]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: make __free_pages_bootmem() only available at boot time
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
1da177e4
LT
63
64#include <asm/tlbflush.h>
ac924c60 65#include <asm/div64.h>
1da177e4
LT
66#include "internal.h"
67
c8e251fa
CS
68/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69static DEFINE_MUTEX(pcp_batch_high_lock);
70
72812019
LS
71#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
72DEFINE_PER_CPU(int, numa_node);
73EXPORT_PER_CPU_SYMBOL(numa_node);
74#endif
75
7aac7898
LS
76#ifdef CONFIG_HAVE_MEMORYLESS_NODES
77/*
78 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
79 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
80 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
81 * defined in <linux/topology.h>.
82 */
83DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
84EXPORT_PER_CPU_SYMBOL(_numa_mem_);
85#endif
86
1da177e4 87/*
13808910 88 * Array of node states.
1da177e4 89 */
13808910
CL
90nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
91 [N_POSSIBLE] = NODE_MASK_ALL,
92 [N_ONLINE] = { { [0] = 1UL } },
93#ifndef CONFIG_NUMA
94 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
95#ifdef CONFIG_HIGHMEM
96 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
97#endif
98#ifdef CONFIG_MOVABLE_NODE
99 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
100#endif
101 [N_CPU] = { { [0] = 1UL } },
102#endif /* NUMA */
103};
104EXPORT_SYMBOL(node_states);
105
c3d5f5f0
JL
106/* Protect totalram_pages and zone->managed_pages */
107static DEFINE_SPINLOCK(managed_page_count_lock);
108
6c231b7b 109unsigned long totalram_pages __read_mostly;
cb45b0e9 110unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
111/*
112 * When calculating the number of globally allowed dirty pages, there
113 * is a certain number of per-zone reserves that should not be
114 * considered dirtyable memory. This is the sum of those reserves
115 * over all existing zones that contribute dirtyable memory.
116 */
117unsigned long dirty_balance_reserve __read_mostly;
118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
452aa699
RW
122#ifdef CONFIG_PM_SLEEP
123/*
124 * The following functions are used by the suspend/hibernate code to temporarily
125 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
126 * while devices are suspended. To avoid races with the suspend/hibernate code,
127 * they should always be called with pm_mutex held (gfp_allowed_mask also should
128 * only be modified with pm_mutex held, unless the suspend/hibernate code is
129 * guaranteed not to run in parallel with that modification).
130 */
c9e664f1
RW
131
132static gfp_t saved_gfp_mask;
133
134void pm_restore_gfp_mask(void)
452aa699
RW
135{
136 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
137 if (saved_gfp_mask) {
138 gfp_allowed_mask = saved_gfp_mask;
139 saved_gfp_mask = 0;
140 }
452aa699
RW
141}
142
c9e664f1 143void pm_restrict_gfp_mask(void)
452aa699 144{
452aa699 145 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
146 WARN_ON(saved_gfp_mask);
147 saved_gfp_mask = gfp_allowed_mask;
148 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 149}
f90ac398
MG
150
151bool pm_suspended_storage(void)
152{
153 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
154 return false;
155 return true;
156}
452aa699
RW
157#endif /* CONFIG_PM_SLEEP */
158
d9c23400
MG
159#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
160int pageblock_order __read_mostly;
161#endif
162
d98c7a09 163static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 164
1da177e4
LT
165/*
166 * results with 256, 32 in the lowmem_reserve sysctl:
167 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
168 * 1G machine -> (16M dma, 784M normal, 224M high)
169 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
170 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
171 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
172 *
173 * TBD: should special case ZONE_DMA32 machines here - in those we normally
174 * don't need any ZONE_NORMAL reservation
1da177e4 175 */
2f1b6248 176int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 177#ifdef CONFIG_ZONE_DMA
2f1b6248 178 256,
4b51d669 179#endif
fb0e7942 180#ifdef CONFIG_ZONE_DMA32
2f1b6248 181 256,
fb0e7942 182#endif
e53ef38d 183#ifdef CONFIG_HIGHMEM
2a1e274a 184 32,
e53ef38d 185#endif
2a1e274a 186 32,
2f1b6248 187};
1da177e4
LT
188
189EXPORT_SYMBOL(totalram_pages);
1da177e4 190
15ad7cdc 191static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 192#ifdef CONFIG_ZONE_DMA
2f1b6248 193 "DMA",
4b51d669 194#endif
fb0e7942 195#ifdef CONFIG_ZONE_DMA32
2f1b6248 196 "DMA32",
fb0e7942 197#endif
2f1b6248 198 "Normal",
e53ef38d 199#ifdef CONFIG_HIGHMEM
2a1e274a 200 "HighMem",
e53ef38d 201#endif
2a1e274a 202 "Movable",
2f1b6248
CL
203};
204
1da177e4
LT
205int min_free_kbytes = 1024;
206
2c85f51d
JB
207static unsigned long __meminitdata nr_kernel_pages;
208static unsigned long __meminitdata nr_all_pages;
a3142c8e 209static unsigned long __meminitdata dma_reserve;
1da177e4 210
0ee332c1
TH
211#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
212static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
213static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
214static unsigned long __initdata required_kernelcore;
215static unsigned long __initdata required_movablecore;
216static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
217
218/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
219int movable_zone;
220EXPORT_SYMBOL(movable_zone);
221#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 222
418508c1
MS
223#if MAX_NUMNODES > 1
224int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 225int nr_online_nodes __read_mostly = 1;
418508c1 226EXPORT_SYMBOL(nr_node_ids);
62bc62a8 227EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
228#endif
229
9ef9acb0
MG
230int page_group_by_mobility_disabled __read_mostly;
231
ee6f509c 232void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 233{
49255c61
MG
234
235 if (unlikely(page_group_by_mobility_disabled))
236 migratetype = MIGRATE_UNMOVABLE;
237
b2a0ac88
MG
238 set_pageblock_flags_group(page, (unsigned long)migratetype,
239 PB_migrate, PB_migrate_end);
240}
241
7f33d49a
RW
242bool oom_killer_disabled __read_mostly;
243
13e7444b 244#ifdef CONFIG_DEBUG_VM
c6a57e19 245static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 246{
bdc8cb98
DH
247 int ret = 0;
248 unsigned seq;
249 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 250 unsigned long sp, start_pfn;
c6a57e19 251
bdc8cb98
DH
252 do {
253 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
254 start_pfn = zone->zone_start_pfn;
255 sp = zone->spanned_pages;
108bcc96 256 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
257 ret = 1;
258 } while (zone_span_seqretry(zone, seq));
259
b5e6a5a2
CS
260 if (ret)
261 pr_err("page %lu outside zone [ %lu - %lu ]\n",
262 pfn, start_pfn, start_pfn + sp);
263
bdc8cb98 264 return ret;
c6a57e19
DH
265}
266
267static int page_is_consistent(struct zone *zone, struct page *page)
268{
14e07298 269 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 270 return 0;
1da177e4 271 if (zone != page_zone(page))
c6a57e19
DH
272 return 0;
273
274 return 1;
275}
276/*
277 * Temporary debugging check for pages not lying within a given zone.
278 */
279static int bad_range(struct zone *zone, struct page *page)
280{
281 if (page_outside_zone_boundaries(zone, page))
1da177e4 282 return 1;
c6a57e19
DH
283 if (!page_is_consistent(zone, page))
284 return 1;
285
1da177e4
LT
286 return 0;
287}
13e7444b
NP
288#else
289static inline int bad_range(struct zone *zone, struct page *page)
290{
291 return 0;
292}
293#endif
294
224abf92 295static void bad_page(struct page *page)
1da177e4 296{
d936cf9b
HD
297 static unsigned long resume;
298 static unsigned long nr_shown;
299 static unsigned long nr_unshown;
300
2a7684a2
WF
301 /* Don't complain about poisoned pages */
302 if (PageHWPoison(page)) {
22b751c3 303 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
304 return;
305 }
306
d936cf9b
HD
307 /*
308 * Allow a burst of 60 reports, then keep quiet for that minute;
309 * or allow a steady drip of one report per second.
310 */
311 if (nr_shown == 60) {
312 if (time_before(jiffies, resume)) {
313 nr_unshown++;
314 goto out;
315 }
316 if (nr_unshown) {
1e9e6365
HD
317 printk(KERN_ALERT
318 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
319 nr_unshown);
320 nr_unshown = 0;
321 }
322 nr_shown = 0;
323 }
324 if (nr_shown++ == 0)
325 resume = jiffies + 60 * HZ;
326
1e9e6365 327 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 328 current->comm, page_to_pfn(page));
718a3821 329 dump_page(page);
3dc14741 330
4f31888c 331 print_modules();
1da177e4 332 dump_stack();
d936cf9b 333out:
8cc3b392 334 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 335 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 336 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
337}
338
1da177e4
LT
339/*
340 * Higher-order pages are called "compound pages". They are structured thusly:
341 *
342 * The first PAGE_SIZE page is called the "head page".
343 *
344 * The remaining PAGE_SIZE pages are called "tail pages".
345 *
6416b9fa
WSH
346 * All pages have PG_compound set. All tail pages have their ->first_page
347 * pointing at the head page.
1da177e4 348 *
41d78ba5
HD
349 * The first tail page's ->lru.next holds the address of the compound page's
350 * put_page() function. Its ->lru.prev holds the order of allocation.
351 * This usage means that zero-order pages may not be compound.
1da177e4 352 */
d98c7a09
HD
353
354static void free_compound_page(struct page *page)
355{
d85f3385 356 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
357}
358
01ad1c08 359void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
360{
361 int i;
362 int nr_pages = 1 << order;
363
364 set_compound_page_dtor(page, free_compound_page);
365 set_compound_order(page, order);
366 __SetPageHead(page);
367 for (i = 1; i < nr_pages; i++) {
368 struct page *p = page + i;
18229df5 369 __SetPageTail(p);
58a84aa9 370 set_page_count(p, 0);
18229df5
AW
371 p->first_page = page;
372 }
373}
374
59ff4216 375/* update __split_huge_page_refcount if you change this function */
8cc3b392 376static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
377{
378 int i;
379 int nr_pages = 1 << order;
8cc3b392 380 int bad = 0;
1da177e4 381
0bb2c763 382 if (unlikely(compound_order(page) != order)) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
1da177e4 386
6d777953 387 __ClearPageHead(page);
8cc3b392 388
18229df5
AW
389 for (i = 1; i < nr_pages; i++) {
390 struct page *p = page + i;
1da177e4 391
e713a21d 392 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 393 bad_page(page);
8cc3b392
HD
394 bad++;
395 }
d85f3385 396 __ClearPageTail(p);
1da177e4 397 }
8cc3b392
HD
398
399 return bad;
1da177e4 400}
1da177e4 401
17cf4406
NP
402static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
403{
404 int i;
405
6626c5d5
AM
406 /*
407 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
408 * and __GFP_HIGHMEM from hard or soft interrupt context.
409 */
725d704e 410 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
411 for (i = 0; i < (1 << order); i++)
412 clear_highpage(page + i);
413}
414
c0a32fc5
SG
415#ifdef CONFIG_DEBUG_PAGEALLOC
416unsigned int _debug_guardpage_minorder;
417
418static int __init debug_guardpage_minorder_setup(char *buf)
419{
420 unsigned long res;
421
422 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
423 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
424 return 0;
425 }
426 _debug_guardpage_minorder = res;
427 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
428 return 0;
429}
430__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
431
432static inline void set_page_guard_flag(struct page *page)
433{
434 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
435}
436
437static inline void clear_page_guard_flag(struct page *page)
438{
439 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
440}
441#else
442static inline void set_page_guard_flag(struct page *page) { }
443static inline void clear_page_guard_flag(struct page *page) { }
444#endif
445
6aa3001b
AM
446static inline void set_page_order(struct page *page, int order)
447{
4c21e2f2 448 set_page_private(page, order);
676165a8 449 __SetPageBuddy(page);
1da177e4
LT
450}
451
452static inline void rmv_page_order(struct page *page)
453{
676165a8 454 __ClearPageBuddy(page);
4c21e2f2 455 set_page_private(page, 0);
1da177e4
LT
456}
457
458/*
459 * Locate the struct page for both the matching buddy in our
460 * pair (buddy1) and the combined O(n+1) page they form (page).
461 *
462 * 1) Any buddy B1 will have an order O twin B2 which satisfies
463 * the following equation:
464 * B2 = B1 ^ (1 << O)
465 * For example, if the starting buddy (buddy2) is #8 its order
466 * 1 buddy is #10:
467 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
468 *
469 * 2) Any buddy B will have an order O+1 parent P which
470 * satisfies the following equation:
471 * P = B & ~(1 << O)
472 *
d6e05edc 473 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 474 */
1da177e4 475static inline unsigned long
43506fad 476__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 477{
43506fad 478 return page_idx ^ (1 << order);
1da177e4
LT
479}
480
481/*
482 * This function checks whether a page is free && is the buddy
483 * we can do coalesce a page and its buddy if
13e7444b 484 * (a) the buddy is not in a hole &&
676165a8 485 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
486 * (c) a page and its buddy have the same order &&
487 * (d) a page and its buddy are in the same zone.
676165a8 488 *
5f24ce5f
AA
489 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
490 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 491 *
676165a8 492 * For recording page's order, we use page_private(page).
1da177e4 493 */
cb2b95e1
AW
494static inline int page_is_buddy(struct page *page, struct page *buddy,
495 int order)
1da177e4 496{
14e07298 497 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 498 return 0;
13e7444b 499
cb2b95e1
AW
500 if (page_zone_id(page) != page_zone_id(buddy))
501 return 0;
502
c0a32fc5
SG
503 if (page_is_guard(buddy) && page_order(buddy) == order) {
504 VM_BUG_ON(page_count(buddy) != 0);
505 return 1;
506 }
507
cb2b95e1 508 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 509 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 510 return 1;
676165a8 511 }
6aa3001b 512 return 0;
1da177e4
LT
513}
514
515/*
516 * Freeing function for a buddy system allocator.
517 *
518 * The concept of a buddy system is to maintain direct-mapped table
519 * (containing bit values) for memory blocks of various "orders".
520 * The bottom level table contains the map for the smallest allocatable
521 * units of memory (here, pages), and each level above it describes
522 * pairs of units from the levels below, hence, "buddies".
523 * At a high level, all that happens here is marking the table entry
524 * at the bottom level available, and propagating the changes upward
525 * as necessary, plus some accounting needed to play nicely with other
526 * parts of the VM system.
527 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 528 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 529 * order is recorded in page_private(page) field.
1da177e4 530 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
531 * other. That is, if we allocate a small block, and both were
532 * free, the remainder of the region must be split into blocks.
1da177e4 533 * If a block is freed, and its buddy is also free, then this
5f63b720 534 * triggers coalescing into a block of larger size.
1da177e4 535 *
6d49e352 536 * -- nyc
1da177e4
LT
537 */
538
48db57f8 539static inline void __free_one_page(struct page *page,
ed0ae21d
MG
540 struct zone *zone, unsigned int order,
541 int migratetype)
1da177e4
LT
542{
543 unsigned long page_idx;
6dda9d55 544 unsigned long combined_idx;
43506fad 545 unsigned long uninitialized_var(buddy_idx);
6dda9d55 546 struct page *buddy;
1da177e4 547
d29bb978
CS
548 VM_BUG_ON(!zone_is_initialized(zone));
549
224abf92 550 if (unlikely(PageCompound(page)))
8cc3b392
HD
551 if (unlikely(destroy_compound_page(page, order)))
552 return;
1da177e4 553
ed0ae21d
MG
554 VM_BUG_ON(migratetype == -1);
555
1da177e4
LT
556 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
557
f2260e6b 558 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 559 VM_BUG_ON(bad_range(zone, page));
1da177e4 560
1da177e4 561 while (order < MAX_ORDER-1) {
43506fad
KC
562 buddy_idx = __find_buddy_index(page_idx, order);
563 buddy = page + (buddy_idx - page_idx);
cb2b95e1 564 if (!page_is_buddy(page, buddy, order))
3c82d0ce 565 break;
c0a32fc5
SG
566 /*
567 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
568 * merge with it and move up one order.
569 */
570 if (page_is_guard(buddy)) {
571 clear_page_guard_flag(buddy);
572 set_page_private(page, 0);
d1ce749a
BZ
573 __mod_zone_freepage_state(zone, 1 << order,
574 migratetype);
c0a32fc5
SG
575 } else {
576 list_del(&buddy->lru);
577 zone->free_area[order].nr_free--;
578 rmv_page_order(buddy);
579 }
43506fad 580 combined_idx = buddy_idx & page_idx;
1da177e4
LT
581 page = page + (combined_idx - page_idx);
582 page_idx = combined_idx;
583 order++;
584 }
585 set_page_order(page, order);
6dda9d55
CZ
586
587 /*
588 * If this is not the largest possible page, check if the buddy
589 * of the next-highest order is free. If it is, it's possible
590 * that pages are being freed that will coalesce soon. In case,
591 * that is happening, add the free page to the tail of the list
592 * so it's less likely to be used soon and more likely to be merged
593 * as a higher order page
594 */
b7f50cfa 595 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 596 struct page *higher_page, *higher_buddy;
43506fad
KC
597 combined_idx = buddy_idx & page_idx;
598 higher_page = page + (combined_idx - page_idx);
599 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 600 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
601 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
602 list_add_tail(&page->lru,
603 &zone->free_area[order].free_list[migratetype]);
604 goto out;
605 }
606 }
607
608 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
609out:
1da177e4
LT
610 zone->free_area[order].nr_free++;
611}
612
224abf92 613static inline int free_pages_check(struct page *page)
1da177e4 614{
92be2e33
NP
615 if (unlikely(page_mapcount(page) |
616 (page->mapping != NULL) |
a3af9c38 617 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
618 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
619 (mem_cgroup_bad_page_check(page)))) {
224abf92 620 bad_page(page);
79f4b7bf 621 return 1;
8cc3b392 622 }
22b751c3 623 page_nid_reset_last(page);
79f4b7bf
HD
624 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
625 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
626 return 0;
1da177e4
LT
627}
628
629/*
5f8dcc21 630 * Frees a number of pages from the PCP lists
1da177e4 631 * Assumes all pages on list are in same zone, and of same order.
207f36ee 632 * count is the number of pages to free.
1da177e4
LT
633 *
634 * If the zone was previously in an "all pages pinned" state then look to
635 * see if this freeing clears that state.
636 *
637 * And clear the zone's pages_scanned counter, to hold off the "all pages are
638 * pinned" detection logic.
639 */
5f8dcc21
MG
640static void free_pcppages_bulk(struct zone *zone, int count,
641 struct per_cpu_pages *pcp)
1da177e4 642{
5f8dcc21 643 int migratetype = 0;
a6f9edd6 644 int batch_free = 0;
72853e29 645 int to_free = count;
5f8dcc21 646
c54ad30c 647 spin_lock(&zone->lock);
93e4a89a 648 zone->all_unreclaimable = 0;
1da177e4 649 zone->pages_scanned = 0;
f2260e6b 650
72853e29 651 while (to_free) {
48db57f8 652 struct page *page;
5f8dcc21
MG
653 struct list_head *list;
654
655 /*
a6f9edd6
MG
656 * Remove pages from lists in a round-robin fashion. A
657 * batch_free count is maintained that is incremented when an
658 * empty list is encountered. This is so more pages are freed
659 * off fuller lists instead of spinning excessively around empty
660 * lists
5f8dcc21
MG
661 */
662 do {
a6f9edd6 663 batch_free++;
5f8dcc21
MG
664 if (++migratetype == MIGRATE_PCPTYPES)
665 migratetype = 0;
666 list = &pcp->lists[migratetype];
667 } while (list_empty(list));
48db57f8 668
1d16871d
NK
669 /* This is the only non-empty list. Free them all. */
670 if (batch_free == MIGRATE_PCPTYPES)
671 batch_free = to_free;
672
a6f9edd6 673 do {
770c8aaa
BZ
674 int mt; /* migratetype of the to-be-freed page */
675
a6f9edd6
MG
676 page = list_entry(list->prev, struct page, lru);
677 /* must delete as __free_one_page list manipulates */
678 list_del(&page->lru);
b12c4ad1 679 mt = get_freepage_migratetype(page);
a7016235 680 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
681 __free_one_page(page, zone, 0, mt);
682 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 683 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
684 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
685 if (is_migrate_cma(mt))
686 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
687 }
72853e29 688 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 689 }
c54ad30c 690 spin_unlock(&zone->lock);
1da177e4
LT
691}
692
ed0ae21d
MG
693static void free_one_page(struct zone *zone, struct page *page, int order,
694 int migratetype)
1da177e4 695{
006d22d9 696 spin_lock(&zone->lock);
93e4a89a 697 zone->all_unreclaimable = 0;
006d22d9 698 zone->pages_scanned = 0;
f2260e6b 699
ed0ae21d 700 __free_one_page(page, zone, order, migratetype);
194159fb 701 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 702 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 703 spin_unlock(&zone->lock);
48db57f8
NP
704}
705
ec95f53a 706static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 707{
1da177e4 708 int i;
8cc3b392 709 int bad = 0;
1da177e4 710
b413d48a 711 trace_mm_page_free(page, order);
b1eeab67
VN
712 kmemcheck_free_shadow(page, order);
713
8dd60a3a
AA
714 if (PageAnon(page))
715 page->mapping = NULL;
716 for (i = 0; i < (1 << order); i++)
717 bad += free_pages_check(page + i);
8cc3b392 718 if (bad)
ec95f53a 719 return false;
689bcebf 720
3ac7fe5a 721 if (!PageHighMem(page)) {
9858db50 722 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
723 debug_check_no_obj_freed(page_address(page),
724 PAGE_SIZE << order);
725 }
dafb1367 726 arch_free_page(page, order);
48db57f8 727 kernel_map_pages(page, 1 << order, 0);
dafb1367 728
ec95f53a
KM
729 return true;
730}
731
732static void __free_pages_ok(struct page *page, unsigned int order)
733{
734 unsigned long flags;
95e34412 735 int migratetype;
ec95f53a
KM
736
737 if (!free_pages_prepare(page, order))
738 return;
739
c54ad30c 740 local_irq_save(flags);
f8891e5e 741 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
742 migratetype = get_pageblock_migratetype(page);
743 set_freepage_migratetype(page, migratetype);
744 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 745 local_irq_restore(flags);
1da177e4
LT
746}
747
170a5a7e 748void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 749{
c3993076
JW
750 unsigned int nr_pages = 1 << order;
751 unsigned int loop;
a226f6c8 752
c3993076
JW
753 prefetchw(page);
754 for (loop = 0; loop < nr_pages; loop++) {
755 struct page *p = &page[loop];
756
757 if (loop + 1 < nr_pages)
758 prefetchw(p + 1);
759 __ClearPageReserved(p);
760 set_page_count(p, 0);
a226f6c8 761 }
c3993076 762
9feedc9d 763 page_zone(page)->managed_pages += 1 << order;
c3993076
JW
764 set_page_refcounted(page);
765 __free_pages(page, order);
a226f6c8
DH
766}
767
47118af0
MN
768#ifdef CONFIG_CMA
769/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
770void __init init_cma_reserved_pageblock(struct page *page)
771{
772 unsigned i = pageblock_nr_pages;
773 struct page *p = page;
774
775 do {
776 __ClearPageReserved(p);
777 set_page_count(p, 0);
778 } while (++p, --i);
779
780 set_page_refcounted(page);
781 set_pageblock_migratetype(page, MIGRATE_CMA);
782 __free_pages(page, pageblock_order);
783 totalram_pages += pageblock_nr_pages;
41a79734
MS
784#ifdef CONFIG_HIGHMEM
785 if (PageHighMem(page))
786 totalhigh_pages += pageblock_nr_pages;
787#endif
47118af0
MN
788}
789#endif
1da177e4
LT
790
791/*
792 * The order of subdivision here is critical for the IO subsystem.
793 * Please do not alter this order without good reasons and regression
794 * testing. Specifically, as large blocks of memory are subdivided,
795 * the order in which smaller blocks are delivered depends on the order
796 * they're subdivided in this function. This is the primary factor
797 * influencing the order in which pages are delivered to the IO
798 * subsystem according to empirical testing, and this is also justified
799 * by considering the behavior of a buddy system containing a single
800 * large block of memory acted on by a series of small allocations.
801 * This behavior is a critical factor in sglist merging's success.
802 *
6d49e352 803 * -- nyc
1da177e4 804 */
085cc7d5 805static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
806 int low, int high, struct free_area *area,
807 int migratetype)
1da177e4
LT
808{
809 unsigned long size = 1 << high;
810
811 while (high > low) {
812 area--;
813 high--;
814 size >>= 1;
725d704e 815 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
816
817#ifdef CONFIG_DEBUG_PAGEALLOC
818 if (high < debug_guardpage_minorder()) {
819 /*
820 * Mark as guard pages (or page), that will allow to
821 * merge back to allocator when buddy will be freed.
822 * Corresponding page table entries will not be touched,
823 * pages will stay not present in virtual address space
824 */
825 INIT_LIST_HEAD(&page[size].lru);
826 set_page_guard_flag(&page[size]);
827 set_page_private(&page[size], high);
828 /* Guard pages are not available for any usage */
d1ce749a
BZ
829 __mod_zone_freepage_state(zone, -(1 << high),
830 migratetype);
c0a32fc5
SG
831 continue;
832 }
833#endif
b2a0ac88 834 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
835 area->nr_free++;
836 set_page_order(&page[size], high);
837 }
1da177e4
LT
838}
839
1da177e4
LT
840/*
841 * This page is about to be returned from the page allocator
842 */
2a7684a2 843static inline int check_new_page(struct page *page)
1da177e4 844{
92be2e33
NP
845 if (unlikely(page_mapcount(page) |
846 (page->mapping != NULL) |
a3af9c38 847 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
848 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
849 (mem_cgroup_bad_page_check(page)))) {
224abf92 850 bad_page(page);
689bcebf 851 return 1;
8cc3b392 852 }
2a7684a2
WF
853 return 0;
854}
855
856static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
857{
858 int i;
859
860 for (i = 0; i < (1 << order); i++) {
861 struct page *p = page + i;
862 if (unlikely(check_new_page(p)))
863 return 1;
864 }
689bcebf 865
4c21e2f2 866 set_page_private(page, 0);
7835e98b 867 set_page_refcounted(page);
cc102509
NP
868
869 arch_alloc_page(page, order);
1da177e4 870 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
871
872 if (gfp_flags & __GFP_ZERO)
873 prep_zero_page(page, order, gfp_flags);
874
875 if (order && (gfp_flags & __GFP_COMP))
876 prep_compound_page(page, order);
877
689bcebf 878 return 0;
1da177e4
LT
879}
880
56fd56b8
MG
881/*
882 * Go through the free lists for the given migratetype and remove
883 * the smallest available page from the freelists
884 */
728ec980
MG
885static inline
886struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
887 int migratetype)
888{
889 unsigned int current_order;
890 struct free_area * area;
891 struct page *page;
892
893 /* Find a page of the appropriate size in the preferred list */
894 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
895 area = &(zone->free_area[current_order]);
896 if (list_empty(&area->free_list[migratetype]))
897 continue;
898
899 page = list_entry(area->free_list[migratetype].next,
900 struct page, lru);
901 list_del(&page->lru);
902 rmv_page_order(page);
903 area->nr_free--;
56fd56b8
MG
904 expand(zone, page, order, current_order, area, migratetype);
905 return page;
906 }
907
908 return NULL;
909}
910
911
b2a0ac88
MG
912/*
913 * This array describes the order lists are fallen back to when
914 * the free lists for the desirable migrate type are depleted
915 */
47118af0
MN
916static int fallbacks[MIGRATE_TYPES][4] = {
917 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
918 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919#ifdef CONFIG_CMA
920 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
921 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
922#else
923 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
924#endif
6d4a4916 925 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 926#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 927 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 928#endif
b2a0ac88
MG
929};
930
c361be55
MG
931/*
932 * Move the free pages in a range to the free lists of the requested type.
d9c23400 933 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
934 * boundary. If alignment is required, use move_freepages_block()
935 */
435b405c 936int move_freepages(struct zone *zone,
b69a7288
AB
937 struct page *start_page, struct page *end_page,
938 int migratetype)
c361be55
MG
939{
940 struct page *page;
941 unsigned long order;
d100313f 942 int pages_moved = 0;
c361be55
MG
943
944#ifndef CONFIG_HOLES_IN_ZONE
945 /*
946 * page_zone is not safe to call in this context when
947 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
948 * anyway as we check zone boundaries in move_freepages_block().
949 * Remove at a later date when no bug reports exist related to
ac0e5b7a 950 * grouping pages by mobility
c361be55
MG
951 */
952 BUG_ON(page_zone(start_page) != page_zone(end_page));
953#endif
954
955 for (page = start_page; page <= end_page;) {
344c790e
AL
956 /* Make sure we are not inadvertently changing nodes */
957 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
958
c361be55
MG
959 if (!pfn_valid_within(page_to_pfn(page))) {
960 page++;
961 continue;
962 }
963
964 if (!PageBuddy(page)) {
965 page++;
966 continue;
967 }
968
969 order = page_order(page);
84be48d8
KS
970 list_move(&page->lru,
971 &zone->free_area[order].free_list[migratetype]);
95e34412 972 set_freepage_migratetype(page, migratetype);
c361be55 973 page += 1 << order;
d100313f 974 pages_moved += 1 << order;
c361be55
MG
975 }
976
d100313f 977 return pages_moved;
c361be55
MG
978}
979
ee6f509c 980int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 981 int migratetype)
c361be55
MG
982{
983 unsigned long start_pfn, end_pfn;
984 struct page *start_page, *end_page;
985
986 start_pfn = page_to_pfn(page);
d9c23400 987 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 988 start_page = pfn_to_page(start_pfn);
d9c23400
MG
989 end_page = start_page + pageblock_nr_pages - 1;
990 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
991
992 /* Do not cross zone boundaries */
108bcc96 993 if (!zone_spans_pfn(zone, start_pfn))
c361be55 994 start_page = page;
108bcc96 995 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
996 return 0;
997
998 return move_freepages(zone, start_page, end_page, migratetype);
999}
1000
2f66a68f
MG
1001static void change_pageblock_range(struct page *pageblock_page,
1002 int start_order, int migratetype)
1003{
1004 int nr_pageblocks = 1 << (start_order - pageblock_order);
1005
1006 while (nr_pageblocks--) {
1007 set_pageblock_migratetype(pageblock_page, migratetype);
1008 pageblock_page += pageblock_nr_pages;
1009 }
1010}
1011
b2a0ac88 1012/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1013static inline struct page *
1014__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1015{
1016 struct free_area * area;
1017 int current_order;
1018 struct page *page;
1019 int migratetype, i;
1020
1021 /* Find the largest possible block of pages in the other list */
1022 for (current_order = MAX_ORDER-1; current_order >= order;
1023 --current_order) {
6d4a4916 1024 for (i = 0;; i++) {
b2a0ac88
MG
1025 migratetype = fallbacks[start_migratetype][i];
1026
56fd56b8
MG
1027 /* MIGRATE_RESERVE handled later if necessary */
1028 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1029 break;
e010487d 1030
b2a0ac88
MG
1031 area = &(zone->free_area[current_order]);
1032 if (list_empty(&area->free_list[migratetype]))
1033 continue;
1034
1035 page = list_entry(area->free_list[migratetype].next,
1036 struct page, lru);
1037 area->nr_free--;
1038
1039 /*
c361be55 1040 * If breaking a large block of pages, move all free
46dafbca
MG
1041 * pages to the preferred allocation list. If falling
1042 * back for a reclaimable kernel allocation, be more
25985edc 1043 * aggressive about taking ownership of free pages
47118af0
MN
1044 *
1045 * On the other hand, never change migration
1046 * type of MIGRATE_CMA pageblocks nor move CMA
1047 * pages on different free lists. We don't
1048 * want unmovable pages to be allocated from
1049 * MIGRATE_CMA areas.
b2a0ac88 1050 */
47118af0
MN
1051 if (!is_migrate_cma(migratetype) &&
1052 (unlikely(current_order >= pageblock_order / 2) ||
1053 start_migratetype == MIGRATE_RECLAIMABLE ||
1054 page_group_by_mobility_disabled)) {
1055 int pages;
46dafbca
MG
1056 pages = move_freepages_block(zone, page,
1057 start_migratetype);
1058
1059 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1060 if (pages >= (1 << (pageblock_order-1)) ||
1061 page_group_by_mobility_disabled)
46dafbca
MG
1062 set_pageblock_migratetype(page,
1063 start_migratetype);
1064
b2a0ac88 1065 migratetype = start_migratetype;
c361be55 1066 }
b2a0ac88
MG
1067
1068 /* Remove the page from the freelists */
1069 list_del(&page->lru);
1070 rmv_page_order(page);
b2a0ac88 1071
2f66a68f 1072 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1073 if (current_order >= pageblock_order &&
1074 !is_migrate_cma(migratetype))
2f66a68f 1075 change_pageblock_range(page, current_order,
b2a0ac88
MG
1076 start_migratetype);
1077
47118af0
MN
1078 expand(zone, page, order, current_order, area,
1079 is_migrate_cma(migratetype)
1080 ? migratetype : start_migratetype);
e0fff1bd
MG
1081
1082 trace_mm_page_alloc_extfrag(page, order, current_order,
1083 start_migratetype, migratetype);
1084
b2a0ac88
MG
1085 return page;
1086 }
1087 }
1088
728ec980 1089 return NULL;
b2a0ac88
MG
1090}
1091
56fd56b8 1092/*
1da177e4
LT
1093 * Do the hard work of removing an element from the buddy allocator.
1094 * Call me with the zone->lock already held.
1095 */
b2a0ac88
MG
1096static struct page *__rmqueue(struct zone *zone, unsigned int order,
1097 int migratetype)
1da177e4 1098{
1da177e4
LT
1099 struct page *page;
1100
728ec980 1101retry_reserve:
56fd56b8 1102 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1103
728ec980 1104 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1105 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1106
728ec980
MG
1107 /*
1108 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1109 * is used because __rmqueue_smallest is an inline function
1110 * and we want just one call site
1111 */
1112 if (!page) {
1113 migratetype = MIGRATE_RESERVE;
1114 goto retry_reserve;
1115 }
1116 }
1117
0d3d062a 1118 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1119 return page;
1da177e4
LT
1120}
1121
5f63b720 1122/*
1da177e4
LT
1123 * Obtain a specified number of elements from the buddy allocator, all under
1124 * a single hold of the lock, for efficiency. Add them to the supplied list.
1125 * Returns the number of new pages which were placed at *list.
1126 */
5f63b720 1127static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1128 unsigned long count, struct list_head *list,
e084b2d9 1129 int migratetype, int cold)
1da177e4 1130{
47118af0 1131 int mt = migratetype, i;
5f63b720 1132
c54ad30c 1133 spin_lock(&zone->lock);
1da177e4 1134 for (i = 0; i < count; ++i) {
b2a0ac88 1135 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1136 if (unlikely(page == NULL))
1da177e4 1137 break;
81eabcbe
MG
1138
1139 /*
1140 * Split buddy pages returned by expand() are received here
1141 * in physical page order. The page is added to the callers and
1142 * list and the list head then moves forward. From the callers
1143 * perspective, the linked list is ordered by page number in
1144 * some conditions. This is useful for IO devices that can
1145 * merge IO requests if the physical pages are ordered
1146 * properly.
1147 */
e084b2d9
MG
1148 if (likely(cold == 0))
1149 list_add(&page->lru, list);
1150 else
1151 list_add_tail(&page->lru, list);
47118af0
MN
1152 if (IS_ENABLED(CONFIG_CMA)) {
1153 mt = get_pageblock_migratetype(page);
194159fb 1154 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1155 mt = migratetype;
1156 }
b12c4ad1 1157 set_freepage_migratetype(page, mt);
81eabcbe 1158 list = &page->lru;
d1ce749a
BZ
1159 if (is_migrate_cma(mt))
1160 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1161 -(1 << order));
1da177e4 1162 }
f2260e6b 1163 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1164 spin_unlock(&zone->lock);
085cc7d5 1165 return i;
1da177e4
LT
1166}
1167
4ae7c039 1168#ifdef CONFIG_NUMA
8fce4d8e 1169/*
4037d452
CL
1170 * Called from the vmstat counter updater to drain pagesets of this
1171 * currently executing processor on remote nodes after they have
1172 * expired.
1173 *
879336c3
CL
1174 * Note that this function must be called with the thread pinned to
1175 * a single processor.
8fce4d8e 1176 */
4037d452 1177void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1178{
4ae7c039 1179 unsigned long flags;
4037d452 1180 int to_drain;
998d39cb 1181 unsigned long batch;
4ae7c039 1182
4037d452 1183 local_irq_save(flags);
998d39cb
CS
1184 batch = ACCESS_ONCE(pcp->batch);
1185 if (pcp->count >= batch)
1186 to_drain = batch;
4037d452
CL
1187 else
1188 to_drain = pcp->count;
2a13515c
KM
1189 if (to_drain > 0) {
1190 free_pcppages_bulk(zone, to_drain, pcp);
1191 pcp->count -= to_drain;
1192 }
4037d452 1193 local_irq_restore(flags);
4ae7c039
CL
1194}
1195#endif
1196
9f8f2172
CL
1197/*
1198 * Drain pages of the indicated processor.
1199 *
1200 * The processor must either be the current processor and the
1201 * thread pinned to the current processor or a processor that
1202 * is not online.
1203 */
1204static void drain_pages(unsigned int cpu)
1da177e4 1205{
c54ad30c 1206 unsigned long flags;
1da177e4 1207 struct zone *zone;
1da177e4 1208
ee99c71c 1209 for_each_populated_zone(zone) {
1da177e4 1210 struct per_cpu_pageset *pset;
3dfa5721 1211 struct per_cpu_pages *pcp;
1da177e4 1212
99dcc3e5
CL
1213 local_irq_save(flags);
1214 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1215
1216 pcp = &pset->pcp;
2ff754fa
DR
1217 if (pcp->count) {
1218 free_pcppages_bulk(zone, pcp->count, pcp);
1219 pcp->count = 0;
1220 }
3dfa5721 1221 local_irq_restore(flags);
1da177e4
LT
1222 }
1223}
1da177e4 1224
9f8f2172
CL
1225/*
1226 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1227 */
1228void drain_local_pages(void *arg)
1229{
1230 drain_pages(smp_processor_id());
1231}
1232
1233/*
74046494
GBY
1234 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1235 *
1236 * Note that this code is protected against sending an IPI to an offline
1237 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1238 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1239 * nothing keeps CPUs from showing up after we populated the cpumask and
1240 * before the call to on_each_cpu_mask().
9f8f2172
CL
1241 */
1242void drain_all_pages(void)
1243{
74046494
GBY
1244 int cpu;
1245 struct per_cpu_pageset *pcp;
1246 struct zone *zone;
1247
1248 /*
1249 * Allocate in the BSS so we wont require allocation in
1250 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1251 */
1252 static cpumask_t cpus_with_pcps;
1253
1254 /*
1255 * We don't care about racing with CPU hotplug event
1256 * as offline notification will cause the notified
1257 * cpu to drain that CPU pcps and on_each_cpu_mask
1258 * disables preemption as part of its processing
1259 */
1260 for_each_online_cpu(cpu) {
1261 bool has_pcps = false;
1262 for_each_populated_zone(zone) {
1263 pcp = per_cpu_ptr(zone->pageset, cpu);
1264 if (pcp->pcp.count) {
1265 has_pcps = true;
1266 break;
1267 }
1268 }
1269 if (has_pcps)
1270 cpumask_set_cpu(cpu, &cpus_with_pcps);
1271 else
1272 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1273 }
1274 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1275}
1276
296699de 1277#ifdef CONFIG_HIBERNATION
1da177e4
LT
1278
1279void mark_free_pages(struct zone *zone)
1280{
f623f0db
RW
1281 unsigned long pfn, max_zone_pfn;
1282 unsigned long flags;
b2a0ac88 1283 int order, t;
1da177e4
LT
1284 struct list_head *curr;
1285
1286 if (!zone->spanned_pages)
1287 return;
1288
1289 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1290
108bcc96 1291 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1292 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1293 if (pfn_valid(pfn)) {
1294 struct page *page = pfn_to_page(pfn);
1295
7be98234
RW
1296 if (!swsusp_page_is_forbidden(page))
1297 swsusp_unset_page_free(page);
f623f0db 1298 }
1da177e4 1299
b2a0ac88
MG
1300 for_each_migratetype_order(order, t) {
1301 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1302 unsigned long i;
1da177e4 1303
f623f0db
RW
1304 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1305 for (i = 0; i < (1UL << order); i++)
7be98234 1306 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1307 }
b2a0ac88 1308 }
1da177e4
LT
1309 spin_unlock_irqrestore(&zone->lock, flags);
1310}
e2c55dc8 1311#endif /* CONFIG_PM */
1da177e4 1312
1da177e4
LT
1313/*
1314 * Free a 0-order page
fc91668e 1315 * cold == 1 ? free a cold page : free a hot page
1da177e4 1316 */
fc91668e 1317void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1318{
1319 struct zone *zone = page_zone(page);
1320 struct per_cpu_pages *pcp;
1321 unsigned long flags;
5f8dcc21 1322 int migratetype;
1da177e4 1323
ec95f53a 1324 if (!free_pages_prepare(page, 0))
689bcebf
HD
1325 return;
1326
5f8dcc21 1327 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1328 set_freepage_migratetype(page, migratetype);
1da177e4 1329 local_irq_save(flags);
f8891e5e 1330 __count_vm_event(PGFREE);
da456f14 1331
5f8dcc21
MG
1332 /*
1333 * We only track unmovable, reclaimable and movable on pcp lists.
1334 * Free ISOLATE pages back to the allocator because they are being
1335 * offlined but treat RESERVE as movable pages so we can get those
1336 * areas back if necessary. Otherwise, we may have to free
1337 * excessively into the page allocator
1338 */
1339 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1340 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1341 free_one_page(zone, page, 0, migratetype);
1342 goto out;
1343 }
1344 migratetype = MIGRATE_MOVABLE;
1345 }
1346
99dcc3e5 1347 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1348 if (cold)
5f8dcc21 1349 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1350 else
5f8dcc21 1351 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1352 pcp->count++;
48db57f8 1353 if (pcp->count >= pcp->high) {
998d39cb
CS
1354 unsigned long batch = ACCESS_ONCE(pcp->batch);
1355 free_pcppages_bulk(zone, batch, pcp);
1356 pcp->count -= batch;
48db57f8 1357 }
5f8dcc21
MG
1358
1359out:
1da177e4 1360 local_irq_restore(flags);
1da177e4
LT
1361}
1362
cc59850e
KK
1363/*
1364 * Free a list of 0-order pages
1365 */
1366void free_hot_cold_page_list(struct list_head *list, int cold)
1367{
1368 struct page *page, *next;
1369
1370 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1371 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1372 free_hot_cold_page(page, cold);
1373 }
1374}
1375
8dfcc9ba
NP
1376/*
1377 * split_page takes a non-compound higher-order page, and splits it into
1378 * n (1<<order) sub-pages: page[0..n]
1379 * Each sub-page must be freed individually.
1380 *
1381 * Note: this is probably too low level an operation for use in drivers.
1382 * Please consult with lkml before using this in your driver.
1383 */
1384void split_page(struct page *page, unsigned int order)
1385{
1386 int i;
1387
725d704e
NP
1388 VM_BUG_ON(PageCompound(page));
1389 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1390
1391#ifdef CONFIG_KMEMCHECK
1392 /*
1393 * Split shadow pages too, because free(page[0]) would
1394 * otherwise free the whole shadow.
1395 */
1396 if (kmemcheck_page_is_tracked(page))
1397 split_page(virt_to_page(page[0].shadow), order);
1398#endif
1399
7835e98b
NP
1400 for (i = 1; i < (1 << order); i++)
1401 set_page_refcounted(page + i);
8dfcc9ba 1402}
5853ff23 1403EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1404
8fb74b9f 1405static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1406{
748446bb
MG
1407 unsigned long watermark;
1408 struct zone *zone;
2139cbe6 1409 int mt;
748446bb
MG
1410
1411 BUG_ON(!PageBuddy(page));
1412
1413 zone = page_zone(page);
2e30abd1 1414 mt = get_pageblock_migratetype(page);
748446bb 1415
194159fb 1416 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1417 /* Obey watermarks as if the page was being allocated */
1418 watermark = low_wmark_pages(zone) + (1 << order);
1419 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1420 return 0;
1421
8fb74b9f 1422 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1423 }
748446bb
MG
1424
1425 /* Remove page from free list */
1426 list_del(&page->lru);
1427 zone->free_area[order].nr_free--;
1428 rmv_page_order(page);
2139cbe6 1429
8fb74b9f 1430 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1431 if (order >= pageblock_order - 1) {
1432 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1433 for (; page < endpage; page += pageblock_nr_pages) {
1434 int mt = get_pageblock_migratetype(page);
194159fb 1435 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1436 set_pageblock_migratetype(page,
1437 MIGRATE_MOVABLE);
1438 }
748446bb
MG
1439 }
1440
8fb74b9f 1441 return 1UL << order;
1fb3f8ca
MG
1442}
1443
1444/*
1445 * Similar to split_page except the page is already free. As this is only
1446 * being used for migration, the migratetype of the block also changes.
1447 * As this is called with interrupts disabled, the caller is responsible
1448 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1449 * are enabled.
1450 *
1451 * Note: this is probably too low level an operation for use in drivers.
1452 * Please consult with lkml before using this in your driver.
1453 */
1454int split_free_page(struct page *page)
1455{
1456 unsigned int order;
1457 int nr_pages;
1458
1fb3f8ca
MG
1459 order = page_order(page);
1460
8fb74b9f 1461 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1462 if (!nr_pages)
1463 return 0;
1464
1465 /* Split into individual pages */
1466 set_page_refcounted(page);
1467 split_page(page, order);
1468 return nr_pages;
748446bb
MG
1469}
1470
1da177e4
LT
1471/*
1472 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1473 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1474 * or two.
1475 */
0a15c3e9
MG
1476static inline
1477struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1478 struct zone *zone, int order, gfp_t gfp_flags,
1479 int migratetype)
1da177e4
LT
1480{
1481 unsigned long flags;
689bcebf 1482 struct page *page;
1da177e4
LT
1483 int cold = !!(gfp_flags & __GFP_COLD);
1484
689bcebf 1485again:
48db57f8 1486 if (likely(order == 0)) {
1da177e4 1487 struct per_cpu_pages *pcp;
5f8dcc21 1488 struct list_head *list;
1da177e4 1489
1da177e4 1490 local_irq_save(flags);
99dcc3e5
CL
1491 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1492 list = &pcp->lists[migratetype];
5f8dcc21 1493 if (list_empty(list)) {
535131e6 1494 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1495 pcp->batch, list,
e084b2d9 1496 migratetype, cold);
5f8dcc21 1497 if (unlikely(list_empty(list)))
6fb332fa 1498 goto failed;
535131e6 1499 }
b92a6edd 1500
5f8dcc21
MG
1501 if (cold)
1502 page = list_entry(list->prev, struct page, lru);
1503 else
1504 page = list_entry(list->next, struct page, lru);
1505
b92a6edd
MG
1506 list_del(&page->lru);
1507 pcp->count--;
7fb1d9fc 1508 } else {
dab48dab
AM
1509 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1510 /*
1511 * __GFP_NOFAIL is not to be used in new code.
1512 *
1513 * All __GFP_NOFAIL callers should be fixed so that they
1514 * properly detect and handle allocation failures.
1515 *
1516 * We most definitely don't want callers attempting to
4923abf9 1517 * allocate greater than order-1 page units with
dab48dab
AM
1518 * __GFP_NOFAIL.
1519 */
4923abf9 1520 WARN_ON_ONCE(order > 1);
dab48dab 1521 }
1da177e4 1522 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1523 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1524 spin_unlock(&zone->lock);
1525 if (!page)
1526 goto failed;
d1ce749a
BZ
1527 __mod_zone_freepage_state(zone, -(1 << order),
1528 get_pageblock_migratetype(page));
1da177e4
LT
1529 }
1530
f8891e5e 1531 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1532 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1533 local_irq_restore(flags);
1da177e4 1534
725d704e 1535 VM_BUG_ON(bad_range(zone, page));
17cf4406 1536 if (prep_new_page(page, order, gfp_flags))
a74609fa 1537 goto again;
1da177e4 1538 return page;
a74609fa
NP
1539
1540failed:
1541 local_irq_restore(flags);
a74609fa 1542 return NULL;
1da177e4
LT
1543}
1544
933e312e
AM
1545#ifdef CONFIG_FAIL_PAGE_ALLOC
1546
b2588c4b 1547static struct {
933e312e
AM
1548 struct fault_attr attr;
1549
1550 u32 ignore_gfp_highmem;
1551 u32 ignore_gfp_wait;
54114994 1552 u32 min_order;
933e312e
AM
1553} fail_page_alloc = {
1554 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1555 .ignore_gfp_wait = 1,
1556 .ignore_gfp_highmem = 1,
54114994 1557 .min_order = 1,
933e312e
AM
1558};
1559
1560static int __init setup_fail_page_alloc(char *str)
1561{
1562 return setup_fault_attr(&fail_page_alloc.attr, str);
1563}
1564__setup("fail_page_alloc=", setup_fail_page_alloc);
1565
deaf386e 1566static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1567{
54114994 1568 if (order < fail_page_alloc.min_order)
deaf386e 1569 return false;
933e312e 1570 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1571 return false;
933e312e 1572 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1573 return false;
933e312e 1574 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1575 return false;
933e312e
AM
1576
1577 return should_fail(&fail_page_alloc.attr, 1 << order);
1578}
1579
1580#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1581
1582static int __init fail_page_alloc_debugfs(void)
1583{
f4ae40a6 1584 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1585 struct dentry *dir;
933e312e 1586
dd48c085
AM
1587 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1588 &fail_page_alloc.attr);
1589 if (IS_ERR(dir))
1590 return PTR_ERR(dir);
933e312e 1591
b2588c4b
AM
1592 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1593 &fail_page_alloc.ignore_gfp_wait))
1594 goto fail;
1595 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1596 &fail_page_alloc.ignore_gfp_highmem))
1597 goto fail;
1598 if (!debugfs_create_u32("min-order", mode, dir,
1599 &fail_page_alloc.min_order))
1600 goto fail;
1601
1602 return 0;
1603fail:
dd48c085 1604 debugfs_remove_recursive(dir);
933e312e 1605
b2588c4b 1606 return -ENOMEM;
933e312e
AM
1607}
1608
1609late_initcall(fail_page_alloc_debugfs);
1610
1611#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1612
1613#else /* CONFIG_FAIL_PAGE_ALLOC */
1614
deaf386e 1615static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1616{
deaf386e 1617 return false;
933e312e
AM
1618}
1619
1620#endif /* CONFIG_FAIL_PAGE_ALLOC */
1621
1da177e4 1622/*
88f5acf8 1623 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1624 * of the allocation.
1625 */
88f5acf8
MG
1626static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1627 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1628{
1629 /* free_pages my go negative - that's OK */
d23ad423 1630 long min = mark;
2cfed075 1631 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1632 int o;
026b0814 1633 long free_cma = 0;
1da177e4 1634
df0a6daa 1635 free_pages -= (1 << order) - 1;
7fb1d9fc 1636 if (alloc_flags & ALLOC_HIGH)
1da177e4 1637 min -= min / 2;
7fb1d9fc 1638 if (alloc_flags & ALLOC_HARDER)
1da177e4 1639 min -= min / 4;
d95ea5d1
BZ
1640#ifdef CONFIG_CMA
1641 /* If allocation can't use CMA areas don't use free CMA pages */
1642 if (!(alloc_flags & ALLOC_CMA))
026b0814 1643 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1644#endif
026b0814
TS
1645
1646 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1647 return false;
1da177e4
LT
1648 for (o = 0; o < order; o++) {
1649 /* At the next order, this order's pages become unavailable */
1650 free_pages -= z->free_area[o].nr_free << o;
1651
1652 /* Require fewer higher order pages to be free */
1653 min >>= 1;
1654
1655 if (free_pages <= min)
88f5acf8 1656 return false;
1da177e4 1657 }
88f5acf8
MG
1658 return true;
1659}
1660
1661bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1662 int classzone_idx, int alloc_flags)
1663{
1664 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1665 zone_page_state(z, NR_FREE_PAGES));
1666}
1667
1668bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1669 int classzone_idx, int alloc_flags)
1670{
1671 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1672
1673 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1674 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1675
1676 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1677 free_pages);
1da177e4
LT
1678}
1679
9276b1bc
PJ
1680#ifdef CONFIG_NUMA
1681/*
1682 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1683 * skip over zones that are not allowed by the cpuset, or that have
1684 * been recently (in last second) found to be nearly full. See further
1685 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1686 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1687 *
1688 * If the zonelist cache is present in the passed in zonelist, then
1689 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1690 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1691 *
1692 * If the zonelist cache is not available for this zonelist, does
1693 * nothing and returns NULL.
1694 *
1695 * If the fullzones BITMAP in the zonelist cache is stale (more than
1696 * a second since last zap'd) then we zap it out (clear its bits.)
1697 *
1698 * We hold off even calling zlc_setup, until after we've checked the
1699 * first zone in the zonelist, on the theory that most allocations will
1700 * be satisfied from that first zone, so best to examine that zone as
1701 * quickly as we can.
1702 */
1703static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1704{
1705 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1706 nodemask_t *allowednodes; /* zonelist_cache approximation */
1707
1708 zlc = zonelist->zlcache_ptr;
1709 if (!zlc)
1710 return NULL;
1711
f05111f5 1712 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1713 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1714 zlc->last_full_zap = jiffies;
1715 }
1716
1717 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1718 &cpuset_current_mems_allowed :
4b0ef1fe 1719 &node_states[N_MEMORY];
9276b1bc
PJ
1720 return allowednodes;
1721}
1722
1723/*
1724 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1725 * if it is worth looking at further for free memory:
1726 * 1) Check that the zone isn't thought to be full (doesn't have its
1727 * bit set in the zonelist_cache fullzones BITMAP).
1728 * 2) Check that the zones node (obtained from the zonelist_cache
1729 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1730 * Return true (non-zero) if zone is worth looking at further, or
1731 * else return false (zero) if it is not.
1732 *
1733 * This check -ignores- the distinction between various watermarks,
1734 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1735 * found to be full for any variation of these watermarks, it will
1736 * be considered full for up to one second by all requests, unless
1737 * we are so low on memory on all allowed nodes that we are forced
1738 * into the second scan of the zonelist.
1739 *
1740 * In the second scan we ignore this zonelist cache and exactly
1741 * apply the watermarks to all zones, even it is slower to do so.
1742 * We are low on memory in the second scan, and should leave no stone
1743 * unturned looking for a free page.
1744 */
dd1a239f 1745static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1746 nodemask_t *allowednodes)
1747{
1748 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1749 int i; /* index of *z in zonelist zones */
1750 int n; /* node that zone *z is on */
1751
1752 zlc = zonelist->zlcache_ptr;
1753 if (!zlc)
1754 return 1;
1755
dd1a239f 1756 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1757 n = zlc->z_to_n[i];
1758
1759 /* This zone is worth trying if it is allowed but not full */
1760 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1761}
1762
1763/*
1764 * Given 'z' scanning a zonelist, set the corresponding bit in
1765 * zlc->fullzones, so that subsequent attempts to allocate a page
1766 * from that zone don't waste time re-examining it.
1767 */
dd1a239f 1768static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1769{
1770 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1771 int i; /* index of *z in zonelist zones */
1772
1773 zlc = zonelist->zlcache_ptr;
1774 if (!zlc)
1775 return;
1776
dd1a239f 1777 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1778
1779 set_bit(i, zlc->fullzones);
1780}
1781
76d3fbf8
MG
1782/*
1783 * clear all zones full, called after direct reclaim makes progress so that
1784 * a zone that was recently full is not skipped over for up to a second
1785 */
1786static void zlc_clear_zones_full(struct zonelist *zonelist)
1787{
1788 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1789
1790 zlc = zonelist->zlcache_ptr;
1791 if (!zlc)
1792 return;
1793
1794 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1795}
1796
957f822a
DR
1797static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1798{
1799 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1800}
1801
1802static void __paginginit init_zone_allows_reclaim(int nid)
1803{
1804 int i;
1805
1806 for_each_online_node(i)
6b187d02 1807 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1808 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1809 else
957f822a 1810 zone_reclaim_mode = 1;
957f822a
DR
1811}
1812
9276b1bc
PJ
1813#else /* CONFIG_NUMA */
1814
1815static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1816{
1817 return NULL;
1818}
1819
dd1a239f 1820static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1821 nodemask_t *allowednodes)
1822{
1823 return 1;
1824}
1825
dd1a239f 1826static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1827{
1828}
76d3fbf8
MG
1829
1830static void zlc_clear_zones_full(struct zonelist *zonelist)
1831{
1832}
957f822a
DR
1833
1834static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1835{
1836 return true;
1837}
1838
1839static inline void init_zone_allows_reclaim(int nid)
1840{
1841}
9276b1bc
PJ
1842#endif /* CONFIG_NUMA */
1843
7fb1d9fc 1844/*
0798e519 1845 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1846 * a page.
1847 */
1848static struct page *
19770b32 1849get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1850 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1851 struct zone *preferred_zone, int migratetype)
753ee728 1852{
dd1a239f 1853 struct zoneref *z;
7fb1d9fc 1854 struct page *page = NULL;
54a6eb5c 1855 int classzone_idx;
5117f45d 1856 struct zone *zone;
9276b1bc
PJ
1857 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1858 int zlc_active = 0; /* set if using zonelist_cache */
1859 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1860
19770b32 1861 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1862zonelist_scan:
7fb1d9fc 1863 /*
9276b1bc 1864 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1865 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1866 */
19770b32
MG
1867 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1868 high_zoneidx, nodemask) {
e5adfffc 1869 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1870 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1871 continue;
7fb1d9fc 1872 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1873 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1874 continue;
a756cf59
JW
1875 /*
1876 * When allocating a page cache page for writing, we
1877 * want to get it from a zone that is within its dirty
1878 * limit, such that no single zone holds more than its
1879 * proportional share of globally allowed dirty pages.
1880 * The dirty limits take into account the zone's
1881 * lowmem reserves and high watermark so that kswapd
1882 * should be able to balance it without having to
1883 * write pages from its LRU list.
1884 *
1885 * This may look like it could increase pressure on
1886 * lower zones by failing allocations in higher zones
1887 * before they are full. But the pages that do spill
1888 * over are limited as the lower zones are protected
1889 * by this very same mechanism. It should not become
1890 * a practical burden to them.
1891 *
1892 * XXX: For now, allow allocations to potentially
1893 * exceed the per-zone dirty limit in the slowpath
1894 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1895 * which is important when on a NUMA setup the allowed
1896 * zones are together not big enough to reach the
1897 * global limit. The proper fix for these situations
1898 * will require awareness of zones in the
1899 * dirty-throttling and the flusher threads.
1900 */
1901 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1902 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1903 goto this_zone_full;
7fb1d9fc 1904
41858966 1905 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1906 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1907 unsigned long mark;
fa5e084e
MG
1908 int ret;
1909
41858966 1910 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1911 if (zone_watermark_ok(zone, order, mark,
1912 classzone_idx, alloc_flags))
1913 goto try_this_zone;
1914
e5adfffc
KS
1915 if (IS_ENABLED(CONFIG_NUMA) &&
1916 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1917 /*
1918 * we do zlc_setup if there are multiple nodes
1919 * and before considering the first zone allowed
1920 * by the cpuset.
1921 */
1922 allowednodes = zlc_setup(zonelist, alloc_flags);
1923 zlc_active = 1;
1924 did_zlc_setup = 1;
1925 }
1926
957f822a
DR
1927 if (zone_reclaim_mode == 0 ||
1928 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1929 goto this_zone_full;
1930
cd38b115
MG
1931 /*
1932 * As we may have just activated ZLC, check if the first
1933 * eligible zone has failed zone_reclaim recently.
1934 */
e5adfffc 1935 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1936 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1937 continue;
1938
fa5e084e
MG
1939 ret = zone_reclaim(zone, gfp_mask, order);
1940 switch (ret) {
1941 case ZONE_RECLAIM_NOSCAN:
1942 /* did not scan */
cd38b115 1943 continue;
fa5e084e
MG
1944 case ZONE_RECLAIM_FULL:
1945 /* scanned but unreclaimable */
cd38b115 1946 continue;
fa5e084e
MG
1947 default:
1948 /* did we reclaim enough */
fed2719e 1949 if (zone_watermark_ok(zone, order, mark,
fa5e084e 1950 classzone_idx, alloc_flags))
fed2719e
MG
1951 goto try_this_zone;
1952
1953 /*
1954 * Failed to reclaim enough to meet watermark.
1955 * Only mark the zone full if checking the min
1956 * watermark or if we failed to reclaim just
1957 * 1<<order pages or else the page allocator
1958 * fastpath will prematurely mark zones full
1959 * when the watermark is between the low and
1960 * min watermarks.
1961 */
1962 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1963 ret == ZONE_RECLAIM_SOME)
9276b1bc 1964 goto this_zone_full;
fed2719e
MG
1965
1966 continue;
0798e519 1967 }
7fb1d9fc
RS
1968 }
1969
fa5e084e 1970try_this_zone:
3dd28266
MG
1971 page = buffered_rmqueue(preferred_zone, zone, order,
1972 gfp_mask, migratetype);
0798e519 1973 if (page)
7fb1d9fc 1974 break;
9276b1bc 1975this_zone_full:
e5adfffc 1976 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1977 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1978 }
9276b1bc 1979
e5adfffc 1980 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1981 /* Disable zlc cache for second zonelist scan */
1982 zlc_active = 0;
1983 goto zonelist_scan;
1984 }
b121186a
AS
1985
1986 if (page)
1987 /*
1988 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1989 * necessary to allocate the page. The expectation is
1990 * that the caller is taking steps that will free more
1991 * memory. The caller should avoid the page being used
1992 * for !PFMEMALLOC purposes.
1993 */
1994 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1995
7fb1d9fc 1996 return page;
753ee728
MH
1997}
1998
29423e77
DR
1999/*
2000 * Large machines with many possible nodes should not always dump per-node
2001 * meminfo in irq context.
2002 */
2003static inline bool should_suppress_show_mem(void)
2004{
2005 bool ret = false;
2006
2007#if NODES_SHIFT > 8
2008 ret = in_interrupt();
2009#endif
2010 return ret;
2011}
2012
a238ab5b
DH
2013static DEFINE_RATELIMIT_STATE(nopage_rs,
2014 DEFAULT_RATELIMIT_INTERVAL,
2015 DEFAULT_RATELIMIT_BURST);
2016
2017void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2018{
a238ab5b
DH
2019 unsigned int filter = SHOW_MEM_FILTER_NODES;
2020
c0a32fc5
SG
2021 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2022 debug_guardpage_minorder() > 0)
a238ab5b
DH
2023 return;
2024
4b59e6c4
DR
2025 /*
2026 * Walking all memory to count page types is very expensive and should
2027 * be inhibited in non-blockable contexts.
2028 */
2029 if (!(gfp_mask & __GFP_WAIT))
2030 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2031
a238ab5b
DH
2032 /*
2033 * This documents exceptions given to allocations in certain
2034 * contexts that are allowed to allocate outside current's set
2035 * of allowed nodes.
2036 */
2037 if (!(gfp_mask & __GFP_NOMEMALLOC))
2038 if (test_thread_flag(TIF_MEMDIE) ||
2039 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2040 filter &= ~SHOW_MEM_FILTER_NODES;
2041 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2042 filter &= ~SHOW_MEM_FILTER_NODES;
2043
2044 if (fmt) {
3ee9a4f0
JP
2045 struct va_format vaf;
2046 va_list args;
2047
a238ab5b 2048 va_start(args, fmt);
3ee9a4f0
JP
2049
2050 vaf.fmt = fmt;
2051 vaf.va = &args;
2052
2053 pr_warn("%pV", &vaf);
2054
a238ab5b
DH
2055 va_end(args);
2056 }
2057
3ee9a4f0
JP
2058 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2059 current->comm, order, gfp_mask);
a238ab5b
DH
2060
2061 dump_stack();
2062 if (!should_suppress_show_mem())
2063 show_mem(filter);
2064}
2065
11e33f6a
MG
2066static inline int
2067should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2068 unsigned long did_some_progress,
11e33f6a 2069 unsigned long pages_reclaimed)
1da177e4 2070{
11e33f6a
MG
2071 /* Do not loop if specifically requested */
2072 if (gfp_mask & __GFP_NORETRY)
2073 return 0;
1da177e4 2074
f90ac398
MG
2075 /* Always retry if specifically requested */
2076 if (gfp_mask & __GFP_NOFAIL)
2077 return 1;
2078
2079 /*
2080 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2081 * making forward progress without invoking OOM. Suspend also disables
2082 * storage devices so kswapd will not help. Bail if we are suspending.
2083 */
2084 if (!did_some_progress && pm_suspended_storage())
2085 return 0;
2086
11e33f6a
MG
2087 /*
2088 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2089 * means __GFP_NOFAIL, but that may not be true in other
2090 * implementations.
2091 */
2092 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2093 return 1;
2094
2095 /*
2096 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2097 * specified, then we retry until we no longer reclaim any pages
2098 * (above), or we've reclaimed an order of pages at least as
2099 * large as the allocation's order. In both cases, if the
2100 * allocation still fails, we stop retrying.
2101 */
2102 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2103 return 1;
cf40bd16 2104
11e33f6a
MG
2105 return 0;
2106}
933e312e 2107
11e33f6a
MG
2108static inline struct page *
2109__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2110 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2111 nodemask_t *nodemask, struct zone *preferred_zone,
2112 int migratetype)
11e33f6a
MG
2113{
2114 struct page *page;
2115
2116 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2117 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2118 schedule_timeout_uninterruptible(1);
1da177e4
LT
2119 return NULL;
2120 }
6b1de916 2121
11e33f6a
MG
2122 /*
2123 * Go through the zonelist yet one more time, keep very high watermark
2124 * here, this is only to catch a parallel oom killing, we must fail if
2125 * we're still under heavy pressure.
2126 */
2127 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2128 order, zonelist, high_zoneidx,
5117f45d 2129 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2130 preferred_zone, migratetype);
7fb1d9fc 2131 if (page)
11e33f6a
MG
2132 goto out;
2133
4365a567
KH
2134 if (!(gfp_mask & __GFP_NOFAIL)) {
2135 /* The OOM killer will not help higher order allocs */
2136 if (order > PAGE_ALLOC_COSTLY_ORDER)
2137 goto out;
03668b3c
DR
2138 /* The OOM killer does not needlessly kill tasks for lowmem */
2139 if (high_zoneidx < ZONE_NORMAL)
2140 goto out;
4365a567
KH
2141 /*
2142 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2143 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2144 * The caller should handle page allocation failure by itself if
2145 * it specifies __GFP_THISNODE.
2146 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2147 */
2148 if (gfp_mask & __GFP_THISNODE)
2149 goto out;
2150 }
11e33f6a 2151 /* Exhausted what can be done so it's blamo time */
08ab9b10 2152 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2153
2154out:
2155 clear_zonelist_oom(zonelist, gfp_mask);
2156 return page;
2157}
2158
56de7263
MG
2159#ifdef CONFIG_COMPACTION
2160/* Try memory compaction for high-order allocations before reclaim */
2161static struct page *
2162__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2163 struct zonelist *zonelist, enum zone_type high_zoneidx,
2164 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2165 int migratetype, bool sync_migration,
c67fe375 2166 bool *contended_compaction, bool *deferred_compaction,
66199712 2167 unsigned long *did_some_progress)
56de7263 2168{
66199712 2169 if (!order)
56de7263
MG
2170 return NULL;
2171
aff62249 2172 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2173 *deferred_compaction = true;
2174 return NULL;
2175 }
2176
c06b1fca 2177 current->flags |= PF_MEMALLOC;
56de7263 2178 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2179 nodemask, sync_migration,
8fb74b9f 2180 contended_compaction);
c06b1fca 2181 current->flags &= ~PF_MEMALLOC;
56de7263 2182
1fb3f8ca 2183 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2184 struct page *page;
2185
56de7263
MG
2186 /* Page migration frees to the PCP lists but we want merging */
2187 drain_pages(get_cpu());
2188 put_cpu();
2189
2190 page = get_page_from_freelist(gfp_mask, nodemask,
2191 order, zonelist, high_zoneidx,
cfd19c5a
MG
2192 alloc_flags & ~ALLOC_NO_WATERMARKS,
2193 preferred_zone, migratetype);
56de7263 2194 if (page) {
62997027 2195 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2196 preferred_zone->compact_considered = 0;
2197 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2198 if (order >= preferred_zone->compact_order_failed)
2199 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2200 count_vm_event(COMPACTSUCCESS);
2201 return page;
2202 }
2203
2204 /*
2205 * It's bad if compaction run occurs and fails.
2206 * The most likely reason is that pages exist,
2207 * but not enough to satisfy watermarks.
2208 */
2209 count_vm_event(COMPACTFAIL);
66199712
MG
2210
2211 /*
2212 * As async compaction considers a subset of pageblocks, only
2213 * defer if the failure was a sync compaction failure.
2214 */
2215 if (sync_migration)
aff62249 2216 defer_compaction(preferred_zone, order);
56de7263
MG
2217
2218 cond_resched();
2219 }
2220
2221 return NULL;
2222}
2223#else
2224static inline struct page *
2225__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2226 struct zonelist *zonelist, enum zone_type high_zoneidx,
2227 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2228 int migratetype, bool sync_migration,
c67fe375 2229 bool *contended_compaction, bool *deferred_compaction,
66199712 2230 unsigned long *did_some_progress)
56de7263
MG
2231{
2232 return NULL;
2233}
2234#endif /* CONFIG_COMPACTION */
2235
bba90710
MS
2236/* Perform direct synchronous page reclaim */
2237static int
2238__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2239 nodemask_t *nodemask)
11e33f6a 2240{
11e33f6a 2241 struct reclaim_state reclaim_state;
bba90710 2242 int progress;
11e33f6a
MG
2243
2244 cond_resched();
2245
2246 /* We now go into synchronous reclaim */
2247 cpuset_memory_pressure_bump();
c06b1fca 2248 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2249 lockdep_set_current_reclaim_state(gfp_mask);
2250 reclaim_state.reclaimed_slab = 0;
c06b1fca 2251 current->reclaim_state = &reclaim_state;
11e33f6a 2252
bba90710 2253 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2254
c06b1fca 2255 current->reclaim_state = NULL;
11e33f6a 2256 lockdep_clear_current_reclaim_state();
c06b1fca 2257 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2258
2259 cond_resched();
2260
bba90710
MS
2261 return progress;
2262}
2263
2264/* The really slow allocator path where we enter direct reclaim */
2265static inline struct page *
2266__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2267 struct zonelist *zonelist, enum zone_type high_zoneidx,
2268 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2269 int migratetype, unsigned long *did_some_progress)
2270{
2271 struct page *page = NULL;
2272 bool drained = false;
2273
2274 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2275 nodemask);
9ee493ce
MG
2276 if (unlikely(!(*did_some_progress)))
2277 return NULL;
11e33f6a 2278
76d3fbf8 2279 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2280 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2281 zlc_clear_zones_full(zonelist);
2282
9ee493ce
MG
2283retry:
2284 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2285 zonelist, high_zoneidx,
cfd19c5a
MG
2286 alloc_flags & ~ALLOC_NO_WATERMARKS,
2287 preferred_zone, migratetype);
9ee493ce
MG
2288
2289 /*
2290 * If an allocation failed after direct reclaim, it could be because
2291 * pages are pinned on the per-cpu lists. Drain them and try again
2292 */
2293 if (!page && !drained) {
2294 drain_all_pages();
2295 drained = true;
2296 goto retry;
2297 }
2298
11e33f6a
MG
2299 return page;
2300}
2301
1da177e4 2302/*
11e33f6a
MG
2303 * This is called in the allocator slow-path if the allocation request is of
2304 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2305 */
11e33f6a
MG
2306static inline struct page *
2307__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2308 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2309 nodemask_t *nodemask, struct zone *preferred_zone,
2310 int migratetype)
11e33f6a
MG
2311{
2312 struct page *page;
2313
2314 do {
2315 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2316 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2317 preferred_zone, migratetype);
11e33f6a
MG
2318
2319 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2320 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2321 } while (!page && (gfp_mask & __GFP_NOFAIL));
2322
2323 return page;
2324}
2325
2326static inline
2327void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2328 enum zone_type high_zoneidx,
2329 enum zone_type classzone_idx)
1da177e4 2330{
dd1a239f
MG
2331 struct zoneref *z;
2332 struct zone *zone;
1da177e4 2333
11e33f6a 2334 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2335 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2336}
cf40bd16 2337
341ce06f
PZ
2338static inline int
2339gfp_to_alloc_flags(gfp_t gfp_mask)
2340{
341ce06f
PZ
2341 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2342 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2343
a56f57ff 2344 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2345 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2346
341ce06f
PZ
2347 /*
2348 * The caller may dip into page reserves a bit more if the caller
2349 * cannot run direct reclaim, or if the caller has realtime scheduling
2350 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2351 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2352 */
e6223a3b 2353 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2354
341ce06f 2355 if (!wait) {
5c3240d9
AA
2356 /*
2357 * Not worth trying to allocate harder for
2358 * __GFP_NOMEMALLOC even if it can't schedule.
2359 */
2360 if (!(gfp_mask & __GFP_NOMEMALLOC))
2361 alloc_flags |= ALLOC_HARDER;
523b9458 2362 /*
341ce06f
PZ
2363 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2364 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2365 */
341ce06f 2366 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2367 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2368 alloc_flags |= ALLOC_HARDER;
2369
b37f1dd0
MG
2370 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2371 if (gfp_mask & __GFP_MEMALLOC)
2372 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2373 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2374 alloc_flags |= ALLOC_NO_WATERMARKS;
2375 else if (!in_interrupt() &&
2376 ((current->flags & PF_MEMALLOC) ||
2377 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2378 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2379 }
d95ea5d1
BZ
2380#ifdef CONFIG_CMA
2381 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2382 alloc_flags |= ALLOC_CMA;
2383#endif
341ce06f
PZ
2384 return alloc_flags;
2385}
2386
072bb0aa
MG
2387bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2388{
b37f1dd0 2389 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2390}
2391
11e33f6a
MG
2392static inline struct page *
2393__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2394 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2395 nodemask_t *nodemask, struct zone *preferred_zone,
2396 int migratetype)
11e33f6a
MG
2397{
2398 const gfp_t wait = gfp_mask & __GFP_WAIT;
2399 struct page *page = NULL;
2400 int alloc_flags;
2401 unsigned long pages_reclaimed = 0;
2402 unsigned long did_some_progress;
77f1fe6b 2403 bool sync_migration = false;
66199712 2404 bool deferred_compaction = false;
c67fe375 2405 bool contended_compaction = false;
1da177e4 2406
72807a74
MG
2407 /*
2408 * In the slowpath, we sanity check order to avoid ever trying to
2409 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2410 * be using allocators in order of preference for an area that is
2411 * too large.
2412 */
1fc28b70
MG
2413 if (order >= MAX_ORDER) {
2414 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2415 return NULL;
1fc28b70 2416 }
1da177e4 2417
952f3b51
CL
2418 /*
2419 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2420 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2421 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2422 * using a larger set of nodes after it has established that the
2423 * allowed per node queues are empty and that nodes are
2424 * over allocated.
2425 */
e5adfffc
KS
2426 if (IS_ENABLED(CONFIG_NUMA) &&
2427 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2428 goto nopage;
2429
cc4a6851 2430restart:
caf49191
LT
2431 if (!(gfp_mask & __GFP_NO_KSWAPD))
2432 wake_all_kswapd(order, zonelist, high_zoneidx,
2433 zone_idx(preferred_zone));
1da177e4 2434
9bf2229f 2435 /*
7fb1d9fc
RS
2436 * OK, we're below the kswapd watermark and have kicked background
2437 * reclaim. Now things get more complex, so set up alloc_flags according
2438 * to how we want to proceed.
9bf2229f 2439 */
341ce06f 2440 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2441
f33261d7
DR
2442 /*
2443 * Find the true preferred zone if the allocation is unconstrained by
2444 * cpusets.
2445 */
2446 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2447 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2448 &preferred_zone);
2449
cfa54a0f 2450rebalance:
341ce06f 2451 /* This is the last chance, in general, before the goto nopage. */
19770b32 2452 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2453 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2454 preferred_zone, migratetype);
7fb1d9fc
RS
2455 if (page)
2456 goto got_pg;
1da177e4 2457
11e33f6a 2458 /* Allocate without watermarks if the context allows */
341ce06f 2459 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2460 /*
2461 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2462 * the allocation is high priority and these type of
2463 * allocations are system rather than user orientated
2464 */
2465 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2466
341ce06f
PZ
2467 page = __alloc_pages_high_priority(gfp_mask, order,
2468 zonelist, high_zoneidx, nodemask,
2469 preferred_zone, migratetype);
cfd19c5a 2470 if (page) {
341ce06f 2471 goto got_pg;
cfd19c5a 2472 }
1da177e4
LT
2473 }
2474
2475 /* Atomic allocations - we can't balance anything */
2476 if (!wait)
2477 goto nopage;
2478
341ce06f 2479 /* Avoid recursion of direct reclaim */
c06b1fca 2480 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2481 goto nopage;
2482
6583bb64
DR
2483 /* Avoid allocations with no watermarks from looping endlessly */
2484 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2485 goto nopage;
2486
77f1fe6b
MG
2487 /*
2488 * Try direct compaction. The first pass is asynchronous. Subsequent
2489 * attempts after direct reclaim are synchronous
2490 */
56de7263
MG
2491 page = __alloc_pages_direct_compact(gfp_mask, order,
2492 zonelist, high_zoneidx,
2493 nodemask,
2494 alloc_flags, preferred_zone,
66199712 2495 migratetype, sync_migration,
c67fe375 2496 &contended_compaction,
66199712
MG
2497 &deferred_compaction,
2498 &did_some_progress);
56de7263
MG
2499 if (page)
2500 goto got_pg;
c6a140bf 2501 sync_migration = true;
56de7263 2502
31f8d42d
LT
2503 /*
2504 * If compaction is deferred for high-order allocations, it is because
2505 * sync compaction recently failed. In this is the case and the caller
2506 * requested a movable allocation that does not heavily disrupt the
2507 * system then fail the allocation instead of entering direct reclaim.
2508 */
2509 if ((deferred_compaction || contended_compaction) &&
caf49191 2510 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2511 goto nopage;
66199712 2512
11e33f6a
MG
2513 /* Try direct reclaim and then allocating */
2514 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2515 zonelist, high_zoneidx,
2516 nodemask,
5117f45d 2517 alloc_flags, preferred_zone,
3dd28266 2518 migratetype, &did_some_progress);
11e33f6a
MG
2519 if (page)
2520 goto got_pg;
1da177e4 2521
e33c3b5e 2522 /*
11e33f6a
MG
2523 * If we failed to make any progress reclaiming, then we are
2524 * running out of options and have to consider going OOM
e33c3b5e 2525 */
11e33f6a
MG
2526 if (!did_some_progress) {
2527 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2528 if (oom_killer_disabled)
2529 goto nopage;
29fd66d2
DR
2530 /* Coredumps can quickly deplete all memory reserves */
2531 if ((current->flags & PF_DUMPCORE) &&
2532 !(gfp_mask & __GFP_NOFAIL))
2533 goto nopage;
11e33f6a
MG
2534 page = __alloc_pages_may_oom(gfp_mask, order,
2535 zonelist, high_zoneidx,
3dd28266
MG
2536 nodemask, preferred_zone,
2537 migratetype);
11e33f6a
MG
2538 if (page)
2539 goto got_pg;
1da177e4 2540
03668b3c
DR
2541 if (!(gfp_mask & __GFP_NOFAIL)) {
2542 /*
2543 * The oom killer is not called for high-order
2544 * allocations that may fail, so if no progress
2545 * is being made, there are no other options and
2546 * retrying is unlikely to help.
2547 */
2548 if (order > PAGE_ALLOC_COSTLY_ORDER)
2549 goto nopage;
2550 /*
2551 * The oom killer is not called for lowmem
2552 * allocations to prevent needlessly killing
2553 * innocent tasks.
2554 */
2555 if (high_zoneidx < ZONE_NORMAL)
2556 goto nopage;
2557 }
e2c55dc8 2558
ff0ceb9d
DR
2559 goto restart;
2560 }
1da177e4
LT
2561 }
2562
11e33f6a 2563 /* Check if we should retry the allocation */
a41f24ea 2564 pages_reclaimed += did_some_progress;
f90ac398
MG
2565 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2566 pages_reclaimed)) {
11e33f6a 2567 /* Wait for some write requests to complete then retry */
0e093d99 2568 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2569 goto rebalance;
3e7d3449
MG
2570 } else {
2571 /*
2572 * High-order allocations do not necessarily loop after
2573 * direct reclaim and reclaim/compaction depends on compaction
2574 * being called after reclaim so call directly if necessary
2575 */
2576 page = __alloc_pages_direct_compact(gfp_mask, order,
2577 zonelist, high_zoneidx,
2578 nodemask,
2579 alloc_flags, preferred_zone,
66199712 2580 migratetype, sync_migration,
c67fe375 2581 &contended_compaction,
66199712
MG
2582 &deferred_compaction,
2583 &did_some_progress);
3e7d3449
MG
2584 if (page)
2585 goto got_pg;
1da177e4
LT
2586 }
2587
2588nopage:
a238ab5b 2589 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2590 return page;
1da177e4 2591got_pg:
b1eeab67
VN
2592 if (kmemcheck_enabled)
2593 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2594
072bb0aa 2595 return page;
1da177e4 2596}
11e33f6a
MG
2597
2598/*
2599 * This is the 'heart' of the zoned buddy allocator.
2600 */
2601struct page *
2602__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2603 struct zonelist *zonelist, nodemask_t *nodemask)
2604{
2605 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2606 struct zone *preferred_zone;
cc9a6c87 2607 struct page *page = NULL;
3dd28266 2608 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2609 unsigned int cpuset_mems_cookie;
d95ea5d1 2610 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2611 struct mem_cgroup *memcg = NULL;
11e33f6a 2612
dcce284a
BH
2613 gfp_mask &= gfp_allowed_mask;
2614
11e33f6a
MG
2615 lockdep_trace_alloc(gfp_mask);
2616
2617 might_sleep_if(gfp_mask & __GFP_WAIT);
2618
2619 if (should_fail_alloc_page(gfp_mask, order))
2620 return NULL;
2621
2622 /*
2623 * Check the zones suitable for the gfp_mask contain at least one
2624 * valid zone. It's possible to have an empty zonelist as a result
2625 * of GFP_THISNODE and a memoryless node
2626 */
2627 if (unlikely(!zonelist->_zonerefs->zone))
2628 return NULL;
2629
6a1a0d3b
GC
2630 /*
2631 * Will only have any effect when __GFP_KMEMCG is set. This is
2632 * verified in the (always inline) callee
2633 */
2634 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2635 return NULL;
2636
cc9a6c87
MG
2637retry_cpuset:
2638 cpuset_mems_cookie = get_mems_allowed();
2639
5117f45d 2640 /* The preferred zone is used for statistics later */
f33261d7
DR
2641 first_zones_zonelist(zonelist, high_zoneidx,
2642 nodemask ? : &cpuset_current_mems_allowed,
2643 &preferred_zone);
cc9a6c87
MG
2644 if (!preferred_zone)
2645 goto out;
5117f45d 2646
d95ea5d1
BZ
2647#ifdef CONFIG_CMA
2648 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2649 alloc_flags |= ALLOC_CMA;
2650#endif
5117f45d 2651 /* First allocation attempt */
11e33f6a 2652 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2653 zonelist, high_zoneidx, alloc_flags,
3dd28266 2654 preferred_zone, migratetype);
21caf2fc
ML
2655 if (unlikely(!page)) {
2656 /*
2657 * Runtime PM, block IO and its error handling path
2658 * can deadlock because I/O on the device might not
2659 * complete.
2660 */
2661 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2662 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2663 zonelist, high_zoneidx, nodemask,
3dd28266 2664 preferred_zone, migratetype);
21caf2fc 2665 }
11e33f6a 2666
4b4f278c 2667 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2668
2669out:
2670 /*
2671 * When updating a task's mems_allowed, it is possible to race with
2672 * parallel threads in such a way that an allocation can fail while
2673 * the mask is being updated. If a page allocation is about to fail,
2674 * check if the cpuset changed during allocation and if so, retry.
2675 */
2676 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2677 goto retry_cpuset;
2678
6a1a0d3b
GC
2679 memcg_kmem_commit_charge(page, memcg, order);
2680
11e33f6a 2681 return page;
1da177e4 2682}
d239171e 2683EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2684
2685/*
2686 * Common helper functions.
2687 */
920c7a5d 2688unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2689{
945a1113
AM
2690 struct page *page;
2691
2692 /*
2693 * __get_free_pages() returns a 32-bit address, which cannot represent
2694 * a highmem page
2695 */
2696 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2697
1da177e4
LT
2698 page = alloc_pages(gfp_mask, order);
2699 if (!page)
2700 return 0;
2701 return (unsigned long) page_address(page);
2702}
1da177e4
LT
2703EXPORT_SYMBOL(__get_free_pages);
2704
920c7a5d 2705unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2706{
945a1113 2707 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2708}
1da177e4
LT
2709EXPORT_SYMBOL(get_zeroed_page);
2710
920c7a5d 2711void __free_pages(struct page *page, unsigned int order)
1da177e4 2712{
b5810039 2713 if (put_page_testzero(page)) {
1da177e4 2714 if (order == 0)
fc91668e 2715 free_hot_cold_page(page, 0);
1da177e4
LT
2716 else
2717 __free_pages_ok(page, order);
2718 }
2719}
2720
2721EXPORT_SYMBOL(__free_pages);
2722
920c7a5d 2723void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2724{
2725 if (addr != 0) {
725d704e 2726 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2727 __free_pages(virt_to_page((void *)addr), order);
2728 }
2729}
2730
2731EXPORT_SYMBOL(free_pages);
2732
6a1a0d3b
GC
2733/*
2734 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2735 * pages allocated with __GFP_KMEMCG.
2736 *
2737 * Those pages are accounted to a particular memcg, embedded in the
2738 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2739 * for that information only to find out that it is NULL for users who have no
2740 * interest in that whatsoever, we provide these functions.
2741 *
2742 * The caller knows better which flags it relies on.
2743 */
2744void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2745{
2746 memcg_kmem_uncharge_pages(page, order);
2747 __free_pages(page, order);
2748}
2749
2750void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2751{
2752 if (addr != 0) {
2753 VM_BUG_ON(!virt_addr_valid((void *)addr));
2754 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2755 }
2756}
2757
ee85c2e1
AK
2758static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2759{
2760 if (addr) {
2761 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2762 unsigned long used = addr + PAGE_ALIGN(size);
2763
2764 split_page(virt_to_page((void *)addr), order);
2765 while (used < alloc_end) {
2766 free_page(used);
2767 used += PAGE_SIZE;
2768 }
2769 }
2770 return (void *)addr;
2771}
2772
2be0ffe2
TT
2773/**
2774 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2775 * @size: the number of bytes to allocate
2776 * @gfp_mask: GFP flags for the allocation
2777 *
2778 * This function is similar to alloc_pages(), except that it allocates the
2779 * minimum number of pages to satisfy the request. alloc_pages() can only
2780 * allocate memory in power-of-two pages.
2781 *
2782 * This function is also limited by MAX_ORDER.
2783 *
2784 * Memory allocated by this function must be released by free_pages_exact().
2785 */
2786void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2787{
2788 unsigned int order = get_order(size);
2789 unsigned long addr;
2790
2791 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2792 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2793}
2794EXPORT_SYMBOL(alloc_pages_exact);
2795
ee85c2e1
AK
2796/**
2797 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2798 * pages on a node.
b5e6ab58 2799 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2800 * @size: the number of bytes to allocate
2801 * @gfp_mask: GFP flags for the allocation
2802 *
2803 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2804 * back.
2805 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2806 * but is not exact.
2807 */
2808void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2809{
2810 unsigned order = get_order(size);
2811 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2812 if (!p)
2813 return NULL;
2814 return make_alloc_exact((unsigned long)page_address(p), order, size);
2815}
2816EXPORT_SYMBOL(alloc_pages_exact_nid);
2817
2be0ffe2
TT
2818/**
2819 * free_pages_exact - release memory allocated via alloc_pages_exact()
2820 * @virt: the value returned by alloc_pages_exact.
2821 * @size: size of allocation, same value as passed to alloc_pages_exact().
2822 *
2823 * Release the memory allocated by a previous call to alloc_pages_exact.
2824 */
2825void free_pages_exact(void *virt, size_t size)
2826{
2827 unsigned long addr = (unsigned long)virt;
2828 unsigned long end = addr + PAGE_ALIGN(size);
2829
2830 while (addr < end) {
2831 free_page(addr);
2832 addr += PAGE_SIZE;
2833 }
2834}
2835EXPORT_SYMBOL(free_pages_exact);
2836
e0fb5815
ZY
2837/**
2838 * nr_free_zone_pages - count number of pages beyond high watermark
2839 * @offset: The zone index of the highest zone
2840 *
2841 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2842 * high watermark within all zones at or below a given zone index. For each
2843 * zone, the number of pages is calculated as:
834405c3 2844 * managed_pages - high_pages
e0fb5815 2845 */
ebec3862 2846static unsigned long nr_free_zone_pages(int offset)
1da177e4 2847{
dd1a239f 2848 struct zoneref *z;
54a6eb5c
MG
2849 struct zone *zone;
2850
e310fd43 2851 /* Just pick one node, since fallback list is circular */
ebec3862 2852 unsigned long sum = 0;
1da177e4 2853
0e88460d 2854 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2855
54a6eb5c 2856 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2857 unsigned long size = zone->managed_pages;
41858966 2858 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2859 if (size > high)
2860 sum += size - high;
1da177e4
LT
2861 }
2862
2863 return sum;
2864}
2865
e0fb5815
ZY
2866/**
2867 * nr_free_buffer_pages - count number of pages beyond high watermark
2868 *
2869 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2870 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2871 */
ebec3862 2872unsigned long nr_free_buffer_pages(void)
1da177e4 2873{
af4ca457 2874 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2875}
c2f1a551 2876EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2877
e0fb5815
ZY
2878/**
2879 * nr_free_pagecache_pages - count number of pages beyond high watermark
2880 *
2881 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2882 * high watermark within all zones.
1da177e4 2883 */
ebec3862 2884unsigned long nr_free_pagecache_pages(void)
1da177e4 2885{
2a1e274a 2886 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2887}
08e0f6a9
CL
2888
2889static inline void show_node(struct zone *zone)
1da177e4 2890{
e5adfffc 2891 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2892 printk("Node %d ", zone_to_nid(zone));
1da177e4 2893}
1da177e4 2894
1da177e4
LT
2895void si_meminfo(struct sysinfo *val)
2896{
2897 val->totalram = totalram_pages;
2898 val->sharedram = 0;
d23ad423 2899 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2900 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2901 val->totalhigh = totalhigh_pages;
2902 val->freehigh = nr_free_highpages();
1da177e4
LT
2903 val->mem_unit = PAGE_SIZE;
2904}
2905
2906EXPORT_SYMBOL(si_meminfo);
2907
2908#ifdef CONFIG_NUMA
2909void si_meminfo_node(struct sysinfo *val, int nid)
2910{
2911 pg_data_t *pgdat = NODE_DATA(nid);
2912
2913 val->totalram = pgdat->node_present_pages;
d23ad423 2914 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2915#ifdef CONFIG_HIGHMEM
b40da049 2916 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2917 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2918 NR_FREE_PAGES);
98d2b0eb
CL
2919#else
2920 val->totalhigh = 0;
2921 val->freehigh = 0;
2922#endif
1da177e4
LT
2923 val->mem_unit = PAGE_SIZE;
2924}
2925#endif
2926
ddd588b5 2927/*
7bf02ea2
DR
2928 * Determine whether the node should be displayed or not, depending on whether
2929 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2930 */
7bf02ea2 2931bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2932{
2933 bool ret = false;
cc9a6c87 2934 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2935
2936 if (!(flags & SHOW_MEM_FILTER_NODES))
2937 goto out;
2938
cc9a6c87
MG
2939 do {
2940 cpuset_mems_cookie = get_mems_allowed();
2941 ret = !node_isset(nid, cpuset_current_mems_allowed);
2942 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2943out:
2944 return ret;
2945}
2946
1da177e4
LT
2947#define K(x) ((x) << (PAGE_SHIFT-10))
2948
377e4f16
RV
2949static void show_migration_types(unsigned char type)
2950{
2951 static const char types[MIGRATE_TYPES] = {
2952 [MIGRATE_UNMOVABLE] = 'U',
2953 [MIGRATE_RECLAIMABLE] = 'E',
2954 [MIGRATE_MOVABLE] = 'M',
2955 [MIGRATE_RESERVE] = 'R',
2956#ifdef CONFIG_CMA
2957 [MIGRATE_CMA] = 'C',
2958#endif
194159fb 2959#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 2960 [MIGRATE_ISOLATE] = 'I',
194159fb 2961#endif
377e4f16
RV
2962 };
2963 char tmp[MIGRATE_TYPES + 1];
2964 char *p = tmp;
2965 int i;
2966
2967 for (i = 0; i < MIGRATE_TYPES; i++) {
2968 if (type & (1 << i))
2969 *p++ = types[i];
2970 }
2971
2972 *p = '\0';
2973 printk("(%s) ", tmp);
2974}
2975
1da177e4
LT
2976/*
2977 * Show free area list (used inside shift_scroll-lock stuff)
2978 * We also calculate the percentage fragmentation. We do this by counting the
2979 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2980 * Suppresses nodes that are not allowed by current's cpuset if
2981 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2982 */
7bf02ea2 2983void show_free_areas(unsigned int filter)
1da177e4 2984{
c7241913 2985 int cpu;
1da177e4
LT
2986 struct zone *zone;
2987
ee99c71c 2988 for_each_populated_zone(zone) {
7bf02ea2 2989 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2990 continue;
c7241913
JS
2991 show_node(zone);
2992 printk("%s per-cpu:\n", zone->name);
1da177e4 2993
6b482c67 2994 for_each_online_cpu(cpu) {
1da177e4
LT
2995 struct per_cpu_pageset *pageset;
2996
99dcc3e5 2997 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2998
3dfa5721
CL
2999 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3000 cpu, pageset->pcp.high,
3001 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3002 }
3003 }
3004
a731286d
KM
3005 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3006 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3007 " unevictable:%lu"
b76146ed 3008 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3009 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3010 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3011 " free_cma:%lu\n",
4f98a2fe 3012 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3013 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3014 global_page_state(NR_ISOLATED_ANON),
3015 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3016 global_page_state(NR_INACTIVE_FILE),
a731286d 3017 global_page_state(NR_ISOLATED_FILE),
7b854121 3018 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3019 global_page_state(NR_FILE_DIRTY),
ce866b34 3020 global_page_state(NR_WRITEBACK),
fd39fc85 3021 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3022 global_page_state(NR_FREE_PAGES),
3701b033
KM
3023 global_page_state(NR_SLAB_RECLAIMABLE),
3024 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3025 global_page_state(NR_FILE_MAPPED),
4b02108a 3026 global_page_state(NR_SHMEM),
a25700a5 3027 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3028 global_page_state(NR_BOUNCE),
3029 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3030
ee99c71c 3031 for_each_populated_zone(zone) {
1da177e4
LT
3032 int i;
3033
7bf02ea2 3034 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3035 continue;
1da177e4
LT
3036 show_node(zone);
3037 printk("%s"
3038 " free:%lukB"
3039 " min:%lukB"
3040 " low:%lukB"
3041 " high:%lukB"
4f98a2fe
RR
3042 " active_anon:%lukB"
3043 " inactive_anon:%lukB"
3044 " active_file:%lukB"
3045 " inactive_file:%lukB"
7b854121 3046 " unevictable:%lukB"
a731286d
KM
3047 " isolated(anon):%lukB"
3048 " isolated(file):%lukB"
1da177e4 3049 " present:%lukB"
9feedc9d 3050 " managed:%lukB"
4a0aa73f
KM
3051 " mlocked:%lukB"
3052 " dirty:%lukB"
3053 " writeback:%lukB"
3054 " mapped:%lukB"
4b02108a 3055 " shmem:%lukB"
4a0aa73f
KM
3056 " slab_reclaimable:%lukB"
3057 " slab_unreclaimable:%lukB"
c6a7f572 3058 " kernel_stack:%lukB"
4a0aa73f
KM
3059 " pagetables:%lukB"
3060 " unstable:%lukB"
3061 " bounce:%lukB"
d1ce749a 3062 " free_cma:%lukB"
4a0aa73f 3063 " writeback_tmp:%lukB"
1da177e4
LT
3064 " pages_scanned:%lu"
3065 " all_unreclaimable? %s"
3066 "\n",
3067 zone->name,
88f5acf8 3068 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3069 K(min_wmark_pages(zone)),
3070 K(low_wmark_pages(zone)),
3071 K(high_wmark_pages(zone)),
4f98a2fe
RR
3072 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3073 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3074 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3075 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3076 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3077 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3078 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3079 K(zone->present_pages),
9feedc9d 3080 K(zone->managed_pages),
4a0aa73f
KM
3081 K(zone_page_state(zone, NR_MLOCK)),
3082 K(zone_page_state(zone, NR_FILE_DIRTY)),
3083 K(zone_page_state(zone, NR_WRITEBACK)),
3084 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3085 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3086 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3087 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3088 zone_page_state(zone, NR_KERNEL_STACK) *
3089 THREAD_SIZE / 1024,
4a0aa73f
KM
3090 K(zone_page_state(zone, NR_PAGETABLE)),
3091 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3092 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3093 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3094 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3095 zone->pages_scanned,
93e4a89a 3096 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3097 );
3098 printk("lowmem_reserve[]:");
3099 for (i = 0; i < MAX_NR_ZONES; i++)
3100 printk(" %lu", zone->lowmem_reserve[i]);
3101 printk("\n");
3102 }
3103
ee99c71c 3104 for_each_populated_zone(zone) {
8f9de51a 3105 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3106 unsigned char types[MAX_ORDER];
1da177e4 3107
7bf02ea2 3108 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3109 continue;
1da177e4
LT
3110 show_node(zone);
3111 printk("%s: ", zone->name);
1da177e4
LT
3112
3113 spin_lock_irqsave(&zone->lock, flags);
3114 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3115 struct free_area *area = &zone->free_area[order];
3116 int type;
3117
3118 nr[order] = area->nr_free;
8f9de51a 3119 total += nr[order] << order;
377e4f16
RV
3120
3121 types[order] = 0;
3122 for (type = 0; type < MIGRATE_TYPES; type++) {
3123 if (!list_empty(&area->free_list[type]))
3124 types[order] |= 1 << type;
3125 }
1da177e4
LT
3126 }
3127 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3128 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3129 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3130 if (nr[order])
3131 show_migration_types(types[order]);
3132 }
1da177e4
LT
3133 printk("= %lukB\n", K(total));
3134 }
3135
949f7ec5
DR
3136 hugetlb_show_meminfo();
3137
e6f3602d
LW
3138 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3139
1da177e4
LT
3140 show_swap_cache_info();
3141}
3142
19770b32
MG
3143static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3144{
3145 zoneref->zone = zone;
3146 zoneref->zone_idx = zone_idx(zone);
3147}
3148
1da177e4
LT
3149/*
3150 * Builds allocation fallback zone lists.
1a93205b
CL
3151 *
3152 * Add all populated zones of a node to the zonelist.
1da177e4 3153 */
f0c0b2b8
KH
3154static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3155 int nr_zones, enum zone_type zone_type)
1da177e4 3156{
1a93205b
CL
3157 struct zone *zone;
3158
98d2b0eb 3159 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3160 zone_type++;
02a68a5e
CL
3161
3162 do {
2f6726e5 3163 zone_type--;
070f8032 3164 zone = pgdat->node_zones + zone_type;
1a93205b 3165 if (populated_zone(zone)) {
dd1a239f
MG
3166 zoneref_set_zone(zone,
3167 &zonelist->_zonerefs[nr_zones++]);
070f8032 3168 check_highest_zone(zone_type);
1da177e4 3169 }
02a68a5e 3170
2f6726e5 3171 } while (zone_type);
070f8032 3172 return nr_zones;
1da177e4
LT
3173}
3174
f0c0b2b8
KH
3175
3176/*
3177 * zonelist_order:
3178 * 0 = automatic detection of better ordering.
3179 * 1 = order by ([node] distance, -zonetype)
3180 * 2 = order by (-zonetype, [node] distance)
3181 *
3182 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3183 * the same zonelist. So only NUMA can configure this param.
3184 */
3185#define ZONELIST_ORDER_DEFAULT 0
3186#define ZONELIST_ORDER_NODE 1
3187#define ZONELIST_ORDER_ZONE 2
3188
3189/* zonelist order in the kernel.
3190 * set_zonelist_order() will set this to NODE or ZONE.
3191 */
3192static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3193static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3194
3195
1da177e4 3196#ifdef CONFIG_NUMA
f0c0b2b8
KH
3197/* The value user specified ....changed by config */
3198static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3199/* string for sysctl */
3200#define NUMA_ZONELIST_ORDER_LEN 16
3201char numa_zonelist_order[16] = "default";
3202
3203/*
3204 * interface for configure zonelist ordering.
3205 * command line option "numa_zonelist_order"
3206 * = "[dD]efault - default, automatic configuration.
3207 * = "[nN]ode - order by node locality, then by zone within node
3208 * = "[zZ]one - order by zone, then by locality within zone
3209 */
3210
3211static int __parse_numa_zonelist_order(char *s)
3212{
3213 if (*s == 'd' || *s == 'D') {
3214 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3215 } else if (*s == 'n' || *s == 'N') {
3216 user_zonelist_order = ZONELIST_ORDER_NODE;
3217 } else if (*s == 'z' || *s == 'Z') {
3218 user_zonelist_order = ZONELIST_ORDER_ZONE;
3219 } else {
3220 printk(KERN_WARNING
3221 "Ignoring invalid numa_zonelist_order value: "
3222 "%s\n", s);
3223 return -EINVAL;
3224 }
3225 return 0;
3226}
3227
3228static __init int setup_numa_zonelist_order(char *s)
3229{
ecb256f8
VL
3230 int ret;
3231
3232 if (!s)
3233 return 0;
3234
3235 ret = __parse_numa_zonelist_order(s);
3236 if (ret == 0)
3237 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3238
3239 return ret;
f0c0b2b8
KH
3240}
3241early_param("numa_zonelist_order", setup_numa_zonelist_order);
3242
3243/*
3244 * sysctl handler for numa_zonelist_order
3245 */
3246int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3247 void __user *buffer, size_t *length,
f0c0b2b8
KH
3248 loff_t *ppos)
3249{
3250 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3251 int ret;
443c6f14 3252 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3253
443c6f14 3254 mutex_lock(&zl_order_mutex);
dacbde09
CG
3255 if (write) {
3256 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3257 ret = -EINVAL;
3258 goto out;
3259 }
3260 strcpy(saved_string, (char *)table->data);
3261 }
8d65af78 3262 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3263 if (ret)
443c6f14 3264 goto out;
f0c0b2b8
KH
3265 if (write) {
3266 int oldval = user_zonelist_order;
dacbde09
CG
3267
3268 ret = __parse_numa_zonelist_order((char *)table->data);
3269 if (ret) {
f0c0b2b8
KH
3270 /*
3271 * bogus value. restore saved string
3272 */
dacbde09 3273 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3274 NUMA_ZONELIST_ORDER_LEN);
3275 user_zonelist_order = oldval;
4eaf3f64
HL
3276 } else if (oldval != user_zonelist_order) {
3277 mutex_lock(&zonelists_mutex);
9adb62a5 3278 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3279 mutex_unlock(&zonelists_mutex);
3280 }
f0c0b2b8 3281 }
443c6f14
AK
3282out:
3283 mutex_unlock(&zl_order_mutex);
3284 return ret;
f0c0b2b8
KH
3285}
3286
3287
62bc62a8 3288#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3289static int node_load[MAX_NUMNODES];
3290
1da177e4 3291/**
4dc3b16b 3292 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3293 * @node: node whose fallback list we're appending
3294 * @used_node_mask: nodemask_t of already used nodes
3295 *
3296 * We use a number of factors to determine which is the next node that should
3297 * appear on a given node's fallback list. The node should not have appeared
3298 * already in @node's fallback list, and it should be the next closest node
3299 * according to the distance array (which contains arbitrary distance values
3300 * from each node to each node in the system), and should also prefer nodes
3301 * with no CPUs, since presumably they'll have very little allocation pressure
3302 * on them otherwise.
3303 * It returns -1 if no node is found.
3304 */
f0c0b2b8 3305static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3306{
4cf808eb 3307 int n, val;
1da177e4 3308 int min_val = INT_MAX;
00ef2d2f 3309 int best_node = NUMA_NO_NODE;
a70f7302 3310 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3311
4cf808eb
LT
3312 /* Use the local node if we haven't already */
3313 if (!node_isset(node, *used_node_mask)) {
3314 node_set(node, *used_node_mask);
3315 return node;
3316 }
1da177e4 3317
4b0ef1fe 3318 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3319
3320 /* Don't want a node to appear more than once */
3321 if (node_isset(n, *used_node_mask))
3322 continue;
3323
1da177e4
LT
3324 /* Use the distance array to find the distance */
3325 val = node_distance(node, n);
3326
4cf808eb
LT
3327 /* Penalize nodes under us ("prefer the next node") */
3328 val += (n < node);
3329
1da177e4 3330 /* Give preference to headless and unused nodes */
a70f7302
RR
3331 tmp = cpumask_of_node(n);
3332 if (!cpumask_empty(tmp))
1da177e4
LT
3333 val += PENALTY_FOR_NODE_WITH_CPUS;
3334
3335 /* Slight preference for less loaded node */
3336 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3337 val += node_load[n];
3338
3339 if (val < min_val) {
3340 min_val = val;
3341 best_node = n;
3342 }
3343 }
3344
3345 if (best_node >= 0)
3346 node_set(best_node, *used_node_mask);
3347
3348 return best_node;
3349}
3350
f0c0b2b8
KH
3351
3352/*
3353 * Build zonelists ordered by node and zones within node.
3354 * This results in maximum locality--normal zone overflows into local
3355 * DMA zone, if any--but risks exhausting DMA zone.
3356 */
3357static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3358{
f0c0b2b8 3359 int j;
1da177e4 3360 struct zonelist *zonelist;
f0c0b2b8 3361
54a6eb5c 3362 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3363 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3364 ;
3365 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3366 MAX_NR_ZONES - 1);
dd1a239f
MG
3367 zonelist->_zonerefs[j].zone = NULL;
3368 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3369}
3370
523b9458
CL
3371/*
3372 * Build gfp_thisnode zonelists
3373 */
3374static void build_thisnode_zonelists(pg_data_t *pgdat)
3375{
523b9458
CL
3376 int j;
3377 struct zonelist *zonelist;
3378
54a6eb5c
MG
3379 zonelist = &pgdat->node_zonelists[1];
3380 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3381 zonelist->_zonerefs[j].zone = NULL;
3382 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3383}
3384
f0c0b2b8
KH
3385/*
3386 * Build zonelists ordered by zone and nodes within zones.
3387 * This results in conserving DMA zone[s] until all Normal memory is
3388 * exhausted, but results in overflowing to remote node while memory
3389 * may still exist in local DMA zone.
3390 */
3391static int node_order[MAX_NUMNODES];
3392
3393static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3394{
f0c0b2b8
KH
3395 int pos, j, node;
3396 int zone_type; /* needs to be signed */
3397 struct zone *z;
3398 struct zonelist *zonelist;
3399
54a6eb5c
MG
3400 zonelist = &pgdat->node_zonelists[0];
3401 pos = 0;
3402 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3403 for (j = 0; j < nr_nodes; j++) {
3404 node = node_order[j];
3405 z = &NODE_DATA(node)->node_zones[zone_type];
3406 if (populated_zone(z)) {
dd1a239f
MG
3407 zoneref_set_zone(z,
3408 &zonelist->_zonerefs[pos++]);
54a6eb5c 3409 check_highest_zone(zone_type);
f0c0b2b8
KH
3410 }
3411 }
f0c0b2b8 3412 }
dd1a239f
MG
3413 zonelist->_zonerefs[pos].zone = NULL;
3414 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3415}
3416
3417static int default_zonelist_order(void)
3418{
3419 int nid, zone_type;
3420 unsigned long low_kmem_size,total_size;
3421 struct zone *z;
3422 int average_size;
3423 /*
88393161 3424 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3425 * If they are really small and used heavily, the system can fall
3426 * into OOM very easily.
e325c90f 3427 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3428 */
3429 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3430 low_kmem_size = 0;
3431 total_size = 0;
3432 for_each_online_node(nid) {
3433 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3434 z = &NODE_DATA(nid)->node_zones[zone_type];
3435 if (populated_zone(z)) {
3436 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3437 low_kmem_size += z->managed_pages;
3438 total_size += z->managed_pages;
e325c90f
DR
3439 } else if (zone_type == ZONE_NORMAL) {
3440 /*
3441 * If any node has only lowmem, then node order
3442 * is preferred to allow kernel allocations
3443 * locally; otherwise, they can easily infringe
3444 * on other nodes when there is an abundance of
3445 * lowmem available to allocate from.
3446 */
3447 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3448 }
3449 }
3450 }
3451 if (!low_kmem_size || /* there are no DMA area. */
3452 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3453 return ZONELIST_ORDER_NODE;
3454 /*
3455 * look into each node's config.
3456 * If there is a node whose DMA/DMA32 memory is very big area on
3457 * local memory, NODE_ORDER may be suitable.
3458 */
37b07e41 3459 average_size = total_size /
4b0ef1fe 3460 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3461 for_each_online_node(nid) {
3462 low_kmem_size = 0;
3463 total_size = 0;
3464 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3465 z = &NODE_DATA(nid)->node_zones[zone_type];
3466 if (populated_zone(z)) {
3467 if (zone_type < ZONE_NORMAL)
3468 low_kmem_size += z->present_pages;
3469 total_size += z->present_pages;
3470 }
3471 }
3472 if (low_kmem_size &&
3473 total_size > average_size && /* ignore small node */
3474 low_kmem_size > total_size * 70/100)
3475 return ZONELIST_ORDER_NODE;
3476 }
3477 return ZONELIST_ORDER_ZONE;
3478}
3479
3480static void set_zonelist_order(void)
3481{
3482 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3483 current_zonelist_order = default_zonelist_order();
3484 else
3485 current_zonelist_order = user_zonelist_order;
3486}
3487
3488static void build_zonelists(pg_data_t *pgdat)
3489{
3490 int j, node, load;
3491 enum zone_type i;
1da177e4 3492 nodemask_t used_mask;
f0c0b2b8
KH
3493 int local_node, prev_node;
3494 struct zonelist *zonelist;
3495 int order = current_zonelist_order;
1da177e4
LT
3496
3497 /* initialize zonelists */
523b9458 3498 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3499 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3500 zonelist->_zonerefs[0].zone = NULL;
3501 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3502 }
3503
3504 /* NUMA-aware ordering of nodes */
3505 local_node = pgdat->node_id;
62bc62a8 3506 load = nr_online_nodes;
1da177e4
LT
3507 prev_node = local_node;
3508 nodes_clear(used_mask);
f0c0b2b8 3509
f0c0b2b8
KH
3510 memset(node_order, 0, sizeof(node_order));
3511 j = 0;
3512
1da177e4
LT
3513 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3514 /*
3515 * We don't want to pressure a particular node.
3516 * So adding penalty to the first node in same
3517 * distance group to make it round-robin.
3518 */
957f822a
DR
3519 if (node_distance(local_node, node) !=
3520 node_distance(local_node, prev_node))
f0c0b2b8
KH
3521 node_load[node] = load;
3522
1da177e4
LT
3523 prev_node = node;
3524 load--;
f0c0b2b8
KH
3525 if (order == ZONELIST_ORDER_NODE)
3526 build_zonelists_in_node_order(pgdat, node);
3527 else
3528 node_order[j++] = node; /* remember order */
3529 }
1da177e4 3530
f0c0b2b8
KH
3531 if (order == ZONELIST_ORDER_ZONE) {
3532 /* calculate node order -- i.e., DMA last! */
3533 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3534 }
523b9458
CL
3535
3536 build_thisnode_zonelists(pgdat);
1da177e4
LT
3537}
3538
9276b1bc 3539/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3540static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3541{
54a6eb5c
MG
3542 struct zonelist *zonelist;
3543 struct zonelist_cache *zlc;
dd1a239f 3544 struct zoneref *z;
9276b1bc 3545
54a6eb5c
MG
3546 zonelist = &pgdat->node_zonelists[0];
3547 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3548 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3549 for (z = zonelist->_zonerefs; z->zone; z++)
3550 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3551}
3552
7aac7898
LS
3553#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3554/*
3555 * Return node id of node used for "local" allocations.
3556 * I.e., first node id of first zone in arg node's generic zonelist.
3557 * Used for initializing percpu 'numa_mem', which is used primarily
3558 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3559 */
3560int local_memory_node(int node)
3561{
3562 struct zone *zone;
3563
3564 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3565 gfp_zone(GFP_KERNEL),
3566 NULL,
3567 &zone);
3568 return zone->node;
3569}
3570#endif
f0c0b2b8 3571
1da177e4
LT
3572#else /* CONFIG_NUMA */
3573
f0c0b2b8
KH
3574static void set_zonelist_order(void)
3575{
3576 current_zonelist_order = ZONELIST_ORDER_ZONE;
3577}
3578
3579static void build_zonelists(pg_data_t *pgdat)
1da177e4 3580{
19655d34 3581 int node, local_node;
54a6eb5c
MG
3582 enum zone_type j;
3583 struct zonelist *zonelist;
1da177e4
LT
3584
3585 local_node = pgdat->node_id;
1da177e4 3586
54a6eb5c
MG
3587 zonelist = &pgdat->node_zonelists[0];
3588 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3589
54a6eb5c
MG
3590 /*
3591 * Now we build the zonelist so that it contains the zones
3592 * of all the other nodes.
3593 * We don't want to pressure a particular node, so when
3594 * building the zones for node N, we make sure that the
3595 * zones coming right after the local ones are those from
3596 * node N+1 (modulo N)
3597 */
3598 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3599 if (!node_online(node))
3600 continue;
3601 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3602 MAX_NR_ZONES - 1);
1da177e4 3603 }
54a6eb5c
MG
3604 for (node = 0; node < local_node; node++) {
3605 if (!node_online(node))
3606 continue;
3607 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3608 MAX_NR_ZONES - 1);
3609 }
3610
dd1a239f
MG
3611 zonelist->_zonerefs[j].zone = NULL;
3612 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3613}
3614
9276b1bc 3615/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3616static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3617{
54a6eb5c 3618 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3619}
3620
1da177e4
LT
3621#endif /* CONFIG_NUMA */
3622
99dcc3e5
CL
3623/*
3624 * Boot pageset table. One per cpu which is going to be used for all
3625 * zones and all nodes. The parameters will be set in such a way
3626 * that an item put on a list will immediately be handed over to
3627 * the buddy list. This is safe since pageset manipulation is done
3628 * with interrupts disabled.
3629 *
3630 * The boot_pagesets must be kept even after bootup is complete for
3631 * unused processors and/or zones. They do play a role for bootstrapping
3632 * hotplugged processors.
3633 *
3634 * zoneinfo_show() and maybe other functions do
3635 * not check if the processor is online before following the pageset pointer.
3636 * Other parts of the kernel may not check if the zone is available.
3637 */
3638static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3639static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3640static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3641
4eaf3f64
HL
3642/*
3643 * Global mutex to protect against size modification of zonelists
3644 * as well as to serialize pageset setup for the new populated zone.
3645 */
3646DEFINE_MUTEX(zonelists_mutex);
3647
9b1a4d38 3648/* return values int ....just for stop_machine() */
4ed7e022 3649static int __build_all_zonelists(void *data)
1da177e4 3650{
6811378e 3651 int nid;
99dcc3e5 3652 int cpu;
9adb62a5 3653 pg_data_t *self = data;
9276b1bc 3654
7f9cfb31
BL
3655#ifdef CONFIG_NUMA
3656 memset(node_load, 0, sizeof(node_load));
3657#endif
9adb62a5
JL
3658
3659 if (self && !node_online(self->node_id)) {
3660 build_zonelists(self);
3661 build_zonelist_cache(self);
3662 }
3663
9276b1bc 3664 for_each_online_node(nid) {
7ea1530a
CL
3665 pg_data_t *pgdat = NODE_DATA(nid);
3666
3667 build_zonelists(pgdat);
3668 build_zonelist_cache(pgdat);
9276b1bc 3669 }
99dcc3e5
CL
3670
3671 /*
3672 * Initialize the boot_pagesets that are going to be used
3673 * for bootstrapping processors. The real pagesets for
3674 * each zone will be allocated later when the per cpu
3675 * allocator is available.
3676 *
3677 * boot_pagesets are used also for bootstrapping offline
3678 * cpus if the system is already booted because the pagesets
3679 * are needed to initialize allocators on a specific cpu too.
3680 * F.e. the percpu allocator needs the page allocator which
3681 * needs the percpu allocator in order to allocate its pagesets
3682 * (a chicken-egg dilemma).
3683 */
7aac7898 3684 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3685 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3686
7aac7898
LS
3687#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3688 /*
3689 * We now know the "local memory node" for each node--
3690 * i.e., the node of the first zone in the generic zonelist.
3691 * Set up numa_mem percpu variable for on-line cpus. During
3692 * boot, only the boot cpu should be on-line; we'll init the
3693 * secondary cpus' numa_mem as they come on-line. During
3694 * node/memory hotplug, we'll fixup all on-line cpus.
3695 */
3696 if (cpu_online(cpu))
3697 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3698#endif
3699 }
3700
6811378e
YG
3701 return 0;
3702}
3703
4eaf3f64
HL
3704/*
3705 * Called with zonelists_mutex held always
3706 * unless system_state == SYSTEM_BOOTING.
3707 */
9adb62a5 3708void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3709{
f0c0b2b8
KH
3710 set_zonelist_order();
3711
6811378e 3712 if (system_state == SYSTEM_BOOTING) {
423b41d7 3713 __build_all_zonelists(NULL);
68ad8df4 3714 mminit_verify_zonelist();
6811378e
YG
3715 cpuset_init_current_mems_allowed();
3716 } else {
e9959f0f 3717#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3718 if (zone)
3719 setup_zone_pageset(zone);
e9959f0f 3720#endif
dd1895e2
CS
3721 /* we have to stop all cpus to guarantee there is no user
3722 of zonelist */
9adb62a5 3723 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3724 /* cpuset refresh routine should be here */
3725 }
bd1e22b8 3726 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3727 /*
3728 * Disable grouping by mobility if the number of pages in the
3729 * system is too low to allow the mechanism to work. It would be
3730 * more accurate, but expensive to check per-zone. This check is
3731 * made on memory-hotadd so a system can start with mobility
3732 * disabled and enable it later
3733 */
d9c23400 3734 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3735 page_group_by_mobility_disabled = 1;
3736 else
3737 page_group_by_mobility_disabled = 0;
3738
3739 printk("Built %i zonelists in %s order, mobility grouping %s. "
3740 "Total pages: %ld\n",
62bc62a8 3741 nr_online_nodes,
f0c0b2b8 3742 zonelist_order_name[current_zonelist_order],
9ef9acb0 3743 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3744 vm_total_pages);
3745#ifdef CONFIG_NUMA
3746 printk("Policy zone: %s\n", zone_names[policy_zone]);
3747#endif
1da177e4
LT
3748}
3749
3750/*
3751 * Helper functions to size the waitqueue hash table.
3752 * Essentially these want to choose hash table sizes sufficiently
3753 * large so that collisions trying to wait on pages are rare.
3754 * But in fact, the number of active page waitqueues on typical
3755 * systems is ridiculously low, less than 200. So this is even
3756 * conservative, even though it seems large.
3757 *
3758 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3759 * waitqueues, i.e. the size of the waitq table given the number of pages.
3760 */
3761#define PAGES_PER_WAITQUEUE 256
3762
cca448fe 3763#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3764static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3765{
3766 unsigned long size = 1;
3767
3768 pages /= PAGES_PER_WAITQUEUE;
3769
3770 while (size < pages)
3771 size <<= 1;
3772
3773 /*
3774 * Once we have dozens or even hundreds of threads sleeping
3775 * on IO we've got bigger problems than wait queue collision.
3776 * Limit the size of the wait table to a reasonable size.
3777 */
3778 size = min(size, 4096UL);
3779
3780 return max(size, 4UL);
3781}
cca448fe
YG
3782#else
3783/*
3784 * A zone's size might be changed by hot-add, so it is not possible to determine
3785 * a suitable size for its wait_table. So we use the maximum size now.
3786 *
3787 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3788 *
3789 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3790 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3791 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3792 *
3793 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3794 * or more by the traditional way. (See above). It equals:
3795 *
3796 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3797 * ia64(16K page size) : = ( 8G + 4M)byte.
3798 * powerpc (64K page size) : = (32G +16M)byte.
3799 */
3800static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3801{
3802 return 4096UL;
3803}
3804#endif
1da177e4
LT
3805
3806/*
3807 * This is an integer logarithm so that shifts can be used later
3808 * to extract the more random high bits from the multiplicative
3809 * hash function before the remainder is taken.
3810 */
3811static inline unsigned long wait_table_bits(unsigned long size)
3812{
3813 return ffz(~size);
3814}
3815
3816#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3817
6d3163ce
AH
3818/*
3819 * Check if a pageblock contains reserved pages
3820 */
3821static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3822{
3823 unsigned long pfn;
3824
3825 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3826 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3827 return 1;
3828 }
3829 return 0;
3830}
3831
56fd56b8 3832/*
d9c23400 3833 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3834 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3835 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3836 * higher will lead to a bigger reserve which will get freed as contiguous
3837 * blocks as reclaim kicks in
3838 */
3839static void setup_zone_migrate_reserve(struct zone *zone)
3840{
6d3163ce 3841 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3842 struct page *page;
78986a67
MG
3843 unsigned long block_migratetype;
3844 int reserve;
56fd56b8 3845
d0215638
MH
3846 /*
3847 * Get the start pfn, end pfn and the number of blocks to reserve
3848 * We have to be careful to be aligned to pageblock_nr_pages to
3849 * make sure that we always check pfn_valid for the first page in
3850 * the block.
3851 */
56fd56b8 3852 start_pfn = zone->zone_start_pfn;
108bcc96 3853 end_pfn = zone_end_pfn(zone);
d0215638 3854 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3855 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3856 pageblock_order;
56fd56b8 3857
78986a67
MG
3858 /*
3859 * Reserve blocks are generally in place to help high-order atomic
3860 * allocations that are short-lived. A min_free_kbytes value that
3861 * would result in more than 2 reserve blocks for atomic allocations
3862 * is assumed to be in place to help anti-fragmentation for the
3863 * future allocation of hugepages at runtime.
3864 */
3865 reserve = min(2, reserve);
3866
d9c23400 3867 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3868 if (!pfn_valid(pfn))
3869 continue;
3870 page = pfn_to_page(pfn);
3871
344c790e
AL
3872 /* Watch out for overlapping nodes */
3873 if (page_to_nid(page) != zone_to_nid(zone))
3874 continue;
3875
56fd56b8
MG
3876 block_migratetype = get_pageblock_migratetype(page);
3877
938929f1
MG
3878 /* Only test what is necessary when the reserves are not met */
3879 if (reserve > 0) {
3880 /*
3881 * Blocks with reserved pages will never free, skip
3882 * them.
3883 */
3884 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3885 if (pageblock_is_reserved(pfn, block_end_pfn))
3886 continue;
56fd56b8 3887
938929f1
MG
3888 /* If this block is reserved, account for it */
3889 if (block_migratetype == MIGRATE_RESERVE) {
3890 reserve--;
3891 continue;
3892 }
3893
3894 /* Suitable for reserving if this block is movable */
3895 if (block_migratetype == MIGRATE_MOVABLE) {
3896 set_pageblock_migratetype(page,
3897 MIGRATE_RESERVE);
3898 move_freepages_block(zone, page,
3899 MIGRATE_RESERVE);
3900 reserve--;
3901 continue;
3902 }
56fd56b8
MG
3903 }
3904
3905 /*
3906 * If the reserve is met and this is a previous reserved block,
3907 * take it back
3908 */
3909 if (block_migratetype == MIGRATE_RESERVE) {
3910 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3911 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3912 }
3913 }
3914}
ac0e5b7a 3915
1da177e4
LT
3916/*
3917 * Initially all pages are reserved - free ones are freed
3918 * up by free_all_bootmem() once the early boot process is
3919 * done. Non-atomic initialization, single-pass.
3920 */
c09b4240 3921void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3922 unsigned long start_pfn, enum memmap_context context)
1da177e4 3923{
1da177e4 3924 struct page *page;
29751f69
AW
3925 unsigned long end_pfn = start_pfn + size;
3926 unsigned long pfn;
86051ca5 3927 struct zone *z;
1da177e4 3928
22b31eec
HD
3929 if (highest_memmap_pfn < end_pfn - 1)
3930 highest_memmap_pfn = end_pfn - 1;
3931
86051ca5 3932 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3933 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3934 /*
3935 * There can be holes in boot-time mem_map[]s
3936 * handed to this function. They do not
3937 * exist on hotplugged memory.
3938 */
3939 if (context == MEMMAP_EARLY) {
3940 if (!early_pfn_valid(pfn))
3941 continue;
3942 if (!early_pfn_in_nid(pfn, nid))
3943 continue;
3944 }
d41dee36
AW
3945 page = pfn_to_page(pfn);
3946 set_page_links(page, zone, nid, pfn);
708614e6 3947 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3948 init_page_count(page);
22b751c3
MG
3949 page_mapcount_reset(page);
3950 page_nid_reset_last(page);
1da177e4 3951 SetPageReserved(page);
b2a0ac88
MG
3952 /*
3953 * Mark the block movable so that blocks are reserved for
3954 * movable at startup. This will force kernel allocations
3955 * to reserve their blocks rather than leaking throughout
3956 * the address space during boot when many long-lived
56fd56b8
MG
3957 * kernel allocations are made. Later some blocks near
3958 * the start are marked MIGRATE_RESERVE by
3959 * setup_zone_migrate_reserve()
86051ca5
KH
3960 *
3961 * bitmap is created for zone's valid pfn range. but memmap
3962 * can be created for invalid pages (for alignment)
3963 * check here not to call set_pageblock_migratetype() against
3964 * pfn out of zone.
b2a0ac88 3965 */
86051ca5 3966 if ((z->zone_start_pfn <= pfn)
108bcc96 3967 && (pfn < zone_end_pfn(z))
86051ca5 3968 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3969 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3970
1da177e4
LT
3971 INIT_LIST_HEAD(&page->lru);
3972#ifdef WANT_PAGE_VIRTUAL
3973 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3974 if (!is_highmem_idx(zone))
3212c6be 3975 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3976#endif
1da177e4
LT
3977 }
3978}
3979
1e548deb 3980static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3981{
b2a0ac88
MG
3982 int order, t;
3983 for_each_migratetype_order(order, t) {
3984 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3985 zone->free_area[order].nr_free = 0;
3986 }
3987}
3988
3989#ifndef __HAVE_ARCH_MEMMAP_INIT
3990#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3991 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3992#endif
3993
4ed7e022 3994static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3995{
3a6be87f 3996#ifdef CONFIG_MMU
e7c8d5c9
CL
3997 int batch;
3998
3999 /*
4000 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4001 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4002 *
4003 * OK, so we don't know how big the cache is. So guess.
4004 */
b40da049 4005 batch = zone->managed_pages / 1024;
ba56e91c
SR
4006 if (batch * PAGE_SIZE > 512 * 1024)
4007 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4008 batch /= 4; /* We effectively *= 4 below */
4009 if (batch < 1)
4010 batch = 1;
4011
4012 /*
0ceaacc9
NP
4013 * Clamp the batch to a 2^n - 1 value. Having a power
4014 * of 2 value was found to be more likely to have
4015 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4016 *
0ceaacc9
NP
4017 * For example if 2 tasks are alternately allocating
4018 * batches of pages, one task can end up with a lot
4019 * of pages of one half of the possible page colors
4020 * and the other with pages of the other colors.
e7c8d5c9 4021 */
9155203a 4022 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4023
e7c8d5c9 4024 return batch;
3a6be87f
DH
4025
4026#else
4027 /* The deferral and batching of frees should be suppressed under NOMMU
4028 * conditions.
4029 *
4030 * The problem is that NOMMU needs to be able to allocate large chunks
4031 * of contiguous memory as there's no hardware page translation to
4032 * assemble apparent contiguous memory from discontiguous pages.
4033 *
4034 * Queueing large contiguous runs of pages for batching, however,
4035 * causes the pages to actually be freed in smaller chunks. As there
4036 * can be a significant delay between the individual batches being
4037 * recycled, this leads to the once large chunks of space being
4038 * fragmented and becoming unavailable for high-order allocations.
4039 */
4040 return 0;
4041#endif
e7c8d5c9
CL
4042}
4043
8d7a8fa9
CS
4044/*
4045 * pcp->high and pcp->batch values are related and dependent on one another:
4046 * ->batch must never be higher then ->high.
4047 * The following function updates them in a safe manner without read side
4048 * locking.
4049 *
4050 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4051 * those fields changing asynchronously (acording the the above rule).
4052 *
4053 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4054 * outside of boot time (or some other assurance that no concurrent updaters
4055 * exist).
4056 */
4057static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4058 unsigned long batch)
4059{
4060 /* start with a fail safe value for batch */
4061 pcp->batch = 1;
4062 smp_wmb();
4063
4064 /* Update high, then batch, in order */
4065 pcp->high = high;
4066 smp_wmb();
4067
4068 pcp->batch = batch;
4069}
4070
3664033c 4071/* a companion to pageset_set_high() */
4008bab7
CS
4072static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4073{
8d7a8fa9 4074 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4075}
4076
88c90dbc 4077static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4078{
4079 struct per_cpu_pages *pcp;
5f8dcc21 4080 int migratetype;
2caaad41 4081
1c6fe946
MD
4082 memset(p, 0, sizeof(*p));
4083
3dfa5721 4084 pcp = &p->pcp;
2caaad41 4085 pcp->count = 0;
5f8dcc21
MG
4086 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4087 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4088}
4089
88c90dbc
CS
4090static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4091{
4092 pageset_init(p);
4093 pageset_set_batch(p, batch);
4094}
4095
8ad4b1fb 4096/*
3664033c 4097 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4098 * to the value high for the pageset p.
4099 */
3664033c 4100static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4101 unsigned long high)
4102{
8d7a8fa9
CS
4103 unsigned long batch = max(1UL, high / 4);
4104 if ((high / 4) > (PAGE_SHIFT * 8))
4105 batch = PAGE_SHIFT * 8;
8ad4b1fb 4106
8d7a8fa9 4107 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4108}
4109
169f6c19
CS
4110static void __meminit pageset_set_high_and_batch(struct zone *zone,
4111 struct per_cpu_pageset *pcp)
56cef2b8 4112{
56cef2b8 4113 if (percpu_pagelist_fraction)
3664033c 4114 pageset_set_high(pcp,
56cef2b8
CS
4115 (zone->managed_pages /
4116 percpu_pagelist_fraction));
4117 else
4118 pageset_set_batch(pcp, zone_batchsize(zone));
4119}
4120
169f6c19
CS
4121static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4122{
4123 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4124
4125 pageset_init(pcp);
4126 pageset_set_high_and_batch(zone, pcp);
4127}
4128
4ed7e022 4129static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4130{
4131 int cpu;
319774e2 4132 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4133 for_each_possible_cpu(cpu)
4134 zone_pageset_init(zone, cpu);
319774e2
WF
4135}
4136
2caaad41 4137/*
99dcc3e5
CL
4138 * Allocate per cpu pagesets and initialize them.
4139 * Before this call only boot pagesets were available.
e7c8d5c9 4140 */
99dcc3e5 4141void __init setup_per_cpu_pageset(void)
e7c8d5c9 4142{
99dcc3e5 4143 struct zone *zone;
e7c8d5c9 4144
319774e2
WF
4145 for_each_populated_zone(zone)
4146 setup_zone_pageset(zone);
e7c8d5c9
CL
4147}
4148
577a32f6 4149static noinline __init_refok
cca448fe 4150int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4151{
4152 int i;
4153 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4154 size_t alloc_size;
ed8ece2e
DH
4155
4156 /*
4157 * The per-page waitqueue mechanism uses hashed waitqueues
4158 * per zone.
4159 */
02b694de
YG
4160 zone->wait_table_hash_nr_entries =
4161 wait_table_hash_nr_entries(zone_size_pages);
4162 zone->wait_table_bits =
4163 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4164 alloc_size = zone->wait_table_hash_nr_entries
4165 * sizeof(wait_queue_head_t);
4166
cd94b9db 4167 if (!slab_is_available()) {
cca448fe 4168 zone->wait_table = (wait_queue_head_t *)
8f389a99 4169 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4170 } else {
4171 /*
4172 * This case means that a zone whose size was 0 gets new memory
4173 * via memory hot-add.
4174 * But it may be the case that a new node was hot-added. In
4175 * this case vmalloc() will not be able to use this new node's
4176 * memory - this wait_table must be initialized to use this new
4177 * node itself as well.
4178 * To use this new node's memory, further consideration will be
4179 * necessary.
4180 */
8691f3a7 4181 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4182 }
4183 if (!zone->wait_table)
4184 return -ENOMEM;
ed8ece2e 4185
02b694de 4186 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4187 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4188
4189 return 0;
ed8ece2e
DH
4190}
4191
c09b4240 4192static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4193{
99dcc3e5
CL
4194 /*
4195 * per cpu subsystem is not up at this point. The following code
4196 * relies on the ability of the linker to provide the
4197 * offset of a (static) per cpu variable into the per cpu area.
4198 */
4199 zone->pageset = &boot_pageset;
ed8ece2e 4200
f5335c0f 4201 if (zone->present_pages)
99dcc3e5
CL
4202 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4203 zone->name, zone->present_pages,
4204 zone_batchsize(zone));
ed8ece2e
DH
4205}
4206
4ed7e022 4207int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4208 unsigned long zone_start_pfn,
a2f3aa02
DH
4209 unsigned long size,
4210 enum memmap_context context)
ed8ece2e
DH
4211{
4212 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4213 int ret;
4214 ret = zone_wait_table_init(zone, size);
4215 if (ret)
4216 return ret;
ed8ece2e
DH
4217 pgdat->nr_zones = zone_idx(zone) + 1;
4218
ed8ece2e
DH
4219 zone->zone_start_pfn = zone_start_pfn;
4220
708614e6
MG
4221 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4222 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4223 pgdat->node_id,
4224 (unsigned long)zone_idx(zone),
4225 zone_start_pfn, (zone_start_pfn + size));
4226
1e548deb 4227 zone_init_free_lists(zone);
718127cc
YG
4228
4229 return 0;
ed8ece2e
DH
4230}
4231
0ee332c1 4232#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4233#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4234/*
4235 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4236 * Architectures may implement their own version but if add_active_range()
4237 * was used and there are no special requirements, this is a convenient
4238 * alternative
4239 */
f2dbcfa7 4240int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4241{
c13291a5
TH
4242 unsigned long start_pfn, end_pfn;
4243 int i, nid;
7c243c71
RA
4244 /*
4245 * NOTE: The following SMP-unsafe globals are only used early in boot
4246 * when the kernel is running single-threaded.
4247 */
4248 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4249 static int __meminitdata last_nid;
4250
4251 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4252 return last_nid;
c713216d 4253
c13291a5 4254 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7c243c71
RA
4255 if (start_pfn <= pfn && pfn < end_pfn) {
4256 last_start_pfn = start_pfn;
4257 last_end_pfn = end_pfn;
4258 last_nid = nid;
c13291a5 4259 return nid;
7c243c71 4260 }
cc2559bc
KH
4261 /* This is a memory hole */
4262 return -1;
c713216d
MG
4263}
4264#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4265
f2dbcfa7
KH
4266int __meminit early_pfn_to_nid(unsigned long pfn)
4267{
cc2559bc
KH
4268 int nid;
4269
4270 nid = __early_pfn_to_nid(pfn);
4271 if (nid >= 0)
4272 return nid;
4273 /* just returns 0 */
4274 return 0;
f2dbcfa7
KH
4275}
4276
cc2559bc
KH
4277#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4278bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4279{
4280 int nid;
4281
4282 nid = __early_pfn_to_nid(pfn);
4283 if (nid >= 0 && nid != node)
4284 return false;
4285 return true;
4286}
4287#endif
f2dbcfa7 4288
c713216d
MG
4289/**
4290 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4291 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4292 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4293 *
4294 * If an architecture guarantees that all ranges registered with
4295 * add_active_ranges() contain no holes and may be freed, this
4296 * this function may be used instead of calling free_bootmem() manually.
4297 */
c13291a5 4298void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4299{
c13291a5
TH
4300 unsigned long start_pfn, end_pfn;
4301 int i, this_nid;
edbe7d23 4302
c13291a5
TH
4303 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4304 start_pfn = min(start_pfn, max_low_pfn);
4305 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4306
c13291a5
TH
4307 if (start_pfn < end_pfn)
4308 free_bootmem_node(NODE_DATA(this_nid),
4309 PFN_PHYS(start_pfn),
4310 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4311 }
edbe7d23 4312}
edbe7d23 4313
c713216d
MG
4314/**
4315 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4316 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4317 *
4318 * If an architecture guarantees that all ranges registered with
4319 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4320 * function may be used instead of calling memory_present() manually.
c713216d
MG
4321 */
4322void __init sparse_memory_present_with_active_regions(int nid)
4323{
c13291a5
TH
4324 unsigned long start_pfn, end_pfn;
4325 int i, this_nid;
c713216d 4326
c13291a5
TH
4327 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4328 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4329}
4330
4331/**
4332 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4333 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4334 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4335 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4336 *
4337 * It returns the start and end page frame of a node based on information
4338 * provided by an arch calling add_active_range(). If called for a node
4339 * with no available memory, a warning is printed and the start and end
88ca3b94 4340 * PFNs will be 0.
c713216d 4341 */
a3142c8e 4342void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4343 unsigned long *start_pfn, unsigned long *end_pfn)
4344{
c13291a5 4345 unsigned long this_start_pfn, this_end_pfn;
c713216d 4346 int i;
c13291a5 4347
c713216d
MG
4348 *start_pfn = -1UL;
4349 *end_pfn = 0;
4350
c13291a5
TH
4351 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4352 *start_pfn = min(*start_pfn, this_start_pfn);
4353 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4354 }
4355
633c0666 4356 if (*start_pfn == -1UL)
c713216d 4357 *start_pfn = 0;
c713216d
MG
4358}
4359
2a1e274a
MG
4360/*
4361 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4362 * assumption is made that zones within a node are ordered in monotonic
4363 * increasing memory addresses so that the "highest" populated zone is used
4364 */
b69a7288 4365static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4366{
4367 int zone_index;
4368 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4369 if (zone_index == ZONE_MOVABLE)
4370 continue;
4371
4372 if (arch_zone_highest_possible_pfn[zone_index] >
4373 arch_zone_lowest_possible_pfn[zone_index])
4374 break;
4375 }
4376
4377 VM_BUG_ON(zone_index == -1);
4378 movable_zone = zone_index;
4379}
4380
4381/*
4382 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4383 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4384 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4385 * in each node depending on the size of each node and how evenly kernelcore
4386 * is distributed. This helper function adjusts the zone ranges
4387 * provided by the architecture for a given node by using the end of the
4388 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4389 * zones within a node are in order of monotonic increases memory addresses
4390 */
b69a7288 4391static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4392 unsigned long zone_type,
4393 unsigned long node_start_pfn,
4394 unsigned long node_end_pfn,
4395 unsigned long *zone_start_pfn,
4396 unsigned long *zone_end_pfn)
4397{
4398 /* Only adjust if ZONE_MOVABLE is on this node */
4399 if (zone_movable_pfn[nid]) {
4400 /* Size ZONE_MOVABLE */
4401 if (zone_type == ZONE_MOVABLE) {
4402 *zone_start_pfn = zone_movable_pfn[nid];
4403 *zone_end_pfn = min(node_end_pfn,
4404 arch_zone_highest_possible_pfn[movable_zone]);
4405
4406 /* Adjust for ZONE_MOVABLE starting within this range */
4407 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4408 *zone_end_pfn > zone_movable_pfn[nid]) {
4409 *zone_end_pfn = zone_movable_pfn[nid];
4410
4411 /* Check if this whole range is within ZONE_MOVABLE */
4412 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4413 *zone_start_pfn = *zone_end_pfn;
4414 }
4415}
4416
c713216d
MG
4417/*
4418 * Return the number of pages a zone spans in a node, including holes
4419 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4420 */
6ea6e688 4421static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4422 unsigned long zone_type,
4423 unsigned long *ignored)
4424{
4425 unsigned long node_start_pfn, node_end_pfn;
4426 unsigned long zone_start_pfn, zone_end_pfn;
4427
4428 /* Get the start and end of the node and zone */
4429 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4430 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4431 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4432 adjust_zone_range_for_zone_movable(nid, zone_type,
4433 node_start_pfn, node_end_pfn,
4434 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4435
4436 /* Check that this node has pages within the zone's required range */
4437 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4438 return 0;
4439
4440 /* Move the zone boundaries inside the node if necessary */
4441 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4442 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4443
4444 /* Return the spanned pages */
4445 return zone_end_pfn - zone_start_pfn;
4446}
4447
4448/*
4449 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4450 * then all holes in the requested range will be accounted for.
c713216d 4451 */
32996250 4452unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4453 unsigned long range_start_pfn,
4454 unsigned long range_end_pfn)
4455{
96e907d1
TH
4456 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4457 unsigned long start_pfn, end_pfn;
4458 int i;
c713216d 4459
96e907d1
TH
4460 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4461 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4462 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4463 nr_absent -= end_pfn - start_pfn;
c713216d 4464 }
96e907d1 4465 return nr_absent;
c713216d
MG
4466}
4467
4468/**
4469 * absent_pages_in_range - Return number of page frames in holes within a range
4470 * @start_pfn: The start PFN to start searching for holes
4471 * @end_pfn: The end PFN to stop searching for holes
4472 *
88ca3b94 4473 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4474 */
4475unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4476 unsigned long end_pfn)
4477{
4478 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4479}
4480
4481/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4482static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4483 unsigned long zone_type,
4484 unsigned long *ignored)
4485{
96e907d1
TH
4486 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4487 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4488 unsigned long node_start_pfn, node_end_pfn;
4489 unsigned long zone_start_pfn, zone_end_pfn;
4490
4491 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4492 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4493 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4494
2a1e274a
MG
4495 adjust_zone_range_for_zone_movable(nid, zone_type,
4496 node_start_pfn, node_end_pfn,
4497 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4498 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4499}
0e0b864e 4500
0ee332c1 4501#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4502static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4503 unsigned long zone_type,
4504 unsigned long *zones_size)
4505{
4506 return zones_size[zone_type];
4507}
4508
6ea6e688 4509static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4510 unsigned long zone_type,
4511 unsigned long *zholes_size)
4512{
4513 if (!zholes_size)
4514 return 0;
4515
4516 return zholes_size[zone_type];
4517}
20e6926d 4518
0ee332c1 4519#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4520
a3142c8e 4521static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4522 unsigned long *zones_size, unsigned long *zholes_size)
4523{
4524 unsigned long realtotalpages, totalpages = 0;
4525 enum zone_type i;
4526
4527 for (i = 0; i < MAX_NR_ZONES; i++)
4528 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4529 zones_size);
4530 pgdat->node_spanned_pages = totalpages;
4531
4532 realtotalpages = totalpages;
4533 for (i = 0; i < MAX_NR_ZONES; i++)
4534 realtotalpages -=
4535 zone_absent_pages_in_node(pgdat->node_id, i,
4536 zholes_size);
4537 pgdat->node_present_pages = realtotalpages;
4538 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4539 realtotalpages);
4540}
4541
835c134e
MG
4542#ifndef CONFIG_SPARSEMEM
4543/*
4544 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4545 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4546 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4547 * round what is now in bits to nearest long in bits, then return it in
4548 * bytes.
4549 */
7c45512d 4550static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4551{
4552 unsigned long usemapsize;
4553
7c45512d 4554 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4555 usemapsize = roundup(zonesize, pageblock_nr_pages);
4556 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4557 usemapsize *= NR_PAGEBLOCK_BITS;
4558 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4559
4560 return usemapsize / 8;
4561}
4562
4563static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4564 struct zone *zone,
4565 unsigned long zone_start_pfn,
4566 unsigned long zonesize)
835c134e 4567{
7c45512d 4568 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4569 zone->pageblock_flags = NULL;
58a01a45 4570 if (usemapsize)
8f389a99
YL
4571 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4572 usemapsize);
835c134e
MG
4573}
4574#else
7c45512d
LT
4575static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4576 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4577#endif /* CONFIG_SPARSEMEM */
4578
d9c23400 4579#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4580
d9c23400 4581/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4582void __init set_pageblock_order(void)
d9c23400 4583{
955c1cd7
AM
4584 unsigned int order;
4585
d9c23400
MG
4586 /* Check that pageblock_nr_pages has not already been setup */
4587 if (pageblock_order)
4588 return;
4589
955c1cd7
AM
4590 if (HPAGE_SHIFT > PAGE_SHIFT)
4591 order = HUGETLB_PAGE_ORDER;
4592 else
4593 order = MAX_ORDER - 1;
4594
d9c23400
MG
4595 /*
4596 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4597 * This value may be variable depending on boot parameters on IA64 and
4598 * powerpc.
d9c23400
MG
4599 */
4600 pageblock_order = order;
4601}
4602#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4603
ba72cb8c
MG
4604/*
4605 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4606 * is unused as pageblock_order is set at compile-time. See
4607 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4608 * the kernel config
ba72cb8c 4609 */
ca57df79 4610void __init set_pageblock_order(void)
ba72cb8c 4611{
ba72cb8c 4612}
d9c23400
MG
4613
4614#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4615
01cefaef
JL
4616static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4617 unsigned long present_pages)
4618{
4619 unsigned long pages = spanned_pages;
4620
4621 /*
4622 * Provide a more accurate estimation if there are holes within
4623 * the zone and SPARSEMEM is in use. If there are holes within the
4624 * zone, each populated memory region may cost us one or two extra
4625 * memmap pages due to alignment because memmap pages for each
4626 * populated regions may not naturally algined on page boundary.
4627 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4628 */
4629 if (spanned_pages > present_pages + (present_pages >> 4) &&
4630 IS_ENABLED(CONFIG_SPARSEMEM))
4631 pages = present_pages;
4632
4633 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4634}
4635
1da177e4
LT
4636/*
4637 * Set up the zone data structures:
4638 * - mark all pages reserved
4639 * - mark all memory queues empty
4640 * - clear the memory bitmaps
6527af5d
MK
4641 *
4642 * NOTE: pgdat should get zeroed by caller.
1da177e4 4643 */
b5a0e011 4644static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4645 unsigned long *zones_size, unsigned long *zholes_size)
4646{
2f1b6248 4647 enum zone_type j;
ed8ece2e 4648 int nid = pgdat->node_id;
1da177e4 4649 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4650 int ret;
1da177e4 4651
208d54e5 4652 pgdat_resize_init(pgdat);
8177a420
AA
4653#ifdef CONFIG_NUMA_BALANCING
4654 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4655 pgdat->numabalancing_migrate_nr_pages = 0;
4656 pgdat->numabalancing_migrate_next_window = jiffies;
4657#endif
1da177e4 4658 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4659 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4660 pgdat_page_cgroup_init(pgdat);
5f63b720 4661
1da177e4
LT
4662 for (j = 0; j < MAX_NR_ZONES; j++) {
4663 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4664 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4665
c713216d 4666 size = zone_spanned_pages_in_node(nid, j, zones_size);
9feedc9d 4667 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
c713216d 4668 zholes_size);
1da177e4 4669
0e0b864e 4670 /*
9feedc9d 4671 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4672 * is used by this zone for memmap. This affects the watermark
4673 * and per-cpu initialisations
4674 */
01cefaef 4675 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4676 if (freesize >= memmap_pages) {
4677 freesize -= memmap_pages;
5594c8c8
YL
4678 if (memmap_pages)
4679 printk(KERN_DEBUG
4680 " %s zone: %lu pages used for memmap\n",
4681 zone_names[j], memmap_pages);
0e0b864e
MG
4682 } else
4683 printk(KERN_WARNING
9feedc9d
JL
4684 " %s zone: %lu pages exceeds freesize %lu\n",
4685 zone_names[j], memmap_pages, freesize);
0e0b864e 4686
6267276f 4687 /* Account for reserved pages */
9feedc9d
JL
4688 if (j == 0 && freesize > dma_reserve) {
4689 freesize -= dma_reserve;
d903ef9f 4690 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4691 zone_names[0], dma_reserve);
0e0b864e
MG
4692 }
4693
98d2b0eb 4694 if (!is_highmem_idx(j))
9feedc9d 4695 nr_kernel_pages += freesize;
01cefaef
JL
4696 /* Charge for highmem memmap if there are enough kernel pages */
4697 else if (nr_kernel_pages > memmap_pages * 2)
4698 nr_kernel_pages -= memmap_pages;
9feedc9d 4699 nr_all_pages += freesize;
1da177e4
LT
4700
4701 zone->spanned_pages = size;
306f2e9e 4702 zone->present_pages = realsize;
9feedc9d
JL
4703 /*
4704 * Set an approximate value for lowmem here, it will be adjusted
4705 * when the bootmem allocator frees pages into the buddy system.
4706 * And all highmem pages will be managed by the buddy system.
4707 */
4708 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4709#ifdef CONFIG_NUMA
d5f541ed 4710 zone->node = nid;
9feedc9d 4711 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4712 / 100;
9feedc9d 4713 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4714#endif
1da177e4
LT
4715 zone->name = zone_names[j];
4716 spin_lock_init(&zone->lock);
4717 spin_lock_init(&zone->lru_lock);
bdc8cb98 4718 zone_seqlock_init(zone);
1da177e4 4719 zone->zone_pgdat = pgdat;
1da177e4 4720
ed8ece2e 4721 zone_pcp_init(zone);
bea8c150 4722 lruvec_init(&zone->lruvec);
1da177e4
LT
4723 if (!size)
4724 continue;
4725
955c1cd7 4726 set_pageblock_order();
7c45512d 4727 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4728 ret = init_currently_empty_zone(zone, zone_start_pfn,
4729 size, MEMMAP_EARLY);
718127cc 4730 BUG_ON(ret);
76cdd58e 4731 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4732 zone_start_pfn += size;
1da177e4
LT
4733 }
4734}
4735
577a32f6 4736static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4737{
1da177e4
LT
4738 /* Skip empty nodes */
4739 if (!pgdat->node_spanned_pages)
4740 return;
4741
d41dee36 4742#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4743 /* ia64 gets its own node_mem_map, before this, without bootmem */
4744 if (!pgdat->node_mem_map) {
e984bb43 4745 unsigned long size, start, end;
d41dee36
AW
4746 struct page *map;
4747
e984bb43
BP
4748 /*
4749 * The zone's endpoints aren't required to be MAX_ORDER
4750 * aligned but the node_mem_map endpoints must be in order
4751 * for the buddy allocator to function correctly.
4752 */
4753 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4754 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4755 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4756 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4757 map = alloc_remap(pgdat->node_id, size);
4758 if (!map)
8f389a99 4759 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4760 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4761 }
12d810c1 4762#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4763 /*
4764 * With no DISCONTIG, the global mem_map is just set as node 0's
4765 */
c713216d 4766 if (pgdat == NODE_DATA(0)) {
1da177e4 4767 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4768#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4769 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4770 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4771#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4772 }
1da177e4 4773#endif
d41dee36 4774#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4775}
4776
9109fb7b
JW
4777void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4778 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4779{
9109fb7b
JW
4780 pg_data_t *pgdat = NODE_DATA(nid);
4781
88fdf75d 4782 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4783 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4784
1da177e4
LT
4785 pgdat->node_id = nid;
4786 pgdat->node_start_pfn = node_start_pfn;
957f822a 4787 init_zone_allows_reclaim(nid);
c713216d 4788 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4789
4790 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4791#ifdef CONFIG_FLAT_NODE_MEM_MAP
4792 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4793 nid, (unsigned long)pgdat,
4794 (unsigned long)pgdat->node_mem_map);
4795#endif
1da177e4
LT
4796
4797 free_area_init_core(pgdat, zones_size, zholes_size);
4798}
4799
0ee332c1 4800#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4801
4802#if MAX_NUMNODES > 1
4803/*
4804 * Figure out the number of possible node ids.
4805 */
f9872caf 4806void __init setup_nr_node_ids(void)
418508c1
MS
4807{
4808 unsigned int node;
4809 unsigned int highest = 0;
4810
4811 for_each_node_mask(node, node_possible_map)
4812 highest = node;
4813 nr_node_ids = highest + 1;
4814}
418508c1
MS
4815#endif
4816
1e01979c
TH
4817/**
4818 * node_map_pfn_alignment - determine the maximum internode alignment
4819 *
4820 * This function should be called after node map is populated and sorted.
4821 * It calculates the maximum power of two alignment which can distinguish
4822 * all the nodes.
4823 *
4824 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4825 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4826 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4827 * shifted, 1GiB is enough and this function will indicate so.
4828 *
4829 * This is used to test whether pfn -> nid mapping of the chosen memory
4830 * model has fine enough granularity to avoid incorrect mapping for the
4831 * populated node map.
4832 *
4833 * Returns the determined alignment in pfn's. 0 if there is no alignment
4834 * requirement (single node).
4835 */
4836unsigned long __init node_map_pfn_alignment(void)
4837{
4838 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4839 unsigned long start, end, mask;
1e01979c 4840 int last_nid = -1;
c13291a5 4841 int i, nid;
1e01979c 4842
c13291a5 4843 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4844 if (!start || last_nid < 0 || last_nid == nid) {
4845 last_nid = nid;
4846 last_end = end;
4847 continue;
4848 }
4849
4850 /*
4851 * Start with a mask granular enough to pin-point to the
4852 * start pfn and tick off bits one-by-one until it becomes
4853 * too coarse to separate the current node from the last.
4854 */
4855 mask = ~((1 << __ffs(start)) - 1);
4856 while (mask && last_end <= (start & (mask << 1)))
4857 mask <<= 1;
4858
4859 /* accumulate all internode masks */
4860 accl_mask |= mask;
4861 }
4862
4863 /* convert mask to number of pages */
4864 return ~accl_mask + 1;
4865}
4866
a6af2bc3 4867/* Find the lowest pfn for a node */
b69a7288 4868static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4869{
a6af2bc3 4870 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4871 unsigned long start_pfn;
4872 int i;
1abbfb41 4873
c13291a5
TH
4874 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4875 min_pfn = min(min_pfn, start_pfn);
c713216d 4876
a6af2bc3
MG
4877 if (min_pfn == ULONG_MAX) {
4878 printk(KERN_WARNING
2bc0d261 4879 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4880 return 0;
4881 }
4882
4883 return min_pfn;
c713216d
MG
4884}
4885
4886/**
4887 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4888 *
4889 * It returns the minimum PFN based on information provided via
88ca3b94 4890 * add_active_range().
c713216d
MG
4891 */
4892unsigned long __init find_min_pfn_with_active_regions(void)
4893{
4894 return find_min_pfn_for_node(MAX_NUMNODES);
4895}
4896
37b07e41
LS
4897/*
4898 * early_calculate_totalpages()
4899 * Sum pages in active regions for movable zone.
4b0ef1fe 4900 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4901 */
484f51f8 4902static unsigned long __init early_calculate_totalpages(void)
7e63efef 4903{
7e63efef 4904 unsigned long totalpages = 0;
c13291a5
TH
4905 unsigned long start_pfn, end_pfn;
4906 int i, nid;
4907
4908 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4909 unsigned long pages = end_pfn - start_pfn;
7e63efef 4910
37b07e41
LS
4911 totalpages += pages;
4912 if (pages)
4b0ef1fe 4913 node_set_state(nid, N_MEMORY);
37b07e41
LS
4914 }
4915 return totalpages;
7e63efef
MG
4916}
4917
2a1e274a
MG
4918/*
4919 * Find the PFN the Movable zone begins in each node. Kernel memory
4920 * is spread evenly between nodes as long as the nodes have enough
4921 * memory. When they don't, some nodes will have more kernelcore than
4922 * others
4923 */
b224ef85 4924static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4925{
4926 int i, nid;
4927 unsigned long usable_startpfn;
4928 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4929 /* save the state before borrow the nodemask */
4b0ef1fe 4930 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4931 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4932 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4933
7e63efef
MG
4934 /*
4935 * If movablecore was specified, calculate what size of
4936 * kernelcore that corresponds so that memory usable for
4937 * any allocation type is evenly spread. If both kernelcore
4938 * and movablecore are specified, then the value of kernelcore
4939 * will be used for required_kernelcore if it's greater than
4940 * what movablecore would have allowed.
4941 */
4942 if (required_movablecore) {
7e63efef
MG
4943 unsigned long corepages;
4944
4945 /*
4946 * Round-up so that ZONE_MOVABLE is at least as large as what
4947 * was requested by the user
4948 */
4949 required_movablecore =
4950 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4951 corepages = totalpages - required_movablecore;
4952
4953 required_kernelcore = max(required_kernelcore, corepages);
4954 }
4955
20e6926d
YL
4956 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4957 if (!required_kernelcore)
66918dcd 4958 goto out;
2a1e274a
MG
4959
4960 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
20e6926d 4961 find_usable_zone_for_movable();
2a1e274a
MG
4962 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4963
4964restart:
4965 /* Spread kernelcore memory as evenly as possible throughout nodes */
4966 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4967 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4968 unsigned long start_pfn, end_pfn;
4969
2a1e274a
MG
4970 /*
4971 * Recalculate kernelcore_node if the division per node
4972 * now exceeds what is necessary to satisfy the requested
4973 * amount of memory for the kernel
4974 */
4975 if (required_kernelcore < kernelcore_node)
4976 kernelcore_node = required_kernelcore / usable_nodes;
4977
4978 /*
4979 * As the map is walked, we track how much memory is usable
4980 * by the kernel using kernelcore_remaining. When it is
4981 * 0, the rest of the node is usable by ZONE_MOVABLE
4982 */
4983 kernelcore_remaining = kernelcore_node;
4984
4985 /* Go through each range of PFNs within this node */
c13291a5 4986 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4987 unsigned long size_pages;
4988
c13291a5 4989 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4990 if (start_pfn >= end_pfn)
4991 continue;
4992
4993 /* Account for what is only usable for kernelcore */
4994 if (start_pfn < usable_startpfn) {
4995 unsigned long kernel_pages;
4996 kernel_pages = min(end_pfn, usable_startpfn)
4997 - start_pfn;
4998
4999 kernelcore_remaining -= min(kernel_pages,
5000 kernelcore_remaining);
5001 required_kernelcore -= min(kernel_pages,
5002 required_kernelcore);
5003
5004 /* Continue if range is now fully accounted */
5005 if (end_pfn <= usable_startpfn) {
5006
5007 /*
5008 * Push zone_movable_pfn to the end so
5009 * that if we have to rebalance
5010 * kernelcore across nodes, we will
5011 * not double account here
5012 */
5013 zone_movable_pfn[nid] = end_pfn;
5014 continue;
5015 }
5016 start_pfn = usable_startpfn;
5017 }
5018
5019 /*
5020 * The usable PFN range for ZONE_MOVABLE is from
5021 * start_pfn->end_pfn. Calculate size_pages as the
5022 * number of pages used as kernelcore
5023 */
5024 size_pages = end_pfn - start_pfn;
5025 if (size_pages > kernelcore_remaining)
5026 size_pages = kernelcore_remaining;
5027 zone_movable_pfn[nid] = start_pfn + size_pages;
5028
5029 /*
5030 * Some kernelcore has been met, update counts and
5031 * break if the kernelcore for this node has been
5032 * satisified
5033 */
5034 required_kernelcore -= min(required_kernelcore,
5035 size_pages);
5036 kernelcore_remaining -= size_pages;
5037 if (!kernelcore_remaining)
5038 break;
5039 }
5040 }
5041
5042 /*
5043 * If there is still required_kernelcore, we do another pass with one
5044 * less node in the count. This will push zone_movable_pfn[nid] further
5045 * along on the nodes that still have memory until kernelcore is
5046 * satisified
5047 */
5048 usable_nodes--;
5049 if (usable_nodes && required_kernelcore > usable_nodes)
5050 goto restart;
5051
5052 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5053 for (nid = 0; nid < MAX_NUMNODES; nid++)
5054 zone_movable_pfn[nid] =
5055 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5056
20e6926d 5057out:
66918dcd 5058 /* restore the node_state */
4b0ef1fe 5059 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5060}
5061
4b0ef1fe
LJ
5062/* Any regular or high memory on that node ? */
5063static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5064{
37b07e41
LS
5065 enum zone_type zone_type;
5066
4b0ef1fe
LJ
5067 if (N_MEMORY == N_NORMAL_MEMORY)
5068 return;
5069
5070 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5071 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 5072 if (zone->present_pages) {
4b0ef1fe
LJ
5073 node_set_state(nid, N_HIGH_MEMORY);
5074 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5075 zone_type <= ZONE_NORMAL)
5076 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5077 break;
5078 }
37b07e41 5079 }
37b07e41
LS
5080}
5081
c713216d
MG
5082/**
5083 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5084 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5085 *
5086 * This will call free_area_init_node() for each active node in the system.
5087 * Using the page ranges provided by add_active_range(), the size of each
5088 * zone in each node and their holes is calculated. If the maximum PFN
5089 * between two adjacent zones match, it is assumed that the zone is empty.
5090 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5091 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5092 * starts where the previous one ended. For example, ZONE_DMA32 starts
5093 * at arch_max_dma_pfn.
5094 */
5095void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5096{
c13291a5
TH
5097 unsigned long start_pfn, end_pfn;
5098 int i, nid;
a6af2bc3 5099
c713216d
MG
5100 /* Record where the zone boundaries are */
5101 memset(arch_zone_lowest_possible_pfn, 0,
5102 sizeof(arch_zone_lowest_possible_pfn));
5103 memset(arch_zone_highest_possible_pfn, 0,
5104 sizeof(arch_zone_highest_possible_pfn));
5105 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5106 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5107 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5108 if (i == ZONE_MOVABLE)
5109 continue;
c713216d
MG
5110 arch_zone_lowest_possible_pfn[i] =
5111 arch_zone_highest_possible_pfn[i-1];
5112 arch_zone_highest_possible_pfn[i] =
5113 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5114 }
2a1e274a
MG
5115 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5116 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5117
5118 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5119 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5120 find_zone_movable_pfns_for_nodes();
c713216d 5121
c713216d 5122 /* Print out the zone ranges */
a62e2f4f 5123 printk("Zone ranges:\n");
2a1e274a
MG
5124 for (i = 0; i < MAX_NR_ZONES; i++) {
5125 if (i == ZONE_MOVABLE)
5126 continue;
155cbfc8 5127 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5128 if (arch_zone_lowest_possible_pfn[i] ==
5129 arch_zone_highest_possible_pfn[i])
155cbfc8 5130 printk(KERN_CONT "empty\n");
72f0ba02 5131 else
a62e2f4f
BH
5132 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5133 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5134 (arch_zone_highest_possible_pfn[i]
5135 << PAGE_SHIFT) - 1);
2a1e274a
MG
5136 }
5137
5138 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5139 printk("Movable zone start for each node\n");
2a1e274a
MG
5140 for (i = 0; i < MAX_NUMNODES; i++) {
5141 if (zone_movable_pfn[i])
a62e2f4f
BH
5142 printk(" Node %d: %#010lx\n", i,
5143 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5144 }
c713216d 5145
f2d52fe5 5146 /* Print out the early node map */
a62e2f4f 5147 printk("Early memory node ranges\n");
c13291a5 5148 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5149 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5150 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5151
5152 /* Initialise every node */
708614e6 5153 mminit_verify_pageflags_layout();
8ef82866 5154 setup_nr_node_ids();
c713216d
MG
5155 for_each_online_node(nid) {
5156 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5157 free_area_init_node(nid, NULL,
c713216d 5158 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5159
5160 /* Any memory on that node */
5161 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5162 node_set_state(nid, N_MEMORY);
5163 check_for_memory(pgdat, nid);
c713216d
MG
5164 }
5165}
2a1e274a 5166
7e63efef 5167static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5168{
5169 unsigned long long coremem;
5170 if (!p)
5171 return -EINVAL;
5172
5173 coremem = memparse(p, &p);
7e63efef 5174 *core = coremem >> PAGE_SHIFT;
2a1e274a 5175
7e63efef 5176 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5177 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5178
5179 return 0;
5180}
ed7ed365 5181
7e63efef
MG
5182/*
5183 * kernelcore=size sets the amount of memory for use for allocations that
5184 * cannot be reclaimed or migrated.
5185 */
5186static int __init cmdline_parse_kernelcore(char *p)
5187{
5188 return cmdline_parse_core(p, &required_kernelcore);
5189}
5190
5191/*
5192 * movablecore=size sets the amount of memory for use for allocations that
5193 * can be reclaimed or migrated.
5194 */
5195static int __init cmdline_parse_movablecore(char *p)
5196{
5197 return cmdline_parse_core(p, &required_movablecore);
5198}
5199
ed7ed365 5200early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5201early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5202
0ee332c1 5203#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5204
c3d5f5f0
JL
5205void adjust_managed_page_count(struct page *page, long count)
5206{
5207 spin_lock(&managed_page_count_lock);
5208 page_zone(page)->managed_pages += count;
5209 totalram_pages += count;
5210 spin_unlock(&managed_page_count_lock);
5211}
5212
11199692 5213unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5214{
11199692
JL
5215 void *pos;
5216 unsigned long pages = 0;
69afade7 5217
11199692
JL
5218 start = (void *)PAGE_ALIGN((unsigned long)start);
5219 end = (void *)((unsigned long)end & PAGE_MASK);
5220 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5221 if ((unsigned int)poison <= 0xFF)
11199692
JL
5222 memset(pos, poison, PAGE_SIZE);
5223 free_reserved_page(virt_to_page(pos));
69afade7
JL
5224 }
5225
5226 if (pages && s)
11199692 5227 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5228 s, pages << (PAGE_SHIFT - 10), start, end);
5229
5230 return pages;
5231}
11199692 5232EXPORT_SYMBOL(free_reserved_area);
69afade7 5233
cfa11e08
JL
5234#ifdef CONFIG_HIGHMEM
5235void free_highmem_page(struct page *page)
5236{
5237 __free_reserved_page(page);
5238 totalram_pages++;
7b4b2a0d 5239 page_zone(page)->managed_pages++;
cfa11e08
JL
5240 totalhigh_pages++;
5241}
5242#endif
5243
0e0b864e 5244/**
88ca3b94
RD
5245 * set_dma_reserve - set the specified number of pages reserved in the first zone
5246 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5247 *
5248 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5249 * In the DMA zone, a significant percentage may be consumed by kernel image
5250 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5251 * function may optionally be used to account for unfreeable pages in the
5252 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5253 * smaller per-cpu batchsize.
0e0b864e
MG
5254 */
5255void __init set_dma_reserve(unsigned long new_dma_reserve)
5256{
5257 dma_reserve = new_dma_reserve;
5258}
5259
1da177e4
LT
5260void __init free_area_init(unsigned long *zones_size)
5261{
9109fb7b 5262 free_area_init_node(0, zones_size,
1da177e4
LT
5263 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5264}
1da177e4 5265
1da177e4
LT
5266static int page_alloc_cpu_notify(struct notifier_block *self,
5267 unsigned long action, void *hcpu)
5268{
5269 int cpu = (unsigned long)hcpu;
1da177e4 5270
8bb78442 5271 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5272 lru_add_drain_cpu(cpu);
9f8f2172
CL
5273 drain_pages(cpu);
5274
5275 /*
5276 * Spill the event counters of the dead processor
5277 * into the current processors event counters.
5278 * This artificially elevates the count of the current
5279 * processor.
5280 */
f8891e5e 5281 vm_events_fold_cpu(cpu);
9f8f2172
CL
5282
5283 /*
5284 * Zero the differential counters of the dead processor
5285 * so that the vm statistics are consistent.
5286 *
5287 * This is only okay since the processor is dead and cannot
5288 * race with what we are doing.
5289 */
2244b95a 5290 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5291 }
5292 return NOTIFY_OK;
5293}
1da177e4
LT
5294
5295void __init page_alloc_init(void)
5296{
5297 hotcpu_notifier(page_alloc_cpu_notify, 0);
5298}
5299
cb45b0e9
HA
5300/*
5301 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5302 * or min_free_kbytes changes.
5303 */
5304static void calculate_totalreserve_pages(void)
5305{
5306 struct pglist_data *pgdat;
5307 unsigned long reserve_pages = 0;
2f6726e5 5308 enum zone_type i, j;
cb45b0e9
HA
5309
5310 for_each_online_pgdat(pgdat) {
5311 for (i = 0; i < MAX_NR_ZONES; i++) {
5312 struct zone *zone = pgdat->node_zones + i;
5313 unsigned long max = 0;
5314
5315 /* Find valid and maximum lowmem_reserve in the zone */
5316 for (j = i; j < MAX_NR_ZONES; j++) {
5317 if (zone->lowmem_reserve[j] > max)
5318 max = zone->lowmem_reserve[j];
5319 }
5320
41858966
MG
5321 /* we treat the high watermark as reserved pages. */
5322 max += high_wmark_pages(zone);
cb45b0e9 5323
b40da049
JL
5324 if (max > zone->managed_pages)
5325 max = zone->managed_pages;
cb45b0e9 5326 reserve_pages += max;
ab8fabd4
JW
5327 /*
5328 * Lowmem reserves are not available to
5329 * GFP_HIGHUSER page cache allocations and
5330 * kswapd tries to balance zones to their high
5331 * watermark. As a result, neither should be
5332 * regarded as dirtyable memory, to prevent a
5333 * situation where reclaim has to clean pages
5334 * in order to balance the zones.
5335 */
5336 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5337 }
5338 }
ab8fabd4 5339 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5340 totalreserve_pages = reserve_pages;
5341}
5342
1da177e4
LT
5343/*
5344 * setup_per_zone_lowmem_reserve - called whenever
5345 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5346 * has a correct pages reserved value, so an adequate number of
5347 * pages are left in the zone after a successful __alloc_pages().
5348 */
5349static void setup_per_zone_lowmem_reserve(void)
5350{
5351 struct pglist_data *pgdat;
2f6726e5 5352 enum zone_type j, idx;
1da177e4 5353
ec936fc5 5354 for_each_online_pgdat(pgdat) {
1da177e4
LT
5355 for (j = 0; j < MAX_NR_ZONES; j++) {
5356 struct zone *zone = pgdat->node_zones + j;
b40da049 5357 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5358
5359 zone->lowmem_reserve[j] = 0;
5360
2f6726e5
CL
5361 idx = j;
5362 while (idx) {
1da177e4
LT
5363 struct zone *lower_zone;
5364
2f6726e5
CL
5365 idx--;
5366
1da177e4
LT
5367 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5368 sysctl_lowmem_reserve_ratio[idx] = 1;
5369
5370 lower_zone = pgdat->node_zones + idx;
b40da049 5371 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5372 sysctl_lowmem_reserve_ratio[idx];
b40da049 5373 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5374 }
5375 }
5376 }
cb45b0e9
HA
5377
5378 /* update totalreserve_pages */
5379 calculate_totalreserve_pages();
1da177e4
LT
5380}
5381
cfd3da1e 5382static void __setup_per_zone_wmarks(void)
1da177e4
LT
5383{
5384 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5385 unsigned long lowmem_pages = 0;
5386 struct zone *zone;
5387 unsigned long flags;
5388
5389 /* Calculate total number of !ZONE_HIGHMEM pages */
5390 for_each_zone(zone) {
5391 if (!is_highmem(zone))
b40da049 5392 lowmem_pages += zone->managed_pages;
1da177e4
LT
5393 }
5394
5395 for_each_zone(zone) {
ac924c60
AM
5396 u64 tmp;
5397
1125b4e3 5398 spin_lock_irqsave(&zone->lock, flags);
b40da049 5399 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5400 do_div(tmp, lowmem_pages);
1da177e4
LT
5401 if (is_highmem(zone)) {
5402 /*
669ed175
NP
5403 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5404 * need highmem pages, so cap pages_min to a small
5405 * value here.
5406 *
41858966 5407 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5408 * deltas controls asynch page reclaim, and so should
5409 * not be capped for highmem.
1da177e4 5410 */
90ae8d67 5411 unsigned long min_pages;
1da177e4 5412
b40da049 5413 min_pages = zone->managed_pages / 1024;
90ae8d67 5414 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5415 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5416 } else {
669ed175
NP
5417 /*
5418 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5419 * proportionate to the zone's size.
5420 */
41858966 5421 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5422 }
5423
41858966
MG
5424 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5425 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5426
56fd56b8 5427 setup_zone_migrate_reserve(zone);
1125b4e3 5428 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5429 }
cb45b0e9
HA
5430
5431 /* update totalreserve_pages */
5432 calculate_totalreserve_pages();
1da177e4
LT
5433}
5434
cfd3da1e
MG
5435/**
5436 * setup_per_zone_wmarks - called when min_free_kbytes changes
5437 * or when memory is hot-{added|removed}
5438 *
5439 * Ensures that the watermark[min,low,high] values for each zone are set
5440 * correctly with respect to min_free_kbytes.
5441 */
5442void setup_per_zone_wmarks(void)
5443{
5444 mutex_lock(&zonelists_mutex);
5445 __setup_per_zone_wmarks();
5446 mutex_unlock(&zonelists_mutex);
5447}
5448
55a4462a 5449/*
556adecb
RR
5450 * The inactive anon list should be small enough that the VM never has to
5451 * do too much work, but large enough that each inactive page has a chance
5452 * to be referenced again before it is swapped out.
5453 *
5454 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5455 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5456 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5457 * the anonymous pages are kept on the inactive list.
5458 *
5459 * total target max
5460 * memory ratio inactive anon
5461 * -------------------------------------
5462 * 10MB 1 5MB
5463 * 100MB 1 50MB
5464 * 1GB 3 250MB
5465 * 10GB 10 0.9GB
5466 * 100GB 31 3GB
5467 * 1TB 101 10GB
5468 * 10TB 320 32GB
5469 */
1b79acc9 5470static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5471{
96cb4df5 5472 unsigned int gb, ratio;
556adecb 5473
96cb4df5 5474 /* Zone size in gigabytes */
b40da049 5475 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5476 if (gb)
556adecb 5477 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5478 else
5479 ratio = 1;
556adecb 5480
96cb4df5
MK
5481 zone->inactive_ratio = ratio;
5482}
556adecb 5483
839a4fcc 5484static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5485{
5486 struct zone *zone;
5487
5488 for_each_zone(zone)
5489 calculate_zone_inactive_ratio(zone);
556adecb
RR
5490}
5491
1da177e4
LT
5492/*
5493 * Initialise min_free_kbytes.
5494 *
5495 * For small machines we want it small (128k min). For large machines
5496 * we want it large (64MB max). But it is not linear, because network
5497 * bandwidth does not increase linearly with machine size. We use
5498 *
5499 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5500 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5501 *
5502 * which yields
5503 *
5504 * 16MB: 512k
5505 * 32MB: 724k
5506 * 64MB: 1024k
5507 * 128MB: 1448k
5508 * 256MB: 2048k
5509 * 512MB: 2896k
5510 * 1024MB: 4096k
5511 * 2048MB: 5792k
5512 * 4096MB: 8192k
5513 * 8192MB: 11584k
5514 * 16384MB: 16384k
5515 */
1b79acc9 5516int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5517{
5518 unsigned long lowmem_kbytes;
5519
5520 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5521
5522 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5523 if (min_free_kbytes < 128)
5524 min_free_kbytes = 128;
5525 if (min_free_kbytes > 65536)
5526 min_free_kbytes = 65536;
bc75d33f 5527 setup_per_zone_wmarks();
a6cccdc3 5528 refresh_zone_stat_thresholds();
1da177e4 5529 setup_per_zone_lowmem_reserve();
556adecb 5530 setup_per_zone_inactive_ratio();
1da177e4
LT
5531 return 0;
5532}
bc75d33f 5533module_init(init_per_zone_wmark_min)
1da177e4
LT
5534
5535/*
5536 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5537 * that we can call two helper functions whenever min_free_kbytes
5538 * changes.
5539 */
5540int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5541 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5542{
8d65af78 5543 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5544 if (write)
bc75d33f 5545 setup_per_zone_wmarks();
1da177e4
LT
5546 return 0;
5547}
5548
9614634f
CL
5549#ifdef CONFIG_NUMA
5550int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5551 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5552{
5553 struct zone *zone;
5554 int rc;
5555
8d65af78 5556 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5557 if (rc)
5558 return rc;
5559
5560 for_each_zone(zone)
b40da049 5561 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5562 sysctl_min_unmapped_ratio) / 100;
5563 return 0;
5564}
0ff38490
CL
5565
5566int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5567 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5568{
5569 struct zone *zone;
5570 int rc;
5571
8d65af78 5572 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5573 if (rc)
5574 return rc;
5575
5576 for_each_zone(zone)
b40da049 5577 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5578 sysctl_min_slab_ratio) / 100;
5579 return 0;
5580}
9614634f
CL
5581#endif
5582
1da177e4
LT
5583/*
5584 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5585 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5586 * whenever sysctl_lowmem_reserve_ratio changes.
5587 *
5588 * The reserve ratio obviously has absolutely no relation with the
41858966 5589 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5590 * if in function of the boot time zone sizes.
5591 */
5592int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5593 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5594{
8d65af78 5595 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5596 setup_per_zone_lowmem_reserve();
5597 return 0;
5598}
5599
8ad4b1fb
RS
5600/*
5601 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5602 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5603 * can have before it gets flushed back to buddy allocator.
5604 */
8ad4b1fb 5605int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5606 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5607{
5608 struct zone *zone;
5609 unsigned int cpu;
5610 int ret;
5611
8d65af78 5612 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5613 if (!write || (ret < 0))
8ad4b1fb 5614 return ret;
c8e251fa
CS
5615
5616 mutex_lock(&pcp_batch_high_lock);
364df0eb 5617 for_each_populated_zone(zone) {
22a7f12b
CS
5618 unsigned long high;
5619 high = zone->managed_pages / percpu_pagelist_fraction;
5620 for_each_possible_cpu(cpu)
3664033c
CS
5621 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5622 high);
8ad4b1fb 5623 }
c8e251fa 5624 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5625 return 0;
5626}
5627
f034b5d4 5628int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5629
5630#ifdef CONFIG_NUMA
5631static int __init set_hashdist(char *str)
5632{
5633 if (!str)
5634 return 0;
5635 hashdist = simple_strtoul(str, &str, 0);
5636 return 1;
5637}
5638__setup("hashdist=", set_hashdist);
5639#endif
5640
5641/*
5642 * allocate a large system hash table from bootmem
5643 * - it is assumed that the hash table must contain an exact power-of-2
5644 * quantity of entries
5645 * - limit is the number of hash buckets, not the total allocation size
5646 */
5647void *__init alloc_large_system_hash(const char *tablename,
5648 unsigned long bucketsize,
5649 unsigned long numentries,
5650 int scale,
5651 int flags,
5652 unsigned int *_hash_shift,
5653 unsigned int *_hash_mask,
31fe62b9
TB
5654 unsigned long low_limit,
5655 unsigned long high_limit)
1da177e4 5656{
31fe62b9 5657 unsigned long long max = high_limit;
1da177e4
LT
5658 unsigned long log2qty, size;
5659 void *table = NULL;
5660
5661 /* allow the kernel cmdline to have a say */
5662 if (!numentries) {
5663 /* round applicable memory size up to nearest megabyte */
04903664 5664 numentries = nr_kernel_pages;
1da177e4
LT
5665 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5666 numentries >>= 20 - PAGE_SHIFT;
5667 numentries <<= 20 - PAGE_SHIFT;
5668
5669 /* limit to 1 bucket per 2^scale bytes of low memory */
5670 if (scale > PAGE_SHIFT)
5671 numentries >>= (scale - PAGE_SHIFT);
5672 else
5673 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5674
5675 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5676 if (unlikely(flags & HASH_SMALL)) {
5677 /* Makes no sense without HASH_EARLY */
5678 WARN_ON(!(flags & HASH_EARLY));
5679 if (!(numentries >> *_hash_shift)) {
5680 numentries = 1UL << *_hash_shift;
5681 BUG_ON(!numentries);
5682 }
5683 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5684 numentries = PAGE_SIZE / bucketsize;
1da177e4 5685 }
6e692ed3 5686 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5687
5688 /* limit allocation size to 1/16 total memory by default */
5689 if (max == 0) {
5690 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5691 do_div(max, bucketsize);
5692 }
074b8517 5693 max = min(max, 0x80000000ULL);
1da177e4 5694
31fe62b9
TB
5695 if (numentries < low_limit)
5696 numentries = low_limit;
1da177e4
LT
5697 if (numentries > max)
5698 numentries = max;
5699
f0d1b0b3 5700 log2qty = ilog2(numentries);
1da177e4
LT
5701
5702 do {
5703 size = bucketsize << log2qty;
5704 if (flags & HASH_EARLY)
74768ed8 5705 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5706 else if (hashdist)
5707 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5708 else {
1037b83b
ED
5709 /*
5710 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5711 * some pages at the end of hash table which
5712 * alloc_pages_exact() automatically does
1037b83b 5713 */
264ef8a9 5714 if (get_order(size) < MAX_ORDER) {
a1dd268c 5715 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5716 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5717 }
1da177e4
LT
5718 }
5719 } while (!table && size > PAGE_SIZE && --log2qty);
5720
5721 if (!table)
5722 panic("Failed to allocate %s hash table\n", tablename);
5723
f241e660 5724 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5725 tablename,
f241e660 5726 (1UL << log2qty),
f0d1b0b3 5727 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5728 size);
5729
5730 if (_hash_shift)
5731 *_hash_shift = log2qty;
5732 if (_hash_mask)
5733 *_hash_mask = (1 << log2qty) - 1;
5734
5735 return table;
5736}
a117e66e 5737
835c134e
MG
5738/* Return a pointer to the bitmap storing bits affecting a block of pages */
5739static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5740 unsigned long pfn)
5741{
5742#ifdef CONFIG_SPARSEMEM
5743 return __pfn_to_section(pfn)->pageblock_flags;
5744#else
5745 return zone->pageblock_flags;
5746#endif /* CONFIG_SPARSEMEM */
5747}
5748
5749static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5750{
5751#ifdef CONFIG_SPARSEMEM
5752 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5753 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5754#else
c060f943 5755 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5756 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5757#endif /* CONFIG_SPARSEMEM */
5758}
5759
5760/**
d9c23400 5761 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5762 * @page: The page within the block of interest
5763 * @start_bitidx: The first bit of interest to retrieve
5764 * @end_bitidx: The last bit of interest
5765 * returns pageblock_bits flags
5766 */
5767unsigned long get_pageblock_flags_group(struct page *page,
5768 int start_bitidx, int end_bitidx)
5769{
5770 struct zone *zone;
5771 unsigned long *bitmap;
5772 unsigned long pfn, bitidx;
5773 unsigned long flags = 0;
5774 unsigned long value = 1;
5775
5776 zone = page_zone(page);
5777 pfn = page_to_pfn(page);
5778 bitmap = get_pageblock_bitmap(zone, pfn);
5779 bitidx = pfn_to_bitidx(zone, pfn);
5780
5781 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5782 if (test_bit(bitidx + start_bitidx, bitmap))
5783 flags |= value;
6220ec78 5784
835c134e
MG
5785 return flags;
5786}
5787
5788/**
d9c23400 5789 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5790 * @page: The page within the block of interest
5791 * @start_bitidx: The first bit of interest
5792 * @end_bitidx: The last bit of interest
5793 * @flags: The flags to set
5794 */
5795void set_pageblock_flags_group(struct page *page, unsigned long flags,
5796 int start_bitidx, int end_bitidx)
5797{
5798 struct zone *zone;
5799 unsigned long *bitmap;
5800 unsigned long pfn, bitidx;
5801 unsigned long value = 1;
5802
5803 zone = page_zone(page);
5804 pfn = page_to_pfn(page);
5805 bitmap = get_pageblock_bitmap(zone, pfn);
5806 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5807 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
5808
5809 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5810 if (flags & value)
5811 __set_bit(bitidx + start_bitidx, bitmap);
5812 else
5813 __clear_bit(bitidx + start_bitidx, bitmap);
5814}
a5d76b54
KH
5815
5816/*
80934513
MK
5817 * This function checks whether pageblock includes unmovable pages or not.
5818 * If @count is not zero, it is okay to include less @count unmovable pages
5819 *
5820 * PageLRU check wihtout isolation or lru_lock could race so that
5821 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5822 * expect this function should be exact.
a5d76b54 5823 */
b023f468
WC
5824bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5825 bool skip_hwpoisoned_pages)
49ac8255
KH
5826{
5827 unsigned long pfn, iter, found;
47118af0
MN
5828 int mt;
5829
49ac8255
KH
5830 /*
5831 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5832 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5833 */
5834 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5835 return false;
47118af0
MN
5836 mt = get_pageblock_migratetype(page);
5837 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5838 return false;
49ac8255
KH
5839
5840 pfn = page_to_pfn(page);
5841 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5842 unsigned long check = pfn + iter;
5843
29723fcc 5844 if (!pfn_valid_within(check))
49ac8255 5845 continue;
29723fcc 5846
49ac8255 5847 page = pfn_to_page(check);
97d255c8
MK
5848 /*
5849 * We can't use page_count without pin a page
5850 * because another CPU can free compound page.
5851 * This check already skips compound tails of THP
5852 * because their page->_count is zero at all time.
5853 */
5854 if (!atomic_read(&page->_count)) {
49ac8255
KH
5855 if (PageBuddy(page))
5856 iter += (1 << page_order(page)) - 1;
5857 continue;
5858 }
97d255c8 5859
b023f468
WC
5860 /*
5861 * The HWPoisoned page may be not in buddy system, and
5862 * page_count() is not 0.
5863 */
5864 if (skip_hwpoisoned_pages && PageHWPoison(page))
5865 continue;
5866
49ac8255
KH
5867 if (!PageLRU(page))
5868 found++;
5869 /*
5870 * If there are RECLAIMABLE pages, we need to check it.
5871 * But now, memory offline itself doesn't call shrink_slab()
5872 * and it still to be fixed.
5873 */
5874 /*
5875 * If the page is not RAM, page_count()should be 0.
5876 * we don't need more check. This is an _used_ not-movable page.
5877 *
5878 * The problematic thing here is PG_reserved pages. PG_reserved
5879 * is set to both of a memory hole page and a _used_ kernel
5880 * page at boot.
5881 */
5882 if (found > count)
80934513 5883 return true;
49ac8255 5884 }
80934513 5885 return false;
49ac8255
KH
5886}
5887
5888bool is_pageblock_removable_nolock(struct page *page)
5889{
656a0706
MH
5890 struct zone *zone;
5891 unsigned long pfn;
687875fb
MH
5892
5893 /*
5894 * We have to be careful here because we are iterating over memory
5895 * sections which are not zone aware so we might end up outside of
5896 * the zone but still within the section.
656a0706
MH
5897 * We have to take care about the node as well. If the node is offline
5898 * its NODE_DATA will be NULL - see page_zone.
687875fb 5899 */
656a0706
MH
5900 if (!node_online(page_to_nid(page)))
5901 return false;
5902
5903 zone = page_zone(page);
5904 pfn = page_to_pfn(page);
108bcc96 5905 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
5906 return false;
5907
b023f468 5908 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5909}
0c0e6195 5910
041d3a8c
MN
5911#ifdef CONFIG_CMA
5912
5913static unsigned long pfn_max_align_down(unsigned long pfn)
5914{
5915 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5916 pageblock_nr_pages) - 1);
5917}
5918
5919static unsigned long pfn_max_align_up(unsigned long pfn)
5920{
5921 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5922 pageblock_nr_pages));
5923}
5924
041d3a8c 5925/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5926static int __alloc_contig_migrate_range(struct compact_control *cc,
5927 unsigned long start, unsigned long end)
041d3a8c
MN
5928{
5929 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5930 unsigned long nr_reclaimed;
041d3a8c
MN
5931 unsigned long pfn = start;
5932 unsigned int tries = 0;
5933 int ret = 0;
5934
be49a6e1 5935 migrate_prep();
041d3a8c 5936
bb13ffeb 5937 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5938 if (fatal_signal_pending(current)) {
5939 ret = -EINTR;
5940 break;
5941 }
5942
bb13ffeb
MG
5943 if (list_empty(&cc->migratepages)) {
5944 cc->nr_migratepages = 0;
5945 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5946 pfn, end, true);
041d3a8c
MN
5947 if (!pfn) {
5948 ret = -EINTR;
5949 break;
5950 }
5951 tries = 0;
5952 } else if (++tries == 5) {
5953 ret = ret < 0 ? ret : -EBUSY;
5954 break;
5955 }
5956
beb51eaa
MK
5957 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5958 &cc->migratepages);
5959 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5960
9c620e2b
HD
5961 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5962 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 5963 }
2a6f5124
SP
5964 if (ret < 0) {
5965 putback_movable_pages(&cc->migratepages);
5966 return ret;
5967 }
5968 return 0;
041d3a8c
MN
5969}
5970
5971/**
5972 * alloc_contig_range() -- tries to allocate given range of pages
5973 * @start: start PFN to allocate
5974 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5975 * @migratetype: migratetype of the underlaying pageblocks (either
5976 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5977 * in range must have the same migratetype and it must
5978 * be either of the two.
041d3a8c
MN
5979 *
5980 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5981 * aligned, however it's the caller's responsibility to guarantee that
5982 * we are the only thread that changes migrate type of pageblocks the
5983 * pages fall in.
5984 *
5985 * The PFN range must belong to a single zone.
5986 *
5987 * Returns zero on success or negative error code. On success all
5988 * pages which PFN is in [start, end) are allocated for the caller and
5989 * need to be freed with free_contig_range().
5990 */
0815f3d8
MN
5991int alloc_contig_range(unsigned long start, unsigned long end,
5992 unsigned migratetype)
041d3a8c 5993{
041d3a8c
MN
5994 unsigned long outer_start, outer_end;
5995 int ret = 0, order;
5996
bb13ffeb
MG
5997 struct compact_control cc = {
5998 .nr_migratepages = 0,
5999 .order = -1,
6000 .zone = page_zone(pfn_to_page(start)),
6001 .sync = true,
6002 .ignore_skip_hint = true,
6003 };
6004 INIT_LIST_HEAD(&cc.migratepages);
6005
041d3a8c
MN
6006 /*
6007 * What we do here is we mark all pageblocks in range as
6008 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6009 * have different sizes, and due to the way page allocator
6010 * work, we align the range to biggest of the two pages so
6011 * that page allocator won't try to merge buddies from
6012 * different pageblocks and change MIGRATE_ISOLATE to some
6013 * other migration type.
6014 *
6015 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6016 * migrate the pages from an unaligned range (ie. pages that
6017 * we are interested in). This will put all the pages in
6018 * range back to page allocator as MIGRATE_ISOLATE.
6019 *
6020 * When this is done, we take the pages in range from page
6021 * allocator removing them from the buddy system. This way
6022 * page allocator will never consider using them.
6023 *
6024 * This lets us mark the pageblocks back as
6025 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6026 * aligned range but not in the unaligned, original range are
6027 * put back to page allocator so that buddy can use them.
6028 */
6029
6030 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6031 pfn_max_align_up(end), migratetype,
6032 false);
041d3a8c 6033 if (ret)
86a595f9 6034 return ret;
041d3a8c 6035
bb13ffeb 6036 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6037 if (ret)
6038 goto done;
6039
6040 /*
6041 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6042 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6043 * more, all pages in [start, end) are free in page allocator.
6044 * What we are going to do is to allocate all pages from
6045 * [start, end) (that is remove them from page allocator).
6046 *
6047 * The only problem is that pages at the beginning and at the
6048 * end of interesting range may be not aligned with pages that
6049 * page allocator holds, ie. they can be part of higher order
6050 * pages. Because of this, we reserve the bigger range and
6051 * once this is done free the pages we are not interested in.
6052 *
6053 * We don't have to hold zone->lock here because the pages are
6054 * isolated thus they won't get removed from buddy.
6055 */
6056
6057 lru_add_drain_all();
6058 drain_all_pages();
6059
6060 order = 0;
6061 outer_start = start;
6062 while (!PageBuddy(pfn_to_page(outer_start))) {
6063 if (++order >= MAX_ORDER) {
6064 ret = -EBUSY;
6065 goto done;
6066 }
6067 outer_start &= ~0UL << order;
6068 }
6069
6070 /* Make sure the range is really isolated. */
b023f468 6071 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6072 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6073 outer_start, end);
6074 ret = -EBUSY;
6075 goto done;
6076 }
6077
49f223a9
MS
6078
6079 /* Grab isolated pages from freelists. */
bb13ffeb 6080 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6081 if (!outer_end) {
6082 ret = -EBUSY;
6083 goto done;
6084 }
6085
6086 /* Free head and tail (if any) */
6087 if (start != outer_start)
6088 free_contig_range(outer_start, start - outer_start);
6089 if (end != outer_end)
6090 free_contig_range(end, outer_end - end);
6091
6092done:
6093 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6094 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6095 return ret;
6096}
6097
6098void free_contig_range(unsigned long pfn, unsigned nr_pages)
6099{
bcc2b02f
MS
6100 unsigned int count = 0;
6101
6102 for (; nr_pages--; pfn++) {
6103 struct page *page = pfn_to_page(pfn);
6104
6105 count += page_count(page) != 1;
6106 __free_page(page);
6107 }
6108 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6109}
6110#endif
6111
4ed7e022 6112#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6113/*
6114 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6115 * page high values need to be recalulated.
6116 */
4ed7e022
JL
6117void __meminit zone_pcp_update(struct zone *zone)
6118{
0a647f38 6119 unsigned cpu;
c8e251fa 6120 mutex_lock(&pcp_batch_high_lock);
0a647f38 6121 for_each_possible_cpu(cpu)
169f6c19
CS
6122 pageset_set_high_and_batch(zone,
6123 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6124 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6125}
6126#endif
6127
340175b7
JL
6128void zone_pcp_reset(struct zone *zone)
6129{
6130 unsigned long flags;
5a883813
MK
6131 int cpu;
6132 struct per_cpu_pageset *pset;
340175b7
JL
6133
6134 /* avoid races with drain_pages() */
6135 local_irq_save(flags);
6136 if (zone->pageset != &boot_pageset) {
5a883813
MK
6137 for_each_online_cpu(cpu) {
6138 pset = per_cpu_ptr(zone->pageset, cpu);
6139 drain_zonestat(zone, pset);
6140 }
340175b7
JL
6141 free_percpu(zone->pageset);
6142 zone->pageset = &boot_pageset;
6143 }
6144 local_irq_restore(flags);
6145}
6146
6dcd73d7 6147#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6148/*
6149 * All pages in the range must be isolated before calling this.
6150 */
6151void
6152__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6153{
6154 struct page *page;
6155 struct zone *zone;
6156 int order, i;
6157 unsigned long pfn;
6158 unsigned long flags;
6159 /* find the first valid pfn */
6160 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6161 if (pfn_valid(pfn))
6162 break;
6163 if (pfn == end_pfn)
6164 return;
6165 zone = page_zone(pfn_to_page(pfn));
6166 spin_lock_irqsave(&zone->lock, flags);
6167 pfn = start_pfn;
6168 while (pfn < end_pfn) {
6169 if (!pfn_valid(pfn)) {
6170 pfn++;
6171 continue;
6172 }
6173 page = pfn_to_page(pfn);
b023f468
WC
6174 /*
6175 * The HWPoisoned page may be not in buddy system, and
6176 * page_count() is not 0.
6177 */
6178 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6179 pfn++;
6180 SetPageReserved(page);
6181 continue;
6182 }
6183
0c0e6195
KH
6184 BUG_ON(page_count(page));
6185 BUG_ON(!PageBuddy(page));
6186 order = page_order(page);
6187#ifdef CONFIG_DEBUG_VM
6188 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6189 pfn, 1 << order, end_pfn);
6190#endif
6191 list_del(&page->lru);
6192 rmv_page_order(page);
6193 zone->free_area[order].nr_free--;
cea27eb2
WL
6194#ifdef CONFIG_HIGHMEM
6195 if (PageHighMem(page))
6196 totalhigh_pages -= 1 << order;
6197#endif
0c0e6195
KH
6198 for (i = 0; i < (1 << order); i++)
6199 SetPageReserved((page+i));
6200 pfn += (1 << order);
6201 }
6202 spin_unlock_irqrestore(&zone->lock, flags);
6203}
6204#endif
8d22ba1b
WF
6205
6206#ifdef CONFIG_MEMORY_FAILURE
6207bool is_free_buddy_page(struct page *page)
6208{
6209 struct zone *zone = page_zone(page);
6210 unsigned long pfn = page_to_pfn(page);
6211 unsigned long flags;
6212 int order;
6213
6214 spin_lock_irqsave(&zone->lock, flags);
6215 for (order = 0; order < MAX_ORDER; order++) {
6216 struct page *page_head = page - (pfn & ((1 << order) - 1));
6217
6218 if (PageBuddy(page_head) && page_order(page_head) >= order)
6219 break;
6220 }
6221 spin_unlock_irqrestore(&zone->lock, flags);
6222
6223 return order < MAX_ORDER;
6224}
6225#endif
718a3821 6226
51300cef 6227static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6228 {1UL << PG_locked, "locked" },
6229 {1UL << PG_error, "error" },
6230 {1UL << PG_referenced, "referenced" },
6231 {1UL << PG_uptodate, "uptodate" },
6232 {1UL << PG_dirty, "dirty" },
6233 {1UL << PG_lru, "lru" },
6234 {1UL << PG_active, "active" },
6235 {1UL << PG_slab, "slab" },
6236 {1UL << PG_owner_priv_1, "owner_priv_1" },
6237 {1UL << PG_arch_1, "arch_1" },
6238 {1UL << PG_reserved, "reserved" },
6239 {1UL << PG_private, "private" },
6240 {1UL << PG_private_2, "private_2" },
6241 {1UL << PG_writeback, "writeback" },
6242#ifdef CONFIG_PAGEFLAGS_EXTENDED
6243 {1UL << PG_head, "head" },
6244 {1UL << PG_tail, "tail" },
6245#else
6246 {1UL << PG_compound, "compound" },
6247#endif
6248 {1UL << PG_swapcache, "swapcache" },
6249 {1UL << PG_mappedtodisk, "mappedtodisk" },
6250 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6251 {1UL << PG_swapbacked, "swapbacked" },
6252 {1UL << PG_unevictable, "unevictable" },
6253#ifdef CONFIG_MMU
6254 {1UL << PG_mlocked, "mlocked" },
6255#endif
6256#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6257 {1UL << PG_uncached, "uncached" },
6258#endif
6259#ifdef CONFIG_MEMORY_FAILURE
6260 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6261#endif
6262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6263 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6264#endif
718a3821
WF
6265};
6266
6267static void dump_page_flags(unsigned long flags)
6268{
6269 const char *delim = "";
6270 unsigned long mask;
6271 int i;
6272
51300cef 6273 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6274
718a3821
WF
6275 printk(KERN_ALERT "page flags: %#lx(", flags);
6276
6277 /* remove zone id */
6278 flags &= (1UL << NR_PAGEFLAGS) - 1;
6279
51300cef 6280 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6281
6282 mask = pageflag_names[i].mask;
6283 if ((flags & mask) != mask)
6284 continue;
6285
6286 flags &= ~mask;
6287 printk("%s%s", delim, pageflag_names[i].name);
6288 delim = "|";
6289 }
6290
6291 /* check for left over flags */
6292 if (flags)
6293 printk("%s%#lx", delim, flags);
6294
6295 printk(")\n");
6296}
6297
6298void dump_page(struct page *page)
6299{
6300 printk(KERN_ALERT
6301 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6302 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6303 page->mapping, page->index);
6304 dump_page_flags(page->flags);
f212ad7c 6305 mem_cgroup_print_bad_page(page);
718a3821 6306}