc
KS
2494 if (IS_ENABLED(CONFIG_NUMA) &&
2495 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2496 goto nopage;
2497
cc4a6851 2498restart:
81c0a2bb
JW
2499 prepare_slowpath(gfp_mask, order, zonelist,
2500 high_zoneidx, preferred_zone);
1da177e4 2501
9bf2229f 2502 /*
7fb1d9fc
RS
2503 * OK, we're below the kswapd watermark and have kicked background
2504 * reclaim. Now things get more complex, so set up alloc_flags according
2505 * to how we want to proceed.
9bf2229f 2506 */
341ce06f 2507 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2508
f33261d7
DR
2509 /*
2510 * Find the true preferred zone if the allocation is unconstrained by
2511 * cpusets.
2512 */
2513 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2514 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2515 &preferred_zone);
2516
cfa54a0f 2517rebalance:
341ce06f 2518 /* This is the last chance, in general, before the goto nopage. */
19770b32 2519 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2520 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2521 preferred_zone, migratetype);
7fb1d9fc
RS
2522 if (page)
2523 goto got_pg;
1da177e4 2524
11e33f6a 2525 /* Allocate without watermarks if the context allows */
341ce06f 2526 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2527 /*
2528 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2529 * the allocation is high priority and these type of
2530 * allocations are system rather than user orientated
2531 */
2532 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2533
341ce06f
PZ
2534 page = __alloc_pages_high_priority(gfp_mask, order,
2535 zonelist, high_zoneidx, nodemask,
2536 preferred_zone, migratetype);
cfd19c5a 2537 if (page) {
341ce06f 2538 goto got_pg;
cfd19c5a 2539 }
1da177e4
LT
2540 }
2541
2542 /* Atomic allocations - we can't balance anything */
2543 if (!wait)
2544 goto nopage;
2545
341ce06f 2546 /* Avoid recursion of direct reclaim */
c06b1fca 2547 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2548 goto nopage;
2549
6583bb64
DR
2550 /* Avoid allocations with no watermarks from looping endlessly */
2551 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2552 goto nopage;
2553
77f1fe6b
MG
2554 /*
2555 * Try direct compaction. The first pass is asynchronous. Subsequent
2556 * attempts after direct reclaim are synchronous
2557 */
56de7263
MG
2558 page = __alloc_pages_direct_compact(gfp_mask, order,
2559 zonelist, high_zoneidx,
2560 nodemask,
2561 alloc_flags, preferred_zone,
66199712 2562 migratetype, sync_migration,
c67fe375 2563 &contended_compaction,
66199712
MG
2564 &deferred_compaction,
2565 &did_some_progress);
56de7263
MG
2566 if (page)
2567 goto got_pg;
c6a140bf 2568 sync_migration = true;
56de7263 2569
31f8d42d
LT
2570 /*
2571 * If compaction is deferred for high-order allocations, it is because
2572 * sync compaction recently failed. In this is the case and the caller
2573 * requested a movable allocation that does not heavily disrupt the
2574 * system then fail the allocation instead of entering direct reclaim.
2575 */
2576 if ((deferred_compaction || contended_compaction) &&
caf49191 2577 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2578 goto nopage;
66199712 2579
11e33f6a
MG
2580 /* Try direct reclaim and then allocating */
2581 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2582 zonelist, high_zoneidx,
2583 nodemask,
5117f45d 2584 alloc_flags, preferred_zone,
3dd28266 2585 migratetype, &did_some_progress);
11e33f6a
MG
2586 if (page)
2587 goto got_pg;
1da177e4 2588
e33c3b5e 2589 /*
11e33f6a
MG
2590 * If we failed to make any progress reclaiming, then we are
2591 * running out of options and have to consider going OOM
e33c3b5e 2592 */
11e33f6a
MG
2593 if (!did_some_progress) {
2594 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2595 if (oom_killer_disabled)
2596 goto nopage;
29fd66d2
DR
2597 /* Coredumps can quickly deplete all memory reserves */
2598 if ((current->flags & PF_DUMPCORE) &&
2599 !(gfp_mask & __GFP_NOFAIL))
2600 goto nopage;
11e33f6a
MG
2601 page = __alloc_pages_may_oom(gfp_mask, order,
2602 zonelist, high_zoneidx,
3dd28266
MG
2603 nodemask, preferred_zone,
2604 migratetype);
11e33f6a
MG
2605 if (page)
2606 goto got_pg;
1da177e4 2607
03668b3c
DR
2608 if (!(gfp_mask & __GFP_NOFAIL)) {
2609 /*
2610 * The oom killer is not called for high-order
2611 * allocations that may fail, so if no progress
2612 * is being made, there are no other options and
2613 * retrying is unlikely to help.
2614 */
2615 if (order > PAGE_ALLOC_COSTLY_ORDER)
2616 goto nopage;
2617 /*
2618 * The oom killer is not called for lowmem
2619 * allocations to prevent needlessly killing
2620 * innocent tasks.
2621 */
2622 if (high_zoneidx < ZONE_NORMAL)
2623 goto nopage;
2624 }
e2c55dc8 2625
ff0ceb9d
DR
2626 goto restart;
2627 }
1da177e4
LT
2628 }
2629
11e33f6a 2630 /* Check if we should retry the allocation */
a41f24ea 2631 pages_reclaimed += did_some_progress;
f90ac398
MG
2632 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2633 pages_reclaimed)) {
11e33f6a 2634 /* Wait for some write requests to complete then retry */
0e093d99 2635 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2636 goto rebalance;
3e7d3449
MG
2637 } else {
2638 /*
2639 * High-order allocations do not necessarily loop after
2640 * direct reclaim and reclaim/compaction depends on compaction
2641 * being called after reclaim so call directly if necessary
2642 */
2643 page = __alloc_pages_direct_compact(gfp_mask, order,
2644 zonelist, high_zoneidx,
2645 nodemask,
2646 alloc_flags, preferred_zone,
66199712 2647 migratetype, sync_migration,
c67fe375 2648 &contended_compaction,
66199712
MG
2649 &deferred_compaction,
2650 &did_some_progress);
3e7d3449
MG
2651 if (page)
2652 goto got_pg;
1da177e4
LT
2653 }
2654
2655nopage:
a238ab5b 2656 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2657 return page;
1da177e4 2658got_pg:
b1eeab67
VN
2659 if (kmemcheck_enabled)
2660 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2661
072bb0aa 2662 return page;
1da177e4 2663}
11e33f6a
MG
2664
2665/*
2666 * This is the 'heart' of the zoned buddy allocator.
2667 */
2668struct page *
2669__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2670 struct zonelist *zonelist, nodemask_t *nodemask)
2671{
2672 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2673 struct zone *preferred_zone;
cc9a6c87 2674 struct page *page = NULL;
3dd28266 2675 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2676 unsigned int cpuset_mems_cookie;
d95ea5d1 2677 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2678 struct mem_cgroup *memcg = NULL;
11e33f6a 2679
dcce284a
BH
2680 gfp_mask &= gfp_allowed_mask;
2681
11e33f6a
MG
2682 lockdep_trace_alloc(gfp_mask);
2683
2684 might_sleep_if(gfp_mask & __GFP_WAIT);
2685
2686 if (should_fail_alloc_page(gfp_mask, order))
2687 return NULL;
2688
2689 /*
2690 * Check the zones suitable for the gfp_mask contain at least one
2691 * valid zone. It's possible to have an empty zonelist as a result
2692 * of GFP_THISNODE and a memoryless node
2693 */
2694 if (unlikely(!zonelist->_zonerefs->zone))
2695 return NULL;
2696
6a1a0d3b
GC
2697 /*
2698 * Will only have any effect when __GFP_KMEMCG is set. This is
2699 * verified in the (always inline) callee
2700 */
2701 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2702 return NULL;
2703
cc9a6c87
MG
2704retry_cpuset:
2705 cpuset_mems_cookie = get_mems_allowed();
2706
5117f45d 2707 /* The preferred zone is used for statistics later */
f33261d7
DR
2708 first_zones_zonelist(zonelist, high_zoneidx,
2709 nodemask ? : &cpuset_current_mems_allowed,
2710 &preferred_zone);
cc9a6c87
MG
2711 if (!preferred_zone)
2712 goto out;
5117f45d 2713
d95ea5d1
BZ
2714#ifdef CONFIG_CMA
2715 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2716 alloc_flags |= ALLOC_CMA;
2717#endif
5117f45d 2718 /* First allocation attempt */
11e33f6a 2719 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2720 zonelist, high_zoneidx, alloc_flags,
3dd28266 2721 preferred_zone, migratetype);
21caf2fc
ML
2722 if (unlikely(!page)) {
2723 /*
2724 * Runtime PM, block IO and its error handling path
2725 * can deadlock because I/O on the device might not
2726 * complete.
2727 */
2728 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2729 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2730 zonelist, high_zoneidx, nodemask,
3dd28266 2731 preferred_zone, migratetype);
21caf2fc 2732 }
11e33f6a 2733
4b4f278c 2734 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2735
2736out:
2737 /*
2738 * When updating a task's mems_allowed, it is possible to race with
2739 * parallel threads in such a way that an allocation can fail while
2740 * the mask is being updated. If a page allocation is about to fail,
2741 * check if the cpuset changed during allocation and if so, retry.
2742 */
2743 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2744 goto retry_cpuset;
2745
6a1a0d3b
GC
2746 memcg_kmem_commit_charge(page, memcg, order);
2747
11e33f6a 2748 return page;
1da177e4 2749}
d239171e 2750EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2751
2752/*
2753 * Common helper functions.
2754 */
920c7a5d 2755unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2756{
945a1113
AM
2757 struct page *page;
2758
2759 /*
2760 * __get_free_pages() returns a 32-bit address, which cannot represent
2761 * a highmem page
2762 */
2763 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2764
1da177e4
LT
2765 page = alloc_pages(gfp_mask, order);
2766 if (!page)
2767 return 0;
2768 return (unsigned long) page_address(page);
2769}
1da177e4
LT
2770EXPORT_SYMBOL(__get_free_pages);
2771
920c7a5d 2772unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2773{
945a1113 2774 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2775}
1da177e4
LT
2776EXPORT_SYMBOL(get_zeroed_page);
2777
920c7a5d 2778void __free_pages(struct page *page, unsigned int order)
1da177e4 2779{
b5810039 2780 if (put_page_testzero(page)) {
1da177e4 2781 if (order == 0)
fc91668e 2782 free_hot_cold_page(page, 0);
1da177e4
LT
2783 else
2784 __free_pages_ok(page, order);
2785 }
2786}
2787
2788EXPORT_SYMBOL(__free_pages);
2789
920c7a5d 2790void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2791{
2792 if (addr != 0) {
725d704e 2793 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2794 __free_pages(virt_to_page((void *)addr), order);
2795 }
2796}
2797
2798EXPORT_SYMBOL(free_pages);
2799
6a1a0d3b
GC
2800/*
2801 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2802 * pages allocated with __GFP_KMEMCG.
2803 *
2804 * Those pages are accounted to a particular memcg, embedded in the
2805 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2806 * for that information only to find out that it is NULL for users who have no
2807 * interest in that whatsoever, we provide these functions.
2808 *
2809 * The caller knows better which flags it relies on.
2810 */
2811void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2812{
2813 memcg_kmem_uncharge_pages(page, order);
2814 __free_pages(page, order);
2815}
2816
2817void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2818{
2819 if (addr != 0) {
2820 VM_BUG_ON(!virt_addr_valid((void *)addr));
2821 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2822 }
2823}
2824
ee85c2e1
AK
2825static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2826{
2827 if (addr) {
2828 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2829 unsigned long used = addr + PAGE_ALIGN(size);
2830
2831 split_page(virt_to_page((void *)addr), order);
2832 while (used < alloc_end) {
2833 free_page(used);
2834 used += PAGE_SIZE;
2835 }
2836 }
2837 return (void *)addr;
2838}
2839
2be0ffe2
TT
2840/**
2841 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2842 * @size: the number of bytes to allocate
2843 * @gfp_mask: GFP flags for the allocation
2844 *
2845 * This function is similar to alloc_pages(), except that it allocates the
2846 * minimum number of pages to satisfy the request. alloc_pages() can only
2847 * allocate memory in power-of-two pages.
2848 *
2849 * This function is also limited by MAX_ORDER.
2850 *
2851 * Memory allocated by this function must be released by free_pages_exact().
2852 */
2853void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2854{
2855 unsigned int order = get_order(size);
2856 unsigned long addr;
2857
2858 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2859 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2860}
2861EXPORT_SYMBOL(alloc_pages_exact);
2862
ee85c2e1
AK
2863/**
2864 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2865 * pages on a node.
b5e6ab58 2866 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2867 * @size: the number of bytes to allocate
2868 * @gfp_mask: GFP flags for the allocation
2869 *
2870 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2871 * back.
2872 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2873 * but is not exact.
2874 */
2875void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2876{
2877 unsigned order = get_order(size);
2878 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2879 if (!p)
2880 return NULL;
2881 return make_alloc_exact((unsigned long)page_address(p), order, size);
2882}
2883EXPORT_SYMBOL(alloc_pages_exact_nid);
2884
2be0ffe2
TT
2885/**
2886 * free_pages_exact - release memory allocated via alloc_pages_exact()
2887 * @virt: the value returned by alloc_pages_exact.
2888 * @size: size of allocation, same value as passed to alloc_pages_exact().
2889 *
2890 * Release the memory allocated by a previous call to alloc_pages_exact.
2891 */
2892void free_pages_exact(void *virt, size_t size)
2893{
2894 unsigned long addr = (unsigned long)virt;
2895 unsigned long end = addr + PAGE_ALIGN(size);
2896
2897 while (addr < end) {
2898 free_page(addr);
2899 addr += PAGE_SIZE;
2900 }
2901}
2902EXPORT_SYMBOL(free_pages_exact);
2903
e0fb5815
ZY
2904/**
2905 * nr_free_zone_pages - count number of pages beyond high watermark
2906 * @offset: The zone index of the highest zone
2907 *
2908 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2909 * high watermark within all zones at or below a given zone index. For each
2910 * zone, the number of pages is calculated as:
834405c3 2911 * managed_pages - high_pages
e0fb5815 2912 */
ebec3862 2913static unsigned long nr_free_zone_pages(int offset)
1da177e4 2914{
dd1a239f 2915 struct zoneref *z;
54a6eb5c
MG
2916 struct zone *zone;
2917
e310fd43 2918 /* Just pick one node, since fallback list is circular */
ebec3862 2919 unsigned long sum = 0;
1da177e4 2920
0e88460d 2921 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2922
54a6eb5c 2923 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2924 unsigned long size = zone->managed_pages;
41858966 2925 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2926 if (size > high)
2927 sum += size - high;
1da177e4
LT
2928 }
2929
2930 return sum;
2931}
2932
e0fb5815
ZY
2933/**
2934 * nr_free_buffer_pages - count number of pages beyond high watermark
2935 *
2936 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2937 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2938 */
ebec3862 2939unsigned long nr_free_buffer_pages(void)
1da177e4 2940{
af4ca457 2941 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2942}
c2f1a551 2943EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2944
e0fb5815
ZY
2945/**
2946 * nr_free_pagecache_pages - count number of pages beyond high watermark
2947 *
2948 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2949 * high watermark within all zones.
1da177e4 2950 */
ebec3862 2951unsigned long nr_free_pagecache_pages(void)
1da177e4 2952{
2a1e274a 2953 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2954}
08e0f6a9
CL
2955
2956static inline void show_node(struct zone *zone)
1da177e4 2957{
e5adfffc 2958 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2959 printk("Node %d ", zone_to_nid(zone));
1da177e4 2960}
1da177e4 2961
1da177e4
LT
2962void si_meminfo(struct sysinfo *val)
2963{
2964 val->totalram = totalram_pages;
2965 val->sharedram = 0;
d23ad423 2966 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2967 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2968 val->totalhigh = totalhigh_pages;
2969 val->freehigh = nr_free_highpages();
1da177e4
LT
2970 val->mem_unit = PAGE_SIZE;
2971}
2972
2973EXPORT_SYMBOL(si_meminfo);
2974
2975#ifdef CONFIG_NUMA
2976void si_meminfo_node(struct sysinfo *val, int nid)
2977{
cdd91a77
JL
2978 int zone_type; /* needs to be signed */
2979 unsigned long managed_pages = 0;
1da177e4
LT
2980 pg_data_t *pgdat = NODE_DATA(nid);
2981
cdd91a77
JL
2982 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2983 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2984 val->totalram = managed_pages;
d23ad423 2985 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2986#ifdef CONFIG_HIGHMEM
b40da049 2987 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2988 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2989 NR_FREE_PAGES);
98d2b0eb
CL
2990#else
2991 val->totalhigh = 0;
2992 val->freehigh = 0;
2993#endif
1da177e4
LT
2994 val->mem_unit = PAGE_SIZE;
2995}
2996#endif
2997
ddd588b5 2998/*
7bf02ea2
DR
2999 * Determine whether the node should be displayed or not, depending on whether
3000 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3001 */
7bf02ea2 3002bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3003{
3004 bool ret = false;
cc9a6c87 3005 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3006
3007 if (!(flags & SHOW_MEM_FILTER_NODES))
3008 goto out;
3009
cc9a6c87
MG
3010 do {
3011 cpuset_mems_cookie = get_mems_allowed();
3012 ret = !node_isset(nid, cpuset_current_mems_allowed);
3013 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
3014out:
3015 return ret;
3016}
3017
1da177e4
LT
3018#define K(x) ((x) << (PAGE_SHIFT-10))
3019
377e4f16
RV
3020static void show_migration_types(unsigned char type)
3021{
3022 static const char types[MIGRATE_TYPES] = {
3023 [MIGRATE_UNMOVABLE] = 'U',
3024 [MIGRATE_RECLAIMABLE] = 'E',
3025 [MIGRATE_MOVABLE] = 'M',
3026 [MIGRATE_RESERVE] = 'R',
3027#ifdef CONFIG_CMA
3028 [MIGRATE_CMA] = 'C',
3029#endif
194159fb 3030#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3031 [MIGRATE_ISOLATE] = 'I',
194159fb 3032#endif
377e4f16
RV
3033 };
3034 char tmp[MIGRATE_TYPES + 1];
3035 char *p = tmp;
3036 int i;
3037
3038 for (i = 0; i < MIGRATE_TYPES; i++) {
3039 if (type & (1 << i))
3040 *p++ = types[i];
3041 }
3042
3043 *p = '\0';
3044 printk("(%s) ", tmp);
3045}
3046
1da177e4
LT
3047/*
3048 * Show free area list (used inside shift_scroll-lock stuff)
3049 * We also calculate the percentage fragmentation. We do this by counting the
3050 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3051 * Suppresses nodes that are not allowed by current's cpuset if
3052 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3053 */
7bf02ea2 3054void show_free_areas(unsigned int filter)
1da177e4 3055{
c7241913 3056 int cpu;
1da177e4
LT
3057 struct zone *zone;
3058
ee99c71c 3059 for_each_populated_zone(zone) {
7bf02ea2 3060 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3061 continue;
c7241913
JS
3062 show_node(zone);
3063 printk("%s per-cpu:\n", zone->name);
1da177e4 3064
6b482c67 3065 for_each_online_cpu(cpu) {
1da177e4
LT
3066 struct per_cpu_pageset *pageset;
3067
99dcc3e5 3068 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3069
3dfa5721
CL
3070 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3071 cpu, pageset->pcp.high,
3072 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3073 }
3074 }
3075
a731286d
KM
3076 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3077 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3078 " unevictable:%lu"
b76146ed 3079 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3080 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3081 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3082 " free_cma:%lu\n",
4f98a2fe 3083 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3084 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3085 global_page_state(NR_ISOLATED_ANON),
3086 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3087 global_page_state(NR_INACTIVE_FILE),
a731286d 3088 global_page_state(NR_ISOLATED_FILE),
7b854121 3089 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3090 global_page_state(NR_FILE_DIRTY),
ce866b34 3091 global_page_state(NR_WRITEBACK),
fd39fc85 3092 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3093 global_page_state(NR_FREE_PAGES),
3701b033
KM
3094 global_page_state(NR_SLAB_RECLAIMABLE),
3095 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3096 global_page_state(NR_FILE_MAPPED),
4b02108a 3097 global_page_state(NR_SHMEM),
a25700a5 3098 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3099 global_page_state(NR_BOUNCE),
3100 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3101
ee99c71c 3102 for_each_populated_zone(zone) {
1da177e4
LT
3103 int i;
3104
7bf02ea2 3105 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3106 continue;
1da177e4
LT
3107 show_node(zone);
3108 printk("%s"
3109 " free:%lukB"
3110 " min:%lukB"
3111 " low:%lukB"
3112 " high:%lukB"
4f98a2fe
RR
3113 " active_anon:%lukB"
3114 " inactive_anon:%lukB"
3115 " active_file:%lukB"
3116 " inactive_file:%lukB"
7b854121 3117 " unevictable:%lukB"
a731286d
KM
3118 " isolated(anon):%lukB"
3119 " isolated(file):%lukB"
1da177e4 3120 " present:%lukB"
9feedc9d 3121 " managed:%lukB"
4a0aa73f
KM
3122 " mlocked:%lukB"
3123 " dirty:%lukB"
3124 " writeback:%lukB"
3125 " mapped:%lukB"
4b02108a 3126 " shmem:%lukB"
4a0aa73f
KM
3127 " slab_reclaimable:%lukB"
3128 " slab_unreclaimable:%lukB"
c6a7f572 3129 " kernel_stack:%lukB"
4a0aa73f
KM
3130 " pagetables:%lukB"
3131 " unstable:%lukB"
3132 " bounce:%lukB"
d1ce749a 3133 " free_cma:%lukB"
4a0aa73f 3134 " writeback_tmp:%lukB"
1da177e4
LT
3135 " pages_scanned:%lu"
3136 " all_unreclaimable? %s"
3137 "\n",
3138 zone->name,
88f5acf8 3139 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3140 K(min_wmark_pages(zone)),
3141 K(low_wmark_pages(zone)),
3142 K(high_wmark_pages(zone)),
4f98a2fe
RR
3143 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3144 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3145 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3146 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3147 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3148 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3149 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3150 K(zone->present_pages),
9feedc9d 3151 K(zone->managed_pages),
4a0aa73f
KM
3152 K(zone_page_state(zone, NR_MLOCK)),
3153 K(zone_page_state(zone, NR_FILE_DIRTY)),
3154 K(zone_page_state(zone, NR_WRITEBACK)),
3155 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3156 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3157 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3158 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3159 zone_page_state(zone, NR_KERNEL_STACK) *
3160 THREAD_SIZE / 1024,
4a0aa73f
KM
3161 K(zone_page_state(zone, NR_PAGETABLE)),
3162 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3163 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3164 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3165 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3166 zone->pages_scanned,
93e4a89a 3167 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3168 );
3169 printk("lowmem_reserve[]:");
3170 for (i = 0; i < MAX_NR_ZONES; i++)
3171 printk(" %lu", zone->lowmem_reserve[i]);
3172 printk("\n");
3173 }
3174
ee99c71c 3175 for_each_populated_zone(zone) {
b8af2941 3176 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3177 unsigned char types[MAX_ORDER];
1da177e4 3178
7bf02ea2 3179 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3180 continue;
1da177e4
LT
3181 show_node(zone);
3182 printk("%s: ", zone->name);
1da177e4
LT
3183
3184 spin_lock_irqsave(&zone->lock, flags);
3185 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3186 struct free_area *area = &zone->free_area[order];
3187 int type;
3188
3189 nr[order] = area->nr_free;
8f9de51a 3190 total += nr[order] << order;
377e4f16
RV
3191
3192 types[order] = 0;
3193 for (type = 0; type < MIGRATE_TYPES; type++) {
3194 if (!list_empty(&area->free_list[type]))
3195 types[order] |= 1 << type;
3196 }
1da177e4
LT
3197 }
3198 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3199 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3200 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3201 if (nr[order])
3202 show_migration_types(types[order]);
3203 }
1da177e4
LT
3204 printk("= %lukB\n", K(total));
3205 }
3206
949f7ec5
DR
3207 hugetlb_show_meminfo();
3208
e6f3602d
LW
3209 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3210
1da177e4
LT
3211 show_swap_cache_info();
3212}
3213
19770b32
MG
3214static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3215{
3216 zoneref->zone = zone;
3217 zoneref->zone_idx = zone_idx(zone);
3218}
3219
1da177e4
LT
3220/*
3221 * Builds allocation fallback zone lists.
1a93205b
CL
3222 *
3223 * Add all populated zones of a node to the zonelist.
1da177e4 3224 */
f0c0b2b8 3225static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3226 int nr_zones)
1da177e4 3227{
1a93205b 3228 struct zone *zone;
bc732f1d 3229 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3230
3231 do {
2f6726e5 3232 zone_type--;
070f8032 3233 zone = pgdat->node_zones + zone_type;
1a93205b 3234 if (populated_zone(zone)) {
dd1a239f
MG
3235 zoneref_set_zone(zone,
3236 &zonelist->_zonerefs[nr_zones++]);
070f8032 3237 check_highest_zone(zone_type);
1da177e4 3238 }
2f6726e5 3239 } while (zone_type);
bc732f1d 3240
070f8032 3241 return nr_zones;
1da177e4
LT
3242}
3243
f0c0b2b8
KH
3244
3245/*
3246 * zonelist_order:
3247 * 0 = automatic detection of better ordering.
3248 * 1 = order by ([node] distance, -zonetype)
3249 * 2 = order by (-zonetype, [node] distance)
3250 *
3251 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3252 * the same zonelist. So only NUMA can configure this param.
3253 */
3254#define ZONELIST_ORDER_DEFAULT 0
3255#define ZONELIST_ORDER_NODE 1
3256#define ZONELIST_ORDER_ZONE 2
3257
3258/* zonelist order in the kernel.
3259 * set_zonelist_order() will set this to NODE or ZONE.
3260 */
3261static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3262static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3263
3264
1da177e4 3265#ifdef CONFIG_NUMA
f0c0b2b8
KH
3266/* The value user specified ....changed by config */
3267static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3268/* string for sysctl */
3269#define NUMA_ZONELIST_ORDER_LEN 16
3270char numa_zonelist_order[16] = "default";
3271
3272/*
3273 * interface for configure zonelist ordering.
3274 * command line option "numa_zonelist_order"
3275 * = "[dD]efault - default, automatic configuration.
3276 * = "[nN]ode - order by node locality, then by zone within node
3277 * = "[zZ]one - order by zone, then by locality within zone
3278 */
3279
3280static int __parse_numa_zonelist_order(char *s)
3281{
3282 if (*s == 'd' || *s == 'D') {
3283 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3284 } else if (*s == 'n' || *s == 'N') {
3285 user_zonelist_order = ZONELIST_ORDER_NODE;
3286 } else if (*s == 'z' || *s == 'Z') {
3287 user_zonelist_order = ZONELIST_ORDER_ZONE;
3288 } else {
3289 printk(KERN_WARNING
3290 "Ignoring invalid numa_zonelist_order value: "
3291 "%s\n", s);
3292 return -EINVAL;
3293 }
3294 return 0;
3295}
3296
3297static __init int setup_numa_zonelist_order(char *s)
3298{
ecb256f8
VL
3299 int ret;
3300
3301 if (!s)
3302 return 0;
3303
3304 ret = __parse_numa_zonelist_order(s);
3305 if (ret == 0)
3306 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3307
3308 return ret;
f0c0b2b8
KH
3309}
3310early_param("numa_zonelist_order", setup_numa_zonelist_order);
3311
3312/*
3313 * sysctl handler for numa_zonelist_order
3314 */
3315int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3316 void __user *buffer, size_t *length,
f0c0b2b8
KH
3317 loff_t *ppos)
3318{
3319 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3320 int ret;
443c6f14 3321 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3322
443c6f14 3323 mutex_lock(&zl_order_mutex);
dacbde09
CG
3324 if (write) {
3325 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3326 ret = -EINVAL;
3327 goto out;
3328 }
3329 strcpy(saved_string, (char *)table->data);
3330 }
8d65af78 3331 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3332 if (ret)
443c6f14 3333 goto out;
f0c0b2b8
KH
3334 if (write) {
3335 int oldval = user_zonelist_order;
dacbde09
CG
3336
3337 ret = __parse_numa_zonelist_order((char *)table->data);
3338 if (ret) {
f0c0b2b8
KH
3339 /*
3340 * bogus value. restore saved string
3341 */
dacbde09 3342 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3343 NUMA_ZONELIST_ORDER_LEN);
3344 user_zonelist_order = oldval;
4eaf3f64
HL
3345 } else if (oldval != user_zonelist_order) {
3346 mutex_lock(&zonelists_mutex);
9adb62a5 3347 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3348 mutex_unlock(&zonelists_mutex);
3349 }
f0c0b2b8 3350 }
443c6f14
AK
3351out:
3352 mutex_unlock(&zl_order_mutex);
3353 return ret;
f0c0b2b8
KH
3354}
3355
3356
62bc62a8 3357#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3358static int node_load[MAX_NUMNODES];
3359
1da177e4 3360/**
4dc3b16b 3361 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3362 * @node: node whose fallback list we're appending
3363 * @used_node_mask: nodemask_t of already used nodes
3364 *
3365 * We use a number of factors to determine which is the next node that should
3366 * appear on a given node's fallback list. The node should not have appeared
3367 * already in @node's fallback list, and it should be the next closest node
3368 * according to the distance array (which contains arbitrary distance values
3369 * from each node to each node in the system), and should also prefer nodes
3370 * with no CPUs, since presumably they'll have very little allocation pressure
3371 * on them otherwise.
3372 * It returns -1 if no node is found.
3373 */
f0c0b2b8 3374static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3375{
4cf808eb 3376 int n, val;
1da177e4 3377 int min_val = INT_MAX;
00ef2d2f 3378 int best_node = NUMA_NO_NODE;
a70f7302 3379 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3380
4cf808eb
LT
3381 /* Use the local node if we haven't already */
3382 if (!node_isset(node, *used_node_mask)) {
3383 node_set(node, *used_node_mask);
3384 return node;
3385 }
1da177e4 3386
4b0ef1fe 3387 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3388
3389 /* Don't want a node to appear more than once */
3390 if (node_isset(n, *used_node_mask))
3391 continue;
3392
1da177e4
LT
3393 /* Use the distance array to find the distance */
3394 val = node_distance(node, n);
3395
4cf808eb
LT
3396 /* Penalize nodes under us ("prefer the next node") */
3397 val += (n < node);
3398
1da177e4 3399 /* Give preference to headless and unused nodes */
a70f7302
RR
3400 tmp = cpumask_of_node(n);
3401 if (!cpumask_empty(tmp))
1da177e4
LT
3402 val += PENALTY_FOR_NODE_WITH_CPUS;
3403
3404 /* Slight preference for less loaded node */
3405 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3406 val += node_load[n];
3407
3408 if (val < min_val) {
3409 min_val = val;
3410 best_node = n;
3411 }
3412 }
3413
3414 if (best_node >= 0)
3415 node_set(best_node, *used_node_mask);
3416
3417 return best_node;
3418}
3419
f0c0b2b8
KH
3420
3421/*
3422 * Build zonelists ordered by node and zones within node.
3423 * This results in maximum locality--normal zone overflows into local
3424 * DMA zone, if any--but risks exhausting DMA zone.
3425 */
3426static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3427{
f0c0b2b8 3428 int j;
1da177e4 3429 struct zonelist *zonelist;
f0c0b2b8 3430
54a6eb5c 3431 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3432 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3433 ;
bc732f1d 3434 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3435 zonelist->_zonerefs[j].zone = NULL;
3436 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3437}
3438
523b9458
CL
3439/*
3440 * Build gfp_thisnode zonelists
3441 */
3442static void build_thisnode_zonelists(pg_data_t *pgdat)
3443{
523b9458
CL
3444 int j;
3445 struct zonelist *zonelist;
3446
54a6eb5c 3447 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3448 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3449 zonelist->_zonerefs[j].zone = NULL;
3450 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3451}
3452
f0c0b2b8
KH
3453/*
3454 * Build zonelists ordered by zone and nodes within zones.
3455 * This results in conserving DMA zone[s] until all Normal memory is
3456 * exhausted, but results in overflowing to remote node while memory
3457 * may still exist in local DMA zone.
3458 */
3459static int node_order[MAX_NUMNODES];
3460
3461static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3462{
f0c0b2b8
KH
3463 int pos, j, node;
3464 int zone_type; /* needs to be signed */
3465 struct zone *z;
3466 struct zonelist *zonelist;
3467
54a6eb5c
MG
3468 zonelist = &pgdat->node_zonelists[0];
3469 pos = 0;
3470 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3471 for (j = 0; j < nr_nodes; j++) {
3472 node = node_order[j];
3473 z = &NODE_DATA(node)->node_zones[zone_type];
3474 if (populated_zone(z)) {
dd1a239f
MG
3475 zoneref_set_zone(z,
3476 &zonelist->_zonerefs[pos++]);
54a6eb5c 3477 check_highest_zone(zone_type);
f0c0b2b8
KH
3478 }
3479 }
f0c0b2b8 3480 }
dd1a239f
MG
3481 zonelist->_zonerefs[pos].zone = NULL;
3482 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3483}
3484
3485static int default_zonelist_order(void)
3486{
3487 int nid, zone_type;
b8af2941 3488 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3489 struct zone *z;
3490 int average_size;
3491 /*
b8af2941 3492 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3493 * If they are really small and used heavily, the system can fall
3494 * into OOM very easily.
e325c90f 3495 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3496 */
3497 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3498 low_kmem_size = 0;
3499 total_size = 0;
3500 for_each_online_node(nid) {
3501 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3502 z = &NODE_DATA(nid)->node_zones[zone_type];
3503 if (populated_zone(z)) {
3504 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3505 low_kmem_size += z->managed_pages;
3506 total_size += z->managed_pages;
e325c90f
DR
3507 } else if (zone_type == ZONE_NORMAL) {
3508 /*
3509 * If any node has only lowmem, then node order
3510 * is preferred to allow kernel allocations
3511 * locally; otherwise, they can easily infringe
3512 * on other nodes when there is an abundance of
3513 * lowmem available to allocate from.
3514 */
3515 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3516 }
3517 }
3518 }
3519 if (!low_kmem_size || /* there are no DMA area. */
3520 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3521 return ZONELIST_ORDER_NODE;
3522 /*
3523 * look into each node's config.
b8af2941
PK
3524 * If there is a node whose DMA/DMA32 memory is very big area on
3525 * local memory, NODE_ORDER may be suitable.
3526 */
37b07e41 3527 average_size = total_size /
4b0ef1fe 3528 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3529 for_each_online_node(nid) {
3530 low_kmem_size = 0;
3531 total_size = 0;
3532 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3533 z = &NODE_DATA(nid)->node_zones[zone_type];
3534 if (populated_zone(z)) {
3535 if (zone_type < ZONE_NORMAL)
3536 low_kmem_size += z->present_pages;
3537 total_size += z->present_pages;
3538 }
3539 }
3540 if (low_kmem_size &&
3541 total_size > average_size && /* ignore small node */
3542 low_kmem_size > total_size * 70/100)
3543 return ZONELIST_ORDER_NODE;
3544 }
3545 return ZONELIST_ORDER_ZONE;
3546}
3547
3548static void set_zonelist_order(void)
3549{
3550 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3551 current_zonelist_order = default_zonelist_order();
3552 else
3553 current_zonelist_order = user_zonelist_order;
3554}
3555
3556static void build_zonelists(pg_data_t *pgdat)
3557{
3558 int j, node, load;
3559 enum zone_type i;
1da177e4 3560 nodemask_t used_mask;
f0c0b2b8
KH
3561 int local_node, prev_node;
3562 struct zonelist *zonelist;
3563 int order = current_zonelist_order;
1da177e4
LT
3564
3565 /* initialize zonelists */
523b9458 3566 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3567 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3568 zonelist->_zonerefs[0].zone = NULL;
3569 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3570 }
3571
3572 /* NUMA-aware ordering of nodes */
3573 local_node = pgdat->node_id;
62bc62a8 3574 load = nr_online_nodes;
1da177e4
LT
3575 prev_node = local_node;
3576 nodes_clear(used_mask);
f0c0b2b8 3577
f0c0b2b8
KH
3578 memset(node_order, 0, sizeof(node_order));
3579 j = 0;
3580
1da177e4
LT
3581 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3582 /*
3583 * We don't want to pressure a particular node.
3584 * So adding penalty to the first node in same
3585 * distance group to make it round-robin.
3586 */
957f822a
DR
3587 if (node_distance(local_node, node) !=
3588 node_distance(local_node, prev_node))
f0c0b2b8
KH
3589 node_load[node] = load;
3590
1da177e4
LT
3591 prev_node = node;
3592 load--;
f0c0b2b8
KH
3593 if (order == ZONELIST_ORDER_NODE)
3594 build_zonelists_in_node_order(pgdat, node);
3595 else
3596 node_order[j++] = node; /* remember order */
3597 }
1da177e4 3598
f0c0b2b8
KH
3599 if (order == ZONELIST_ORDER_ZONE) {
3600 /* calculate node order -- i.e., DMA last! */
3601 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3602 }
523b9458
CL
3603
3604 build_thisnode_zonelists(pgdat);
1da177e4
LT
3605}
3606
9276b1bc 3607/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3608static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3609{
54a6eb5c
MG
3610 struct zonelist *zonelist;
3611 struct zonelist_cache *zlc;
dd1a239f 3612 struct zoneref *z;
9276b1bc 3613
54a6eb5c
MG
3614 zonelist = &pgdat->node_zonelists[0];
3615 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3616 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3617 for (z = zonelist->_zonerefs; z->zone; z++)
3618 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3619}
3620
7aac7898
LS
3621#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3622/*
3623 * Return node id of node used for "local" allocations.
3624 * I.e., first node id of first zone in arg node's generic zonelist.
3625 * Used for initializing percpu 'numa_mem', which is used primarily
3626 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3627 */
3628int local_memory_node(int node)
3629{
3630 struct zone *zone;
3631
3632 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3633 gfp_zone(GFP_KERNEL),
3634 NULL,
3635 &zone);
3636 return zone->node;
3637}
3638#endif
f0c0b2b8 3639
1da177e4
LT
3640#else /* CONFIG_NUMA */
3641
f0c0b2b8
KH
3642static void set_zonelist_order(void)
3643{
3644 current_zonelist_order = ZONELIST_ORDER_ZONE;
3645}
3646
3647static void build_zonelists(pg_data_t *pgdat)
1da177e4 3648{
19655d34 3649 int node, local_node;
54a6eb5c
MG
3650 enum zone_type j;
3651 struct zonelist *zonelist;
1da177e4
LT
3652
3653 local_node = pgdat->node_id;
1da177e4 3654
54a6eb5c 3655 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3656 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3657
54a6eb5c
MG
3658 /*
3659 * Now we build the zonelist so that it contains the zones
3660 * of all the other nodes.
3661 * We don't want to pressure a particular node, so when
3662 * building the zones for node N, we make sure that the
3663 * zones coming right after the local ones are those from
3664 * node N+1 (modulo N)
3665 */
3666 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3667 if (!node_online(node))
3668 continue;
bc732f1d 3669 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3670 }
54a6eb5c
MG
3671 for (node = 0; node < local_node; node++) {
3672 if (!node_online(node))
3673 continue;
bc732f1d 3674 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3675 }
3676
dd1a239f
MG
3677 zonelist->_zonerefs[j].zone = NULL;
3678 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3679}
3680
9276b1bc 3681/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3682static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3683{
54a6eb5c 3684 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3685}
3686
1da177e4
LT
3687#endif /* CONFIG_NUMA */
3688
99dcc3e5
CL
3689/*
3690 * Boot pageset table. One per cpu which is going to be used for all
3691 * zones and all nodes. The parameters will be set in such a way
3692 * that an item put on a list will immediately be handed over to
3693 * the buddy list. This is safe since pageset manipulation is done
3694 * with interrupts disabled.
3695 *
3696 * The boot_pagesets must be kept even after bootup is complete for
3697 * unused processors and/or zones. They do play a role for bootstrapping
3698 * hotplugged processors.
3699 *
3700 * zoneinfo_show() and maybe other functions do
3701 * not check if the processor is online before following the pageset pointer.
3702 * Other parts of the kernel may not check if the zone is available.
3703 */
3704static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3705static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3706static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3707
4eaf3f64
HL
3708/*
3709 * Global mutex to protect against size modification of zonelists
3710 * as well as to serialize pageset setup for the new populated zone.
3711 */
3712DEFINE_MUTEX(zonelists_mutex);
3713
9b1a4d38 3714/* return values int ....just for stop_machine() */
4ed7e022 3715static int __build_all_zonelists(void *data)
1da177e4 3716{
6811378e 3717 int nid;
99dcc3e5 3718 int cpu;
9adb62a5 3719 pg_data_t *self = data;
9276b1bc 3720
7f9cfb31
BL
3721#ifdef CONFIG_NUMA
3722 memset(node_load, 0, sizeof(node_load));
3723#endif
9adb62a5
JL
3724
3725 if (self && !node_online(self->node_id)) {
3726 build_zonelists(self);
3727 build_zonelist_cache(self);
3728 }
3729
9276b1bc 3730 for_each_online_node(nid) {
7ea1530a
CL
3731 pg_data_t *pgdat = NODE_DATA(nid);
3732
3733 build_zonelists(pgdat);
3734 build_zonelist_cache(pgdat);
9276b1bc 3735 }
99dcc3e5
CL
3736
3737 /*
3738 * Initialize the boot_pagesets that are going to be used
3739 * for bootstrapping processors. The real pagesets for
3740 * each zone will be allocated later when the per cpu
3741 * allocator is available.
3742 *
3743 * boot_pagesets are used also for bootstrapping offline
3744 * cpus if the system is already booted because the pagesets
3745 * are needed to initialize allocators on a specific cpu too.
3746 * F.e. the percpu allocator needs the page allocator which
3747 * needs the percpu allocator in order to allocate its pagesets
3748 * (a chicken-egg dilemma).
3749 */
7aac7898 3750 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3751 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3752
7aac7898
LS
3753#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3754 /*
3755 * We now know the "local memory node" for each node--
3756 * i.e., the node of the first zone in the generic zonelist.
3757 * Set up numa_mem percpu variable for on-line cpus. During
3758 * boot, only the boot cpu should be on-line; we'll init the
3759 * secondary cpus' numa_mem as they come on-line. During
3760 * node/memory hotplug, we'll fixup all on-line cpus.
3761 */
3762 if (cpu_online(cpu))
3763 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3764#endif
3765 }
3766
6811378e
YG
3767 return 0;
3768}
3769
4eaf3f64
HL
3770/*
3771 * Called with zonelists_mutex held always
3772 * unless system_state == SYSTEM_BOOTING.
3773 */
9adb62a5 3774void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3775{
f0c0b2b8
KH
3776 set_zonelist_order();
3777
6811378e 3778 if (system_state == SYSTEM_BOOTING) {
423b41d7 3779 __build_all_zonelists(NULL);
68ad8df4 3780 mminit_verify_zonelist();
6811378e
YG
3781 cpuset_init_current_mems_allowed();
3782 } else {
e9959f0f 3783#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3784 if (zone)
3785 setup_zone_pageset(zone);
e9959f0f 3786#endif
dd1895e2
CS
3787 /* we have to stop all cpus to guarantee there is no user
3788 of zonelist */
9adb62a5 3789 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3790 /* cpuset refresh routine should be here */
3791 }
bd1e22b8 3792 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3793 /*
3794 * Disable grouping by mobility if the number of pages in the
3795 * system is too low to allow the mechanism to work. It would be
3796 * more accurate, but expensive to check per-zone. This check is
3797 * made on memory-hotadd so a system can start with mobility
3798 * disabled and enable it later
3799 */
d9c23400 3800 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3801 page_group_by_mobility_disabled = 1;
3802 else
3803 page_group_by_mobility_disabled = 0;
3804
3805 printk("Built %i zonelists in %s order, mobility grouping %s. "
3806 "Total pages: %ld\n",
62bc62a8 3807 nr_online_nodes,
f0c0b2b8 3808 zonelist_order_name[current_zonelist_order],
9ef9acb0 3809 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3810 vm_total_pages);
3811#ifdef CONFIG_NUMA
3812 printk("Policy zone: %s\n", zone_names[policy_zone]);
3813#endif
1da177e4
LT
3814}
3815
3816/*
3817 * Helper functions to size the waitqueue hash table.
3818 * Essentially these want to choose hash table sizes sufficiently
3819 * large so that collisions trying to wait on pages are rare.
3820 * But in fact, the number of active page waitqueues on typical
3821 * systems is ridiculously low, less than 200. So this is even
3822 * conservative, even though it seems large.
3823 *
3824 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3825 * waitqueues, i.e. the size of the waitq table given the number of pages.
3826 */
3827#define PAGES_PER_WAITQUEUE 256
3828
cca448fe 3829#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3830static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3831{
3832 unsigned long size = 1;
3833
3834 pages /= PAGES_PER_WAITQUEUE;
3835
3836 while (size < pages)
3837 size <<= 1;
3838
3839 /*
3840 * Once we have dozens or even hundreds of threads sleeping
3841 * on IO we've got bigger problems than wait queue collision.
3842 * Limit the size of the wait table to a reasonable size.
3843 */
3844 size = min(size, 4096UL);
3845
3846 return max(size, 4UL);
3847}
cca448fe
YG
3848#else
3849/*
3850 * A zone's size might be changed by hot-add, so it is not possible to determine
3851 * a suitable size for its wait_table. So we use the maximum size now.
3852 *
3853 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3854 *
3855 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3856 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3857 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3858 *
3859 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3860 * or more by the traditional way. (See above). It equals:
3861 *
3862 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3863 * ia64(16K page size) : = ( 8G + 4M)byte.
3864 * powerpc (64K page size) : = (32G +16M)byte.
3865 */
3866static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3867{
3868 return 4096UL;
3869}
3870#endif
1da177e4
LT
3871
3872/*
3873 * This is an integer logarithm so that shifts can be used later
3874 * to extract the more random high bits from the multiplicative
3875 * hash function before the remainder is taken.
3876 */
3877static inline unsigned long wait_table_bits(unsigned long size)
3878{
3879 return ffz(~size);
3880}
3881
3882#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3883
6d3163ce
AH
3884/*
3885 * Check if a pageblock contains reserved pages
3886 */
3887static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3888{
3889 unsigned long pfn;
3890
3891 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3892 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3893 return 1;
3894 }
3895 return 0;
3896}
3897
56fd56b8 3898/*
d9c23400 3899 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3900 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3901 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3902 * higher will lead to a bigger reserve which will get freed as contiguous
3903 * blocks as reclaim kicks in
3904 */
3905static void setup_zone_migrate_reserve(struct zone *zone)
3906{
6d3163ce 3907 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3908 struct page *page;
78986a67
MG
3909 unsigned long block_migratetype;
3910 int reserve;
56fd56b8 3911
d0215638
MH
3912 /*
3913 * Get the start pfn, end pfn and the number of blocks to reserve
3914 * We have to be careful to be aligned to pageblock_nr_pages to
3915 * make sure that we always check pfn_valid for the first page in
3916 * the block.
3917 */
56fd56b8 3918 start_pfn = zone->zone_start_pfn;
108bcc96 3919 end_pfn = zone_end_pfn(zone);
d0215638 3920 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3921 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3922 pageblock_order;
56fd56b8 3923
78986a67
MG
3924 /*
3925 * Reserve blocks are generally in place to help high-order atomic
3926 * allocations that are short-lived. A min_free_kbytes value that
3927 * would result in more than 2 reserve blocks for atomic allocations
3928 * is assumed to be in place to help anti-fragmentation for the
3929 * future allocation of hugepages at runtime.
3930 */
3931 reserve = min(2, reserve);
3932
d9c23400 3933 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3934 if (!pfn_valid(pfn))
3935 continue;
3936 page = pfn_to_page(pfn);
3937
344c790e
AL
3938 /* Watch out for overlapping nodes */
3939 if (page_to_nid(page) != zone_to_nid(zone))
3940 continue;
3941
56fd56b8
MG
3942 block_migratetype = get_pageblock_migratetype(page);
3943
938929f1
MG
3944 /* Only test what is necessary when the reserves are not met */
3945 if (reserve > 0) {
3946 /*
3947 * Blocks with reserved pages will never free, skip
3948 * them.
3949 */
3950 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3951 if (pageblock_is_reserved(pfn, block_end_pfn))
3952 continue;
56fd56b8 3953
938929f1
MG
3954 /* If this block is reserved, account for it */
3955 if (block_migratetype == MIGRATE_RESERVE) {
3956 reserve--;
3957 continue;
3958 }
3959
3960 /* Suitable for reserving if this block is movable */
3961 if (block_migratetype == MIGRATE_MOVABLE) {
3962 set_pageblock_migratetype(page,
3963 MIGRATE_RESERVE);
3964 move_freepages_block(zone, page,
3965 MIGRATE_RESERVE);
3966 reserve--;
3967 continue;
3968 }
56fd56b8
MG
3969 }
3970
3971 /*
3972 * If the reserve is met and this is a previous reserved block,
3973 * take it back
3974 */
3975 if (block_migratetype == MIGRATE_RESERVE) {
3976 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3977 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3978 }
3979 }
3980}
ac0e5b7a 3981
1da177e4
LT
3982/*
3983 * Initially all pages are reserved - free ones are freed
3984 * up by free_all_bootmem() once the early boot process is
3985 * done. Non-atomic initialization, single-pass.
3986 */
c09b4240 3987void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3988 unsigned long start_pfn, enum memmap_context context)
1da177e4 3989{
1da177e4 3990 struct page *page;
29751f69
AW
3991 unsigned long end_pfn = start_pfn + size;
3992 unsigned long pfn;
86051ca5 3993 struct zone *z;
1da177e4 3994
22b31eec
HD
3995 if (highest_memmap_pfn < end_pfn - 1)
3996 highest_memmap_pfn = end_pfn - 1;
3997
86051ca5 3998 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3999 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4000 /*
4001 * There can be holes in boot-time mem_map[]s
4002 * handed to this function. They do not
4003 * exist on hotplugged memory.
4004 */
4005 if (context == MEMMAP_EARLY) {
4006 if (!early_pfn_valid(pfn))
4007 continue;
4008 if (!early_pfn_in_nid(pfn, nid))
4009 continue;
4010 }
d41dee36
AW
4011 page = pfn_to_page(pfn);
4012 set_page_links(page, zone, nid, pfn);
708614e6 4013 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4014 init_page_count(page);
22b751c3
MG
4015 page_mapcount_reset(page);
4016 page_nid_reset_last(page);
1da177e4 4017 SetPageReserved(page);
b2a0ac88
MG
4018 /*
4019 * Mark the block movable so that blocks are reserved for
4020 * movable at startup. This will force kernel allocations
4021 * to reserve their blocks rather than leaking throughout
4022 * the address space during boot when many long-lived
56fd56b8
MG
4023 * kernel allocations are made. Later some blocks near
4024 * the start are marked MIGRATE_RESERVE by
4025 * setup_zone_migrate_reserve()
86051ca5
KH
4026 *
4027 * bitmap is created for zone's valid pfn range. but memmap
4028 * can be created for invalid pages (for alignment)
4029 * check here not to call set_pageblock_migratetype() against
4030 * pfn out of zone.
b2a0ac88 4031 */
86051ca5 4032 if ((z->zone_start_pfn <= pfn)
108bcc96 4033 && (pfn < zone_end_pfn(z))
86051ca5 4034 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4035 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4036
1da177e4
LT
4037 INIT_LIST_HEAD(&page->lru);
4038#ifdef WANT_PAGE_VIRTUAL
4039 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4040 if (!is_highmem_idx(zone))
3212c6be 4041 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4042#endif
1da177e4
LT
4043 }
4044}
4045
1e548deb 4046static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4047{
b2a0ac88
MG
4048 int order, t;
4049 for_each_migratetype_order(order, t) {
4050 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4051 zone->free_area[order].nr_free = 0;
4052 }
4053}
4054
4055#ifndef __HAVE_ARCH_MEMMAP_INIT
4056#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4057 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4058#endif
4059
4ed7e022 4060static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4061{
3a6be87f 4062#ifdef CONFIG_MMU
e7c8d5c9
CL
4063 int batch;
4064
4065 /*
4066 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4067 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4068 *
4069 * OK, so we don't know how big the cache is. So guess.
4070 */
b40da049 4071 batch = zone->managed_pages / 1024;
ba56e91c
SR
4072 if (batch * PAGE_SIZE > 512 * 1024)
4073 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4074 batch /= 4; /* We effectively *= 4 below */
4075 if (batch < 1)
4076 batch = 1;
4077
4078 /*
0ceaacc9
NP
4079 * Clamp the batch to a 2^n - 1 value. Having a power
4080 * of 2 value was found to be more likely to have
4081 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4082 *
0ceaacc9
NP
4083 * For example if 2 tasks are alternately allocating
4084 * batches of pages, one task can end up with a lot
4085 * of pages of one half of the possible page colors
4086 * and the other with pages of the other colors.
e7c8d5c9 4087 */
9155203a 4088 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4089
e7c8d5c9 4090 return batch;
3a6be87f
DH
4091
4092#else
4093 /* The deferral and batching of frees should be suppressed under NOMMU
4094 * conditions.
4095 *
4096 * The problem is that NOMMU needs to be able to allocate large chunks
4097 * of contiguous memory as there's no hardware page translation to
4098 * assemble apparent contiguous memory from discontiguous pages.
4099 *
4100 * Queueing large contiguous runs of pages for batching, however,
4101 * causes the pages to actually be freed in smaller chunks. As there
4102 * can be a significant delay between the individual batches being
4103 * recycled, this leads to the once large chunks of space being
4104 * fragmented and becoming unavailable for high-order allocations.
4105 */
4106 return 0;
4107#endif
e7c8d5c9
CL
4108}
4109
8d7a8fa9
CS
4110/*
4111 * pcp->high and pcp->batch values are related and dependent on one another:
4112 * ->batch must never be higher then ->high.
4113 * The following function updates them in a safe manner without read side
4114 * locking.
4115 *
4116 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4117 * those fields changing asynchronously (acording the the above rule).
4118 *
4119 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4120 * outside of boot time (or some other assurance that no concurrent updaters
4121 * exist).
4122 */
4123static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4124 unsigned long batch)
4125{
4126 /* start with a fail safe value for batch */
4127 pcp->batch = 1;
4128 smp_wmb();
4129
4130 /* Update high, then batch, in order */
4131 pcp->high = high;
4132 smp_wmb();
4133
4134 pcp->batch = batch;
4135}
4136
3664033c 4137/* a companion to pageset_set_high() */
4008bab7
CS
4138static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4139{
8d7a8fa9 4140 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4141}
4142
88c90dbc 4143static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4144{
4145 struct per_cpu_pages *pcp;
5f8dcc21 4146 int migratetype;
2caaad41 4147
1c6fe946
MD
4148 memset(p, 0, sizeof(*p));
4149
3dfa5721 4150 pcp = &p->pcp;
2caaad41 4151 pcp->count = 0;
5f8dcc21
MG
4152 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4153 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4154}
4155
88c90dbc
CS
4156static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4157{
4158 pageset_init(p);
4159 pageset_set_batch(p, batch);
4160}
4161
8ad4b1fb 4162/*
3664033c 4163 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4164 * to the value high for the pageset p.
4165 */
3664033c 4166static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4167 unsigned long high)
4168{
8d7a8fa9
CS
4169 unsigned long batch = max(1UL, high / 4);
4170 if ((high / 4) > (PAGE_SHIFT * 8))
4171 batch = PAGE_SHIFT * 8;
8ad4b1fb 4172
8d7a8fa9 4173 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4174}
4175
169f6c19
CS
4176static void __meminit pageset_set_high_and_batch(struct zone *zone,
4177 struct per_cpu_pageset *pcp)
56cef2b8 4178{
56cef2b8 4179 if (percpu_pagelist_fraction)
3664033c 4180 pageset_set_high(pcp,
56cef2b8
CS
4181 (zone->managed_pages /
4182 percpu_pagelist_fraction));
4183 else
4184 pageset_set_batch(pcp, zone_batchsize(zone));
4185}
4186
169f6c19
CS
4187static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4188{
4189 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4190
4191 pageset_init(pcp);
4192 pageset_set_high_and_batch(zone, pcp);
4193}
4194
4ed7e022 4195static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4196{
4197 int cpu;
319774e2 4198 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4199 for_each_possible_cpu(cpu)
4200 zone_pageset_init(zone, cpu);
319774e2
WF
4201}
4202
2caaad41 4203/*
99dcc3e5
CL
4204 * Allocate per cpu pagesets and initialize them.
4205 * Before this call only boot pagesets were available.
e7c8d5c9 4206 */
99dcc3e5 4207void __init setup_per_cpu_pageset(void)
e7c8d5c9 4208{
99dcc3e5 4209 struct zone *zone;
e7c8d5c9 4210
319774e2
WF
4211 for_each_populated_zone(zone)
4212 setup_zone_pageset(zone);
e7c8d5c9
CL
4213}
4214
577a32f6 4215static noinline __init_refok
cca448fe 4216int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4217{
4218 int i;
4219 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4220 size_t alloc_size;
ed8ece2e
DH
4221
4222 /*
4223 * The per-page waitqueue mechanism uses hashed waitqueues
4224 * per zone.
4225 */
02b694de
YG
4226 zone->wait_table_hash_nr_entries =
4227 wait_table_hash_nr_entries(zone_size_pages);
4228 zone->wait_table_bits =
4229 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4230 alloc_size = zone->wait_table_hash_nr_entries
4231 * sizeof(wait_queue_head_t);
4232
cd94b9db 4233 if (!slab_is_available()) {
cca448fe 4234 zone->wait_table = (wait_queue_head_t *)
8f389a99 4235 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4236 } else {
4237 /*
4238 * This case means that a zone whose size was 0 gets new memory
4239 * via memory hot-add.
4240 * But it may be the case that a new node was hot-added. In
4241 * this case vmalloc() will not be able to use this new node's
4242 * memory - this wait_table must be initialized to use this new
4243 * node itself as well.
4244 * To use this new node's memory, further consideration will be
4245 * necessary.
4246 */
8691f3a7 4247 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4248 }
4249 if (!zone->wait_table)
4250 return -ENOMEM;
ed8ece2e 4251
b8af2941 4252 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4253 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4254
4255 return 0;
ed8ece2e
DH
4256}
4257
c09b4240 4258static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4259{
99dcc3e5
CL
4260 /*
4261 * per cpu subsystem is not up at this point. The following code
4262 * relies on the ability of the linker to provide the
4263 * offset of a (static) per cpu variable into the per cpu area.
4264 */
4265 zone->pageset = &boot_pageset;
ed8ece2e 4266
f5335c0f 4267 if (zone->present_pages)
99dcc3e5
CL
4268 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4269 zone->name, zone->present_pages,
4270 zone_batchsize(zone));
ed8ece2e
DH
4271}
4272
4ed7e022 4273int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4274 unsigned long zone_start_pfn,
a2f3aa02
DH
4275 unsigned long size,
4276 enum memmap_context context)
ed8ece2e
DH
4277{
4278 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4279 int ret;
4280 ret = zone_wait_table_init(zone, size);
4281 if (ret)
4282 return ret;
ed8ece2e
DH
4283 pgdat->nr_zones = zone_idx(zone) + 1;
4284
ed8ece2e
DH
4285 zone->zone_start_pfn = zone_start_pfn;
4286
708614e6
MG
4287 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4288 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4289 pgdat->node_id,
4290 (unsigned long)zone_idx(zone),
4291 zone_start_pfn, (zone_start_pfn + size));
4292
1e548deb 4293 zone_init_free_lists(zone);
718127cc
YG
4294
4295 return 0;
ed8ece2e
DH
4296}
4297
0ee332c1 4298#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4299#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4300/*
4301 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4302 * Architectures may implement their own version but if add_active_range()
4303 * was used and there are no special requirements, this is a convenient
4304 * alternative
4305 */
f2dbcfa7 4306int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4307{
c13291a5
TH
4308 unsigned long start_pfn, end_pfn;
4309 int i, nid;
7c243c71
RA
4310 /*
4311 * NOTE: The following SMP-unsafe globals are only used early in boot
4312 * when the kernel is running single-threaded.
4313 */
4314 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4315 static int __meminitdata last_nid;
4316
4317 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4318 return last_nid;
c713216d 4319
c13291a5 4320 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7c243c71
RA
4321 if (start_pfn <= pfn && pfn < end_pfn) {
4322 last_start_pfn = start_pfn;
4323 last_end_pfn = end_pfn;
4324 last_nid = nid;
c13291a5 4325 return nid;
7c243c71 4326 }
cc2559bc
KH
4327 /* This is a memory hole */
4328 return -1;
c713216d
MG
4329}
4330#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4331
f2dbcfa7
KH
4332int __meminit early_pfn_to_nid(unsigned long pfn)
4333{
cc2559bc
KH
4334 int nid;
4335
4336 nid = __early_pfn_to_nid(pfn);
4337 if (nid >= 0)
4338 return nid;
4339 /* just returns 0 */
4340 return 0;
f2dbcfa7
KH
4341}
4342
cc2559bc
KH
4343#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4344bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4345{
4346 int nid;
4347
4348 nid = __early_pfn_to_nid(pfn);
4349 if (nid >= 0 && nid != node)
4350 return false;
4351 return true;
4352}
4353#endif
f2dbcfa7 4354
c713216d
MG
4355/**
4356 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4357 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4358 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4359 *
4360 * If an architecture guarantees that all ranges registered with
4361 * add_active_ranges() contain no holes and may be freed, this
4362 * this function may be used instead of calling free_bootmem() manually.
4363 */
c13291a5 4364void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4365{
c13291a5
TH
4366 unsigned long start_pfn, end_pfn;
4367 int i, this_nid;
edbe7d23 4368
c13291a5
TH
4369 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4370 start_pfn = min(start_pfn, max_low_pfn);
4371 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4372
c13291a5
TH
4373 if (start_pfn < end_pfn)
4374 free_bootmem_node(NODE_DATA(this_nid),
4375 PFN_PHYS(start_pfn),
4376 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4377 }
edbe7d23 4378}
edbe7d23 4379
c713216d
MG
4380/**
4381 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4382 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4383 *
4384 * If an architecture guarantees that all ranges registered with
4385 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4386 * function may be used instead of calling memory_present() manually.
c713216d
MG
4387 */
4388void __init sparse_memory_present_with_active_regions(int nid)
4389{
c13291a5
TH
4390 unsigned long start_pfn, end_pfn;
4391 int i, this_nid;
c713216d 4392
c13291a5
TH
4393 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4394 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4395}
4396
4397/**
4398 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4399 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4400 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4401 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4402 *
4403 * It returns the start and end page frame of a node based on information
4404 * provided by an arch calling add_active_range(). If called for a node
4405 * with no available memory, a warning is printed and the start and end
88ca3b94 4406 * PFNs will be 0.
c713216d 4407 */
a3142c8e 4408void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4409 unsigned long *start_pfn, unsigned long *end_pfn)
4410{
c13291a5 4411 unsigned long this_start_pfn, this_end_pfn;
c713216d 4412 int i;
c13291a5 4413
c713216d
MG
4414 *start_pfn = -1UL;
4415 *end_pfn = 0;
4416
c13291a5
TH
4417 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4418 *start_pfn = min(*start_pfn, this_start_pfn);
4419 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4420 }
4421
633c0666 4422 if (*start_pfn == -1UL)
c713216d 4423 *start_pfn = 0;
c713216d
MG
4424}
4425
2a1e274a
MG
4426/*
4427 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4428 * assumption is made that zones within a node are ordered in monotonic
4429 * increasing memory addresses so that the "highest" populated zone is used
4430 */
b69a7288 4431static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4432{
4433 int zone_index;
4434 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4435 if (zone_index == ZONE_MOVABLE)
4436 continue;
4437
4438 if (arch_zone_highest_possible_pfn[zone_index] >
4439 arch_zone_lowest_possible_pfn[zone_index])
4440 break;
4441 }
4442
4443 VM_BUG_ON(zone_index == -1);
4444 movable_zone = zone_index;
4445}
4446
4447/*
4448 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4449 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4450 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4451 * in each node depending on the size of each node and how evenly kernelcore
4452 * is distributed. This helper function adjusts the zone ranges
4453 * provided by the architecture for a given node by using the end of the
4454 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4455 * zones within a node are in order of monotonic increases memory addresses
4456 */
b69a7288 4457static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4458 unsigned long zone_type,
4459 unsigned long node_start_pfn,
4460 unsigned long node_end_pfn,
4461 unsigned long *zone_start_pfn,
4462 unsigned long *zone_end_pfn)
4463{
4464 /* Only adjust if ZONE_MOVABLE is on this node */
4465 if (zone_movable_pfn[nid]) {
4466 /* Size ZONE_MOVABLE */
4467 if (zone_type == ZONE_MOVABLE) {
4468 *zone_start_pfn = zone_movable_pfn[nid];
4469 *zone_end_pfn = min(node_end_pfn,
4470 arch_zone_highest_possible_pfn[movable_zone]);
4471
4472 /* Adjust for ZONE_MOVABLE starting within this range */
4473 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4474 *zone_end_pfn > zone_movable_pfn[nid]) {
4475 *zone_end_pfn = zone_movable_pfn[nid];
4476
4477 /* Check if this whole range is within ZONE_MOVABLE */
4478 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4479 *zone_start_pfn = *zone_end_pfn;
4480 }
4481}
4482
c713216d
MG
4483/*
4484 * Return the number of pages a zone spans in a node, including holes
4485 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4486 */
6ea6e688 4487static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4488 unsigned long zone_type,
7960aedd
ZY
4489 unsigned long node_start_pfn,
4490 unsigned long node_end_pfn,
c713216d
MG
4491 unsigned long *ignored)
4492{
c713216d
MG
4493 unsigned long zone_start_pfn, zone_end_pfn;
4494
7960aedd 4495 /* Get the start and end of the zone */
c713216d
MG
4496 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4497 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4498 adjust_zone_range_for_zone_movable(nid, zone_type,
4499 node_start_pfn, node_end_pfn,
4500 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4501
4502 /* Check that this node has pages within the zone's required range */
4503 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4504 return 0;
4505
4506 /* Move the zone boundaries inside the node if necessary */
4507 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4508 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4509
4510 /* Return the spanned pages */
4511 return zone_end_pfn - zone_start_pfn;
4512}
4513
4514/*
4515 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4516 * then all holes in the requested range will be accounted for.
c713216d 4517 */
32996250 4518unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4519 unsigned long range_start_pfn,
4520 unsigned long range_end_pfn)
4521{
96e907d1
TH
4522 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4523 unsigned long start_pfn, end_pfn;
4524 int i;
c713216d 4525
96e907d1
TH
4526 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4527 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4528 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4529 nr_absent -= end_pfn - start_pfn;
c713216d 4530 }
96e907d1 4531 return nr_absent;
c713216d
MG
4532}
4533
4534/**
4535 * absent_pages_in_range - Return number of page frames in holes within a range
4536 * @start_pfn: The start PFN to start searching for holes
4537 * @end_pfn: The end PFN to stop searching for holes
4538 *
88ca3b94 4539 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4540 */
4541unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4542 unsigned long end_pfn)
4543{
4544 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4545}
4546
4547/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4548static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4549 unsigned long zone_type,
7960aedd
ZY
4550 unsigned long node_start_pfn,
4551 unsigned long node_end_pfn,
c713216d
MG
4552 unsigned long *ignored)
4553{
96e907d1
TH
4554 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4555 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4556 unsigned long zone_start_pfn, zone_end_pfn;
4557
96e907d1
TH
4558 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4559 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4560
2a1e274a
MG
4561 adjust_zone_range_for_zone_movable(nid, zone_type,
4562 node_start_pfn, node_end_pfn,
4563 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4564 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4565}
0e0b864e 4566
0ee332c1 4567#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4568static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4569 unsigned long zone_type,
7960aedd
ZY
4570 unsigned long node_start_pfn,
4571 unsigned long node_end_pfn,
c713216d
MG
4572 unsigned long *zones_size)
4573{
4574 return zones_size[zone_type];
4575}
4576
6ea6e688 4577static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4578 unsigned long zone_type,
7960aedd
ZY
4579 unsigned long node_start_pfn,
4580 unsigned long node_end_pfn,
c713216d
MG
4581 unsigned long *zholes_size)
4582{
4583 if (!zholes_size)
4584 return 0;
4585
4586 return zholes_size[zone_type];
4587}
20e6926d 4588
0ee332c1 4589#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4590
a3142c8e 4591static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4592 unsigned long node_start_pfn,
4593 unsigned long node_end_pfn,
4594 unsigned long *zones_size,
4595 unsigned long *zholes_size)
c713216d
MG
4596{
4597 unsigned long realtotalpages, totalpages = 0;
4598 enum zone_type i;
4599
4600 for (i = 0; i < MAX_NR_ZONES; i++)
4601 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4602 node_start_pfn,
4603 node_end_pfn,
4604 zones_size);
c713216d
MG
4605 pgdat->node_spanned_pages = totalpages;
4606
4607 realtotalpages = totalpages;
4608 for (i = 0; i < MAX_NR_ZONES; i++)
4609 realtotalpages -=
4610 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4611 node_start_pfn, node_end_pfn,
4612 zholes_size);
c713216d
MG
4613 pgdat->node_present_pages = realtotalpages;
4614 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4615 realtotalpages);
4616}
4617
835c134e
MG
4618#ifndef CONFIG_SPARSEMEM
4619/*
4620 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4621 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4622 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4623 * round what is now in bits to nearest long in bits, then return it in
4624 * bytes.
4625 */
7c45512d 4626static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4627{
4628 unsigned long usemapsize;
4629
7c45512d 4630 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4631 usemapsize = roundup(zonesize, pageblock_nr_pages);
4632 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4633 usemapsize *= NR_PAGEBLOCK_BITS;
4634 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4635
4636 return usemapsize / 8;
4637}
4638
4639static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4640 struct zone *zone,
4641 unsigned long zone_start_pfn,
4642 unsigned long zonesize)
835c134e 4643{
7c45512d 4644 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4645 zone->pageblock_flags = NULL;
58a01a45 4646 if (usemapsize)
8f389a99
YL
4647 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4648 usemapsize);
835c134e
MG
4649}
4650#else
7c45512d
LT
4651static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4652 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4653#endif /* CONFIG_SPARSEMEM */
4654
d9c23400 4655#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4656
d9c23400 4657/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4658void __paginginit set_pageblock_order(void)
d9c23400 4659{
955c1cd7
AM
4660 unsigned int order;
4661
d9c23400
MG
4662 /* Check that pageblock_nr_pages has not already been setup */
4663 if (pageblock_order)
4664 return;
4665
955c1cd7
AM
4666 if (HPAGE_SHIFT > PAGE_SHIFT)
4667 order = HUGETLB_PAGE_ORDER;
4668 else
4669 order = MAX_ORDER - 1;
4670
d9c23400
MG
4671 /*
4672 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4673 * This value may be variable depending on boot parameters on IA64 and
4674 * powerpc.
d9c23400
MG
4675 */
4676 pageblock_order = order;
4677}
4678#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4679
ba72cb8c
MG
4680/*
4681 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4682 * is unused as pageblock_order is set at compile-time. See
4683 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4684 * the kernel config
ba72cb8c 4685 */
15ca220e 4686void __paginginit set_pageblock_order(void)
ba72cb8c 4687{
ba72cb8c 4688}
d9c23400
MG
4689
4690#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4691
01cefaef
JL
4692static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4693 unsigned long present_pages)
4694{
4695 unsigned long pages = spanned_pages;
4696
4697 /*
4698 * Provide a more accurate estimation if there are holes within
4699 * the zone and SPARSEMEM is in use. If there are holes within the
4700 * zone, each populated memory region may cost us one or two extra
4701 * memmap pages due to alignment because memmap pages for each
4702 * populated regions may not naturally algined on page boundary.
4703 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4704 */
4705 if (spanned_pages > present_pages + (present_pages >> 4) &&
4706 IS_ENABLED(CONFIG_SPARSEMEM))
4707 pages = present_pages;
4708
4709 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4710}
4711
1da177e4
LT
4712/*
4713 * Set up the zone data structures:
4714 * - mark all pages reserved
4715 * - mark all memory queues empty
4716 * - clear the memory bitmaps
6527af5d
MK
4717 *
4718 * NOTE: pgdat should get zeroed by caller.
1da177e4 4719 */
b5a0e011 4720static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4721 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4722 unsigned long *zones_size, unsigned long *zholes_size)
4723{
2f1b6248 4724 enum zone_type j;
ed8ece2e 4725 int nid = pgdat->node_id;
1da177e4 4726 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4727 int ret;
1da177e4 4728
208d54e5 4729 pgdat_resize_init(pgdat);
8177a420
AA
4730#ifdef CONFIG_NUMA_BALANCING
4731 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4732 pgdat->numabalancing_migrate_nr_pages = 0;
4733 pgdat->numabalancing_migrate_next_window = jiffies;
4734#endif
1da177e4 4735 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4736 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4737 pgdat_page_cgroup_init(pgdat);
5f63b720 4738
1da177e4
LT
4739 for (j = 0; j < MAX_NR_ZONES; j++) {
4740 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4741 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4742
7960aedd
ZY
4743 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4744 node_end_pfn, zones_size);
9feedc9d 4745 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4746 node_start_pfn,
4747 node_end_pfn,
c713216d 4748 zholes_size);
1da177e4 4749
0e0b864e 4750 /*
9feedc9d 4751 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4752 * is used by this zone for memmap. This affects the watermark
4753 * and per-cpu initialisations
4754 */
01cefaef 4755 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4756 if (freesize >= memmap_pages) {
4757 freesize -= memmap_pages;
5594c8c8
YL
4758 if (memmap_pages)
4759 printk(KERN_DEBUG
4760 " %s zone: %lu pages used for memmap\n",
4761 zone_names[j], memmap_pages);
0e0b864e
MG
4762 } else
4763 printk(KERN_WARNING
9feedc9d
JL
4764 " %s zone: %lu pages exceeds freesize %lu\n",
4765 zone_names[j], memmap_pages, freesize);
0e0b864e 4766
6267276f 4767 /* Account for reserved pages */
9feedc9d
JL
4768 if (j == 0 && freesize > dma_reserve) {
4769 freesize -= dma_reserve;
d903ef9f 4770 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4771 zone_names[0], dma_reserve);
0e0b864e
MG
4772 }
4773
98d2b0eb 4774 if (!is_highmem_idx(j))
9feedc9d 4775 nr_kernel_pages += freesize;
01cefaef
JL
4776 /* Charge for highmem memmap if there are enough kernel pages */
4777 else if (nr_kernel_pages > memmap_pages * 2)
4778 nr_kernel_pages -= memmap_pages;
9feedc9d 4779 nr_all_pages += freesize;
1da177e4
LT
4780
4781 zone->spanned_pages = size;
306f2e9e 4782 zone->present_pages = realsize;
9feedc9d
JL
4783 /*
4784 * Set an approximate value for lowmem here, it will be adjusted
4785 * when the bootmem allocator frees pages into the buddy system.
4786 * And all highmem pages will be managed by the buddy system.
4787 */
4788 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4789#ifdef CONFIG_NUMA
d5f541ed 4790 zone->node = nid;
9feedc9d 4791 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4792 / 100;
9feedc9d 4793 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4794#endif
1da177e4
LT
4795 zone->name = zone_names[j];
4796 spin_lock_init(&zone->lock);
4797 spin_lock_init(&zone->lru_lock);
bdc8cb98 4798 zone_seqlock_init(zone);
1da177e4 4799 zone->zone_pgdat = pgdat;
ed8ece2e 4800 zone_pcp_init(zone);
81c0a2bb
JW
4801
4802 /* For bootup, initialized properly in watermark setup */
4803 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4804
bea8c150 4805 lruvec_init(&zone->lruvec);
1da177e4
LT
4806 if (!size)
4807 continue;
4808
955c1cd7 4809 set_pageblock_order();
7c45512d 4810 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4811 ret = init_currently_empty_zone(zone, zone_start_pfn,
4812 size, MEMMAP_EARLY);
718127cc 4813 BUG_ON(ret);
76cdd58e 4814 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4815 zone_start_pfn += size;
1da177e4
LT
4816 }
4817}
4818
577a32f6 4819static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4820{
1da177e4
LT
4821 /* Skip empty nodes */
4822 if (!pgdat->node_spanned_pages)
4823 return;
4824
d41dee36 4825#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4826 /* ia64 gets its own node_mem_map, before this, without bootmem */
4827 if (!pgdat->node_mem_map) {
e984bb43 4828 unsigned long size, start, end;
d41dee36
AW
4829 struct page *map;
4830
e984bb43
BP
4831 /*
4832 * The zone's endpoints aren't required to be MAX_ORDER
4833 * aligned but the node_mem_map endpoints must be in order
4834 * for the buddy allocator to function correctly.
4835 */
4836 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4837 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4838 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4839 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4840 map = alloc_remap(pgdat->node_id, size);
4841 if (!map)
8f389a99 4842 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4843 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4844 }
12d810c1 4845#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4846 /*
4847 * With no DISCONTIG, the global mem_map is just set as node 0's
4848 */
c713216d 4849 if (pgdat == NODE_DATA(0)) {
1da177e4 4850 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4851#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4852 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4853 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4854#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4855 }
1da177e4 4856#endif
d41dee36 4857#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4858}
4859
9109fb7b
JW
4860void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4861 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4862{
9109fb7b 4863 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4864 unsigned long start_pfn = 0;
4865 unsigned long end_pfn = 0;
9109fb7b 4866
88fdf75d 4867 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4868 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4869
1da177e4
LT
4870 pgdat->node_id = nid;
4871 pgdat->node_start_pfn = node_start_pfn;
957f822a 4872 init_zone_allows_reclaim(nid);
7960aedd
ZY
4873#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4874 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4875#endif
4876 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4877 zones_size, zholes_size);
1da177e4
LT
4878
4879 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4880#ifdef CONFIG_FLAT_NODE_MEM_MAP
4881 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4882 nid, (unsigned long)pgdat,
4883 (unsigned long)pgdat->node_mem_map);
4884#endif
1da177e4 4885
7960aedd
ZY
4886 free_area_init_core(pgdat, start_pfn, end_pfn,
4887 zones_size, zholes_size);
1da177e4
LT
4888}
4889
0ee332c1 4890#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4891
4892#if MAX_NUMNODES > 1
4893/*
4894 * Figure out the number of possible node ids.
4895 */
f9872caf 4896void __init setup_nr_node_ids(void)
418508c1
MS
4897{
4898 unsigned int node;
4899 unsigned int highest = 0;
4900
4901 for_each_node_mask(node, node_possible_map)
4902 highest = node;
4903 nr_node_ids = highest + 1;
4904}
418508c1
MS
4905#endif
4906
1e01979c
TH
4907/**
4908 * node_map_pfn_alignment - determine the maximum internode alignment
4909 *
4910 * This function should be called after node map is populated and sorted.
4911 * It calculates the maximum power of two alignment which can distinguish
4912 * all the nodes.
4913 *
4914 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4915 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4916 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4917 * shifted, 1GiB is enough and this function will indicate so.
4918 *
4919 * This is used to test whether pfn -> nid mapping of the chosen memory
4920 * model has fine enough granularity to avoid incorrect mapping for the
4921 * populated node map.
4922 *
4923 * Returns the determined alignment in pfn's. 0 if there is no alignment
4924 * requirement (single node).
4925 */
4926unsigned long __init node_map_pfn_alignment(void)
4927{
4928 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4929 unsigned long start, end, mask;
1e01979c 4930 int last_nid = -1;
c13291a5 4931 int i, nid;
1e01979c 4932
c13291a5 4933 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4934 if (!start || last_nid < 0 || last_nid == nid) {
4935 last_nid = nid;
4936 last_end = end;
4937 continue;
4938 }
4939
4940 /*
4941 * Start with a mask granular enough to pin-point to the
4942 * start pfn and tick off bits one-by-one until it becomes
4943 * too coarse to separate the current node from the last.
4944 */
4945 mask = ~((1 << __ffs(start)) - 1);
4946 while (mask && last_end <= (start & (mask << 1)))
4947 mask <<= 1;
4948
4949 /* accumulate all internode masks */
4950 accl_mask |= mask;
4951 }
4952
4953 /* convert mask to number of pages */
4954 return ~accl_mask + 1;
4955}
4956
a6af2bc3 4957/* Find the lowest pfn for a node */
b69a7288 4958static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4959{
a6af2bc3 4960 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4961 unsigned long start_pfn;
4962 int i;
1abbfb41 4963
c13291a5
TH
4964 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4965 min_pfn = min(min_pfn, start_pfn);
c713216d 4966
a6af2bc3
MG
4967 if (min_pfn == ULONG_MAX) {
4968 printk(KERN_WARNING
2bc0d261 4969 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4970 return 0;
4971 }
4972
4973 return min_pfn;
c713216d
MG
4974}
4975
4976/**
4977 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4978 *
4979 * It returns the minimum PFN based on information provided via
88ca3b94 4980 * add_active_range().
c713216d
MG
4981 */
4982unsigned long __init find_min_pfn_with_active_regions(void)
4983{
4984 return find_min_pfn_for_node(MAX_NUMNODES);
4985}
4986
37b07e41
LS
4987/*
4988 * early_calculate_totalpages()
4989 * Sum pages in active regions for movable zone.
4b0ef1fe 4990 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4991 */
484f51f8 4992static unsigned long __init early_calculate_totalpages(void)
7e63efef 4993{
7e63efef 4994 unsigned long totalpages = 0;
c13291a5
TH
4995 unsigned long start_pfn, end_pfn;
4996 int i, nid;
4997
4998 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4999 unsigned long pages = end_pfn - start_pfn;
7e63efef 5000
37b07e41
LS
5001 totalpages += pages;
5002 if (pages)
4b0ef1fe 5003 node_set_state(nid, N_MEMORY);
37b07e41 5004 }
b8af2941 5005 return totalpages;
7e63efef
MG
5006}
5007
2a1e274a
MG
5008/*
5009 * Find the PFN the Movable zone begins in each node. Kernel memory
5010 * is spread evenly between nodes as long as the nodes have enough
5011 * memory. When they don't, some nodes will have more kernelcore than
5012 * others
5013 */
b224ef85 5014static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5015{
5016 int i, nid;
5017 unsigned long usable_startpfn;
5018 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5019 /* save the state before borrow the nodemask */
4b0ef1fe 5020 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5021 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5022 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 5023
7e63efef
MG
5024 /*
5025 * If movablecore was specified, calculate what size of
5026 * kernelcore that corresponds so that memory usable for
5027 * any allocation type is evenly spread. If both kernelcore
5028 * and movablecore are specified, then the value of kernelcore
5029 * will be used for required_kernelcore if it's greater than
5030 * what movablecore would have allowed.
5031 */
5032 if (required_movablecore) {
7e63efef
MG
5033 unsigned long corepages;
5034
5035 /*
5036 * Round-up so that ZONE_MOVABLE is at least as large as what
5037 * was requested by the user
5038 */
5039 required_movablecore =
5040 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5041 corepages = totalpages - required_movablecore;
5042
5043 required_kernelcore = max(required_kernelcore, corepages);
5044 }
5045
20e6926d
YL
5046 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5047 if (!required_kernelcore)
66918dcd 5048 goto out;
2a1e274a
MG
5049
5050 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
20e6926d 5051 find_usable_zone_for_movable();
2a1e274a
MG
5052 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5053
5054restart:
5055 /* Spread kernelcore memory as evenly as possible throughout nodes */
5056 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5057 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5058 unsigned long start_pfn, end_pfn;
5059
2a1e274a
MG
5060 /*
5061 * Recalculate kernelcore_node if the division per node
5062 * now exceeds what is necessary to satisfy the requested
5063 * amount of memory for the kernel
5064 */
5065 if (required_kernelcore < kernelcore_node)
5066 kernelcore_node = required_kernelcore / usable_nodes;
5067
5068 /*
5069 * As the map is walked, we track how much memory is usable
5070 * by the kernel using kernelcore_remaining. When it is
5071 * 0, the rest of the node is usable by ZONE_MOVABLE
5072 */
5073 kernelcore_remaining = kernelcore_node;
5074
5075 /* Go through each range of PFNs within this node */
c13291a5 5076 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5077 unsigned long size_pages;
5078
c13291a5 5079 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5080 if (start_pfn >= end_pfn)
5081 continue;
5082
5083 /* Account for what is only usable for kernelcore */
5084 if (start_pfn < usable_startpfn) {
5085 unsigned long kernel_pages;
5086 kernel_pages = min(end_pfn, usable_startpfn)
5087 - start_pfn;
5088
5089 kernelcore_remaining -= min(kernel_pages,
5090 kernelcore_remaining);
5091 required_kernelcore -= min(kernel_pages,
5092 required_kernelcore);
5093
5094 /* Continue if range is now fully accounted */
5095 if (end_pfn <= usable_startpfn) {
5096
5097 /*
5098 * Push zone_movable_pfn to the end so
5099 * that if we have to rebalance
5100 * kernelcore across nodes, we will
5101 * not double account here
5102 */
5103 zone_movable_pfn[nid] = end_pfn;
5104 continue;
5105 }
5106 start_pfn = usable_startpfn;
5107 }
5108
5109 /*
5110 * The usable PFN range for ZONE_MOVABLE is from
5111 * start_pfn->end_pfn. Calculate size_pages as the
5112 * number of pages used as kernelcore
5113 */
5114 size_pages = end_pfn - start_pfn;
5115 if (size_pages > kernelcore_remaining)
5116 size_pages = kernelcore_remaining;
5117 zone_movable_pfn[nid] = start_pfn + size_pages;
5118
5119 /*
5120 * Some kernelcore has been met, update counts and
5121 * break if the kernelcore for this node has been
b8af2941 5122 * satisfied
2a1e274a
MG
5123 */
5124 required_kernelcore -= min(required_kernelcore,
5125 size_pages);
5126 kernelcore_remaining -= size_pages;
5127 if (!kernelcore_remaining)
5128 break;
5129 }
5130 }
5131
5132 /*
5133 * If there is still required_kernelcore, we do another pass with one
5134 * less node in the count. This will push zone_movable_pfn[nid] further
5135 * along on the nodes that still have memory until kernelcore is
b8af2941 5136 * satisfied
2a1e274a
MG
5137 */
5138 usable_nodes--;
5139 if (usable_nodes && required_kernelcore > usable_nodes)
5140 goto restart;
5141
5142 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5143 for (nid = 0; nid < MAX_NUMNODES; nid++)
5144 zone_movable_pfn[nid] =
5145 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5146
20e6926d 5147out:
66918dcd 5148 /* restore the node_state */
4b0ef1fe 5149 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5150}
5151
4b0ef1fe
LJ
5152/* Any regular or high memory on that node ? */
5153static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5154{
37b07e41
LS
5155 enum zone_type zone_type;
5156
4b0ef1fe
LJ
5157 if (N_MEMORY == N_NORMAL_MEMORY)
5158 return;
5159
5160 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5161 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 5162 if (zone->present_pages) {
4b0ef1fe
LJ
5163 node_set_state(nid, N_HIGH_MEMORY);
5164 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5165 zone_type <= ZONE_NORMAL)
5166 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5167 break;
5168 }
37b07e41 5169 }
37b07e41
LS
5170}
5171
c713216d
MG
5172/**
5173 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5174 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5175 *
5176 * This will call free_area_init_node() for each active node in the system.
5177 * Using the page ranges provided by add_active_range(), the size of each
5178 * zone in each node and their holes is calculated. If the maximum PFN
5179 * between two adjacent zones match, it is assumed that the zone is empty.
5180 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5181 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5182 * starts where the previous one ended. For example, ZONE_DMA32 starts
5183 * at arch_max_dma_pfn.
5184 */
5185void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5186{
c13291a5
TH
5187 unsigned long start_pfn, end_pfn;
5188 int i, nid;
a6af2bc3 5189
c713216d
MG
5190 /* Record where the zone boundaries are */
5191 memset(arch_zone_lowest_possible_pfn, 0,
5192 sizeof(arch_zone_lowest_possible_pfn));
5193 memset(arch_zone_highest_possible_pfn, 0,
5194 sizeof(arch_zone_highest_possible_pfn));
5195 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5196 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5197 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5198 if (i == ZONE_MOVABLE)
5199 continue;
c713216d
MG
5200 arch_zone_lowest_possible_pfn[i] =
5201 arch_zone_highest_possible_pfn[i-1];
5202 arch_zone_highest_possible_pfn[i] =
5203 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5204 }
2a1e274a
MG
5205 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5206 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5207
5208 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5209 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5210 find_zone_movable_pfns_for_nodes();
c713216d 5211
c713216d 5212 /* Print out the zone ranges */
a62e2f4f 5213 printk("Zone ranges:\n");
2a1e274a
MG
5214 for (i = 0; i < MAX_NR_ZONES; i++) {
5215 if (i == ZONE_MOVABLE)
5216 continue;
155cbfc8 5217 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5218 if (arch_zone_lowest_possible_pfn[i] ==
5219 arch_zone_highest_possible_pfn[i])
155cbfc8 5220 printk(KERN_CONT "empty\n");
72f0ba02 5221 else
a62e2f4f
BH
5222 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5223 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5224 (arch_zone_highest_possible_pfn[i]
5225 << PAGE_SHIFT) - 1);
2a1e274a
MG
5226 }
5227
5228 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5229 printk("Movable zone start for each node\n");
2a1e274a
MG
5230 for (i = 0; i < MAX_NUMNODES; i++) {
5231 if (zone_movable_pfn[i])
a62e2f4f
BH
5232 printk(" Node %d: %#010lx\n", i,
5233 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5234 }
c713216d 5235
f2d52fe5 5236 /* Print out the early node map */
a62e2f4f 5237 printk("Early memory node ranges\n");
c13291a5 5238 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5239 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5240 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5241
5242 /* Initialise every node */
708614e6 5243 mminit_verify_pageflags_layout();
8ef82866 5244 setup_nr_node_ids();
c713216d
MG
5245 for_each_online_node(nid) {
5246 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5247 free_area_init_node(nid, NULL,
c713216d 5248 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5249
5250 /* Any memory on that node */
5251 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5252 node_set_state(nid, N_MEMORY);
5253 check_for_memory(pgdat, nid);
c713216d
MG
5254 }
5255}
2a1e274a 5256
7e63efef 5257static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5258{
5259 unsigned long long coremem;
5260 if (!p)
5261 return -EINVAL;
5262
5263 coremem = memparse(p, &p);
7e63efef 5264 *core = coremem >> PAGE_SHIFT;
2a1e274a 5265
7e63efef 5266 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5267 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5268
5269 return 0;
5270}
ed7ed365 5271
7e63efef
MG
5272/*
5273 * kernelcore=size sets the amount of memory for use for allocations that
5274 * cannot be reclaimed or migrated.
5275 */
5276static int __init cmdline_parse_kernelcore(char *p)
5277{
5278 return cmdline_parse_core(p, &required_kernelcore);
5279}
5280
5281/*
5282 * movablecore=size sets the amount of memory for use for allocations that
5283 * can be reclaimed or migrated.
5284 */
5285static int __init cmdline_parse_movablecore(char *p)
5286{
5287 return cmdline_parse_core(p, &required_movablecore);
5288}
5289
ed7ed365 5290early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5291early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5292
0ee332c1 5293#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5294
c3d5f5f0
JL
5295void adjust_managed_page_count(struct page *page, long count)
5296{
5297 spin_lock(&managed_page_count_lock);
5298 page_zone(page)->managed_pages += count;
5299 totalram_pages += count;
3dcc0571
JL
5300#ifdef CONFIG_HIGHMEM
5301 if (PageHighMem(page))
5302 totalhigh_pages += count;
5303#endif
c3d5f5f0
JL
5304 spin_unlock(&managed_page_count_lock);
5305}
3dcc0571 5306EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5307
11199692 5308unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5309{
11199692
JL
5310 void *pos;
5311 unsigned long pages = 0;
69afade7 5312
11199692
JL
5313 start = (void *)PAGE_ALIGN((unsigned long)start);
5314 end = (void *)((unsigned long)end & PAGE_MASK);
5315 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5316 if ((unsigned int)poison <= 0xFF)
11199692
JL
5317 memset(pos, poison, PAGE_SIZE);
5318 free_reserved_page(virt_to_page(pos));
69afade7
JL
5319 }
5320
5321 if (pages && s)
11199692 5322 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5323 s, pages << (PAGE_SHIFT - 10), start, end);
5324
5325 return pages;
5326}
11199692 5327EXPORT_SYMBOL(free_reserved_area);
69afade7 5328
cfa11e08
JL
5329#ifdef CONFIG_HIGHMEM
5330void free_highmem_page(struct page *page)
5331{
5332 __free_reserved_page(page);
5333 totalram_pages++;
7b4b2a0d 5334 page_zone(page)->managed_pages++;
cfa11e08
JL
5335 totalhigh_pages++;
5336}
5337#endif
5338
7ee3d4e8
JL
5339
5340void __init mem_init_print_info(const char *str)
5341{
5342 unsigned long physpages, codesize, datasize, rosize, bss_size;
5343 unsigned long init_code_size, init_data_size;
5344
5345 physpages = get_num_physpages();
5346 codesize = _etext - _stext;
5347 datasize = _edata - _sdata;
5348 rosize = __end_rodata - __start_rodata;
5349 bss_size = __bss_stop - __bss_start;
5350 init_data_size = __init_end - __init_begin;
5351 init_code_size = _einittext - _sinittext;
5352
5353 /*
5354 * Detect special cases and adjust section sizes accordingly:
5355 * 1) .init.* may be embedded into .data sections
5356 * 2) .init.text.* may be out of [__init_begin, __init_end],
5357 * please refer to arch/tile/kernel/vmlinux.lds.S.
5358 * 3) .rodata.* may be embedded into .text or .data sections.
5359 */
5360#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5361 do { \
5362 if (start <= pos && pos < end && size > adj) \
5363 size -= adj; \
5364 } while (0)
7ee3d4e8
JL
5365
5366 adj_init_size(__init_begin, __init_end, init_data_size,
5367 _sinittext, init_code_size);
5368 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5369 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5370 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5371 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5372
5373#undef adj_init_size
5374
5375 printk("Memory: %luK/%luK available "
5376 "(%luK kernel code, %luK rwdata, %luK rodata, "
5377 "%luK init, %luK bss, %luK reserved"
5378#ifdef CONFIG_HIGHMEM
5379 ", %luK highmem"
5380#endif
5381 "%s%s)\n",
5382 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5383 codesize >> 10, datasize >> 10, rosize >> 10,
5384 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5385 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5386#ifdef CONFIG_HIGHMEM
5387 totalhigh_pages << (PAGE_SHIFT-10),
5388#endif
5389 str ? ", " : "", str ? str : "");
5390}
5391
0e0b864e 5392/**
88ca3b94
RD
5393 * set_dma_reserve - set the specified number of pages reserved in the first zone
5394 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5395 *
5396 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5397 * In the DMA zone, a significant percentage may be consumed by kernel image
5398 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5399 * function may optionally be used to account for unfreeable pages in the
5400 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5401 * smaller per-cpu batchsize.
0e0b864e
MG
5402 */
5403void __init set_dma_reserve(unsigned long new_dma_reserve)
5404{
5405 dma_reserve = new_dma_reserve;
5406}
5407
1da177e4
LT
5408void __init free_area_init(unsigned long *zones_size)
5409{
9109fb7b 5410 free_area_init_node(0, zones_size,
1da177e4
LT
5411 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5412}
1da177e4 5413
1da177e4
LT
5414static int page_alloc_cpu_notify(struct notifier_block *self,
5415 unsigned long action, void *hcpu)
5416{
5417 int cpu = (unsigned long)hcpu;
1da177e4 5418
8bb78442 5419 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5420 lru_add_drain_cpu(cpu);
9f8f2172
CL
5421 drain_pages(cpu);
5422
5423 /*
5424 * Spill the event counters of the dead processor
5425 * into the current processors event counters.
5426 * This artificially elevates the count of the current
5427 * processor.
5428 */
f8891e5e 5429 vm_events_fold_cpu(cpu);
9f8f2172
CL
5430
5431 /*
5432 * Zero the differential counters of the dead processor
5433 * so that the vm statistics are consistent.
5434 *
5435 * This is only okay since the processor is dead and cannot
5436 * race with what we are doing.
5437 */
2bb921e5 5438 cpu_vm_stats_fold(cpu);
1da177e4
LT
5439 }
5440 return NOTIFY_OK;
5441}
1da177e4
LT
5442
5443void __init page_alloc_init(void)
5444{
5445 hotcpu_notifier(page_alloc_cpu_notify, 0);
5446}
5447
cb45b0e9
HA
5448/*
5449 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5450 * or min_free_kbytes changes.
5451 */
5452static void calculate_totalreserve_pages(void)
5453{
5454 struct pglist_data *pgdat;
5455 unsigned long reserve_pages = 0;
2f6726e5 5456 enum zone_type i, j;
cb45b0e9
HA
5457
5458 for_each_online_pgdat(pgdat) {
5459 for (i = 0; i < MAX_NR_ZONES; i++) {
5460 struct zone *zone = pgdat->node_zones + i;
5461 unsigned long max = 0;
5462
5463 /* Find valid and maximum lowmem_reserve in the zone */
5464 for (j = i; j < MAX_NR_ZONES; j++) {
5465 if (zone->lowmem_reserve[j] > max)
5466 max = zone->lowmem_reserve[j];
5467 }
5468
41858966
MG
5469 /* we treat the high watermark as reserved pages. */
5470 max += high_wmark_pages(zone);
cb45b0e9 5471
b40da049
JL
5472 if (max > zone->managed_pages)
5473 max = zone->managed_pages;
cb45b0e9 5474 reserve_pages += max;
ab8fabd4
JW
5475 /*
5476 * Lowmem reserves are not available to
5477 * GFP_HIGHUSER page cache allocations and
5478 * kswapd tries to balance zones to their high
5479 * watermark. As a result, neither should be
5480 * regarded as dirtyable memory, to prevent a
5481 * situation where reclaim has to clean pages
5482 * in order to balance the zones.
5483 */
5484 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5485 }
5486 }
ab8fabd4 5487 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5488 totalreserve_pages = reserve_pages;
5489}
5490
1da177e4
LT
5491/*
5492 * setup_per_zone_lowmem_reserve - called whenever
5493 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5494 * has a correct pages reserved value, so an adequate number of
5495 * pages are left in the zone after a successful __alloc_pages().
5496 */
5497static void setup_per_zone_lowmem_reserve(void)
5498{
5499 struct pglist_data *pgdat;
2f6726e5 5500 enum zone_type j, idx;
1da177e4 5501
ec936fc5 5502 for_each_online_pgdat(pgdat) {
1da177e4
LT
5503 for (j = 0; j < MAX_NR_ZONES; j++) {
5504 struct zone *zone = pgdat->node_zones + j;
b40da049 5505 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5506
5507 zone->lowmem_reserve[j] = 0;
5508
2f6726e5
CL
5509 idx = j;
5510 while (idx) {
1da177e4
LT
5511 struct zone *lower_zone;
5512
2f6726e5
CL
5513 idx--;
5514
1da177e4
LT
5515 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5516 sysctl_lowmem_reserve_ratio[idx] = 1;
5517
5518 lower_zone = pgdat->node_zones + idx;
b40da049 5519 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5520 sysctl_lowmem_reserve_ratio[idx];
b40da049 5521 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5522 }
5523 }
5524 }
cb45b0e9
HA
5525
5526 /* update totalreserve_pages */
5527 calculate_totalreserve_pages();
1da177e4
LT
5528}
5529
cfd3da1e 5530static void __setup_per_zone_wmarks(void)
1da177e4
LT
5531{
5532 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5533 unsigned long lowmem_pages = 0;
5534 struct zone *zone;
5535 unsigned long flags;
5536
5537 /* Calculate total number of !ZONE_HIGHMEM pages */
5538 for_each_zone(zone) {
5539 if (!is_highmem(zone))
b40da049 5540 lowmem_pages += zone->managed_pages;
1da177e4
LT
5541 }
5542
5543 for_each_zone(zone) {
ac924c60
AM
5544 u64 tmp;
5545
1125b4e3 5546 spin_lock_irqsave(&zone->lock, flags);
b40da049 5547 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5548 do_div(tmp, lowmem_pages);
1da177e4
LT
5549 if (is_highmem(zone)) {
5550 /*
669ed175
NP
5551 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5552 * need highmem pages, so cap pages_min to a small
5553 * value here.
5554 *
41858966 5555 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5556 * deltas controls asynch page reclaim, and so should
5557 * not be capped for highmem.
1da177e4 5558 */
90ae8d67 5559 unsigned long min_pages;
1da177e4 5560
b40da049 5561 min_pages = zone->managed_pages / 1024;
90ae8d67 5562 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5563 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5564 } else {
669ed175
NP
5565 /*
5566 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5567 * proportionate to the zone's size.
5568 */
41858966 5569 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5570 }
5571
41858966
MG
5572 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5573 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5574
81c0a2bb
JW
5575 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5576 high_wmark_pages(zone) -
5577 low_wmark_pages(zone) -
5578 zone_page_state(zone, NR_ALLOC_BATCH));
5579
56fd56b8 5580 setup_zone_migrate_reserve(zone);
1125b4e3 5581 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5582 }
cb45b0e9
HA
5583
5584 /* update totalreserve_pages */
5585 calculate_totalreserve_pages();
1da177e4
LT
5586}
5587
cfd3da1e
MG
5588/**
5589 * setup_per_zone_wmarks - called when min_free_kbytes changes
5590 * or when memory is hot-{added|removed}
5591 *
5592 * Ensures that the watermark[min,low,high] values for each zone are set
5593 * correctly with respect to min_free_kbytes.
5594 */
5595void setup_per_zone_wmarks(void)
5596{
5597 mutex_lock(&zonelists_mutex);
5598 __setup_per_zone_wmarks();
5599 mutex_unlock(&zonelists_mutex);
5600}
5601
55a4462a 5602/*
556adecb
RR
5603 * The inactive anon list should be small enough that the VM never has to
5604 * do too much work, but large enough that each inactive page has a chance
5605 * to be referenced again before it is swapped out.
5606 *
5607 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5608 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5609 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5610 * the anonymous pages are kept on the inactive list.
5611 *
5612 * total target max
5613 * memory ratio inactive anon
5614 * -------------------------------------
5615 * 10MB 1 5MB
5616 * 100MB 1 50MB
5617 * 1GB 3 250MB
5618 * 10GB 10 0.9GB
5619 * 100GB 31 3GB
5620 * 1TB 101 10GB
5621 * 10TB 320 32GB
5622 */
1b79acc9 5623static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5624{
96cb4df5 5625 unsigned int gb, ratio;
556adecb 5626
96cb4df5 5627 /* Zone size in gigabytes */
b40da049 5628 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5629 if (gb)
556adecb 5630 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5631 else
5632 ratio = 1;
556adecb 5633
96cb4df5
MK
5634 zone->inactive_ratio = ratio;
5635}
556adecb 5636
839a4fcc 5637static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5638{
5639 struct zone *zone;
5640
5641 for_each_zone(zone)
5642 calculate_zone_inactive_ratio(zone);
556adecb
RR
5643}
5644
1da177e4
LT
5645/*
5646 * Initialise min_free_kbytes.
5647 *
5648 * For small machines we want it small (128k min). For large machines
5649 * we want it large (64MB max). But it is not linear, because network
5650 * bandwidth does not increase linearly with machine size. We use
5651 *
b8af2941 5652 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5653 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5654 *
5655 * which yields
5656 *
5657 * 16MB: 512k
5658 * 32MB: 724k
5659 * 64MB: 1024k
5660 * 128MB: 1448k
5661 * 256MB: 2048k
5662 * 512MB: 2896k
5663 * 1024MB: 4096k
5664 * 2048MB: 5792k
5665 * 4096MB: 8192k
5666 * 8192MB: 11584k
5667 * 16384MB: 16384k
5668 */
1b79acc9 5669int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5670{
5671 unsigned long lowmem_kbytes;
5f12733e 5672 int new_min_free_kbytes;
1da177e4
LT
5673
5674 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5675 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5676
5677 if (new_min_free_kbytes > user_min_free_kbytes) {
5678 min_free_kbytes = new_min_free_kbytes;
5679 if (min_free_kbytes < 128)
5680 min_free_kbytes = 128;
5681 if (min_free_kbytes > 65536)
5682 min_free_kbytes = 65536;
5683 } else {
5684 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5685 new_min_free_kbytes, user_min_free_kbytes);
5686 }
bc75d33f 5687 setup_per_zone_wmarks();
a6cccdc3 5688 refresh_zone_stat_thresholds();
1da177e4 5689 setup_per_zone_lowmem_reserve();
556adecb 5690 setup_per_zone_inactive_ratio();
1da177e4
LT
5691 return 0;
5692}
bc75d33f 5693module_init(init_per_zone_wmark_min)
1da177e4
LT
5694
5695/*
b8af2941 5696 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5697 * that we can call two helper functions whenever min_free_kbytes
5698 * changes.
5699 */
b8af2941 5700int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5701 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5702{
8d65af78 5703 proc_dointvec(table, write, buffer, length, ppos);
5f12733e
MH
5704 if (write) {
5705 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5706 setup_per_zone_wmarks();
5f12733e 5707 }
1da177e4
LT
5708 return 0;
5709}
5710
9614634f
CL
5711#ifdef CONFIG_NUMA
5712int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5713 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5714{
5715 struct zone *zone;
5716 int rc;
5717
8d65af78 5718 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5719 if (rc)
5720 return rc;
5721
5722 for_each_zone(zone)
b40da049 5723 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5724 sysctl_min_unmapped_ratio) / 100;
5725 return 0;
5726}
0ff38490
CL
5727
5728int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5729 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5730{
5731 struct zone *zone;
5732 int rc;
5733
8d65af78 5734 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5735 if (rc)
5736 return rc;
5737
5738 for_each_zone(zone)
b40da049 5739 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5740 sysctl_min_slab_ratio) / 100;
5741 return 0;
5742}
9614634f
CL
5743#endif
5744
1da177e4
LT
5745/*
5746 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5747 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5748 * whenever sysctl_lowmem_reserve_ratio changes.
5749 *
5750 * The reserve ratio obviously has absolutely no relation with the
41858966 5751 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5752 * if in function of the boot time zone sizes.
5753 */
5754int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5755 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5756{
8d65af78 5757 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5758 setup_per_zone_lowmem_reserve();
5759 return 0;
5760}
5761
8ad4b1fb
RS
5762/*
5763 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5764 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5765 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5766 */
8ad4b1fb 5767int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5768 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5769{
5770 struct zone *zone;
5771 unsigned int cpu;
5772 int ret;
5773
8d65af78 5774 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5775 if (!write || (ret < 0))
8ad4b1fb 5776 return ret;
c8e251fa
CS
5777
5778 mutex_lock(&pcp_batch_high_lock);
364df0eb 5779 for_each_populated_zone(zone) {
22a7f12b
CS
5780 unsigned long high;
5781 high = zone->managed_pages / percpu_pagelist_fraction;
5782 for_each_possible_cpu(cpu)
3664033c
CS
5783 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5784 high);
8ad4b1fb 5785 }
c8e251fa 5786 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5787 return 0;
5788}
5789
f034b5d4 5790int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5791
5792#ifdef CONFIG_NUMA
5793static int __init set_hashdist(char *str)
5794{
5795 if (!str)
5796 return 0;
5797 hashdist = simple_strtoul(str, &str, 0);
5798 return 1;
5799}
5800__setup("hashdist=", set_hashdist);
5801#endif
5802
5803/*
5804 * allocate a large system hash table from bootmem
5805 * - it is assumed that the hash table must contain an exact power-of-2
5806 * quantity of entries
5807 * - limit is the number of hash buckets, not the total allocation size
5808 */
5809void *__init alloc_large_system_hash(const char *tablename,
5810 unsigned long bucketsize,
5811 unsigned long numentries,
5812 int scale,
5813 int flags,
5814 unsigned int *_hash_shift,
5815 unsigned int *_hash_mask,
31fe62b9
TB
5816 unsigned long low_limit,
5817 unsigned long high_limit)
1da177e4 5818{
31fe62b9 5819 unsigned long long max = high_limit;
1da177e4
LT
5820 unsigned long log2qty, size;
5821 void *table = NULL;
5822
5823 /* allow the kernel cmdline to have a say */
5824 if (!numentries) {
5825 /* round applicable memory size up to nearest megabyte */
04903664 5826 numentries = nr_kernel_pages;
a7e83318
JZ
5827
5828 /* It isn't necessary when PAGE_SIZE >= 1MB */
5829 if (PAGE_SHIFT < 20)
5830 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5831
5832 /* limit to 1 bucket per 2^scale bytes of low memory */
5833 if (scale > PAGE_SHIFT)
5834 numentries >>= (scale - PAGE_SHIFT);
5835 else
5836 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5837
5838 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5839 if (unlikely(flags & HASH_SMALL)) {
5840 /* Makes no sense without HASH_EARLY */
5841 WARN_ON(!(flags & HASH_EARLY));
5842 if (!(numentries >> *_hash_shift)) {
5843 numentries = 1UL << *_hash_shift;
5844 BUG_ON(!numentries);
5845 }
5846 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5847 numentries = PAGE_SIZE / bucketsize;
1da177e4 5848 }
6e692ed3 5849 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5850
5851 /* limit allocation size to 1/16 total memory by default */
5852 if (max == 0) {
5853 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5854 do_div(max, bucketsize);
5855 }
074b8517 5856 max = min(max, 0x80000000ULL);
1da177e4 5857
31fe62b9
TB
5858 if (numentries < low_limit)
5859 numentries = low_limit;
1da177e4
LT
5860 if (numentries > max)
5861 numentries = max;
5862
f0d1b0b3 5863 log2qty = ilog2(numentries);
1da177e4
LT
5864
5865 do {
5866 size = bucketsize << log2qty;
5867 if (flags & HASH_EARLY)
74768ed8 5868 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5869 else if (hashdist)
5870 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5871 else {
1037b83b
ED
5872 /*
5873 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5874 * some pages at the end of hash table which
5875 * alloc_pages_exact() automatically does
1037b83b 5876 */
264ef8a9 5877 if (get_order(size) < MAX_ORDER) {
a1dd268c 5878 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5879 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5880 }
1da177e4
LT
5881 }
5882 } while (!table && size > PAGE_SIZE && --log2qty);
5883
5884 if (!table)
5885 panic("Failed to allocate %s hash table\n", tablename);
5886
f241e660 5887 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5888 tablename,
f241e660 5889 (1UL << log2qty),
f0d1b0b3 5890 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5891 size);
5892
5893 if (_hash_shift)
5894 *_hash_shift = log2qty;
5895 if (_hash_mask)
5896 *_hash_mask = (1 << log2qty) - 1;
5897
5898 return table;
5899}
a117e66e 5900
835c134e
MG
5901/* Return a pointer to the bitmap storing bits affecting a block of pages */
5902static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5903 unsigned long pfn)
5904{
5905#ifdef CONFIG_SPARSEMEM
5906 return __pfn_to_section(pfn)->pageblock_flags;
5907#else
5908 return zone->pageblock_flags;
5909#endif /* CONFIG_SPARSEMEM */
5910}
5911
5912static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5913{
5914#ifdef CONFIG_SPARSEMEM
5915 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5916 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5917#else
c060f943 5918 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5919 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5920#endif /* CONFIG_SPARSEMEM */
5921}
5922
5923/**
d9c23400 5924 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5925 * @page: The page within the block of interest
5926 * @start_bitidx: The first bit of interest to retrieve
5927 * @end_bitidx: The last bit of interest
5928 * returns pageblock_bits flags
5929 */
5930unsigned long get_pageblock_flags_group(struct page *page,
5931 int start_bitidx, int end_bitidx)
5932{
5933 struct zone *zone;
5934 unsigned long *bitmap;
5935 unsigned long pfn, bitidx;
5936 unsigned long flags = 0;
5937 unsigned long value = 1;
5938
5939 zone = page_zone(page);
5940 pfn = page_to_pfn(page);
5941 bitmap = get_pageblock_bitmap(zone, pfn);
5942 bitidx = pfn_to_bitidx(zone, pfn);
5943
5944 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5945 if (test_bit(bitidx + start_bitidx, bitmap))
5946 flags |= value;
6220ec78 5947
835c134e
MG
5948 return flags;
5949}
5950
5951/**
d9c23400 5952 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5953 * @page: The page within the block of interest
5954 * @start_bitidx: The first bit of interest
5955 * @end_bitidx: The last bit of interest
5956 * @flags: The flags to set
5957 */
5958void set_pageblock_flags_group(struct page *page, unsigned long flags,
5959 int start_bitidx, int end_bitidx)
5960{
5961 struct zone *zone;
5962 unsigned long *bitmap;
5963 unsigned long pfn, bitidx;
5964 unsigned long value = 1;
5965
5966 zone = page_zone(page);
5967 pfn = page_to_pfn(page);
5968 bitmap = get_pageblock_bitmap(zone, pfn);
5969 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5970 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
5971
5972 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5973 if (flags & value)
5974 __set_bit(bitidx + start_bitidx, bitmap);
5975 else
5976 __clear_bit(bitidx + start_bitidx, bitmap);
5977}
a5d76b54
KH
5978
5979/*
80934513
MK
5980 * This function checks whether pageblock includes unmovable pages or not.
5981 * If @count is not zero, it is okay to include less @count unmovable pages
5982 *
b8af2941 5983 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
5984 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5985 * expect this function should be exact.
a5d76b54 5986 */
b023f468
WC
5987bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5988 bool skip_hwpoisoned_pages)
49ac8255
KH
5989{
5990 unsigned long pfn, iter, found;
47118af0
MN
5991 int mt;
5992
49ac8255
KH
5993 /*
5994 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5995 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5996 */
5997 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5998 return false;
47118af0
MN
5999 mt = get_pageblock_migratetype(page);
6000 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6001 return false;
49ac8255
KH
6002
6003 pfn = page_to_pfn(page);
6004 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6005 unsigned long check = pfn + iter;
6006
29723fcc 6007 if (!pfn_valid_within(check))
49ac8255 6008 continue;
29723fcc 6009
49ac8255 6010 page = pfn_to_page(check);
c8721bbb
NH
6011
6012 /*
6013 * Hugepages are not in LRU lists, but they're movable.
6014 * We need not scan over tail pages bacause we don't
6015 * handle each tail page individually in migration.
6016 */
6017 if (PageHuge(page)) {
6018 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6019 continue;
6020 }
6021
97d255c8
MK
6022 /*
6023 * We can't use page_count without pin a page
6024 * because another CPU can free compound page.
6025 * This check already skips compound tails of THP
6026 * because their page->_count is zero at all time.
6027 */
6028 if (!atomic_read(&page->_count)) {
49ac8255
KH
6029 if (PageBuddy(page))
6030 iter += (1 << page_order(page)) - 1;
6031 continue;
6032 }
97d255c8 6033
b023f468
WC
6034 /*
6035 * The HWPoisoned page may be not in buddy system, and
6036 * page_count() is not 0.
6037 */
6038 if (skip_hwpoisoned_pages && PageHWPoison(page))
6039 continue;
6040
49ac8255
KH
6041 if (!PageLRU(page))
6042 found++;
6043 /*
6044 * If there are RECLAIMABLE pages, we need to check it.
6045 * But now, memory offline itself doesn't call shrink_slab()
6046 * and it still to be fixed.
6047 */
6048 /*
6049 * If the page is not RAM, page_count()should be 0.
6050 * we don't need more check. This is an _used_ not-movable page.
6051 *
6052 * The problematic thing here is PG_reserved pages. PG_reserved
6053 * is set to both of a memory hole page and a _used_ kernel
6054 * page at boot.
6055 */
6056 if (found > count)
80934513 6057 return true;
49ac8255 6058 }
80934513 6059 return false;
49ac8255
KH
6060}
6061
6062bool is_pageblock_removable_nolock(struct page *page)
6063{
656a0706
MH
6064 struct zone *zone;
6065 unsigned long pfn;
687875fb
MH
6066
6067 /*
6068 * We have to be careful here because we are iterating over memory
6069 * sections which are not zone aware so we might end up outside of
6070 * the zone but still within the section.
656a0706
MH
6071 * We have to take care about the node as well. If the node is offline
6072 * its NODE_DATA will be NULL - see page_zone.
687875fb 6073 */
656a0706
MH
6074 if (!node_online(page_to_nid(page)))
6075 return false;
6076
6077 zone = page_zone(page);
6078 pfn = page_to_pfn(page);
108bcc96 6079 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6080 return false;
6081
b023f468 6082 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6083}
0c0e6195 6084
041d3a8c
MN
6085#ifdef CONFIG_CMA
6086
6087static unsigned long pfn_max_align_down(unsigned long pfn)
6088{
6089 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6090 pageblock_nr_pages) - 1);
6091}
6092
6093static unsigned long pfn_max_align_up(unsigned long pfn)
6094{
6095 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6096 pageblock_nr_pages));
6097}
6098
041d3a8c 6099/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6100static int __alloc_contig_migrate_range(struct compact_control *cc,
6101 unsigned long start, unsigned long end)
041d3a8c
MN
6102{
6103 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6104 unsigned long nr_reclaimed;
041d3a8c
MN
6105 unsigned long pfn = start;
6106 unsigned int tries = 0;
6107 int ret = 0;
6108
be49a6e1 6109 migrate_prep();
041d3a8c 6110
bb13ffeb 6111 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6112 if (fatal_signal_pending(current)) {
6113 ret = -EINTR;
6114 break;
6115 }
6116
bb13ffeb
MG
6117 if (list_empty(&cc->migratepages)) {
6118 cc->nr_migratepages = 0;
6119 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6120 pfn, end, true);
041d3a8c
MN
6121 if (!pfn) {
6122 ret = -EINTR;
6123 break;
6124 }
6125 tries = 0;
6126 } else if (++tries == 5) {
6127 ret = ret < 0 ? ret : -EBUSY;
6128 break;
6129 }
6130
beb51eaa
MK
6131 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6132 &cc->migratepages);
6133 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6134
9c620e2b
HD
6135 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6136 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6137 }
2a6f5124
SP
6138 if (ret < 0) {
6139 putback_movable_pages(&cc->migratepages);
6140 return ret;
6141 }
6142 return 0;
041d3a8c
MN
6143}
6144
6145/**
6146 * alloc_contig_range() -- tries to allocate given range of pages
6147 * @start: start PFN to allocate
6148 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6149 * @migratetype: migratetype of the underlaying pageblocks (either
6150 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6151 * in range must have the same migratetype and it must
6152 * be either of the two.
041d3a8c
MN
6153 *
6154 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6155 * aligned, however it's the caller's responsibility to guarantee that
6156 * we are the only thread that changes migrate type of pageblocks the
6157 * pages fall in.
6158 *
6159 * The PFN range must belong to a single zone.
6160 *
6161 * Returns zero on success or negative error code. On success all
6162 * pages which PFN is in [start, end) are allocated for the caller and
6163 * need to be freed with free_contig_range().
6164 */
0815f3d8
MN
6165int alloc_contig_range(unsigned long start, unsigned long end,
6166 unsigned migratetype)
041d3a8c 6167{
041d3a8c
MN
6168 unsigned long outer_start, outer_end;
6169 int ret = 0, order;
6170
bb13ffeb
MG
6171 struct compact_control cc = {
6172 .nr_migratepages = 0,
6173 .order = -1,
6174 .zone = page_zone(pfn_to_page(start)),
6175 .sync = true,
6176 .ignore_skip_hint = true,
6177 };
6178 INIT_LIST_HEAD(&cc.migratepages);
6179
041d3a8c
MN
6180 /*
6181 * What we do here is we mark all pageblocks in range as
6182 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6183 * have different sizes, and due to the way page allocator
6184 * work, we align the range to biggest of the two pages so
6185 * that page allocator won't try to merge buddies from
6186 * different pageblocks and change MIGRATE_ISOLATE to some
6187 * other migration type.
6188 *
6189 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6190 * migrate the pages from an unaligned range (ie. pages that
6191 * we are interested in). This will put all the pages in
6192 * range back to page allocator as MIGRATE_ISOLATE.
6193 *
6194 * When this is done, we take the pages in range from page
6195 * allocator removing them from the buddy system. This way
6196 * page allocator will never consider using them.
6197 *
6198 * This lets us mark the pageblocks back as
6199 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6200 * aligned range but not in the unaligned, original range are
6201 * put back to page allocator so that buddy can use them.
6202 */
6203
6204 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6205 pfn_max_align_up(end), migratetype,
6206 false);
041d3a8c 6207 if (ret)
86a595f9 6208 return ret;
041d3a8c 6209
bb13ffeb 6210 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6211 if (ret)
6212 goto done;
6213
6214 /*
6215 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6216 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6217 * more, all pages in [start, end) are free in page allocator.
6218 * What we are going to do is to allocate all pages from
6219 * [start, end) (that is remove them from page allocator).
6220 *
6221 * The only problem is that pages at the beginning and at the
6222 * end of interesting range may be not aligned with pages that
6223 * page allocator holds, ie. they can be part of higher order
6224 * pages. Because of this, we reserve the bigger range and
6225 * once this is done free the pages we are not interested in.
6226 *
6227 * We don't have to hold zone->lock here because the pages are
6228 * isolated thus they won't get removed from buddy.
6229 */
6230
6231 lru_add_drain_all();
6232 drain_all_pages();
6233
6234 order = 0;
6235 outer_start = start;
6236 while (!PageBuddy(pfn_to_page(outer_start))) {
6237 if (++order >= MAX_ORDER) {
6238 ret = -EBUSY;
6239 goto done;
6240 }
6241 outer_start &= ~0UL << order;
6242 }
6243
6244 /* Make sure the range is really isolated. */
b023f468 6245 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6246 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6247 outer_start, end);
6248 ret = -EBUSY;
6249 goto done;
6250 }
6251
49f223a9
MS
6252
6253 /* Grab isolated pages from freelists. */
bb13ffeb 6254 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6255 if (!outer_end) {
6256 ret = -EBUSY;
6257 goto done;
6258 }
6259
6260 /* Free head and tail (if any) */
6261 if (start != outer_start)
6262 free_contig_range(outer_start, start - outer_start);
6263 if (end != outer_end)
6264 free_contig_range(end, outer_end - end);
6265
6266done:
6267 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6268 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6269 return ret;
6270}
6271
6272void free_contig_range(unsigned long pfn, unsigned nr_pages)
6273{
bcc2b02f
MS
6274 unsigned int count = 0;
6275
6276 for (; nr_pages--; pfn++) {
6277 struct page *page = pfn_to_page(pfn);
6278
6279 count += page_count(page) != 1;
6280 __free_page(page);
6281 }
6282 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6283}
6284#endif
6285
4ed7e022 6286#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6287/*
6288 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6289 * page high values need to be recalulated.
6290 */
4ed7e022
JL
6291void __meminit zone_pcp_update(struct zone *zone)
6292{
0a647f38 6293 unsigned cpu;
c8e251fa 6294 mutex_lock(&pcp_batch_high_lock);
0a647f38 6295 for_each_possible_cpu(cpu)
169f6c19
CS
6296 pageset_set_high_and_batch(zone,
6297 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6298 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6299}
6300#endif
6301
340175b7
JL
6302void zone_pcp_reset(struct zone *zone)
6303{
6304 unsigned long flags;
5a883813
MK
6305 int cpu;
6306 struct per_cpu_pageset *pset;
340175b7
JL
6307
6308 /* avoid races with drain_pages() */
6309 local_irq_save(flags);
6310 if (zone->pageset != &boot_pageset) {
5a883813
MK
6311 for_each_online_cpu(cpu) {
6312 pset = per_cpu_ptr(zone->pageset, cpu);
6313 drain_zonestat(zone, pset);
6314 }
340175b7
JL
6315 free_percpu(zone->pageset);
6316 zone->pageset = &boot_pageset;
6317 }
6318 local_irq_restore(flags);
6319}
6320
6dcd73d7 6321#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6322/*
6323 * All pages in the range must be isolated before calling this.
6324 */
6325void
6326__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6327{
6328 struct page *page;
6329 struct zone *zone;
6330 int order, i;
6331 unsigned long pfn;
6332 unsigned long flags;
6333 /* find the first valid pfn */
6334 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6335 if (pfn_valid(pfn))
6336 break;
6337 if (pfn == end_pfn)
6338 return;
6339 zone = page_zone(pfn_to_page(pfn));
6340 spin_lock_irqsave(&zone->lock, flags);
6341 pfn = start_pfn;
6342 while (pfn < end_pfn) {
6343 if (!pfn_valid(pfn)) {
6344 pfn++;
6345 continue;
6346 }
6347 page = pfn_to_page(pfn);
b023f468
WC
6348 /*
6349 * The HWPoisoned page may be not in buddy system, and
6350 * page_count() is not 0.
6351 */
6352 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6353 pfn++;
6354 SetPageReserved(page);
6355 continue;
6356 }
6357
0c0e6195
KH
6358 BUG_ON(page_count(page));
6359 BUG_ON(!PageBuddy(page));
6360 order = page_order(page);
6361#ifdef CONFIG_DEBUG_VM
6362 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6363 pfn, 1 << order, end_pfn);
6364#endif
6365 list_del(&page->lru);
6366 rmv_page_order(page);
6367 zone->free_area[order].nr_free--;
cea27eb2
WL
6368#ifdef CONFIG_HIGHMEM
6369 if (PageHighMem(page))
6370 totalhigh_pages -= 1 << order;
6371#endif
0c0e6195
KH
6372 for (i = 0; i < (1 << order); i++)
6373 SetPageReserved((page+i));
6374 pfn += (1 << order);
6375 }
6376 spin_unlock_irqrestore(&zone->lock, flags);
6377}
6378#endif
8d22ba1b
WF
6379
6380#ifdef CONFIG_MEMORY_FAILURE
6381bool is_free_buddy_page(struct page *page)
6382{
6383 struct zone *zone = page_zone(page);
6384 unsigned long pfn = page_to_pfn(page);
6385 unsigned long flags;
6386 int order;
6387
6388 spin_lock_irqsave(&zone->lock, flags);
6389 for (order = 0; order < MAX_ORDER; order++) {
6390 struct page *page_head = page - (pfn & ((1 << order) - 1));
6391
6392 if (PageBuddy(page_head) && page_order(page_head) >= order)
6393 break;
6394 }
6395 spin_unlock_irqrestore(&zone->lock, flags);
6396
6397 return order < MAX_ORDER;
6398}
6399#endif
718a3821 6400
51300cef 6401static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6402 {1UL << PG_locked, "locked" },
6403 {1UL << PG_error, "error" },
6404 {1UL << PG_referenced, "referenced" },
6405 {1UL << PG_uptodate, "uptodate" },
6406 {1UL << PG_dirty, "dirty" },
6407 {1UL << PG_lru, "lru" },
6408 {1UL << PG_active, "active" },
6409 {1UL << PG_slab, "slab" },
6410 {1UL << PG_owner_priv_1, "owner_priv_1" },
6411 {1UL << PG_arch_1, "arch_1" },
6412 {1UL << PG_reserved, "reserved" },
6413 {1UL << PG_private, "private" },
6414 {1UL << PG_private_2, "private_2" },
6415 {1UL << PG_writeback, "writeback" },
6416#ifdef CONFIG_PAGEFLAGS_EXTENDED
6417 {1UL << PG_head, "head" },
6418 {1UL << PG_tail, "tail" },
6419#else
6420 {1UL << PG_compound, "compound" },
6421#endif
6422 {1UL << PG_swapcache, "swapcache" },
6423 {1UL << PG_mappedtodisk, "mappedtodisk" },
6424 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6425 {1UL << PG_swapbacked, "swapbacked" },
6426 {1UL << PG_unevictable, "unevictable" },
6427#ifdef CONFIG_MMU
6428 {1UL << PG_mlocked, "mlocked" },
6429#endif
6430#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6431 {1UL << PG_uncached, "uncached" },
6432#endif
6433#ifdef CONFIG_MEMORY_FAILURE
6434 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6435#endif
6436#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6437 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6438#endif
718a3821
WF
6439};
6440
6441static void dump_page_flags(unsigned long flags)
6442{
6443 const char *delim = "";
6444 unsigned long mask;
6445 int i;
6446
51300cef 6447 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6448
718a3821
WF
6449 printk(KERN_ALERT "page flags: %#lx(", flags);
6450
6451 /* remove zone id */
6452 flags &= (1UL << NR_PAGEFLAGS) - 1;
6453
51300cef 6454 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6455
6456 mask = pageflag_names[i].mask;
6457 if ((flags & mask) != mask)
6458 continue;
6459
6460 flags &= ~mask;
6461 printk("%s%s", delim, pageflag_names[i].name);
6462 delim = "|";
6463 }
6464
6465 /* check for left over flags */
6466 if (flags)
6467 printk("%s%#lx", delim, flags);
6468
6469 printk(")\n");
6470}
6471
6472void dump_page(struct page *page)
6473{
6474 printk(KERN_ALERT
6475 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6476 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6477 page->mapping, page->index);
6478 dump_page_flags(page->flags);
f212ad7c 6479 mem_cgroup_print_bad_page(page);
718a3821 6480}