]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: compaction: reset scanner positions immediately when they meet
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
5f12733e 208int user_min_free_kbytes;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2
CS
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
bdc8cb98 267 return ret;
c6a57e19
DH
268}
269
270static int page_is_consistent(struct zone *zone, struct page *page)
271{
14e07298 272 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 273 return 0;
1da177e4 274 if (zone != page_zone(page))
c6a57e19
DH
275 return 0;
276
277 return 1;
278}
279/*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282static int bad_range(struct zone *zone, struct page *page)
283{
284 if (page_outside_zone_boundaries(zone, page))
1da177e4 285 return 1;
c6a57e19
DH
286 if (!page_is_consistent(zone, page))
287 return 1;
288
1da177e4
LT
289 return 0;
290}
13e7444b
NP
291#else
292static inline int bad_range(struct zone *zone, struct page *page)
293{
294 return 0;
295}
296#endif
297
224abf92 298static void bad_page(struct page *page)
1da177e4 299{
d936cf9b
HD
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
2a7684a2
WF
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
22b751c3 306 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
307 return;
308 }
309
d936cf9b
HD
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
1e9e6365
HD
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
1e9e6365 330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 331 current->comm, page_to_pfn(page));
718a3821 332 dump_page(page);
3dc14741 333
4f31888c 334 print_modules();
1da177e4 335 dump_stack();
d936cf9b 336out:
8cc3b392 337 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 338 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
340}
341
1da177e4
LT
342/*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
6416b9fa
WSH
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
1da177e4 351 *
41d78ba5
HD
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
1da177e4 355 */
d98c7a09
HD
356
357static void free_compound_page(struct page *page)
358{
d85f3385 359 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
360}
361
01ad1c08 362void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
363{
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
18229df5 372 __SetPageTail(p);
58a84aa9 373 set_page_count(p, 0);
18229df5
AW
374 p->first_page = page;
375 }
376}
377
59ff4216 378/* update __split_huge_page_refcount if you change this function */
8cc3b392 379static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
380{
381 int i;
382 int nr_pages = 1 << order;
8cc3b392 383 int bad = 0;
1da177e4 384
0bb2c763 385 if (unlikely(compound_order(page) != order)) {
224abf92 386 bad_page(page);
8cc3b392
HD
387 bad++;
388 }
1da177e4 389
6d777953 390 __ClearPageHead(page);
8cc3b392 391
18229df5
AW
392 for (i = 1; i < nr_pages; i++) {
393 struct page *p = page + i;
1da177e4 394
e713a21d 395 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 396 bad_page(page);
8cc3b392
HD
397 bad++;
398 }
d85f3385 399 __ClearPageTail(p);
1da177e4 400 }
8cc3b392
HD
401
402 return bad;
1da177e4 403}
1da177e4 404
17cf4406
NP
405static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406{
407 int i;
408
6626c5d5
AM
409 /*
410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 */
725d704e 413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
414 for (i = 0; i < (1 << order); i++)
415 clear_highpage(page + i);
416}
417
c0a32fc5
SG
418#ifdef CONFIG_DEBUG_PAGEALLOC
419unsigned int _debug_guardpage_minorder;
420
421static int __init debug_guardpage_minorder_setup(char *buf)
422{
423 unsigned long res;
424
425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 return 0;
428 }
429 _debug_guardpage_minorder = res;
430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 return 0;
432}
433__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434
435static inline void set_page_guard_flag(struct page *page)
436{
437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438}
439
440static inline void clear_page_guard_flag(struct page *page)
441{
442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443}
444#else
445static inline void set_page_guard_flag(struct page *page) { }
446static inline void clear_page_guard_flag(struct page *page) { }
447#endif
448
6aa3001b
AM
449static inline void set_page_order(struct page *page, int order)
450{
4c21e2f2 451 set_page_private(page, order);
676165a8 452 __SetPageBuddy(page);
1da177e4
LT
453}
454
455static inline void rmv_page_order(struct page *page)
456{
676165a8 457 __ClearPageBuddy(page);
4c21e2f2 458 set_page_private(page, 0);
1da177e4
LT
459}
460
461/*
462 * Locate the struct page for both the matching buddy in our
463 * pair (buddy1) and the combined O(n+1) page they form (page).
464 *
465 * 1) Any buddy B1 will have an order O twin B2 which satisfies
466 * the following equation:
467 * B2 = B1 ^ (1 << O)
468 * For example, if the starting buddy (buddy2) is #8 its order
469 * 1 buddy is #10:
470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 *
472 * 2) Any buddy B will have an order O+1 parent P which
473 * satisfies the following equation:
474 * P = B & ~(1 << O)
475 *
d6e05edc 476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 477 */
1da177e4 478static inline unsigned long
43506fad 479__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 480{
43506fad 481 return page_idx ^ (1 << order);
1da177e4
LT
482}
483
484/*
485 * This function checks whether a page is free && is the buddy
486 * we can do coalesce a page and its buddy if
13e7444b 487 * (a) the buddy is not in a hole &&
676165a8 488 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
489 * (c) a page and its buddy have the same order &&
490 * (d) a page and its buddy are in the same zone.
676165a8 491 *
cf6fe945
WSH
492 * For recording whether a page is in the buddy system, we set ->_mapcount
493 * PAGE_BUDDY_MAPCOUNT_VALUE.
494 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
495 * serialized by zone->lock.
1da177e4 496 *
676165a8 497 * For recording page's order, we use page_private(page).
1da177e4 498 */
cb2b95e1
AW
499static inline int page_is_buddy(struct page *page, struct page *buddy,
500 int order)
1da177e4 501{
14e07298 502 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 503 return 0;
13e7444b 504
cb2b95e1
AW
505 if (page_zone_id(page) != page_zone_id(buddy))
506 return 0;
507
c0a32fc5
SG
508 if (page_is_guard(buddy) && page_order(buddy) == order) {
509 VM_BUG_ON(page_count(buddy) != 0);
510 return 1;
511 }
512
cb2b95e1 513 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 514 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 515 return 1;
676165a8 516 }
6aa3001b 517 return 0;
1da177e4
LT
518}
519
520/*
521 * Freeing function for a buddy system allocator.
522 *
523 * The concept of a buddy system is to maintain direct-mapped table
524 * (containing bit values) for memory blocks of various "orders".
525 * The bottom level table contains the map for the smallest allocatable
526 * units of memory (here, pages), and each level above it describes
527 * pairs of units from the levels below, hence, "buddies".
528 * At a high level, all that happens here is marking the table entry
529 * at the bottom level available, and propagating the changes upward
530 * as necessary, plus some accounting needed to play nicely with other
531 * parts of the VM system.
532 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
533 * free pages of length of (1 << order) and marked with _mapcount
534 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
535 * field.
1da177e4 536 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
537 * other. That is, if we allocate a small block, and both were
538 * free, the remainder of the region must be split into blocks.
1da177e4 539 * If a block is freed, and its buddy is also free, then this
5f63b720 540 * triggers coalescing into a block of larger size.
1da177e4 541 *
6d49e352 542 * -- nyc
1da177e4
LT
543 */
544
48db57f8 545static inline void __free_one_page(struct page *page,
ed0ae21d
MG
546 struct zone *zone, unsigned int order,
547 int migratetype)
1da177e4
LT
548{
549 unsigned long page_idx;
6dda9d55 550 unsigned long combined_idx;
43506fad 551 unsigned long uninitialized_var(buddy_idx);
6dda9d55 552 struct page *buddy;
1da177e4 553
d29bb978
CS
554 VM_BUG_ON(!zone_is_initialized(zone));
555
224abf92 556 if (unlikely(PageCompound(page)))
8cc3b392
HD
557 if (unlikely(destroy_compound_page(page, order)))
558 return;
1da177e4 559
ed0ae21d
MG
560 VM_BUG_ON(migratetype == -1);
561
1da177e4
LT
562 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
563
f2260e6b 564 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 565 VM_BUG_ON(bad_range(zone, page));
1da177e4 566
1da177e4 567 while (order < MAX_ORDER-1) {
43506fad
KC
568 buddy_idx = __find_buddy_index(page_idx, order);
569 buddy = page + (buddy_idx - page_idx);
cb2b95e1 570 if (!page_is_buddy(page, buddy, order))
3c82d0ce 571 break;
c0a32fc5
SG
572 /*
573 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
574 * merge with it and move up one order.
575 */
576 if (page_is_guard(buddy)) {
577 clear_page_guard_flag(buddy);
578 set_page_private(page, 0);
d1ce749a
BZ
579 __mod_zone_freepage_state(zone, 1 << order,
580 migratetype);
c0a32fc5
SG
581 } else {
582 list_del(&buddy->lru);
583 zone->free_area[order].nr_free--;
584 rmv_page_order(buddy);
585 }
43506fad 586 combined_idx = buddy_idx & page_idx;
1da177e4
LT
587 page = page + (combined_idx - page_idx);
588 page_idx = combined_idx;
589 order++;
590 }
591 set_page_order(page, order);
6dda9d55
CZ
592
593 /*
594 * If this is not the largest possible page, check if the buddy
595 * of the next-highest order is free. If it is, it's possible
596 * that pages are being freed that will coalesce soon. In case,
597 * that is happening, add the free page to the tail of the list
598 * so it's less likely to be used soon and more likely to be merged
599 * as a higher order page
600 */
b7f50cfa 601 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 602 struct page *higher_page, *higher_buddy;
43506fad
KC
603 combined_idx = buddy_idx & page_idx;
604 higher_page = page + (combined_idx - page_idx);
605 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 606 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
607 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
608 list_add_tail(&page->lru,
609 &zone->free_area[order].free_list[migratetype]);
610 goto out;
611 }
612 }
613
614 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
615out:
1da177e4
LT
616 zone->free_area[order].nr_free++;
617}
618
224abf92 619static inline int free_pages_check(struct page *page)
1da177e4 620{
92be2e33
NP
621 if (unlikely(page_mapcount(page) |
622 (page->mapping != NULL) |
a3af9c38 623 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
624 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
625 (mem_cgroup_bad_page_check(page)))) {
224abf92 626 bad_page(page);
79f4b7bf 627 return 1;
8cc3b392 628 }
90572890 629 page_cpupid_reset_last(page);
79f4b7bf
HD
630 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
631 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
632 return 0;
1da177e4
LT
633}
634
635/*
5f8dcc21 636 * Frees a number of pages from the PCP lists
1da177e4 637 * Assumes all pages on list are in same zone, and of same order.
207f36ee 638 * count is the number of pages to free.
1da177e4
LT
639 *
640 * If the zone was previously in an "all pages pinned" state then look to
641 * see if this freeing clears that state.
642 *
643 * And clear the zone's pages_scanned counter, to hold off the "all pages are
644 * pinned" detection logic.
645 */
5f8dcc21
MG
646static void free_pcppages_bulk(struct zone *zone, int count,
647 struct per_cpu_pages *pcp)
1da177e4 648{
5f8dcc21 649 int migratetype = 0;
a6f9edd6 650 int batch_free = 0;
72853e29 651 int to_free = count;
5f8dcc21 652
c54ad30c 653 spin_lock(&zone->lock);
1da177e4 654 zone->pages_scanned = 0;
f2260e6b 655
72853e29 656 while (to_free) {
48db57f8 657 struct page *page;
5f8dcc21
MG
658 struct list_head *list;
659
660 /*
a6f9edd6
MG
661 * Remove pages from lists in a round-robin fashion. A
662 * batch_free count is maintained that is incremented when an
663 * empty list is encountered. This is so more pages are freed
664 * off fuller lists instead of spinning excessively around empty
665 * lists
5f8dcc21
MG
666 */
667 do {
a6f9edd6 668 batch_free++;
5f8dcc21
MG
669 if (++migratetype == MIGRATE_PCPTYPES)
670 migratetype = 0;
671 list = &pcp->lists[migratetype];
672 } while (list_empty(list));
48db57f8 673
1d16871d
NK
674 /* This is the only non-empty list. Free them all. */
675 if (batch_free == MIGRATE_PCPTYPES)
676 batch_free = to_free;
677
a6f9edd6 678 do {
770c8aaa
BZ
679 int mt; /* migratetype of the to-be-freed page */
680
a6f9edd6
MG
681 page = list_entry(list->prev, struct page, lru);
682 /* must delete as __free_one_page list manipulates */
683 list_del(&page->lru);
b12c4ad1 684 mt = get_freepage_migratetype(page);
a7016235 685 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
686 __free_one_page(page, zone, 0, mt);
687 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 688 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
689 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
690 if (is_migrate_cma(mt))
691 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
692 }
72853e29 693 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 694 }
c54ad30c 695 spin_unlock(&zone->lock);
1da177e4
LT
696}
697
ed0ae21d
MG
698static void free_one_page(struct zone *zone, struct page *page, int order,
699 int migratetype)
1da177e4 700{
006d22d9 701 spin_lock(&zone->lock);
006d22d9 702 zone->pages_scanned = 0;
f2260e6b 703
ed0ae21d 704 __free_one_page(page, zone, order, migratetype);
194159fb 705 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 706 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 707 spin_unlock(&zone->lock);
48db57f8
NP
708}
709
ec95f53a 710static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 711{
1da177e4 712 int i;
8cc3b392 713 int bad = 0;
1da177e4 714
b413d48a 715 trace_mm_page_free(page, order);
b1eeab67
VN
716 kmemcheck_free_shadow(page, order);
717
8dd60a3a
AA
718 if (PageAnon(page))
719 page->mapping = NULL;
720 for (i = 0; i < (1 << order); i++)
721 bad += free_pages_check(page + i);
8cc3b392 722 if (bad)
ec95f53a 723 return false;
689bcebf 724
3ac7fe5a 725 if (!PageHighMem(page)) {
b8af2941
PK
726 debug_check_no_locks_freed(page_address(page),
727 PAGE_SIZE << order);
3ac7fe5a
TG
728 debug_check_no_obj_freed(page_address(page),
729 PAGE_SIZE << order);
730 }
dafb1367 731 arch_free_page(page, order);
48db57f8 732 kernel_map_pages(page, 1 << order, 0);
dafb1367 733
ec95f53a
KM
734 return true;
735}
736
737static void __free_pages_ok(struct page *page, unsigned int order)
738{
739 unsigned long flags;
95e34412 740 int migratetype;
ec95f53a
KM
741
742 if (!free_pages_prepare(page, order))
743 return;
744
c54ad30c 745 local_irq_save(flags);
f8891e5e 746 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
747 migratetype = get_pageblock_migratetype(page);
748 set_freepage_migratetype(page, migratetype);
749 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 750 local_irq_restore(flags);
1da177e4
LT
751}
752
170a5a7e 753void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 754{
c3993076 755 unsigned int nr_pages = 1 << order;
e2d0bd2b 756 struct page *p = page;
c3993076 757 unsigned int loop;
a226f6c8 758
e2d0bd2b
YL
759 prefetchw(p);
760 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
761 prefetchw(p + 1);
c3993076
JW
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
a226f6c8 764 }
e2d0bd2b
YL
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
c3993076 767
e2d0bd2b 768 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
769 set_page_refcounted(page);
770 __free_pages(page, order);
a226f6c8
DH
771}
772
47118af0 773#ifdef CONFIG_CMA
9cf510a5 774/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
775void __init init_cma_reserved_pageblock(struct page *page)
776{
777 unsigned i = pageblock_nr_pages;
778 struct page *p = page;
779
780 do {
781 __ClearPageReserved(p);
782 set_page_count(p, 0);
783 } while (++p, --i);
784
785 set_page_refcounted(page);
786 set_pageblock_migratetype(page, MIGRATE_CMA);
787 __free_pages(page, pageblock_order);
3dcc0571 788 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
789}
790#endif
1da177e4
LT
791
792/*
793 * The order of subdivision here is critical for the IO subsystem.
794 * Please do not alter this order without good reasons and regression
795 * testing. Specifically, as large blocks of memory are subdivided,
796 * the order in which smaller blocks are delivered depends on the order
797 * they're subdivided in this function. This is the primary factor
798 * influencing the order in which pages are delivered to the IO
799 * subsystem according to empirical testing, and this is also justified
800 * by considering the behavior of a buddy system containing a single
801 * large block of memory acted on by a series of small allocations.
802 * This behavior is a critical factor in sglist merging's success.
803 *
6d49e352 804 * -- nyc
1da177e4 805 */
085cc7d5 806static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
807 int low, int high, struct free_area *area,
808 int migratetype)
1da177e4
LT
809{
810 unsigned long size = 1 << high;
811
812 while (high > low) {
813 area--;
814 high--;
815 size >>= 1;
725d704e 816 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
817
818#ifdef CONFIG_DEBUG_PAGEALLOC
819 if (high < debug_guardpage_minorder()) {
820 /*
821 * Mark as guard pages (or page), that will allow to
822 * merge back to allocator when buddy will be freed.
823 * Corresponding page table entries will not be touched,
824 * pages will stay not present in virtual address space
825 */
826 INIT_LIST_HEAD(&page[size].lru);
827 set_page_guard_flag(&page[size]);
828 set_page_private(&page[size], high);
829 /* Guard pages are not available for any usage */
d1ce749a
BZ
830 __mod_zone_freepage_state(zone, -(1 << high),
831 migratetype);
c0a32fc5
SG
832 continue;
833 }
834#endif
b2a0ac88 835 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
836 area->nr_free++;
837 set_page_order(&page[size], high);
838 }
1da177e4
LT
839}
840
1da177e4
LT
841/*
842 * This page is about to be returned from the page allocator
843 */
2a7684a2 844static inline int check_new_page(struct page *page)
1da177e4 845{
92be2e33
NP
846 if (unlikely(page_mapcount(page) |
847 (page->mapping != NULL) |
a3af9c38 848 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 (mem_cgroup_bad_page_check(page)))) {
224abf92 851 bad_page(page);
689bcebf 852 return 1;
8cc3b392 853 }
2a7684a2
WF
854 return 0;
855}
856
857static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858{
859 int i;
860
861 for (i = 0; i < (1 << order); i++) {
862 struct page *p = page + i;
863 if (unlikely(check_new_page(p)))
864 return 1;
865 }
689bcebf 866
4c21e2f2 867 set_page_private(page, 0);
7835e98b 868 set_page_refcounted(page);
cc102509
NP
869
870 arch_alloc_page(page, order);
1da177e4 871 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
872
873 if (gfp_flags & __GFP_ZERO)
874 prep_zero_page(page, order, gfp_flags);
875
876 if (order && (gfp_flags & __GFP_COMP))
877 prep_compound_page(page, order);
878
689bcebf 879 return 0;
1da177e4
LT
880}
881
56fd56b8
MG
882/*
883 * Go through the free lists for the given migratetype and remove
884 * the smallest available page from the freelists
885 */
728ec980
MG
886static inline
887struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
888 int migratetype)
889{
890 unsigned int current_order;
b8af2941 891 struct free_area *area;
56fd56b8
MG
892 struct page *page;
893
894 /* Find a page of the appropriate size in the preferred list */
895 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
898 continue;
899
900 page = list_entry(area->free_list[migratetype].next,
901 struct page, lru);
902 list_del(&page->lru);
903 rmv_page_order(page);
904 area->nr_free--;
56fd56b8
MG
905 expand(zone, page, order, current_order, area, migratetype);
906 return page;
907 }
908
909 return NULL;
910}
911
912
b2a0ac88
MG
913/*
914 * This array describes the order lists are fallen back to when
915 * the free lists for the desirable migrate type are depleted
916 */
47118af0
MN
917static int fallbacks[MIGRATE_TYPES][4] = {
918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
920#ifdef CONFIG_CMA
921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
923#else
924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925#endif
6d4a4916 926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 927#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 929#endif
b2a0ac88
MG
930};
931
c361be55
MG
932/*
933 * Move the free pages in a range to the free lists of the requested type.
d9c23400 934 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
935 * boundary. If alignment is required, use move_freepages_block()
936 */
435b405c 937int move_freepages(struct zone *zone,
b69a7288
AB
938 struct page *start_page, struct page *end_page,
939 int migratetype)
c361be55
MG
940{
941 struct page *page;
942 unsigned long order;
d100313f 943 int pages_moved = 0;
c361be55
MG
944
945#ifndef CONFIG_HOLES_IN_ZONE
946 /*
947 * page_zone is not safe to call in this context when
948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 * anyway as we check zone boundaries in move_freepages_block().
950 * Remove at a later date when no bug reports exist related to
ac0e5b7a 951 * grouping pages by mobility
c361be55
MG
952 */
953 BUG_ON(page_zone(start_page) != page_zone(end_page));
954#endif
955
956 for (page = start_page; page <= end_page;) {
344c790e
AL
957 /* Make sure we are not inadvertently changing nodes */
958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959
c361be55
MG
960 if (!pfn_valid_within(page_to_pfn(page))) {
961 page++;
962 continue;
963 }
964
965 if (!PageBuddy(page)) {
966 page++;
967 continue;
968 }
969
970 order = page_order(page);
84be48d8
KS
971 list_move(&page->lru,
972 &zone->free_area[order].free_list[migratetype]);
95e34412 973 set_freepage_migratetype(page, migratetype);
c361be55 974 page += 1 << order;
d100313f 975 pages_moved += 1 << order;
c361be55
MG
976 }
977
d100313f 978 return pages_moved;
c361be55
MG
979}
980
ee6f509c 981int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 982 int migratetype)
c361be55
MG
983{
984 unsigned long start_pfn, end_pfn;
985 struct page *start_page, *end_page;
986
987 start_pfn = page_to_pfn(page);
d9c23400 988 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 989 start_page = pfn_to_page(start_pfn);
d9c23400
MG
990 end_page = start_page + pageblock_nr_pages - 1;
991 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
992
993 /* Do not cross zone boundaries */
108bcc96 994 if (!zone_spans_pfn(zone, start_pfn))
c361be55 995 start_page = page;
108bcc96 996 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
997 return 0;
998
999 return move_freepages(zone, start_page, end_page, migratetype);
1000}
1001
2f66a68f
MG
1002static void change_pageblock_range(struct page *pageblock_page,
1003 int start_order, int migratetype)
1004{
1005 int nr_pageblocks = 1 << (start_order - pageblock_order);
1006
1007 while (nr_pageblocks--) {
1008 set_pageblock_migratetype(pageblock_page, migratetype);
1009 pageblock_page += pageblock_nr_pages;
1010 }
1011}
1012
fef903ef
SB
1013/*
1014 * If breaking a large block of pages, move all free pages to the preferred
1015 * allocation list. If falling back for a reclaimable kernel allocation, be
1016 * more aggressive about taking ownership of free pages.
1017 *
1018 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1019 * nor move CMA pages to different free lists. We don't want unmovable pages
1020 * to be allocated from MIGRATE_CMA areas.
1021 *
1022 * Returns the new migratetype of the pageblock (or the same old migratetype
1023 * if it was unchanged).
1024 */
1025static int try_to_steal_freepages(struct zone *zone, struct page *page,
1026 int start_type, int fallback_type)
1027{
1028 int current_order = page_order(page);
1029
0cbef29a
KM
1030 /*
1031 * When borrowing from MIGRATE_CMA, we need to release the excess
1032 * buddy pages to CMA itself.
1033 */
fef903ef
SB
1034 if (is_migrate_cma(fallback_type))
1035 return fallback_type;
1036
1037 /* Take ownership for orders >= pageblock_order */
1038 if (current_order >= pageblock_order) {
1039 change_pageblock_range(page, current_order, start_type);
1040 return start_type;
1041 }
1042
1043 if (current_order >= pageblock_order / 2 ||
1044 start_type == MIGRATE_RECLAIMABLE ||
1045 page_group_by_mobility_disabled) {
1046 int pages;
1047
1048 pages = move_freepages_block(zone, page, start_type);
1049
1050 /* Claim the whole block if over half of it is free */
1051 if (pages >= (1 << (pageblock_order-1)) ||
1052 page_group_by_mobility_disabled) {
1053
1054 set_pageblock_migratetype(page, start_type);
1055 return start_type;
1056 }
1057
1058 }
1059
1060 return fallback_type;
1061}
1062
b2a0ac88 1063/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1064static inline struct page *
1065__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1066{
b8af2941 1067 struct free_area *area;
b2a0ac88
MG
1068 int current_order;
1069 struct page *page;
fef903ef 1070 int migratetype, new_type, i;
b2a0ac88
MG
1071
1072 /* Find the largest possible block of pages in the other list */
1073 for (current_order = MAX_ORDER-1; current_order >= order;
1074 --current_order) {
6d4a4916 1075 for (i = 0;; i++) {
b2a0ac88
MG
1076 migratetype = fallbacks[start_migratetype][i];
1077
56fd56b8
MG
1078 /* MIGRATE_RESERVE handled later if necessary */
1079 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1080 break;
e010487d 1081
b2a0ac88
MG
1082 area = &(zone->free_area[current_order]);
1083 if (list_empty(&area->free_list[migratetype]))
1084 continue;
1085
1086 page = list_entry(area->free_list[migratetype].next,
1087 struct page, lru);
1088 area->nr_free--;
1089
fef903ef
SB
1090 new_type = try_to_steal_freepages(zone, page,
1091 start_migratetype,
1092 migratetype);
b2a0ac88
MG
1093
1094 /* Remove the page from the freelists */
1095 list_del(&page->lru);
1096 rmv_page_order(page);
b2a0ac88 1097
47118af0 1098 expand(zone, page, order, current_order, area,
0cbef29a 1099 new_type);
e0fff1bd 1100
52c8f6a5
KM
1101 trace_mm_page_alloc_extfrag(page, order, current_order,
1102 start_migratetype, migratetype, new_type);
e0fff1bd 1103
b2a0ac88
MG
1104 return page;
1105 }
1106 }
1107
728ec980 1108 return NULL;
b2a0ac88
MG
1109}
1110
56fd56b8 1111/*
1da177e4
LT
1112 * Do the hard work of removing an element from the buddy allocator.
1113 * Call me with the zone->lock already held.
1114 */
b2a0ac88
MG
1115static struct page *__rmqueue(struct zone *zone, unsigned int order,
1116 int migratetype)
1da177e4 1117{
1da177e4
LT
1118 struct page *page;
1119
728ec980 1120retry_reserve:
56fd56b8 1121 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1122
728ec980 1123 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1124 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1125
728ec980
MG
1126 /*
1127 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1128 * is used because __rmqueue_smallest is an inline function
1129 * and we want just one call site
1130 */
1131 if (!page) {
1132 migratetype = MIGRATE_RESERVE;
1133 goto retry_reserve;
1134 }
1135 }
1136
0d3d062a 1137 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1138 return page;
1da177e4
LT
1139}
1140
5f63b720 1141/*
1da177e4
LT
1142 * Obtain a specified number of elements from the buddy allocator, all under
1143 * a single hold of the lock, for efficiency. Add them to the supplied list.
1144 * Returns the number of new pages which were placed at *list.
1145 */
5f63b720 1146static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1147 unsigned long count, struct list_head *list,
e084b2d9 1148 int migratetype, int cold)
1da177e4 1149{
47118af0 1150 int mt = migratetype, i;
5f63b720 1151
c54ad30c 1152 spin_lock(&zone->lock);
1da177e4 1153 for (i = 0; i < count; ++i) {
b2a0ac88 1154 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1155 if (unlikely(page == NULL))
1da177e4 1156 break;
81eabcbe
MG
1157
1158 /*
1159 * Split buddy pages returned by expand() are received here
1160 * in physical page order. The page is added to the callers and
1161 * list and the list head then moves forward. From the callers
1162 * perspective, the linked list is ordered by page number in
1163 * some conditions. This is useful for IO devices that can
1164 * merge IO requests if the physical pages are ordered
1165 * properly.
1166 */
e084b2d9
MG
1167 if (likely(cold == 0))
1168 list_add(&page->lru, list);
1169 else
1170 list_add_tail(&page->lru, list);
47118af0
MN
1171 if (IS_ENABLED(CONFIG_CMA)) {
1172 mt = get_pageblock_migratetype(page);
194159fb 1173 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1174 mt = migratetype;
1175 }
b12c4ad1 1176 set_freepage_migratetype(page, mt);
81eabcbe 1177 list = &page->lru;
d1ce749a
BZ
1178 if (is_migrate_cma(mt))
1179 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1180 -(1 << order));
1da177e4 1181 }
f2260e6b 1182 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1183 spin_unlock(&zone->lock);
085cc7d5 1184 return i;
1da177e4
LT
1185}
1186
4ae7c039 1187#ifdef CONFIG_NUMA
8fce4d8e 1188/*
4037d452
CL
1189 * Called from the vmstat counter updater to drain pagesets of this
1190 * currently executing processor on remote nodes after they have
1191 * expired.
1192 *
879336c3
CL
1193 * Note that this function must be called with the thread pinned to
1194 * a single processor.
8fce4d8e 1195 */
4037d452 1196void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1197{
4ae7c039 1198 unsigned long flags;
4037d452 1199 int to_drain;
998d39cb 1200 unsigned long batch;
4ae7c039 1201
4037d452 1202 local_irq_save(flags);
998d39cb
CS
1203 batch = ACCESS_ONCE(pcp->batch);
1204 if (pcp->count >= batch)
1205 to_drain = batch;
4037d452
CL
1206 else
1207 to_drain = pcp->count;
2a13515c
KM
1208 if (to_drain > 0) {
1209 free_pcppages_bulk(zone, to_drain, pcp);
1210 pcp->count -= to_drain;
1211 }
4037d452 1212 local_irq_restore(flags);
4ae7c039
CL
1213}
1214#endif
1215
9f8f2172
CL
1216/*
1217 * Drain pages of the indicated processor.
1218 *
1219 * The processor must either be the current processor and the
1220 * thread pinned to the current processor or a processor that
1221 * is not online.
1222 */
1223static void drain_pages(unsigned int cpu)
1da177e4 1224{
c54ad30c 1225 unsigned long flags;
1da177e4 1226 struct zone *zone;
1da177e4 1227
ee99c71c 1228 for_each_populated_zone(zone) {
1da177e4 1229 struct per_cpu_pageset *pset;
3dfa5721 1230 struct per_cpu_pages *pcp;
1da177e4 1231
99dcc3e5
CL
1232 local_irq_save(flags);
1233 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1234
1235 pcp = &pset->pcp;
2ff754fa
DR
1236 if (pcp->count) {
1237 free_pcppages_bulk(zone, pcp->count, pcp);
1238 pcp->count = 0;
1239 }
3dfa5721 1240 local_irq_restore(flags);
1da177e4
LT
1241 }
1242}
1da177e4 1243
9f8f2172
CL
1244/*
1245 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1246 */
1247void drain_local_pages(void *arg)
1248{
1249 drain_pages(smp_processor_id());
1250}
1251
1252/*
74046494
GBY
1253 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1254 *
1255 * Note that this code is protected against sending an IPI to an offline
1256 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1257 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1258 * nothing keeps CPUs from showing up after we populated the cpumask and
1259 * before the call to on_each_cpu_mask().
9f8f2172
CL
1260 */
1261void drain_all_pages(void)
1262{
74046494
GBY
1263 int cpu;
1264 struct per_cpu_pageset *pcp;
1265 struct zone *zone;
1266
1267 /*
1268 * Allocate in the BSS so we wont require allocation in
1269 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1270 */
1271 static cpumask_t cpus_with_pcps;
1272
1273 /*
1274 * We don't care about racing with CPU hotplug event
1275 * as offline notification will cause the notified
1276 * cpu to drain that CPU pcps and on_each_cpu_mask
1277 * disables preemption as part of its processing
1278 */
1279 for_each_online_cpu(cpu) {
1280 bool has_pcps = false;
1281 for_each_populated_zone(zone) {
1282 pcp = per_cpu_ptr(zone->pageset, cpu);
1283 if (pcp->pcp.count) {
1284 has_pcps = true;
1285 break;
1286 }
1287 }
1288 if (has_pcps)
1289 cpumask_set_cpu(cpu, &cpus_with_pcps);
1290 else
1291 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1292 }
1293 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1294}
1295
296699de 1296#ifdef CONFIG_HIBERNATION
1da177e4
LT
1297
1298void mark_free_pages(struct zone *zone)
1299{
f623f0db
RW
1300 unsigned long pfn, max_zone_pfn;
1301 unsigned long flags;
b2a0ac88 1302 int order, t;
1da177e4
LT
1303 struct list_head *curr;
1304
8080fc03 1305 if (zone_is_empty(zone))
1da177e4
LT
1306 return;
1307
1308 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1309
108bcc96 1310 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1311 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1312 if (pfn_valid(pfn)) {
1313 struct page *page = pfn_to_page(pfn);
1314
7be98234
RW
1315 if (!swsusp_page_is_forbidden(page))
1316 swsusp_unset_page_free(page);
f623f0db 1317 }
1da177e4 1318
b2a0ac88
MG
1319 for_each_migratetype_order(order, t) {
1320 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1321 unsigned long i;
1da177e4 1322
f623f0db
RW
1323 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1324 for (i = 0; i < (1UL << order); i++)
7be98234 1325 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1326 }
b2a0ac88 1327 }
1da177e4
LT
1328 spin_unlock_irqrestore(&zone->lock, flags);
1329}
e2c55dc8 1330#endif /* CONFIG_PM */
1da177e4 1331
1da177e4
LT
1332/*
1333 * Free a 0-order page
fc91668e 1334 * cold == 1 ? free a cold page : free a hot page
1da177e4 1335 */
fc91668e 1336void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1337{
1338 struct zone *zone = page_zone(page);
1339 struct per_cpu_pages *pcp;
1340 unsigned long flags;
5f8dcc21 1341 int migratetype;
1da177e4 1342
ec95f53a 1343 if (!free_pages_prepare(page, 0))
689bcebf
HD
1344 return;
1345
5f8dcc21 1346 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1347 set_freepage_migratetype(page, migratetype);
1da177e4 1348 local_irq_save(flags);
f8891e5e 1349 __count_vm_event(PGFREE);
da456f14 1350
5f8dcc21
MG
1351 /*
1352 * We only track unmovable, reclaimable and movable on pcp lists.
1353 * Free ISOLATE pages back to the allocator because they are being
1354 * offlined but treat RESERVE as movable pages so we can get those
1355 * areas back if necessary. Otherwise, we may have to free
1356 * excessively into the page allocator
1357 */
1358 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1359 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1360 free_one_page(zone, page, 0, migratetype);
1361 goto out;
1362 }
1363 migratetype = MIGRATE_MOVABLE;
1364 }
1365
99dcc3e5 1366 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1367 if (cold)
5f8dcc21 1368 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1369 else
5f8dcc21 1370 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1371 pcp->count++;
48db57f8 1372 if (pcp->count >= pcp->high) {
998d39cb
CS
1373 unsigned long batch = ACCESS_ONCE(pcp->batch);
1374 free_pcppages_bulk(zone, batch, pcp);
1375 pcp->count -= batch;
48db57f8 1376 }
5f8dcc21
MG
1377
1378out:
1da177e4 1379 local_irq_restore(flags);
1da177e4
LT
1380}
1381
cc59850e
KK
1382/*
1383 * Free a list of 0-order pages
1384 */
1385void free_hot_cold_page_list(struct list_head *list, int cold)
1386{
1387 struct page *page, *next;
1388
1389 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1390 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1391 free_hot_cold_page(page, cold);
1392 }
1393}
1394
8dfcc9ba
NP
1395/*
1396 * split_page takes a non-compound higher-order page, and splits it into
1397 * n (1<<order) sub-pages: page[0..n]
1398 * Each sub-page must be freed individually.
1399 *
1400 * Note: this is probably too low level an operation for use in drivers.
1401 * Please consult with lkml before using this in your driver.
1402 */
1403void split_page(struct page *page, unsigned int order)
1404{
1405 int i;
1406
725d704e
NP
1407 VM_BUG_ON(PageCompound(page));
1408 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1409
1410#ifdef CONFIG_KMEMCHECK
1411 /*
1412 * Split shadow pages too, because free(page[0]) would
1413 * otherwise free the whole shadow.
1414 */
1415 if (kmemcheck_page_is_tracked(page))
1416 split_page(virt_to_page(page[0].shadow), order);
1417#endif
1418
7835e98b
NP
1419 for (i = 1; i < (1 << order); i++)
1420 set_page_refcounted(page + i);
8dfcc9ba 1421}
5853ff23 1422EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1423
8fb74b9f 1424static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1425{
748446bb
MG
1426 unsigned long watermark;
1427 struct zone *zone;
2139cbe6 1428 int mt;
748446bb
MG
1429
1430 BUG_ON(!PageBuddy(page));
1431
1432 zone = page_zone(page);
2e30abd1 1433 mt = get_pageblock_migratetype(page);
748446bb 1434
194159fb 1435 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1436 /* Obey watermarks as if the page was being allocated */
1437 watermark = low_wmark_pages(zone) + (1 << order);
1438 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1439 return 0;
1440
8fb74b9f 1441 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1442 }
748446bb
MG
1443
1444 /* Remove page from free list */
1445 list_del(&page->lru);
1446 zone->free_area[order].nr_free--;
1447 rmv_page_order(page);
2139cbe6 1448
8fb74b9f 1449 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1450 if (order >= pageblock_order - 1) {
1451 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1452 for (; page < endpage; page += pageblock_nr_pages) {
1453 int mt = get_pageblock_migratetype(page);
194159fb 1454 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1455 set_pageblock_migratetype(page,
1456 MIGRATE_MOVABLE);
1457 }
748446bb
MG
1458 }
1459
8fb74b9f 1460 return 1UL << order;
1fb3f8ca
MG
1461}
1462
1463/*
1464 * Similar to split_page except the page is already free. As this is only
1465 * being used for migration, the migratetype of the block also changes.
1466 * As this is called with interrupts disabled, the caller is responsible
1467 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1468 * are enabled.
1469 *
1470 * Note: this is probably too low level an operation for use in drivers.
1471 * Please consult with lkml before using this in your driver.
1472 */
1473int split_free_page(struct page *page)
1474{
1475 unsigned int order;
1476 int nr_pages;
1477
1fb3f8ca
MG
1478 order = page_order(page);
1479
8fb74b9f 1480 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1481 if (!nr_pages)
1482 return 0;
1483
1484 /* Split into individual pages */
1485 set_page_refcounted(page);
1486 split_page(page, order);
1487 return nr_pages;
748446bb
MG
1488}
1489
1da177e4
LT
1490/*
1491 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1492 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1493 * or two.
1494 */
0a15c3e9
MG
1495static inline
1496struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1497 struct zone *zone, int order, gfp_t gfp_flags,
1498 int migratetype)
1da177e4
LT
1499{
1500 unsigned long flags;
689bcebf 1501 struct page *page;
1da177e4
LT
1502 int cold = !!(gfp_flags & __GFP_COLD);
1503
689bcebf 1504again:
48db57f8 1505 if (likely(order == 0)) {
1da177e4 1506 struct per_cpu_pages *pcp;
5f8dcc21 1507 struct list_head *list;
1da177e4 1508
1da177e4 1509 local_irq_save(flags);
99dcc3e5
CL
1510 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1511 list = &pcp->lists[migratetype];
5f8dcc21 1512 if (list_empty(list)) {
535131e6 1513 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1514 pcp->batch, list,
e084b2d9 1515 migratetype, cold);
5f8dcc21 1516 if (unlikely(list_empty(list)))
6fb332fa 1517 goto failed;
535131e6 1518 }
b92a6edd 1519
5f8dcc21
MG
1520 if (cold)
1521 page = list_entry(list->prev, struct page, lru);
1522 else
1523 page = list_entry(list->next, struct page, lru);
1524
b92a6edd
MG
1525 list_del(&page->lru);
1526 pcp->count--;
7fb1d9fc 1527 } else {
dab48dab
AM
1528 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1529 /*
1530 * __GFP_NOFAIL is not to be used in new code.
1531 *
1532 * All __GFP_NOFAIL callers should be fixed so that they
1533 * properly detect and handle allocation failures.
1534 *
1535 * We most definitely don't want callers attempting to
4923abf9 1536 * allocate greater than order-1 page units with
dab48dab
AM
1537 * __GFP_NOFAIL.
1538 */
4923abf9 1539 WARN_ON_ONCE(order > 1);
dab48dab 1540 }
1da177e4 1541 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1542 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1543 spin_unlock(&zone->lock);
1544 if (!page)
1545 goto failed;
d1ce749a
BZ
1546 __mod_zone_freepage_state(zone, -(1 << order),
1547 get_pageblock_migratetype(page));
1da177e4
LT
1548 }
1549
81c0a2bb 1550 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
f8891e5e 1551 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1552 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1553 local_irq_restore(flags);
1da177e4 1554
725d704e 1555 VM_BUG_ON(bad_range(zone, page));
17cf4406 1556 if (prep_new_page(page, order, gfp_flags))
a74609fa 1557 goto again;
1da177e4 1558 return page;
a74609fa
NP
1559
1560failed:
1561 local_irq_restore(flags);
a74609fa 1562 return NULL;
1da177e4
LT
1563}
1564
933e312e
AM
1565#ifdef CONFIG_FAIL_PAGE_ALLOC
1566
b2588c4b 1567static struct {
933e312e
AM
1568 struct fault_attr attr;
1569
1570 u32 ignore_gfp_highmem;
1571 u32 ignore_gfp_wait;
54114994 1572 u32 min_order;
933e312e
AM
1573} fail_page_alloc = {
1574 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1575 .ignore_gfp_wait = 1,
1576 .ignore_gfp_highmem = 1,
54114994 1577 .min_order = 1,
933e312e
AM
1578};
1579
1580static int __init setup_fail_page_alloc(char *str)
1581{
1582 return setup_fault_attr(&fail_page_alloc.attr, str);
1583}
1584__setup("fail_page_alloc=", setup_fail_page_alloc);
1585
deaf386e 1586static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1587{
54114994 1588 if (order < fail_page_alloc.min_order)
deaf386e 1589 return false;
933e312e 1590 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1591 return false;
933e312e 1592 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1593 return false;
933e312e 1594 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1595 return false;
933e312e
AM
1596
1597 return should_fail(&fail_page_alloc.attr, 1 << order);
1598}
1599
1600#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1601
1602static int __init fail_page_alloc_debugfs(void)
1603{
f4ae40a6 1604 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1605 struct dentry *dir;
933e312e 1606
dd48c085
AM
1607 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1608 &fail_page_alloc.attr);
1609 if (IS_ERR(dir))
1610 return PTR_ERR(dir);
933e312e 1611
b2588c4b
AM
1612 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1613 &fail_page_alloc.ignore_gfp_wait))
1614 goto fail;
1615 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1616 &fail_page_alloc.ignore_gfp_highmem))
1617 goto fail;
1618 if (!debugfs_create_u32("min-order", mode, dir,
1619 &fail_page_alloc.min_order))
1620 goto fail;
1621
1622 return 0;
1623fail:
dd48c085 1624 debugfs_remove_recursive(dir);
933e312e 1625
b2588c4b 1626 return -ENOMEM;
933e312e
AM
1627}
1628
1629late_initcall(fail_page_alloc_debugfs);
1630
1631#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1632
1633#else /* CONFIG_FAIL_PAGE_ALLOC */
1634
deaf386e 1635static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1636{
deaf386e 1637 return false;
933e312e
AM
1638}
1639
1640#endif /* CONFIG_FAIL_PAGE_ALLOC */
1641
1da177e4 1642/*
88f5acf8 1643 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1644 * of the allocation.
1645 */
88f5acf8
MG
1646static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1647 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1648{
1649 /* free_pages my go negative - that's OK */
d23ad423 1650 long min = mark;
2cfed075 1651 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1652 int o;
026b0814 1653 long free_cma = 0;
1da177e4 1654
df0a6daa 1655 free_pages -= (1 << order) - 1;
7fb1d9fc 1656 if (alloc_flags & ALLOC_HIGH)
1da177e4 1657 min -= min / 2;
7fb1d9fc 1658 if (alloc_flags & ALLOC_HARDER)
1da177e4 1659 min -= min / 4;
d95ea5d1
BZ
1660#ifdef CONFIG_CMA
1661 /* If allocation can't use CMA areas don't use free CMA pages */
1662 if (!(alloc_flags & ALLOC_CMA))
026b0814 1663 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1664#endif
026b0814
TS
1665
1666 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1667 return false;
1da177e4
LT
1668 for (o = 0; o < order; o++) {
1669 /* At the next order, this order's pages become unavailable */
1670 free_pages -= z->free_area[o].nr_free << o;
1671
1672 /* Require fewer higher order pages to be free */
1673 min >>= 1;
1674
1675 if (free_pages <= min)
88f5acf8 1676 return false;
1da177e4 1677 }
88f5acf8
MG
1678 return true;
1679}
1680
1681bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1682 int classzone_idx, int alloc_flags)
1683{
1684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1685 zone_page_state(z, NR_FREE_PAGES));
1686}
1687
1688bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1689 int classzone_idx, int alloc_flags)
1690{
1691 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1692
1693 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1694 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1695
1696 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1697 free_pages);
1da177e4
LT
1698}
1699
9276b1bc
PJ
1700#ifdef CONFIG_NUMA
1701/*
1702 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1703 * skip over zones that are not allowed by the cpuset, or that have
1704 * been recently (in last second) found to be nearly full. See further
1705 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1706 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1707 *
a1aeb65a 1708 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1709 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1710 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1711 *
1712 * If the zonelist cache is not available for this zonelist, does
1713 * nothing and returns NULL.
1714 *
1715 * If the fullzones BITMAP in the zonelist cache is stale (more than
1716 * a second since last zap'd) then we zap it out (clear its bits.)
1717 *
1718 * We hold off even calling zlc_setup, until after we've checked the
1719 * first zone in the zonelist, on the theory that most allocations will
1720 * be satisfied from that first zone, so best to examine that zone as
1721 * quickly as we can.
1722 */
1723static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1724{
1725 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1726 nodemask_t *allowednodes; /* zonelist_cache approximation */
1727
1728 zlc = zonelist->zlcache_ptr;
1729 if (!zlc)
1730 return NULL;
1731
f05111f5 1732 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1734 zlc->last_full_zap = jiffies;
1735 }
1736
1737 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1738 &cpuset_current_mems_allowed :
4b0ef1fe 1739 &node_states[N_MEMORY];
9276b1bc
PJ
1740 return allowednodes;
1741}
1742
1743/*
1744 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1745 * if it is worth looking at further for free memory:
1746 * 1) Check that the zone isn't thought to be full (doesn't have its
1747 * bit set in the zonelist_cache fullzones BITMAP).
1748 * 2) Check that the zones node (obtained from the zonelist_cache
1749 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1750 * Return true (non-zero) if zone is worth looking at further, or
1751 * else return false (zero) if it is not.
1752 *
1753 * This check -ignores- the distinction between various watermarks,
1754 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1755 * found to be full for any variation of these watermarks, it will
1756 * be considered full for up to one second by all requests, unless
1757 * we are so low on memory on all allowed nodes that we are forced
1758 * into the second scan of the zonelist.
1759 *
1760 * In the second scan we ignore this zonelist cache and exactly
1761 * apply the watermarks to all zones, even it is slower to do so.
1762 * We are low on memory in the second scan, and should leave no stone
1763 * unturned looking for a free page.
1764 */
dd1a239f 1765static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1766 nodemask_t *allowednodes)
1767{
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769 int i; /* index of *z in zonelist zones */
1770 int n; /* node that zone *z is on */
1771
1772 zlc = zonelist->zlcache_ptr;
1773 if (!zlc)
1774 return 1;
1775
dd1a239f 1776 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1777 n = zlc->z_to_n[i];
1778
1779 /* This zone is worth trying if it is allowed but not full */
1780 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1781}
1782
1783/*
1784 * Given 'z' scanning a zonelist, set the corresponding bit in
1785 * zlc->fullzones, so that subsequent attempts to allocate a page
1786 * from that zone don't waste time re-examining it.
1787 */
dd1a239f 1788static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1789{
1790 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1791 int i; /* index of *z in zonelist zones */
1792
1793 zlc = zonelist->zlcache_ptr;
1794 if (!zlc)
1795 return;
1796
dd1a239f 1797 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1798
1799 set_bit(i, zlc->fullzones);
1800}
1801
76d3fbf8
MG
1802/*
1803 * clear all zones full, called after direct reclaim makes progress so that
1804 * a zone that was recently full is not skipped over for up to a second
1805 */
1806static void zlc_clear_zones_full(struct zonelist *zonelist)
1807{
1808 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1809
1810 zlc = zonelist->zlcache_ptr;
1811 if (!zlc)
1812 return;
1813
1814 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1815}
1816
81c0a2bb
JW
1817static bool zone_local(struct zone *local_zone, struct zone *zone)
1818{
fff4068c 1819 return local_zone->node == zone->node;
81c0a2bb
JW
1820}
1821
957f822a
DR
1822static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1823{
1824 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1825}
1826
1827static void __paginginit init_zone_allows_reclaim(int nid)
1828{
1829 int i;
1830
1831 for_each_online_node(i)
6b187d02 1832 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1833 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1834 else
957f822a 1835 zone_reclaim_mode = 1;
957f822a
DR
1836}
1837
9276b1bc
PJ
1838#else /* CONFIG_NUMA */
1839
1840static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1841{
1842 return NULL;
1843}
1844
dd1a239f 1845static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1846 nodemask_t *allowednodes)
1847{
1848 return 1;
1849}
1850
dd1a239f 1851static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1852{
1853}
76d3fbf8
MG
1854
1855static void zlc_clear_zones_full(struct zonelist *zonelist)
1856{
1857}
957f822a 1858
81c0a2bb
JW
1859static bool zone_local(struct zone *local_zone, struct zone *zone)
1860{
1861 return true;
1862}
1863
957f822a
DR
1864static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1865{
1866 return true;
1867}
1868
1869static inline void init_zone_allows_reclaim(int nid)
1870{
1871}
9276b1bc
PJ
1872#endif /* CONFIG_NUMA */
1873
7fb1d9fc 1874/*
0798e519 1875 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1876 * a page.
1877 */
1878static struct page *
19770b32 1879get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1880 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1881 struct zone *preferred_zone, int migratetype)
753ee728 1882{
dd1a239f 1883 struct zoneref *z;
7fb1d9fc 1884 struct page *page = NULL;
54a6eb5c 1885 int classzone_idx;
5117f45d 1886 struct zone *zone;
9276b1bc
PJ
1887 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1888 int zlc_active = 0; /* set if using zonelist_cache */
1889 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1890
19770b32 1891 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1892zonelist_scan:
7fb1d9fc 1893 /*
9276b1bc 1894 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1895 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1896 */
19770b32
MG
1897 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1898 high_zoneidx, nodemask) {
e085dbc5
JW
1899 unsigned long mark;
1900
e5adfffc 1901 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1902 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1903 continue;
7fb1d9fc 1904 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1905 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1906 continue;
e085dbc5 1907 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
e66f0972 1908 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
e085dbc5 1909 goto try_this_zone;
81c0a2bb
JW
1910 /*
1911 * Distribute pages in proportion to the individual
1912 * zone size to ensure fair page aging. The zone a
1913 * page was allocated in should have no effect on the
1914 * time the page has in memory before being reclaimed.
1915 *
fff4068c
JW
1916 * Try to stay in local zones in the fastpath. If
1917 * that fails, the slowpath is entered, which will do
1918 * another pass starting with the local zones, but
1919 * ultimately fall back to remote zones that do not
1920 * partake in the fairness round-robin cycle of this
1921 * zonelist.
81c0a2bb 1922 */
8798cee2 1923 if (alloc_flags & ALLOC_WMARK_LOW) {
81c0a2bb
JW
1924 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1925 continue;
fff4068c 1926 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
1927 continue;
1928 }
a756cf59
JW
1929 /*
1930 * When allocating a page cache page for writing, we
1931 * want to get it from a zone that is within its dirty
1932 * limit, such that no single zone holds more than its
1933 * proportional share of globally allowed dirty pages.
1934 * The dirty limits take into account the zone's
1935 * lowmem reserves and high watermark so that kswapd
1936 * should be able to balance it without having to
1937 * write pages from its LRU list.
1938 *
1939 * This may look like it could increase pressure on
1940 * lower zones by failing allocations in higher zones
1941 * before they are full. But the pages that do spill
1942 * over are limited as the lower zones are protected
1943 * by this very same mechanism. It should not become
1944 * a practical burden to them.
1945 *
1946 * XXX: For now, allow allocations to potentially
1947 * exceed the per-zone dirty limit in the slowpath
1948 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1949 * which is important when on a NUMA setup the allowed
1950 * zones are together not big enough to reach the
1951 * global limit. The proper fix for these situations
1952 * will require awareness of zones in the
1953 * dirty-throttling and the flusher threads.
1954 */
1955 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1956 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1957 goto this_zone_full;
7fb1d9fc 1958
e085dbc5
JW
1959 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1960 if (!zone_watermark_ok(zone, order, mark,
1961 classzone_idx, alloc_flags)) {
fa5e084e
MG
1962 int ret;
1963
e5adfffc
KS
1964 if (IS_ENABLED(CONFIG_NUMA) &&
1965 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1966 /*
1967 * we do zlc_setup if there are multiple nodes
1968 * and before considering the first zone allowed
1969 * by the cpuset.
1970 */
1971 allowednodes = zlc_setup(zonelist, alloc_flags);
1972 zlc_active = 1;
1973 did_zlc_setup = 1;
1974 }
1975
957f822a
DR
1976 if (zone_reclaim_mode == 0 ||
1977 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1978 goto this_zone_full;
1979
cd38b115
MG
1980 /*
1981 * As we may have just activated ZLC, check if the first
1982 * eligible zone has failed zone_reclaim recently.
1983 */
e5adfffc 1984 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1985 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1986 continue;
1987
fa5e084e
MG
1988 ret = zone_reclaim(zone, gfp_mask, order);
1989 switch (ret) {
1990 case ZONE_RECLAIM_NOSCAN:
1991 /* did not scan */
cd38b115 1992 continue;
fa5e084e
MG
1993 case ZONE_RECLAIM_FULL:
1994 /* scanned but unreclaimable */
cd38b115 1995 continue;
fa5e084e
MG
1996 default:
1997 /* did we reclaim enough */
fed2719e 1998 if (zone_watermark_ok(zone, order, mark,
fa5e084e 1999 classzone_idx, alloc_flags))
fed2719e
MG
2000 goto try_this_zone;
2001
2002 /*
2003 * Failed to reclaim enough to meet watermark.
2004 * Only mark the zone full if checking the min
2005 * watermark or if we failed to reclaim just
2006 * 1<<order pages or else the page allocator
2007 * fastpath will prematurely mark zones full
2008 * when the watermark is between the low and
2009 * min watermarks.
2010 */
2011 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2012 ret == ZONE_RECLAIM_SOME)
9276b1bc 2013 goto this_zone_full;
fed2719e
MG
2014
2015 continue;
0798e519 2016 }
7fb1d9fc
RS
2017 }
2018
fa5e084e 2019try_this_zone:
3dd28266
MG
2020 page = buffered_rmqueue(preferred_zone, zone, order,
2021 gfp_mask, migratetype);
0798e519 2022 if (page)
7fb1d9fc 2023 break;
9276b1bc 2024this_zone_full:
e5adfffc 2025 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 2026 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2027 }
9276b1bc 2028
e5adfffc 2029 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2030 /* Disable zlc cache for second zonelist scan */
2031 zlc_active = 0;
2032 goto zonelist_scan;
2033 }
b121186a
AS
2034
2035 if (page)
2036 /*
2037 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2038 * necessary to allocate the page. The expectation is
2039 * that the caller is taking steps that will free more
2040 * memory. The caller should avoid the page being used
2041 * for !PFMEMALLOC purposes.
2042 */
2043 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2044
7fb1d9fc 2045 return page;
753ee728
MH
2046}
2047
29423e77
DR
2048/*
2049 * Large machines with many possible nodes should not always dump per-node
2050 * meminfo in irq context.
2051 */
2052static inline bool should_suppress_show_mem(void)
2053{
2054 bool ret = false;
2055
2056#if NODES_SHIFT > 8
2057 ret = in_interrupt();
2058#endif
2059 return ret;
2060}
2061
a238ab5b
DH
2062static DEFINE_RATELIMIT_STATE(nopage_rs,
2063 DEFAULT_RATELIMIT_INTERVAL,
2064 DEFAULT_RATELIMIT_BURST);
2065
2066void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2067{
a238ab5b
DH
2068 unsigned int filter = SHOW_MEM_FILTER_NODES;
2069
c0a32fc5
SG
2070 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2071 debug_guardpage_minorder() > 0)
a238ab5b
DH
2072 return;
2073
2074 /*
2075 * This documents exceptions given to allocations in certain
2076 * contexts that are allowed to allocate outside current's set
2077 * of allowed nodes.
2078 */
2079 if (!(gfp_mask & __GFP_NOMEMALLOC))
2080 if (test_thread_flag(TIF_MEMDIE) ||
2081 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2082 filter &= ~SHOW_MEM_FILTER_NODES;
2083 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2084 filter &= ~SHOW_MEM_FILTER_NODES;
2085
2086 if (fmt) {
3ee9a4f0
JP
2087 struct va_format vaf;
2088 va_list args;
2089
a238ab5b 2090 va_start(args, fmt);
3ee9a4f0
JP
2091
2092 vaf.fmt = fmt;
2093 vaf.va = &args;
2094
2095 pr_warn("%pV", &vaf);
2096
a238ab5b
DH
2097 va_end(args);
2098 }
2099
3ee9a4f0
JP
2100 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2101 current->comm, order, gfp_mask);
a238ab5b
DH
2102
2103 dump_stack();
2104 if (!should_suppress_show_mem())
2105 show_mem(filter);
2106}
2107
11e33f6a
MG
2108static inline int
2109should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2110 unsigned long did_some_progress,
11e33f6a 2111 unsigned long pages_reclaimed)
1da177e4 2112{
11e33f6a
MG
2113 /* Do not loop if specifically requested */
2114 if (gfp_mask & __GFP_NORETRY)
2115 return 0;
1da177e4 2116
f90ac398
MG
2117 /* Always retry if specifically requested */
2118 if (gfp_mask & __GFP_NOFAIL)
2119 return 1;
2120
2121 /*
2122 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2123 * making forward progress without invoking OOM. Suspend also disables
2124 * storage devices so kswapd will not help. Bail if we are suspending.
2125 */
2126 if (!did_some_progress && pm_suspended_storage())
2127 return 0;
2128
11e33f6a
MG
2129 /*
2130 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2131 * means __GFP_NOFAIL, but that may not be true in other
2132 * implementations.
2133 */
2134 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2135 return 1;
2136
2137 /*
2138 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2139 * specified, then we retry until we no longer reclaim any pages
2140 * (above), or we've reclaimed an order of pages at least as
2141 * large as the allocation's order. In both cases, if the
2142 * allocation still fails, we stop retrying.
2143 */
2144 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2145 return 1;
cf40bd16 2146
11e33f6a
MG
2147 return 0;
2148}
933e312e 2149
11e33f6a
MG
2150static inline struct page *
2151__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2152 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2153 nodemask_t *nodemask, struct zone *preferred_zone,
2154 int migratetype)
11e33f6a
MG
2155{
2156 struct page *page;
2157
2158 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2159 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2160 schedule_timeout_uninterruptible(1);
1da177e4
LT
2161 return NULL;
2162 }
6b1de916 2163
11e33f6a
MG
2164 /*
2165 * Go through the zonelist yet one more time, keep very high watermark
2166 * here, this is only to catch a parallel oom killing, we must fail if
2167 * we're still under heavy pressure.
2168 */
2169 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2170 order, zonelist, high_zoneidx,
5117f45d 2171 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2172 preferred_zone, migratetype);
7fb1d9fc 2173 if (page)
11e33f6a
MG
2174 goto out;
2175
4365a567
KH
2176 if (!(gfp_mask & __GFP_NOFAIL)) {
2177 /* The OOM killer will not help higher order allocs */
2178 if (order > PAGE_ALLOC_COSTLY_ORDER)
2179 goto out;
03668b3c
DR
2180 /* The OOM killer does not needlessly kill tasks for lowmem */
2181 if (high_zoneidx < ZONE_NORMAL)
2182 goto out;
4365a567
KH
2183 /*
2184 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2185 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2186 * The caller should handle page allocation failure by itself if
2187 * it specifies __GFP_THISNODE.
2188 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2189 */
2190 if (gfp_mask & __GFP_THISNODE)
2191 goto out;
2192 }
11e33f6a 2193 /* Exhausted what can be done so it's blamo time */
08ab9b10 2194 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2195
2196out:
2197 clear_zonelist_oom(zonelist, gfp_mask);
2198 return page;
2199}
2200
56de7263
MG
2201#ifdef CONFIG_COMPACTION
2202/* Try memory compaction for high-order allocations before reclaim */
2203static struct page *
2204__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2205 struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2207 int migratetype, bool sync_migration,
c67fe375 2208 bool *contended_compaction, bool *deferred_compaction,
66199712 2209 unsigned long *did_some_progress)
56de7263 2210{
66199712 2211 if (!order)
56de7263
MG
2212 return NULL;
2213
aff62249 2214 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2215 *deferred_compaction = true;
2216 return NULL;
2217 }
2218
c06b1fca 2219 current->flags |= PF_MEMALLOC;
56de7263 2220 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2221 nodemask, sync_migration,
8fb74b9f 2222 contended_compaction);
c06b1fca 2223 current->flags &= ~PF_MEMALLOC;
56de7263 2224
1fb3f8ca 2225 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2226 struct page *page;
2227
56de7263
MG
2228 /* Page migration frees to the PCP lists but we want merging */
2229 drain_pages(get_cpu());
2230 put_cpu();
2231
2232 page = get_page_from_freelist(gfp_mask, nodemask,
2233 order, zonelist, high_zoneidx,
cfd19c5a
MG
2234 alloc_flags & ~ALLOC_NO_WATERMARKS,
2235 preferred_zone, migratetype);
56de7263 2236 if (page) {
62997027 2237 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2238 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2239 count_vm_event(COMPACTSUCCESS);
2240 return page;
2241 }
2242
2243 /*
2244 * It's bad if compaction run occurs and fails.
2245 * The most likely reason is that pages exist,
2246 * but not enough to satisfy watermarks.
2247 */
2248 count_vm_event(COMPACTFAIL);
66199712
MG
2249
2250 /*
2251 * As async compaction considers a subset of pageblocks, only
2252 * defer if the failure was a sync compaction failure.
2253 */
2254 if (sync_migration)
aff62249 2255 defer_compaction(preferred_zone, order);
56de7263
MG
2256
2257 cond_resched();
2258 }
2259
2260 return NULL;
2261}
2262#else
2263static inline struct page *
2264__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2265 struct zonelist *zonelist, enum zone_type high_zoneidx,
2266 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2267 int migratetype, bool sync_migration,
c67fe375 2268 bool *contended_compaction, bool *deferred_compaction,
66199712 2269 unsigned long *did_some_progress)
56de7263
MG
2270{
2271 return NULL;
2272}
2273#endif /* CONFIG_COMPACTION */
2274
bba90710
MS
2275/* Perform direct synchronous page reclaim */
2276static int
2277__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2278 nodemask_t *nodemask)
11e33f6a 2279{
11e33f6a 2280 struct reclaim_state reclaim_state;
bba90710 2281 int progress;
11e33f6a
MG
2282
2283 cond_resched();
2284
2285 /* We now go into synchronous reclaim */
2286 cpuset_memory_pressure_bump();
c06b1fca 2287 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2288 lockdep_set_current_reclaim_state(gfp_mask);
2289 reclaim_state.reclaimed_slab = 0;
c06b1fca 2290 current->reclaim_state = &reclaim_state;
11e33f6a 2291
bba90710 2292 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2293
c06b1fca 2294 current->reclaim_state = NULL;
11e33f6a 2295 lockdep_clear_current_reclaim_state();
c06b1fca 2296 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2297
2298 cond_resched();
2299
bba90710
MS
2300 return progress;
2301}
2302
2303/* The really slow allocator path where we enter direct reclaim */
2304static inline struct page *
2305__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2306 struct zonelist *zonelist, enum zone_type high_zoneidx,
2307 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2308 int migratetype, unsigned long *did_some_progress)
2309{
2310 struct page *page = NULL;
2311 bool drained = false;
2312
2313 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2314 nodemask);
9ee493ce
MG
2315 if (unlikely(!(*did_some_progress)))
2316 return NULL;
11e33f6a 2317
76d3fbf8 2318 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2319 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2320 zlc_clear_zones_full(zonelist);
2321
9ee493ce
MG
2322retry:
2323 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2324 zonelist, high_zoneidx,
cfd19c5a
MG
2325 alloc_flags & ~ALLOC_NO_WATERMARKS,
2326 preferred_zone, migratetype);
9ee493ce
MG
2327
2328 /*
2329 * If an allocation failed after direct reclaim, it could be because
2330 * pages are pinned on the per-cpu lists. Drain them and try again
2331 */
2332 if (!page && !drained) {
2333 drain_all_pages();
2334 drained = true;
2335 goto retry;
2336 }
2337
11e33f6a
MG
2338 return page;
2339}
2340
1da177e4 2341/*
11e33f6a
MG
2342 * This is called in the allocator slow-path if the allocation request is of
2343 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2344 */
11e33f6a
MG
2345static inline struct page *
2346__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2347 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2348 nodemask_t *nodemask, struct zone *preferred_zone,
2349 int migratetype)
11e33f6a
MG
2350{
2351 struct page *page;
2352
2353 do {
2354 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2355 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2356 preferred_zone, migratetype);
11e33f6a
MG
2357
2358 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2359 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2360 } while (!page && (gfp_mask & __GFP_NOFAIL));
2361
2362 return page;
2363}
2364
81c0a2bb
JW
2365static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2366 struct zonelist *zonelist,
2367 enum zone_type high_zoneidx,
2368 struct zone *preferred_zone)
1da177e4 2369{
dd1a239f
MG
2370 struct zoneref *z;
2371 struct zone *zone;
1da177e4 2372
81c0a2bb
JW
2373 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2374 if (!(gfp_mask & __GFP_NO_KSWAPD))
2375 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2376 /*
2377 * Only reset the batches of zones that were actually
2378 * considered in the fast path, we don't want to
2379 * thrash fairness information for zones that are not
2380 * actually part of this zonelist's round-robin cycle.
2381 */
fff4068c 2382 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2383 continue;
2384 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2385 high_wmark_pages(zone) -
2386 low_wmark_pages(zone) -
2387 zone_page_state(zone, NR_ALLOC_BATCH));
2388 }
11e33f6a 2389}
cf40bd16 2390
341ce06f
PZ
2391static inline int
2392gfp_to_alloc_flags(gfp_t gfp_mask)
2393{
341ce06f
PZ
2394 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2395 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2396
a56f57ff 2397 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2398 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2399
341ce06f
PZ
2400 /*
2401 * The caller may dip into page reserves a bit more if the caller
2402 * cannot run direct reclaim, or if the caller has realtime scheduling
2403 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2404 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2405 */
e6223a3b 2406 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2407
341ce06f 2408 if (!wait) {
5c3240d9
AA
2409 /*
2410 * Not worth trying to allocate harder for
2411 * __GFP_NOMEMALLOC even if it can't schedule.
2412 */
2413 if (!(gfp_mask & __GFP_NOMEMALLOC))
2414 alloc_flags |= ALLOC_HARDER;
523b9458 2415 /*
341ce06f
PZ
2416 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2417 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2418 */
341ce06f 2419 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2420 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2421 alloc_flags |= ALLOC_HARDER;
2422
b37f1dd0
MG
2423 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2424 if (gfp_mask & __GFP_MEMALLOC)
2425 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2426 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2427 alloc_flags |= ALLOC_NO_WATERMARKS;
2428 else if (!in_interrupt() &&
2429 ((current->flags & PF_MEMALLOC) ||
2430 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2431 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2432 }
d95ea5d1
BZ
2433#ifdef CONFIG_CMA
2434 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2435 alloc_flags |= ALLOC_CMA;
2436#endif
341ce06f
PZ
2437 return alloc_flags;
2438}
2439
072bb0aa
MG
2440bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2441{
b37f1dd0 2442 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2443}
2444
11e33f6a
MG
2445static inline struct page *
2446__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2447 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2448 nodemask_t *nodemask, struct zone *preferred_zone,
2449 int migratetype)
11e33f6a
MG
2450{
2451 const gfp_t wait = gfp_mask & __GFP_WAIT;
2452 struct page *page = NULL;
2453 int alloc_flags;
2454 unsigned long pages_reclaimed = 0;
2455 unsigned long did_some_progress;
77f1fe6b 2456 bool sync_migration = false;
66199712 2457 bool deferred_compaction = false;
c67fe375 2458 bool contended_compaction = false;
1da177e4 2459
72807a74
MG
2460 /*
2461 * In the slowpath, we sanity check order to avoid ever trying to
2462 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2463 * be using allocators in order of preference for an area that is
2464 * too large.
2465 */
1fc28b70
MG
2466 if (order >= MAX_ORDER) {
2467 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2468 return NULL;
1fc28b70 2469 }
1da177e4 2470
952f3b51
CL
2471 /*
2472 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2473 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2474 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2475 * using a larger set of nodes after it has established that the
2476 * allowed per node queues are empty and that nodes are
2477 * over allocated.
2478 */
e5adfffc
KS
2479 if (IS_ENABLED(CONFIG_NUMA) &&
2480 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2481 goto nopage;
2482
cc4a6851 2483restart:
81c0a2bb
JW
2484 prepare_slowpath(gfp_mask, order, zonelist,
2485 high_zoneidx, preferred_zone);
1da177e4 2486
9bf2229f 2487 /*
7fb1d9fc
RS
2488 * OK, we're below the kswapd watermark and have kicked background
2489 * reclaim. Now things get more complex, so set up alloc_flags according
2490 * to how we want to proceed.
9bf2229f 2491 */
341ce06f 2492 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2493
f33261d7
DR
2494 /*
2495 * Find the true preferred zone if the allocation is unconstrained by
2496 * cpusets.
2497 */
2498 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2499 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2500 &preferred_zone);
2501
cfa54a0f 2502rebalance:
341ce06f 2503 /* This is the last chance, in general, before the goto nopage. */
19770b32 2504 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2505 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2506 preferred_zone, migratetype);
7fb1d9fc
RS
2507 if (page)
2508 goto got_pg;
1da177e4 2509
11e33f6a 2510 /* Allocate without watermarks if the context allows */
341ce06f 2511 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2512 /*
2513 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2514 * the allocation is high priority and these type of
2515 * allocations are system rather than user orientated
2516 */
2517 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2518
341ce06f
PZ
2519 page = __alloc_pages_high_priority(gfp_mask, order,
2520 zonelist, high_zoneidx, nodemask,
2521 preferred_zone, migratetype);
cfd19c5a 2522 if (page) {
341ce06f 2523 goto got_pg;
cfd19c5a 2524 }
1da177e4
LT
2525 }
2526
2527 /* Atomic allocations - we can't balance anything */
2528 if (!wait)
2529 goto nopage;
2530
341ce06f 2531 /* Avoid recursion of direct reclaim */
c06b1fca 2532 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2533 goto nopage;
2534
6583bb64
DR
2535 /* Avoid allocations with no watermarks from looping endlessly */
2536 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2537 goto nopage;
2538
77f1fe6b
MG
2539 /*
2540 * Try direct compaction. The first pass is asynchronous. Subsequent
2541 * attempts after direct reclaim are synchronous
2542 */
56de7263
MG
2543 page = __alloc_pages_direct_compact(gfp_mask, order,
2544 zonelist, high_zoneidx,
2545 nodemask,
2546 alloc_flags, preferred_zone,
66199712 2547 migratetype, sync_migration,
c67fe375 2548 &contended_compaction,
66199712
MG
2549 &deferred_compaction,
2550 &did_some_progress);
56de7263
MG
2551 if (page)
2552 goto got_pg;
c6a140bf 2553 sync_migration = true;
56de7263 2554
31f8d42d
LT
2555 /*
2556 * If compaction is deferred for high-order allocations, it is because
2557 * sync compaction recently failed. In this is the case and the caller
2558 * requested a movable allocation that does not heavily disrupt the
2559 * system then fail the allocation instead of entering direct reclaim.
2560 */
2561 if ((deferred_compaction || contended_compaction) &&
caf49191 2562 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2563 goto nopage;
66199712 2564
11e33f6a
MG
2565 /* Try direct reclaim and then allocating */
2566 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2567 zonelist, high_zoneidx,
2568 nodemask,
5117f45d 2569 alloc_flags, preferred_zone,
3dd28266 2570 migratetype, &did_some_progress);
11e33f6a
MG
2571 if (page)
2572 goto got_pg;
1da177e4 2573
e33c3b5e 2574 /*
11e33f6a
MG
2575 * If we failed to make any progress reclaiming, then we are
2576 * running out of options and have to consider going OOM
e33c3b5e 2577 */
11e33f6a 2578 if (!did_some_progress) {
b9921ecd 2579 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2580 if (oom_killer_disabled)
2581 goto nopage;
29fd66d2
DR
2582 /* Coredumps can quickly deplete all memory reserves */
2583 if ((current->flags & PF_DUMPCORE) &&
2584 !(gfp_mask & __GFP_NOFAIL))
2585 goto nopage;
11e33f6a
MG
2586 page = __alloc_pages_may_oom(gfp_mask, order,
2587 zonelist, high_zoneidx,
3dd28266
MG
2588 nodemask, preferred_zone,
2589 migratetype);
11e33f6a
MG
2590 if (page)
2591 goto got_pg;
1da177e4 2592
03668b3c
DR
2593 if (!(gfp_mask & __GFP_NOFAIL)) {
2594 /*
2595 * The oom killer is not called for high-order
2596 * allocations that may fail, so if no progress
2597 * is being made, there are no other options and
2598 * retrying is unlikely to help.
2599 */
2600 if (order > PAGE_ALLOC_COSTLY_ORDER)
2601 goto nopage;
2602 /*
2603 * The oom killer is not called for lowmem
2604 * allocations to prevent needlessly killing
2605 * innocent tasks.
2606 */
2607 if (high_zoneidx < ZONE_NORMAL)
2608 goto nopage;
2609 }
e2c55dc8 2610
ff0ceb9d
DR
2611 goto restart;
2612 }
1da177e4
LT
2613 }
2614
11e33f6a 2615 /* Check if we should retry the allocation */
a41f24ea 2616 pages_reclaimed += did_some_progress;
f90ac398
MG
2617 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2618 pages_reclaimed)) {
11e33f6a 2619 /* Wait for some write requests to complete then retry */
0e093d99 2620 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2621 goto rebalance;
3e7d3449
MG
2622 } else {
2623 /*
2624 * High-order allocations do not necessarily loop after
2625 * direct reclaim and reclaim/compaction depends on compaction
2626 * being called after reclaim so call directly if necessary
2627 */
2628 page = __alloc_pages_direct_compact(gfp_mask, order,
2629 zonelist, high_zoneidx,
2630 nodemask,
2631 alloc_flags, preferred_zone,
66199712 2632 migratetype, sync_migration,
c67fe375 2633 &contended_compaction,
66199712
MG
2634 &deferred_compaction,
2635 &did_some_progress);
3e7d3449
MG
2636 if (page)
2637 goto got_pg;
1da177e4
LT
2638 }
2639
2640nopage:
a238ab5b 2641 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2642 return page;
1da177e4 2643got_pg:
b1eeab67
VN
2644 if (kmemcheck_enabled)
2645 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2646
072bb0aa 2647 return page;
1da177e4 2648}
11e33f6a
MG
2649
2650/*
2651 * This is the 'heart' of the zoned buddy allocator.
2652 */
2653struct page *
2654__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2655 struct zonelist *zonelist, nodemask_t *nodemask)
2656{
2657 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2658 struct zone *preferred_zone;
cc9a6c87 2659 struct page *page = NULL;
3dd28266 2660 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2661 unsigned int cpuset_mems_cookie;
d95ea5d1 2662 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2663 struct mem_cgroup *memcg = NULL;
11e33f6a 2664
dcce284a
BH
2665 gfp_mask &= gfp_allowed_mask;
2666
11e33f6a
MG
2667 lockdep_trace_alloc(gfp_mask);
2668
2669 might_sleep_if(gfp_mask & __GFP_WAIT);
2670
2671 if (should_fail_alloc_page(gfp_mask, order))
2672 return NULL;
2673
2674 /*
2675 * Check the zones suitable for the gfp_mask contain at least one
2676 * valid zone. It's possible to have an empty zonelist as a result
2677 * of GFP_THISNODE and a memoryless node
2678 */
2679 if (unlikely(!zonelist->_zonerefs->zone))
2680 return NULL;
2681
6a1a0d3b
GC
2682 /*
2683 * Will only have any effect when __GFP_KMEMCG is set. This is
2684 * verified in the (always inline) callee
2685 */
2686 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2687 return NULL;
2688
cc9a6c87
MG
2689retry_cpuset:
2690 cpuset_mems_cookie = get_mems_allowed();
2691
5117f45d 2692 /* The preferred zone is used for statistics later */
f33261d7
DR
2693 first_zones_zonelist(zonelist, high_zoneidx,
2694 nodemask ? : &cpuset_current_mems_allowed,
2695 &preferred_zone);
cc9a6c87
MG
2696 if (!preferred_zone)
2697 goto out;
5117f45d 2698
d95ea5d1
BZ
2699#ifdef CONFIG_CMA
2700 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2701 alloc_flags |= ALLOC_CMA;
2702#endif
5117f45d 2703 /* First allocation attempt */
11e33f6a 2704 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2705 zonelist, high_zoneidx, alloc_flags,
3dd28266 2706 preferred_zone, migratetype);
21caf2fc
ML
2707 if (unlikely(!page)) {
2708 /*
2709 * Runtime PM, block IO and its error handling path
2710 * can deadlock because I/O on the device might not
2711 * complete.
2712 */
2713 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2714 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2715 zonelist, high_zoneidx, nodemask,
3dd28266 2716 preferred_zone, migratetype);
21caf2fc 2717 }
11e33f6a 2718
4b4f278c 2719 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2720
2721out:
2722 /*
2723 * When updating a task's mems_allowed, it is possible to race with
2724 * parallel threads in such a way that an allocation can fail while
2725 * the mask is being updated. If a page allocation is about to fail,
2726 * check if the cpuset changed during allocation and if so, retry.
2727 */
2728 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2729 goto retry_cpuset;
2730
6a1a0d3b
GC
2731 memcg_kmem_commit_charge(page, memcg, order);
2732
11e33f6a 2733 return page;
1da177e4 2734}
d239171e 2735EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2736
2737/*
2738 * Common helper functions.
2739 */
920c7a5d 2740unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2741{
945a1113
AM
2742 struct page *page;
2743
2744 /*
2745 * __get_free_pages() returns a 32-bit address, which cannot represent
2746 * a highmem page
2747 */
2748 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2749
1da177e4
LT
2750 page = alloc_pages(gfp_mask, order);
2751 if (!page)
2752 return 0;
2753 return (unsigned long) page_address(page);
2754}
1da177e4
LT
2755EXPORT_SYMBOL(__get_free_pages);
2756
920c7a5d 2757unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2758{
945a1113 2759 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2760}
1da177e4
LT
2761EXPORT_SYMBOL(get_zeroed_page);
2762
920c7a5d 2763void __free_pages(struct page *page, unsigned int order)
1da177e4 2764{
b5810039 2765 if (put_page_testzero(page)) {
1da177e4 2766 if (order == 0)
fc91668e 2767 free_hot_cold_page(page, 0);
1da177e4
LT
2768 else
2769 __free_pages_ok(page, order);
2770 }
2771}
2772
2773EXPORT_SYMBOL(__free_pages);
2774
920c7a5d 2775void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2776{
2777 if (addr != 0) {
725d704e 2778 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2779 __free_pages(virt_to_page((void *)addr), order);
2780 }
2781}
2782
2783EXPORT_SYMBOL(free_pages);
2784
6a1a0d3b
GC
2785/*
2786 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2787 * pages allocated with __GFP_KMEMCG.
2788 *
2789 * Those pages are accounted to a particular memcg, embedded in the
2790 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2791 * for that information only to find out that it is NULL for users who have no
2792 * interest in that whatsoever, we provide these functions.
2793 *
2794 * The caller knows better which flags it relies on.
2795 */
2796void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2797{
2798 memcg_kmem_uncharge_pages(page, order);
2799 __free_pages(page, order);
2800}
2801
2802void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2803{
2804 if (addr != 0) {
2805 VM_BUG_ON(!virt_addr_valid((void *)addr));
2806 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2807 }
2808}
2809
ee85c2e1
AK
2810static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2811{
2812 if (addr) {
2813 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2814 unsigned long used = addr + PAGE_ALIGN(size);
2815
2816 split_page(virt_to_page((void *)addr), order);
2817 while (used < alloc_end) {
2818 free_page(used);
2819 used += PAGE_SIZE;
2820 }
2821 }
2822 return (void *)addr;
2823}
2824
2be0ffe2
TT
2825/**
2826 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2827 * @size: the number of bytes to allocate
2828 * @gfp_mask: GFP flags for the allocation
2829 *
2830 * This function is similar to alloc_pages(), except that it allocates the
2831 * minimum number of pages to satisfy the request. alloc_pages() can only
2832 * allocate memory in power-of-two pages.
2833 *
2834 * This function is also limited by MAX_ORDER.
2835 *
2836 * Memory allocated by this function must be released by free_pages_exact().
2837 */
2838void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2839{
2840 unsigned int order = get_order(size);
2841 unsigned long addr;
2842
2843 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2844 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2845}
2846EXPORT_SYMBOL(alloc_pages_exact);
2847
ee85c2e1
AK
2848/**
2849 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2850 * pages on a node.
b5e6ab58 2851 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2852 * @size: the number of bytes to allocate
2853 * @gfp_mask: GFP flags for the allocation
2854 *
2855 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2856 * back.
2857 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2858 * but is not exact.
2859 */
2860void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2861{
2862 unsigned order = get_order(size);
2863 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2864 if (!p)
2865 return NULL;
2866 return make_alloc_exact((unsigned long)page_address(p), order, size);
2867}
2868EXPORT_SYMBOL(alloc_pages_exact_nid);
2869
2be0ffe2
TT
2870/**
2871 * free_pages_exact - release memory allocated via alloc_pages_exact()
2872 * @virt: the value returned by alloc_pages_exact.
2873 * @size: size of allocation, same value as passed to alloc_pages_exact().
2874 *
2875 * Release the memory allocated by a previous call to alloc_pages_exact.
2876 */
2877void free_pages_exact(void *virt, size_t size)
2878{
2879 unsigned long addr = (unsigned long)virt;
2880 unsigned long end = addr + PAGE_ALIGN(size);
2881
2882 while (addr < end) {
2883 free_page(addr);
2884 addr += PAGE_SIZE;
2885 }
2886}
2887EXPORT_SYMBOL(free_pages_exact);
2888
e0fb5815
ZY
2889/**
2890 * nr_free_zone_pages - count number of pages beyond high watermark
2891 * @offset: The zone index of the highest zone
2892 *
2893 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2894 * high watermark within all zones at or below a given zone index. For each
2895 * zone, the number of pages is calculated as:
834405c3 2896 * managed_pages - high_pages
e0fb5815 2897 */
ebec3862 2898static unsigned long nr_free_zone_pages(int offset)
1da177e4 2899{
dd1a239f 2900 struct zoneref *z;
54a6eb5c
MG
2901 struct zone *zone;
2902
e310fd43 2903 /* Just pick one node, since fallback list is circular */
ebec3862 2904 unsigned long sum = 0;
1da177e4 2905
0e88460d 2906 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2907
54a6eb5c 2908 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2909 unsigned long size = zone->managed_pages;
41858966 2910 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2911 if (size > high)
2912 sum += size - high;
1da177e4
LT
2913 }
2914
2915 return sum;
2916}
2917
e0fb5815
ZY
2918/**
2919 * nr_free_buffer_pages - count number of pages beyond high watermark
2920 *
2921 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2922 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2923 */
ebec3862 2924unsigned long nr_free_buffer_pages(void)
1da177e4 2925{
af4ca457 2926 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2927}
c2f1a551 2928EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2929
e0fb5815
ZY
2930/**
2931 * nr_free_pagecache_pages - count number of pages beyond high watermark
2932 *
2933 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2934 * high watermark within all zones.
1da177e4 2935 */
ebec3862 2936unsigned long nr_free_pagecache_pages(void)
1da177e4 2937{
2a1e274a 2938 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2939}
08e0f6a9
CL
2940
2941static inline void show_node(struct zone *zone)
1da177e4 2942{
e5adfffc 2943 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2944 printk("Node %d ", zone_to_nid(zone));
1da177e4 2945}
1da177e4 2946
1da177e4
LT
2947void si_meminfo(struct sysinfo *val)
2948{
2949 val->totalram = totalram_pages;
2950 val->sharedram = 0;
d23ad423 2951 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2952 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2953 val->totalhigh = totalhigh_pages;
2954 val->freehigh = nr_free_highpages();
1da177e4
LT
2955 val->mem_unit = PAGE_SIZE;
2956}
2957
2958EXPORT_SYMBOL(si_meminfo);
2959
2960#ifdef CONFIG_NUMA
2961void si_meminfo_node(struct sysinfo *val, int nid)
2962{
cdd91a77
JL
2963 int zone_type; /* needs to be signed */
2964 unsigned long managed_pages = 0;
1da177e4
LT
2965 pg_data_t *pgdat = NODE_DATA(nid);
2966
cdd91a77
JL
2967 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2968 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2969 val->totalram = managed_pages;
d23ad423 2970 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2971#ifdef CONFIG_HIGHMEM
b40da049 2972 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2973 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2974 NR_FREE_PAGES);
98d2b0eb
CL
2975#else
2976 val->totalhigh = 0;
2977 val->freehigh = 0;
2978#endif
1da177e4
LT
2979 val->mem_unit = PAGE_SIZE;
2980}
2981#endif
2982
ddd588b5 2983/*
7bf02ea2
DR
2984 * Determine whether the node should be displayed or not, depending on whether
2985 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2986 */
7bf02ea2 2987bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2988{
2989 bool ret = false;
cc9a6c87 2990 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2991
2992 if (!(flags & SHOW_MEM_FILTER_NODES))
2993 goto out;
2994
cc9a6c87
MG
2995 do {
2996 cpuset_mems_cookie = get_mems_allowed();
2997 ret = !node_isset(nid, cpuset_current_mems_allowed);
2998 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2999out:
3000 return ret;
3001}
3002
1da177e4
LT
3003#define K(x) ((x) << (PAGE_SHIFT-10))
3004
377e4f16
RV
3005static void show_migration_types(unsigned char type)
3006{
3007 static const char types[MIGRATE_TYPES] = {
3008 [MIGRATE_UNMOVABLE] = 'U',
3009 [MIGRATE_RECLAIMABLE] = 'E',
3010 [MIGRATE_MOVABLE] = 'M',
3011 [MIGRATE_RESERVE] = 'R',
3012#ifdef CONFIG_CMA
3013 [MIGRATE_CMA] = 'C',
3014#endif
194159fb 3015#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3016 [MIGRATE_ISOLATE] = 'I',
194159fb 3017#endif
377e4f16
RV
3018 };
3019 char tmp[MIGRATE_TYPES + 1];
3020 char *p = tmp;
3021 int i;
3022
3023 for (i = 0; i < MIGRATE_TYPES; i++) {
3024 if (type & (1 << i))
3025 *p++ = types[i];
3026 }
3027
3028 *p = '\0';
3029 printk("(%s) ", tmp);
3030}
3031
1da177e4
LT
3032/*
3033 * Show free area list (used inside shift_scroll-lock stuff)
3034 * We also calculate the percentage fragmentation. We do this by counting the
3035 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3036 * Suppresses nodes that are not allowed by current's cpuset if
3037 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3038 */
7bf02ea2 3039void show_free_areas(unsigned int filter)
1da177e4 3040{
c7241913 3041 int cpu;
1da177e4
LT
3042 struct zone *zone;
3043
ee99c71c 3044 for_each_populated_zone(zone) {
7bf02ea2 3045 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3046 continue;
c7241913
JS
3047 show_node(zone);
3048 printk("%s per-cpu:\n", zone->name);
1da177e4 3049
6b482c67 3050 for_each_online_cpu(cpu) {
1da177e4
LT
3051 struct per_cpu_pageset *pageset;
3052
99dcc3e5 3053 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3054
3dfa5721
CL
3055 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3056 cpu, pageset->pcp.high,
3057 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3058 }
3059 }
3060
a731286d
KM
3061 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3062 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3063 " unevictable:%lu"
b76146ed 3064 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3065 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3066 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3067 " free_cma:%lu\n",
4f98a2fe 3068 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3069 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3070 global_page_state(NR_ISOLATED_ANON),
3071 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3072 global_page_state(NR_INACTIVE_FILE),
a731286d 3073 global_page_state(NR_ISOLATED_FILE),
7b854121 3074 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3075 global_page_state(NR_FILE_DIRTY),
ce866b34 3076 global_page_state(NR_WRITEBACK),
fd39fc85 3077 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3078 global_page_state(NR_FREE_PAGES),
3701b033
KM
3079 global_page_state(NR_SLAB_RECLAIMABLE),
3080 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3081 global_page_state(NR_FILE_MAPPED),
4b02108a 3082 global_page_state(NR_SHMEM),
a25700a5 3083 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3084 global_page_state(NR_BOUNCE),
3085 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3086
ee99c71c 3087 for_each_populated_zone(zone) {
1da177e4
LT
3088 int i;
3089
7bf02ea2 3090 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3091 continue;
1da177e4
LT
3092 show_node(zone);
3093 printk("%s"
3094 " free:%lukB"
3095 " min:%lukB"
3096 " low:%lukB"
3097 " high:%lukB"
4f98a2fe
RR
3098 " active_anon:%lukB"
3099 " inactive_anon:%lukB"
3100 " active_file:%lukB"
3101 " inactive_file:%lukB"
7b854121 3102 " unevictable:%lukB"
a731286d
KM
3103 " isolated(anon):%lukB"
3104 " isolated(file):%lukB"
1da177e4 3105 " present:%lukB"
9feedc9d 3106 " managed:%lukB"
4a0aa73f
KM
3107 " mlocked:%lukB"
3108 " dirty:%lukB"
3109 " writeback:%lukB"
3110 " mapped:%lukB"
4b02108a 3111 " shmem:%lukB"
4a0aa73f
KM
3112 " slab_reclaimable:%lukB"
3113 " slab_unreclaimable:%lukB"
c6a7f572 3114 " kernel_stack:%lukB"
4a0aa73f
KM
3115 " pagetables:%lukB"
3116 " unstable:%lukB"
3117 " bounce:%lukB"
d1ce749a 3118 " free_cma:%lukB"
4a0aa73f 3119 " writeback_tmp:%lukB"
1da177e4
LT
3120 " pages_scanned:%lu"
3121 " all_unreclaimable? %s"
3122 "\n",
3123 zone->name,
88f5acf8 3124 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3125 K(min_wmark_pages(zone)),
3126 K(low_wmark_pages(zone)),
3127 K(high_wmark_pages(zone)),
4f98a2fe
RR
3128 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3129 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3130 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3131 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3132 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3133 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3134 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3135 K(zone->present_pages),
9feedc9d 3136 K(zone->managed_pages),
4a0aa73f
KM
3137 K(zone_page_state(zone, NR_MLOCK)),
3138 K(zone_page_state(zone, NR_FILE_DIRTY)),
3139 K(zone_page_state(zone, NR_WRITEBACK)),
3140 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3141 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3142 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3143 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3144 zone_page_state(zone, NR_KERNEL_STACK) *
3145 THREAD_SIZE / 1024,
4a0aa73f
KM
3146 K(zone_page_state(zone, NR_PAGETABLE)),
3147 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3148 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3149 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3150 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3151 zone->pages_scanned,
6e543d57 3152 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3153 );
3154 printk("lowmem_reserve[]:");
3155 for (i = 0; i < MAX_NR_ZONES; i++)
3156 printk(" %lu", zone->lowmem_reserve[i]);
3157 printk("\n");
3158 }
3159
ee99c71c 3160 for_each_populated_zone(zone) {
b8af2941 3161 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3162 unsigned char types[MAX_ORDER];
1da177e4 3163
7bf02ea2 3164 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3165 continue;
1da177e4
LT
3166 show_node(zone);
3167 printk("%s: ", zone->name);
1da177e4
LT
3168
3169 spin_lock_irqsave(&zone->lock, flags);
3170 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3171 struct free_area *area = &zone->free_area[order];
3172 int type;
3173
3174 nr[order] = area->nr_free;
8f9de51a 3175 total += nr[order] << order;
377e4f16
RV
3176
3177 types[order] = 0;
3178 for (type = 0; type < MIGRATE_TYPES; type++) {
3179 if (!list_empty(&area->free_list[type]))
3180 types[order] |= 1 << type;
3181 }
1da177e4
LT
3182 }
3183 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3184 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3185 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3186 if (nr[order])
3187 show_migration_types(types[order]);
3188 }
1da177e4
LT
3189 printk("= %lukB\n", K(total));
3190 }
3191
949f7ec5
DR
3192 hugetlb_show_meminfo();
3193
e6f3602d
LW
3194 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3195
1da177e4
LT
3196 show_swap_cache_info();
3197}
3198
19770b32
MG
3199static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3200{
3201 zoneref->zone = zone;
3202 zoneref->zone_idx = zone_idx(zone);
3203}
3204
1da177e4
LT
3205/*
3206 * Builds allocation fallback zone lists.
1a93205b
CL
3207 *
3208 * Add all populated zones of a node to the zonelist.
1da177e4 3209 */
f0c0b2b8 3210static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3211 int nr_zones)
1da177e4 3212{
1a93205b 3213 struct zone *zone;
bc732f1d 3214 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3215
3216 do {
2f6726e5 3217 zone_type--;
070f8032 3218 zone = pgdat->node_zones + zone_type;
1a93205b 3219 if (populated_zone(zone)) {
dd1a239f
MG
3220 zoneref_set_zone(zone,
3221 &zonelist->_zonerefs[nr_zones++]);
070f8032 3222 check_highest_zone(zone_type);
1da177e4 3223 }
2f6726e5 3224 } while (zone_type);
bc732f1d 3225
070f8032 3226 return nr_zones;
1da177e4
LT
3227}
3228
f0c0b2b8
KH
3229
3230/*
3231 * zonelist_order:
3232 * 0 = automatic detection of better ordering.
3233 * 1 = order by ([node] distance, -zonetype)
3234 * 2 = order by (-zonetype, [node] distance)
3235 *
3236 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3237 * the same zonelist. So only NUMA can configure this param.
3238 */
3239#define ZONELIST_ORDER_DEFAULT 0
3240#define ZONELIST_ORDER_NODE 1
3241#define ZONELIST_ORDER_ZONE 2
3242
3243/* zonelist order in the kernel.
3244 * set_zonelist_order() will set this to NODE or ZONE.
3245 */
3246static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3247static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3248
3249
1da177e4 3250#ifdef CONFIG_NUMA
f0c0b2b8
KH
3251/* The value user specified ....changed by config */
3252static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3253/* string for sysctl */
3254#define NUMA_ZONELIST_ORDER_LEN 16
3255char numa_zonelist_order[16] = "default";
3256
3257/*
3258 * interface for configure zonelist ordering.
3259 * command line option "numa_zonelist_order"
3260 * = "[dD]efault - default, automatic configuration.
3261 * = "[nN]ode - order by node locality, then by zone within node
3262 * = "[zZ]one - order by zone, then by locality within zone
3263 */
3264
3265static int __parse_numa_zonelist_order(char *s)
3266{
3267 if (*s == 'd' || *s == 'D') {
3268 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3269 } else if (*s == 'n' || *s == 'N') {
3270 user_zonelist_order = ZONELIST_ORDER_NODE;
3271 } else if (*s == 'z' || *s == 'Z') {
3272 user_zonelist_order = ZONELIST_ORDER_ZONE;
3273 } else {
3274 printk(KERN_WARNING
3275 "Ignoring invalid numa_zonelist_order value: "
3276 "%s\n", s);
3277 return -EINVAL;
3278 }
3279 return 0;
3280}
3281
3282static __init int setup_numa_zonelist_order(char *s)
3283{
ecb256f8
VL
3284 int ret;
3285
3286 if (!s)
3287 return 0;
3288
3289 ret = __parse_numa_zonelist_order(s);
3290 if (ret == 0)
3291 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3292
3293 return ret;
f0c0b2b8
KH
3294}
3295early_param("numa_zonelist_order", setup_numa_zonelist_order);
3296
3297/*
3298 * sysctl handler for numa_zonelist_order
3299 */
3300int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3301 void __user *buffer, size_t *length,
f0c0b2b8
KH
3302 loff_t *ppos)
3303{
3304 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3305 int ret;
443c6f14 3306 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3307
443c6f14 3308 mutex_lock(&zl_order_mutex);
dacbde09
CG
3309 if (write) {
3310 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3311 ret = -EINVAL;
3312 goto out;
3313 }
3314 strcpy(saved_string, (char *)table->data);
3315 }
8d65af78 3316 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3317 if (ret)
443c6f14 3318 goto out;
f0c0b2b8
KH
3319 if (write) {
3320 int oldval = user_zonelist_order;
dacbde09
CG
3321
3322 ret = __parse_numa_zonelist_order((char *)table->data);
3323 if (ret) {
f0c0b2b8
KH
3324 /*
3325 * bogus value. restore saved string
3326 */
dacbde09 3327 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3328 NUMA_ZONELIST_ORDER_LEN);
3329 user_zonelist_order = oldval;
4eaf3f64
HL
3330 } else if (oldval != user_zonelist_order) {
3331 mutex_lock(&zonelists_mutex);
9adb62a5 3332 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3333 mutex_unlock(&zonelists_mutex);
3334 }
f0c0b2b8 3335 }
443c6f14
AK
3336out:
3337 mutex_unlock(&zl_order_mutex);
3338 return ret;
f0c0b2b8
KH
3339}
3340
3341
62bc62a8 3342#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3343static int node_load[MAX_NUMNODES];
3344
1da177e4 3345/**
4dc3b16b 3346 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3347 * @node: node whose fallback list we're appending
3348 * @used_node_mask: nodemask_t of already used nodes
3349 *
3350 * We use a number of factors to determine which is the next node that should
3351 * appear on a given node's fallback list. The node should not have appeared
3352 * already in @node's fallback list, and it should be the next closest node
3353 * according to the distance array (which contains arbitrary distance values
3354 * from each node to each node in the system), and should also prefer nodes
3355 * with no CPUs, since presumably they'll have very little allocation pressure
3356 * on them otherwise.
3357 * It returns -1 if no node is found.
3358 */
f0c0b2b8 3359static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3360{
4cf808eb 3361 int n, val;
1da177e4 3362 int min_val = INT_MAX;
00ef2d2f 3363 int best_node = NUMA_NO_NODE;
a70f7302 3364 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3365
4cf808eb
LT
3366 /* Use the local node if we haven't already */
3367 if (!node_isset(node, *used_node_mask)) {
3368 node_set(node, *used_node_mask);
3369 return node;
3370 }
1da177e4 3371
4b0ef1fe 3372 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3373
3374 /* Don't want a node to appear more than once */
3375 if (node_isset(n, *used_node_mask))
3376 continue;
3377
1da177e4
LT
3378 /* Use the distance array to find the distance */
3379 val = node_distance(node, n);
3380
4cf808eb
LT
3381 /* Penalize nodes under us ("prefer the next node") */
3382 val += (n < node);
3383
1da177e4 3384 /* Give preference to headless and unused nodes */
a70f7302
RR
3385 tmp = cpumask_of_node(n);
3386 if (!cpumask_empty(tmp))
1da177e4
LT
3387 val += PENALTY_FOR_NODE_WITH_CPUS;
3388
3389 /* Slight preference for less loaded node */
3390 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3391 val += node_load[n];
3392
3393 if (val < min_val) {
3394 min_val = val;
3395 best_node = n;
3396 }
3397 }
3398
3399 if (best_node >= 0)
3400 node_set(best_node, *used_node_mask);
3401
3402 return best_node;
3403}
3404
f0c0b2b8
KH
3405
3406/*
3407 * Build zonelists ordered by node and zones within node.
3408 * This results in maximum locality--normal zone overflows into local
3409 * DMA zone, if any--but risks exhausting DMA zone.
3410 */
3411static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3412{
f0c0b2b8 3413 int j;
1da177e4 3414 struct zonelist *zonelist;
f0c0b2b8 3415
54a6eb5c 3416 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3417 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3418 ;
bc732f1d 3419 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3420 zonelist->_zonerefs[j].zone = NULL;
3421 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3422}
3423
523b9458
CL
3424/*
3425 * Build gfp_thisnode zonelists
3426 */
3427static void build_thisnode_zonelists(pg_data_t *pgdat)
3428{
523b9458
CL
3429 int j;
3430 struct zonelist *zonelist;
3431
54a6eb5c 3432 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3433 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3434 zonelist->_zonerefs[j].zone = NULL;
3435 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3436}
3437
f0c0b2b8
KH
3438/*
3439 * Build zonelists ordered by zone and nodes within zones.
3440 * This results in conserving DMA zone[s] until all Normal memory is
3441 * exhausted, but results in overflowing to remote node while memory
3442 * may still exist in local DMA zone.
3443 */
3444static int node_order[MAX_NUMNODES];
3445
3446static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3447{
f0c0b2b8
KH
3448 int pos, j, node;
3449 int zone_type; /* needs to be signed */
3450 struct zone *z;
3451 struct zonelist *zonelist;
3452
54a6eb5c
MG
3453 zonelist = &pgdat->node_zonelists[0];
3454 pos = 0;
3455 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3456 for (j = 0; j < nr_nodes; j++) {
3457 node = node_order[j];
3458 z = &NODE_DATA(node)->node_zones[zone_type];
3459 if (populated_zone(z)) {
dd1a239f
MG
3460 zoneref_set_zone(z,
3461 &zonelist->_zonerefs[pos++]);
54a6eb5c 3462 check_highest_zone(zone_type);
f0c0b2b8
KH
3463 }
3464 }
f0c0b2b8 3465 }
dd1a239f
MG
3466 zonelist->_zonerefs[pos].zone = NULL;
3467 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3468}
3469
3470static int default_zonelist_order(void)
3471{
3472 int nid, zone_type;
b8af2941 3473 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3474 struct zone *z;
3475 int average_size;
3476 /*
b8af2941 3477 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3478 * If they are really small and used heavily, the system can fall
3479 * into OOM very easily.
e325c90f 3480 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3481 */
3482 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3483 low_kmem_size = 0;
3484 total_size = 0;
3485 for_each_online_node(nid) {
3486 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3487 z = &NODE_DATA(nid)->node_zones[zone_type];
3488 if (populated_zone(z)) {
3489 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3490 low_kmem_size += z->managed_pages;
3491 total_size += z->managed_pages;
e325c90f
DR
3492 } else if (zone_type == ZONE_NORMAL) {
3493 /*
3494 * If any node has only lowmem, then node order
3495 * is preferred to allow kernel allocations
3496 * locally; otherwise, they can easily infringe
3497 * on other nodes when there is an abundance of
3498 * lowmem available to allocate from.
3499 */
3500 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3501 }
3502 }
3503 }
3504 if (!low_kmem_size || /* there are no DMA area. */
3505 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3506 return ZONELIST_ORDER_NODE;
3507 /*
3508 * look into each node's config.
b8af2941
PK
3509 * If there is a node whose DMA/DMA32 memory is very big area on
3510 * local memory, NODE_ORDER may be suitable.
3511 */
37b07e41 3512 average_size = total_size /
4b0ef1fe 3513 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3514 for_each_online_node(nid) {
3515 low_kmem_size = 0;
3516 total_size = 0;
3517 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3518 z = &NODE_DATA(nid)->node_zones[zone_type];
3519 if (populated_zone(z)) {
3520 if (zone_type < ZONE_NORMAL)
3521 low_kmem_size += z->present_pages;
3522 total_size += z->present_pages;
3523 }
3524 }
3525 if (low_kmem_size &&
3526 total_size > average_size && /* ignore small node */
3527 low_kmem_size > total_size * 70/100)
3528 return ZONELIST_ORDER_NODE;
3529 }
3530 return ZONELIST_ORDER_ZONE;
3531}
3532
3533static void set_zonelist_order(void)
3534{
3535 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3536 current_zonelist_order = default_zonelist_order();
3537 else
3538 current_zonelist_order = user_zonelist_order;
3539}
3540
3541static void build_zonelists(pg_data_t *pgdat)
3542{
3543 int j, node, load;
3544 enum zone_type i;
1da177e4 3545 nodemask_t used_mask;
f0c0b2b8
KH
3546 int local_node, prev_node;
3547 struct zonelist *zonelist;
3548 int order = current_zonelist_order;
1da177e4
LT
3549
3550 /* initialize zonelists */
523b9458 3551 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3552 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3553 zonelist->_zonerefs[0].zone = NULL;
3554 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3555 }
3556
3557 /* NUMA-aware ordering of nodes */
3558 local_node = pgdat->node_id;
62bc62a8 3559 load = nr_online_nodes;
1da177e4
LT
3560 prev_node = local_node;
3561 nodes_clear(used_mask);
f0c0b2b8 3562
f0c0b2b8
KH
3563 memset(node_order, 0, sizeof(node_order));
3564 j = 0;
3565
1da177e4
LT
3566 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3567 /*
3568 * We don't want to pressure a particular node.
3569 * So adding penalty to the first node in same
3570 * distance group to make it round-robin.
3571 */
957f822a
DR
3572 if (node_distance(local_node, node) !=
3573 node_distance(local_node, prev_node))
f0c0b2b8
KH
3574 node_load[node] = load;
3575
1da177e4
LT
3576 prev_node = node;
3577 load--;
f0c0b2b8
KH
3578 if (order == ZONELIST_ORDER_NODE)
3579 build_zonelists_in_node_order(pgdat, node);
3580 else
3581 node_order[j++] = node; /* remember order */
3582 }
1da177e4 3583
f0c0b2b8
KH
3584 if (order == ZONELIST_ORDER_ZONE) {
3585 /* calculate node order -- i.e., DMA last! */
3586 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3587 }
523b9458
CL
3588
3589 build_thisnode_zonelists(pgdat);
1da177e4
LT
3590}
3591
9276b1bc 3592/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3593static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3594{
54a6eb5c
MG
3595 struct zonelist *zonelist;
3596 struct zonelist_cache *zlc;
dd1a239f 3597 struct zoneref *z;
9276b1bc 3598
54a6eb5c
MG
3599 zonelist = &pgdat->node_zonelists[0];
3600 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3601 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3602 for (z = zonelist->_zonerefs; z->zone; z++)
3603 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3604}
3605
7aac7898
LS
3606#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3607/*
3608 * Return node id of node used for "local" allocations.
3609 * I.e., first node id of first zone in arg node's generic zonelist.
3610 * Used for initializing percpu 'numa_mem', which is used primarily
3611 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3612 */
3613int local_memory_node(int node)
3614{
3615 struct zone *zone;
3616
3617 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3618 gfp_zone(GFP_KERNEL),
3619 NULL,
3620 &zone);
3621 return zone->node;
3622}
3623#endif
f0c0b2b8 3624
1da177e4
LT
3625#else /* CONFIG_NUMA */
3626
f0c0b2b8
KH
3627static void set_zonelist_order(void)
3628{
3629 current_zonelist_order = ZONELIST_ORDER_ZONE;
3630}
3631
3632static void build_zonelists(pg_data_t *pgdat)
1da177e4 3633{
19655d34 3634 int node, local_node;
54a6eb5c
MG
3635 enum zone_type j;
3636 struct zonelist *zonelist;
1da177e4
LT
3637
3638 local_node = pgdat->node_id;
1da177e4 3639
54a6eb5c 3640 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3641 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3642
54a6eb5c
MG
3643 /*
3644 * Now we build the zonelist so that it contains the zones
3645 * of all the other nodes.
3646 * We don't want to pressure a particular node, so when
3647 * building the zones for node N, we make sure that the
3648 * zones coming right after the local ones are those from
3649 * node N+1 (modulo N)
3650 */
3651 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3652 if (!node_online(node))
3653 continue;
bc732f1d 3654 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3655 }
54a6eb5c
MG
3656 for (node = 0; node < local_node; node++) {
3657 if (!node_online(node))
3658 continue;
bc732f1d 3659 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3660 }
3661
dd1a239f
MG
3662 zonelist->_zonerefs[j].zone = NULL;
3663 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3664}
3665
9276b1bc 3666/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3667static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3668{
54a6eb5c 3669 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3670}
3671
1da177e4
LT
3672#endif /* CONFIG_NUMA */
3673
99dcc3e5
CL
3674/*
3675 * Boot pageset table. One per cpu which is going to be used for all
3676 * zones and all nodes. The parameters will be set in such a way
3677 * that an item put on a list will immediately be handed over to
3678 * the buddy list. This is safe since pageset manipulation is done
3679 * with interrupts disabled.
3680 *
3681 * The boot_pagesets must be kept even after bootup is complete for
3682 * unused processors and/or zones. They do play a role for bootstrapping
3683 * hotplugged processors.
3684 *
3685 * zoneinfo_show() and maybe other functions do
3686 * not check if the processor is online before following the pageset pointer.
3687 * Other parts of the kernel may not check if the zone is available.
3688 */
3689static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3690static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3691static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3692
4eaf3f64
HL
3693/*
3694 * Global mutex to protect against size modification of zonelists
3695 * as well as to serialize pageset setup for the new populated zone.
3696 */
3697DEFINE_MUTEX(zonelists_mutex);
3698
9b1a4d38 3699/* return values int ....just for stop_machine() */
4ed7e022 3700static int __build_all_zonelists(void *data)
1da177e4 3701{
6811378e 3702 int nid;
99dcc3e5 3703 int cpu;
9adb62a5 3704 pg_data_t *self = data;
9276b1bc 3705
7f9cfb31
BL
3706#ifdef CONFIG_NUMA
3707 memset(node_load, 0, sizeof(node_load));
3708#endif
9adb62a5
JL
3709
3710 if (self && !node_online(self->node_id)) {
3711 build_zonelists(self);
3712 build_zonelist_cache(self);
3713 }
3714
9276b1bc 3715 for_each_online_node(nid) {
7ea1530a
CL
3716 pg_data_t *pgdat = NODE_DATA(nid);
3717
3718 build_zonelists(pgdat);
3719 build_zonelist_cache(pgdat);
9276b1bc 3720 }
99dcc3e5
CL
3721
3722 /*
3723 * Initialize the boot_pagesets that are going to be used
3724 * for bootstrapping processors. The real pagesets for
3725 * each zone will be allocated later when the per cpu
3726 * allocator is available.
3727 *
3728 * boot_pagesets are used also for bootstrapping offline
3729 * cpus if the system is already booted because the pagesets
3730 * are needed to initialize allocators on a specific cpu too.
3731 * F.e. the percpu allocator needs the page allocator which
3732 * needs the percpu allocator in order to allocate its pagesets
3733 * (a chicken-egg dilemma).
3734 */
7aac7898 3735 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3736 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3737
7aac7898
LS
3738#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3739 /*
3740 * We now know the "local memory node" for each node--
3741 * i.e., the node of the first zone in the generic zonelist.
3742 * Set up numa_mem percpu variable for on-line cpus. During
3743 * boot, only the boot cpu should be on-line; we'll init the
3744 * secondary cpus' numa_mem as they come on-line. During
3745 * node/memory hotplug, we'll fixup all on-line cpus.
3746 */
3747 if (cpu_online(cpu))
3748 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3749#endif
3750 }
3751
6811378e
YG
3752 return 0;
3753}
3754
4eaf3f64
HL
3755/*
3756 * Called with zonelists_mutex held always
3757 * unless system_state == SYSTEM_BOOTING.
3758 */
9adb62a5 3759void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3760{
f0c0b2b8
KH
3761 set_zonelist_order();
3762
6811378e 3763 if (system_state == SYSTEM_BOOTING) {
423b41d7 3764 __build_all_zonelists(NULL);
68ad8df4 3765 mminit_verify_zonelist();
6811378e
YG
3766 cpuset_init_current_mems_allowed();
3767 } else {
e9959f0f 3768#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3769 if (zone)
3770 setup_zone_pageset(zone);
e9959f0f 3771#endif
dd1895e2
CS
3772 /* we have to stop all cpus to guarantee there is no user
3773 of zonelist */
9adb62a5 3774 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3775 /* cpuset refresh routine should be here */
3776 }
bd1e22b8 3777 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3778 /*
3779 * Disable grouping by mobility if the number of pages in the
3780 * system is too low to allow the mechanism to work. It would be
3781 * more accurate, but expensive to check per-zone. This check is
3782 * made on memory-hotadd so a system can start with mobility
3783 * disabled and enable it later
3784 */
d9c23400 3785 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3786 page_group_by_mobility_disabled = 1;
3787 else
3788 page_group_by_mobility_disabled = 0;
3789
3790 printk("Built %i zonelists in %s order, mobility grouping %s. "
3791 "Total pages: %ld\n",
62bc62a8 3792 nr_online_nodes,
f0c0b2b8 3793 zonelist_order_name[current_zonelist_order],
9ef9acb0 3794 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3795 vm_total_pages);
3796#ifdef CONFIG_NUMA
3797 printk("Policy zone: %s\n", zone_names[policy_zone]);
3798#endif
1da177e4
LT
3799}
3800
3801/*
3802 * Helper functions to size the waitqueue hash table.
3803 * Essentially these want to choose hash table sizes sufficiently
3804 * large so that collisions trying to wait on pages are rare.
3805 * But in fact, the number of active page waitqueues on typical
3806 * systems is ridiculously low, less than 200. So this is even
3807 * conservative, even though it seems large.
3808 *
3809 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3810 * waitqueues, i.e. the size of the waitq table given the number of pages.
3811 */
3812#define PAGES_PER_WAITQUEUE 256
3813
cca448fe 3814#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3815static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3816{
3817 unsigned long size = 1;
3818
3819 pages /= PAGES_PER_WAITQUEUE;
3820
3821 while (size < pages)
3822 size <<= 1;
3823
3824 /*
3825 * Once we have dozens or even hundreds of threads sleeping
3826 * on IO we've got bigger problems than wait queue collision.
3827 * Limit the size of the wait table to a reasonable size.
3828 */
3829 size = min(size, 4096UL);
3830
3831 return max(size, 4UL);
3832}
cca448fe
YG
3833#else
3834/*
3835 * A zone's size might be changed by hot-add, so it is not possible to determine
3836 * a suitable size for its wait_table. So we use the maximum size now.
3837 *
3838 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3839 *
3840 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3841 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3842 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3843 *
3844 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3845 * or more by the traditional way. (See above). It equals:
3846 *
3847 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3848 * ia64(16K page size) : = ( 8G + 4M)byte.
3849 * powerpc (64K page size) : = (32G +16M)byte.
3850 */
3851static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3852{
3853 return 4096UL;
3854}
3855#endif
1da177e4
LT
3856
3857/*
3858 * This is an integer logarithm so that shifts can be used later
3859 * to extract the more random high bits from the multiplicative
3860 * hash function before the remainder is taken.
3861 */
3862static inline unsigned long wait_table_bits(unsigned long size)
3863{
3864 return ffz(~size);
3865}
3866
6d3163ce
AH
3867/*
3868 * Check if a pageblock contains reserved pages
3869 */
3870static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3871{
3872 unsigned long pfn;
3873
3874 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3875 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3876 return 1;
3877 }
3878 return 0;
3879}
3880
56fd56b8 3881/*
d9c23400 3882 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3883 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3884 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3885 * higher will lead to a bigger reserve which will get freed as contiguous
3886 * blocks as reclaim kicks in
3887 */
3888static void setup_zone_migrate_reserve(struct zone *zone)
3889{
6d3163ce 3890 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3891 struct page *page;
78986a67
MG
3892 unsigned long block_migratetype;
3893 int reserve;
943dca1a 3894 int old_reserve;
56fd56b8 3895
d0215638
MH
3896 /*
3897 * Get the start pfn, end pfn and the number of blocks to reserve
3898 * We have to be careful to be aligned to pageblock_nr_pages to
3899 * make sure that we always check pfn_valid for the first page in
3900 * the block.
3901 */
56fd56b8 3902 start_pfn = zone->zone_start_pfn;
108bcc96 3903 end_pfn = zone_end_pfn(zone);
d0215638 3904 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3905 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3906 pageblock_order;
56fd56b8 3907
78986a67
MG
3908 /*
3909 * Reserve blocks are generally in place to help high-order atomic
3910 * allocations that are short-lived. A min_free_kbytes value that
3911 * would result in more than 2 reserve blocks for atomic allocations
3912 * is assumed to be in place to help anti-fragmentation for the
3913 * future allocation of hugepages at runtime.
3914 */
3915 reserve = min(2, reserve);
943dca1a
YI
3916 old_reserve = zone->nr_migrate_reserve_block;
3917
3918 /* When memory hot-add, we almost always need to do nothing */
3919 if (reserve == old_reserve)
3920 return;
3921 zone->nr_migrate_reserve_block = reserve;
78986a67 3922
d9c23400 3923 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3924 if (!pfn_valid(pfn))
3925 continue;
3926 page = pfn_to_page(pfn);
3927
344c790e
AL
3928 /* Watch out for overlapping nodes */
3929 if (page_to_nid(page) != zone_to_nid(zone))
3930 continue;
3931
56fd56b8
MG
3932 block_migratetype = get_pageblock_migratetype(page);
3933
938929f1
MG
3934 /* Only test what is necessary when the reserves are not met */
3935 if (reserve > 0) {
3936 /*
3937 * Blocks with reserved pages will never free, skip
3938 * them.
3939 */
3940 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3941 if (pageblock_is_reserved(pfn, block_end_pfn))
3942 continue;
56fd56b8 3943
938929f1
MG
3944 /* If this block is reserved, account for it */
3945 if (block_migratetype == MIGRATE_RESERVE) {
3946 reserve--;
3947 continue;
3948 }
3949
3950 /* Suitable for reserving if this block is movable */
3951 if (block_migratetype == MIGRATE_MOVABLE) {
3952 set_pageblock_migratetype(page,
3953 MIGRATE_RESERVE);
3954 move_freepages_block(zone, page,
3955 MIGRATE_RESERVE);
3956 reserve--;
3957 continue;
3958 }
943dca1a
YI
3959 } else if (!old_reserve) {
3960 /*
3961 * At boot time we don't need to scan the whole zone
3962 * for turning off MIGRATE_RESERVE.
3963 */
3964 break;
56fd56b8
MG
3965 }
3966
3967 /*
3968 * If the reserve is met and this is a previous reserved block,
3969 * take it back
3970 */
3971 if (block_migratetype == MIGRATE_RESERVE) {
3972 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3973 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3974 }
3975 }
3976}
ac0e5b7a 3977
1da177e4
LT
3978/*
3979 * Initially all pages are reserved - free ones are freed
3980 * up by free_all_bootmem() once the early boot process is
3981 * done. Non-atomic initialization, single-pass.
3982 */
c09b4240 3983void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3984 unsigned long start_pfn, enum memmap_context context)
1da177e4 3985{
1da177e4 3986 struct page *page;
29751f69
AW
3987 unsigned long end_pfn = start_pfn + size;
3988 unsigned long pfn;
86051ca5 3989 struct zone *z;
1da177e4 3990
22b31eec
HD
3991 if (highest_memmap_pfn < end_pfn - 1)
3992 highest_memmap_pfn = end_pfn - 1;
3993
86051ca5 3994 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3995 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3996 /*
3997 * There can be holes in boot-time mem_map[]s
3998 * handed to this function. They do not
3999 * exist on hotplugged memory.
4000 */
4001 if (context == MEMMAP_EARLY) {
4002 if (!early_pfn_valid(pfn))
4003 continue;
4004 if (!early_pfn_in_nid(pfn, nid))
4005 continue;
4006 }
d41dee36
AW
4007 page = pfn_to_page(pfn);
4008 set_page_links(page, zone, nid, pfn);
708614e6 4009 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4010 init_page_count(page);
22b751c3 4011 page_mapcount_reset(page);
90572890 4012 page_cpupid_reset_last(page);
1da177e4 4013 SetPageReserved(page);
b2a0ac88
MG
4014 /*
4015 * Mark the block movable so that blocks are reserved for
4016 * movable at startup. This will force kernel allocations
4017 * to reserve their blocks rather than leaking throughout
4018 * the address space during boot when many long-lived
56fd56b8
MG
4019 * kernel allocations are made. Later some blocks near
4020 * the start are marked MIGRATE_RESERVE by
4021 * setup_zone_migrate_reserve()
86051ca5
KH
4022 *
4023 * bitmap is created for zone's valid pfn range. but memmap
4024 * can be created for invalid pages (for alignment)
4025 * check here not to call set_pageblock_migratetype() against
4026 * pfn out of zone.
b2a0ac88 4027 */
86051ca5 4028 if ((z->zone_start_pfn <= pfn)
108bcc96 4029 && (pfn < zone_end_pfn(z))
86051ca5 4030 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4031 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4032
1da177e4
LT
4033 INIT_LIST_HEAD(&page->lru);
4034#ifdef WANT_PAGE_VIRTUAL
4035 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4036 if (!is_highmem_idx(zone))
3212c6be 4037 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4038#endif
1da177e4
LT
4039 }
4040}
4041
1e548deb 4042static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4043{
b2a0ac88
MG
4044 int order, t;
4045 for_each_migratetype_order(order, t) {
4046 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4047 zone->free_area[order].nr_free = 0;
4048 }
4049}
4050
4051#ifndef __HAVE_ARCH_MEMMAP_INIT
4052#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4053 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4054#endif
4055
4ed7e022 4056static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4057{
3a6be87f 4058#ifdef CONFIG_MMU
e7c8d5c9
CL
4059 int batch;
4060
4061 /*
4062 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4063 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4064 *
4065 * OK, so we don't know how big the cache is. So guess.
4066 */
b40da049 4067 batch = zone->managed_pages / 1024;
ba56e91c
SR
4068 if (batch * PAGE_SIZE > 512 * 1024)
4069 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4070 batch /= 4; /* We effectively *= 4 below */
4071 if (batch < 1)
4072 batch = 1;
4073
4074 /*
0ceaacc9
NP
4075 * Clamp the batch to a 2^n - 1 value. Having a power
4076 * of 2 value was found to be more likely to have
4077 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4078 *
0ceaacc9
NP
4079 * For example if 2 tasks are alternately allocating
4080 * batches of pages, one task can end up with a lot
4081 * of pages of one half of the possible page colors
4082 * and the other with pages of the other colors.
e7c8d5c9 4083 */
9155203a 4084 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4085
e7c8d5c9 4086 return batch;
3a6be87f
DH
4087
4088#else
4089 /* The deferral and batching of frees should be suppressed under NOMMU
4090 * conditions.
4091 *
4092 * The problem is that NOMMU needs to be able to allocate large chunks
4093 * of contiguous memory as there's no hardware page translation to
4094 * assemble apparent contiguous memory from discontiguous pages.
4095 *
4096 * Queueing large contiguous runs of pages for batching, however,
4097 * causes the pages to actually be freed in smaller chunks. As there
4098 * can be a significant delay between the individual batches being
4099 * recycled, this leads to the once large chunks of space being
4100 * fragmented and becoming unavailable for high-order allocations.
4101 */
4102 return 0;
4103#endif
e7c8d5c9
CL
4104}
4105
8d7a8fa9
CS
4106/*
4107 * pcp->high and pcp->batch values are related and dependent on one another:
4108 * ->batch must never be higher then ->high.
4109 * The following function updates them in a safe manner without read side
4110 * locking.
4111 *
4112 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4113 * those fields changing asynchronously (acording the the above rule).
4114 *
4115 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4116 * outside of boot time (or some other assurance that no concurrent updaters
4117 * exist).
4118 */
4119static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4120 unsigned long batch)
4121{
4122 /* start with a fail safe value for batch */
4123 pcp->batch = 1;
4124 smp_wmb();
4125
4126 /* Update high, then batch, in order */
4127 pcp->high = high;
4128 smp_wmb();
4129
4130 pcp->batch = batch;
4131}
4132
3664033c 4133/* a companion to pageset_set_high() */
4008bab7
CS
4134static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4135{
8d7a8fa9 4136 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4137}
4138
88c90dbc 4139static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4140{
4141 struct per_cpu_pages *pcp;
5f8dcc21 4142 int migratetype;
2caaad41 4143
1c6fe946
MD
4144 memset(p, 0, sizeof(*p));
4145
3dfa5721 4146 pcp = &p->pcp;
2caaad41 4147 pcp->count = 0;
5f8dcc21
MG
4148 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4149 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4150}
4151
88c90dbc
CS
4152static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4153{
4154 pageset_init(p);
4155 pageset_set_batch(p, batch);
4156}
4157
8ad4b1fb 4158/*
3664033c 4159 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4160 * to the value high for the pageset p.
4161 */
3664033c 4162static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4163 unsigned long high)
4164{
8d7a8fa9
CS
4165 unsigned long batch = max(1UL, high / 4);
4166 if ((high / 4) > (PAGE_SHIFT * 8))
4167 batch = PAGE_SHIFT * 8;
8ad4b1fb 4168
8d7a8fa9 4169 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4170}
4171
169f6c19
CS
4172static void __meminit pageset_set_high_and_batch(struct zone *zone,
4173 struct per_cpu_pageset *pcp)
56cef2b8 4174{
56cef2b8 4175 if (percpu_pagelist_fraction)
3664033c 4176 pageset_set_high(pcp,
56cef2b8
CS
4177 (zone->managed_pages /
4178 percpu_pagelist_fraction));
4179 else
4180 pageset_set_batch(pcp, zone_batchsize(zone));
4181}
4182
169f6c19
CS
4183static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4184{
4185 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4186
4187 pageset_init(pcp);
4188 pageset_set_high_and_batch(zone, pcp);
4189}
4190
4ed7e022 4191static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4192{
4193 int cpu;
319774e2 4194 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4195 for_each_possible_cpu(cpu)
4196 zone_pageset_init(zone, cpu);
319774e2
WF
4197}
4198
2caaad41 4199/*
99dcc3e5
CL
4200 * Allocate per cpu pagesets and initialize them.
4201 * Before this call only boot pagesets were available.
e7c8d5c9 4202 */
99dcc3e5 4203void __init setup_per_cpu_pageset(void)
e7c8d5c9 4204{
99dcc3e5 4205 struct zone *zone;
e7c8d5c9 4206
319774e2
WF
4207 for_each_populated_zone(zone)
4208 setup_zone_pageset(zone);
e7c8d5c9
CL
4209}
4210
577a32f6 4211static noinline __init_refok
cca448fe 4212int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4213{
4214 int i;
cca448fe 4215 size_t alloc_size;
ed8ece2e
DH
4216
4217 /*
4218 * The per-page waitqueue mechanism uses hashed waitqueues
4219 * per zone.
4220 */
02b694de
YG
4221 zone->wait_table_hash_nr_entries =
4222 wait_table_hash_nr_entries(zone_size_pages);
4223 zone->wait_table_bits =
4224 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4225 alloc_size = zone->wait_table_hash_nr_entries
4226 * sizeof(wait_queue_head_t);
4227
cd94b9db 4228 if (!slab_is_available()) {
cca448fe 4229 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4230 memblock_virt_alloc_node_nopanic(
4231 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4232 } else {
4233 /*
4234 * This case means that a zone whose size was 0 gets new memory
4235 * via memory hot-add.
4236 * But it may be the case that a new node was hot-added. In
4237 * this case vmalloc() will not be able to use this new node's
4238 * memory - this wait_table must be initialized to use this new
4239 * node itself as well.
4240 * To use this new node's memory, further consideration will be
4241 * necessary.
4242 */
8691f3a7 4243 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4244 }
4245 if (!zone->wait_table)
4246 return -ENOMEM;
ed8ece2e 4247
b8af2941 4248 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4249 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4250
4251 return 0;
ed8ece2e
DH
4252}
4253
c09b4240 4254static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4255{
99dcc3e5
CL
4256 /*
4257 * per cpu subsystem is not up at this point. The following code
4258 * relies on the ability of the linker to provide the
4259 * offset of a (static) per cpu variable into the per cpu area.
4260 */
4261 zone->pageset = &boot_pageset;
ed8ece2e 4262
b38a8725 4263 if (populated_zone(zone))
99dcc3e5
CL
4264 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4265 zone->name, zone->present_pages,
4266 zone_batchsize(zone));
ed8ece2e
DH
4267}
4268
4ed7e022 4269int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4270 unsigned long zone_start_pfn,
a2f3aa02
DH
4271 unsigned long size,
4272 enum memmap_context context)
ed8ece2e
DH
4273{
4274 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4275 int ret;
4276 ret = zone_wait_table_init(zone, size);
4277 if (ret)
4278 return ret;
ed8ece2e
DH
4279 pgdat->nr_zones = zone_idx(zone) + 1;
4280
ed8ece2e
DH
4281 zone->zone_start_pfn = zone_start_pfn;
4282
708614e6
MG
4283 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4284 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4285 pgdat->node_id,
4286 (unsigned long)zone_idx(zone),
4287 zone_start_pfn, (zone_start_pfn + size));
4288
1e548deb 4289 zone_init_free_lists(zone);
718127cc
YG
4290
4291 return 0;
ed8ece2e
DH
4292}
4293
0ee332c1 4294#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4295#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4296/*
4297 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4298 * Architectures may implement their own version but if add_active_range()
4299 * was used and there are no special requirements, this is a convenient
4300 * alternative
4301 */
f2dbcfa7 4302int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4303{
c13291a5 4304 unsigned long start_pfn, end_pfn;
e76b63f8 4305 int nid;
7c243c71
RA
4306 /*
4307 * NOTE: The following SMP-unsafe globals are only used early in boot
4308 * when the kernel is running single-threaded.
4309 */
4310 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4311 static int __meminitdata last_nid;
4312
4313 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4314 return last_nid;
c713216d 4315
e76b63f8
YL
4316 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4317 if (nid != -1) {
4318 last_start_pfn = start_pfn;
4319 last_end_pfn = end_pfn;
4320 last_nid = nid;
4321 }
4322
4323 return nid;
c713216d
MG
4324}
4325#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4326
f2dbcfa7
KH
4327int __meminit early_pfn_to_nid(unsigned long pfn)
4328{
cc2559bc
KH
4329 int nid;
4330
4331 nid = __early_pfn_to_nid(pfn);
4332 if (nid >= 0)
4333 return nid;
4334 /* just returns 0 */
4335 return 0;
f2dbcfa7
KH
4336}
4337
cc2559bc
KH
4338#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4339bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4340{
4341 int nid;
4342
4343 nid = __early_pfn_to_nid(pfn);
4344 if (nid >= 0 && nid != node)
4345 return false;
4346 return true;
4347}
4348#endif
f2dbcfa7 4349
c713216d 4350/**
6782832e 4351 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4352 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4353 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4354 *
4355 * If an architecture guarantees that all ranges registered with
4356 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4357 * this function may be used instead of calling memblock_free_early_nid()
4358 * manually.
c713216d 4359 */
c13291a5 4360void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4361{
c13291a5
TH
4362 unsigned long start_pfn, end_pfn;
4363 int i, this_nid;
edbe7d23 4364
c13291a5
TH
4365 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4366 start_pfn = min(start_pfn, max_low_pfn);
4367 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4368
c13291a5 4369 if (start_pfn < end_pfn)
6782832e
SS
4370 memblock_free_early_nid(PFN_PHYS(start_pfn),
4371 (end_pfn - start_pfn) << PAGE_SHIFT,
4372 this_nid);
edbe7d23 4373 }
edbe7d23 4374}
edbe7d23 4375
c713216d
MG
4376/**
4377 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4378 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4379 *
4380 * If an architecture guarantees that all ranges registered with
4381 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4382 * function may be used instead of calling memory_present() manually.
c713216d
MG
4383 */
4384void __init sparse_memory_present_with_active_regions(int nid)
4385{
c13291a5
TH
4386 unsigned long start_pfn, end_pfn;
4387 int i, this_nid;
c713216d 4388
c13291a5
TH
4389 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4390 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4391}
4392
4393/**
4394 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4395 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4396 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4397 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4398 *
4399 * It returns the start and end page frame of a node based on information
4400 * provided by an arch calling add_active_range(). If called for a node
4401 * with no available memory, a warning is printed and the start and end
88ca3b94 4402 * PFNs will be 0.
c713216d 4403 */
a3142c8e 4404void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4405 unsigned long *start_pfn, unsigned long *end_pfn)
4406{
c13291a5 4407 unsigned long this_start_pfn, this_end_pfn;
c713216d 4408 int i;
c13291a5 4409
c713216d
MG
4410 *start_pfn = -1UL;
4411 *end_pfn = 0;
4412
c13291a5
TH
4413 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4414 *start_pfn = min(*start_pfn, this_start_pfn);
4415 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4416 }
4417
633c0666 4418 if (*start_pfn == -1UL)
c713216d 4419 *start_pfn = 0;
c713216d
MG
4420}
4421
2a1e274a
MG
4422/*
4423 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4424 * assumption is made that zones within a node are ordered in monotonic
4425 * increasing memory addresses so that the "highest" populated zone is used
4426 */
b69a7288 4427static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4428{
4429 int zone_index;
4430 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4431 if (zone_index == ZONE_MOVABLE)
4432 continue;
4433
4434 if (arch_zone_highest_possible_pfn[zone_index] >
4435 arch_zone_lowest_possible_pfn[zone_index])
4436 break;
4437 }
4438
4439 VM_BUG_ON(zone_index == -1);
4440 movable_zone = zone_index;
4441}
4442
4443/*
4444 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4445 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4446 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4447 * in each node depending on the size of each node and how evenly kernelcore
4448 * is distributed. This helper function adjusts the zone ranges
4449 * provided by the architecture for a given node by using the end of the
4450 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4451 * zones within a node are in order of monotonic increases memory addresses
4452 */
b69a7288 4453static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4454 unsigned long zone_type,
4455 unsigned long node_start_pfn,
4456 unsigned long node_end_pfn,
4457 unsigned long *zone_start_pfn,
4458 unsigned long *zone_end_pfn)
4459{
4460 /* Only adjust if ZONE_MOVABLE is on this node */
4461 if (zone_movable_pfn[nid]) {
4462 /* Size ZONE_MOVABLE */
4463 if (zone_type == ZONE_MOVABLE) {
4464 *zone_start_pfn = zone_movable_pfn[nid];
4465 *zone_end_pfn = min(node_end_pfn,
4466 arch_zone_highest_possible_pfn[movable_zone]);
4467
4468 /* Adjust for ZONE_MOVABLE starting within this range */
4469 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4470 *zone_end_pfn > zone_movable_pfn[nid]) {
4471 *zone_end_pfn = zone_movable_pfn[nid];
4472
4473 /* Check if this whole range is within ZONE_MOVABLE */
4474 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4475 *zone_start_pfn = *zone_end_pfn;
4476 }
4477}
4478
c713216d
MG
4479/*
4480 * Return the number of pages a zone spans in a node, including holes
4481 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4482 */
6ea6e688 4483static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4484 unsigned long zone_type,
7960aedd
ZY
4485 unsigned long node_start_pfn,
4486 unsigned long node_end_pfn,
c713216d
MG
4487 unsigned long *ignored)
4488{
c713216d
MG
4489 unsigned long zone_start_pfn, zone_end_pfn;
4490
7960aedd 4491 /* Get the start and end of the zone */
c713216d
MG
4492 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4493 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4494 adjust_zone_range_for_zone_movable(nid, zone_type,
4495 node_start_pfn, node_end_pfn,
4496 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4497
4498 /* Check that this node has pages within the zone's required range */
4499 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4500 return 0;
4501
4502 /* Move the zone boundaries inside the node if necessary */
4503 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4504 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4505
4506 /* Return the spanned pages */
4507 return zone_end_pfn - zone_start_pfn;
4508}
4509
4510/*
4511 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4512 * then all holes in the requested range will be accounted for.
c713216d 4513 */
32996250 4514unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4515 unsigned long range_start_pfn,
4516 unsigned long range_end_pfn)
4517{
96e907d1
TH
4518 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4519 unsigned long start_pfn, end_pfn;
4520 int i;
c713216d 4521
96e907d1
TH
4522 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4523 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4524 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4525 nr_absent -= end_pfn - start_pfn;
c713216d 4526 }
96e907d1 4527 return nr_absent;
c713216d
MG
4528}
4529
4530/**
4531 * absent_pages_in_range - Return number of page frames in holes within a range
4532 * @start_pfn: The start PFN to start searching for holes
4533 * @end_pfn: The end PFN to stop searching for holes
4534 *
88ca3b94 4535 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4536 */
4537unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4538 unsigned long end_pfn)
4539{
4540 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4541}
4542
4543/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4544static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4545 unsigned long zone_type,
7960aedd
ZY
4546 unsigned long node_start_pfn,
4547 unsigned long node_end_pfn,
c713216d
MG
4548 unsigned long *ignored)
4549{
96e907d1
TH
4550 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4551 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4552 unsigned long zone_start_pfn, zone_end_pfn;
4553
96e907d1
TH
4554 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4555 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4556
2a1e274a
MG
4557 adjust_zone_range_for_zone_movable(nid, zone_type,
4558 node_start_pfn, node_end_pfn,
4559 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4560 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4561}
0e0b864e 4562
0ee332c1 4563#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4564static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4565 unsigned long zone_type,
7960aedd
ZY
4566 unsigned long node_start_pfn,
4567 unsigned long node_end_pfn,
c713216d
MG
4568 unsigned long *zones_size)
4569{
4570 return zones_size[zone_type];
4571}
4572
6ea6e688 4573static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4574 unsigned long zone_type,
7960aedd
ZY
4575 unsigned long node_start_pfn,
4576 unsigned long node_end_pfn,
c713216d
MG
4577 unsigned long *zholes_size)
4578{
4579 if (!zholes_size)
4580 return 0;
4581
4582 return zholes_size[zone_type];
4583}
20e6926d 4584
0ee332c1 4585#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4586
a3142c8e 4587static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4588 unsigned long node_start_pfn,
4589 unsigned long node_end_pfn,
4590 unsigned long *zones_size,
4591 unsigned long *zholes_size)
c713216d
MG
4592{
4593 unsigned long realtotalpages, totalpages = 0;
4594 enum zone_type i;
4595
4596 for (i = 0; i < MAX_NR_ZONES; i++)
4597 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4598 node_start_pfn,
4599 node_end_pfn,
4600 zones_size);
c713216d
MG
4601 pgdat->node_spanned_pages = totalpages;
4602
4603 realtotalpages = totalpages;
4604 for (i = 0; i < MAX_NR_ZONES; i++)
4605 realtotalpages -=
4606 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4607 node_start_pfn, node_end_pfn,
4608 zholes_size);
c713216d
MG
4609 pgdat->node_present_pages = realtotalpages;
4610 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4611 realtotalpages);
4612}
4613
835c134e
MG
4614#ifndef CONFIG_SPARSEMEM
4615/*
4616 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4617 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4618 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4619 * round what is now in bits to nearest long in bits, then return it in
4620 * bytes.
4621 */
7c45512d 4622static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4623{
4624 unsigned long usemapsize;
4625
7c45512d 4626 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4627 usemapsize = roundup(zonesize, pageblock_nr_pages);
4628 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4629 usemapsize *= NR_PAGEBLOCK_BITS;
4630 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4631
4632 return usemapsize / 8;
4633}
4634
4635static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4636 struct zone *zone,
4637 unsigned long zone_start_pfn,
4638 unsigned long zonesize)
835c134e 4639{
7c45512d 4640 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4641 zone->pageblock_flags = NULL;
58a01a45 4642 if (usemapsize)
6782832e
SS
4643 zone->pageblock_flags =
4644 memblock_virt_alloc_node_nopanic(usemapsize,
4645 pgdat->node_id);
835c134e
MG
4646}
4647#else
7c45512d
LT
4648static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4649 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4650#endif /* CONFIG_SPARSEMEM */
4651
d9c23400 4652#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4653
d9c23400 4654/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4655void __paginginit set_pageblock_order(void)
d9c23400 4656{
955c1cd7
AM
4657 unsigned int order;
4658
d9c23400
MG
4659 /* Check that pageblock_nr_pages has not already been setup */
4660 if (pageblock_order)
4661 return;
4662
955c1cd7
AM
4663 if (HPAGE_SHIFT > PAGE_SHIFT)
4664 order = HUGETLB_PAGE_ORDER;
4665 else
4666 order = MAX_ORDER - 1;
4667
d9c23400
MG
4668 /*
4669 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4670 * This value may be variable depending on boot parameters on IA64 and
4671 * powerpc.
d9c23400
MG
4672 */
4673 pageblock_order = order;
4674}
4675#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4676
ba72cb8c
MG
4677/*
4678 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4679 * is unused as pageblock_order is set at compile-time. See
4680 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4681 * the kernel config
ba72cb8c 4682 */
15ca220e 4683void __paginginit set_pageblock_order(void)
ba72cb8c 4684{
ba72cb8c 4685}
d9c23400
MG
4686
4687#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4688
01cefaef
JL
4689static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4690 unsigned long present_pages)
4691{
4692 unsigned long pages = spanned_pages;
4693
4694 /*
4695 * Provide a more accurate estimation if there are holes within
4696 * the zone and SPARSEMEM is in use. If there are holes within the
4697 * zone, each populated memory region may cost us one or two extra
4698 * memmap pages due to alignment because memmap pages for each
4699 * populated regions may not naturally algined on page boundary.
4700 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4701 */
4702 if (spanned_pages > present_pages + (present_pages >> 4) &&
4703 IS_ENABLED(CONFIG_SPARSEMEM))
4704 pages = present_pages;
4705
4706 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4707}
4708
1da177e4
LT
4709/*
4710 * Set up the zone data structures:
4711 * - mark all pages reserved
4712 * - mark all memory queues empty
4713 * - clear the memory bitmaps
6527af5d
MK
4714 *
4715 * NOTE: pgdat should get zeroed by caller.
1da177e4 4716 */
b5a0e011 4717static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4718 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4719 unsigned long *zones_size, unsigned long *zholes_size)
4720{
2f1b6248 4721 enum zone_type j;
ed8ece2e 4722 int nid = pgdat->node_id;
1da177e4 4723 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4724 int ret;
1da177e4 4725
208d54e5 4726 pgdat_resize_init(pgdat);
8177a420
AA
4727#ifdef CONFIG_NUMA_BALANCING
4728 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4729 pgdat->numabalancing_migrate_nr_pages = 0;
4730 pgdat->numabalancing_migrate_next_window = jiffies;
4731#endif
1da177e4 4732 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4733 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4734 pgdat_page_cgroup_init(pgdat);
5f63b720 4735
1da177e4
LT
4736 for (j = 0; j < MAX_NR_ZONES; j++) {
4737 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4738 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4739
7960aedd
ZY
4740 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4741 node_end_pfn, zones_size);
9feedc9d 4742 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4743 node_start_pfn,
4744 node_end_pfn,
c713216d 4745 zholes_size);
1da177e4 4746
0e0b864e 4747 /*
9feedc9d 4748 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4749 * is used by this zone for memmap. This affects the watermark
4750 * and per-cpu initialisations
4751 */
01cefaef 4752 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4753 if (freesize >= memmap_pages) {
4754 freesize -= memmap_pages;
5594c8c8
YL
4755 if (memmap_pages)
4756 printk(KERN_DEBUG
4757 " %s zone: %lu pages used for memmap\n",
4758 zone_names[j], memmap_pages);
0e0b864e
MG
4759 } else
4760 printk(KERN_WARNING
9feedc9d
JL
4761 " %s zone: %lu pages exceeds freesize %lu\n",
4762 zone_names[j], memmap_pages, freesize);
0e0b864e 4763
6267276f 4764 /* Account for reserved pages */
9feedc9d
JL
4765 if (j == 0 && freesize > dma_reserve) {
4766 freesize -= dma_reserve;
d903ef9f 4767 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4768 zone_names[0], dma_reserve);
0e0b864e
MG
4769 }
4770
98d2b0eb 4771 if (!is_highmem_idx(j))
9feedc9d 4772 nr_kernel_pages += freesize;
01cefaef
JL
4773 /* Charge for highmem memmap if there are enough kernel pages */
4774 else if (nr_kernel_pages > memmap_pages * 2)
4775 nr_kernel_pages -= memmap_pages;
9feedc9d 4776 nr_all_pages += freesize;
1da177e4
LT
4777
4778 zone->spanned_pages = size;
306f2e9e 4779 zone->present_pages = realsize;
9feedc9d
JL
4780 /*
4781 * Set an approximate value for lowmem here, it will be adjusted
4782 * when the bootmem allocator frees pages into the buddy system.
4783 * And all highmem pages will be managed by the buddy system.
4784 */
4785 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4786#ifdef CONFIG_NUMA
d5f541ed 4787 zone->node = nid;
9feedc9d 4788 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4789 / 100;
9feedc9d 4790 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4791#endif
1da177e4
LT
4792 zone->name = zone_names[j];
4793 spin_lock_init(&zone->lock);
4794 spin_lock_init(&zone->lru_lock);
bdc8cb98 4795 zone_seqlock_init(zone);
1da177e4 4796 zone->zone_pgdat = pgdat;
ed8ece2e 4797 zone_pcp_init(zone);
81c0a2bb
JW
4798
4799 /* For bootup, initialized properly in watermark setup */
4800 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4801
bea8c150 4802 lruvec_init(&zone->lruvec);
1da177e4
LT
4803 if (!size)
4804 continue;
4805
955c1cd7 4806 set_pageblock_order();
7c45512d 4807 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4808 ret = init_currently_empty_zone(zone, zone_start_pfn,
4809 size, MEMMAP_EARLY);
718127cc 4810 BUG_ON(ret);
76cdd58e 4811 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4812 zone_start_pfn += size;
1da177e4
LT
4813 }
4814}
4815
577a32f6 4816static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4817{
1da177e4
LT
4818 /* Skip empty nodes */
4819 if (!pgdat->node_spanned_pages)
4820 return;
4821
d41dee36 4822#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4823 /* ia64 gets its own node_mem_map, before this, without bootmem */
4824 if (!pgdat->node_mem_map) {
e984bb43 4825 unsigned long size, start, end;
d41dee36
AW
4826 struct page *map;
4827
e984bb43
BP
4828 /*
4829 * The zone's endpoints aren't required to be MAX_ORDER
4830 * aligned but the node_mem_map endpoints must be in order
4831 * for the buddy allocator to function correctly.
4832 */
4833 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4834 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4835 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4836 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4837 map = alloc_remap(pgdat->node_id, size);
4838 if (!map)
6782832e
SS
4839 map = memblock_virt_alloc_node_nopanic(size,
4840 pgdat->node_id);
e984bb43 4841 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4842 }
12d810c1 4843#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4844 /*
4845 * With no DISCONTIG, the global mem_map is just set as node 0's
4846 */
c713216d 4847 if (pgdat == NODE_DATA(0)) {
1da177e4 4848 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4849#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4850 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4851 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4852#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4853 }
1da177e4 4854#endif
d41dee36 4855#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4856}
4857
9109fb7b
JW
4858void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4859 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4860{
9109fb7b 4861 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4862 unsigned long start_pfn = 0;
4863 unsigned long end_pfn = 0;
9109fb7b 4864
88fdf75d 4865 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4866 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4867
1da177e4
LT
4868 pgdat->node_id = nid;
4869 pgdat->node_start_pfn = node_start_pfn;
957f822a 4870 init_zone_allows_reclaim(nid);
7960aedd
ZY
4871#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4872 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4873#endif
4874 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4875 zones_size, zholes_size);
1da177e4
LT
4876
4877 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4878#ifdef CONFIG_FLAT_NODE_MEM_MAP
4879 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4880 nid, (unsigned long)pgdat,
4881 (unsigned long)pgdat->node_mem_map);
4882#endif
1da177e4 4883
7960aedd
ZY
4884 free_area_init_core(pgdat, start_pfn, end_pfn,
4885 zones_size, zholes_size);
1da177e4
LT
4886}
4887
0ee332c1 4888#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4889
4890#if MAX_NUMNODES > 1
4891/*
4892 * Figure out the number of possible node ids.
4893 */
f9872caf 4894void __init setup_nr_node_ids(void)
418508c1
MS
4895{
4896 unsigned int node;
4897 unsigned int highest = 0;
4898
4899 for_each_node_mask(node, node_possible_map)
4900 highest = node;
4901 nr_node_ids = highest + 1;
4902}
418508c1
MS
4903#endif
4904
1e01979c
TH
4905/**
4906 * node_map_pfn_alignment - determine the maximum internode alignment
4907 *
4908 * This function should be called after node map is populated and sorted.
4909 * It calculates the maximum power of two alignment which can distinguish
4910 * all the nodes.
4911 *
4912 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4913 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4914 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4915 * shifted, 1GiB is enough and this function will indicate so.
4916 *
4917 * This is used to test whether pfn -> nid mapping of the chosen memory
4918 * model has fine enough granularity to avoid incorrect mapping for the
4919 * populated node map.
4920 *
4921 * Returns the determined alignment in pfn's. 0 if there is no alignment
4922 * requirement (single node).
4923 */
4924unsigned long __init node_map_pfn_alignment(void)
4925{
4926 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4927 unsigned long start, end, mask;
1e01979c 4928 int last_nid = -1;
c13291a5 4929 int i, nid;
1e01979c 4930
c13291a5 4931 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4932 if (!start || last_nid < 0 || last_nid == nid) {
4933 last_nid = nid;
4934 last_end = end;
4935 continue;
4936 }
4937
4938 /*
4939 * Start with a mask granular enough to pin-point to the
4940 * start pfn and tick off bits one-by-one until it becomes
4941 * too coarse to separate the current node from the last.
4942 */
4943 mask = ~((1 << __ffs(start)) - 1);
4944 while (mask && last_end <= (start & (mask << 1)))
4945 mask <<= 1;
4946
4947 /* accumulate all internode masks */
4948 accl_mask |= mask;
4949 }
4950
4951 /* convert mask to number of pages */
4952 return ~accl_mask + 1;
4953}
4954
a6af2bc3 4955/* Find the lowest pfn for a node */
b69a7288 4956static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4957{
a6af2bc3 4958 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4959 unsigned long start_pfn;
4960 int i;
1abbfb41 4961
c13291a5
TH
4962 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4963 min_pfn = min(min_pfn, start_pfn);
c713216d 4964
a6af2bc3
MG
4965 if (min_pfn == ULONG_MAX) {
4966 printk(KERN_WARNING
2bc0d261 4967 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4968 return 0;
4969 }
4970
4971 return min_pfn;
c713216d
MG
4972}
4973
4974/**
4975 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4976 *
4977 * It returns the minimum PFN based on information provided via
88ca3b94 4978 * add_active_range().
c713216d
MG
4979 */
4980unsigned long __init find_min_pfn_with_active_regions(void)
4981{
4982 return find_min_pfn_for_node(MAX_NUMNODES);
4983}
4984
37b07e41
LS
4985/*
4986 * early_calculate_totalpages()
4987 * Sum pages in active regions for movable zone.
4b0ef1fe 4988 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4989 */
484f51f8 4990static unsigned long __init early_calculate_totalpages(void)
7e63efef 4991{
7e63efef 4992 unsigned long totalpages = 0;
c13291a5
TH
4993 unsigned long start_pfn, end_pfn;
4994 int i, nid;
4995
4996 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4997 unsigned long pages = end_pfn - start_pfn;
7e63efef 4998
37b07e41
LS
4999 totalpages += pages;
5000 if (pages)
4b0ef1fe 5001 node_set_state(nid, N_MEMORY);
37b07e41 5002 }
b8af2941 5003 return totalpages;
7e63efef
MG
5004}
5005
2a1e274a
MG
5006/*
5007 * Find the PFN the Movable zone begins in each node. Kernel memory
5008 * is spread evenly between nodes as long as the nodes have enough
5009 * memory. When they don't, some nodes will have more kernelcore than
5010 * others
5011 */
b224ef85 5012static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5013{
5014 int i, nid;
5015 unsigned long usable_startpfn;
5016 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5017 /* save the state before borrow the nodemask */
4b0ef1fe 5018 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5019 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5020 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
b2f3eebe
TC
5021 struct memblock_type *type = &memblock.memory;
5022
5023 /* Need to find movable_zone earlier when movable_node is specified. */
5024 find_usable_zone_for_movable();
5025
5026 /*
5027 * If movable_node is specified, ignore kernelcore and movablecore
5028 * options.
5029 */
5030 if (movable_node_is_enabled()) {
5031 for (i = 0; i < type->cnt; i++) {
5032 if (!memblock_is_hotpluggable(&type->regions[i]))
5033 continue;
5034
5035 nid = type->regions[i].nid;
5036
5037 usable_startpfn = PFN_DOWN(type->regions[i].base);
5038 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5039 min(usable_startpfn, zone_movable_pfn[nid]) :
5040 usable_startpfn;
5041 }
5042
5043 goto out2;
5044 }
2a1e274a 5045
7e63efef 5046 /*
b2f3eebe 5047 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5048 * kernelcore that corresponds so that memory usable for
5049 * any allocation type is evenly spread. If both kernelcore
5050 * and movablecore are specified, then the value of kernelcore
5051 * will be used for required_kernelcore if it's greater than
5052 * what movablecore would have allowed.
5053 */
5054 if (required_movablecore) {
7e63efef
MG
5055 unsigned long corepages;
5056
5057 /*
5058 * Round-up so that ZONE_MOVABLE is at least as large as what
5059 * was requested by the user
5060 */
5061 required_movablecore =
5062 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5063 corepages = totalpages - required_movablecore;
5064
5065 required_kernelcore = max(required_kernelcore, corepages);
5066 }
5067
20e6926d
YL
5068 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5069 if (!required_kernelcore)
66918dcd 5070 goto out;
2a1e274a
MG
5071
5072 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5073 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5074
5075restart:
5076 /* Spread kernelcore memory as evenly as possible throughout nodes */
5077 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5078 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5079 unsigned long start_pfn, end_pfn;
5080
2a1e274a
MG
5081 /*
5082 * Recalculate kernelcore_node if the division per node
5083 * now exceeds what is necessary to satisfy the requested
5084 * amount of memory for the kernel
5085 */
5086 if (required_kernelcore < kernelcore_node)
5087 kernelcore_node = required_kernelcore / usable_nodes;
5088
5089 /*
5090 * As the map is walked, we track how much memory is usable
5091 * by the kernel using kernelcore_remaining. When it is
5092 * 0, the rest of the node is usable by ZONE_MOVABLE
5093 */
5094 kernelcore_remaining = kernelcore_node;
5095
5096 /* Go through each range of PFNs within this node */
c13291a5 5097 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5098 unsigned long size_pages;
5099
c13291a5 5100 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5101 if (start_pfn >= end_pfn)
5102 continue;
5103
5104 /* Account for what is only usable for kernelcore */
5105 if (start_pfn < usable_startpfn) {
5106 unsigned long kernel_pages;
5107 kernel_pages = min(end_pfn, usable_startpfn)
5108 - start_pfn;
5109
5110 kernelcore_remaining -= min(kernel_pages,
5111 kernelcore_remaining);
5112 required_kernelcore -= min(kernel_pages,
5113 required_kernelcore);
5114
5115 /* Continue if range is now fully accounted */
5116 if (end_pfn <= usable_startpfn) {
5117
5118 /*
5119 * Push zone_movable_pfn to the end so
5120 * that if we have to rebalance
5121 * kernelcore across nodes, we will
5122 * not double account here
5123 */
5124 zone_movable_pfn[nid] = end_pfn;
5125 continue;
5126 }
5127 start_pfn = usable_startpfn;
5128 }
5129
5130 /*
5131 * The usable PFN range for ZONE_MOVABLE is from
5132 * start_pfn->end_pfn. Calculate size_pages as the
5133 * number of pages used as kernelcore
5134 */
5135 size_pages = end_pfn - start_pfn;
5136 if (size_pages > kernelcore_remaining)
5137 size_pages = kernelcore_remaining;
5138 zone_movable_pfn[nid] = start_pfn + size_pages;
5139
5140 /*
5141 * Some kernelcore has been met, update counts and
5142 * break if the kernelcore for this node has been
b8af2941 5143 * satisfied
2a1e274a
MG
5144 */
5145 required_kernelcore -= min(required_kernelcore,
5146 size_pages);
5147 kernelcore_remaining -= size_pages;
5148 if (!kernelcore_remaining)
5149 break;
5150 }
5151 }
5152
5153 /*
5154 * If there is still required_kernelcore, we do another pass with one
5155 * less node in the count. This will push zone_movable_pfn[nid] further
5156 * along on the nodes that still have memory until kernelcore is
b8af2941 5157 * satisfied
2a1e274a
MG
5158 */
5159 usable_nodes--;
5160 if (usable_nodes && required_kernelcore > usable_nodes)
5161 goto restart;
5162
b2f3eebe 5163out2:
2a1e274a
MG
5164 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5165 for (nid = 0; nid < MAX_NUMNODES; nid++)
5166 zone_movable_pfn[nid] =
5167 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5168
20e6926d 5169out:
66918dcd 5170 /* restore the node_state */
4b0ef1fe 5171 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5172}
5173
4b0ef1fe
LJ
5174/* Any regular or high memory on that node ? */
5175static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5176{
37b07e41
LS
5177 enum zone_type zone_type;
5178
4b0ef1fe
LJ
5179 if (N_MEMORY == N_NORMAL_MEMORY)
5180 return;
5181
5182 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5183 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5184 if (populated_zone(zone)) {
4b0ef1fe
LJ
5185 node_set_state(nid, N_HIGH_MEMORY);
5186 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5187 zone_type <= ZONE_NORMAL)
5188 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5189 break;
5190 }
37b07e41 5191 }
37b07e41
LS
5192}
5193
c713216d
MG
5194/**
5195 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5196 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5197 *
5198 * This will call free_area_init_node() for each active node in the system.
5199 * Using the page ranges provided by add_active_range(), the size of each
5200 * zone in each node and their holes is calculated. If the maximum PFN
5201 * between two adjacent zones match, it is assumed that the zone is empty.
5202 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5203 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5204 * starts where the previous one ended. For example, ZONE_DMA32 starts
5205 * at arch_max_dma_pfn.
5206 */
5207void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5208{
c13291a5
TH
5209 unsigned long start_pfn, end_pfn;
5210 int i, nid;
a6af2bc3 5211
c713216d
MG
5212 /* Record where the zone boundaries are */
5213 memset(arch_zone_lowest_possible_pfn, 0,
5214 sizeof(arch_zone_lowest_possible_pfn));
5215 memset(arch_zone_highest_possible_pfn, 0,
5216 sizeof(arch_zone_highest_possible_pfn));
5217 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5218 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5219 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5220 if (i == ZONE_MOVABLE)
5221 continue;
c713216d
MG
5222 arch_zone_lowest_possible_pfn[i] =
5223 arch_zone_highest_possible_pfn[i-1];
5224 arch_zone_highest_possible_pfn[i] =
5225 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5226 }
2a1e274a
MG
5227 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5228 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5229
5230 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5231 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5232 find_zone_movable_pfns_for_nodes();
c713216d 5233
c713216d 5234 /* Print out the zone ranges */
a62e2f4f 5235 printk("Zone ranges:\n");
2a1e274a
MG
5236 for (i = 0; i < MAX_NR_ZONES; i++) {
5237 if (i == ZONE_MOVABLE)
5238 continue;
155cbfc8 5239 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5240 if (arch_zone_lowest_possible_pfn[i] ==
5241 arch_zone_highest_possible_pfn[i])
155cbfc8 5242 printk(KERN_CONT "empty\n");
72f0ba02 5243 else
a62e2f4f
BH
5244 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5245 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5246 (arch_zone_highest_possible_pfn[i]
5247 << PAGE_SHIFT) - 1);
2a1e274a
MG
5248 }
5249
5250 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5251 printk("Movable zone start for each node\n");
2a1e274a
MG
5252 for (i = 0; i < MAX_NUMNODES; i++) {
5253 if (zone_movable_pfn[i])
a62e2f4f
BH
5254 printk(" Node %d: %#010lx\n", i,
5255 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5256 }
c713216d 5257
f2d52fe5 5258 /* Print out the early node map */
a62e2f4f 5259 printk("Early memory node ranges\n");
c13291a5 5260 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5261 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5262 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5263
5264 /* Initialise every node */
708614e6 5265 mminit_verify_pageflags_layout();
8ef82866 5266 setup_nr_node_ids();
c713216d
MG
5267 for_each_online_node(nid) {
5268 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5269 free_area_init_node(nid, NULL,
c713216d 5270 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5271
5272 /* Any memory on that node */
5273 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5274 node_set_state(nid, N_MEMORY);
5275 check_for_memory(pgdat, nid);
c713216d
MG
5276 }
5277}
2a1e274a 5278
7e63efef 5279static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5280{
5281 unsigned long long coremem;
5282 if (!p)
5283 return -EINVAL;
5284
5285 coremem = memparse(p, &p);
7e63efef 5286 *core = coremem >> PAGE_SHIFT;
2a1e274a 5287
7e63efef 5288 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5289 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5290
5291 return 0;
5292}
ed7ed365 5293
7e63efef
MG
5294/*
5295 * kernelcore=size sets the amount of memory for use for allocations that
5296 * cannot be reclaimed or migrated.
5297 */
5298static int __init cmdline_parse_kernelcore(char *p)
5299{
5300 return cmdline_parse_core(p, &required_kernelcore);
5301}
5302
5303/*
5304 * movablecore=size sets the amount of memory for use for allocations that
5305 * can be reclaimed or migrated.
5306 */
5307static int __init cmdline_parse_movablecore(char *p)
5308{
5309 return cmdline_parse_core(p, &required_movablecore);
5310}
5311
ed7ed365 5312early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5313early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5314
0ee332c1 5315#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5316
c3d5f5f0
JL
5317void adjust_managed_page_count(struct page *page, long count)
5318{
5319 spin_lock(&managed_page_count_lock);
5320 page_zone(page)->managed_pages += count;
5321 totalram_pages += count;
3dcc0571
JL
5322#ifdef CONFIG_HIGHMEM
5323 if (PageHighMem(page))
5324 totalhigh_pages += count;
5325#endif
c3d5f5f0
JL
5326 spin_unlock(&managed_page_count_lock);
5327}
3dcc0571 5328EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5329
11199692 5330unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5331{
11199692
JL
5332 void *pos;
5333 unsigned long pages = 0;
69afade7 5334
11199692
JL
5335 start = (void *)PAGE_ALIGN((unsigned long)start);
5336 end = (void *)((unsigned long)end & PAGE_MASK);
5337 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5338 if ((unsigned int)poison <= 0xFF)
11199692
JL
5339 memset(pos, poison, PAGE_SIZE);
5340 free_reserved_page(virt_to_page(pos));
69afade7
JL
5341 }
5342
5343 if (pages && s)
11199692 5344 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5345 s, pages << (PAGE_SHIFT - 10), start, end);
5346
5347 return pages;
5348}
11199692 5349EXPORT_SYMBOL(free_reserved_area);
69afade7 5350
cfa11e08
JL
5351#ifdef CONFIG_HIGHMEM
5352void free_highmem_page(struct page *page)
5353{
5354 __free_reserved_page(page);
5355 totalram_pages++;
7b4b2a0d 5356 page_zone(page)->managed_pages++;
cfa11e08
JL
5357 totalhigh_pages++;
5358}
5359#endif
5360
7ee3d4e8
JL
5361
5362void __init mem_init_print_info(const char *str)
5363{
5364 unsigned long physpages, codesize, datasize, rosize, bss_size;
5365 unsigned long init_code_size, init_data_size;
5366
5367 physpages = get_num_physpages();
5368 codesize = _etext - _stext;
5369 datasize = _edata - _sdata;
5370 rosize = __end_rodata - __start_rodata;
5371 bss_size = __bss_stop - __bss_start;
5372 init_data_size = __init_end - __init_begin;
5373 init_code_size = _einittext - _sinittext;
5374
5375 /*
5376 * Detect special cases and adjust section sizes accordingly:
5377 * 1) .init.* may be embedded into .data sections
5378 * 2) .init.text.* may be out of [__init_begin, __init_end],
5379 * please refer to arch/tile/kernel/vmlinux.lds.S.
5380 * 3) .rodata.* may be embedded into .text or .data sections.
5381 */
5382#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5383 do { \
5384 if (start <= pos && pos < end && size > adj) \
5385 size -= adj; \
5386 } while (0)
7ee3d4e8
JL
5387
5388 adj_init_size(__init_begin, __init_end, init_data_size,
5389 _sinittext, init_code_size);
5390 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5391 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5392 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5393 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5394
5395#undef adj_init_size
5396
5397 printk("Memory: %luK/%luK available "
5398 "(%luK kernel code, %luK rwdata, %luK rodata, "
5399 "%luK init, %luK bss, %luK reserved"
5400#ifdef CONFIG_HIGHMEM
5401 ", %luK highmem"
5402#endif
5403 "%s%s)\n",
5404 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5405 codesize >> 10, datasize >> 10, rosize >> 10,
5406 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5407 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5408#ifdef CONFIG_HIGHMEM
5409 totalhigh_pages << (PAGE_SHIFT-10),
5410#endif
5411 str ? ", " : "", str ? str : "");
5412}
5413
0e0b864e 5414/**
88ca3b94
RD
5415 * set_dma_reserve - set the specified number of pages reserved in the first zone
5416 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5417 *
5418 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5419 * In the DMA zone, a significant percentage may be consumed by kernel image
5420 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5421 * function may optionally be used to account for unfreeable pages in the
5422 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5423 * smaller per-cpu batchsize.
0e0b864e
MG
5424 */
5425void __init set_dma_reserve(unsigned long new_dma_reserve)
5426{
5427 dma_reserve = new_dma_reserve;
5428}
5429
1da177e4
LT
5430void __init free_area_init(unsigned long *zones_size)
5431{
9109fb7b 5432 free_area_init_node(0, zones_size,
1da177e4
LT
5433 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5434}
1da177e4 5435
1da177e4
LT
5436static int page_alloc_cpu_notify(struct notifier_block *self,
5437 unsigned long action, void *hcpu)
5438{
5439 int cpu = (unsigned long)hcpu;
1da177e4 5440
8bb78442 5441 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5442 lru_add_drain_cpu(cpu);
9f8f2172
CL
5443 drain_pages(cpu);
5444
5445 /*
5446 * Spill the event counters of the dead processor
5447 * into the current processors event counters.
5448 * This artificially elevates the count of the current
5449 * processor.
5450 */
f8891e5e 5451 vm_events_fold_cpu(cpu);
9f8f2172
CL
5452
5453 /*
5454 * Zero the differential counters of the dead processor
5455 * so that the vm statistics are consistent.
5456 *
5457 * This is only okay since the processor is dead and cannot
5458 * race with what we are doing.
5459 */
2bb921e5 5460 cpu_vm_stats_fold(cpu);
1da177e4
LT
5461 }
5462 return NOTIFY_OK;
5463}
1da177e4
LT
5464
5465void __init page_alloc_init(void)
5466{
5467 hotcpu_notifier(page_alloc_cpu_notify, 0);
5468}
5469
cb45b0e9
HA
5470/*
5471 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5472 * or min_free_kbytes changes.
5473 */
5474static void calculate_totalreserve_pages(void)
5475{
5476 struct pglist_data *pgdat;
5477 unsigned long reserve_pages = 0;
2f6726e5 5478 enum zone_type i, j;
cb45b0e9
HA
5479
5480 for_each_online_pgdat(pgdat) {
5481 for (i = 0; i < MAX_NR_ZONES; i++) {
5482 struct zone *zone = pgdat->node_zones + i;
5483 unsigned long max = 0;
5484
5485 /* Find valid and maximum lowmem_reserve in the zone */
5486 for (j = i; j < MAX_NR_ZONES; j++) {
5487 if (zone->lowmem_reserve[j] > max)
5488 max = zone->lowmem_reserve[j];
5489 }
5490
41858966
MG
5491 /* we treat the high watermark as reserved pages. */
5492 max += high_wmark_pages(zone);
cb45b0e9 5493
b40da049
JL
5494 if (max > zone->managed_pages)
5495 max = zone->managed_pages;
cb45b0e9 5496 reserve_pages += max;
ab8fabd4
JW
5497 /*
5498 * Lowmem reserves are not available to
5499 * GFP_HIGHUSER page cache allocations and
5500 * kswapd tries to balance zones to their high
5501 * watermark. As a result, neither should be
5502 * regarded as dirtyable memory, to prevent a
5503 * situation where reclaim has to clean pages
5504 * in order to balance the zones.
5505 */
5506 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5507 }
5508 }
ab8fabd4 5509 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5510 totalreserve_pages = reserve_pages;
5511}
5512
1da177e4
LT
5513/*
5514 * setup_per_zone_lowmem_reserve - called whenever
5515 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5516 * has a correct pages reserved value, so an adequate number of
5517 * pages are left in the zone after a successful __alloc_pages().
5518 */
5519static void setup_per_zone_lowmem_reserve(void)
5520{
5521 struct pglist_data *pgdat;
2f6726e5 5522 enum zone_type j, idx;
1da177e4 5523
ec936fc5 5524 for_each_online_pgdat(pgdat) {
1da177e4
LT
5525 for (j = 0; j < MAX_NR_ZONES; j++) {
5526 struct zone *zone = pgdat->node_zones + j;
b40da049 5527 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5528
5529 zone->lowmem_reserve[j] = 0;
5530
2f6726e5
CL
5531 idx = j;
5532 while (idx) {
1da177e4
LT
5533 struct zone *lower_zone;
5534
2f6726e5
CL
5535 idx--;
5536
1da177e4
LT
5537 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5538 sysctl_lowmem_reserve_ratio[idx] = 1;
5539
5540 lower_zone = pgdat->node_zones + idx;
b40da049 5541 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5542 sysctl_lowmem_reserve_ratio[idx];
b40da049 5543 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5544 }
5545 }
5546 }
cb45b0e9
HA
5547
5548 /* update totalreserve_pages */
5549 calculate_totalreserve_pages();
1da177e4
LT
5550}
5551
cfd3da1e 5552static void __setup_per_zone_wmarks(void)
1da177e4
LT
5553{
5554 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5555 unsigned long lowmem_pages = 0;
5556 struct zone *zone;
5557 unsigned long flags;
5558
5559 /* Calculate total number of !ZONE_HIGHMEM pages */
5560 for_each_zone(zone) {
5561 if (!is_highmem(zone))
b40da049 5562 lowmem_pages += zone->managed_pages;
1da177e4
LT
5563 }
5564
5565 for_each_zone(zone) {
ac924c60
AM
5566 u64 tmp;
5567
1125b4e3 5568 spin_lock_irqsave(&zone->lock, flags);
b40da049 5569 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5570 do_div(tmp, lowmem_pages);
1da177e4
LT
5571 if (is_highmem(zone)) {
5572 /*
669ed175
NP
5573 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5574 * need highmem pages, so cap pages_min to a small
5575 * value here.
5576 *
41858966 5577 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5578 * deltas controls asynch page reclaim, and so should
5579 * not be capped for highmem.
1da177e4 5580 */
90ae8d67 5581 unsigned long min_pages;
1da177e4 5582
b40da049 5583 min_pages = zone->managed_pages / 1024;
90ae8d67 5584 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5585 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5586 } else {
669ed175
NP
5587 /*
5588 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5589 * proportionate to the zone's size.
5590 */
41858966 5591 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5592 }
5593
41858966
MG
5594 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5595 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5596
81c0a2bb
JW
5597 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5598 high_wmark_pages(zone) -
5599 low_wmark_pages(zone) -
5600 zone_page_state(zone, NR_ALLOC_BATCH));
5601
56fd56b8 5602 setup_zone_migrate_reserve(zone);
1125b4e3 5603 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5604 }
cb45b0e9
HA
5605
5606 /* update totalreserve_pages */
5607 calculate_totalreserve_pages();
1da177e4
LT
5608}
5609
cfd3da1e
MG
5610/**
5611 * setup_per_zone_wmarks - called when min_free_kbytes changes
5612 * or when memory is hot-{added|removed}
5613 *
5614 * Ensures that the watermark[min,low,high] values for each zone are set
5615 * correctly with respect to min_free_kbytes.
5616 */
5617void setup_per_zone_wmarks(void)
5618{
5619 mutex_lock(&zonelists_mutex);
5620 __setup_per_zone_wmarks();
5621 mutex_unlock(&zonelists_mutex);
5622}
5623
55a4462a 5624/*
556adecb
RR
5625 * The inactive anon list should be small enough that the VM never has to
5626 * do too much work, but large enough that each inactive page has a chance
5627 * to be referenced again before it is swapped out.
5628 *
5629 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5630 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5631 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5632 * the anonymous pages are kept on the inactive list.
5633 *
5634 * total target max
5635 * memory ratio inactive anon
5636 * -------------------------------------
5637 * 10MB 1 5MB
5638 * 100MB 1 50MB
5639 * 1GB 3 250MB
5640 * 10GB 10 0.9GB
5641 * 100GB 31 3GB
5642 * 1TB 101 10GB
5643 * 10TB 320 32GB
5644 */
1b79acc9 5645static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5646{
96cb4df5 5647 unsigned int gb, ratio;
556adecb 5648
96cb4df5 5649 /* Zone size in gigabytes */
b40da049 5650 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5651 if (gb)
556adecb 5652 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5653 else
5654 ratio = 1;
556adecb 5655
96cb4df5
MK
5656 zone->inactive_ratio = ratio;
5657}
556adecb 5658
839a4fcc 5659static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5660{
5661 struct zone *zone;
5662
5663 for_each_zone(zone)
5664 calculate_zone_inactive_ratio(zone);
556adecb
RR
5665}
5666
1da177e4
LT
5667/*
5668 * Initialise min_free_kbytes.
5669 *
5670 * For small machines we want it small (128k min). For large machines
5671 * we want it large (64MB max). But it is not linear, because network
5672 * bandwidth does not increase linearly with machine size. We use
5673 *
b8af2941 5674 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5675 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5676 *
5677 * which yields
5678 *
5679 * 16MB: 512k
5680 * 32MB: 724k
5681 * 64MB: 1024k
5682 * 128MB: 1448k
5683 * 256MB: 2048k
5684 * 512MB: 2896k
5685 * 1024MB: 4096k
5686 * 2048MB: 5792k
5687 * 4096MB: 8192k
5688 * 8192MB: 11584k
5689 * 16384MB: 16384k
5690 */
1b79acc9 5691int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5692{
5693 unsigned long lowmem_kbytes;
5f12733e 5694 int new_min_free_kbytes;
1da177e4
LT
5695
5696 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5697 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5698
5699 if (new_min_free_kbytes > user_min_free_kbytes) {
5700 min_free_kbytes = new_min_free_kbytes;
5701 if (min_free_kbytes < 128)
5702 min_free_kbytes = 128;
5703 if (min_free_kbytes > 65536)
5704 min_free_kbytes = 65536;
5705 } else {
5706 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5707 new_min_free_kbytes, user_min_free_kbytes);
5708 }
bc75d33f 5709 setup_per_zone_wmarks();
a6cccdc3 5710 refresh_zone_stat_thresholds();
1da177e4 5711 setup_per_zone_lowmem_reserve();
556adecb 5712 setup_per_zone_inactive_ratio();
1da177e4
LT
5713 return 0;
5714}
bc75d33f 5715module_init(init_per_zone_wmark_min)
1da177e4
LT
5716
5717/*
b8af2941 5718 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5719 * that we can call two helper functions whenever min_free_kbytes
5720 * changes.
5721 */
b8af2941 5722int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5723 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5724{
8d65af78 5725 proc_dointvec(table, write, buffer, length, ppos);
5f12733e
MH
5726 if (write) {
5727 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5728 setup_per_zone_wmarks();
5f12733e 5729 }
1da177e4
LT
5730 return 0;
5731}
5732
9614634f
CL
5733#ifdef CONFIG_NUMA
5734int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5735 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5736{
5737 struct zone *zone;
5738 int rc;
5739
8d65af78 5740 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5741 if (rc)
5742 return rc;
5743
5744 for_each_zone(zone)
b40da049 5745 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5746 sysctl_min_unmapped_ratio) / 100;
5747 return 0;
5748}
0ff38490
CL
5749
5750int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5751 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5752{
5753 struct zone *zone;
5754 int rc;
5755
8d65af78 5756 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5757 if (rc)
5758 return rc;
5759
5760 for_each_zone(zone)
b40da049 5761 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5762 sysctl_min_slab_ratio) / 100;
5763 return 0;
5764}
9614634f
CL
5765#endif
5766
1da177e4
LT
5767/*
5768 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5769 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5770 * whenever sysctl_lowmem_reserve_ratio changes.
5771 *
5772 * The reserve ratio obviously has absolutely no relation with the
41858966 5773 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5774 * if in function of the boot time zone sizes.
5775 */
5776int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5777 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5778{
8d65af78 5779 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5780 setup_per_zone_lowmem_reserve();
5781 return 0;
5782}
5783
8ad4b1fb
RS
5784/*
5785 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5786 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5787 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5788 */
8ad4b1fb 5789int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5790 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5791{
5792 struct zone *zone;
5793 unsigned int cpu;
5794 int ret;
5795
8d65af78 5796 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5797 if (!write || (ret < 0))
8ad4b1fb 5798 return ret;
c8e251fa
CS
5799
5800 mutex_lock(&pcp_batch_high_lock);
364df0eb 5801 for_each_populated_zone(zone) {
22a7f12b
CS
5802 unsigned long high;
5803 high = zone->managed_pages / percpu_pagelist_fraction;
5804 for_each_possible_cpu(cpu)
3664033c
CS
5805 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5806 high);
8ad4b1fb 5807 }
c8e251fa 5808 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5809 return 0;
5810}
5811
f034b5d4 5812int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5813
5814#ifdef CONFIG_NUMA
5815static int __init set_hashdist(char *str)
5816{
5817 if (!str)
5818 return 0;
5819 hashdist = simple_strtoul(str, &str, 0);
5820 return 1;
5821}
5822__setup("hashdist=", set_hashdist);
5823#endif
5824
5825/*
5826 * allocate a large system hash table from bootmem
5827 * - it is assumed that the hash table must contain an exact power-of-2
5828 * quantity of entries
5829 * - limit is the number of hash buckets, not the total allocation size
5830 */
5831void *__init alloc_large_system_hash(const char *tablename,
5832 unsigned long bucketsize,
5833 unsigned long numentries,
5834 int scale,
5835 int flags,
5836 unsigned int *_hash_shift,
5837 unsigned int *_hash_mask,
31fe62b9
TB
5838 unsigned long low_limit,
5839 unsigned long high_limit)
1da177e4 5840{
31fe62b9 5841 unsigned long long max = high_limit;
1da177e4
LT
5842 unsigned long log2qty, size;
5843 void *table = NULL;
5844
5845 /* allow the kernel cmdline to have a say */
5846 if (!numentries) {
5847 /* round applicable memory size up to nearest megabyte */
04903664 5848 numentries = nr_kernel_pages;
a7e83318
JZ
5849
5850 /* It isn't necessary when PAGE_SIZE >= 1MB */
5851 if (PAGE_SHIFT < 20)
5852 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5853
5854 /* limit to 1 bucket per 2^scale bytes of low memory */
5855 if (scale > PAGE_SHIFT)
5856 numentries >>= (scale - PAGE_SHIFT);
5857 else
5858 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5859
5860 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5861 if (unlikely(flags & HASH_SMALL)) {
5862 /* Makes no sense without HASH_EARLY */
5863 WARN_ON(!(flags & HASH_EARLY));
5864 if (!(numentries >> *_hash_shift)) {
5865 numentries = 1UL << *_hash_shift;
5866 BUG_ON(!numentries);
5867 }
5868 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5869 numentries = PAGE_SIZE / bucketsize;
1da177e4 5870 }
6e692ed3 5871 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5872
5873 /* limit allocation size to 1/16 total memory by default */
5874 if (max == 0) {
5875 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5876 do_div(max, bucketsize);
5877 }
074b8517 5878 max = min(max, 0x80000000ULL);
1da177e4 5879
31fe62b9
TB
5880 if (numentries < low_limit)
5881 numentries = low_limit;
1da177e4
LT
5882 if (numentries > max)
5883 numentries = max;
5884
f0d1b0b3 5885 log2qty = ilog2(numentries);
1da177e4
LT
5886
5887 do {
5888 size = bucketsize << log2qty;
5889 if (flags & HASH_EARLY)
6782832e 5890 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5891 else if (hashdist)
5892 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5893 else {
1037b83b
ED
5894 /*
5895 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5896 * some pages at the end of hash table which
5897 * alloc_pages_exact() automatically does
1037b83b 5898 */
264ef8a9 5899 if (get_order(size) < MAX_ORDER) {
a1dd268c 5900 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5901 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5902 }
1da177e4
LT
5903 }
5904 } while (!table && size > PAGE_SIZE && --log2qty);
5905
5906 if (!table)
5907 panic("Failed to allocate %s hash table\n", tablename);
5908
f241e660 5909 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5910 tablename,
f241e660 5911 (1UL << log2qty),
f0d1b0b3 5912 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5913 size);
5914
5915 if (_hash_shift)
5916 *_hash_shift = log2qty;
5917 if (_hash_mask)
5918 *_hash_mask = (1 << log2qty) - 1;
5919
5920 return table;
5921}
a117e66e 5922
835c134e
MG
5923/* Return a pointer to the bitmap storing bits affecting a block of pages */
5924static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5925 unsigned long pfn)
5926{
5927#ifdef CONFIG_SPARSEMEM
5928 return __pfn_to_section(pfn)->pageblock_flags;
5929#else
5930 return zone->pageblock_flags;
5931#endif /* CONFIG_SPARSEMEM */
5932}
5933
5934static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5935{
5936#ifdef CONFIG_SPARSEMEM
5937 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5938 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5939#else
c060f943 5940 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5941 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5942#endif /* CONFIG_SPARSEMEM */
5943}
5944
5945/**
d9c23400 5946 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5947 * @page: The page within the block of interest
5948 * @start_bitidx: The first bit of interest to retrieve
5949 * @end_bitidx: The last bit of interest
5950 * returns pageblock_bits flags
5951 */
5952unsigned long get_pageblock_flags_group(struct page *page,
5953 int start_bitidx, int end_bitidx)
5954{
5955 struct zone *zone;
5956 unsigned long *bitmap;
5957 unsigned long pfn, bitidx;
5958 unsigned long flags = 0;
5959 unsigned long value = 1;
5960
5961 zone = page_zone(page);
5962 pfn = page_to_pfn(page);
5963 bitmap = get_pageblock_bitmap(zone, pfn);
5964 bitidx = pfn_to_bitidx(zone, pfn);
5965
5966 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5967 if (test_bit(bitidx + start_bitidx, bitmap))
5968 flags |= value;
6220ec78 5969
835c134e
MG
5970 return flags;
5971}
5972
5973/**
d9c23400 5974 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5975 * @page: The page within the block of interest
5976 * @start_bitidx: The first bit of interest
5977 * @end_bitidx: The last bit of interest
5978 * @flags: The flags to set
5979 */
5980void set_pageblock_flags_group(struct page *page, unsigned long flags,
5981 int start_bitidx, int end_bitidx)
5982{
5983 struct zone *zone;
5984 unsigned long *bitmap;
5985 unsigned long pfn, bitidx;
5986 unsigned long value = 1;
5987
5988 zone = page_zone(page);
5989 pfn = page_to_pfn(page);
5990 bitmap = get_pageblock_bitmap(zone, pfn);
5991 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5992 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
5993
5994 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5995 if (flags & value)
5996 __set_bit(bitidx + start_bitidx, bitmap);
5997 else
5998 __clear_bit(bitidx + start_bitidx, bitmap);
5999}
a5d76b54
KH
6000
6001/*
80934513
MK
6002 * This function checks whether pageblock includes unmovable pages or not.
6003 * If @count is not zero, it is okay to include less @count unmovable pages
6004 *
b8af2941 6005 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6006 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6007 * expect this function should be exact.
a5d76b54 6008 */
b023f468
WC
6009bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6010 bool skip_hwpoisoned_pages)
49ac8255
KH
6011{
6012 unsigned long pfn, iter, found;
47118af0
MN
6013 int mt;
6014
49ac8255
KH
6015 /*
6016 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6017 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6018 */
6019 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6020 return false;
47118af0
MN
6021 mt = get_pageblock_migratetype(page);
6022 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6023 return false;
49ac8255
KH
6024
6025 pfn = page_to_pfn(page);
6026 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6027 unsigned long check = pfn + iter;
6028
29723fcc 6029 if (!pfn_valid_within(check))
49ac8255 6030 continue;
29723fcc 6031
49ac8255 6032 page = pfn_to_page(check);
c8721bbb
NH
6033
6034 /*
6035 * Hugepages are not in LRU lists, but they're movable.
6036 * We need not scan over tail pages bacause we don't
6037 * handle each tail page individually in migration.
6038 */
6039 if (PageHuge(page)) {
6040 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6041 continue;
6042 }
6043
97d255c8
MK
6044 /*
6045 * We can't use page_count without pin a page
6046 * because another CPU can free compound page.
6047 * This check already skips compound tails of THP
6048 * because their page->_count is zero at all time.
6049 */
6050 if (!atomic_read(&page->_count)) {
49ac8255
KH
6051 if (PageBuddy(page))
6052 iter += (1 << page_order(page)) - 1;
6053 continue;
6054 }
97d255c8 6055
b023f468
WC
6056 /*
6057 * The HWPoisoned page may be not in buddy system, and
6058 * page_count() is not 0.
6059 */
6060 if (skip_hwpoisoned_pages && PageHWPoison(page))
6061 continue;
6062
49ac8255
KH
6063 if (!PageLRU(page))
6064 found++;
6065 /*
6066 * If there are RECLAIMABLE pages, we need to check it.
6067 * But now, memory offline itself doesn't call shrink_slab()
6068 * and it still to be fixed.
6069 */
6070 /*
6071 * If the page is not RAM, page_count()should be 0.
6072 * we don't need more check. This is an _used_ not-movable page.
6073 *
6074 * The problematic thing here is PG_reserved pages. PG_reserved
6075 * is set to both of a memory hole page and a _used_ kernel
6076 * page at boot.
6077 */
6078 if (found > count)
80934513 6079 return true;
49ac8255 6080 }
80934513 6081 return false;
49ac8255
KH
6082}
6083
6084bool is_pageblock_removable_nolock(struct page *page)
6085{
656a0706
MH
6086 struct zone *zone;
6087 unsigned long pfn;
687875fb
MH
6088
6089 /*
6090 * We have to be careful here because we are iterating over memory
6091 * sections which are not zone aware so we might end up outside of
6092 * the zone but still within the section.
656a0706
MH
6093 * We have to take care about the node as well. If the node is offline
6094 * its NODE_DATA will be NULL - see page_zone.
687875fb 6095 */
656a0706
MH
6096 if (!node_online(page_to_nid(page)))
6097 return false;
6098
6099 zone = page_zone(page);
6100 pfn = page_to_pfn(page);
108bcc96 6101 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6102 return false;
6103
b023f468 6104 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6105}
0c0e6195 6106
041d3a8c
MN
6107#ifdef CONFIG_CMA
6108
6109static unsigned long pfn_max_align_down(unsigned long pfn)
6110{
6111 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6112 pageblock_nr_pages) - 1);
6113}
6114
6115static unsigned long pfn_max_align_up(unsigned long pfn)
6116{
6117 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6118 pageblock_nr_pages));
6119}
6120
041d3a8c 6121/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6122static int __alloc_contig_migrate_range(struct compact_control *cc,
6123 unsigned long start, unsigned long end)
041d3a8c
MN
6124{
6125 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6126 unsigned long nr_reclaimed;
041d3a8c
MN
6127 unsigned long pfn = start;
6128 unsigned int tries = 0;
6129 int ret = 0;
6130
be49a6e1 6131 migrate_prep();
041d3a8c 6132
bb13ffeb 6133 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6134 if (fatal_signal_pending(current)) {
6135 ret = -EINTR;
6136 break;
6137 }
6138
bb13ffeb
MG
6139 if (list_empty(&cc->migratepages)) {
6140 cc->nr_migratepages = 0;
6141 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6142 pfn, end, true);
041d3a8c
MN
6143 if (!pfn) {
6144 ret = -EINTR;
6145 break;
6146 }
6147 tries = 0;
6148 } else if (++tries == 5) {
6149 ret = ret < 0 ? ret : -EBUSY;
6150 break;
6151 }
6152
beb51eaa
MK
6153 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6154 &cc->migratepages);
6155 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6156
9c620e2b
HD
6157 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6158 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6159 }
2a6f5124
SP
6160 if (ret < 0) {
6161 putback_movable_pages(&cc->migratepages);
6162 return ret;
6163 }
6164 return 0;
041d3a8c
MN
6165}
6166
6167/**
6168 * alloc_contig_range() -- tries to allocate given range of pages
6169 * @start: start PFN to allocate
6170 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6171 * @migratetype: migratetype of the underlaying pageblocks (either
6172 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6173 * in range must have the same migratetype and it must
6174 * be either of the two.
041d3a8c
MN
6175 *
6176 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6177 * aligned, however it's the caller's responsibility to guarantee that
6178 * we are the only thread that changes migrate type of pageblocks the
6179 * pages fall in.
6180 *
6181 * The PFN range must belong to a single zone.
6182 *
6183 * Returns zero on success or negative error code. On success all
6184 * pages which PFN is in [start, end) are allocated for the caller and
6185 * need to be freed with free_contig_range().
6186 */
0815f3d8
MN
6187int alloc_contig_range(unsigned long start, unsigned long end,
6188 unsigned migratetype)
041d3a8c 6189{
041d3a8c
MN
6190 unsigned long outer_start, outer_end;
6191 int ret = 0, order;
6192
bb13ffeb
MG
6193 struct compact_control cc = {
6194 .nr_migratepages = 0,
6195 .order = -1,
6196 .zone = page_zone(pfn_to_page(start)),
6197 .sync = true,
6198 .ignore_skip_hint = true,
6199 };
6200 INIT_LIST_HEAD(&cc.migratepages);
6201
041d3a8c
MN
6202 /*
6203 * What we do here is we mark all pageblocks in range as
6204 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6205 * have different sizes, and due to the way page allocator
6206 * work, we align the range to biggest of the two pages so
6207 * that page allocator won't try to merge buddies from
6208 * different pageblocks and change MIGRATE_ISOLATE to some
6209 * other migration type.
6210 *
6211 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6212 * migrate the pages from an unaligned range (ie. pages that
6213 * we are interested in). This will put all the pages in
6214 * range back to page allocator as MIGRATE_ISOLATE.
6215 *
6216 * When this is done, we take the pages in range from page
6217 * allocator removing them from the buddy system. This way
6218 * page allocator will never consider using them.
6219 *
6220 * This lets us mark the pageblocks back as
6221 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6222 * aligned range but not in the unaligned, original range are
6223 * put back to page allocator so that buddy can use them.
6224 */
6225
6226 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6227 pfn_max_align_up(end), migratetype,
6228 false);
041d3a8c 6229 if (ret)
86a595f9 6230 return ret;
041d3a8c 6231
bb13ffeb 6232 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6233 if (ret)
6234 goto done;
6235
6236 /*
6237 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6238 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6239 * more, all pages in [start, end) are free in page allocator.
6240 * What we are going to do is to allocate all pages from
6241 * [start, end) (that is remove them from page allocator).
6242 *
6243 * The only problem is that pages at the beginning and at the
6244 * end of interesting range may be not aligned with pages that
6245 * page allocator holds, ie. they can be part of higher order
6246 * pages. Because of this, we reserve the bigger range and
6247 * once this is done free the pages we are not interested in.
6248 *
6249 * We don't have to hold zone->lock here because the pages are
6250 * isolated thus they won't get removed from buddy.
6251 */
6252
6253 lru_add_drain_all();
6254 drain_all_pages();
6255
6256 order = 0;
6257 outer_start = start;
6258 while (!PageBuddy(pfn_to_page(outer_start))) {
6259 if (++order >= MAX_ORDER) {
6260 ret = -EBUSY;
6261 goto done;
6262 }
6263 outer_start &= ~0UL << order;
6264 }
6265
6266 /* Make sure the range is really isolated. */
b023f468 6267 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6268 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6269 outer_start, end);
6270 ret = -EBUSY;
6271 goto done;
6272 }
6273
49f223a9
MS
6274
6275 /* Grab isolated pages from freelists. */
bb13ffeb 6276 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6277 if (!outer_end) {
6278 ret = -EBUSY;
6279 goto done;
6280 }
6281
6282 /* Free head and tail (if any) */
6283 if (start != outer_start)
6284 free_contig_range(outer_start, start - outer_start);
6285 if (end != outer_end)
6286 free_contig_range(end, outer_end - end);
6287
6288done:
6289 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6290 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6291 return ret;
6292}
6293
6294void free_contig_range(unsigned long pfn, unsigned nr_pages)
6295{
bcc2b02f
MS
6296 unsigned int count = 0;
6297
6298 for (; nr_pages--; pfn++) {
6299 struct page *page = pfn_to_page(pfn);
6300
6301 count += page_count(page) != 1;
6302 __free_page(page);
6303 }
6304 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6305}
6306#endif
6307
4ed7e022 6308#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6309/*
6310 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6311 * page high values need to be recalulated.
6312 */
4ed7e022
JL
6313void __meminit zone_pcp_update(struct zone *zone)
6314{
0a647f38 6315 unsigned cpu;
c8e251fa 6316 mutex_lock(&pcp_batch_high_lock);
0a647f38 6317 for_each_possible_cpu(cpu)
169f6c19
CS
6318 pageset_set_high_and_batch(zone,
6319 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6320 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6321}
6322#endif
6323
340175b7
JL
6324void zone_pcp_reset(struct zone *zone)
6325{
6326 unsigned long flags;
5a883813
MK
6327 int cpu;
6328 struct per_cpu_pageset *pset;
340175b7
JL
6329
6330 /* avoid races with drain_pages() */
6331 local_irq_save(flags);
6332 if (zone->pageset != &boot_pageset) {
5a883813
MK
6333 for_each_online_cpu(cpu) {
6334 pset = per_cpu_ptr(zone->pageset, cpu);
6335 drain_zonestat(zone, pset);
6336 }
340175b7
JL
6337 free_percpu(zone->pageset);
6338 zone->pageset = &boot_pageset;
6339 }
6340 local_irq_restore(flags);
6341}
6342
6dcd73d7 6343#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6344/*
6345 * All pages in the range must be isolated before calling this.
6346 */
6347void
6348__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6349{
6350 struct page *page;
6351 struct zone *zone;
6352 int order, i;
6353 unsigned long pfn;
6354 unsigned long flags;
6355 /* find the first valid pfn */
6356 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6357 if (pfn_valid(pfn))
6358 break;
6359 if (pfn == end_pfn)
6360 return;
6361 zone = page_zone(pfn_to_page(pfn));
6362 spin_lock_irqsave(&zone->lock, flags);
6363 pfn = start_pfn;
6364 while (pfn < end_pfn) {
6365 if (!pfn_valid(pfn)) {
6366 pfn++;
6367 continue;
6368 }
6369 page = pfn_to_page(pfn);
b023f468
WC
6370 /*
6371 * The HWPoisoned page may be not in buddy system, and
6372 * page_count() is not 0.
6373 */
6374 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6375 pfn++;
6376 SetPageReserved(page);
6377 continue;
6378 }
6379
0c0e6195
KH
6380 BUG_ON(page_count(page));
6381 BUG_ON(!PageBuddy(page));
6382 order = page_order(page);
6383#ifdef CONFIG_DEBUG_VM
6384 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6385 pfn, 1 << order, end_pfn);
6386#endif
6387 list_del(&page->lru);
6388 rmv_page_order(page);
6389 zone->free_area[order].nr_free--;
0c0e6195
KH
6390 for (i = 0; i < (1 << order); i++)
6391 SetPageReserved((page+i));
6392 pfn += (1 << order);
6393 }
6394 spin_unlock_irqrestore(&zone->lock, flags);
6395}
6396#endif
8d22ba1b
WF
6397
6398#ifdef CONFIG_MEMORY_FAILURE
6399bool is_free_buddy_page(struct page *page)
6400{
6401 struct zone *zone = page_zone(page);
6402 unsigned long pfn = page_to_pfn(page);
6403 unsigned long flags;
6404 int order;
6405
6406 spin_lock_irqsave(&zone->lock, flags);
6407 for (order = 0; order < MAX_ORDER; order++) {
6408 struct page *page_head = page - (pfn & ((1 << order) - 1));
6409
6410 if (PageBuddy(page_head) && page_order(page_head) >= order)
6411 break;
6412 }
6413 spin_unlock_irqrestore(&zone->lock, flags);
6414
6415 return order < MAX_ORDER;
6416}
6417#endif
718a3821 6418
51300cef 6419static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6420 {1UL << PG_locked, "locked" },
6421 {1UL << PG_error, "error" },
6422 {1UL << PG_referenced, "referenced" },
6423 {1UL << PG_uptodate, "uptodate" },
6424 {1UL << PG_dirty, "dirty" },
6425 {1UL << PG_lru, "lru" },
6426 {1UL << PG_active, "active" },
6427 {1UL << PG_slab, "slab" },
6428 {1UL << PG_owner_priv_1, "owner_priv_1" },
6429 {1UL << PG_arch_1, "arch_1" },
6430 {1UL << PG_reserved, "reserved" },
6431 {1UL << PG_private, "private" },
6432 {1UL << PG_private_2, "private_2" },
6433 {1UL << PG_writeback, "writeback" },
6434#ifdef CONFIG_PAGEFLAGS_EXTENDED
6435 {1UL << PG_head, "head" },
6436 {1UL << PG_tail, "tail" },
6437#else
6438 {1UL << PG_compound, "compound" },
6439#endif
6440 {1UL << PG_swapcache, "swapcache" },
6441 {1UL << PG_mappedtodisk, "mappedtodisk" },
6442 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6443 {1UL << PG_swapbacked, "swapbacked" },
6444 {1UL << PG_unevictable, "unevictable" },
6445#ifdef CONFIG_MMU
6446 {1UL << PG_mlocked, "mlocked" },
6447#endif
6448#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6449 {1UL << PG_uncached, "uncached" },
6450#endif
6451#ifdef CONFIG_MEMORY_FAILURE
6452 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6453#endif
6454#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6455 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6456#endif
718a3821
WF
6457};
6458
6459static void dump_page_flags(unsigned long flags)
6460{
6461 const char *delim = "";
6462 unsigned long mask;
6463 int i;
6464
51300cef 6465 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6466
718a3821
WF
6467 printk(KERN_ALERT "page flags: %#lx(", flags);
6468
6469 /* remove zone id */
6470 flags &= (1UL << NR_PAGEFLAGS) - 1;
6471
51300cef 6472 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6473
6474 mask = pageflag_names[i].mask;
6475 if ((flags & mask) != mask)
6476 continue;
6477
6478 flags &= ~mask;
6479 printk("%s%s", delim, pageflag_names[i].name);
6480 delim = "|";
6481 }
6482
6483 /* check for left over flags */
6484 if (flags)
6485 printk("%s%#lx", delim, flags);
6486
6487 printk(")\n");
6488}
6489
6490void dump_page(struct page *page)
6491{
6492 printk(KERN_ALERT
6493 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6494 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6495 page->mapping, page->index);
6496 dump_page_flags(page->flags);
f212ad7c 6497 mem_cgroup_print_bad_page(page);
718a3821 6498}