]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: compaction: trace compaction begin and end
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
5f12733e 208int user_min_free_kbytes;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2
CS
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
bdc8cb98 267 return ret;
c6a57e19
DH
268}
269
270static int page_is_consistent(struct zone *zone, struct page *page)
271{
14e07298 272 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 273 return 0;
1da177e4 274 if (zone != page_zone(page))
c6a57e19
DH
275 return 0;
276
277 return 1;
278}
279/*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282static int bad_range(struct zone *zone, struct page *page)
283{
284 if (page_outside_zone_boundaries(zone, page))
1da177e4 285 return 1;
c6a57e19
DH
286 if (!page_is_consistent(zone, page))
287 return 1;
288
1da177e4
LT
289 return 0;
290}
13e7444b
NP
291#else
292static inline int bad_range(struct zone *zone, struct page *page)
293{
294 return 0;
295}
296#endif
297
224abf92 298static void bad_page(struct page *page)
1da177e4 299{
d936cf9b
HD
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
2a7684a2
WF
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
22b751c3 306 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
307 return;
308 }
309
d936cf9b
HD
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
1e9e6365
HD
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
1e9e6365 330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 331 current->comm, page_to_pfn(page));
718a3821 332 dump_page(page);
3dc14741 333
4f31888c 334 print_modules();
1da177e4 335 dump_stack();
d936cf9b 336out:
8cc3b392 337 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 338 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
340}
341
1da177e4
LT
342/*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
6416b9fa
WSH
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
1da177e4 351 *
41d78ba5
HD
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
1da177e4 355 */
d98c7a09
HD
356
357static void free_compound_page(struct page *page)
358{
d85f3385 359 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
360}
361
01ad1c08 362void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
363{
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
18229df5 372 __SetPageTail(p);
58a84aa9 373 set_page_count(p, 0);
18229df5
AW
374 p->first_page = page;
375 }
376}
377
59ff4216 378/* update __split_huge_page_refcount if you change this function */
8cc3b392 379static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
380{
381 int i;
382 int nr_pages = 1 << order;
8cc3b392 383 int bad = 0;
1da177e4 384
0bb2c763 385 if (unlikely(compound_order(page) != order)) {
224abf92 386 bad_page(page);
8cc3b392
HD
387 bad++;
388 }
1da177e4 389
6d777953 390 __ClearPageHead(page);
8cc3b392 391
18229df5
AW
392 for (i = 1; i < nr_pages; i++) {
393 struct page *p = page + i;
1da177e4 394
e713a21d 395 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 396 bad_page(page);
8cc3b392
HD
397 bad++;
398 }
d85f3385 399 __ClearPageTail(p);
1da177e4 400 }
8cc3b392
HD
401
402 return bad;
1da177e4 403}
1da177e4 404
17cf4406
NP
405static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406{
407 int i;
408
6626c5d5
AM
409 /*
410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 */
725d704e 413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
414 for (i = 0; i < (1 << order); i++)
415 clear_highpage(page + i);
416}
417
c0a32fc5
SG
418#ifdef CONFIG_DEBUG_PAGEALLOC
419unsigned int _debug_guardpage_minorder;
420
421static int __init debug_guardpage_minorder_setup(char *buf)
422{
423 unsigned long res;
424
425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 return 0;
428 }
429 _debug_guardpage_minorder = res;
430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 return 0;
432}
433__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434
435static inline void set_page_guard_flag(struct page *page)
436{
437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438}
439
440static inline void clear_page_guard_flag(struct page *page)
441{
442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443}
444#else
445static inline void set_page_guard_flag(struct page *page) { }
446static inline void clear_page_guard_flag(struct page *page) { }
447#endif
448
6aa3001b
AM
449static inline void set_page_order(struct page *page, int order)
450{
4c21e2f2 451 set_page_private(page, order);
676165a8 452 __SetPageBuddy(page);
1da177e4
LT
453}
454
455static inline void rmv_page_order(struct page *page)
456{
676165a8 457 __ClearPageBuddy(page);
4c21e2f2 458 set_page_private(page, 0);
1da177e4
LT
459}
460
461/*
462 * Locate the struct page for both the matching buddy in our
463 * pair (buddy1) and the combined O(n+1) page they form (page).
464 *
465 * 1) Any buddy B1 will have an order O twin B2 which satisfies
466 * the following equation:
467 * B2 = B1 ^ (1 << O)
468 * For example, if the starting buddy (buddy2) is #8 its order
469 * 1 buddy is #10:
470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 *
472 * 2) Any buddy B will have an order O+1 parent P which
473 * satisfies the following equation:
474 * P = B & ~(1 << O)
475 *
d6e05edc 476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 477 */
1da177e4 478static inline unsigned long
43506fad 479__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 480{
43506fad 481 return page_idx ^ (1 << order);
1da177e4
LT
482}
483
484/*
485 * This function checks whether a page is free && is the buddy
486 * we can do coalesce a page and its buddy if
13e7444b 487 * (a) the buddy is not in a hole &&
676165a8 488 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
489 * (c) a page and its buddy have the same order &&
490 * (d) a page and its buddy are in the same zone.
676165a8 491 *
cf6fe945
WSH
492 * For recording whether a page is in the buddy system, we set ->_mapcount
493 * PAGE_BUDDY_MAPCOUNT_VALUE.
494 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
495 * serialized by zone->lock.
1da177e4 496 *
676165a8 497 * For recording page's order, we use page_private(page).
1da177e4 498 */
cb2b95e1
AW
499static inline int page_is_buddy(struct page *page, struct page *buddy,
500 int order)
1da177e4 501{
14e07298 502 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 503 return 0;
13e7444b 504
cb2b95e1
AW
505 if (page_zone_id(page) != page_zone_id(buddy))
506 return 0;
507
c0a32fc5
SG
508 if (page_is_guard(buddy) && page_order(buddy) == order) {
509 VM_BUG_ON(page_count(buddy) != 0);
510 return 1;
511 }
512
cb2b95e1 513 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 514 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 515 return 1;
676165a8 516 }
6aa3001b 517 return 0;
1da177e4
LT
518}
519
520/*
521 * Freeing function for a buddy system allocator.
522 *
523 * The concept of a buddy system is to maintain direct-mapped table
524 * (containing bit values) for memory blocks of various "orders".
525 * The bottom level table contains the map for the smallest allocatable
526 * units of memory (here, pages), and each level above it describes
527 * pairs of units from the levels below, hence, "buddies".
528 * At a high level, all that happens here is marking the table entry
529 * at the bottom level available, and propagating the changes upward
530 * as necessary, plus some accounting needed to play nicely with other
531 * parts of the VM system.
532 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
533 * free pages of length of (1 << order) and marked with _mapcount
534 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
535 * field.
1da177e4 536 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
537 * other. That is, if we allocate a small block, and both were
538 * free, the remainder of the region must be split into blocks.
1da177e4 539 * If a block is freed, and its buddy is also free, then this
5f63b720 540 * triggers coalescing into a block of larger size.
1da177e4 541 *
6d49e352 542 * -- nyc
1da177e4
LT
543 */
544
48db57f8 545static inline void __free_one_page(struct page *page,
ed0ae21d
MG
546 struct zone *zone, unsigned int order,
547 int migratetype)
1da177e4
LT
548{
549 unsigned long page_idx;
6dda9d55 550 unsigned long combined_idx;
43506fad 551 unsigned long uninitialized_var(buddy_idx);
6dda9d55 552 struct page *buddy;
1da177e4 553
d29bb978
CS
554 VM_BUG_ON(!zone_is_initialized(zone));
555
224abf92 556 if (unlikely(PageCompound(page)))
8cc3b392
HD
557 if (unlikely(destroy_compound_page(page, order)))
558 return;
1da177e4 559
ed0ae21d
MG
560 VM_BUG_ON(migratetype == -1);
561
1da177e4
LT
562 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
563
f2260e6b 564 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 565 VM_BUG_ON(bad_range(zone, page));
1da177e4 566
1da177e4 567 while (order < MAX_ORDER-1) {
43506fad
KC
568 buddy_idx = __find_buddy_index(page_idx, order);
569 buddy = page + (buddy_idx - page_idx);
cb2b95e1 570 if (!page_is_buddy(page, buddy, order))
3c82d0ce 571 break;
c0a32fc5
SG
572 /*
573 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
574 * merge with it and move up one order.
575 */
576 if (page_is_guard(buddy)) {
577 clear_page_guard_flag(buddy);
578 set_page_private(page, 0);
d1ce749a
BZ
579 __mod_zone_freepage_state(zone, 1 << order,
580 migratetype);
c0a32fc5
SG
581 } else {
582 list_del(&buddy->lru);
583 zone->free_area[order].nr_free--;
584 rmv_page_order(buddy);
585 }
43506fad 586 combined_idx = buddy_idx & page_idx;
1da177e4
LT
587 page = page + (combined_idx - page_idx);
588 page_idx = combined_idx;
589 order++;
590 }
591 set_page_order(page, order);
6dda9d55
CZ
592
593 /*
594 * If this is not the largest possible page, check if the buddy
595 * of the next-highest order is free. If it is, it's possible
596 * that pages are being freed that will coalesce soon. In case,
597 * that is happening, add the free page to the tail of the list
598 * so it's less likely to be used soon and more likely to be merged
599 * as a higher order page
600 */
b7f50cfa 601 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 602 struct page *higher_page, *higher_buddy;
43506fad
KC
603 combined_idx = buddy_idx & page_idx;
604 higher_page = page + (combined_idx - page_idx);
605 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 606 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
607 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
608 list_add_tail(&page->lru,
609 &zone->free_area[order].free_list[migratetype]);
610 goto out;
611 }
612 }
613
614 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
615out:
1da177e4
LT
616 zone->free_area[order].nr_free++;
617}
618
224abf92 619static inline int free_pages_check(struct page *page)
1da177e4 620{
92be2e33
NP
621 if (unlikely(page_mapcount(page) |
622 (page->mapping != NULL) |
a3af9c38 623 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
624 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
625 (mem_cgroup_bad_page_check(page)))) {
224abf92 626 bad_page(page);
79f4b7bf 627 return 1;
8cc3b392 628 }
90572890 629 page_cpupid_reset_last(page);
79f4b7bf
HD
630 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
631 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
632 return 0;
1da177e4
LT
633}
634
635/*
5f8dcc21 636 * Frees a number of pages from the PCP lists
1da177e4 637 * Assumes all pages on list are in same zone, and of same order.
207f36ee 638 * count is the number of pages to free.
1da177e4
LT
639 *
640 * If the zone was previously in an "all pages pinned" state then look to
641 * see if this freeing clears that state.
642 *
643 * And clear the zone's pages_scanned counter, to hold off the "all pages are
644 * pinned" detection logic.
645 */
5f8dcc21
MG
646static void free_pcppages_bulk(struct zone *zone, int count,
647 struct per_cpu_pages *pcp)
1da177e4 648{
5f8dcc21 649 int migratetype = 0;
a6f9edd6 650 int batch_free = 0;
72853e29 651 int to_free = count;
5f8dcc21 652
c54ad30c 653 spin_lock(&zone->lock);
1da177e4 654 zone->pages_scanned = 0;
f2260e6b 655
72853e29 656 while (to_free) {
48db57f8 657 struct page *page;
5f8dcc21
MG
658 struct list_head *list;
659
660 /*
a6f9edd6
MG
661 * Remove pages from lists in a round-robin fashion. A
662 * batch_free count is maintained that is incremented when an
663 * empty list is encountered. This is so more pages are freed
664 * off fuller lists instead of spinning excessively around empty
665 * lists
5f8dcc21
MG
666 */
667 do {
a6f9edd6 668 batch_free++;
5f8dcc21
MG
669 if (++migratetype == MIGRATE_PCPTYPES)
670 migratetype = 0;
671 list = &pcp->lists[migratetype];
672 } while (list_empty(list));
48db57f8 673
1d16871d
NK
674 /* This is the only non-empty list. Free them all. */
675 if (batch_free == MIGRATE_PCPTYPES)
676 batch_free = to_free;
677
a6f9edd6 678 do {
770c8aaa
BZ
679 int mt; /* migratetype of the to-be-freed page */
680
a6f9edd6
MG
681 page = list_entry(list->prev, struct page, lru);
682 /* must delete as __free_one_page list manipulates */
683 list_del(&page->lru);
b12c4ad1 684 mt = get_freepage_migratetype(page);
a7016235 685 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
686 __free_one_page(page, zone, 0, mt);
687 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 688 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
689 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
690 if (is_migrate_cma(mt))
691 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
692 }
72853e29 693 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 694 }
c54ad30c 695 spin_unlock(&zone->lock);
1da177e4
LT
696}
697
ed0ae21d
MG
698static void free_one_page(struct zone *zone, struct page *page, int order,
699 int migratetype)
1da177e4 700{
006d22d9 701 spin_lock(&zone->lock);
006d22d9 702 zone->pages_scanned = 0;
f2260e6b 703
ed0ae21d 704 __free_one_page(page, zone, order, migratetype);
194159fb 705 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 706 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 707 spin_unlock(&zone->lock);
48db57f8
NP
708}
709
ec95f53a 710static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 711{
1da177e4 712 int i;
8cc3b392 713 int bad = 0;
1da177e4 714
b413d48a 715 trace_mm_page_free(page, order);
b1eeab67
VN
716 kmemcheck_free_shadow(page, order);
717
8dd60a3a
AA
718 if (PageAnon(page))
719 page->mapping = NULL;
720 for (i = 0; i < (1 << order); i++)
721 bad += free_pages_check(page + i);
8cc3b392 722 if (bad)
ec95f53a 723 return false;
689bcebf 724
3ac7fe5a 725 if (!PageHighMem(page)) {
b8af2941
PK
726 debug_check_no_locks_freed(page_address(page),
727 PAGE_SIZE << order);
3ac7fe5a
TG
728 debug_check_no_obj_freed(page_address(page),
729 PAGE_SIZE << order);
730 }
dafb1367 731 arch_free_page(page, order);
48db57f8 732 kernel_map_pages(page, 1 << order, 0);
dafb1367 733
ec95f53a
KM
734 return true;
735}
736
737static void __free_pages_ok(struct page *page, unsigned int order)
738{
739 unsigned long flags;
95e34412 740 int migratetype;
ec95f53a
KM
741
742 if (!free_pages_prepare(page, order))
743 return;
744
c54ad30c 745 local_irq_save(flags);
f8891e5e 746 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
747 migratetype = get_pageblock_migratetype(page);
748 set_freepage_migratetype(page, migratetype);
749 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 750 local_irq_restore(flags);
1da177e4
LT
751}
752
170a5a7e 753void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 754{
c3993076 755 unsigned int nr_pages = 1 << order;
e2d0bd2b 756 struct page *p = page;
c3993076 757 unsigned int loop;
a226f6c8 758
e2d0bd2b
YL
759 prefetchw(p);
760 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
761 prefetchw(p + 1);
c3993076
JW
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
a226f6c8 764 }
e2d0bd2b
YL
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
c3993076 767
e2d0bd2b 768 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
769 set_page_refcounted(page);
770 __free_pages(page, order);
a226f6c8
DH
771}
772
47118af0 773#ifdef CONFIG_CMA
9cf510a5 774/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
775void __init init_cma_reserved_pageblock(struct page *page)
776{
777 unsigned i = pageblock_nr_pages;
778 struct page *p = page;
779
780 do {
781 __ClearPageReserved(p);
782 set_page_count(p, 0);
783 } while (++p, --i);
784
785 set_page_refcounted(page);
786 set_pageblock_migratetype(page, MIGRATE_CMA);
787 __free_pages(page, pageblock_order);
3dcc0571 788 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
789}
790#endif
1da177e4
LT
791
792/*
793 * The order of subdivision here is critical for the IO subsystem.
794 * Please do not alter this order without good reasons and regression
795 * testing. Specifically, as large blocks of memory are subdivided,
796 * the order in which smaller blocks are delivered depends on the order
797 * they're subdivided in this function. This is the primary factor
798 * influencing the order in which pages are delivered to the IO
799 * subsystem according to empirical testing, and this is also justified
800 * by considering the behavior of a buddy system containing a single
801 * large block of memory acted on by a series of small allocations.
802 * This behavior is a critical factor in sglist merging's success.
803 *
6d49e352 804 * -- nyc
1da177e4 805 */
085cc7d5 806static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
807 int low, int high, struct free_area *area,
808 int migratetype)
1da177e4
LT
809{
810 unsigned long size = 1 << high;
811
812 while (high > low) {
813 area--;
814 high--;
815 size >>= 1;
725d704e 816 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
817
818#ifdef CONFIG_DEBUG_PAGEALLOC
819 if (high < debug_guardpage_minorder()) {
820 /*
821 * Mark as guard pages (or page), that will allow to
822 * merge back to allocator when buddy will be freed.
823 * Corresponding page table entries will not be touched,
824 * pages will stay not present in virtual address space
825 */
826 INIT_LIST_HEAD(&page[size].lru);
827 set_page_guard_flag(&page[size]);
828 set_page_private(&page[size], high);
829 /* Guard pages are not available for any usage */
d1ce749a
BZ
830 __mod_zone_freepage_state(zone, -(1 << high),
831 migratetype);
c0a32fc5
SG
832 continue;
833 }
834#endif
b2a0ac88 835 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
836 area->nr_free++;
837 set_page_order(&page[size], high);
838 }
1da177e4
LT
839}
840
1da177e4
LT
841/*
842 * This page is about to be returned from the page allocator
843 */
2a7684a2 844static inline int check_new_page(struct page *page)
1da177e4 845{
92be2e33
NP
846 if (unlikely(page_mapcount(page) |
847 (page->mapping != NULL) |
a3af9c38 848 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 (mem_cgroup_bad_page_check(page)))) {
224abf92 851 bad_page(page);
689bcebf 852 return 1;
8cc3b392 853 }
2a7684a2
WF
854 return 0;
855}
856
857static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858{
859 int i;
860
861 for (i = 0; i < (1 << order); i++) {
862 struct page *p = page + i;
863 if (unlikely(check_new_page(p)))
864 return 1;
865 }
689bcebf 866
4c21e2f2 867 set_page_private(page, 0);
7835e98b 868 set_page_refcounted(page);
cc102509
NP
869
870 arch_alloc_page(page, order);
1da177e4 871 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
872
873 if (gfp_flags & __GFP_ZERO)
874 prep_zero_page(page, order, gfp_flags);
875
876 if (order && (gfp_flags & __GFP_COMP))
877 prep_compound_page(page, order);
878
689bcebf 879 return 0;
1da177e4
LT
880}
881
56fd56b8
MG
882/*
883 * Go through the free lists for the given migratetype and remove
884 * the smallest available page from the freelists
885 */
728ec980
MG
886static inline
887struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
888 int migratetype)
889{
890 unsigned int current_order;
b8af2941 891 struct free_area *area;
56fd56b8
MG
892 struct page *page;
893
894 /* Find a page of the appropriate size in the preferred list */
895 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
898 continue;
899
900 page = list_entry(area->free_list[migratetype].next,
901 struct page, lru);
902 list_del(&page->lru);
903 rmv_page_order(page);
904 area->nr_free--;
56fd56b8
MG
905 expand(zone, page, order, current_order, area, migratetype);
906 return page;
907 }
908
909 return NULL;
910}
911
912
b2a0ac88
MG
913/*
914 * This array describes the order lists are fallen back to when
915 * the free lists for the desirable migrate type are depleted
916 */
47118af0
MN
917static int fallbacks[MIGRATE_TYPES][4] = {
918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
920#ifdef CONFIG_CMA
921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
923#else
924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925#endif
6d4a4916 926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 927#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 929#endif
b2a0ac88
MG
930};
931
c361be55
MG
932/*
933 * Move the free pages in a range to the free lists of the requested type.
d9c23400 934 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
935 * boundary. If alignment is required, use move_freepages_block()
936 */
435b405c 937int move_freepages(struct zone *zone,
b69a7288
AB
938 struct page *start_page, struct page *end_page,
939 int migratetype)
c361be55
MG
940{
941 struct page *page;
942 unsigned long order;
d100313f 943 int pages_moved = 0;
c361be55
MG
944
945#ifndef CONFIG_HOLES_IN_ZONE
946 /*
947 * page_zone is not safe to call in this context when
948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 * anyway as we check zone boundaries in move_freepages_block().
950 * Remove at a later date when no bug reports exist related to
ac0e5b7a 951 * grouping pages by mobility
c361be55
MG
952 */
953 BUG_ON(page_zone(start_page) != page_zone(end_page));
954#endif
955
956 for (page = start_page; page <= end_page;) {
344c790e
AL
957 /* Make sure we are not inadvertently changing nodes */
958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959
c361be55
MG
960 if (!pfn_valid_within(page_to_pfn(page))) {
961 page++;
962 continue;
963 }
964
965 if (!PageBuddy(page)) {
966 page++;
967 continue;
968 }
969
970 order = page_order(page);
84be48d8
KS
971 list_move(&page->lru,
972 &zone->free_area[order].free_list[migratetype]);
95e34412 973 set_freepage_migratetype(page, migratetype);
c361be55 974 page += 1 << order;
d100313f 975 pages_moved += 1 << order;
c361be55
MG
976 }
977
d100313f 978 return pages_moved;
c361be55
MG
979}
980
ee6f509c 981int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 982 int migratetype)
c361be55
MG
983{
984 unsigned long start_pfn, end_pfn;
985 struct page *start_page, *end_page;
986
987 start_pfn = page_to_pfn(page);
d9c23400 988 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 989 start_page = pfn_to_page(start_pfn);
d9c23400
MG
990 end_page = start_page + pageblock_nr_pages - 1;
991 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
992
993 /* Do not cross zone boundaries */
108bcc96 994 if (!zone_spans_pfn(zone, start_pfn))
c361be55 995 start_page = page;
108bcc96 996 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
997 return 0;
998
999 return move_freepages(zone, start_page, end_page, migratetype);
1000}
1001
2f66a68f
MG
1002static void change_pageblock_range(struct page *pageblock_page,
1003 int start_order, int migratetype)
1004{
1005 int nr_pageblocks = 1 << (start_order - pageblock_order);
1006
1007 while (nr_pageblocks--) {
1008 set_pageblock_migratetype(pageblock_page, migratetype);
1009 pageblock_page += pageblock_nr_pages;
1010 }
1011}
1012
fef903ef
SB
1013/*
1014 * If breaking a large block of pages, move all free pages to the preferred
1015 * allocation list. If falling back for a reclaimable kernel allocation, be
1016 * more aggressive about taking ownership of free pages.
1017 *
1018 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1019 * nor move CMA pages to different free lists. We don't want unmovable pages
1020 * to be allocated from MIGRATE_CMA areas.
1021 *
1022 * Returns the new migratetype of the pageblock (or the same old migratetype
1023 * if it was unchanged).
1024 */
1025static int try_to_steal_freepages(struct zone *zone, struct page *page,
1026 int start_type, int fallback_type)
1027{
1028 int current_order = page_order(page);
1029
0cbef29a
KM
1030 /*
1031 * When borrowing from MIGRATE_CMA, we need to release the excess
1032 * buddy pages to CMA itself.
1033 */
fef903ef
SB
1034 if (is_migrate_cma(fallback_type))
1035 return fallback_type;
1036
1037 /* Take ownership for orders >= pageblock_order */
1038 if (current_order >= pageblock_order) {
1039 change_pageblock_range(page, current_order, start_type);
1040 return start_type;
1041 }
1042
1043 if (current_order >= pageblock_order / 2 ||
1044 start_type == MIGRATE_RECLAIMABLE ||
1045 page_group_by_mobility_disabled) {
1046 int pages;
1047
1048 pages = move_freepages_block(zone, page, start_type);
1049
1050 /* Claim the whole block if over half of it is free */
1051 if (pages >= (1 << (pageblock_order-1)) ||
1052 page_group_by_mobility_disabled) {
1053
1054 set_pageblock_migratetype(page, start_type);
1055 return start_type;
1056 }
1057
1058 }
1059
1060 return fallback_type;
1061}
1062
b2a0ac88 1063/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1064static inline struct page *
1065__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1066{
b8af2941 1067 struct free_area *area;
b2a0ac88
MG
1068 int current_order;
1069 struct page *page;
fef903ef 1070 int migratetype, new_type, i;
b2a0ac88
MG
1071
1072 /* Find the largest possible block of pages in the other list */
1073 for (current_order = MAX_ORDER-1; current_order >= order;
1074 --current_order) {
6d4a4916 1075 for (i = 0;; i++) {
b2a0ac88
MG
1076 migratetype = fallbacks[start_migratetype][i];
1077
56fd56b8
MG
1078 /* MIGRATE_RESERVE handled later if necessary */
1079 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1080 break;
e010487d 1081
b2a0ac88
MG
1082 area = &(zone->free_area[current_order]);
1083 if (list_empty(&area->free_list[migratetype]))
1084 continue;
1085
1086 page = list_entry(area->free_list[migratetype].next,
1087 struct page, lru);
1088 area->nr_free--;
1089
fef903ef
SB
1090 new_type = try_to_steal_freepages(zone, page,
1091 start_migratetype,
1092 migratetype);
b2a0ac88
MG
1093
1094 /* Remove the page from the freelists */
1095 list_del(&page->lru);
1096 rmv_page_order(page);
b2a0ac88 1097
47118af0 1098 expand(zone, page, order, current_order, area,
0cbef29a 1099 new_type);
e0fff1bd 1100
52c8f6a5
KM
1101 trace_mm_page_alloc_extfrag(page, order, current_order,
1102 start_migratetype, migratetype, new_type);
e0fff1bd 1103
b2a0ac88
MG
1104 return page;
1105 }
1106 }
1107
728ec980 1108 return NULL;
b2a0ac88
MG
1109}
1110
56fd56b8 1111/*
1da177e4
LT
1112 * Do the hard work of removing an element from the buddy allocator.
1113 * Call me with the zone->lock already held.
1114 */
b2a0ac88
MG
1115static struct page *__rmqueue(struct zone *zone, unsigned int order,
1116 int migratetype)
1da177e4 1117{
1da177e4
LT
1118 struct page *page;
1119
728ec980 1120retry_reserve:
56fd56b8 1121 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1122
728ec980 1123 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1124 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1125
728ec980
MG
1126 /*
1127 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1128 * is used because __rmqueue_smallest is an inline function
1129 * and we want just one call site
1130 */
1131 if (!page) {
1132 migratetype = MIGRATE_RESERVE;
1133 goto retry_reserve;
1134 }
1135 }
1136
0d3d062a 1137 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1138 return page;
1da177e4
LT
1139}
1140
5f63b720 1141/*
1da177e4
LT
1142 * Obtain a specified number of elements from the buddy allocator, all under
1143 * a single hold of the lock, for efficiency. Add them to the supplied list.
1144 * Returns the number of new pages which were placed at *list.
1145 */
5f63b720 1146static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1147 unsigned long count, struct list_head *list,
e084b2d9 1148 int migratetype, int cold)
1da177e4 1149{
47118af0 1150 int mt = migratetype, i;
5f63b720 1151
c54ad30c 1152 spin_lock(&zone->lock);
1da177e4 1153 for (i = 0; i < count; ++i) {
b2a0ac88 1154 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1155 if (unlikely(page == NULL))
1da177e4 1156 break;
81eabcbe
MG
1157
1158 /*
1159 * Split buddy pages returned by expand() are received here
1160 * in physical page order. The page is added to the callers and
1161 * list and the list head then moves forward. From the callers
1162 * perspective, the linked list is ordered by page number in
1163 * some conditions. This is useful for IO devices that can
1164 * merge IO requests if the physical pages are ordered
1165 * properly.
1166 */
e084b2d9
MG
1167 if (likely(cold == 0))
1168 list_add(&page->lru, list);
1169 else
1170 list_add_tail(&page->lru, list);
47118af0
MN
1171 if (IS_ENABLED(CONFIG_CMA)) {
1172 mt = get_pageblock_migratetype(page);
194159fb 1173 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1174 mt = migratetype;
1175 }
b12c4ad1 1176 set_freepage_migratetype(page, mt);
81eabcbe 1177 list = &page->lru;
d1ce749a
BZ
1178 if (is_migrate_cma(mt))
1179 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1180 -(1 << order));
1da177e4 1181 }
f2260e6b 1182 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1183 spin_unlock(&zone->lock);
085cc7d5 1184 return i;
1da177e4
LT
1185}
1186
4ae7c039 1187#ifdef CONFIG_NUMA
8fce4d8e 1188/*
4037d452
CL
1189 * Called from the vmstat counter updater to drain pagesets of this
1190 * currently executing processor on remote nodes after they have
1191 * expired.
1192 *
879336c3
CL
1193 * Note that this function must be called with the thread pinned to
1194 * a single processor.
8fce4d8e 1195 */
4037d452 1196void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1197{
4ae7c039 1198 unsigned long flags;
4037d452 1199 int to_drain;
998d39cb 1200 unsigned long batch;
4ae7c039 1201
4037d452 1202 local_irq_save(flags);
998d39cb
CS
1203 batch = ACCESS_ONCE(pcp->batch);
1204 if (pcp->count >= batch)
1205 to_drain = batch;
4037d452
CL
1206 else
1207 to_drain = pcp->count;
2a13515c
KM
1208 if (to_drain > 0) {
1209 free_pcppages_bulk(zone, to_drain, pcp);
1210 pcp->count -= to_drain;
1211 }
4037d452 1212 local_irq_restore(flags);
4ae7c039
CL
1213}
1214#endif
1215
9f8f2172
CL
1216/*
1217 * Drain pages of the indicated processor.
1218 *
1219 * The processor must either be the current processor and the
1220 * thread pinned to the current processor or a processor that
1221 * is not online.
1222 */
1223static void drain_pages(unsigned int cpu)
1da177e4 1224{
c54ad30c 1225 unsigned long flags;
1da177e4 1226 struct zone *zone;
1da177e4 1227
ee99c71c 1228 for_each_populated_zone(zone) {
1da177e4 1229 struct per_cpu_pageset *pset;
3dfa5721 1230 struct per_cpu_pages *pcp;
1da177e4 1231
99dcc3e5
CL
1232 local_irq_save(flags);
1233 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1234
1235 pcp = &pset->pcp;
2ff754fa
DR
1236 if (pcp->count) {
1237 free_pcppages_bulk(zone, pcp->count, pcp);
1238 pcp->count = 0;
1239 }
3dfa5721 1240 local_irq_restore(flags);
1da177e4
LT
1241 }
1242}
1da177e4 1243
9f8f2172
CL
1244/*
1245 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1246 */
1247void drain_local_pages(void *arg)
1248{
1249 drain_pages(smp_processor_id());
1250}
1251
1252/*
74046494
GBY
1253 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1254 *
1255 * Note that this code is protected against sending an IPI to an offline
1256 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1257 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1258 * nothing keeps CPUs from showing up after we populated the cpumask and
1259 * before the call to on_each_cpu_mask().
9f8f2172
CL
1260 */
1261void drain_all_pages(void)
1262{
74046494
GBY
1263 int cpu;
1264 struct per_cpu_pageset *pcp;
1265 struct zone *zone;
1266
1267 /*
1268 * Allocate in the BSS so we wont require allocation in
1269 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1270 */
1271 static cpumask_t cpus_with_pcps;
1272
1273 /*
1274 * We don't care about racing with CPU hotplug event
1275 * as offline notification will cause the notified
1276 * cpu to drain that CPU pcps and on_each_cpu_mask
1277 * disables preemption as part of its processing
1278 */
1279 for_each_online_cpu(cpu) {
1280 bool has_pcps = false;
1281 for_each_populated_zone(zone) {
1282 pcp = per_cpu_ptr(zone->pageset, cpu);
1283 if (pcp->pcp.count) {
1284 has_pcps = true;
1285 break;
1286 }
1287 }
1288 if (has_pcps)
1289 cpumask_set_cpu(cpu, &cpus_with_pcps);
1290 else
1291 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1292 }
1293 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1294}
1295
296699de 1296#ifdef CONFIG_HIBERNATION
1da177e4
LT
1297
1298void mark_free_pages(struct zone *zone)
1299{
f623f0db
RW
1300 unsigned long pfn, max_zone_pfn;
1301 unsigned long flags;
b2a0ac88 1302 int order, t;
1da177e4
LT
1303 struct list_head *curr;
1304
8080fc03 1305 if (zone_is_empty(zone))
1da177e4
LT
1306 return;
1307
1308 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1309
108bcc96 1310 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1311 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1312 if (pfn_valid(pfn)) {
1313 struct page *page = pfn_to_page(pfn);
1314
7be98234
RW
1315 if (!swsusp_page_is_forbidden(page))
1316 swsusp_unset_page_free(page);
f623f0db 1317 }
1da177e4 1318
b2a0ac88
MG
1319 for_each_migratetype_order(order, t) {
1320 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1321 unsigned long i;
1da177e4 1322
f623f0db
RW
1323 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1324 for (i = 0; i < (1UL << order); i++)
7be98234 1325 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1326 }
b2a0ac88 1327 }
1da177e4
LT
1328 spin_unlock_irqrestore(&zone->lock, flags);
1329}
e2c55dc8 1330#endif /* CONFIG_PM */
1da177e4 1331
1da177e4
LT
1332/*
1333 * Free a 0-order page
fc91668e 1334 * cold == 1 ? free a cold page : free a hot page
1da177e4 1335 */
fc91668e 1336void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1337{
1338 struct zone *zone = page_zone(page);
1339 struct per_cpu_pages *pcp;
1340 unsigned long flags;
5f8dcc21 1341 int migratetype;
1da177e4 1342
ec95f53a 1343 if (!free_pages_prepare(page, 0))
689bcebf
HD
1344 return;
1345
5f8dcc21 1346 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1347 set_freepage_migratetype(page, migratetype);
1da177e4 1348 local_irq_save(flags);
f8891e5e 1349 __count_vm_event(PGFREE);
da456f14 1350
5f8dcc21
MG
1351 /*
1352 * We only track unmovable, reclaimable and movable on pcp lists.
1353 * Free ISOLATE pages back to the allocator because they are being
1354 * offlined but treat RESERVE as movable pages so we can get those
1355 * areas back if necessary. Otherwise, we may have to free
1356 * excessively into the page allocator
1357 */
1358 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1359 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1360 free_one_page(zone, page, 0, migratetype);
1361 goto out;
1362 }
1363 migratetype = MIGRATE_MOVABLE;
1364 }
1365
99dcc3e5 1366 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1367 if (cold)
5f8dcc21 1368 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1369 else
5f8dcc21 1370 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1371 pcp->count++;
48db57f8 1372 if (pcp->count >= pcp->high) {
998d39cb
CS
1373 unsigned long batch = ACCESS_ONCE(pcp->batch);
1374 free_pcppages_bulk(zone, batch, pcp);
1375 pcp->count -= batch;
48db57f8 1376 }
5f8dcc21
MG
1377
1378out:
1da177e4 1379 local_irq_restore(flags);
1da177e4
LT
1380}
1381
cc59850e
KK
1382/*
1383 * Free a list of 0-order pages
1384 */
1385void free_hot_cold_page_list(struct list_head *list, int cold)
1386{
1387 struct page *page, *next;
1388
1389 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1390 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1391 free_hot_cold_page(page, cold);
1392 }
1393}
1394
8dfcc9ba
NP
1395/*
1396 * split_page takes a non-compound higher-order page, and splits it into
1397 * n (1<<order) sub-pages: page[0..n]
1398 * Each sub-page must be freed individually.
1399 *
1400 * Note: this is probably too low level an operation for use in drivers.
1401 * Please consult with lkml before using this in your driver.
1402 */
1403void split_page(struct page *page, unsigned int order)
1404{
1405 int i;
1406
725d704e
NP
1407 VM_BUG_ON(PageCompound(page));
1408 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1409
1410#ifdef CONFIG_KMEMCHECK
1411 /*
1412 * Split shadow pages too, because free(page[0]) would
1413 * otherwise free the whole shadow.
1414 */
1415 if (kmemcheck_page_is_tracked(page))
1416 split_page(virt_to_page(page[0].shadow), order);
1417#endif
1418
7835e98b
NP
1419 for (i = 1; i < (1 << order); i++)
1420 set_page_refcounted(page + i);
8dfcc9ba 1421}
5853ff23 1422EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1423
8fb74b9f 1424static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1425{
748446bb
MG
1426 unsigned long watermark;
1427 struct zone *zone;
2139cbe6 1428 int mt;
748446bb
MG
1429
1430 BUG_ON(!PageBuddy(page));
1431
1432 zone = page_zone(page);
2e30abd1 1433 mt = get_pageblock_migratetype(page);
748446bb 1434
194159fb 1435 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1436 /* Obey watermarks as if the page was being allocated */
1437 watermark = low_wmark_pages(zone) + (1 << order);
1438 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1439 return 0;
1440
8fb74b9f 1441 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1442 }
748446bb
MG
1443
1444 /* Remove page from free list */
1445 list_del(&page->lru);
1446 zone->free_area[order].nr_free--;
1447 rmv_page_order(page);
2139cbe6 1448
8fb74b9f 1449 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1450 if (order >= pageblock_order - 1) {
1451 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1452 for (; page < endpage; page += pageblock_nr_pages) {
1453 int mt = get_pageblock_migratetype(page);
194159fb 1454 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1455 set_pageblock_migratetype(page,
1456 MIGRATE_MOVABLE);
1457 }
748446bb
MG
1458 }
1459
8fb74b9f 1460 return 1UL << order;
1fb3f8ca
MG
1461}
1462
1463/*
1464 * Similar to split_page except the page is already free. As this is only
1465 * being used for migration, the migratetype of the block also changes.
1466 * As this is called with interrupts disabled, the caller is responsible
1467 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1468 * are enabled.
1469 *
1470 * Note: this is probably too low level an operation for use in drivers.
1471 * Please consult with lkml before using this in your driver.
1472 */
1473int split_free_page(struct page *page)
1474{
1475 unsigned int order;
1476 int nr_pages;
1477
1fb3f8ca
MG
1478 order = page_order(page);
1479
8fb74b9f 1480 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1481 if (!nr_pages)
1482 return 0;
1483
1484 /* Split into individual pages */
1485 set_page_refcounted(page);
1486 split_page(page, order);
1487 return nr_pages;
748446bb
MG
1488}
1489
1da177e4
LT
1490/*
1491 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1492 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1493 * or two.
1494 */
0a15c3e9
MG
1495static inline
1496struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1497 struct zone *zone, int order, gfp_t gfp_flags,
1498 int migratetype)
1da177e4
LT
1499{
1500 unsigned long flags;
689bcebf 1501 struct page *page;
1da177e4
LT
1502 int cold = !!(gfp_flags & __GFP_COLD);
1503
689bcebf 1504again:
48db57f8 1505 if (likely(order == 0)) {
1da177e4 1506 struct per_cpu_pages *pcp;
5f8dcc21 1507 struct list_head *list;
1da177e4 1508
1da177e4 1509 local_irq_save(flags);
99dcc3e5
CL
1510 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1511 list = &pcp->lists[migratetype];
5f8dcc21 1512 if (list_empty(list)) {
535131e6 1513 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1514 pcp->batch, list,
e084b2d9 1515 migratetype, cold);
5f8dcc21 1516 if (unlikely(list_empty(list)))
6fb332fa 1517 goto failed;
535131e6 1518 }
b92a6edd 1519
5f8dcc21
MG
1520 if (cold)
1521 page = list_entry(list->prev, struct page, lru);
1522 else
1523 page = list_entry(list->next, struct page, lru);
1524
b92a6edd
MG
1525 list_del(&page->lru);
1526 pcp->count--;
7fb1d9fc 1527 } else {
dab48dab
AM
1528 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1529 /*
1530 * __GFP_NOFAIL is not to be used in new code.
1531 *
1532 * All __GFP_NOFAIL callers should be fixed so that they
1533 * properly detect and handle allocation failures.
1534 *
1535 * We most definitely don't want callers attempting to
4923abf9 1536 * allocate greater than order-1 page units with
dab48dab
AM
1537 * __GFP_NOFAIL.
1538 */
4923abf9 1539 WARN_ON_ONCE(order > 1);
dab48dab 1540 }
1da177e4 1541 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1542 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1543 spin_unlock(&zone->lock);
1544 if (!page)
1545 goto failed;
d1ce749a
BZ
1546 __mod_zone_freepage_state(zone, -(1 << order),
1547 get_pageblock_migratetype(page));
1da177e4
LT
1548 }
1549
81c0a2bb 1550 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
f8891e5e 1551 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1552 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1553 local_irq_restore(flags);
1da177e4 1554
725d704e 1555 VM_BUG_ON(bad_range(zone, page));
17cf4406 1556 if (prep_new_page(page, order, gfp_flags))
a74609fa 1557 goto again;
1da177e4 1558 return page;
a74609fa
NP
1559
1560failed:
1561 local_irq_restore(flags);
a74609fa 1562 return NULL;
1da177e4
LT
1563}
1564
933e312e
AM
1565#ifdef CONFIG_FAIL_PAGE_ALLOC
1566
b2588c4b 1567static struct {
933e312e
AM
1568 struct fault_attr attr;
1569
1570 u32 ignore_gfp_highmem;
1571 u32 ignore_gfp_wait;
54114994 1572 u32 min_order;
933e312e
AM
1573} fail_page_alloc = {
1574 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1575 .ignore_gfp_wait = 1,
1576 .ignore_gfp_highmem = 1,
54114994 1577 .min_order = 1,
933e312e
AM
1578};
1579
1580static int __init setup_fail_page_alloc(char *str)
1581{
1582 return setup_fault_attr(&fail_page_alloc.attr, str);
1583}
1584__setup("fail_page_alloc=", setup_fail_page_alloc);
1585
deaf386e 1586static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1587{
54114994 1588 if (order < fail_page_alloc.min_order)
deaf386e 1589 return false;
933e312e 1590 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1591 return false;
933e312e 1592 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1593 return false;
933e312e 1594 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1595 return false;
933e312e
AM
1596
1597 return should_fail(&fail_page_alloc.attr, 1 << order);
1598}
1599
1600#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1601
1602static int __init fail_page_alloc_debugfs(void)
1603{
f4ae40a6 1604 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1605 struct dentry *dir;
933e312e 1606
dd48c085
AM
1607 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1608 &fail_page_alloc.attr);
1609 if (IS_ERR(dir))
1610 return PTR_ERR(dir);
933e312e 1611
b2588c4b
AM
1612 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1613 &fail_page_alloc.ignore_gfp_wait))
1614 goto fail;
1615 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1616 &fail_page_alloc.ignore_gfp_highmem))
1617 goto fail;
1618 if (!debugfs_create_u32("min-order", mode, dir,
1619 &fail_page_alloc.min_order))
1620 goto fail;
1621
1622 return 0;
1623fail:
dd48c085 1624 debugfs_remove_recursive(dir);
933e312e 1625
b2588c4b 1626 return -ENOMEM;
933e312e
AM
1627}
1628
1629late_initcall(fail_page_alloc_debugfs);
1630
1631#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1632
1633#else /* CONFIG_FAIL_PAGE_ALLOC */
1634
deaf386e 1635static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1636{
deaf386e 1637 return false;
933e312e
AM
1638}
1639
1640#endif /* CONFIG_FAIL_PAGE_ALLOC */
1641
1da177e4 1642/*
88f5acf8 1643 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1644 * of the allocation.
1645 */
88f5acf8
MG
1646static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1647 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1648{
1649 /* free_pages my go negative - that's OK */
d23ad423 1650 long min = mark;
2cfed075 1651 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1652 int o;
026b0814 1653 long free_cma = 0;
1da177e4 1654
df0a6daa 1655 free_pages -= (1 << order) - 1;
7fb1d9fc 1656 if (alloc_flags & ALLOC_HIGH)
1da177e4 1657 min -= min / 2;
7fb1d9fc 1658 if (alloc_flags & ALLOC_HARDER)
1da177e4 1659 min -= min / 4;
d95ea5d1
BZ
1660#ifdef CONFIG_CMA
1661 /* If allocation can't use CMA areas don't use free CMA pages */
1662 if (!(alloc_flags & ALLOC_CMA))
026b0814 1663 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1664#endif
026b0814
TS
1665
1666 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1667 return false;
1da177e4
LT
1668 for (o = 0; o < order; o++) {
1669 /* At the next order, this order's pages become unavailable */
1670 free_pages -= z->free_area[o].nr_free << o;
1671
1672 /* Require fewer higher order pages to be free */
1673 min >>= 1;
1674
1675 if (free_pages <= min)
88f5acf8 1676 return false;
1da177e4 1677 }
88f5acf8
MG
1678 return true;
1679}
1680
1681bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1682 int classzone_idx, int alloc_flags)
1683{
1684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1685 zone_page_state(z, NR_FREE_PAGES));
1686}
1687
1688bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1689 int classzone_idx, int alloc_flags)
1690{
1691 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1692
1693 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1694 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1695
1696 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1697 free_pages);
1da177e4
LT
1698}
1699
9276b1bc
PJ
1700#ifdef CONFIG_NUMA
1701/*
1702 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1703 * skip over zones that are not allowed by the cpuset, or that have
1704 * been recently (in last second) found to be nearly full. See further
1705 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1706 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1707 *
a1aeb65a 1708 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1709 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1710 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1711 *
1712 * If the zonelist cache is not available for this zonelist, does
1713 * nothing and returns NULL.
1714 *
1715 * If the fullzones BITMAP in the zonelist cache is stale (more than
1716 * a second since last zap'd) then we zap it out (clear its bits.)
1717 *
1718 * We hold off even calling zlc_setup, until after we've checked the
1719 * first zone in the zonelist, on the theory that most allocations will
1720 * be satisfied from that first zone, so best to examine that zone as
1721 * quickly as we can.
1722 */
1723static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1724{
1725 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1726 nodemask_t *allowednodes; /* zonelist_cache approximation */
1727
1728 zlc = zonelist->zlcache_ptr;
1729 if (!zlc)
1730 return NULL;
1731
f05111f5 1732 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1734 zlc->last_full_zap = jiffies;
1735 }
1736
1737 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1738 &cpuset_current_mems_allowed :
4b0ef1fe 1739 &node_states[N_MEMORY];
9276b1bc
PJ
1740 return allowednodes;
1741}
1742
1743/*
1744 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1745 * if it is worth looking at further for free memory:
1746 * 1) Check that the zone isn't thought to be full (doesn't have its
1747 * bit set in the zonelist_cache fullzones BITMAP).
1748 * 2) Check that the zones node (obtained from the zonelist_cache
1749 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1750 * Return true (non-zero) if zone is worth looking at further, or
1751 * else return false (zero) if it is not.
1752 *
1753 * This check -ignores- the distinction between various watermarks,
1754 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1755 * found to be full for any variation of these watermarks, it will
1756 * be considered full for up to one second by all requests, unless
1757 * we are so low on memory on all allowed nodes that we are forced
1758 * into the second scan of the zonelist.
1759 *
1760 * In the second scan we ignore this zonelist cache and exactly
1761 * apply the watermarks to all zones, even it is slower to do so.
1762 * We are low on memory in the second scan, and should leave no stone
1763 * unturned looking for a free page.
1764 */
dd1a239f 1765static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1766 nodemask_t *allowednodes)
1767{
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769 int i; /* index of *z in zonelist zones */
1770 int n; /* node that zone *z is on */
1771
1772 zlc = zonelist->zlcache_ptr;
1773 if (!zlc)
1774 return 1;
1775
dd1a239f 1776 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1777 n = zlc->z_to_n[i];
1778
1779 /* This zone is worth trying if it is allowed but not full */
1780 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1781}
1782
1783/*
1784 * Given 'z' scanning a zonelist, set the corresponding bit in
1785 * zlc->fullzones, so that subsequent attempts to allocate a page
1786 * from that zone don't waste time re-examining it.
1787 */
dd1a239f 1788static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1789{
1790 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1791 int i; /* index of *z in zonelist zones */
1792
1793 zlc = zonelist->zlcache_ptr;
1794 if (!zlc)
1795 return;
1796
dd1a239f 1797 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1798
1799 set_bit(i, zlc->fullzones);
1800}
1801
76d3fbf8
MG
1802/*
1803 * clear all zones full, called after direct reclaim makes progress so that
1804 * a zone that was recently full is not skipped over for up to a second
1805 */
1806static void zlc_clear_zones_full(struct zonelist *zonelist)
1807{
1808 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1809
1810 zlc = zonelist->zlcache_ptr;
1811 if (!zlc)
1812 return;
1813
1814 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1815}
1816
81c0a2bb
JW
1817static bool zone_local(struct zone *local_zone, struct zone *zone)
1818{
fff4068c 1819 return local_zone->node == zone->node;
81c0a2bb
JW
1820}
1821
957f822a
DR
1822static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1823{
1824 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1825}
1826
1827static void __paginginit init_zone_allows_reclaim(int nid)
1828{
1829 int i;
1830
1831 for_each_online_node(i)
6b187d02 1832 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1833 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1834 else
957f822a 1835 zone_reclaim_mode = 1;
957f822a
DR
1836}
1837
9276b1bc
PJ
1838#else /* CONFIG_NUMA */
1839
1840static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1841{
1842 return NULL;
1843}
1844
dd1a239f 1845static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1846 nodemask_t *allowednodes)
1847{
1848 return 1;
1849}
1850
dd1a239f 1851static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1852{
1853}
76d3fbf8
MG
1854
1855static void zlc_clear_zones_full(struct zonelist *zonelist)
1856{
1857}
957f822a 1858
81c0a2bb
JW
1859static bool zone_local(struct zone *local_zone, struct zone *zone)
1860{
1861 return true;
1862}
1863
957f822a
DR
1864static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1865{
1866 return true;
1867}
1868
1869static inline void init_zone_allows_reclaim(int nid)
1870{
1871}
9276b1bc
PJ
1872#endif /* CONFIG_NUMA */
1873
7fb1d9fc 1874/*
0798e519 1875 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1876 * a page.
1877 */
1878static struct page *
19770b32 1879get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1880 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1881 struct zone *preferred_zone, int migratetype)
753ee728 1882{
dd1a239f 1883 struct zoneref *z;
7fb1d9fc 1884 struct page *page = NULL;
54a6eb5c 1885 int classzone_idx;
5117f45d 1886 struct zone *zone;
9276b1bc
PJ
1887 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1888 int zlc_active = 0; /* set if using zonelist_cache */
1889 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1890
19770b32 1891 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1892zonelist_scan:
7fb1d9fc 1893 /*
9276b1bc 1894 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1895 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1896 */
19770b32
MG
1897 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1898 high_zoneidx, nodemask) {
e085dbc5
JW
1899 unsigned long mark;
1900
e5adfffc 1901 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1902 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1903 continue;
7fb1d9fc 1904 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1905 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1906 continue;
e085dbc5 1907 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
e66f0972 1908 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
e085dbc5 1909 goto try_this_zone;
81c0a2bb
JW
1910 /*
1911 * Distribute pages in proportion to the individual
1912 * zone size to ensure fair page aging. The zone a
1913 * page was allocated in should have no effect on the
1914 * time the page has in memory before being reclaimed.
1915 *
fff4068c
JW
1916 * Try to stay in local zones in the fastpath. If
1917 * that fails, the slowpath is entered, which will do
1918 * another pass starting with the local zones, but
1919 * ultimately fall back to remote zones that do not
1920 * partake in the fairness round-robin cycle of this
1921 * zonelist.
81c0a2bb 1922 */
8798cee2 1923 if (alloc_flags & ALLOC_WMARK_LOW) {
81c0a2bb
JW
1924 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1925 continue;
fff4068c 1926 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
1927 continue;
1928 }
a756cf59
JW
1929 /*
1930 * When allocating a page cache page for writing, we
1931 * want to get it from a zone that is within its dirty
1932 * limit, such that no single zone holds more than its
1933 * proportional share of globally allowed dirty pages.
1934 * The dirty limits take into account the zone's
1935 * lowmem reserves and high watermark so that kswapd
1936 * should be able to balance it without having to
1937 * write pages from its LRU list.
1938 *
1939 * This may look like it could increase pressure on
1940 * lower zones by failing allocations in higher zones
1941 * before they are full. But the pages that do spill
1942 * over are limited as the lower zones are protected
1943 * by this very same mechanism. It should not become
1944 * a practical burden to them.
1945 *
1946 * XXX: For now, allow allocations to potentially
1947 * exceed the per-zone dirty limit in the slowpath
1948 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1949 * which is important when on a NUMA setup the allowed
1950 * zones are together not big enough to reach the
1951 * global limit. The proper fix for these situations
1952 * will require awareness of zones in the
1953 * dirty-throttling and the flusher threads.
1954 */
1955 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1956 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1957 goto this_zone_full;
7fb1d9fc 1958
e085dbc5
JW
1959 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1960 if (!zone_watermark_ok(zone, order, mark,
1961 classzone_idx, alloc_flags)) {
fa5e084e
MG
1962 int ret;
1963
e5adfffc
KS
1964 if (IS_ENABLED(CONFIG_NUMA) &&
1965 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1966 /*
1967 * we do zlc_setup if there are multiple nodes
1968 * and before considering the first zone allowed
1969 * by the cpuset.
1970 */
1971 allowednodes = zlc_setup(zonelist, alloc_flags);
1972 zlc_active = 1;
1973 did_zlc_setup = 1;
1974 }
1975
957f822a
DR
1976 if (zone_reclaim_mode == 0 ||
1977 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1978 goto this_zone_full;
1979
cd38b115
MG
1980 /*
1981 * As we may have just activated ZLC, check if the first
1982 * eligible zone has failed zone_reclaim recently.
1983 */
e5adfffc 1984 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1985 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1986 continue;
1987
fa5e084e
MG
1988 ret = zone_reclaim(zone, gfp_mask, order);
1989 switch (ret) {
1990 case ZONE_RECLAIM_NOSCAN:
1991 /* did not scan */
cd38b115 1992 continue;
fa5e084e
MG
1993 case ZONE_RECLAIM_FULL:
1994 /* scanned but unreclaimable */
cd38b115 1995 continue;
fa5e084e
MG
1996 default:
1997 /* did we reclaim enough */
fed2719e 1998 if (zone_watermark_ok(zone, order, mark,
fa5e084e 1999 classzone_idx, alloc_flags))
fed2719e
MG
2000 goto try_this_zone;
2001
2002 /*
2003 * Failed to reclaim enough to meet watermark.
2004 * Only mark the zone full if checking the min
2005 * watermark or if we failed to reclaim just
2006 * 1<<order pages or else the page allocator
2007 * fastpath will prematurely mark zones full
2008 * when the watermark is between the low and
2009 * min watermarks.
2010 */
2011 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2012 ret == ZONE_RECLAIM_SOME)
9276b1bc 2013 goto this_zone_full;
fed2719e
MG
2014
2015 continue;
0798e519 2016 }
7fb1d9fc
RS
2017 }
2018
fa5e084e 2019try_this_zone:
3dd28266
MG
2020 page = buffered_rmqueue(preferred_zone, zone, order,
2021 gfp_mask, migratetype);
0798e519 2022 if (page)
7fb1d9fc 2023 break;
9276b1bc 2024this_zone_full:
e5adfffc 2025 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 2026 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2027 }
9276b1bc 2028
e5adfffc 2029 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2030 /* Disable zlc cache for second zonelist scan */
2031 zlc_active = 0;
2032 goto zonelist_scan;
2033 }
b121186a
AS
2034
2035 if (page)
2036 /*
2037 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2038 * necessary to allocate the page. The expectation is
2039 * that the caller is taking steps that will free more
2040 * memory. The caller should avoid the page being used
2041 * for !PFMEMALLOC purposes.
2042 */
2043 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2044
7fb1d9fc 2045 return page;
753ee728
MH
2046}
2047
29423e77
DR
2048/*
2049 * Large machines with many possible nodes should not always dump per-node
2050 * meminfo in irq context.
2051 */
2052static inline bool should_suppress_show_mem(void)
2053{
2054 bool ret = false;
2055
2056#if NODES_SHIFT > 8
2057 ret = in_interrupt();
2058#endif
2059 return ret;
2060}
2061
a238ab5b
DH
2062static DEFINE_RATELIMIT_STATE(nopage_rs,
2063 DEFAULT_RATELIMIT_INTERVAL,
2064 DEFAULT_RATELIMIT_BURST);
2065
2066void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2067{
a238ab5b
DH
2068 unsigned int filter = SHOW_MEM_FILTER_NODES;
2069
c0a32fc5
SG
2070 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2071 debug_guardpage_minorder() > 0)
a238ab5b
DH
2072 return;
2073
2074 /*
2075 * This documents exceptions given to allocations in certain
2076 * contexts that are allowed to allocate outside current's set
2077 * of allowed nodes.
2078 */
2079 if (!(gfp_mask & __GFP_NOMEMALLOC))
2080 if (test_thread_flag(TIF_MEMDIE) ||
2081 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2082 filter &= ~SHOW_MEM_FILTER_NODES;
2083 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2084 filter &= ~SHOW_MEM_FILTER_NODES;
2085
2086 if (fmt) {
3ee9a4f0
JP
2087 struct va_format vaf;
2088 va_list args;
2089
a238ab5b 2090 va_start(args, fmt);
3ee9a4f0
JP
2091
2092 vaf.fmt = fmt;
2093 vaf.va = &args;
2094
2095 pr_warn("%pV", &vaf);
2096
a238ab5b
DH
2097 va_end(args);
2098 }
2099
3ee9a4f0
JP
2100 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2101 current->comm, order, gfp_mask);
a238ab5b
DH
2102
2103 dump_stack();
2104 if (!should_suppress_show_mem())
2105 show_mem(filter);
2106}
2107
11e33f6a
MG
2108static inline int
2109should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2110 unsigned long did_some_progress,
11e33f6a 2111 unsigned long pages_reclaimed)
1da177e4 2112{
11e33f6a
MG
2113 /* Do not loop if specifically requested */
2114 if (gfp_mask & __GFP_NORETRY)
2115 return 0;
1da177e4 2116
f90ac398
MG
2117 /* Always retry if specifically requested */
2118 if (gfp_mask & __GFP_NOFAIL)
2119 return 1;
2120
2121 /*
2122 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2123 * making forward progress without invoking OOM. Suspend also disables
2124 * storage devices so kswapd will not help. Bail if we are suspending.
2125 */
2126 if (!did_some_progress && pm_suspended_storage())
2127 return 0;
2128
11e33f6a
MG
2129 /*
2130 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2131 * means __GFP_NOFAIL, but that may not be true in other
2132 * implementations.
2133 */
2134 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2135 return 1;
2136
2137 /*
2138 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2139 * specified, then we retry until we no longer reclaim any pages
2140 * (above), or we've reclaimed an order of pages at least as
2141 * large as the allocation's order. In both cases, if the
2142 * allocation still fails, we stop retrying.
2143 */
2144 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2145 return 1;
cf40bd16 2146
11e33f6a
MG
2147 return 0;
2148}
933e312e 2149
11e33f6a
MG
2150static inline struct page *
2151__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2152 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2153 nodemask_t *nodemask, struct zone *preferred_zone,
2154 int migratetype)
11e33f6a
MG
2155{
2156 struct page *page;
2157
2158 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2159 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2160 schedule_timeout_uninterruptible(1);
1da177e4
LT
2161 return NULL;
2162 }
6b1de916 2163
11e33f6a
MG
2164 /*
2165 * Go through the zonelist yet one more time, keep very high watermark
2166 * here, this is only to catch a parallel oom killing, we must fail if
2167 * we're still under heavy pressure.
2168 */
2169 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2170 order, zonelist, high_zoneidx,
5117f45d 2171 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2172 preferred_zone, migratetype);
7fb1d9fc 2173 if (page)
11e33f6a
MG
2174 goto out;
2175
4365a567
KH
2176 if (!(gfp_mask & __GFP_NOFAIL)) {
2177 /* The OOM killer will not help higher order allocs */
2178 if (order > PAGE_ALLOC_COSTLY_ORDER)
2179 goto out;
03668b3c
DR
2180 /* The OOM killer does not needlessly kill tasks for lowmem */
2181 if (high_zoneidx < ZONE_NORMAL)
2182 goto out;
4365a567
KH
2183 /*
2184 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2185 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2186 * The caller should handle page allocation failure by itself if
2187 * it specifies __GFP_THISNODE.
2188 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2189 */
2190 if (gfp_mask & __GFP_THISNODE)
2191 goto out;
2192 }
11e33f6a 2193 /* Exhausted what can be done so it's blamo time */
08ab9b10 2194 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2195
2196out:
2197 clear_zonelist_oom(zonelist, gfp_mask);
2198 return page;
2199}
2200
56de7263
MG
2201#ifdef CONFIG_COMPACTION
2202/* Try memory compaction for high-order allocations before reclaim */
2203static struct page *
2204__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2205 struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2207 int migratetype, bool sync_migration,
c67fe375 2208 bool *contended_compaction, bool *deferred_compaction,
66199712 2209 unsigned long *did_some_progress)
56de7263 2210{
66199712 2211 if (!order)
56de7263
MG
2212 return NULL;
2213
aff62249 2214 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2215 *deferred_compaction = true;
2216 return NULL;
2217 }
2218
c06b1fca 2219 current->flags |= PF_MEMALLOC;
56de7263 2220 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2221 nodemask, sync_migration,
8fb74b9f 2222 contended_compaction);
c06b1fca 2223 current->flags &= ~PF_MEMALLOC;
56de7263 2224
1fb3f8ca 2225 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2226 struct page *page;
2227
56de7263
MG
2228 /* Page migration frees to the PCP lists but we want merging */
2229 drain_pages(get_cpu());
2230 put_cpu();
2231
2232 page = get_page_from_freelist(gfp_mask, nodemask,
2233 order, zonelist, high_zoneidx,
cfd19c5a
MG
2234 alloc_flags & ~ALLOC_NO_WATERMARKS,
2235 preferred_zone, migratetype);
56de7263 2236 if (page) {
62997027 2237 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2238 preferred_zone->compact_considered = 0;
2239 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2240 if (order >= preferred_zone->compact_order_failed)
2241 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2242 count_vm_event(COMPACTSUCCESS);
2243 return page;
2244 }
2245
2246 /*
2247 * It's bad if compaction run occurs and fails.
2248 * The most likely reason is that pages exist,
2249 * but not enough to satisfy watermarks.
2250 */
2251 count_vm_event(COMPACTFAIL);
66199712
MG
2252
2253 /*
2254 * As async compaction considers a subset of pageblocks, only
2255 * defer if the failure was a sync compaction failure.
2256 */
2257 if (sync_migration)
aff62249 2258 defer_compaction(preferred_zone, order);
56de7263
MG
2259
2260 cond_resched();
2261 }
2262
2263 return NULL;
2264}
2265#else
2266static inline struct page *
2267__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2268 struct zonelist *zonelist, enum zone_type high_zoneidx,
2269 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2270 int migratetype, bool sync_migration,
c67fe375 2271 bool *contended_compaction, bool *deferred_compaction,
66199712 2272 unsigned long *did_some_progress)
56de7263
MG
2273{
2274 return NULL;
2275}
2276#endif /* CONFIG_COMPACTION */
2277
bba90710
MS
2278/* Perform direct synchronous page reclaim */
2279static int
2280__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2281 nodemask_t *nodemask)
11e33f6a 2282{
11e33f6a 2283 struct reclaim_state reclaim_state;
bba90710 2284 int progress;
11e33f6a
MG
2285
2286 cond_resched();
2287
2288 /* We now go into synchronous reclaim */
2289 cpuset_memory_pressure_bump();
c06b1fca 2290 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2291 lockdep_set_current_reclaim_state(gfp_mask);
2292 reclaim_state.reclaimed_slab = 0;
c06b1fca 2293 current->reclaim_state = &reclaim_state;
11e33f6a 2294
bba90710 2295 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2296
c06b1fca 2297 current->reclaim_state = NULL;
11e33f6a 2298 lockdep_clear_current_reclaim_state();
c06b1fca 2299 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2300
2301 cond_resched();
2302
bba90710
MS
2303 return progress;
2304}
2305
2306/* The really slow allocator path where we enter direct reclaim */
2307static inline struct page *
2308__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2309 struct zonelist *zonelist, enum zone_type high_zoneidx,
2310 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2311 int migratetype, unsigned long *did_some_progress)
2312{
2313 struct page *page = NULL;
2314 bool drained = false;
2315
2316 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2317 nodemask);
9ee493ce
MG
2318 if (unlikely(!(*did_some_progress)))
2319 return NULL;
11e33f6a 2320
76d3fbf8 2321 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2322 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2323 zlc_clear_zones_full(zonelist);
2324
9ee493ce
MG
2325retry:
2326 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2327 zonelist, high_zoneidx,
cfd19c5a
MG
2328 alloc_flags & ~ALLOC_NO_WATERMARKS,
2329 preferred_zone, migratetype);
9ee493ce
MG
2330
2331 /*
2332 * If an allocation failed after direct reclaim, it could be because
2333 * pages are pinned on the per-cpu lists. Drain them and try again
2334 */
2335 if (!page && !drained) {
2336 drain_all_pages();
2337 drained = true;
2338 goto retry;
2339 }
2340
11e33f6a
MG
2341 return page;
2342}
2343
1da177e4 2344/*
11e33f6a
MG
2345 * This is called in the allocator slow-path if the allocation request is of
2346 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2347 */
11e33f6a
MG
2348static inline struct page *
2349__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2350 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2351 nodemask_t *nodemask, struct zone *preferred_zone,
2352 int migratetype)
11e33f6a
MG
2353{
2354 struct page *page;
2355
2356 do {
2357 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2358 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2359 preferred_zone, migratetype);
11e33f6a
MG
2360
2361 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2362 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2363 } while (!page && (gfp_mask & __GFP_NOFAIL));
2364
2365 return page;
2366}
2367
81c0a2bb
JW
2368static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2369 struct zonelist *zonelist,
2370 enum zone_type high_zoneidx,
2371 struct zone *preferred_zone)
1da177e4 2372{
dd1a239f
MG
2373 struct zoneref *z;
2374 struct zone *zone;
1da177e4 2375
81c0a2bb
JW
2376 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2377 if (!(gfp_mask & __GFP_NO_KSWAPD))
2378 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2379 /*
2380 * Only reset the batches of zones that were actually
2381 * considered in the fast path, we don't want to
2382 * thrash fairness information for zones that are not
2383 * actually part of this zonelist's round-robin cycle.
2384 */
fff4068c 2385 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2386 continue;
2387 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2388 high_wmark_pages(zone) -
2389 low_wmark_pages(zone) -
2390 zone_page_state(zone, NR_ALLOC_BATCH));
2391 }
11e33f6a 2392}
cf40bd16 2393
341ce06f
PZ
2394static inline int
2395gfp_to_alloc_flags(gfp_t gfp_mask)
2396{
341ce06f
PZ
2397 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2398 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2399
a56f57ff 2400 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2401 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2402
341ce06f
PZ
2403 /*
2404 * The caller may dip into page reserves a bit more if the caller
2405 * cannot run direct reclaim, or if the caller has realtime scheduling
2406 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2407 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2408 */
e6223a3b 2409 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2410
341ce06f 2411 if (!wait) {
5c3240d9
AA
2412 /*
2413 * Not worth trying to allocate harder for
2414 * __GFP_NOMEMALLOC even if it can't schedule.
2415 */
2416 if (!(gfp_mask & __GFP_NOMEMALLOC))
2417 alloc_flags |= ALLOC_HARDER;
523b9458 2418 /*
341ce06f
PZ
2419 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2420 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2421 */
341ce06f 2422 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2423 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2424 alloc_flags |= ALLOC_HARDER;
2425
b37f1dd0
MG
2426 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2427 if (gfp_mask & __GFP_MEMALLOC)
2428 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2429 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2430 alloc_flags |= ALLOC_NO_WATERMARKS;
2431 else if (!in_interrupt() &&
2432 ((current->flags & PF_MEMALLOC) ||
2433 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2434 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2435 }
d95ea5d1
BZ
2436#ifdef CONFIG_CMA
2437 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2438 alloc_flags |= ALLOC_CMA;
2439#endif
341ce06f
PZ
2440 return alloc_flags;
2441}
2442
072bb0aa
MG
2443bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2444{
b37f1dd0 2445 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2446}
2447
11e33f6a
MG
2448static inline struct page *
2449__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2450 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2451 nodemask_t *nodemask, struct zone *preferred_zone,
2452 int migratetype)
11e33f6a
MG
2453{
2454 const gfp_t wait = gfp_mask & __GFP_WAIT;
2455 struct page *page = NULL;
2456 int alloc_flags;
2457 unsigned long pages_reclaimed = 0;
2458 unsigned long did_some_progress;
77f1fe6b 2459 bool sync_migration = false;
66199712 2460 bool deferred_compaction = false;
c67fe375 2461 bool contended_compaction = false;
1da177e4 2462
72807a74
MG
2463 /*
2464 * In the slowpath, we sanity check order to avoid ever trying to
2465 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2466 * be using allocators in order of preference for an area that is
2467 * too large.
2468 */
1fc28b70
MG
2469 if (order >= MAX_ORDER) {
2470 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2471 return NULL;
1fc28b70 2472 }
1da177e4 2473
952f3b51
CL
2474 /*
2475 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2476 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2477 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2478 * using a larger set of nodes after it has established that the
2479 * allowed per node queues are empty and that nodes are
2480 * over allocated.
2481 */
e5adfffc
KS
2482 if (IS_ENABLED(CONFIG_NUMA) &&
2483 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2484 goto nopage;
2485
cc4a6851 2486restart:
81c0a2bb
JW
2487 prepare_slowpath(gfp_mask, order, zonelist,
2488 high_zoneidx, preferred_zone);
1da177e4 2489
9bf2229f 2490 /*
7fb1d9fc
RS
2491 * OK, we're below the kswapd watermark and have kicked background
2492 * reclaim. Now things get more complex, so set up alloc_flags according
2493 * to how we want to proceed.
9bf2229f 2494 */
341ce06f 2495 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2496
f33261d7
DR
2497 /*
2498 * Find the true preferred zone if the allocation is unconstrained by
2499 * cpusets.
2500 */
2501 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2502 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2503 &preferred_zone);
2504
cfa54a0f 2505rebalance:
341ce06f 2506 /* This is the last chance, in general, before the goto nopage. */
19770b32 2507 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2508 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2509 preferred_zone, migratetype);
7fb1d9fc
RS
2510 if (page)
2511 goto got_pg;
1da177e4 2512
11e33f6a 2513 /* Allocate without watermarks if the context allows */
341ce06f 2514 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2515 /*
2516 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2517 * the allocation is high priority and these type of
2518 * allocations are system rather than user orientated
2519 */
2520 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2521
341ce06f
PZ
2522 page = __alloc_pages_high_priority(gfp_mask, order,
2523 zonelist, high_zoneidx, nodemask,
2524 preferred_zone, migratetype);
cfd19c5a 2525 if (page) {
341ce06f 2526 goto got_pg;
cfd19c5a 2527 }
1da177e4
LT
2528 }
2529
2530 /* Atomic allocations - we can't balance anything */
2531 if (!wait)
2532 goto nopage;
2533
341ce06f 2534 /* Avoid recursion of direct reclaim */
c06b1fca 2535 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2536 goto nopage;
2537
6583bb64
DR
2538 /* Avoid allocations with no watermarks from looping endlessly */
2539 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2540 goto nopage;
2541
77f1fe6b
MG
2542 /*
2543 * Try direct compaction. The first pass is asynchronous. Subsequent
2544 * attempts after direct reclaim are synchronous
2545 */
56de7263
MG
2546 page = __alloc_pages_direct_compact(gfp_mask, order,
2547 zonelist, high_zoneidx,
2548 nodemask,
2549 alloc_flags, preferred_zone,
66199712 2550 migratetype, sync_migration,
c67fe375 2551 &contended_compaction,
66199712
MG
2552 &deferred_compaction,
2553 &did_some_progress);
56de7263
MG
2554 if (page)
2555 goto got_pg;
c6a140bf 2556 sync_migration = true;
56de7263 2557
31f8d42d
LT
2558 /*
2559 * If compaction is deferred for high-order allocations, it is because
2560 * sync compaction recently failed. In this is the case and the caller
2561 * requested a movable allocation that does not heavily disrupt the
2562 * system then fail the allocation instead of entering direct reclaim.
2563 */
2564 if ((deferred_compaction || contended_compaction) &&
caf49191 2565 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2566 goto nopage;
66199712 2567
11e33f6a
MG
2568 /* Try direct reclaim and then allocating */
2569 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2570 zonelist, high_zoneidx,
2571 nodemask,
5117f45d 2572 alloc_flags, preferred_zone,
3dd28266 2573 migratetype, &did_some_progress);
11e33f6a
MG
2574 if (page)
2575 goto got_pg;
1da177e4 2576
e33c3b5e 2577 /*
11e33f6a
MG
2578 * If we failed to make any progress reclaiming, then we are
2579 * running out of options and have to consider going OOM
e33c3b5e 2580 */
11e33f6a 2581 if (!did_some_progress) {
b9921ecd 2582 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2583 if (oom_killer_disabled)
2584 goto nopage;
29fd66d2
DR
2585 /* Coredumps can quickly deplete all memory reserves */
2586 if ((current->flags & PF_DUMPCORE) &&
2587 !(gfp_mask & __GFP_NOFAIL))
2588 goto nopage;
11e33f6a
MG
2589 page = __alloc_pages_may_oom(gfp_mask, order,
2590 zonelist, high_zoneidx,
3dd28266
MG
2591 nodemask, preferred_zone,
2592 migratetype);
11e33f6a
MG
2593 if (page)
2594 goto got_pg;
1da177e4 2595
03668b3c
DR
2596 if (!(gfp_mask & __GFP_NOFAIL)) {
2597 /*
2598 * The oom killer is not called for high-order
2599 * allocations that may fail, so if no progress
2600 * is being made, there are no other options and
2601 * retrying is unlikely to help.
2602 */
2603 if (order > PAGE_ALLOC_COSTLY_ORDER)
2604 goto nopage;
2605 /*
2606 * The oom killer is not called for lowmem
2607 * allocations to prevent needlessly killing
2608 * innocent tasks.
2609 */
2610 if (high_zoneidx < ZONE_NORMAL)
2611 goto nopage;
2612 }
e2c55dc8 2613
ff0ceb9d
DR
2614 goto restart;
2615 }
1da177e4
LT
2616 }
2617
11e33f6a 2618 /* Check if we should retry the allocation */
a41f24ea 2619 pages_reclaimed += did_some_progress;
f90ac398
MG
2620 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2621 pages_reclaimed)) {
11e33f6a 2622 /* Wait for some write requests to complete then retry */
0e093d99 2623 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2624 goto rebalance;
3e7d3449
MG
2625 } else {
2626 /*
2627 * High-order allocations do not necessarily loop after
2628 * direct reclaim and reclaim/compaction depends on compaction
2629 * being called after reclaim so call directly if necessary
2630 */
2631 page = __alloc_pages_direct_compact(gfp_mask, order,
2632 zonelist, high_zoneidx,
2633 nodemask,
2634 alloc_flags, preferred_zone,
66199712 2635 migratetype, sync_migration,
c67fe375 2636 &contended_compaction,
66199712
MG
2637 &deferred_compaction,
2638 &did_some_progress);
3e7d3449
MG
2639 if (page)
2640 goto got_pg;
1da177e4
LT
2641 }
2642
2643nopage:
a238ab5b 2644 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2645 return page;
1da177e4 2646got_pg:
b1eeab67
VN
2647 if (kmemcheck_enabled)
2648 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2649
072bb0aa 2650 return page;
1da177e4 2651}
11e33f6a
MG
2652
2653/*
2654 * This is the 'heart' of the zoned buddy allocator.
2655 */
2656struct page *
2657__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2658 struct zonelist *zonelist, nodemask_t *nodemask)
2659{
2660 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2661 struct zone *preferred_zone;
cc9a6c87 2662 struct page *page = NULL;
3dd28266 2663 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2664 unsigned int cpuset_mems_cookie;
d95ea5d1 2665 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2666 struct mem_cgroup *memcg = NULL;
11e33f6a 2667
dcce284a
BH
2668 gfp_mask &= gfp_allowed_mask;
2669
11e33f6a
MG
2670 lockdep_trace_alloc(gfp_mask);
2671
2672 might_sleep_if(gfp_mask & __GFP_WAIT);
2673
2674 if (should_fail_alloc_page(gfp_mask, order))
2675 return NULL;
2676
2677 /*
2678 * Check the zones suitable for the gfp_mask contain at least one
2679 * valid zone. It's possible to have an empty zonelist as a result
2680 * of GFP_THISNODE and a memoryless node
2681 */
2682 if (unlikely(!zonelist->_zonerefs->zone))
2683 return NULL;
2684
6a1a0d3b
GC
2685 /*
2686 * Will only have any effect when __GFP_KMEMCG is set. This is
2687 * verified in the (always inline) callee
2688 */
2689 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2690 return NULL;
2691
cc9a6c87
MG
2692retry_cpuset:
2693 cpuset_mems_cookie = get_mems_allowed();
2694
5117f45d 2695 /* The preferred zone is used for statistics later */
f33261d7
DR
2696 first_zones_zonelist(zonelist, high_zoneidx,
2697 nodemask ? : &cpuset_current_mems_allowed,
2698 &preferred_zone);
cc9a6c87
MG
2699 if (!preferred_zone)
2700 goto out;
5117f45d 2701
d95ea5d1
BZ
2702#ifdef CONFIG_CMA
2703 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2704 alloc_flags |= ALLOC_CMA;
2705#endif
5117f45d 2706 /* First allocation attempt */
11e33f6a 2707 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2708 zonelist, high_zoneidx, alloc_flags,
3dd28266 2709 preferred_zone, migratetype);
21caf2fc
ML
2710 if (unlikely(!page)) {
2711 /*
2712 * Runtime PM, block IO and its error handling path
2713 * can deadlock because I/O on the device might not
2714 * complete.
2715 */
2716 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2717 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2718 zonelist, high_zoneidx, nodemask,
3dd28266 2719 preferred_zone, migratetype);
21caf2fc 2720 }
11e33f6a 2721
4b4f278c 2722 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2723
2724out:
2725 /*
2726 * When updating a task's mems_allowed, it is possible to race with
2727 * parallel threads in such a way that an allocation can fail while
2728 * the mask is being updated. If a page allocation is about to fail,
2729 * check if the cpuset changed during allocation and if so, retry.
2730 */
2731 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2732 goto retry_cpuset;
2733
6a1a0d3b
GC
2734 memcg_kmem_commit_charge(page, memcg, order);
2735
11e33f6a 2736 return page;
1da177e4 2737}
d239171e 2738EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2739
2740/*
2741 * Common helper functions.
2742 */
920c7a5d 2743unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2744{
945a1113
AM
2745 struct page *page;
2746
2747 /*
2748 * __get_free_pages() returns a 32-bit address, which cannot represent
2749 * a highmem page
2750 */
2751 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2752
1da177e4
LT
2753 page = alloc_pages(gfp_mask, order);
2754 if (!page)
2755 return 0;
2756 return (unsigned long) page_address(page);
2757}
1da177e4
LT
2758EXPORT_SYMBOL(__get_free_pages);
2759
920c7a5d 2760unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2761{
945a1113 2762 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2763}
1da177e4
LT
2764EXPORT_SYMBOL(get_zeroed_page);
2765
920c7a5d 2766void __free_pages(struct page *page, unsigned int order)
1da177e4 2767{
b5810039 2768 if (put_page_testzero(page)) {
1da177e4 2769 if (order == 0)
fc91668e 2770 free_hot_cold_page(page, 0);
1da177e4
LT
2771 else
2772 __free_pages_ok(page, order);
2773 }
2774}
2775
2776EXPORT_SYMBOL(__free_pages);
2777
920c7a5d 2778void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2779{
2780 if (addr != 0) {
725d704e 2781 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2782 __free_pages(virt_to_page((void *)addr), order);
2783 }
2784}
2785
2786EXPORT_SYMBOL(free_pages);
2787
6a1a0d3b
GC
2788/*
2789 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2790 * pages allocated with __GFP_KMEMCG.
2791 *
2792 * Those pages are accounted to a particular memcg, embedded in the
2793 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2794 * for that information only to find out that it is NULL for users who have no
2795 * interest in that whatsoever, we provide these functions.
2796 *
2797 * The caller knows better which flags it relies on.
2798 */
2799void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2800{
2801 memcg_kmem_uncharge_pages(page, order);
2802 __free_pages(page, order);
2803}
2804
2805void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2806{
2807 if (addr != 0) {
2808 VM_BUG_ON(!virt_addr_valid((void *)addr));
2809 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2810 }
2811}
2812
ee85c2e1
AK
2813static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2814{
2815 if (addr) {
2816 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2817 unsigned long used = addr + PAGE_ALIGN(size);
2818
2819 split_page(virt_to_page((void *)addr), order);
2820 while (used < alloc_end) {
2821 free_page(used);
2822 used += PAGE_SIZE;
2823 }
2824 }
2825 return (void *)addr;
2826}
2827
2be0ffe2
TT
2828/**
2829 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2830 * @size: the number of bytes to allocate
2831 * @gfp_mask: GFP flags for the allocation
2832 *
2833 * This function is similar to alloc_pages(), except that it allocates the
2834 * minimum number of pages to satisfy the request. alloc_pages() can only
2835 * allocate memory in power-of-two pages.
2836 *
2837 * This function is also limited by MAX_ORDER.
2838 *
2839 * Memory allocated by this function must be released by free_pages_exact().
2840 */
2841void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2842{
2843 unsigned int order = get_order(size);
2844 unsigned long addr;
2845
2846 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2847 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2848}
2849EXPORT_SYMBOL(alloc_pages_exact);
2850
ee85c2e1
AK
2851/**
2852 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2853 * pages on a node.
b5e6ab58 2854 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2855 * @size: the number of bytes to allocate
2856 * @gfp_mask: GFP flags for the allocation
2857 *
2858 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2859 * back.
2860 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2861 * but is not exact.
2862 */
2863void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2864{
2865 unsigned order = get_order(size);
2866 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2867 if (!p)
2868 return NULL;
2869 return make_alloc_exact((unsigned long)page_address(p), order, size);
2870}
2871EXPORT_SYMBOL(alloc_pages_exact_nid);
2872
2be0ffe2
TT
2873/**
2874 * free_pages_exact - release memory allocated via alloc_pages_exact()
2875 * @virt: the value returned by alloc_pages_exact.
2876 * @size: size of allocation, same value as passed to alloc_pages_exact().
2877 *
2878 * Release the memory allocated by a previous call to alloc_pages_exact.
2879 */
2880void free_pages_exact(void *virt, size_t size)
2881{
2882 unsigned long addr = (unsigned long)virt;
2883 unsigned long end = addr + PAGE_ALIGN(size);
2884
2885 while (addr < end) {
2886 free_page(addr);
2887 addr += PAGE_SIZE;
2888 }
2889}
2890EXPORT_SYMBOL(free_pages_exact);
2891
e0fb5815
ZY
2892/**
2893 * nr_free_zone_pages - count number of pages beyond high watermark
2894 * @offset: The zone index of the highest zone
2895 *
2896 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2897 * high watermark within all zones at or below a given zone index. For each
2898 * zone, the number of pages is calculated as:
834405c3 2899 * managed_pages - high_pages
e0fb5815 2900 */
ebec3862 2901static unsigned long nr_free_zone_pages(int offset)
1da177e4 2902{
dd1a239f 2903 struct zoneref *z;
54a6eb5c
MG
2904 struct zone *zone;
2905
e310fd43 2906 /* Just pick one node, since fallback list is circular */
ebec3862 2907 unsigned long sum = 0;
1da177e4 2908
0e88460d 2909 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2910
54a6eb5c 2911 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2912 unsigned long size = zone->managed_pages;
41858966 2913 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2914 if (size > high)
2915 sum += size - high;
1da177e4
LT
2916 }
2917
2918 return sum;
2919}
2920
e0fb5815
ZY
2921/**
2922 * nr_free_buffer_pages - count number of pages beyond high watermark
2923 *
2924 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2925 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2926 */
ebec3862 2927unsigned long nr_free_buffer_pages(void)
1da177e4 2928{
af4ca457 2929 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2930}
c2f1a551 2931EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2932
e0fb5815
ZY
2933/**
2934 * nr_free_pagecache_pages - count number of pages beyond high watermark
2935 *
2936 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2937 * high watermark within all zones.
1da177e4 2938 */
ebec3862 2939unsigned long nr_free_pagecache_pages(void)
1da177e4 2940{
2a1e274a 2941 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2942}
08e0f6a9
CL
2943
2944static inline void show_node(struct zone *zone)
1da177e4 2945{
e5adfffc 2946 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2947 printk("Node %d ", zone_to_nid(zone));
1da177e4 2948}
1da177e4 2949
1da177e4
LT
2950void si_meminfo(struct sysinfo *val)
2951{
2952 val->totalram = totalram_pages;
2953 val->sharedram = 0;
d23ad423 2954 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2955 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2956 val->totalhigh = totalhigh_pages;
2957 val->freehigh = nr_free_highpages();
1da177e4
LT
2958 val->mem_unit = PAGE_SIZE;
2959}
2960
2961EXPORT_SYMBOL(si_meminfo);
2962
2963#ifdef CONFIG_NUMA
2964void si_meminfo_node(struct sysinfo *val, int nid)
2965{
cdd91a77
JL
2966 int zone_type; /* needs to be signed */
2967 unsigned long managed_pages = 0;
1da177e4
LT
2968 pg_data_t *pgdat = NODE_DATA(nid);
2969
cdd91a77
JL
2970 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2971 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2972 val->totalram = managed_pages;
d23ad423 2973 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2974#ifdef CONFIG_HIGHMEM
b40da049 2975 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2976 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2977 NR_FREE_PAGES);
98d2b0eb
CL
2978#else
2979 val->totalhigh = 0;
2980 val->freehigh = 0;
2981#endif
1da177e4
LT
2982 val->mem_unit = PAGE_SIZE;
2983}
2984#endif
2985
ddd588b5 2986/*
7bf02ea2
DR
2987 * Determine whether the node should be displayed or not, depending on whether
2988 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2989 */
7bf02ea2 2990bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2991{
2992 bool ret = false;
cc9a6c87 2993 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2994
2995 if (!(flags & SHOW_MEM_FILTER_NODES))
2996 goto out;
2997
cc9a6c87
MG
2998 do {
2999 cpuset_mems_cookie = get_mems_allowed();
3000 ret = !node_isset(nid, cpuset_current_mems_allowed);
3001 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
3002out:
3003 return ret;
3004}
3005
1da177e4
LT
3006#define K(x) ((x) << (PAGE_SHIFT-10))
3007
377e4f16
RV
3008static void show_migration_types(unsigned char type)
3009{
3010 static const char types[MIGRATE_TYPES] = {
3011 [MIGRATE_UNMOVABLE] = 'U',
3012 [MIGRATE_RECLAIMABLE] = 'E',
3013 [MIGRATE_MOVABLE] = 'M',
3014 [MIGRATE_RESERVE] = 'R',
3015#ifdef CONFIG_CMA
3016 [MIGRATE_CMA] = 'C',
3017#endif
194159fb 3018#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3019 [MIGRATE_ISOLATE] = 'I',
194159fb 3020#endif
377e4f16
RV
3021 };
3022 char tmp[MIGRATE_TYPES + 1];
3023 char *p = tmp;
3024 int i;
3025
3026 for (i = 0; i < MIGRATE_TYPES; i++) {
3027 if (type & (1 << i))
3028 *p++ = types[i];
3029 }
3030
3031 *p = '\0';
3032 printk("(%s) ", tmp);
3033}
3034
1da177e4
LT
3035/*
3036 * Show free area list (used inside shift_scroll-lock stuff)
3037 * We also calculate the percentage fragmentation. We do this by counting the
3038 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3039 * Suppresses nodes that are not allowed by current's cpuset if
3040 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3041 */
7bf02ea2 3042void show_free_areas(unsigned int filter)
1da177e4 3043{
c7241913 3044 int cpu;
1da177e4
LT
3045 struct zone *zone;
3046
ee99c71c 3047 for_each_populated_zone(zone) {
7bf02ea2 3048 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3049 continue;
c7241913
JS
3050 show_node(zone);
3051 printk("%s per-cpu:\n", zone->name);
1da177e4 3052
6b482c67 3053 for_each_online_cpu(cpu) {
1da177e4
LT
3054 struct per_cpu_pageset *pageset;
3055
99dcc3e5 3056 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3057
3dfa5721
CL
3058 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3059 cpu, pageset->pcp.high,
3060 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3061 }
3062 }
3063
a731286d
KM
3064 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3065 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3066 " unevictable:%lu"
b76146ed 3067 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3068 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3069 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3070 " free_cma:%lu\n",
4f98a2fe 3071 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3072 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3073 global_page_state(NR_ISOLATED_ANON),
3074 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3075 global_page_state(NR_INACTIVE_FILE),
a731286d 3076 global_page_state(NR_ISOLATED_FILE),
7b854121 3077 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3078 global_page_state(NR_FILE_DIRTY),
ce866b34 3079 global_page_state(NR_WRITEBACK),
fd39fc85 3080 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3081 global_page_state(NR_FREE_PAGES),
3701b033
KM
3082 global_page_state(NR_SLAB_RECLAIMABLE),
3083 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3084 global_page_state(NR_FILE_MAPPED),
4b02108a 3085 global_page_state(NR_SHMEM),
a25700a5 3086 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3087 global_page_state(NR_BOUNCE),
3088 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3089
ee99c71c 3090 for_each_populated_zone(zone) {
1da177e4
LT
3091 int i;
3092
7bf02ea2 3093 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3094 continue;
1da177e4
LT
3095 show_node(zone);
3096 printk("%s"
3097 " free:%lukB"
3098 " min:%lukB"
3099 " low:%lukB"
3100 " high:%lukB"
4f98a2fe
RR
3101 " active_anon:%lukB"
3102 " inactive_anon:%lukB"
3103 " active_file:%lukB"
3104 " inactive_file:%lukB"
7b854121 3105 " unevictable:%lukB"
a731286d
KM
3106 " isolated(anon):%lukB"
3107 " isolated(file):%lukB"
1da177e4 3108 " present:%lukB"
9feedc9d 3109 " managed:%lukB"
4a0aa73f
KM
3110 " mlocked:%lukB"
3111 " dirty:%lukB"
3112 " writeback:%lukB"
3113 " mapped:%lukB"
4b02108a 3114 " shmem:%lukB"
4a0aa73f
KM
3115 " slab_reclaimable:%lukB"
3116 " slab_unreclaimable:%lukB"
c6a7f572 3117 " kernel_stack:%lukB"
4a0aa73f
KM
3118 " pagetables:%lukB"
3119 " unstable:%lukB"
3120 " bounce:%lukB"
d1ce749a 3121 " free_cma:%lukB"
4a0aa73f 3122 " writeback_tmp:%lukB"
1da177e4
LT
3123 " pages_scanned:%lu"
3124 " all_unreclaimable? %s"
3125 "\n",
3126 zone->name,
88f5acf8 3127 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3128 K(min_wmark_pages(zone)),
3129 K(low_wmark_pages(zone)),
3130 K(high_wmark_pages(zone)),
4f98a2fe
RR
3131 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3132 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3133 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3134 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3135 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3136 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3137 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3138 K(zone->present_pages),
9feedc9d 3139 K(zone->managed_pages),
4a0aa73f
KM
3140 K(zone_page_state(zone, NR_MLOCK)),
3141 K(zone_page_state(zone, NR_FILE_DIRTY)),
3142 K(zone_page_state(zone, NR_WRITEBACK)),
3143 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3144 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3145 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3146 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3147 zone_page_state(zone, NR_KERNEL_STACK) *
3148 THREAD_SIZE / 1024,
4a0aa73f
KM
3149 K(zone_page_state(zone, NR_PAGETABLE)),
3150 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3151 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3152 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3153 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3154 zone->pages_scanned,
6e543d57 3155 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3156 );
3157 printk("lowmem_reserve[]:");
3158 for (i = 0; i < MAX_NR_ZONES; i++)
3159 printk(" %lu", zone->lowmem_reserve[i]);
3160 printk("\n");
3161 }
3162
ee99c71c 3163 for_each_populated_zone(zone) {
b8af2941 3164 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3165 unsigned char types[MAX_ORDER];
1da177e4 3166
7bf02ea2 3167 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3168 continue;
1da177e4
LT
3169 show_node(zone);
3170 printk("%s: ", zone->name);
1da177e4
LT
3171
3172 spin_lock_irqsave(&zone->lock, flags);
3173 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3174 struct free_area *area = &zone->free_area[order];
3175 int type;
3176
3177 nr[order] = area->nr_free;
8f9de51a 3178 total += nr[order] << order;
377e4f16
RV
3179
3180 types[order] = 0;
3181 for (type = 0; type < MIGRATE_TYPES; type++) {
3182 if (!list_empty(&area->free_list[type]))
3183 types[order] |= 1 << type;
3184 }
1da177e4
LT
3185 }
3186 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3187 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3188 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3189 if (nr[order])
3190 show_migration_types(types[order]);
3191 }
1da177e4
LT
3192 printk("= %lukB\n", K(total));
3193 }
3194
949f7ec5
DR
3195 hugetlb_show_meminfo();
3196
e6f3602d
LW
3197 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3198
1da177e4
LT
3199 show_swap_cache_info();
3200}
3201
19770b32
MG
3202static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3203{
3204 zoneref->zone = zone;
3205 zoneref->zone_idx = zone_idx(zone);
3206}
3207
1da177e4
LT
3208/*
3209 * Builds allocation fallback zone lists.
1a93205b
CL
3210 *
3211 * Add all populated zones of a node to the zonelist.
1da177e4 3212 */
f0c0b2b8 3213static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3214 int nr_zones)
1da177e4 3215{
1a93205b 3216 struct zone *zone;
bc732f1d 3217 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3218
3219 do {
2f6726e5 3220 zone_type--;
070f8032 3221 zone = pgdat->node_zones + zone_type;
1a93205b 3222 if (populated_zone(zone)) {
dd1a239f
MG
3223 zoneref_set_zone(zone,
3224 &zonelist->_zonerefs[nr_zones++]);
070f8032 3225 check_highest_zone(zone_type);
1da177e4 3226 }
2f6726e5 3227 } while (zone_type);
bc732f1d 3228
070f8032 3229 return nr_zones;
1da177e4
LT
3230}
3231
f0c0b2b8
KH
3232
3233/*
3234 * zonelist_order:
3235 * 0 = automatic detection of better ordering.
3236 * 1 = order by ([node] distance, -zonetype)
3237 * 2 = order by (-zonetype, [node] distance)
3238 *
3239 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3240 * the same zonelist. So only NUMA can configure this param.
3241 */
3242#define ZONELIST_ORDER_DEFAULT 0
3243#define ZONELIST_ORDER_NODE 1
3244#define ZONELIST_ORDER_ZONE 2
3245
3246/* zonelist order in the kernel.
3247 * set_zonelist_order() will set this to NODE or ZONE.
3248 */
3249static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3250static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3251
3252
1da177e4 3253#ifdef CONFIG_NUMA
f0c0b2b8
KH
3254/* The value user specified ....changed by config */
3255static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3256/* string for sysctl */
3257#define NUMA_ZONELIST_ORDER_LEN 16
3258char numa_zonelist_order[16] = "default";
3259
3260/*
3261 * interface for configure zonelist ordering.
3262 * command line option "numa_zonelist_order"
3263 * = "[dD]efault - default, automatic configuration.
3264 * = "[nN]ode - order by node locality, then by zone within node
3265 * = "[zZ]one - order by zone, then by locality within zone
3266 */
3267
3268static int __parse_numa_zonelist_order(char *s)
3269{
3270 if (*s == 'd' || *s == 'D') {
3271 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3272 } else if (*s == 'n' || *s == 'N') {
3273 user_zonelist_order = ZONELIST_ORDER_NODE;
3274 } else if (*s == 'z' || *s == 'Z') {
3275 user_zonelist_order = ZONELIST_ORDER_ZONE;
3276 } else {
3277 printk(KERN_WARNING
3278 "Ignoring invalid numa_zonelist_order value: "
3279 "%s\n", s);
3280 return -EINVAL;
3281 }
3282 return 0;
3283}
3284
3285static __init int setup_numa_zonelist_order(char *s)
3286{
ecb256f8
VL
3287 int ret;
3288
3289 if (!s)
3290 return 0;
3291
3292 ret = __parse_numa_zonelist_order(s);
3293 if (ret == 0)
3294 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3295
3296 return ret;
f0c0b2b8
KH
3297}
3298early_param("numa_zonelist_order", setup_numa_zonelist_order);
3299
3300/*
3301 * sysctl handler for numa_zonelist_order
3302 */
3303int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3304 void __user *buffer, size_t *length,
f0c0b2b8
KH
3305 loff_t *ppos)
3306{
3307 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3308 int ret;
443c6f14 3309 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3310
443c6f14 3311 mutex_lock(&zl_order_mutex);
dacbde09
CG
3312 if (write) {
3313 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3314 ret = -EINVAL;
3315 goto out;
3316 }
3317 strcpy(saved_string, (char *)table->data);
3318 }
8d65af78 3319 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3320 if (ret)
443c6f14 3321 goto out;
f0c0b2b8
KH
3322 if (write) {
3323 int oldval = user_zonelist_order;
dacbde09
CG
3324
3325 ret = __parse_numa_zonelist_order((char *)table->data);
3326 if (ret) {
f0c0b2b8
KH
3327 /*
3328 * bogus value. restore saved string
3329 */
dacbde09 3330 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3331 NUMA_ZONELIST_ORDER_LEN);
3332 user_zonelist_order = oldval;
4eaf3f64
HL
3333 } else if (oldval != user_zonelist_order) {
3334 mutex_lock(&zonelists_mutex);
9adb62a5 3335 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3336 mutex_unlock(&zonelists_mutex);
3337 }
f0c0b2b8 3338 }
443c6f14
AK
3339out:
3340 mutex_unlock(&zl_order_mutex);
3341 return ret;
f0c0b2b8
KH
3342}
3343
3344
62bc62a8 3345#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3346static int node_load[MAX_NUMNODES];
3347
1da177e4 3348/**
4dc3b16b 3349 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3350 * @node: node whose fallback list we're appending
3351 * @used_node_mask: nodemask_t of already used nodes
3352 *
3353 * We use a number of factors to determine which is the next node that should
3354 * appear on a given node's fallback list. The node should not have appeared
3355 * already in @node's fallback list, and it should be the next closest node
3356 * according to the distance array (which contains arbitrary distance values
3357 * from each node to each node in the system), and should also prefer nodes
3358 * with no CPUs, since presumably they'll have very little allocation pressure
3359 * on them otherwise.
3360 * It returns -1 if no node is found.
3361 */
f0c0b2b8 3362static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3363{
4cf808eb 3364 int n, val;
1da177e4 3365 int min_val = INT_MAX;
00ef2d2f 3366 int best_node = NUMA_NO_NODE;
a70f7302 3367 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3368
4cf808eb
LT
3369 /* Use the local node if we haven't already */
3370 if (!node_isset(node, *used_node_mask)) {
3371 node_set(node, *used_node_mask);
3372 return node;
3373 }
1da177e4 3374
4b0ef1fe 3375 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3376
3377 /* Don't want a node to appear more than once */
3378 if (node_isset(n, *used_node_mask))
3379 continue;
3380
1da177e4
LT
3381 /* Use the distance array to find the distance */
3382 val = node_distance(node, n);
3383
4cf808eb
LT
3384 /* Penalize nodes under us ("prefer the next node") */
3385 val += (n < node);
3386
1da177e4 3387 /* Give preference to headless and unused nodes */
a70f7302
RR
3388 tmp = cpumask_of_node(n);
3389 if (!cpumask_empty(tmp))
1da177e4
LT
3390 val += PENALTY_FOR_NODE_WITH_CPUS;
3391
3392 /* Slight preference for less loaded node */
3393 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3394 val += node_load[n];
3395
3396 if (val < min_val) {
3397 min_val = val;
3398 best_node = n;
3399 }
3400 }
3401
3402 if (best_node >= 0)
3403 node_set(best_node, *used_node_mask);
3404
3405 return best_node;
3406}
3407
f0c0b2b8
KH
3408
3409/*
3410 * Build zonelists ordered by node and zones within node.
3411 * This results in maximum locality--normal zone overflows into local
3412 * DMA zone, if any--but risks exhausting DMA zone.
3413 */
3414static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3415{
f0c0b2b8 3416 int j;
1da177e4 3417 struct zonelist *zonelist;
f0c0b2b8 3418
54a6eb5c 3419 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3420 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3421 ;
bc732f1d 3422 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3423 zonelist->_zonerefs[j].zone = NULL;
3424 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3425}
3426
523b9458
CL
3427/*
3428 * Build gfp_thisnode zonelists
3429 */
3430static void build_thisnode_zonelists(pg_data_t *pgdat)
3431{
523b9458
CL
3432 int j;
3433 struct zonelist *zonelist;
3434
54a6eb5c 3435 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3436 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3437 zonelist->_zonerefs[j].zone = NULL;
3438 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3439}
3440
f0c0b2b8
KH
3441/*
3442 * Build zonelists ordered by zone and nodes within zones.
3443 * This results in conserving DMA zone[s] until all Normal memory is
3444 * exhausted, but results in overflowing to remote node while memory
3445 * may still exist in local DMA zone.
3446 */
3447static int node_order[MAX_NUMNODES];
3448
3449static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3450{
f0c0b2b8
KH
3451 int pos, j, node;
3452 int zone_type; /* needs to be signed */
3453 struct zone *z;
3454 struct zonelist *zonelist;
3455
54a6eb5c
MG
3456 zonelist = &pgdat->node_zonelists[0];
3457 pos = 0;
3458 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3459 for (j = 0; j < nr_nodes; j++) {
3460 node = node_order[j];
3461 z = &NODE_DATA(node)->node_zones[zone_type];
3462 if (populated_zone(z)) {
dd1a239f
MG
3463 zoneref_set_zone(z,
3464 &zonelist->_zonerefs[pos++]);
54a6eb5c 3465 check_highest_zone(zone_type);
f0c0b2b8
KH
3466 }
3467 }
f0c0b2b8 3468 }
dd1a239f
MG
3469 zonelist->_zonerefs[pos].zone = NULL;
3470 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3471}
3472
3473static int default_zonelist_order(void)
3474{
3475 int nid, zone_type;
b8af2941 3476 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3477 struct zone *z;
3478 int average_size;
3479 /*
b8af2941 3480 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3481 * If they are really small and used heavily, the system can fall
3482 * into OOM very easily.
e325c90f 3483 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3484 */
3485 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3486 low_kmem_size = 0;
3487 total_size = 0;
3488 for_each_online_node(nid) {
3489 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3490 z = &NODE_DATA(nid)->node_zones[zone_type];
3491 if (populated_zone(z)) {
3492 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3493 low_kmem_size += z->managed_pages;
3494 total_size += z->managed_pages;
e325c90f
DR
3495 } else if (zone_type == ZONE_NORMAL) {
3496 /*
3497 * If any node has only lowmem, then node order
3498 * is preferred to allow kernel allocations
3499 * locally; otherwise, they can easily infringe
3500 * on other nodes when there is an abundance of
3501 * lowmem available to allocate from.
3502 */
3503 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3504 }
3505 }
3506 }
3507 if (!low_kmem_size || /* there are no DMA area. */
3508 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3509 return ZONELIST_ORDER_NODE;
3510 /*
3511 * look into each node's config.
b8af2941
PK
3512 * If there is a node whose DMA/DMA32 memory is very big area on
3513 * local memory, NODE_ORDER may be suitable.
3514 */
37b07e41 3515 average_size = total_size /
4b0ef1fe 3516 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3517 for_each_online_node(nid) {
3518 low_kmem_size = 0;
3519 total_size = 0;
3520 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3521 z = &NODE_DATA(nid)->node_zones[zone_type];
3522 if (populated_zone(z)) {
3523 if (zone_type < ZONE_NORMAL)
3524 low_kmem_size += z->present_pages;
3525 total_size += z->present_pages;
3526 }
3527 }
3528 if (low_kmem_size &&
3529 total_size > average_size && /* ignore small node */
3530 low_kmem_size > total_size * 70/100)
3531 return ZONELIST_ORDER_NODE;
3532 }
3533 return ZONELIST_ORDER_ZONE;
3534}
3535
3536static void set_zonelist_order(void)
3537{
3538 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3539 current_zonelist_order = default_zonelist_order();
3540 else
3541 current_zonelist_order = user_zonelist_order;
3542}
3543
3544static void build_zonelists(pg_data_t *pgdat)
3545{
3546 int j, node, load;
3547 enum zone_type i;
1da177e4 3548 nodemask_t used_mask;
f0c0b2b8
KH
3549 int local_node, prev_node;
3550 struct zonelist *zonelist;
3551 int order = current_zonelist_order;
1da177e4
LT
3552
3553 /* initialize zonelists */
523b9458 3554 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3555 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3556 zonelist->_zonerefs[0].zone = NULL;
3557 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3558 }
3559
3560 /* NUMA-aware ordering of nodes */
3561 local_node = pgdat->node_id;
62bc62a8 3562 load = nr_online_nodes;
1da177e4
LT
3563 prev_node = local_node;
3564 nodes_clear(used_mask);
f0c0b2b8 3565
f0c0b2b8
KH
3566 memset(node_order, 0, sizeof(node_order));
3567 j = 0;
3568
1da177e4
LT
3569 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3570 /*
3571 * We don't want to pressure a particular node.
3572 * So adding penalty to the first node in same
3573 * distance group to make it round-robin.
3574 */
957f822a
DR
3575 if (node_distance(local_node, node) !=
3576 node_distance(local_node, prev_node))
f0c0b2b8
KH
3577 node_load[node] = load;
3578
1da177e4
LT
3579 prev_node = node;
3580 load--;
f0c0b2b8
KH
3581 if (order == ZONELIST_ORDER_NODE)
3582 build_zonelists_in_node_order(pgdat, node);
3583 else
3584 node_order[j++] = node; /* remember order */
3585 }
1da177e4 3586
f0c0b2b8
KH
3587 if (order == ZONELIST_ORDER_ZONE) {
3588 /* calculate node order -- i.e., DMA last! */
3589 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3590 }
523b9458
CL
3591
3592 build_thisnode_zonelists(pgdat);
1da177e4
LT
3593}
3594
9276b1bc 3595/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3596static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3597{
54a6eb5c
MG
3598 struct zonelist *zonelist;
3599 struct zonelist_cache *zlc;
dd1a239f 3600 struct zoneref *z;
9276b1bc 3601
54a6eb5c
MG
3602 zonelist = &pgdat->node_zonelists[0];
3603 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3604 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3605 for (z = zonelist->_zonerefs; z->zone; z++)
3606 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3607}
3608
7aac7898
LS
3609#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3610/*
3611 * Return node id of node used for "local" allocations.
3612 * I.e., first node id of first zone in arg node's generic zonelist.
3613 * Used for initializing percpu 'numa_mem', which is used primarily
3614 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3615 */
3616int local_memory_node(int node)
3617{
3618 struct zone *zone;
3619
3620 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3621 gfp_zone(GFP_KERNEL),
3622 NULL,
3623 &zone);
3624 return zone->node;
3625}
3626#endif
f0c0b2b8 3627
1da177e4
LT
3628#else /* CONFIG_NUMA */
3629
f0c0b2b8
KH
3630static void set_zonelist_order(void)
3631{
3632 current_zonelist_order = ZONELIST_ORDER_ZONE;
3633}
3634
3635static void build_zonelists(pg_data_t *pgdat)
1da177e4 3636{
19655d34 3637 int node, local_node;
54a6eb5c
MG
3638 enum zone_type j;
3639 struct zonelist *zonelist;
1da177e4
LT
3640
3641 local_node = pgdat->node_id;
1da177e4 3642
54a6eb5c 3643 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3644 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3645
54a6eb5c
MG
3646 /*
3647 * Now we build the zonelist so that it contains the zones
3648 * of all the other nodes.
3649 * We don't want to pressure a particular node, so when
3650 * building the zones for node N, we make sure that the
3651 * zones coming right after the local ones are those from
3652 * node N+1 (modulo N)
3653 */
3654 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3655 if (!node_online(node))
3656 continue;
bc732f1d 3657 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3658 }
54a6eb5c
MG
3659 for (node = 0; node < local_node; node++) {
3660 if (!node_online(node))
3661 continue;
bc732f1d 3662 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3663 }
3664
dd1a239f
MG
3665 zonelist->_zonerefs[j].zone = NULL;
3666 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3667}
3668
9276b1bc 3669/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3670static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3671{
54a6eb5c 3672 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3673}
3674
1da177e4
LT
3675#endif /* CONFIG_NUMA */
3676
99dcc3e5
CL
3677/*
3678 * Boot pageset table. One per cpu which is going to be used for all
3679 * zones and all nodes. The parameters will be set in such a way
3680 * that an item put on a list will immediately be handed over to
3681 * the buddy list. This is safe since pageset manipulation is done
3682 * with interrupts disabled.
3683 *
3684 * The boot_pagesets must be kept even after bootup is complete for
3685 * unused processors and/or zones. They do play a role for bootstrapping
3686 * hotplugged processors.
3687 *
3688 * zoneinfo_show() and maybe other functions do
3689 * not check if the processor is online before following the pageset pointer.
3690 * Other parts of the kernel may not check if the zone is available.
3691 */
3692static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3693static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3694static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3695
4eaf3f64
HL
3696/*
3697 * Global mutex to protect against size modification of zonelists
3698 * as well as to serialize pageset setup for the new populated zone.
3699 */
3700DEFINE_MUTEX(zonelists_mutex);
3701
9b1a4d38 3702/* return values int ....just for stop_machine() */
4ed7e022 3703static int __build_all_zonelists(void *data)
1da177e4 3704{
6811378e 3705 int nid;
99dcc3e5 3706 int cpu;
9adb62a5 3707 pg_data_t *self = data;
9276b1bc 3708
7f9cfb31
BL
3709#ifdef CONFIG_NUMA
3710 memset(node_load, 0, sizeof(node_load));
3711#endif
9adb62a5
JL
3712
3713 if (self && !node_online(self->node_id)) {
3714 build_zonelists(self);
3715 build_zonelist_cache(self);
3716 }
3717
9276b1bc 3718 for_each_online_node(nid) {
7ea1530a
CL
3719 pg_data_t *pgdat = NODE_DATA(nid);
3720
3721 build_zonelists(pgdat);
3722 build_zonelist_cache(pgdat);
9276b1bc 3723 }
99dcc3e5
CL
3724
3725 /*
3726 * Initialize the boot_pagesets that are going to be used
3727 * for bootstrapping processors. The real pagesets for
3728 * each zone will be allocated later when the per cpu
3729 * allocator is available.
3730 *
3731 * boot_pagesets are used also for bootstrapping offline
3732 * cpus if the system is already booted because the pagesets
3733 * are needed to initialize allocators on a specific cpu too.
3734 * F.e. the percpu allocator needs the page allocator which
3735 * needs the percpu allocator in order to allocate its pagesets
3736 * (a chicken-egg dilemma).
3737 */
7aac7898 3738 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3739 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3740
7aac7898
LS
3741#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3742 /*
3743 * We now know the "local memory node" for each node--
3744 * i.e., the node of the first zone in the generic zonelist.
3745 * Set up numa_mem percpu variable for on-line cpus. During
3746 * boot, only the boot cpu should be on-line; we'll init the
3747 * secondary cpus' numa_mem as they come on-line. During
3748 * node/memory hotplug, we'll fixup all on-line cpus.
3749 */
3750 if (cpu_online(cpu))
3751 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3752#endif
3753 }
3754
6811378e
YG
3755 return 0;
3756}
3757
4eaf3f64
HL
3758/*
3759 * Called with zonelists_mutex held always
3760 * unless system_state == SYSTEM_BOOTING.
3761 */
9adb62a5 3762void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3763{
f0c0b2b8
KH
3764 set_zonelist_order();
3765
6811378e 3766 if (system_state == SYSTEM_BOOTING) {
423b41d7 3767 __build_all_zonelists(NULL);
68ad8df4 3768 mminit_verify_zonelist();
6811378e
YG
3769 cpuset_init_current_mems_allowed();
3770 } else {
e9959f0f 3771#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3772 if (zone)
3773 setup_zone_pageset(zone);
e9959f0f 3774#endif
dd1895e2
CS
3775 /* we have to stop all cpus to guarantee there is no user
3776 of zonelist */
9adb62a5 3777 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3778 /* cpuset refresh routine should be here */
3779 }
bd1e22b8 3780 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3781 /*
3782 * Disable grouping by mobility if the number of pages in the
3783 * system is too low to allow the mechanism to work. It would be
3784 * more accurate, but expensive to check per-zone. This check is
3785 * made on memory-hotadd so a system can start with mobility
3786 * disabled and enable it later
3787 */
d9c23400 3788 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3789 page_group_by_mobility_disabled = 1;
3790 else
3791 page_group_by_mobility_disabled = 0;
3792
3793 printk("Built %i zonelists in %s order, mobility grouping %s. "
3794 "Total pages: %ld\n",
62bc62a8 3795 nr_online_nodes,
f0c0b2b8 3796 zonelist_order_name[current_zonelist_order],
9ef9acb0 3797 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3798 vm_total_pages);
3799#ifdef CONFIG_NUMA
3800 printk("Policy zone: %s\n", zone_names[policy_zone]);
3801#endif
1da177e4
LT
3802}
3803
3804/*
3805 * Helper functions to size the waitqueue hash table.
3806 * Essentially these want to choose hash table sizes sufficiently
3807 * large so that collisions trying to wait on pages are rare.
3808 * But in fact, the number of active page waitqueues on typical
3809 * systems is ridiculously low, less than 200. So this is even
3810 * conservative, even though it seems large.
3811 *
3812 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3813 * waitqueues, i.e. the size of the waitq table given the number of pages.
3814 */
3815#define PAGES_PER_WAITQUEUE 256
3816
cca448fe 3817#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3818static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3819{
3820 unsigned long size = 1;
3821
3822 pages /= PAGES_PER_WAITQUEUE;
3823
3824 while (size < pages)
3825 size <<= 1;
3826
3827 /*
3828 * Once we have dozens or even hundreds of threads sleeping
3829 * on IO we've got bigger problems than wait queue collision.
3830 * Limit the size of the wait table to a reasonable size.
3831 */
3832 size = min(size, 4096UL);
3833
3834 return max(size, 4UL);
3835}
cca448fe
YG
3836#else
3837/*
3838 * A zone's size might be changed by hot-add, so it is not possible to determine
3839 * a suitable size for its wait_table. So we use the maximum size now.
3840 *
3841 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3842 *
3843 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3844 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3845 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3846 *
3847 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3848 * or more by the traditional way. (See above). It equals:
3849 *
3850 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3851 * ia64(16K page size) : = ( 8G + 4M)byte.
3852 * powerpc (64K page size) : = (32G +16M)byte.
3853 */
3854static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3855{
3856 return 4096UL;
3857}
3858#endif
1da177e4
LT
3859
3860/*
3861 * This is an integer logarithm so that shifts can be used later
3862 * to extract the more random high bits from the multiplicative
3863 * hash function before the remainder is taken.
3864 */
3865static inline unsigned long wait_table_bits(unsigned long size)
3866{
3867 return ffz(~size);
3868}
3869
6d3163ce
AH
3870/*
3871 * Check if a pageblock contains reserved pages
3872 */
3873static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3874{
3875 unsigned long pfn;
3876
3877 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3878 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3879 return 1;
3880 }
3881 return 0;
3882}
3883
56fd56b8 3884/*
d9c23400 3885 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3886 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3887 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3888 * higher will lead to a bigger reserve which will get freed as contiguous
3889 * blocks as reclaim kicks in
3890 */
3891static void setup_zone_migrate_reserve(struct zone *zone)
3892{
6d3163ce 3893 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3894 struct page *page;
78986a67
MG
3895 unsigned long block_migratetype;
3896 int reserve;
943dca1a 3897 int old_reserve;
56fd56b8 3898
d0215638
MH
3899 /*
3900 * Get the start pfn, end pfn and the number of blocks to reserve
3901 * We have to be careful to be aligned to pageblock_nr_pages to
3902 * make sure that we always check pfn_valid for the first page in
3903 * the block.
3904 */
56fd56b8 3905 start_pfn = zone->zone_start_pfn;
108bcc96 3906 end_pfn = zone_end_pfn(zone);
d0215638 3907 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3908 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3909 pageblock_order;
56fd56b8 3910
78986a67
MG
3911 /*
3912 * Reserve blocks are generally in place to help high-order atomic
3913 * allocations that are short-lived. A min_free_kbytes value that
3914 * would result in more than 2 reserve blocks for atomic allocations
3915 * is assumed to be in place to help anti-fragmentation for the
3916 * future allocation of hugepages at runtime.
3917 */
3918 reserve = min(2, reserve);
943dca1a
YI
3919 old_reserve = zone->nr_migrate_reserve_block;
3920
3921 /* When memory hot-add, we almost always need to do nothing */
3922 if (reserve == old_reserve)
3923 return;
3924 zone->nr_migrate_reserve_block = reserve;
78986a67 3925
d9c23400 3926 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3927 if (!pfn_valid(pfn))
3928 continue;
3929 page = pfn_to_page(pfn);
3930
344c790e
AL
3931 /* Watch out for overlapping nodes */
3932 if (page_to_nid(page) != zone_to_nid(zone))
3933 continue;
3934
56fd56b8
MG
3935 block_migratetype = get_pageblock_migratetype(page);
3936
938929f1
MG
3937 /* Only test what is necessary when the reserves are not met */
3938 if (reserve > 0) {
3939 /*
3940 * Blocks with reserved pages will never free, skip
3941 * them.
3942 */
3943 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3944 if (pageblock_is_reserved(pfn, block_end_pfn))
3945 continue;
56fd56b8 3946
938929f1
MG
3947 /* If this block is reserved, account for it */
3948 if (block_migratetype == MIGRATE_RESERVE) {
3949 reserve--;
3950 continue;
3951 }
3952
3953 /* Suitable for reserving if this block is movable */
3954 if (block_migratetype == MIGRATE_MOVABLE) {
3955 set_pageblock_migratetype(page,
3956 MIGRATE_RESERVE);
3957 move_freepages_block(zone, page,
3958 MIGRATE_RESERVE);
3959 reserve--;
3960 continue;
3961 }
943dca1a
YI
3962 } else if (!old_reserve) {
3963 /*
3964 * At boot time we don't need to scan the whole zone
3965 * for turning off MIGRATE_RESERVE.
3966 */
3967 break;
56fd56b8
MG
3968 }
3969
3970 /*
3971 * If the reserve is met and this is a previous reserved block,
3972 * take it back
3973 */
3974 if (block_migratetype == MIGRATE_RESERVE) {
3975 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3976 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3977 }
3978 }
3979}
ac0e5b7a 3980
1da177e4
LT
3981/*
3982 * Initially all pages are reserved - free ones are freed
3983 * up by free_all_bootmem() once the early boot process is
3984 * done. Non-atomic initialization, single-pass.
3985 */
c09b4240 3986void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3987 unsigned long start_pfn, enum memmap_context context)
1da177e4 3988{
1da177e4 3989 struct page *page;
29751f69
AW
3990 unsigned long end_pfn = start_pfn + size;
3991 unsigned long pfn;
86051ca5 3992 struct zone *z;
1da177e4 3993
22b31eec
HD
3994 if (highest_memmap_pfn < end_pfn - 1)
3995 highest_memmap_pfn = end_pfn - 1;
3996
86051ca5 3997 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3998 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3999 /*
4000 * There can be holes in boot-time mem_map[]s
4001 * handed to this function. They do not
4002 * exist on hotplugged memory.
4003 */
4004 if (context == MEMMAP_EARLY) {
4005 if (!early_pfn_valid(pfn))
4006 continue;
4007 if (!early_pfn_in_nid(pfn, nid))
4008 continue;
4009 }
d41dee36
AW
4010 page = pfn_to_page(pfn);
4011 set_page_links(page, zone, nid, pfn);
708614e6 4012 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4013 init_page_count(page);
22b751c3 4014 page_mapcount_reset(page);
90572890 4015 page_cpupid_reset_last(page);
1da177e4 4016 SetPageReserved(page);
b2a0ac88
MG
4017 /*
4018 * Mark the block movable so that blocks are reserved for
4019 * movable at startup. This will force kernel allocations
4020 * to reserve their blocks rather than leaking throughout
4021 * the address space during boot when many long-lived
56fd56b8
MG
4022 * kernel allocations are made. Later some blocks near
4023 * the start are marked MIGRATE_RESERVE by
4024 * setup_zone_migrate_reserve()
86051ca5
KH
4025 *
4026 * bitmap is created for zone's valid pfn range. but memmap
4027 * can be created for invalid pages (for alignment)
4028 * check here not to call set_pageblock_migratetype() against
4029 * pfn out of zone.
b2a0ac88 4030 */
86051ca5 4031 if ((z->zone_start_pfn <= pfn)
108bcc96 4032 && (pfn < zone_end_pfn(z))
86051ca5 4033 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4034 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4035
1da177e4
LT
4036 INIT_LIST_HEAD(&page->lru);
4037#ifdef WANT_PAGE_VIRTUAL
4038 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4039 if (!is_highmem_idx(zone))
3212c6be 4040 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4041#endif
1da177e4
LT
4042 }
4043}
4044
1e548deb 4045static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4046{
b2a0ac88
MG
4047 int order, t;
4048 for_each_migratetype_order(order, t) {
4049 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4050 zone->free_area[order].nr_free = 0;
4051 }
4052}
4053
4054#ifndef __HAVE_ARCH_MEMMAP_INIT
4055#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4056 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4057#endif
4058
4ed7e022 4059static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4060{
3a6be87f 4061#ifdef CONFIG_MMU
e7c8d5c9
CL
4062 int batch;
4063
4064 /*
4065 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4066 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4067 *
4068 * OK, so we don't know how big the cache is. So guess.
4069 */
b40da049 4070 batch = zone->managed_pages / 1024;
ba56e91c
SR
4071 if (batch * PAGE_SIZE > 512 * 1024)
4072 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4073 batch /= 4; /* We effectively *= 4 below */
4074 if (batch < 1)
4075 batch = 1;
4076
4077 /*
0ceaacc9
NP
4078 * Clamp the batch to a 2^n - 1 value. Having a power
4079 * of 2 value was found to be more likely to have
4080 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4081 *
0ceaacc9
NP
4082 * For example if 2 tasks are alternately allocating
4083 * batches of pages, one task can end up with a lot
4084 * of pages of one half of the possible page colors
4085 * and the other with pages of the other colors.
e7c8d5c9 4086 */
9155203a 4087 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4088
e7c8d5c9 4089 return batch;
3a6be87f
DH
4090
4091#else
4092 /* The deferral and batching of frees should be suppressed under NOMMU
4093 * conditions.
4094 *
4095 * The problem is that NOMMU needs to be able to allocate large chunks
4096 * of contiguous memory as there's no hardware page translation to
4097 * assemble apparent contiguous memory from discontiguous pages.
4098 *
4099 * Queueing large contiguous runs of pages for batching, however,
4100 * causes the pages to actually be freed in smaller chunks. As there
4101 * can be a significant delay between the individual batches being
4102 * recycled, this leads to the once large chunks of space being
4103 * fragmented and becoming unavailable for high-order allocations.
4104 */
4105 return 0;
4106#endif
e7c8d5c9
CL
4107}
4108
8d7a8fa9
CS
4109/*
4110 * pcp->high and pcp->batch values are related and dependent on one another:
4111 * ->batch must never be higher then ->high.
4112 * The following function updates them in a safe manner without read side
4113 * locking.
4114 *
4115 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4116 * those fields changing asynchronously (acording the the above rule).
4117 *
4118 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4119 * outside of boot time (or some other assurance that no concurrent updaters
4120 * exist).
4121 */
4122static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4123 unsigned long batch)
4124{
4125 /* start with a fail safe value for batch */
4126 pcp->batch = 1;
4127 smp_wmb();
4128
4129 /* Update high, then batch, in order */
4130 pcp->high = high;
4131 smp_wmb();
4132
4133 pcp->batch = batch;
4134}
4135
3664033c 4136/* a companion to pageset_set_high() */
4008bab7
CS
4137static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4138{
8d7a8fa9 4139 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4140}
4141
88c90dbc 4142static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4143{
4144 struct per_cpu_pages *pcp;
5f8dcc21 4145 int migratetype;
2caaad41 4146
1c6fe946
MD
4147 memset(p, 0, sizeof(*p));
4148
3dfa5721 4149 pcp = &p->pcp;
2caaad41 4150 pcp->count = 0;
5f8dcc21
MG
4151 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4152 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4153}
4154
88c90dbc
CS
4155static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4156{
4157 pageset_init(p);
4158 pageset_set_batch(p, batch);
4159}
4160
8ad4b1fb 4161/*
3664033c 4162 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4163 * to the value high for the pageset p.
4164 */
3664033c 4165static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4166 unsigned long high)
4167{
8d7a8fa9
CS
4168 unsigned long batch = max(1UL, high / 4);
4169 if ((high / 4) > (PAGE_SHIFT * 8))
4170 batch = PAGE_SHIFT * 8;
8ad4b1fb 4171
8d7a8fa9 4172 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4173}
4174
169f6c19
CS
4175static void __meminit pageset_set_high_and_batch(struct zone *zone,
4176 struct per_cpu_pageset *pcp)
56cef2b8 4177{
56cef2b8 4178 if (percpu_pagelist_fraction)
3664033c 4179 pageset_set_high(pcp,
56cef2b8
CS
4180 (zone->managed_pages /
4181 percpu_pagelist_fraction));
4182 else
4183 pageset_set_batch(pcp, zone_batchsize(zone));
4184}
4185
169f6c19
CS
4186static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4187{
4188 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4189
4190 pageset_init(pcp);
4191 pageset_set_high_and_batch(zone, pcp);
4192}
4193
4ed7e022 4194static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4195{
4196 int cpu;
319774e2 4197 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4198 for_each_possible_cpu(cpu)
4199 zone_pageset_init(zone, cpu);
319774e2
WF
4200}
4201
2caaad41 4202/*
99dcc3e5
CL
4203 * Allocate per cpu pagesets and initialize them.
4204 * Before this call only boot pagesets were available.
e7c8d5c9 4205 */
99dcc3e5 4206void __init setup_per_cpu_pageset(void)
e7c8d5c9 4207{
99dcc3e5 4208 struct zone *zone;
e7c8d5c9 4209
319774e2
WF
4210 for_each_populated_zone(zone)
4211 setup_zone_pageset(zone);
e7c8d5c9
CL
4212}
4213
577a32f6 4214static noinline __init_refok
cca448fe 4215int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4216{
4217 int i;
cca448fe 4218 size_t alloc_size;
ed8ece2e
DH
4219
4220 /*
4221 * The per-page waitqueue mechanism uses hashed waitqueues
4222 * per zone.
4223 */
02b694de
YG
4224 zone->wait_table_hash_nr_entries =
4225 wait_table_hash_nr_entries(zone_size_pages);
4226 zone->wait_table_bits =
4227 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4228 alloc_size = zone->wait_table_hash_nr_entries
4229 * sizeof(wait_queue_head_t);
4230
cd94b9db 4231 if (!slab_is_available()) {
cca448fe 4232 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4233 memblock_virt_alloc_node_nopanic(
4234 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4235 } else {
4236 /*
4237 * This case means that a zone whose size was 0 gets new memory
4238 * via memory hot-add.
4239 * But it may be the case that a new node was hot-added. In
4240 * this case vmalloc() will not be able to use this new node's
4241 * memory - this wait_table must be initialized to use this new
4242 * node itself as well.
4243 * To use this new node's memory, further consideration will be
4244 * necessary.
4245 */
8691f3a7 4246 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4247 }
4248 if (!zone->wait_table)
4249 return -ENOMEM;
ed8ece2e 4250
b8af2941 4251 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4252 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4253
4254 return 0;
ed8ece2e
DH
4255}
4256
c09b4240 4257static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4258{
99dcc3e5
CL
4259 /*
4260 * per cpu subsystem is not up at this point. The following code
4261 * relies on the ability of the linker to provide the
4262 * offset of a (static) per cpu variable into the per cpu area.
4263 */
4264 zone->pageset = &boot_pageset;
ed8ece2e 4265
b38a8725 4266 if (populated_zone(zone))
99dcc3e5
CL
4267 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4268 zone->name, zone->present_pages,
4269 zone_batchsize(zone));
ed8ece2e
DH
4270}
4271
4ed7e022 4272int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4273 unsigned long zone_start_pfn,
a2f3aa02
DH
4274 unsigned long size,
4275 enum memmap_context context)
ed8ece2e
DH
4276{
4277 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4278 int ret;
4279 ret = zone_wait_table_init(zone, size);
4280 if (ret)
4281 return ret;
ed8ece2e
DH
4282 pgdat->nr_zones = zone_idx(zone) + 1;
4283
ed8ece2e
DH
4284 zone->zone_start_pfn = zone_start_pfn;
4285
708614e6
MG
4286 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4287 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4288 pgdat->node_id,
4289 (unsigned long)zone_idx(zone),
4290 zone_start_pfn, (zone_start_pfn + size));
4291
1e548deb 4292 zone_init_free_lists(zone);
718127cc
YG
4293
4294 return 0;
ed8ece2e
DH
4295}
4296
0ee332c1 4297#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4298#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4299/*
4300 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4301 * Architectures may implement their own version but if add_active_range()
4302 * was used and there are no special requirements, this is a convenient
4303 * alternative
4304 */
f2dbcfa7 4305int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4306{
c13291a5 4307 unsigned long start_pfn, end_pfn;
e76b63f8 4308 int nid;
7c243c71
RA
4309 /*
4310 * NOTE: The following SMP-unsafe globals are only used early in boot
4311 * when the kernel is running single-threaded.
4312 */
4313 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4314 static int __meminitdata last_nid;
4315
4316 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4317 return last_nid;
c713216d 4318
e76b63f8
YL
4319 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4320 if (nid != -1) {
4321 last_start_pfn = start_pfn;
4322 last_end_pfn = end_pfn;
4323 last_nid = nid;
4324 }
4325
4326 return nid;
c713216d
MG
4327}
4328#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4329
f2dbcfa7
KH
4330int __meminit early_pfn_to_nid(unsigned long pfn)
4331{
cc2559bc
KH
4332 int nid;
4333
4334 nid = __early_pfn_to_nid(pfn);
4335 if (nid >= 0)
4336 return nid;
4337 /* just returns 0 */
4338 return 0;
f2dbcfa7
KH
4339}
4340
cc2559bc
KH
4341#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4342bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4343{
4344 int nid;
4345
4346 nid = __early_pfn_to_nid(pfn);
4347 if (nid >= 0 && nid != node)
4348 return false;
4349 return true;
4350}
4351#endif
f2dbcfa7 4352
c713216d 4353/**
6782832e 4354 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4355 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4356 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4357 *
4358 * If an architecture guarantees that all ranges registered with
4359 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4360 * this function may be used instead of calling memblock_free_early_nid()
4361 * manually.
c713216d 4362 */
c13291a5 4363void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4364{
c13291a5
TH
4365 unsigned long start_pfn, end_pfn;
4366 int i, this_nid;
edbe7d23 4367
c13291a5
TH
4368 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4369 start_pfn = min(start_pfn, max_low_pfn);
4370 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4371
c13291a5 4372 if (start_pfn < end_pfn)
6782832e
SS
4373 memblock_free_early_nid(PFN_PHYS(start_pfn),
4374 (end_pfn - start_pfn) << PAGE_SHIFT,
4375 this_nid);
edbe7d23 4376 }
edbe7d23 4377}
edbe7d23 4378
c713216d
MG
4379/**
4380 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4381 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4382 *
4383 * If an architecture guarantees that all ranges registered with
4384 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4385 * function may be used instead of calling memory_present() manually.
c713216d
MG
4386 */
4387void __init sparse_memory_present_with_active_regions(int nid)
4388{
c13291a5
TH
4389 unsigned long start_pfn, end_pfn;
4390 int i, this_nid;
c713216d 4391
c13291a5
TH
4392 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4393 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4394}
4395
4396/**
4397 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4398 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4399 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4400 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4401 *
4402 * It returns the start and end page frame of a node based on information
4403 * provided by an arch calling add_active_range(). If called for a node
4404 * with no available memory, a warning is printed and the start and end
88ca3b94 4405 * PFNs will be 0.
c713216d 4406 */
a3142c8e 4407void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4408 unsigned long *start_pfn, unsigned long *end_pfn)
4409{
c13291a5 4410 unsigned long this_start_pfn, this_end_pfn;
c713216d 4411 int i;
c13291a5 4412
c713216d
MG
4413 *start_pfn = -1UL;
4414 *end_pfn = 0;
4415
c13291a5
TH
4416 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4417 *start_pfn = min(*start_pfn, this_start_pfn);
4418 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4419 }
4420
633c0666 4421 if (*start_pfn == -1UL)
c713216d 4422 *start_pfn = 0;
c713216d
MG
4423}
4424
2a1e274a
MG
4425/*
4426 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4427 * assumption is made that zones within a node are ordered in monotonic
4428 * increasing memory addresses so that the "highest" populated zone is used
4429 */
b69a7288 4430static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4431{
4432 int zone_index;
4433 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4434 if (zone_index == ZONE_MOVABLE)
4435 continue;
4436
4437 if (arch_zone_highest_possible_pfn[zone_index] >
4438 arch_zone_lowest_possible_pfn[zone_index])
4439 break;
4440 }
4441
4442 VM_BUG_ON(zone_index == -1);
4443 movable_zone = zone_index;
4444}
4445
4446/*
4447 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4448 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4449 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4450 * in each node depending on the size of each node and how evenly kernelcore
4451 * is distributed. This helper function adjusts the zone ranges
4452 * provided by the architecture for a given node by using the end of the
4453 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4454 * zones within a node are in order of monotonic increases memory addresses
4455 */
b69a7288 4456static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4457 unsigned long zone_type,
4458 unsigned long node_start_pfn,
4459 unsigned long node_end_pfn,
4460 unsigned long *zone_start_pfn,
4461 unsigned long *zone_end_pfn)
4462{
4463 /* Only adjust if ZONE_MOVABLE is on this node */
4464 if (zone_movable_pfn[nid]) {
4465 /* Size ZONE_MOVABLE */
4466 if (zone_type == ZONE_MOVABLE) {
4467 *zone_start_pfn = zone_movable_pfn[nid];
4468 *zone_end_pfn = min(node_end_pfn,
4469 arch_zone_highest_possible_pfn[movable_zone]);
4470
4471 /* Adjust for ZONE_MOVABLE starting within this range */
4472 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4473 *zone_end_pfn > zone_movable_pfn[nid]) {
4474 *zone_end_pfn = zone_movable_pfn[nid];
4475
4476 /* Check if this whole range is within ZONE_MOVABLE */
4477 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4478 *zone_start_pfn = *zone_end_pfn;
4479 }
4480}
4481
c713216d
MG
4482/*
4483 * Return the number of pages a zone spans in a node, including holes
4484 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4485 */
6ea6e688 4486static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4487 unsigned long zone_type,
7960aedd
ZY
4488 unsigned long node_start_pfn,
4489 unsigned long node_end_pfn,
c713216d
MG
4490 unsigned long *ignored)
4491{
c713216d
MG
4492 unsigned long zone_start_pfn, zone_end_pfn;
4493
7960aedd 4494 /* Get the start and end of the zone */
c713216d
MG
4495 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4496 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4497 adjust_zone_range_for_zone_movable(nid, zone_type,
4498 node_start_pfn, node_end_pfn,
4499 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4500
4501 /* Check that this node has pages within the zone's required range */
4502 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4503 return 0;
4504
4505 /* Move the zone boundaries inside the node if necessary */
4506 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4507 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4508
4509 /* Return the spanned pages */
4510 return zone_end_pfn - zone_start_pfn;
4511}
4512
4513/*
4514 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4515 * then all holes in the requested range will be accounted for.
c713216d 4516 */
32996250 4517unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4518 unsigned long range_start_pfn,
4519 unsigned long range_end_pfn)
4520{
96e907d1
TH
4521 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4522 unsigned long start_pfn, end_pfn;
4523 int i;
c713216d 4524
96e907d1
TH
4525 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4526 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4527 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4528 nr_absent -= end_pfn - start_pfn;
c713216d 4529 }
96e907d1 4530 return nr_absent;
c713216d
MG
4531}
4532
4533/**
4534 * absent_pages_in_range - Return number of page frames in holes within a range
4535 * @start_pfn: The start PFN to start searching for holes
4536 * @end_pfn: The end PFN to stop searching for holes
4537 *
88ca3b94 4538 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4539 */
4540unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4541 unsigned long end_pfn)
4542{
4543 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4544}
4545
4546/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4547static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4548 unsigned long zone_type,
7960aedd
ZY
4549 unsigned long node_start_pfn,
4550 unsigned long node_end_pfn,
c713216d
MG
4551 unsigned long *ignored)
4552{
96e907d1
TH
4553 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4554 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4555 unsigned long zone_start_pfn, zone_end_pfn;
4556
96e907d1
TH
4557 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4558 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4559
2a1e274a
MG
4560 adjust_zone_range_for_zone_movable(nid, zone_type,
4561 node_start_pfn, node_end_pfn,
4562 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4563 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4564}
0e0b864e 4565
0ee332c1 4566#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4567static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4568 unsigned long zone_type,
7960aedd
ZY
4569 unsigned long node_start_pfn,
4570 unsigned long node_end_pfn,
c713216d
MG
4571 unsigned long *zones_size)
4572{
4573 return zones_size[zone_type];
4574}
4575
6ea6e688 4576static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4577 unsigned long zone_type,
7960aedd
ZY
4578 unsigned long node_start_pfn,
4579 unsigned long node_end_pfn,
c713216d
MG
4580 unsigned long *zholes_size)
4581{
4582 if (!zholes_size)
4583 return 0;
4584
4585 return zholes_size[zone_type];
4586}
20e6926d 4587
0ee332c1 4588#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4589
a3142c8e 4590static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4591 unsigned long node_start_pfn,
4592 unsigned long node_end_pfn,
4593 unsigned long *zones_size,
4594 unsigned long *zholes_size)
c713216d
MG
4595{
4596 unsigned long realtotalpages, totalpages = 0;
4597 enum zone_type i;
4598
4599 for (i = 0; i < MAX_NR_ZONES; i++)
4600 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4601 node_start_pfn,
4602 node_end_pfn,
4603 zones_size);
c713216d
MG
4604 pgdat->node_spanned_pages = totalpages;
4605
4606 realtotalpages = totalpages;
4607 for (i = 0; i < MAX_NR_ZONES; i++)
4608 realtotalpages -=
4609 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4610 node_start_pfn, node_end_pfn,
4611 zholes_size);
c713216d
MG
4612 pgdat->node_present_pages = realtotalpages;
4613 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4614 realtotalpages);
4615}
4616
835c134e
MG
4617#ifndef CONFIG_SPARSEMEM
4618/*
4619 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4620 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4621 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4622 * round what is now in bits to nearest long in bits, then return it in
4623 * bytes.
4624 */
7c45512d 4625static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4626{
4627 unsigned long usemapsize;
4628
7c45512d 4629 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4630 usemapsize = roundup(zonesize, pageblock_nr_pages);
4631 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4632 usemapsize *= NR_PAGEBLOCK_BITS;
4633 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4634
4635 return usemapsize / 8;
4636}
4637
4638static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4639 struct zone *zone,
4640 unsigned long zone_start_pfn,
4641 unsigned long zonesize)
835c134e 4642{
7c45512d 4643 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4644 zone->pageblock_flags = NULL;
58a01a45 4645 if (usemapsize)
6782832e
SS
4646 zone->pageblock_flags =
4647 memblock_virt_alloc_node_nopanic(usemapsize,
4648 pgdat->node_id);
835c134e
MG
4649}
4650#else
7c45512d
LT
4651static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4652 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4653#endif /* CONFIG_SPARSEMEM */
4654
d9c23400 4655#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4656
d9c23400 4657/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4658void __paginginit set_pageblock_order(void)
d9c23400 4659{
955c1cd7
AM
4660 unsigned int order;
4661
d9c23400
MG
4662 /* Check that pageblock_nr_pages has not already been setup */
4663 if (pageblock_order)
4664 return;
4665
955c1cd7
AM
4666 if (HPAGE_SHIFT > PAGE_SHIFT)
4667 order = HUGETLB_PAGE_ORDER;
4668 else
4669 order = MAX_ORDER - 1;
4670
d9c23400
MG
4671 /*
4672 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4673 * This value may be variable depending on boot parameters on IA64 and
4674 * powerpc.
d9c23400
MG
4675 */
4676 pageblock_order = order;
4677}
4678#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4679
ba72cb8c
MG
4680/*
4681 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4682 * is unused as pageblock_order is set at compile-time. See
4683 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4684 * the kernel config
ba72cb8c 4685 */
15ca220e 4686void __paginginit set_pageblock_order(void)
ba72cb8c 4687{
ba72cb8c 4688}
d9c23400
MG
4689
4690#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4691
01cefaef
JL
4692static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4693 unsigned long present_pages)
4694{
4695 unsigned long pages = spanned_pages;
4696
4697 /*
4698 * Provide a more accurate estimation if there are holes within
4699 * the zone and SPARSEMEM is in use. If there are holes within the
4700 * zone, each populated memory region may cost us one or two extra
4701 * memmap pages due to alignment because memmap pages for each
4702 * populated regions may not naturally algined on page boundary.
4703 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4704 */
4705 if (spanned_pages > present_pages + (present_pages >> 4) &&
4706 IS_ENABLED(CONFIG_SPARSEMEM))
4707 pages = present_pages;
4708
4709 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4710}
4711
1da177e4
LT
4712/*
4713 * Set up the zone data structures:
4714 * - mark all pages reserved
4715 * - mark all memory queues empty
4716 * - clear the memory bitmaps
6527af5d
MK
4717 *
4718 * NOTE: pgdat should get zeroed by caller.
1da177e4 4719 */
b5a0e011 4720static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4721 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4722 unsigned long *zones_size, unsigned long *zholes_size)
4723{
2f1b6248 4724 enum zone_type j;
ed8ece2e 4725 int nid = pgdat->node_id;
1da177e4 4726 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4727 int ret;
1da177e4 4728
208d54e5 4729 pgdat_resize_init(pgdat);
8177a420
AA
4730#ifdef CONFIG_NUMA_BALANCING
4731 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4732 pgdat->numabalancing_migrate_nr_pages = 0;
4733 pgdat->numabalancing_migrate_next_window = jiffies;
4734#endif
1da177e4 4735 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4736 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4737 pgdat_page_cgroup_init(pgdat);
5f63b720 4738
1da177e4
LT
4739 for (j = 0; j < MAX_NR_ZONES; j++) {
4740 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4741 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4742
7960aedd
ZY
4743 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4744 node_end_pfn, zones_size);
9feedc9d 4745 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4746 node_start_pfn,
4747 node_end_pfn,
c713216d 4748 zholes_size);
1da177e4 4749
0e0b864e 4750 /*
9feedc9d 4751 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4752 * is used by this zone for memmap. This affects the watermark
4753 * and per-cpu initialisations
4754 */
01cefaef 4755 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4756 if (freesize >= memmap_pages) {
4757 freesize -= memmap_pages;
5594c8c8
YL
4758 if (memmap_pages)
4759 printk(KERN_DEBUG
4760 " %s zone: %lu pages used for memmap\n",
4761 zone_names[j], memmap_pages);
0e0b864e
MG
4762 } else
4763 printk(KERN_WARNING
9feedc9d
JL
4764 " %s zone: %lu pages exceeds freesize %lu\n",
4765 zone_names[j], memmap_pages, freesize);
0e0b864e 4766
6267276f 4767 /* Account for reserved pages */
9feedc9d
JL
4768 if (j == 0 && freesize > dma_reserve) {
4769 freesize -= dma_reserve;
d903ef9f 4770 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4771 zone_names[0], dma_reserve);
0e0b864e
MG
4772 }
4773
98d2b0eb 4774 if (!is_highmem_idx(j))
9feedc9d 4775 nr_kernel_pages += freesize;
01cefaef
JL
4776 /* Charge for highmem memmap if there are enough kernel pages */
4777 else if (nr_kernel_pages > memmap_pages * 2)
4778 nr_kernel_pages -= memmap_pages;
9feedc9d 4779 nr_all_pages += freesize;
1da177e4
LT
4780
4781 zone->spanned_pages = size;
306f2e9e 4782 zone->present_pages = realsize;
9feedc9d
JL
4783 /*
4784 * Set an approximate value for lowmem here, it will be adjusted
4785 * when the bootmem allocator frees pages into the buddy system.
4786 * And all highmem pages will be managed by the buddy system.
4787 */
4788 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4789#ifdef CONFIG_NUMA
d5f541ed 4790 zone->node = nid;
9feedc9d 4791 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4792 / 100;
9feedc9d 4793 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4794#endif
1da177e4
LT
4795 zone->name = zone_names[j];
4796 spin_lock_init(&zone->lock);
4797 spin_lock_init(&zone->lru_lock);
bdc8cb98 4798 zone_seqlock_init(zone);
1da177e4 4799 zone->zone_pgdat = pgdat;
ed8ece2e 4800 zone_pcp_init(zone);
81c0a2bb
JW
4801
4802 /* For bootup, initialized properly in watermark setup */
4803 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4804
bea8c150 4805 lruvec_init(&zone->lruvec);
1da177e4
LT
4806 if (!size)
4807 continue;
4808
955c1cd7 4809 set_pageblock_order();
7c45512d 4810 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4811 ret = init_currently_empty_zone(zone, zone_start_pfn,
4812 size, MEMMAP_EARLY);
718127cc 4813 BUG_ON(ret);
76cdd58e 4814 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4815 zone_start_pfn += size;
1da177e4
LT
4816 }
4817}
4818
577a32f6 4819static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4820{
1da177e4
LT
4821 /* Skip empty nodes */
4822 if (!pgdat->node_spanned_pages)
4823 return;
4824
d41dee36 4825#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4826 /* ia64 gets its own node_mem_map, before this, without bootmem */
4827 if (!pgdat->node_mem_map) {
e984bb43 4828 unsigned long size, start, end;
d41dee36
AW
4829 struct page *map;
4830
e984bb43
BP
4831 /*
4832 * The zone's endpoints aren't required to be MAX_ORDER
4833 * aligned but the node_mem_map endpoints must be in order
4834 * for the buddy allocator to function correctly.
4835 */
4836 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4837 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4838 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4839 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4840 map = alloc_remap(pgdat->node_id, size);
4841 if (!map)
6782832e
SS
4842 map = memblock_virt_alloc_node_nopanic(size,
4843 pgdat->node_id);
e984bb43 4844 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4845 }
12d810c1 4846#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4847 /*
4848 * With no DISCONTIG, the global mem_map is just set as node 0's
4849 */
c713216d 4850 if (pgdat == NODE_DATA(0)) {
1da177e4 4851 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4852#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4853 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4854 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4855#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4856 }
1da177e4 4857#endif
d41dee36 4858#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4859}
4860
9109fb7b
JW
4861void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4862 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4863{
9109fb7b 4864 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4865 unsigned long start_pfn = 0;
4866 unsigned long end_pfn = 0;
9109fb7b 4867
88fdf75d 4868 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4869 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4870
1da177e4
LT
4871 pgdat->node_id = nid;
4872 pgdat->node_start_pfn = node_start_pfn;
957f822a 4873 init_zone_allows_reclaim(nid);
7960aedd
ZY
4874#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4875 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4876#endif
4877 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4878 zones_size, zholes_size);
1da177e4
LT
4879
4880 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4881#ifdef CONFIG_FLAT_NODE_MEM_MAP
4882 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4883 nid, (unsigned long)pgdat,
4884 (unsigned long)pgdat->node_mem_map);
4885#endif
1da177e4 4886
7960aedd
ZY
4887 free_area_init_core(pgdat, start_pfn, end_pfn,
4888 zones_size, zholes_size);
1da177e4
LT
4889}
4890
0ee332c1 4891#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4892
4893#if MAX_NUMNODES > 1
4894/*
4895 * Figure out the number of possible node ids.
4896 */
f9872caf 4897void __init setup_nr_node_ids(void)
418508c1
MS
4898{
4899 unsigned int node;
4900 unsigned int highest = 0;
4901
4902 for_each_node_mask(node, node_possible_map)
4903 highest = node;
4904 nr_node_ids = highest + 1;
4905}
418508c1
MS
4906#endif
4907
1e01979c
TH
4908/**
4909 * node_map_pfn_alignment - determine the maximum internode alignment
4910 *
4911 * This function should be called after node map is populated and sorted.
4912 * It calculates the maximum power of two alignment which can distinguish
4913 * all the nodes.
4914 *
4915 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4916 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4917 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4918 * shifted, 1GiB is enough and this function will indicate so.
4919 *
4920 * This is used to test whether pfn -> nid mapping of the chosen memory
4921 * model has fine enough granularity to avoid incorrect mapping for the
4922 * populated node map.
4923 *
4924 * Returns the determined alignment in pfn's. 0 if there is no alignment
4925 * requirement (single node).
4926 */
4927unsigned long __init node_map_pfn_alignment(void)
4928{
4929 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4930 unsigned long start, end, mask;
1e01979c 4931 int last_nid = -1;
c13291a5 4932 int i, nid;
1e01979c 4933
c13291a5 4934 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4935 if (!start || last_nid < 0 || last_nid == nid) {
4936 last_nid = nid;
4937 last_end = end;
4938 continue;
4939 }
4940
4941 /*
4942 * Start with a mask granular enough to pin-point to the
4943 * start pfn and tick off bits one-by-one until it becomes
4944 * too coarse to separate the current node from the last.
4945 */
4946 mask = ~((1 << __ffs(start)) - 1);
4947 while (mask && last_end <= (start & (mask << 1)))
4948 mask <<= 1;
4949
4950 /* accumulate all internode masks */
4951 accl_mask |= mask;
4952 }
4953
4954 /* convert mask to number of pages */
4955 return ~accl_mask + 1;
4956}
4957
a6af2bc3 4958/* Find the lowest pfn for a node */
b69a7288 4959static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4960{
a6af2bc3 4961 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4962 unsigned long start_pfn;
4963 int i;
1abbfb41 4964
c13291a5
TH
4965 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4966 min_pfn = min(min_pfn, start_pfn);
c713216d 4967
a6af2bc3
MG
4968 if (min_pfn == ULONG_MAX) {
4969 printk(KERN_WARNING
2bc0d261 4970 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4971 return 0;
4972 }
4973
4974 return min_pfn;
c713216d
MG
4975}
4976
4977/**
4978 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4979 *
4980 * It returns the minimum PFN based on information provided via
88ca3b94 4981 * add_active_range().
c713216d
MG
4982 */
4983unsigned long __init find_min_pfn_with_active_regions(void)
4984{
4985 return find_min_pfn_for_node(MAX_NUMNODES);
4986}
4987
37b07e41
LS
4988/*
4989 * early_calculate_totalpages()
4990 * Sum pages in active regions for movable zone.
4b0ef1fe 4991 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4992 */
484f51f8 4993static unsigned long __init early_calculate_totalpages(void)
7e63efef 4994{
7e63efef 4995 unsigned long totalpages = 0;
c13291a5
TH
4996 unsigned long start_pfn, end_pfn;
4997 int i, nid;
4998
4999 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5000 unsigned long pages = end_pfn - start_pfn;
7e63efef 5001
37b07e41
LS
5002 totalpages += pages;
5003 if (pages)
4b0ef1fe 5004 node_set_state(nid, N_MEMORY);
37b07e41 5005 }
b8af2941 5006 return totalpages;
7e63efef
MG
5007}
5008
2a1e274a
MG
5009/*
5010 * Find the PFN the Movable zone begins in each node. Kernel memory
5011 * is spread evenly between nodes as long as the nodes have enough
5012 * memory. When they don't, some nodes will have more kernelcore than
5013 * others
5014 */
b224ef85 5015static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5016{
5017 int i, nid;
5018 unsigned long usable_startpfn;
5019 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5020 /* save the state before borrow the nodemask */
4b0ef1fe 5021 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5022 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5023 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
b2f3eebe
TC
5024 struct memblock_type *type = &memblock.memory;
5025
5026 /* Need to find movable_zone earlier when movable_node is specified. */
5027 find_usable_zone_for_movable();
5028
5029 /*
5030 * If movable_node is specified, ignore kernelcore and movablecore
5031 * options.
5032 */
5033 if (movable_node_is_enabled()) {
5034 for (i = 0; i < type->cnt; i++) {
5035 if (!memblock_is_hotpluggable(&type->regions[i]))
5036 continue;
5037
5038 nid = type->regions[i].nid;
5039
5040 usable_startpfn = PFN_DOWN(type->regions[i].base);
5041 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5042 min(usable_startpfn, zone_movable_pfn[nid]) :
5043 usable_startpfn;
5044 }
5045
5046 goto out2;
5047 }
2a1e274a 5048
7e63efef 5049 /*
b2f3eebe 5050 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5051 * kernelcore that corresponds so that memory usable for
5052 * any allocation type is evenly spread. If both kernelcore
5053 * and movablecore are specified, then the value of kernelcore
5054 * will be used for required_kernelcore if it's greater than
5055 * what movablecore would have allowed.
5056 */
5057 if (required_movablecore) {
7e63efef
MG
5058 unsigned long corepages;
5059
5060 /*
5061 * Round-up so that ZONE_MOVABLE is at least as large as what
5062 * was requested by the user
5063 */
5064 required_movablecore =
5065 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5066 corepages = totalpages - required_movablecore;
5067
5068 required_kernelcore = max(required_kernelcore, corepages);
5069 }
5070
20e6926d
YL
5071 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5072 if (!required_kernelcore)
66918dcd 5073 goto out;
2a1e274a
MG
5074
5075 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5076 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5077
5078restart:
5079 /* Spread kernelcore memory as evenly as possible throughout nodes */
5080 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5081 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5082 unsigned long start_pfn, end_pfn;
5083
2a1e274a
MG
5084 /*
5085 * Recalculate kernelcore_node if the division per node
5086 * now exceeds what is necessary to satisfy the requested
5087 * amount of memory for the kernel
5088 */
5089 if (required_kernelcore < kernelcore_node)
5090 kernelcore_node = required_kernelcore / usable_nodes;
5091
5092 /*
5093 * As the map is walked, we track how much memory is usable
5094 * by the kernel using kernelcore_remaining. When it is
5095 * 0, the rest of the node is usable by ZONE_MOVABLE
5096 */
5097 kernelcore_remaining = kernelcore_node;
5098
5099 /* Go through each range of PFNs within this node */
c13291a5 5100 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5101 unsigned long size_pages;
5102
c13291a5 5103 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5104 if (start_pfn >= end_pfn)
5105 continue;
5106
5107 /* Account for what is only usable for kernelcore */
5108 if (start_pfn < usable_startpfn) {
5109 unsigned long kernel_pages;
5110 kernel_pages = min(end_pfn, usable_startpfn)
5111 - start_pfn;
5112
5113 kernelcore_remaining -= min(kernel_pages,
5114 kernelcore_remaining);
5115 required_kernelcore -= min(kernel_pages,
5116 required_kernelcore);
5117
5118 /* Continue if range is now fully accounted */
5119 if (end_pfn <= usable_startpfn) {
5120
5121 /*
5122 * Push zone_movable_pfn to the end so
5123 * that if we have to rebalance
5124 * kernelcore across nodes, we will
5125 * not double account here
5126 */
5127 zone_movable_pfn[nid] = end_pfn;
5128 continue;
5129 }
5130 start_pfn = usable_startpfn;
5131 }
5132
5133 /*
5134 * The usable PFN range for ZONE_MOVABLE is from
5135 * start_pfn->end_pfn. Calculate size_pages as the
5136 * number of pages used as kernelcore
5137 */
5138 size_pages = end_pfn - start_pfn;
5139 if (size_pages > kernelcore_remaining)
5140 size_pages = kernelcore_remaining;
5141 zone_movable_pfn[nid] = start_pfn + size_pages;
5142
5143 /*
5144 * Some kernelcore has been met, update counts and
5145 * break if the kernelcore for this node has been
b8af2941 5146 * satisfied
2a1e274a
MG
5147 */
5148 required_kernelcore -= min(required_kernelcore,
5149 size_pages);
5150 kernelcore_remaining -= size_pages;
5151 if (!kernelcore_remaining)
5152 break;
5153 }
5154 }
5155
5156 /*
5157 * If there is still required_kernelcore, we do another pass with one
5158 * less node in the count. This will push zone_movable_pfn[nid] further
5159 * along on the nodes that still have memory until kernelcore is
b8af2941 5160 * satisfied
2a1e274a
MG
5161 */
5162 usable_nodes--;
5163 if (usable_nodes && required_kernelcore > usable_nodes)
5164 goto restart;
5165
b2f3eebe 5166out2:
2a1e274a
MG
5167 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5168 for (nid = 0; nid < MAX_NUMNODES; nid++)
5169 zone_movable_pfn[nid] =
5170 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5171
20e6926d 5172out:
66918dcd 5173 /* restore the node_state */
4b0ef1fe 5174 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5175}
5176
4b0ef1fe
LJ
5177/* Any regular or high memory on that node ? */
5178static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5179{
37b07e41
LS
5180 enum zone_type zone_type;
5181
4b0ef1fe
LJ
5182 if (N_MEMORY == N_NORMAL_MEMORY)
5183 return;
5184
5185 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5186 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5187 if (populated_zone(zone)) {
4b0ef1fe
LJ
5188 node_set_state(nid, N_HIGH_MEMORY);
5189 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5190 zone_type <= ZONE_NORMAL)
5191 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5192 break;
5193 }
37b07e41 5194 }
37b07e41
LS
5195}
5196
c713216d
MG
5197/**
5198 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5199 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5200 *
5201 * This will call free_area_init_node() for each active node in the system.
5202 * Using the page ranges provided by add_active_range(), the size of each
5203 * zone in each node and their holes is calculated. If the maximum PFN
5204 * between two adjacent zones match, it is assumed that the zone is empty.
5205 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5206 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5207 * starts where the previous one ended. For example, ZONE_DMA32 starts
5208 * at arch_max_dma_pfn.
5209 */
5210void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5211{
c13291a5
TH
5212 unsigned long start_pfn, end_pfn;
5213 int i, nid;
a6af2bc3 5214
c713216d
MG
5215 /* Record where the zone boundaries are */
5216 memset(arch_zone_lowest_possible_pfn, 0,
5217 sizeof(arch_zone_lowest_possible_pfn));
5218 memset(arch_zone_highest_possible_pfn, 0,
5219 sizeof(arch_zone_highest_possible_pfn));
5220 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5221 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5222 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5223 if (i == ZONE_MOVABLE)
5224 continue;
c713216d
MG
5225 arch_zone_lowest_possible_pfn[i] =
5226 arch_zone_highest_possible_pfn[i-1];
5227 arch_zone_highest_possible_pfn[i] =
5228 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5229 }
2a1e274a
MG
5230 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5231 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5232
5233 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5234 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5235 find_zone_movable_pfns_for_nodes();
c713216d 5236
c713216d 5237 /* Print out the zone ranges */
a62e2f4f 5238 printk("Zone ranges:\n");
2a1e274a
MG
5239 for (i = 0; i < MAX_NR_ZONES; i++) {
5240 if (i == ZONE_MOVABLE)
5241 continue;
155cbfc8 5242 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5243 if (arch_zone_lowest_possible_pfn[i] ==
5244 arch_zone_highest_possible_pfn[i])
155cbfc8 5245 printk(KERN_CONT "empty\n");
72f0ba02 5246 else
a62e2f4f
BH
5247 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5248 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5249 (arch_zone_highest_possible_pfn[i]
5250 << PAGE_SHIFT) - 1);
2a1e274a
MG
5251 }
5252
5253 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5254 printk("Movable zone start for each node\n");
2a1e274a
MG
5255 for (i = 0; i < MAX_NUMNODES; i++) {
5256 if (zone_movable_pfn[i])
a62e2f4f
BH
5257 printk(" Node %d: %#010lx\n", i,
5258 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5259 }
c713216d 5260
f2d52fe5 5261 /* Print out the early node map */
a62e2f4f 5262 printk("Early memory node ranges\n");
c13291a5 5263 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5264 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5265 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5266
5267 /* Initialise every node */
708614e6 5268 mminit_verify_pageflags_layout();
8ef82866 5269 setup_nr_node_ids();
c713216d
MG
5270 for_each_online_node(nid) {
5271 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5272 free_area_init_node(nid, NULL,
c713216d 5273 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5274
5275 /* Any memory on that node */
5276 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5277 node_set_state(nid, N_MEMORY);
5278 check_for_memory(pgdat, nid);
c713216d
MG
5279 }
5280}
2a1e274a 5281
7e63efef 5282static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5283{
5284 unsigned long long coremem;
5285 if (!p)
5286 return -EINVAL;
5287
5288 coremem = memparse(p, &p);
7e63efef 5289 *core = coremem >> PAGE_SHIFT;
2a1e274a 5290
7e63efef 5291 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5292 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5293
5294 return 0;
5295}
ed7ed365 5296
7e63efef
MG
5297/*
5298 * kernelcore=size sets the amount of memory for use for allocations that
5299 * cannot be reclaimed or migrated.
5300 */
5301static int __init cmdline_parse_kernelcore(char *p)
5302{
5303 return cmdline_parse_core(p, &required_kernelcore);
5304}
5305
5306/*
5307 * movablecore=size sets the amount of memory for use for allocations that
5308 * can be reclaimed or migrated.
5309 */
5310static int __init cmdline_parse_movablecore(char *p)
5311{
5312 return cmdline_parse_core(p, &required_movablecore);
5313}
5314
ed7ed365 5315early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5316early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5317
0ee332c1 5318#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5319
c3d5f5f0
JL
5320void adjust_managed_page_count(struct page *page, long count)
5321{
5322 spin_lock(&managed_page_count_lock);
5323 page_zone(page)->managed_pages += count;
5324 totalram_pages += count;
3dcc0571
JL
5325#ifdef CONFIG_HIGHMEM
5326 if (PageHighMem(page))
5327 totalhigh_pages += count;
5328#endif
c3d5f5f0
JL
5329 spin_unlock(&managed_page_count_lock);
5330}
3dcc0571 5331EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5332
11199692 5333unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5334{
11199692
JL
5335 void *pos;
5336 unsigned long pages = 0;
69afade7 5337
11199692
JL
5338 start = (void *)PAGE_ALIGN((unsigned long)start);
5339 end = (void *)((unsigned long)end & PAGE_MASK);
5340 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5341 if ((unsigned int)poison <= 0xFF)
11199692
JL
5342 memset(pos, poison, PAGE_SIZE);
5343 free_reserved_page(virt_to_page(pos));
69afade7
JL
5344 }
5345
5346 if (pages && s)
11199692 5347 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5348 s, pages << (PAGE_SHIFT - 10), start, end);
5349
5350 return pages;
5351}
11199692 5352EXPORT_SYMBOL(free_reserved_area);
69afade7 5353
cfa11e08
JL
5354#ifdef CONFIG_HIGHMEM
5355void free_highmem_page(struct page *page)
5356{
5357 __free_reserved_page(page);
5358 totalram_pages++;
7b4b2a0d 5359 page_zone(page)->managed_pages++;
cfa11e08
JL
5360 totalhigh_pages++;
5361}
5362#endif
5363
7ee3d4e8
JL
5364
5365void __init mem_init_print_info(const char *str)
5366{
5367 unsigned long physpages, codesize, datasize, rosize, bss_size;
5368 unsigned long init_code_size, init_data_size;
5369
5370 physpages = get_num_physpages();
5371 codesize = _etext - _stext;
5372 datasize = _edata - _sdata;
5373 rosize = __end_rodata - __start_rodata;
5374 bss_size = __bss_stop - __bss_start;
5375 init_data_size = __init_end - __init_begin;
5376 init_code_size = _einittext - _sinittext;
5377
5378 /*
5379 * Detect special cases and adjust section sizes accordingly:
5380 * 1) .init.* may be embedded into .data sections
5381 * 2) .init.text.* may be out of [__init_begin, __init_end],
5382 * please refer to arch/tile/kernel/vmlinux.lds.S.
5383 * 3) .rodata.* may be embedded into .text or .data sections.
5384 */
5385#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5386 do { \
5387 if (start <= pos && pos < end && size > adj) \
5388 size -= adj; \
5389 } while (0)
7ee3d4e8
JL
5390
5391 adj_init_size(__init_begin, __init_end, init_data_size,
5392 _sinittext, init_code_size);
5393 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5394 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5395 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5396 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5397
5398#undef adj_init_size
5399
5400 printk("Memory: %luK/%luK available "
5401 "(%luK kernel code, %luK rwdata, %luK rodata, "
5402 "%luK init, %luK bss, %luK reserved"
5403#ifdef CONFIG_HIGHMEM
5404 ", %luK highmem"
5405#endif
5406 "%s%s)\n",
5407 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5408 codesize >> 10, datasize >> 10, rosize >> 10,
5409 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5410 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5411#ifdef CONFIG_HIGHMEM
5412 totalhigh_pages << (PAGE_SHIFT-10),
5413#endif
5414 str ? ", " : "", str ? str : "");
5415}
5416
0e0b864e 5417/**
88ca3b94
RD
5418 * set_dma_reserve - set the specified number of pages reserved in the first zone
5419 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5420 *
5421 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5422 * In the DMA zone, a significant percentage may be consumed by kernel image
5423 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5424 * function may optionally be used to account for unfreeable pages in the
5425 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5426 * smaller per-cpu batchsize.
0e0b864e
MG
5427 */
5428void __init set_dma_reserve(unsigned long new_dma_reserve)
5429{
5430 dma_reserve = new_dma_reserve;
5431}
5432
1da177e4
LT
5433void __init free_area_init(unsigned long *zones_size)
5434{
9109fb7b 5435 free_area_init_node(0, zones_size,
1da177e4
LT
5436 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5437}
1da177e4 5438
1da177e4
LT
5439static int page_alloc_cpu_notify(struct notifier_block *self,
5440 unsigned long action, void *hcpu)
5441{
5442 int cpu = (unsigned long)hcpu;
1da177e4 5443
8bb78442 5444 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5445 lru_add_drain_cpu(cpu);
9f8f2172
CL
5446 drain_pages(cpu);
5447
5448 /*
5449 * Spill the event counters of the dead processor
5450 * into the current processors event counters.
5451 * This artificially elevates the count of the current
5452 * processor.
5453 */
f8891e5e 5454 vm_events_fold_cpu(cpu);
9f8f2172
CL
5455
5456 /*
5457 * Zero the differential counters of the dead processor
5458 * so that the vm statistics are consistent.
5459 *
5460 * This is only okay since the processor is dead and cannot
5461 * race with what we are doing.
5462 */
2bb921e5 5463 cpu_vm_stats_fold(cpu);
1da177e4
LT
5464 }
5465 return NOTIFY_OK;
5466}
1da177e4
LT
5467
5468void __init page_alloc_init(void)
5469{
5470 hotcpu_notifier(page_alloc_cpu_notify, 0);
5471}
5472
cb45b0e9
HA
5473/*
5474 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5475 * or min_free_kbytes changes.
5476 */
5477static void calculate_totalreserve_pages(void)
5478{
5479 struct pglist_data *pgdat;
5480 unsigned long reserve_pages = 0;
2f6726e5 5481 enum zone_type i, j;
cb45b0e9
HA
5482
5483 for_each_online_pgdat(pgdat) {
5484 for (i = 0; i < MAX_NR_ZONES; i++) {
5485 struct zone *zone = pgdat->node_zones + i;
5486 unsigned long max = 0;
5487
5488 /* Find valid and maximum lowmem_reserve in the zone */
5489 for (j = i; j < MAX_NR_ZONES; j++) {
5490 if (zone->lowmem_reserve[j] > max)
5491 max = zone->lowmem_reserve[j];
5492 }
5493
41858966
MG
5494 /* we treat the high watermark as reserved pages. */
5495 max += high_wmark_pages(zone);
cb45b0e9 5496
b40da049
JL
5497 if (max > zone->managed_pages)
5498 max = zone->managed_pages;
cb45b0e9 5499 reserve_pages += max;
ab8fabd4
JW
5500 /*
5501 * Lowmem reserves are not available to
5502 * GFP_HIGHUSER page cache allocations and
5503 * kswapd tries to balance zones to their high
5504 * watermark. As a result, neither should be
5505 * regarded as dirtyable memory, to prevent a
5506 * situation where reclaim has to clean pages
5507 * in order to balance the zones.
5508 */
5509 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5510 }
5511 }
ab8fabd4 5512 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5513 totalreserve_pages = reserve_pages;
5514}
5515
1da177e4
LT
5516/*
5517 * setup_per_zone_lowmem_reserve - called whenever
5518 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5519 * has a correct pages reserved value, so an adequate number of
5520 * pages are left in the zone after a successful __alloc_pages().
5521 */
5522static void setup_per_zone_lowmem_reserve(void)
5523{
5524 struct pglist_data *pgdat;
2f6726e5 5525 enum zone_type j, idx;
1da177e4 5526
ec936fc5 5527 for_each_online_pgdat(pgdat) {
1da177e4
LT
5528 for (j = 0; j < MAX_NR_ZONES; j++) {
5529 struct zone *zone = pgdat->node_zones + j;
b40da049 5530 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5531
5532 zone->lowmem_reserve[j] = 0;
5533
2f6726e5
CL
5534 idx = j;
5535 while (idx) {
1da177e4
LT
5536 struct zone *lower_zone;
5537
2f6726e5
CL
5538 idx--;
5539
1da177e4
LT
5540 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5541 sysctl_lowmem_reserve_ratio[idx] = 1;
5542
5543 lower_zone = pgdat->node_zones + idx;
b40da049 5544 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5545 sysctl_lowmem_reserve_ratio[idx];
b40da049 5546 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5547 }
5548 }
5549 }
cb45b0e9
HA
5550
5551 /* update totalreserve_pages */
5552 calculate_totalreserve_pages();
1da177e4
LT
5553}
5554
cfd3da1e 5555static void __setup_per_zone_wmarks(void)
1da177e4
LT
5556{
5557 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5558 unsigned long lowmem_pages = 0;
5559 struct zone *zone;
5560 unsigned long flags;
5561
5562 /* Calculate total number of !ZONE_HIGHMEM pages */
5563 for_each_zone(zone) {
5564 if (!is_highmem(zone))
b40da049 5565 lowmem_pages += zone->managed_pages;
1da177e4
LT
5566 }
5567
5568 for_each_zone(zone) {
ac924c60
AM
5569 u64 tmp;
5570
1125b4e3 5571 spin_lock_irqsave(&zone->lock, flags);
b40da049 5572 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5573 do_div(tmp, lowmem_pages);
1da177e4
LT
5574 if (is_highmem(zone)) {
5575 /*
669ed175
NP
5576 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5577 * need highmem pages, so cap pages_min to a small
5578 * value here.
5579 *
41858966 5580 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5581 * deltas controls asynch page reclaim, and so should
5582 * not be capped for highmem.
1da177e4 5583 */
90ae8d67 5584 unsigned long min_pages;
1da177e4 5585
b40da049 5586 min_pages = zone->managed_pages / 1024;
90ae8d67 5587 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5588 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5589 } else {
669ed175
NP
5590 /*
5591 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5592 * proportionate to the zone's size.
5593 */
41858966 5594 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5595 }
5596
41858966
MG
5597 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5598 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5599
81c0a2bb
JW
5600 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5601 high_wmark_pages(zone) -
5602 low_wmark_pages(zone) -
5603 zone_page_state(zone, NR_ALLOC_BATCH));
5604
56fd56b8 5605 setup_zone_migrate_reserve(zone);
1125b4e3 5606 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5607 }
cb45b0e9
HA
5608
5609 /* update totalreserve_pages */
5610 calculate_totalreserve_pages();
1da177e4
LT
5611}
5612
cfd3da1e
MG
5613/**
5614 * setup_per_zone_wmarks - called when min_free_kbytes changes
5615 * or when memory is hot-{added|removed}
5616 *
5617 * Ensures that the watermark[min,low,high] values for each zone are set
5618 * correctly with respect to min_free_kbytes.
5619 */
5620void setup_per_zone_wmarks(void)
5621{
5622 mutex_lock(&zonelists_mutex);
5623 __setup_per_zone_wmarks();
5624 mutex_unlock(&zonelists_mutex);
5625}
5626
55a4462a 5627/*
556adecb
RR
5628 * The inactive anon list should be small enough that the VM never has to
5629 * do too much work, but large enough that each inactive page has a chance
5630 * to be referenced again before it is swapped out.
5631 *
5632 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5633 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5634 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5635 * the anonymous pages are kept on the inactive list.
5636 *
5637 * total target max
5638 * memory ratio inactive anon
5639 * -------------------------------------
5640 * 10MB 1 5MB
5641 * 100MB 1 50MB
5642 * 1GB 3 250MB
5643 * 10GB 10 0.9GB
5644 * 100GB 31 3GB
5645 * 1TB 101 10GB
5646 * 10TB 320 32GB
5647 */
1b79acc9 5648static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5649{
96cb4df5 5650 unsigned int gb, ratio;
556adecb 5651
96cb4df5 5652 /* Zone size in gigabytes */
b40da049 5653 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5654 if (gb)
556adecb 5655 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5656 else
5657 ratio = 1;
556adecb 5658
96cb4df5
MK
5659 zone->inactive_ratio = ratio;
5660}
556adecb 5661
839a4fcc 5662static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5663{
5664 struct zone *zone;
5665
5666 for_each_zone(zone)
5667 calculate_zone_inactive_ratio(zone);
556adecb
RR
5668}
5669
1da177e4
LT
5670/*
5671 * Initialise min_free_kbytes.
5672 *
5673 * For small machines we want it small (128k min). For large machines
5674 * we want it large (64MB max). But it is not linear, because network
5675 * bandwidth does not increase linearly with machine size. We use
5676 *
b8af2941 5677 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5678 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5679 *
5680 * which yields
5681 *
5682 * 16MB: 512k
5683 * 32MB: 724k
5684 * 64MB: 1024k
5685 * 128MB: 1448k
5686 * 256MB: 2048k
5687 * 512MB: 2896k
5688 * 1024MB: 4096k
5689 * 2048MB: 5792k
5690 * 4096MB: 8192k
5691 * 8192MB: 11584k
5692 * 16384MB: 16384k
5693 */
1b79acc9 5694int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5695{
5696 unsigned long lowmem_kbytes;
5f12733e 5697 int new_min_free_kbytes;
1da177e4
LT
5698
5699 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5700 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5701
5702 if (new_min_free_kbytes > user_min_free_kbytes) {
5703 min_free_kbytes = new_min_free_kbytes;
5704 if (min_free_kbytes < 128)
5705 min_free_kbytes = 128;
5706 if (min_free_kbytes > 65536)
5707 min_free_kbytes = 65536;
5708 } else {
5709 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5710 new_min_free_kbytes, user_min_free_kbytes);
5711 }
bc75d33f 5712 setup_per_zone_wmarks();
a6cccdc3 5713 refresh_zone_stat_thresholds();
1da177e4 5714 setup_per_zone_lowmem_reserve();
556adecb 5715 setup_per_zone_inactive_ratio();
1da177e4
LT
5716 return 0;
5717}
bc75d33f 5718module_init(init_per_zone_wmark_min)
1da177e4
LT
5719
5720/*
b8af2941 5721 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5722 * that we can call two helper functions whenever min_free_kbytes
5723 * changes.
5724 */
b8af2941 5725int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5726 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5727{
8d65af78 5728 proc_dointvec(table, write, buffer, length, ppos);
5f12733e
MH
5729 if (write) {
5730 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5731 setup_per_zone_wmarks();
5f12733e 5732 }
1da177e4
LT
5733 return 0;
5734}
5735
9614634f
CL
5736#ifdef CONFIG_NUMA
5737int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5738 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5739{
5740 struct zone *zone;
5741 int rc;
5742
8d65af78 5743 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5744 if (rc)
5745 return rc;
5746
5747 for_each_zone(zone)
b40da049 5748 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5749 sysctl_min_unmapped_ratio) / 100;
5750 return 0;
5751}
0ff38490
CL
5752
5753int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5754 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5755{
5756 struct zone *zone;
5757 int rc;
5758
8d65af78 5759 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5760 if (rc)
5761 return rc;
5762
5763 for_each_zone(zone)
b40da049 5764 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5765 sysctl_min_slab_ratio) / 100;
5766 return 0;
5767}
9614634f
CL
5768#endif
5769
1da177e4
LT
5770/*
5771 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5772 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5773 * whenever sysctl_lowmem_reserve_ratio changes.
5774 *
5775 * The reserve ratio obviously has absolutely no relation with the
41858966 5776 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5777 * if in function of the boot time zone sizes.
5778 */
5779int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5780 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5781{
8d65af78 5782 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5783 setup_per_zone_lowmem_reserve();
5784 return 0;
5785}
5786
8ad4b1fb
RS
5787/*
5788 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5789 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5790 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5791 */
8ad4b1fb 5792int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5793 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5794{
5795 struct zone *zone;
5796 unsigned int cpu;
5797 int ret;
5798
8d65af78 5799 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5800 if (!write || (ret < 0))
8ad4b1fb 5801 return ret;
c8e251fa
CS
5802
5803 mutex_lock(&pcp_batch_high_lock);
364df0eb 5804 for_each_populated_zone(zone) {
22a7f12b
CS
5805 unsigned long high;
5806 high = zone->managed_pages / percpu_pagelist_fraction;
5807 for_each_possible_cpu(cpu)
3664033c
CS
5808 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5809 high);
8ad4b1fb 5810 }
c8e251fa 5811 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5812 return 0;
5813}
5814
f034b5d4 5815int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5816
5817#ifdef CONFIG_NUMA
5818static int __init set_hashdist(char *str)
5819{
5820 if (!str)
5821 return 0;
5822 hashdist = simple_strtoul(str, &str, 0);
5823 return 1;
5824}
5825__setup("hashdist=", set_hashdist);
5826#endif
5827
5828/*
5829 * allocate a large system hash table from bootmem
5830 * - it is assumed that the hash table must contain an exact power-of-2
5831 * quantity of entries
5832 * - limit is the number of hash buckets, not the total allocation size
5833 */
5834void *__init alloc_large_system_hash(const char *tablename,
5835 unsigned long bucketsize,
5836 unsigned long numentries,
5837 int scale,
5838 int flags,
5839 unsigned int *_hash_shift,
5840 unsigned int *_hash_mask,
31fe62b9
TB
5841 unsigned long low_limit,
5842 unsigned long high_limit)
1da177e4 5843{
31fe62b9 5844 unsigned long long max = high_limit;
1da177e4
LT
5845 unsigned long log2qty, size;
5846 void *table = NULL;
5847
5848 /* allow the kernel cmdline to have a say */
5849 if (!numentries) {
5850 /* round applicable memory size up to nearest megabyte */
04903664 5851 numentries = nr_kernel_pages;
a7e83318
JZ
5852
5853 /* It isn't necessary when PAGE_SIZE >= 1MB */
5854 if (PAGE_SHIFT < 20)
5855 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5856
5857 /* limit to 1 bucket per 2^scale bytes of low memory */
5858 if (scale > PAGE_SHIFT)
5859 numentries >>= (scale - PAGE_SHIFT);
5860 else
5861 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5862
5863 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5864 if (unlikely(flags & HASH_SMALL)) {
5865 /* Makes no sense without HASH_EARLY */
5866 WARN_ON(!(flags & HASH_EARLY));
5867 if (!(numentries >> *_hash_shift)) {
5868 numentries = 1UL << *_hash_shift;
5869 BUG_ON(!numentries);
5870 }
5871 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5872 numentries = PAGE_SIZE / bucketsize;
1da177e4 5873 }
6e692ed3 5874 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5875
5876 /* limit allocation size to 1/16 total memory by default */
5877 if (max == 0) {
5878 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5879 do_div(max, bucketsize);
5880 }
074b8517 5881 max = min(max, 0x80000000ULL);
1da177e4 5882
31fe62b9
TB
5883 if (numentries < low_limit)
5884 numentries = low_limit;
1da177e4
LT
5885 if (numentries > max)
5886 numentries = max;
5887
f0d1b0b3 5888 log2qty = ilog2(numentries);
1da177e4
LT
5889
5890 do {
5891 size = bucketsize << log2qty;
5892 if (flags & HASH_EARLY)
6782832e 5893 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5894 else if (hashdist)
5895 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5896 else {
1037b83b
ED
5897 /*
5898 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5899 * some pages at the end of hash table which
5900 * alloc_pages_exact() automatically does
1037b83b 5901 */
264ef8a9 5902 if (get_order(size) < MAX_ORDER) {
a1dd268c 5903 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5904 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5905 }
1da177e4
LT
5906 }
5907 } while (!table && size > PAGE_SIZE && --log2qty);
5908
5909 if (!table)
5910 panic("Failed to allocate %s hash table\n", tablename);
5911
f241e660 5912 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5913 tablename,
f241e660 5914 (1UL << log2qty),
f0d1b0b3 5915 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5916 size);
5917
5918 if (_hash_shift)
5919 *_hash_shift = log2qty;
5920 if (_hash_mask)
5921 *_hash_mask = (1 << log2qty) - 1;
5922
5923 return table;
5924}
a117e66e 5925
835c134e
MG
5926/* Return a pointer to the bitmap storing bits affecting a block of pages */
5927static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5928 unsigned long pfn)
5929{
5930#ifdef CONFIG_SPARSEMEM
5931 return __pfn_to_section(pfn)->pageblock_flags;
5932#else
5933 return zone->pageblock_flags;
5934#endif /* CONFIG_SPARSEMEM */
5935}
5936
5937static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5938{
5939#ifdef CONFIG_SPARSEMEM
5940 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5941 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5942#else
c060f943 5943 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5944 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5945#endif /* CONFIG_SPARSEMEM */
5946}
5947
5948/**
d9c23400 5949 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5950 * @page: The page within the block of interest
5951 * @start_bitidx: The first bit of interest to retrieve
5952 * @end_bitidx: The last bit of interest
5953 * returns pageblock_bits flags
5954 */
5955unsigned long get_pageblock_flags_group(struct page *page,
5956 int start_bitidx, int end_bitidx)
5957{
5958 struct zone *zone;
5959 unsigned long *bitmap;
5960 unsigned long pfn, bitidx;
5961 unsigned long flags = 0;
5962 unsigned long value = 1;
5963
5964 zone = page_zone(page);
5965 pfn = page_to_pfn(page);
5966 bitmap = get_pageblock_bitmap(zone, pfn);
5967 bitidx = pfn_to_bitidx(zone, pfn);
5968
5969 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5970 if (test_bit(bitidx + start_bitidx, bitmap))
5971 flags |= value;
6220ec78 5972
835c134e
MG
5973 return flags;
5974}
5975
5976/**
d9c23400 5977 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5978 * @page: The page within the block of interest
5979 * @start_bitidx: The first bit of interest
5980 * @end_bitidx: The last bit of interest
5981 * @flags: The flags to set
5982 */
5983void set_pageblock_flags_group(struct page *page, unsigned long flags,
5984 int start_bitidx, int end_bitidx)
5985{
5986 struct zone *zone;
5987 unsigned long *bitmap;
5988 unsigned long pfn, bitidx;
5989 unsigned long value = 1;
5990
5991 zone = page_zone(page);
5992 pfn = page_to_pfn(page);
5993 bitmap = get_pageblock_bitmap(zone, pfn);
5994 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5995 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
5996
5997 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5998 if (flags & value)
5999 __set_bit(bitidx + start_bitidx, bitmap);
6000 else
6001 __clear_bit(bitidx + start_bitidx, bitmap);
6002}
a5d76b54
KH
6003
6004/*
80934513
MK
6005 * This function checks whether pageblock includes unmovable pages or not.
6006 * If @count is not zero, it is okay to include less @count unmovable pages
6007 *
b8af2941 6008 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6009 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6010 * expect this function should be exact.
a5d76b54 6011 */
b023f468
WC
6012bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6013 bool skip_hwpoisoned_pages)
49ac8255
KH
6014{
6015 unsigned long pfn, iter, found;
47118af0
MN
6016 int mt;
6017
49ac8255
KH
6018 /*
6019 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6020 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6021 */
6022 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6023 return false;
47118af0
MN
6024 mt = get_pageblock_migratetype(page);
6025 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6026 return false;
49ac8255
KH
6027
6028 pfn = page_to_pfn(page);
6029 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6030 unsigned long check = pfn + iter;
6031
29723fcc 6032 if (!pfn_valid_within(check))
49ac8255 6033 continue;
29723fcc 6034
49ac8255 6035 page = pfn_to_page(check);
c8721bbb
NH
6036
6037 /*
6038 * Hugepages are not in LRU lists, but they're movable.
6039 * We need not scan over tail pages bacause we don't
6040 * handle each tail page individually in migration.
6041 */
6042 if (PageHuge(page)) {
6043 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6044 continue;
6045 }
6046
97d255c8
MK
6047 /*
6048 * We can't use page_count without pin a page
6049 * because another CPU can free compound page.
6050 * This check already skips compound tails of THP
6051 * because their page->_count is zero at all time.
6052 */
6053 if (!atomic_read(&page->_count)) {
49ac8255
KH
6054 if (PageBuddy(page))
6055 iter += (1 << page_order(page)) - 1;
6056 continue;
6057 }
97d255c8 6058
b023f468
WC
6059 /*
6060 * The HWPoisoned page may be not in buddy system, and
6061 * page_count() is not 0.
6062 */
6063 if (skip_hwpoisoned_pages && PageHWPoison(page))
6064 continue;
6065
49ac8255
KH
6066 if (!PageLRU(page))
6067 found++;
6068 /*
6069 * If there are RECLAIMABLE pages, we need to check it.
6070 * But now, memory offline itself doesn't call shrink_slab()
6071 * and it still to be fixed.
6072 */
6073 /*
6074 * If the page is not RAM, page_count()should be 0.
6075 * we don't need more check. This is an _used_ not-movable page.
6076 *
6077 * The problematic thing here is PG_reserved pages. PG_reserved
6078 * is set to both of a memory hole page and a _used_ kernel
6079 * page at boot.
6080 */
6081 if (found > count)
80934513 6082 return true;
49ac8255 6083 }
80934513 6084 return false;
49ac8255
KH
6085}
6086
6087bool is_pageblock_removable_nolock(struct page *page)
6088{
656a0706
MH
6089 struct zone *zone;
6090 unsigned long pfn;
687875fb
MH
6091
6092 /*
6093 * We have to be careful here because we are iterating over memory
6094 * sections which are not zone aware so we might end up outside of
6095 * the zone but still within the section.
656a0706
MH
6096 * We have to take care about the node as well. If the node is offline
6097 * its NODE_DATA will be NULL - see page_zone.
687875fb 6098 */
656a0706
MH
6099 if (!node_online(page_to_nid(page)))
6100 return false;
6101
6102 zone = page_zone(page);
6103 pfn = page_to_pfn(page);
108bcc96 6104 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6105 return false;
6106
b023f468 6107 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6108}
0c0e6195 6109
041d3a8c
MN
6110#ifdef CONFIG_CMA
6111
6112static unsigned long pfn_max_align_down(unsigned long pfn)
6113{
6114 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6115 pageblock_nr_pages) - 1);
6116}
6117
6118static unsigned long pfn_max_align_up(unsigned long pfn)
6119{
6120 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6121 pageblock_nr_pages));
6122}
6123
041d3a8c 6124/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6125static int __alloc_contig_migrate_range(struct compact_control *cc,
6126 unsigned long start, unsigned long end)
041d3a8c
MN
6127{
6128 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6129 unsigned long nr_reclaimed;
041d3a8c
MN
6130 unsigned long pfn = start;
6131 unsigned int tries = 0;
6132 int ret = 0;
6133
be49a6e1 6134 migrate_prep();
041d3a8c 6135
bb13ffeb 6136 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6137 if (fatal_signal_pending(current)) {
6138 ret = -EINTR;
6139 break;
6140 }
6141
bb13ffeb
MG
6142 if (list_empty(&cc->migratepages)) {
6143 cc->nr_migratepages = 0;
6144 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6145 pfn, end, true);
041d3a8c
MN
6146 if (!pfn) {
6147 ret = -EINTR;
6148 break;
6149 }
6150 tries = 0;
6151 } else if (++tries == 5) {
6152 ret = ret < 0 ? ret : -EBUSY;
6153 break;
6154 }
6155
beb51eaa
MK
6156 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6157 &cc->migratepages);
6158 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6159
9c620e2b
HD
6160 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6161 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6162 }
2a6f5124
SP
6163 if (ret < 0) {
6164 putback_movable_pages(&cc->migratepages);
6165 return ret;
6166 }
6167 return 0;
041d3a8c
MN
6168}
6169
6170/**
6171 * alloc_contig_range() -- tries to allocate given range of pages
6172 * @start: start PFN to allocate
6173 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6174 * @migratetype: migratetype of the underlaying pageblocks (either
6175 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6176 * in range must have the same migratetype and it must
6177 * be either of the two.
041d3a8c
MN
6178 *
6179 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6180 * aligned, however it's the caller's responsibility to guarantee that
6181 * we are the only thread that changes migrate type of pageblocks the
6182 * pages fall in.
6183 *
6184 * The PFN range must belong to a single zone.
6185 *
6186 * Returns zero on success or negative error code. On success all
6187 * pages which PFN is in [start, end) are allocated for the caller and
6188 * need to be freed with free_contig_range().
6189 */
0815f3d8
MN
6190int alloc_contig_range(unsigned long start, unsigned long end,
6191 unsigned migratetype)
041d3a8c 6192{
041d3a8c
MN
6193 unsigned long outer_start, outer_end;
6194 int ret = 0, order;
6195
bb13ffeb
MG
6196 struct compact_control cc = {
6197 .nr_migratepages = 0,
6198 .order = -1,
6199 .zone = page_zone(pfn_to_page(start)),
6200 .sync = true,
6201 .ignore_skip_hint = true,
6202 };
6203 INIT_LIST_HEAD(&cc.migratepages);
6204
041d3a8c
MN
6205 /*
6206 * What we do here is we mark all pageblocks in range as
6207 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6208 * have different sizes, and due to the way page allocator
6209 * work, we align the range to biggest of the two pages so
6210 * that page allocator won't try to merge buddies from
6211 * different pageblocks and change MIGRATE_ISOLATE to some
6212 * other migration type.
6213 *
6214 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6215 * migrate the pages from an unaligned range (ie. pages that
6216 * we are interested in). This will put all the pages in
6217 * range back to page allocator as MIGRATE_ISOLATE.
6218 *
6219 * When this is done, we take the pages in range from page
6220 * allocator removing them from the buddy system. This way
6221 * page allocator will never consider using them.
6222 *
6223 * This lets us mark the pageblocks back as
6224 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6225 * aligned range but not in the unaligned, original range are
6226 * put back to page allocator so that buddy can use them.
6227 */
6228
6229 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6230 pfn_max_align_up(end), migratetype,
6231 false);
041d3a8c 6232 if (ret)
86a595f9 6233 return ret;
041d3a8c 6234
bb13ffeb 6235 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6236 if (ret)
6237 goto done;
6238
6239 /*
6240 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6241 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6242 * more, all pages in [start, end) are free in page allocator.
6243 * What we are going to do is to allocate all pages from
6244 * [start, end) (that is remove them from page allocator).
6245 *
6246 * The only problem is that pages at the beginning and at the
6247 * end of interesting range may be not aligned with pages that
6248 * page allocator holds, ie. they can be part of higher order
6249 * pages. Because of this, we reserve the bigger range and
6250 * once this is done free the pages we are not interested in.
6251 *
6252 * We don't have to hold zone->lock here because the pages are
6253 * isolated thus they won't get removed from buddy.
6254 */
6255
6256 lru_add_drain_all();
6257 drain_all_pages();
6258
6259 order = 0;
6260 outer_start = start;
6261 while (!PageBuddy(pfn_to_page(outer_start))) {
6262 if (++order >= MAX_ORDER) {
6263 ret = -EBUSY;
6264 goto done;
6265 }
6266 outer_start &= ~0UL << order;
6267 }
6268
6269 /* Make sure the range is really isolated. */
b023f468 6270 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6271 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6272 outer_start, end);
6273 ret = -EBUSY;
6274 goto done;
6275 }
6276
49f223a9
MS
6277
6278 /* Grab isolated pages from freelists. */
bb13ffeb 6279 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6280 if (!outer_end) {
6281 ret = -EBUSY;
6282 goto done;
6283 }
6284
6285 /* Free head and tail (if any) */
6286 if (start != outer_start)
6287 free_contig_range(outer_start, start - outer_start);
6288 if (end != outer_end)
6289 free_contig_range(end, outer_end - end);
6290
6291done:
6292 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6293 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6294 return ret;
6295}
6296
6297void free_contig_range(unsigned long pfn, unsigned nr_pages)
6298{
bcc2b02f
MS
6299 unsigned int count = 0;
6300
6301 for (; nr_pages--; pfn++) {
6302 struct page *page = pfn_to_page(pfn);
6303
6304 count += page_count(page) != 1;
6305 __free_page(page);
6306 }
6307 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6308}
6309#endif
6310
4ed7e022 6311#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6312/*
6313 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6314 * page high values need to be recalulated.
6315 */
4ed7e022
JL
6316void __meminit zone_pcp_update(struct zone *zone)
6317{
0a647f38 6318 unsigned cpu;
c8e251fa 6319 mutex_lock(&pcp_batch_high_lock);
0a647f38 6320 for_each_possible_cpu(cpu)
169f6c19
CS
6321 pageset_set_high_and_batch(zone,
6322 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6323 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6324}
6325#endif
6326
340175b7
JL
6327void zone_pcp_reset(struct zone *zone)
6328{
6329 unsigned long flags;
5a883813
MK
6330 int cpu;
6331 struct per_cpu_pageset *pset;
340175b7
JL
6332
6333 /* avoid races with drain_pages() */
6334 local_irq_save(flags);
6335 if (zone->pageset != &boot_pageset) {
5a883813
MK
6336 for_each_online_cpu(cpu) {
6337 pset = per_cpu_ptr(zone->pageset, cpu);
6338 drain_zonestat(zone, pset);
6339 }
340175b7
JL
6340 free_percpu(zone->pageset);
6341 zone->pageset = &boot_pageset;
6342 }
6343 local_irq_restore(flags);
6344}
6345
6dcd73d7 6346#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6347/*
6348 * All pages in the range must be isolated before calling this.
6349 */
6350void
6351__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6352{
6353 struct page *page;
6354 struct zone *zone;
6355 int order, i;
6356 unsigned long pfn;
6357 unsigned long flags;
6358 /* find the first valid pfn */
6359 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6360 if (pfn_valid(pfn))
6361 break;
6362 if (pfn == end_pfn)
6363 return;
6364 zone = page_zone(pfn_to_page(pfn));
6365 spin_lock_irqsave(&zone->lock, flags);
6366 pfn = start_pfn;
6367 while (pfn < end_pfn) {
6368 if (!pfn_valid(pfn)) {
6369 pfn++;
6370 continue;
6371 }
6372 page = pfn_to_page(pfn);
b023f468
WC
6373 /*
6374 * The HWPoisoned page may be not in buddy system, and
6375 * page_count() is not 0.
6376 */
6377 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6378 pfn++;
6379 SetPageReserved(page);
6380 continue;
6381 }
6382
0c0e6195
KH
6383 BUG_ON(page_count(page));
6384 BUG_ON(!PageBuddy(page));
6385 order = page_order(page);
6386#ifdef CONFIG_DEBUG_VM
6387 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6388 pfn, 1 << order, end_pfn);
6389#endif
6390 list_del(&page->lru);
6391 rmv_page_order(page);
6392 zone->free_area[order].nr_free--;
0c0e6195
KH
6393 for (i = 0; i < (1 << order); i++)
6394 SetPageReserved((page+i));
6395 pfn += (1 << order);
6396 }
6397 spin_unlock_irqrestore(&zone->lock, flags);
6398}
6399#endif
8d22ba1b
WF
6400
6401#ifdef CONFIG_MEMORY_FAILURE
6402bool is_free_buddy_page(struct page *page)
6403{
6404 struct zone *zone = page_zone(page);
6405 unsigned long pfn = page_to_pfn(page);
6406 unsigned long flags;
6407 int order;
6408
6409 spin_lock_irqsave(&zone->lock, flags);
6410 for (order = 0; order < MAX_ORDER; order++) {
6411 struct page *page_head = page - (pfn & ((1 << order) - 1));
6412
6413 if (PageBuddy(page_head) && page_order(page_head) >= order)
6414 break;
6415 }
6416 spin_unlock_irqrestore(&zone->lock, flags);
6417
6418 return order < MAX_ORDER;
6419}
6420#endif
718a3821 6421
51300cef 6422static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6423 {1UL << PG_locked, "locked" },
6424 {1UL << PG_error, "error" },
6425 {1UL << PG_referenced, "referenced" },
6426 {1UL << PG_uptodate, "uptodate" },
6427 {1UL << PG_dirty, "dirty" },
6428 {1UL << PG_lru, "lru" },
6429 {1UL << PG_active, "active" },
6430 {1UL << PG_slab, "slab" },
6431 {1UL << PG_owner_priv_1, "owner_priv_1" },
6432 {1UL << PG_arch_1, "arch_1" },
6433 {1UL << PG_reserved, "reserved" },
6434 {1UL << PG_private, "private" },
6435 {1UL << PG_private_2, "private_2" },
6436 {1UL << PG_writeback, "writeback" },
6437#ifdef CONFIG_PAGEFLAGS_EXTENDED
6438 {1UL << PG_head, "head" },
6439 {1UL << PG_tail, "tail" },
6440#else
6441 {1UL << PG_compound, "compound" },
6442#endif
6443 {1UL << PG_swapcache, "swapcache" },
6444 {1UL << PG_mappedtodisk, "mappedtodisk" },
6445 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6446 {1UL << PG_swapbacked, "swapbacked" },
6447 {1UL << PG_unevictable, "unevictable" },
6448#ifdef CONFIG_MMU
6449 {1UL << PG_mlocked, "mlocked" },
6450#endif
6451#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6452 {1UL << PG_uncached, "uncached" },
6453#endif
6454#ifdef CONFIG_MEMORY_FAILURE
6455 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6456#endif
6457#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6458 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6459#endif
718a3821
WF
6460};
6461
6462static void dump_page_flags(unsigned long flags)
6463{
6464 const char *delim = "";
6465 unsigned long mask;
6466 int i;
6467
51300cef 6468 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6469
718a3821
WF
6470 printk(KERN_ALERT "page flags: %#lx(", flags);
6471
6472 /* remove zone id */
6473 flags &= (1UL << NR_PAGEFLAGS) - 1;
6474
51300cef 6475 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6476
6477 mask = pageflag_names[i].mask;
6478 if ((flags & mask) != mask)
6479 continue;
6480
6481 flags &= ~mask;
6482 printk("%s%s", delim, pageflag_names[i].name);
6483 delim = "|";
6484 }
6485
6486 /* check for left over flags */
6487 if (flags)
6488 printk("%s%#lx", delim, flags);
6489
6490 printk(")\n");
6491}
6492
6493void dump_page(struct page *page)
6494{
6495 printk(KERN_ALERT
6496 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6497 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6498 page->mapping, page->index);
6499 dump_page_flags(page->flags);
f212ad7c 6500 mem_cgroup_print_bad_page(page);
718a3821 6501}