]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm, memcg: avoid unnecessary function call when memcg is disabled
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
d1ce749a
BZ
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
c0a32fc5
SG
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
43506fad 568 combined_idx = buddy_idx & page_idx;
1da177e4
LT
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
6dda9d55
CZ
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
b7f50cfa 583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 584 struct page *higher_page, *higher_buddy;
43506fad
KC
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 588 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597out:
1da177e4
LT
598 zone->free_area[order].nr_free++;
599}
600
224abf92 601static inline int free_pages_check(struct page *page)
1da177e4 602{
92be2e33
NP
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
a3af9c38 605 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 (mem_cgroup_bad_page_check(page)))) {
224abf92 608 bad_page(page);
79f4b7bf 609 return 1;
8cc3b392 610 }
79f4b7bf
HD
611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
613 return 0;
1da177e4
LT
614}
615
616/*
5f8dcc21 617 * Frees a number of pages from the PCP lists
1da177e4 618 * Assumes all pages on list are in same zone, and of same order.
207f36ee 619 * count is the number of pages to free.
1da177e4
LT
620 *
621 * If the zone was previously in an "all pages pinned" state then look to
622 * see if this freeing clears that state.
623 *
624 * And clear the zone's pages_scanned counter, to hold off the "all pages are
625 * pinned" detection logic.
626 */
5f8dcc21
MG
627static void free_pcppages_bulk(struct zone *zone, int count,
628 struct per_cpu_pages *pcp)
1da177e4 629{
5f8dcc21 630 int migratetype = 0;
a6f9edd6 631 int batch_free = 0;
72853e29 632 int to_free = count;
5f8dcc21 633
c54ad30c 634 spin_lock(&zone->lock);
93e4a89a 635 zone->all_unreclaimable = 0;
1da177e4 636 zone->pages_scanned = 0;
f2260e6b 637
72853e29 638 while (to_free) {
48db57f8 639 struct page *page;
5f8dcc21
MG
640 struct list_head *list;
641
642 /*
a6f9edd6
MG
643 * Remove pages from lists in a round-robin fashion. A
644 * batch_free count is maintained that is incremented when an
645 * empty list is encountered. This is so more pages are freed
646 * off fuller lists instead of spinning excessively around empty
647 * lists
5f8dcc21
MG
648 */
649 do {
a6f9edd6 650 batch_free++;
5f8dcc21
MG
651 if (++migratetype == MIGRATE_PCPTYPES)
652 migratetype = 0;
653 list = &pcp->lists[migratetype];
654 } while (list_empty(list));
48db57f8 655
1d16871d
NK
656 /* This is the only non-empty list. Free them all. */
657 if (batch_free == MIGRATE_PCPTYPES)
658 batch_free = to_free;
659
a6f9edd6 660 do {
770c8aaa
BZ
661 int mt; /* migratetype of the to-be-freed page */
662
a6f9edd6
MG
663 page = list_entry(list->prev, struct page, lru);
664 /* must delete as __free_one_page list manipulates */
665 list_del(&page->lru);
b12c4ad1 666 mt = get_freepage_migratetype(page);
a7016235 667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
668 __free_one_page(page, zone, 0, mt);
669 trace_mm_page_pcpu_drain(page, 0, mt);
97d0da22
WC
670 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
671 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
672 if (is_migrate_cma(mt))
673 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
674 }
72853e29 675 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 676 }
c54ad30c 677 spin_unlock(&zone->lock);
1da177e4
LT
678}
679
ed0ae21d
MG
680static void free_one_page(struct zone *zone, struct page *page, int order,
681 int migratetype)
1da177e4 682{
006d22d9 683 spin_lock(&zone->lock);
93e4a89a 684 zone->all_unreclaimable = 0;
006d22d9 685 zone->pages_scanned = 0;
f2260e6b 686
ed0ae21d 687 __free_one_page(page, zone, order, migratetype);
2139cbe6 688 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 689 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 690 spin_unlock(&zone->lock);
48db57f8
NP
691}
692
ec95f53a 693static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 694{
1da177e4 695 int i;
8cc3b392 696 int bad = 0;
1da177e4 697
b413d48a 698 trace_mm_page_free(page, order);
b1eeab67
VN
699 kmemcheck_free_shadow(page, order);
700
8dd60a3a
AA
701 if (PageAnon(page))
702 page->mapping = NULL;
703 for (i = 0; i < (1 << order); i++)
704 bad += free_pages_check(page + i);
8cc3b392 705 if (bad)
ec95f53a 706 return false;
689bcebf 707
3ac7fe5a 708 if (!PageHighMem(page)) {
9858db50 709 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
710 debug_check_no_obj_freed(page_address(page),
711 PAGE_SIZE << order);
712 }
dafb1367 713 arch_free_page(page, order);
48db57f8 714 kernel_map_pages(page, 1 << order, 0);
dafb1367 715
ec95f53a
KM
716 return true;
717}
718
719static void __free_pages_ok(struct page *page, unsigned int order)
720{
721 unsigned long flags;
95e34412 722 int migratetype;
ec95f53a
KM
723
724 if (!free_pages_prepare(page, order))
725 return;
726
c54ad30c 727 local_irq_save(flags);
f8891e5e 728 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
729 migratetype = get_pageblock_migratetype(page);
730 set_freepage_migratetype(page, migratetype);
731 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 732 local_irq_restore(flags);
1da177e4
LT
733}
734
af370fb8 735void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 736{
c3993076
JW
737 unsigned int nr_pages = 1 << order;
738 unsigned int loop;
a226f6c8 739
c3993076
JW
740 prefetchw(page);
741 for (loop = 0; loop < nr_pages; loop++) {
742 struct page *p = &page[loop];
743
744 if (loop + 1 < nr_pages)
745 prefetchw(p + 1);
746 __ClearPageReserved(p);
747 set_page_count(p, 0);
a226f6c8 748 }
c3993076
JW
749
750 set_page_refcounted(page);
751 __free_pages(page, order);
a226f6c8
DH
752}
753
47118af0
MN
754#ifdef CONFIG_CMA
755/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
756void __init init_cma_reserved_pageblock(struct page *page)
757{
758 unsigned i = pageblock_nr_pages;
759 struct page *p = page;
760
761 do {
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
764 } while (++p, --i);
765
766 set_page_refcounted(page);
767 set_pageblock_migratetype(page, MIGRATE_CMA);
768 __free_pages(page, pageblock_order);
769 totalram_pages += pageblock_nr_pages;
770}
771#endif
1da177e4
LT
772
773/*
774 * The order of subdivision here is critical for the IO subsystem.
775 * Please do not alter this order without good reasons and regression
776 * testing. Specifically, as large blocks of memory are subdivided,
777 * the order in which smaller blocks are delivered depends on the order
778 * they're subdivided in this function. This is the primary factor
779 * influencing the order in which pages are delivered to the IO
780 * subsystem according to empirical testing, and this is also justified
781 * by considering the behavior of a buddy system containing a single
782 * large block of memory acted on by a series of small allocations.
783 * This behavior is a critical factor in sglist merging's success.
784 *
785 * -- wli
786 */
085cc7d5 787static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
788 int low, int high, struct free_area *area,
789 int migratetype)
1da177e4
LT
790{
791 unsigned long size = 1 << high;
792
793 while (high > low) {
794 area--;
795 high--;
796 size >>= 1;
725d704e 797 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
798
799#ifdef CONFIG_DEBUG_PAGEALLOC
800 if (high < debug_guardpage_minorder()) {
801 /*
802 * Mark as guard pages (or page), that will allow to
803 * merge back to allocator when buddy will be freed.
804 * Corresponding page table entries will not be touched,
805 * pages will stay not present in virtual address space
806 */
807 INIT_LIST_HEAD(&page[size].lru);
808 set_page_guard_flag(&page[size]);
809 set_page_private(&page[size], high);
810 /* Guard pages are not available for any usage */
d1ce749a
BZ
811 __mod_zone_freepage_state(zone, -(1 << high),
812 migratetype);
c0a32fc5
SG
813 continue;
814 }
815#endif
b2a0ac88 816 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
817 area->nr_free++;
818 set_page_order(&page[size], high);
819 }
1da177e4
LT
820}
821
1da177e4
LT
822/*
823 * This page is about to be returned from the page allocator
824 */
2a7684a2 825static inline int check_new_page(struct page *page)
1da177e4 826{
92be2e33
NP
827 if (unlikely(page_mapcount(page) |
828 (page->mapping != NULL) |
a3af9c38 829 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
830 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
831 (mem_cgroup_bad_page_check(page)))) {
224abf92 832 bad_page(page);
689bcebf 833 return 1;
8cc3b392 834 }
2a7684a2
WF
835 return 0;
836}
837
838static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
839{
840 int i;
841
842 for (i = 0; i < (1 << order); i++) {
843 struct page *p = page + i;
844 if (unlikely(check_new_page(p)))
845 return 1;
846 }
689bcebf 847
4c21e2f2 848 set_page_private(page, 0);
7835e98b 849 set_page_refcounted(page);
cc102509
NP
850
851 arch_alloc_page(page, order);
1da177e4 852 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
853
854 if (gfp_flags & __GFP_ZERO)
855 prep_zero_page(page, order, gfp_flags);
856
857 if (order && (gfp_flags & __GFP_COMP))
858 prep_compound_page(page, order);
859
689bcebf 860 return 0;
1da177e4
LT
861}
862
56fd56b8
MG
863/*
864 * Go through the free lists for the given migratetype and remove
865 * the smallest available page from the freelists
866 */
728ec980
MG
867static inline
868struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
869 int migratetype)
870{
871 unsigned int current_order;
872 struct free_area * area;
873 struct page *page;
874
875 /* Find a page of the appropriate size in the preferred list */
876 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
877 area = &(zone->free_area[current_order]);
878 if (list_empty(&area->free_list[migratetype]))
879 continue;
880
881 page = list_entry(area->free_list[migratetype].next,
882 struct page, lru);
883 list_del(&page->lru);
884 rmv_page_order(page);
885 area->nr_free--;
56fd56b8
MG
886 expand(zone, page, order, current_order, area, migratetype);
887 return page;
888 }
889
890 return NULL;
891}
892
893
b2a0ac88
MG
894/*
895 * This array describes the order lists are fallen back to when
896 * the free lists for the desirable migrate type are depleted
897 */
47118af0
MN
898static int fallbacks[MIGRATE_TYPES][4] = {
899 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
900 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
901#ifdef CONFIG_CMA
902 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
903 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
904#else
905 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
906#endif
6d4a4916
MN
907 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
908 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
909};
910
c361be55
MG
911/*
912 * Move the free pages in a range to the free lists of the requested type.
d9c23400 913 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
914 * boundary. If alignment is required, use move_freepages_block()
915 */
435b405c 916int move_freepages(struct zone *zone,
b69a7288
AB
917 struct page *start_page, struct page *end_page,
918 int migratetype)
c361be55
MG
919{
920 struct page *page;
921 unsigned long order;
d100313f 922 int pages_moved = 0;
c361be55
MG
923
924#ifndef CONFIG_HOLES_IN_ZONE
925 /*
926 * page_zone is not safe to call in this context when
927 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
928 * anyway as we check zone boundaries in move_freepages_block().
929 * Remove at a later date when no bug reports exist related to
ac0e5b7a 930 * grouping pages by mobility
c361be55
MG
931 */
932 BUG_ON(page_zone(start_page) != page_zone(end_page));
933#endif
934
935 for (page = start_page; page <= end_page;) {
344c790e
AL
936 /* Make sure we are not inadvertently changing nodes */
937 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
938
c361be55
MG
939 if (!pfn_valid_within(page_to_pfn(page))) {
940 page++;
941 continue;
942 }
943
944 if (!PageBuddy(page)) {
945 page++;
946 continue;
947 }
948
949 order = page_order(page);
84be48d8
KS
950 list_move(&page->lru,
951 &zone->free_area[order].free_list[migratetype]);
95e34412 952 set_freepage_migratetype(page, migratetype);
c361be55 953 page += 1 << order;
d100313f 954 pages_moved += 1 << order;
c361be55
MG
955 }
956
d100313f 957 return pages_moved;
c361be55
MG
958}
959
ee6f509c 960int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 961 int migratetype)
c361be55
MG
962{
963 unsigned long start_pfn, end_pfn;
964 struct page *start_page, *end_page;
965
966 start_pfn = page_to_pfn(page);
d9c23400 967 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 968 start_page = pfn_to_page(start_pfn);
d9c23400
MG
969 end_page = start_page + pageblock_nr_pages - 1;
970 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
971
972 /* Do not cross zone boundaries */
973 if (start_pfn < zone->zone_start_pfn)
974 start_page = page;
975 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
976 return 0;
977
978 return move_freepages(zone, start_page, end_page, migratetype);
979}
980
2f66a68f
MG
981static void change_pageblock_range(struct page *pageblock_page,
982 int start_order, int migratetype)
983{
984 int nr_pageblocks = 1 << (start_order - pageblock_order);
985
986 while (nr_pageblocks--) {
987 set_pageblock_migratetype(pageblock_page, migratetype);
988 pageblock_page += pageblock_nr_pages;
989 }
990}
991
b2a0ac88 992/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
993static inline struct page *
994__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
995{
996 struct free_area * area;
997 int current_order;
998 struct page *page;
999 int migratetype, i;
1000
1001 /* Find the largest possible block of pages in the other list */
1002 for (current_order = MAX_ORDER-1; current_order >= order;
1003 --current_order) {
6d4a4916 1004 for (i = 0;; i++) {
b2a0ac88
MG
1005 migratetype = fallbacks[start_migratetype][i];
1006
56fd56b8
MG
1007 /* MIGRATE_RESERVE handled later if necessary */
1008 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1009 break;
e010487d 1010
b2a0ac88
MG
1011 area = &(zone->free_area[current_order]);
1012 if (list_empty(&area->free_list[migratetype]))
1013 continue;
1014
1015 page = list_entry(area->free_list[migratetype].next,
1016 struct page, lru);
1017 area->nr_free--;
1018
1019 /*
c361be55 1020 * If breaking a large block of pages, move all free
46dafbca
MG
1021 * pages to the preferred allocation list. If falling
1022 * back for a reclaimable kernel allocation, be more
25985edc 1023 * aggressive about taking ownership of free pages
47118af0
MN
1024 *
1025 * On the other hand, never change migration
1026 * type of MIGRATE_CMA pageblocks nor move CMA
1027 * pages on different free lists. We don't
1028 * want unmovable pages to be allocated from
1029 * MIGRATE_CMA areas.
b2a0ac88 1030 */
47118af0
MN
1031 if (!is_migrate_cma(migratetype) &&
1032 (unlikely(current_order >= pageblock_order / 2) ||
1033 start_migratetype == MIGRATE_RECLAIMABLE ||
1034 page_group_by_mobility_disabled)) {
1035 int pages;
46dafbca
MG
1036 pages = move_freepages_block(zone, page,
1037 start_migratetype);
1038
1039 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1040 if (pages >= (1 << (pageblock_order-1)) ||
1041 page_group_by_mobility_disabled)
46dafbca
MG
1042 set_pageblock_migratetype(page,
1043 start_migratetype);
1044
b2a0ac88 1045 migratetype = start_migratetype;
c361be55 1046 }
b2a0ac88
MG
1047
1048 /* Remove the page from the freelists */
1049 list_del(&page->lru);
1050 rmv_page_order(page);
b2a0ac88 1051
2f66a68f 1052 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1053 if (current_order >= pageblock_order &&
1054 !is_migrate_cma(migratetype))
2f66a68f 1055 change_pageblock_range(page, current_order,
b2a0ac88
MG
1056 start_migratetype);
1057
47118af0
MN
1058 expand(zone, page, order, current_order, area,
1059 is_migrate_cma(migratetype)
1060 ? migratetype : start_migratetype);
e0fff1bd
MG
1061
1062 trace_mm_page_alloc_extfrag(page, order, current_order,
1063 start_migratetype, migratetype);
1064
b2a0ac88
MG
1065 return page;
1066 }
1067 }
1068
728ec980 1069 return NULL;
b2a0ac88
MG
1070}
1071
56fd56b8 1072/*
1da177e4
LT
1073 * Do the hard work of removing an element from the buddy allocator.
1074 * Call me with the zone->lock already held.
1075 */
b2a0ac88
MG
1076static struct page *__rmqueue(struct zone *zone, unsigned int order,
1077 int migratetype)
1da177e4 1078{
1da177e4
LT
1079 struct page *page;
1080
728ec980 1081retry_reserve:
56fd56b8 1082 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1083
728ec980 1084 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1085 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1086
728ec980
MG
1087 /*
1088 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1089 * is used because __rmqueue_smallest is an inline function
1090 * and we want just one call site
1091 */
1092 if (!page) {
1093 migratetype = MIGRATE_RESERVE;
1094 goto retry_reserve;
1095 }
1096 }
1097
0d3d062a 1098 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1099 return page;
1da177e4
LT
1100}
1101
5f63b720 1102/*
1da177e4
LT
1103 * Obtain a specified number of elements from the buddy allocator, all under
1104 * a single hold of the lock, for efficiency. Add them to the supplied list.
1105 * Returns the number of new pages which were placed at *list.
1106 */
5f63b720 1107static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1108 unsigned long count, struct list_head *list,
e084b2d9 1109 int migratetype, int cold)
1da177e4 1110{
47118af0 1111 int mt = migratetype, i;
5f63b720 1112
c54ad30c 1113 spin_lock(&zone->lock);
1da177e4 1114 for (i = 0; i < count; ++i) {
b2a0ac88 1115 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1116 if (unlikely(page == NULL))
1da177e4 1117 break;
81eabcbe
MG
1118
1119 /*
1120 * Split buddy pages returned by expand() are received here
1121 * in physical page order. The page is added to the callers and
1122 * list and the list head then moves forward. From the callers
1123 * perspective, the linked list is ordered by page number in
1124 * some conditions. This is useful for IO devices that can
1125 * merge IO requests if the physical pages are ordered
1126 * properly.
1127 */
e084b2d9
MG
1128 if (likely(cold == 0))
1129 list_add(&page->lru, list);
1130 else
1131 list_add_tail(&page->lru, list);
47118af0
MN
1132 if (IS_ENABLED(CONFIG_CMA)) {
1133 mt = get_pageblock_migratetype(page);
1134 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1135 mt = migratetype;
1136 }
b12c4ad1 1137 set_freepage_migratetype(page, mt);
81eabcbe 1138 list = &page->lru;
d1ce749a
BZ
1139 if (is_migrate_cma(mt))
1140 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1141 -(1 << order));
1da177e4 1142 }
f2260e6b 1143 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1144 spin_unlock(&zone->lock);
085cc7d5 1145 return i;
1da177e4
LT
1146}
1147
4ae7c039 1148#ifdef CONFIG_NUMA
8fce4d8e 1149/*
4037d452
CL
1150 * Called from the vmstat counter updater to drain pagesets of this
1151 * currently executing processor on remote nodes after they have
1152 * expired.
1153 *
879336c3
CL
1154 * Note that this function must be called with the thread pinned to
1155 * a single processor.
8fce4d8e 1156 */
4037d452 1157void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1158{
4ae7c039 1159 unsigned long flags;
4037d452 1160 int to_drain;
4ae7c039 1161
4037d452
CL
1162 local_irq_save(flags);
1163 if (pcp->count >= pcp->batch)
1164 to_drain = pcp->batch;
1165 else
1166 to_drain = pcp->count;
2a13515c
KM
1167 if (to_drain > 0) {
1168 free_pcppages_bulk(zone, to_drain, pcp);
1169 pcp->count -= to_drain;
1170 }
4037d452 1171 local_irq_restore(flags);
4ae7c039
CL
1172}
1173#endif
1174
9f8f2172
CL
1175/*
1176 * Drain pages of the indicated processor.
1177 *
1178 * The processor must either be the current processor and the
1179 * thread pinned to the current processor or a processor that
1180 * is not online.
1181 */
1182static void drain_pages(unsigned int cpu)
1da177e4 1183{
c54ad30c 1184 unsigned long flags;
1da177e4 1185 struct zone *zone;
1da177e4 1186
ee99c71c 1187 for_each_populated_zone(zone) {
1da177e4 1188 struct per_cpu_pageset *pset;
3dfa5721 1189 struct per_cpu_pages *pcp;
1da177e4 1190
99dcc3e5
CL
1191 local_irq_save(flags);
1192 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1193
1194 pcp = &pset->pcp;
2ff754fa
DR
1195 if (pcp->count) {
1196 free_pcppages_bulk(zone, pcp->count, pcp);
1197 pcp->count = 0;
1198 }
3dfa5721 1199 local_irq_restore(flags);
1da177e4
LT
1200 }
1201}
1da177e4 1202
9f8f2172
CL
1203/*
1204 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1205 */
1206void drain_local_pages(void *arg)
1207{
1208 drain_pages(smp_processor_id());
1209}
1210
1211/*
74046494
GBY
1212 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1213 *
1214 * Note that this code is protected against sending an IPI to an offline
1215 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1216 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1217 * nothing keeps CPUs from showing up after we populated the cpumask and
1218 * before the call to on_each_cpu_mask().
9f8f2172
CL
1219 */
1220void drain_all_pages(void)
1221{
74046494
GBY
1222 int cpu;
1223 struct per_cpu_pageset *pcp;
1224 struct zone *zone;
1225
1226 /*
1227 * Allocate in the BSS so we wont require allocation in
1228 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1229 */
1230 static cpumask_t cpus_with_pcps;
1231
1232 /*
1233 * We don't care about racing with CPU hotplug event
1234 * as offline notification will cause the notified
1235 * cpu to drain that CPU pcps and on_each_cpu_mask
1236 * disables preemption as part of its processing
1237 */
1238 for_each_online_cpu(cpu) {
1239 bool has_pcps = false;
1240 for_each_populated_zone(zone) {
1241 pcp = per_cpu_ptr(zone->pageset, cpu);
1242 if (pcp->pcp.count) {
1243 has_pcps = true;
1244 break;
1245 }
1246 }
1247 if (has_pcps)
1248 cpumask_set_cpu(cpu, &cpus_with_pcps);
1249 else
1250 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1251 }
1252 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1253}
1254
296699de 1255#ifdef CONFIG_HIBERNATION
1da177e4
LT
1256
1257void mark_free_pages(struct zone *zone)
1258{
f623f0db
RW
1259 unsigned long pfn, max_zone_pfn;
1260 unsigned long flags;
b2a0ac88 1261 int order, t;
1da177e4
LT
1262 struct list_head *curr;
1263
1264 if (!zone->spanned_pages)
1265 return;
1266
1267 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1268
1269 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1270 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1271 if (pfn_valid(pfn)) {
1272 struct page *page = pfn_to_page(pfn);
1273
7be98234
RW
1274 if (!swsusp_page_is_forbidden(page))
1275 swsusp_unset_page_free(page);
f623f0db 1276 }
1da177e4 1277
b2a0ac88
MG
1278 for_each_migratetype_order(order, t) {
1279 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1280 unsigned long i;
1da177e4 1281
f623f0db
RW
1282 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1283 for (i = 0; i < (1UL << order); i++)
7be98234 1284 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1285 }
b2a0ac88 1286 }
1da177e4
LT
1287 spin_unlock_irqrestore(&zone->lock, flags);
1288}
e2c55dc8 1289#endif /* CONFIG_PM */
1da177e4 1290
1da177e4
LT
1291/*
1292 * Free a 0-order page
fc91668e 1293 * cold == 1 ? free a cold page : free a hot page
1da177e4 1294 */
fc91668e 1295void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1296{
1297 struct zone *zone = page_zone(page);
1298 struct per_cpu_pages *pcp;
1299 unsigned long flags;
5f8dcc21 1300 int migratetype;
1da177e4 1301
ec95f53a 1302 if (!free_pages_prepare(page, 0))
689bcebf
HD
1303 return;
1304
5f8dcc21 1305 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1306 set_freepage_migratetype(page, migratetype);
1da177e4 1307 local_irq_save(flags);
f8891e5e 1308 __count_vm_event(PGFREE);
da456f14 1309
5f8dcc21
MG
1310 /*
1311 * We only track unmovable, reclaimable and movable on pcp lists.
1312 * Free ISOLATE pages back to the allocator because they are being
1313 * offlined but treat RESERVE as movable pages so we can get those
1314 * areas back if necessary. Otherwise, we may have to free
1315 * excessively into the page allocator
1316 */
1317 if (migratetype >= MIGRATE_PCPTYPES) {
1318 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1319 free_one_page(zone, page, 0, migratetype);
1320 goto out;
1321 }
1322 migratetype = MIGRATE_MOVABLE;
1323 }
1324
99dcc3e5 1325 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1326 if (cold)
5f8dcc21 1327 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1328 else
5f8dcc21 1329 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1330 pcp->count++;
48db57f8 1331 if (pcp->count >= pcp->high) {
5f8dcc21 1332 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1333 pcp->count -= pcp->batch;
1334 }
5f8dcc21
MG
1335
1336out:
1da177e4 1337 local_irq_restore(flags);
1da177e4
LT
1338}
1339
cc59850e
KK
1340/*
1341 * Free a list of 0-order pages
1342 */
1343void free_hot_cold_page_list(struct list_head *list, int cold)
1344{
1345 struct page *page, *next;
1346
1347 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1348 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1349 free_hot_cold_page(page, cold);
1350 }
1351}
1352
8dfcc9ba
NP
1353/*
1354 * split_page takes a non-compound higher-order page, and splits it into
1355 * n (1<<order) sub-pages: page[0..n]
1356 * Each sub-page must be freed individually.
1357 *
1358 * Note: this is probably too low level an operation for use in drivers.
1359 * Please consult with lkml before using this in your driver.
1360 */
1361void split_page(struct page *page, unsigned int order)
1362{
1363 int i;
1364
725d704e
NP
1365 VM_BUG_ON(PageCompound(page));
1366 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1367
1368#ifdef CONFIG_KMEMCHECK
1369 /*
1370 * Split shadow pages too, because free(page[0]) would
1371 * otherwise free the whole shadow.
1372 */
1373 if (kmemcheck_page_is_tracked(page))
1374 split_page(virt_to_page(page[0].shadow), order);
1375#endif
1376
7835e98b
NP
1377 for (i = 1; i < (1 << order); i++)
1378 set_page_refcounted(page + i);
8dfcc9ba 1379}
8dfcc9ba 1380
748446bb 1381/*
1fb3f8ca
MG
1382 * Similar to the split_page family of functions except that the page
1383 * required at the given order and being isolated now to prevent races
1384 * with parallel allocators
748446bb 1385 */
1fb3f8ca 1386int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1387{
1388 unsigned int order;
1389 unsigned long watermark;
1390 struct zone *zone;
2139cbe6 1391 int mt;
748446bb
MG
1392
1393 BUG_ON(!PageBuddy(page));
1394
1395 zone = page_zone(page);
1396 order = page_order(page);
2e30abd1 1397 mt = get_pageblock_migratetype(page);
748446bb 1398
2e30abd1
MS
1399 if (mt != MIGRATE_ISOLATE) {
1400 /* Obey watermarks as if the page was being allocated */
1401 watermark = low_wmark_pages(zone) + (1 << order);
1402 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1403 return 0;
1404
1405 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1406 }
748446bb
MG
1407
1408 /* Remove page from free list */
1409 list_del(&page->lru);
1410 zone->free_area[order].nr_free--;
1411 rmv_page_order(page);
2139cbe6 1412
1fb3f8ca
MG
1413 if (alloc_order != order)
1414 expand(zone, page, alloc_order, order,
1415 &zone->free_area[order], migratetype);
748446bb 1416
1fb3f8ca 1417 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1418 if (order >= pageblock_order - 1) {
1419 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1420 for (; page < endpage; page += pageblock_nr_pages) {
1421 int mt = get_pageblock_migratetype(page);
1422 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1423 set_pageblock_migratetype(page,
1424 MIGRATE_MOVABLE);
1425 }
748446bb
MG
1426 }
1427
58d00209 1428 return 1UL << alloc_order;
1fb3f8ca
MG
1429}
1430
1431/*
1432 * Similar to split_page except the page is already free. As this is only
1433 * being used for migration, the migratetype of the block also changes.
1434 * As this is called with interrupts disabled, the caller is responsible
1435 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1436 * are enabled.
1437 *
1438 * Note: this is probably too low level an operation for use in drivers.
1439 * Please consult with lkml before using this in your driver.
1440 */
1441int split_free_page(struct page *page)
1442{
1443 unsigned int order;
1444 int nr_pages;
1445
1446 BUG_ON(!PageBuddy(page));
1447 order = page_order(page);
1448
1449 nr_pages = capture_free_page(page, order, 0);
1450 if (!nr_pages)
1451 return 0;
1452
1453 /* Split into individual pages */
1454 set_page_refcounted(page);
1455 split_page(page, order);
1456 return nr_pages;
748446bb
MG
1457}
1458
1da177e4
LT
1459/*
1460 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1461 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1462 * or two.
1463 */
0a15c3e9
MG
1464static inline
1465struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1466 struct zone *zone, int order, gfp_t gfp_flags,
1467 int migratetype)
1da177e4
LT
1468{
1469 unsigned long flags;
689bcebf 1470 struct page *page;
1da177e4
LT
1471 int cold = !!(gfp_flags & __GFP_COLD);
1472
689bcebf 1473again:
48db57f8 1474 if (likely(order == 0)) {
1da177e4 1475 struct per_cpu_pages *pcp;
5f8dcc21 1476 struct list_head *list;
1da177e4 1477
1da177e4 1478 local_irq_save(flags);
99dcc3e5
CL
1479 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1480 list = &pcp->lists[migratetype];
5f8dcc21 1481 if (list_empty(list)) {
535131e6 1482 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1483 pcp->batch, list,
e084b2d9 1484 migratetype, cold);
5f8dcc21 1485 if (unlikely(list_empty(list)))
6fb332fa 1486 goto failed;
535131e6 1487 }
b92a6edd 1488
5f8dcc21
MG
1489 if (cold)
1490 page = list_entry(list->prev, struct page, lru);
1491 else
1492 page = list_entry(list->next, struct page, lru);
1493
b92a6edd
MG
1494 list_del(&page->lru);
1495 pcp->count--;
7fb1d9fc 1496 } else {
dab48dab
AM
1497 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1498 /*
1499 * __GFP_NOFAIL is not to be used in new code.
1500 *
1501 * All __GFP_NOFAIL callers should be fixed so that they
1502 * properly detect and handle allocation failures.
1503 *
1504 * We most definitely don't want callers attempting to
4923abf9 1505 * allocate greater than order-1 page units with
dab48dab
AM
1506 * __GFP_NOFAIL.
1507 */
4923abf9 1508 WARN_ON_ONCE(order > 1);
dab48dab 1509 }
1da177e4 1510 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1511 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1512 spin_unlock(&zone->lock);
1513 if (!page)
1514 goto failed;
d1ce749a
BZ
1515 __mod_zone_freepage_state(zone, -(1 << order),
1516 get_pageblock_migratetype(page));
1da177e4
LT
1517 }
1518
f8891e5e 1519 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1520 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1521 local_irq_restore(flags);
1da177e4 1522
725d704e 1523 VM_BUG_ON(bad_range(zone, page));
17cf4406 1524 if (prep_new_page(page, order, gfp_flags))
a74609fa 1525 goto again;
1da177e4 1526 return page;
a74609fa
NP
1527
1528failed:
1529 local_irq_restore(flags);
a74609fa 1530 return NULL;
1da177e4
LT
1531}
1532
933e312e
AM
1533#ifdef CONFIG_FAIL_PAGE_ALLOC
1534
b2588c4b 1535static struct {
933e312e
AM
1536 struct fault_attr attr;
1537
1538 u32 ignore_gfp_highmem;
1539 u32 ignore_gfp_wait;
54114994 1540 u32 min_order;
933e312e
AM
1541} fail_page_alloc = {
1542 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1543 .ignore_gfp_wait = 1,
1544 .ignore_gfp_highmem = 1,
54114994 1545 .min_order = 1,
933e312e
AM
1546};
1547
1548static int __init setup_fail_page_alloc(char *str)
1549{
1550 return setup_fault_attr(&fail_page_alloc.attr, str);
1551}
1552__setup("fail_page_alloc=", setup_fail_page_alloc);
1553
deaf386e 1554static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1555{
54114994 1556 if (order < fail_page_alloc.min_order)
deaf386e 1557 return false;
933e312e 1558 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1559 return false;
933e312e 1560 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1561 return false;
933e312e 1562 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1563 return false;
933e312e
AM
1564
1565 return should_fail(&fail_page_alloc.attr, 1 << order);
1566}
1567
1568#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1569
1570static int __init fail_page_alloc_debugfs(void)
1571{
f4ae40a6 1572 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1573 struct dentry *dir;
933e312e 1574
dd48c085
AM
1575 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1576 &fail_page_alloc.attr);
1577 if (IS_ERR(dir))
1578 return PTR_ERR(dir);
933e312e 1579
b2588c4b
AM
1580 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1581 &fail_page_alloc.ignore_gfp_wait))
1582 goto fail;
1583 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1584 &fail_page_alloc.ignore_gfp_highmem))
1585 goto fail;
1586 if (!debugfs_create_u32("min-order", mode, dir,
1587 &fail_page_alloc.min_order))
1588 goto fail;
1589
1590 return 0;
1591fail:
dd48c085 1592 debugfs_remove_recursive(dir);
933e312e 1593
b2588c4b 1594 return -ENOMEM;
933e312e
AM
1595}
1596
1597late_initcall(fail_page_alloc_debugfs);
1598
1599#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1600
1601#else /* CONFIG_FAIL_PAGE_ALLOC */
1602
deaf386e 1603static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1604{
deaf386e 1605 return false;
933e312e
AM
1606}
1607
1608#endif /* CONFIG_FAIL_PAGE_ALLOC */
1609
1da177e4 1610/*
88f5acf8 1611 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1612 * of the allocation.
1613 */
88f5acf8
MG
1614static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1615 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1616{
1617 /* free_pages my go negative - that's OK */
d23ad423 1618 long min = mark;
2cfed075 1619 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1620 int o;
1621
df0a6daa 1622 free_pages -= (1 << order) - 1;
7fb1d9fc 1623 if (alloc_flags & ALLOC_HIGH)
1da177e4 1624 min -= min / 2;
7fb1d9fc 1625 if (alloc_flags & ALLOC_HARDER)
1da177e4 1626 min -= min / 4;
d95ea5d1
BZ
1627#ifdef CONFIG_CMA
1628 /* If allocation can't use CMA areas don't use free CMA pages */
1629 if (!(alloc_flags & ALLOC_CMA))
1630 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1631#endif
2cfed075 1632 if (free_pages <= min + lowmem_reserve)
88f5acf8 1633 return false;
1da177e4
LT
1634 for (o = 0; o < order; o++) {
1635 /* At the next order, this order's pages become unavailable */
1636 free_pages -= z->free_area[o].nr_free << o;
1637
1638 /* Require fewer higher order pages to be free */
1639 min >>= 1;
1640
1641 if (free_pages <= min)
88f5acf8 1642 return false;
1da177e4 1643 }
88f5acf8
MG
1644 return true;
1645}
1646
702d1a6e
MK
1647#ifdef CONFIG_MEMORY_ISOLATION
1648static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1649{
1650 if (unlikely(zone->nr_pageblock_isolate))
1651 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1652 return 0;
1653}
1654#else
1655static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1656{
1657 return 0;
1658}
1659#endif
1660
88f5acf8
MG
1661bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1662 int classzone_idx, int alloc_flags)
1663{
1664 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1665 zone_page_state(z, NR_FREE_PAGES));
1666}
1667
1668bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1669 int classzone_idx, int alloc_flags)
1670{
1671 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1672
1673 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1674 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1675
702d1a6e
MK
1676 /*
1677 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1678 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1679 * sleep although it could do so. But this is more desirable for memory
1680 * hotplug than sleeping which can cause a livelock in the direct
1681 * reclaim path.
1682 */
1683 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1685 free_pages);
1da177e4
LT
1686}
1687
9276b1bc
PJ
1688#ifdef CONFIG_NUMA
1689/*
1690 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1691 * skip over zones that are not allowed by the cpuset, or that have
1692 * been recently (in last second) found to be nearly full. See further
1693 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1694 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1695 *
1696 * If the zonelist cache is present in the passed in zonelist, then
1697 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1698 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1699 *
1700 * If the zonelist cache is not available for this zonelist, does
1701 * nothing and returns NULL.
1702 *
1703 * If the fullzones BITMAP in the zonelist cache is stale (more than
1704 * a second since last zap'd) then we zap it out (clear its bits.)
1705 *
1706 * We hold off even calling zlc_setup, until after we've checked the
1707 * first zone in the zonelist, on the theory that most allocations will
1708 * be satisfied from that first zone, so best to examine that zone as
1709 * quickly as we can.
1710 */
1711static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1712{
1713 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1714 nodemask_t *allowednodes; /* zonelist_cache approximation */
1715
1716 zlc = zonelist->zlcache_ptr;
1717 if (!zlc)
1718 return NULL;
1719
f05111f5 1720 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1721 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1722 zlc->last_full_zap = jiffies;
1723 }
1724
1725 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1726 &cpuset_current_mems_allowed :
4b0ef1fe 1727 &node_states[N_MEMORY];
9276b1bc
PJ
1728 return allowednodes;
1729}
1730
1731/*
1732 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1733 * if it is worth looking at further for free memory:
1734 * 1) Check that the zone isn't thought to be full (doesn't have its
1735 * bit set in the zonelist_cache fullzones BITMAP).
1736 * 2) Check that the zones node (obtained from the zonelist_cache
1737 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1738 * Return true (non-zero) if zone is worth looking at further, or
1739 * else return false (zero) if it is not.
1740 *
1741 * This check -ignores- the distinction between various watermarks,
1742 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1743 * found to be full for any variation of these watermarks, it will
1744 * be considered full for up to one second by all requests, unless
1745 * we are so low on memory on all allowed nodes that we are forced
1746 * into the second scan of the zonelist.
1747 *
1748 * In the second scan we ignore this zonelist cache and exactly
1749 * apply the watermarks to all zones, even it is slower to do so.
1750 * We are low on memory in the second scan, and should leave no stone
1751 * unturned looking for a free page.
1752 */
dd1a239f 1753static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1754 nodemask_t *allowednodes)
1755{
1756 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1757 int i; /* index of *z in zonelist zones */
1758 int n; /* node that zone *z is on */
1759
1760 zlc = zonelist->zlcache_ptr;
1761 if (!zlc)
1762 return 1;
1763
dd1a239f 1764 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1765 n = zlc->z_to_n[i];
1766
1767 /* This zone is worth trying if it is allowed but not full */
1768 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1769}
1770
1771/*
1772 * Given 'z' scanning a zonelist, set the corresponding bit in
1773 * zlc->fullzones, so that subsequent attempts to allocate a page
1774 * from that zone don't waste time re-examining it.
1775 */
dd1a239f 1776static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1777{
1778 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1779 int i; /* index of *z in zonelist zones */
1780
1781 zlc = zonelist->zlcache_ptr;
1782 if (!zlc)
1783 return;
1784
dd1a239f 1785 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1786
1787 set_bit(i, zlc->fullzones);
1788}
1789
76d3fbf8
MG
1790/*
1791 * clear all zones full, called after direct reclaim makes progress so that
1792 * a zone that was recently full is not skipped over for up to a second
1793 */
1794static void zlc_clear_zones_full(struct zonelist *zonelist)
1795{
1796 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1797
1798 zlc = zonelist->zlcache_ptr;
1799 if (!zlc)
1800 return;
1801
1802 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1803}
1804
957f822a
DR
1805static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1806{
1807 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1808}
1809
1810static void __paginginit init_zone_allows_reclaim(int nid)
1811{
1812 int i;
1813
1814 for_each_online_node(i)
6b187d02 1815 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1816 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1817 else
957f822a 1818 zone_reclaim_mode = 1;
957f822a
DR
1819}
1820
9276b1bc
PJ
1821#else /* CONFIG_NUMA */
1822
1823static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1824{
1825 return NULL;
1826}
1827
dd1a239f 1828static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1829 nodemask_t *allowednodes)
1830{
1831 return 1;
1832}
1833
dd1a239f 1834static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1835{
1836}
76d3fbf8
MG
1837
1838static void zlc_clear_zones_full(struct zonelist *zonelist)
1839{
1840}
957f822a
DR
1841
1842static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1843{
1844 return true;
1845}
1846
1847static inline void init_zone_allows_reclaim(int nid)
1848{
1849}
9276b1bc
PJ
1850#endif /* CONFIG_NUMA */
1851
7fb1d9fc 1852/*
0798e519 1853 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1854 * a page.
1855 */
1856static struct page *
19770b32 1857get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1858 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1859 struct zone *preferred_zone, int migratetype)
753ee728 1860{
dd1a239f 1861 struct zoneref *z;
7fb1d9fc 1862 struct page *page = NULL;
54a6eb5c 1863 int classzone_idx;
5117f45d 1864 struct zone *zone;
9276b1bc
PJ
1865 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1866 int zlc_active = 0; /* set if using zonelist_cache */
1867 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1868
19770b32 1869 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1870zonelist_scan:
7fb1d9fc 1871 /*
9276b1bc 1872 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1873 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1874 */
19770b32
MG
1875 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1876 high_zoneidx, nodemask) {
e5adfffc 1877 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1878 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1879 continue;
7fb1d9fc 1880 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1881 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1882 continue;
a756cf59
JW
1883 /*
1884 * When allocating a page cache page for writing, we
1885 * want to get it from a zone that is within its dirty
1886 * limit, such that no single zone holds more than its
1887 * proportional share of globally allowed dirty pages.
1888 * The dirty limits take into account the zone's
1889 * lowmem reserves and high watermark so that kswapd
1890 * should be able to balance it without having to
1891 * write pages from its LRU list.
1892 *
1893 * This may look like it could increase pressure on
1894 * lower zones by failing allocations in higher zones
1895 * before they are full. But the pages that do spill
1896 * over are limited as the lower zones are protected
1897 * by this very same mechanism. It should not become
1898 * a practical burden to them.
1899 *
1900 * XXX: For now, allow allocations to potentially
1901 * exceed the per-zone dirty limit in the slowpath
1902 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1903 * which is important when on a NUMA setup the allowed
1904 * zones are together not big enough to reach the
1905 * global limit. The proper fix for these situations
1906 * will require awareness of zones in the
1907 * dirty-throttling and the flusher threads.
1908 */
1909 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1910 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1911 goto this_zone_full;
7fb1d9fc 1912
41858966 1913 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1914 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1915 unsigned long mark;
fa5e084e
MG
1916 int ret;
1917
41858966 1918 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1919 if (zone_watermark_ok(zone, order, mark,
1920 classzone_idx, alloc_flags))
1921 goto try_this_zone;
1922
e5adfffc
KS
1923 if (IS_ENABLED(CONFIG_NUMA) &&
1924 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1925 /*
1926 * we do zlc_setup if there are multiple nodes
1927 * and before considering the first zone allowed
1928 * by the cpuset.
1929 */
1930 allowednodes = zlc_setup(zonelist, alloc_flags);
1931 zlc_active = 1;
1932 did_zlc_setup = 1;
1933 }
1934
957f822a
DR
1935 if (zone_reclaim_mode == 0 ||
1936 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1937 goto this_zone_full;
1938
cd38b115
MG
1939 /*
1940 * As we may have just activated ZLC, check if the first
1941 * eligible zone has failed zone_reclaim recently.
1942 */
e5adfffc 1943 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1944 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1945 continue;
1946
fa5e084e
MG
1947 ret = zone_reclaim(zone, gfp_mask, order);
1948 switch (ret) {
1949 case ZONE_RECLAIM_NOSCAN:
1950 /* did not scan */
cd38b115 1951 continue;
fa5e084e
MG
1952 case ZONE_RECLAIM_FULL:
1953 /* scanned but unreclaimable */
cd38b115 1954 continue;
fa5e084e
MG
1955 default:
1956 /* did we reclaim enough */
1957 if (!zone_watermark_ok(zone, order, mark,
1958 classzone_idx, alloc_flags))
9276b1bc 1959 goto this_zone_full;
0798e519 1960 }
7fb1d9fc
RS
1961 }
1962
fa5e084e 1963try_this_zone:
3dd28266
MG
1964 page = buffered_rmqueue(preferred_zone, zone, order,
1965 gfp_mask, migratetype);
0798e519 1966 if (page)
7fb1d9fc 1967 break;
9276b1bc 1968this_zone_full:
e5adfffc 1969 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1970 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1971 }
9276b1bc 1972
e5adfffc 1973 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1974 /* Disable zlc cache for second zonelist scan */
1975 zlc_active = 0;
1976 goto zonelist_scan;
1977 }
b121186a
AS
1978
1979 if (page)
1980 /*
1981 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1982 * necessary to allocate the page. The expectation is
1983 * that the caller is taking steps that will free more
1984 * memory. The caller should avoid the page being used
1985 * for !PFMEMALLOC purposes.
1986 */
1987 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1988
7fb1d9fc 1989 return page;
753ee728
MH
1990}
1991
29423e77
DR
1992/*
1993 * Large machines with many possible nodes should not always dump per-node
1994 * meminfo in irq context.
1995 */
1996static inline bool should_suppress_show_mem(void)
1997{
1998 bool ret = false;
1999
2000#if NODES_SHIFT > 8
2001 ret = in_interrupt();
2002#endif
2003 return ret;
2004}
2005
a238ab5b
DH
2006static DEFINE_RATELIMIT_STATE(nopage_rs,
2007 DEFAULT_RATELIMIT_INTERVAL,
2008 DEFAULT_RATELIMIT_BURST);
2009
2010void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2011{
a238ab5b
DH
2012 unsigned int filter = SHOW_MEM_FILTER_NODES;
2013
c0a32fc5
SG
2014 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2015 debug_guardpage_minorder() > 0)
a238ab5b
DH
2016 return;
2017
2018 /*
2019 * This documents exceptions given to allocations in certain
2020 * contexts that are allowed to allocate outside current's set
2021 * of allowed nodes.
2022 */
2023 if (!(gfp_mask & __GFP_NOMEMALLOC))
2024 if (test_thread_flag(TIF_MEMDIE) ||
2025 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2026 filter &= ~SHOW_MEM_FILTER_NODES;
2027 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2028 filter &= ~SHOW_MEM_FILTER_NODES;
2029
2030 if (fmt) {
3ee9a4f0
JP
2031 struct va_format vaf;
2032 va_list args;
2033
a238ab5b 2034 va_start(args, fmt);
3ee9a4f0
JP
2035
2036 vaf.fmt = fmt;
2037 vaf.va = &args;
2038
2039 pr_warn("%pV", &vaf);
2040
a238ab5b
DH
2041 va_end(args);
2042 }
2043
3ee9a4f0
JP
2044 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2045 current->comm, order, gfp_mask);
a238ab5b
DH
2046
2047 dump_stack();
2048 if (!should_suppress_show_mem())
2049 show_mem(filter);
2050}
2051
11e33f6a
MG
2052static inline int
2053should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2054 unsigned long did_some_progress,
11e33f6a 2055 unsigned long pages_reclaimed)
1da177e4 2056{
11e33f6a
MG
2057 /* Do not loop if specifically requested */
2058 if (gfp_mask & __GFP_NORETRY)
2059 return 0;
1da177e4 2060
f90ac398
MG
2061 /* Always retry if specifically requested */
2062 if (gfp_mask & __GFP_NOFAIL)
2063 return 1;
2064
2065 /*
2066 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2067 * making forward progress without invoking OOM. Suspend also disables
2068 * storage devices so kswapd will not help. Bail if we are suspending.
2069 */
2070 if (!did_some_progress && pm_suspended_storage())
2071 return 0;
2072
11e33f6a
MG
2073 /*
2074 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2075 * means __GFP_NOFAIL, but that may not be true in other
2076 * implementations.
2077 */
2078 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2079 return 1;
2080
2081 /*
2082 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2083 * specified, then we retry until we no longer reclaim any pages
2084 * (above), or we've reclaimed an order of pages at least as
2085 * large as the allocation's order. In both cases, if the
2086 * allocation still fails, we stop retrying.
2087 */
2088 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2089 return 1;
cf40bd16 2090
11e33f6a
MG
2091 return 0;
2092}
933e312e 2093
11e33f6a
MG
2094static inline struct page *
2095__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2096 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2097 nodemask_t *nodemask, struct zone *preferred_zone,
2098 int migratetype)
11e33f6a
MG
2099{
2100 struct page *page;
2101
2102 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2103 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2104 schedule_timeout_uninterruptible(1);
1da177e4
LT
2105 return NULL;
2106 }
6b1de916 2107
11e33f6a
MG
2108 /*
2109 * Go through the zonelist yet one more time, keep very high watermark
2110 * here, this is only to catch a parallel oom killing, we must fail if
2111 * we're still under heavy pressure.
2112 */
2113 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2114 order, zonelist, high_zoneidx,
5117f45d 2115 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2116 preferred_zone, migratetype);
7fb1d9fc 2117 if (page)
11e33f6a
MG
2118 goto out;
2119
4365a567
KH
2120 if (!(gfp_mask & __GFP_NOFAIL)) {
2121 /* The OOM killer will not help higher order allocs */
2122 if (order > PAGE_ALLOC_COSTLY_ORDER)
2123 goto out;
03668b3c
DR
2124 /* The OOM killer does not needlessly kill tasks for lowmem */
2125 if (high_zoneidx < ZONE_NORMAL)
2126 goto out;
4365a567
KH
2127 /*
2128 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2129 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2130 * The caller should handle page allocation failure by itself if
2131 * it specifies __GFP_THISNODE.
2132 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2133 */
2134 if (gfp_mask & __GFP_THISNODE)
2135 goto out;
2136 }
11e33f6a 2137 /* Exhausted what can be done so it's blamo time */
08ab9b10 2138 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2139
2140out:
2141 clear_zonelist_oom(zonelist, gfp_mask);
2142 return page;
2143}
2144
56de7263
MG
2145#ifdef CONFIG_COMPACTION
2146/* Try memory compaction for high-order allocations before reclaim */
2147static struct page *
2148__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2149 struct zonelist *zonelist, enum zone_type high_zoneidx,
2150 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2151 int migratetype, bool sync_migration,
c67fe375 2152 bool *contended_compaction, bool *deferred_compaction,
66199712 2153 unsigned long *did_some_progress)
56de7263 2154{
1fb3f8ca 2155 struct page *page = NULL;
56de7263 2156
66199712 2157 if (!order)
56de7263
MG
2158 return NULL;
2159
aff62249 2160 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2161 *deferred_compaction = true;
2162 return NULL;
2163 }
2164
c06b1fca 2165 current->flags |= PF_MEMALLOC;
56de7263 2166 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2167 nodemask, sync_migration,
1fb3f8ca 2168 contended_compaction, &page);
c06b1fca 2169 current->flags &= ~PF_MEMALLOC;
56de7263 2170
1fb3f8ca
MG
2171 /* If compaction captured a page, prep and use it */
2172 if (page) {
2173 prep_new_page(page, order, gfp_mask);
2174 goto got_page;
2175 }
2176
2177 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2178 /* Page migration frees to the PCP lists but we want merging */
2179 drain_pages(get_cpu());
2180 put_cpu();
2181
2182 page = get_page_from_freelist(gfp_mask, nodemask,
2183 order, zonelist, high_zoneidx,
cfd19c5a
MG
2184 alloc_flags & ~ALLOC_NO_WATERMARKS,
2185 preferred_zone, migratetype);
56de7263 2186 if (page) {
1fb3f8ca 2187got_page:
62997027 2188 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2189 preferred_zone->compact_considered = 0;
2190 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2191 if (order >= preferred_zone->compact_order_failed)
2192 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2193 count_vm_event(COMPACTSUCCESS);
2194 return page;
2195 }
2196
2197 /*
2198 * It's bad if compaction run occurs and fails.
2199 * The most likely reason is that pages exist,
2200 * but not enough to satisfy watermarks.
2201 */
2202 count_vm_event(COMPACTFAIL);
66199712
MG
2203
2204 /*
2205 * As async compaction considers a subset of pageblocks, only
2206 * defer if the failure was a sync compaction failure.
2207 */
2208 if (sync_migration)
aff62249 2209 defer_compaction(preferred_zone, order);
56de7263
MG
2210
2211 cond_resched();
2212 }
2213
2214 return NULL;
2215}
2216#else
2217static inline struct page *
2218__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2219 struct zonelist *zonelist, enum zone_type high_zoneidx,
2220 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2221 int migratetype, bool sync_migration,
c67fe375 2222 bool *contended_compaction, bool *deferred_compaction,
66199712 2223 unsigned long *did_some_progress)
56de7263
MG
2224{
2225 return NULL;
2226}
2227#endif /* CONFIG_COMPACTION */
2228
bba90710
MS
2229/* Perform direct synchronous page reclaim */
2230static int
2231__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2232 nodemask_t *nodemask)
11e33f6a 2233{
11e33f6a 2234 struct reclaim_state reclaim_state;
bba90710 2235 int progress;
11e33f6a
MG
2236
2237 cond_resched();
2238
2239 /* We now go into synchronous reclaim */
2240 cpuset_memory_pressure_bump();
c06b1fca 2241 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2242 lockdep_set_current_reclaim_state(gfp_mask);
2243 reclaim_state.reclaimed_slab = 0;
c06b1fca 2244 current->reclaim_state = &reclaim_state;
11e33f6a 2245
bba90710 2246 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2247
c06b1fca 2248 current->reclaim_state = NULL;
11e33f6a 2249 lockdep_clear_current_reclaim_state();
c06b1fca 2250 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2251
2252 cond_resched();
2253
bba90710
MS
2254 return progress;
2255}
2256
2257/* The really slow allocator path where we enter direct reclaim */
2258static inline struct page *
2259__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2260 struct zonelist *zonelist, enum zone_type high_zoneidx,
2261 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2262 int migratetype, unsigned long *did_some_progress)
2263{
2264 struct page *page = NULL;
2265 bool drained = false;
2266
2267 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2268 nodemask);
9ee493ce
MG
2269 if (unlikely(!(*did_some_progress)))
2270 return NULL;
11e33f6a 2271
76d3fbf8 2272 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2273 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2274 zlc_clear_zones_full(zonelist);
2275
9ee493ce
MG
2276retry:
2277 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2278 zonelist, high_zoneidx,
cfd19c5a
MG
2279 alloc_flags & ~ALLOC_NO_WATERMARKS,
2280 preferred_zone, migratetype);
9ee493ce
MG
2281
2282 /*
2283 * If an allocation failed after direct reclaim, it could be because
2284 * pages are pinned on the per-cpu lists. Drain them and try again
2285 */
2286 if (!page && !drained) {
2287 drain_all_pages();
2288 drained = true;
2289 goto retry;
2290 }
2291
11e33f6a
MG
2292 return page;
2293}
2294
1da177e4 2295/*
11e33f6a
MG
2296 * This is called in the allocator slow-path if the allocation request is of
2297 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2298 */
11e33f6a
MG
2299static inline struct page *
2300__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2301 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2302 nodemask_t *nodemask, struct zone *preferred_zone,
2303 int migratetype)
11e33f6a
MG
2304{
2305 struct page *page;
2306
2307 do {
2308 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2309 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2310 preferred_zone, migratetype);
11e33f6a
MG
2311
2312 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2313 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2314 } while (!page && (gfp_mask & __GFP_NOFAIL));
2315
2316 return page;
2317}
2318
2319static inline
2320void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2321 enum zone_type high_zoneidx,
2322 enum zone_type classzone_idx)
1da177e4 2323{
dd1a239f
MG
2324 struct zoneref *z;
2325 struct zone *zone;
1da177e4 2326
11e33f6a 2327 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2328 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2329}
cf40bd16 2330
341ce06f
PZ
2331static inline int
2332gfp_to_alloc_flags(gfp_t gfp_mask)
2333{
341ce06f
PZ
2334 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2335 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2336
a56f57ff 2337 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2338 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2339
341ce06f
PZ
2340 /*
2341 * The caller may dip into page reserves a bit more if the caller
2342 * cannot run direct reclaim, or if the caller has realtime scheduling
2343 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2344 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2345 */
e6223a3b 2346 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2347
341ce06f 2348 if (!wait) {
5c3240d9
AA
2349 /*
2350 * Not worth trying to allocate harder for
2351 * __GFP_NOMEMALLOC even if it can't schedule.
2352 */
2353 if (!(gfp_mask & __GFP_NOMEMALLOC))
2354 alloc_flags |= ALLOC_HARDER;
523b9458 2355 /*
341ce06f
PZ
2356 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2357 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2358 */
341ce06f 2359 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2360 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2361 alloc_flags |= ALLOC_HARDER;
2362
b37f1dd0
MG
2363 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2364 if (gfp_mask & __GFP_MEMALLOC)
2365 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2366 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2367 alloc_flags |= ALLOC_NO_WATERMARKS;
2368 else if (!in_interrupt() &&
2369 ((current->flags & PF_MEMALLOC) ||
2370 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2371 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2372 }
d95ea5d1
BZ
2373#ifdef CONFIG_CMA
2374 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2375 alloc_flags |= ALLOC_CMA;
2376#endif
341ce06f
PZ
2377 return alloc_flags;
2378}
2379
072bb0aa
MG
2380bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2381{
b37f1dd0 2382 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2383}
2384
11e33f6a
MG
2385static inline struct page *
2386__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2387 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2388 nodemask_t *nodemask, struct zone *preferred_zone,
2389 int migratetype)
11e33f6a
MG
2390{
2391 const gfp_t wait = gfp_mask & __GFP_WAIT;
2392 struct page *page = NULL;
2393 int alloc_flags;
2394 unsigned long pages_reclaimed = 0;
2395 unsigned long did_some_progress;
77f1fe6b 2396 bool sync_migration = false;
66199712 2397 bool deferred_compaction = false;
c67fe375 2398 bool contended_compaction = false;
1da177e4 2399
72807a74
MG
2400 /*
2401 * In the slowpath, we sanity check order to avoid ever trying to
2402 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2403 * be using allocators in order of preference for an area that is
2404 * too large.
2405 */
1fc28b70
MG
2406 if (order >= MAX_ORDER) {
2407 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2408 return NULL;
1fc28b70 2409 }
1da177e4 2410
952f3b51
CL
2411 /*
2412 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2413 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2414 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2415 * using a larger set of nodes after it has established that the
2416 * allowed per node queues are empty and that nodes are
2417 * over allocated.
2418 */
e5adfffc
KS
2419 if (IS_ENABLED(CONFIG_NUMA) &&
2420 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2421 goto nopage;
2422
cc4a6851 2423restart:
caf49191
LT
2424 if (!(gfp_mask & __GFP_NO_KSWAPD))
2425 wake_all_kswapd(order, zonelist, high_zoneidx,
2426 zone_idx(preferred_zone));
1da177e4 2427
9bf2229f 2428 /*
7fb1d9fc
RS
2429 * OK, we're below the kswapd watermark and have kicked background
2430 * reclaim. Now things get more complex, so set up alloc_flags according
2431 * to how we want to proceed.
9bf2229f 2432 */
341ce06f 2433 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2434
f33261d7
DR
2435 /*
2436 * Find the true preferred zone if the allocation is unconstrained by
2437 * cpusets.
2438 */
2439 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2440 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2441 &preferred_zone);
2442
cfa54a0f 2443rebalance:
341ce06f 2444 /* This is the last chance, in general, before the goto nopage. */
19770b32 2445 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2446 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2447 preferred_zone, migratetype);
7fb1d9fc
RS
2448 if (page)
2449 goto got_pg;
1da177e4 2450
11e33f6a 2451 /* Allocate without watermarks if the context allows */
341ce06f 2452 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2453 /*
2454 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2455 * the allocation is high priority and these type of
2456 * allocations are system rather than user orientated
2457 */
2458 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2459
341ce06f
PZ
2460 page = __alloc_pages_high_priority(gfp_mask, order,
2461 zonelist, high_zoneidx, nodemask,
2462 preferred_zone, migratetype);
cfd19c5a 2463 if (page) {
341ce06f 2464 goto got_pg;
cfd19c5a 2465 }
1da177e4
LT
2466 }
2467
2468 /* Atomic allocations - we can't balance anything */
2469 if (!wait)
2470 goto nopage;
2471
341ce06f 2472 /* Avoid recursion of direct reclaim */
c06b1fca 2473 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2474 goto nopage;
2475
6583bb64
DR
2476 /* Avoid allocations with no watermarks from looping endlessly */
2477 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2478 goto nopage;
2479
77f1fe6b
MG
2480 /*
2481 * Try direct compaction. The first pass is asynchronous. Subsequent
2482 * attempts after direct reclaim are synchronous
2483 */
56de7263
MG
2484 page = __alloc_pages_direct_compact(gfp_mask, order,
2485 zonelist, high_zoneidx,
2486 nodemask,
2487 alloc_flags, preferred_zone,
66199712 2488 migratetype, sync_migration,
c67fe375 2489 &contended_compaction,
66199712
MG
2490 &deferred_compaction,
2491 &did_some_progress);
56de7263
MG
2492 if (page)
2493 goto got_pg;
c6a140bf 2494 sync_migration = true;
56de7263 2495
31f8d42d
LT
2496 /*
2497 * If compaction is deferred for high-order allocations, it is because
2498 * sync compaction recently failed. In this is the case and the caller
2499 * requested a movable allocation that does not heavily disrupt the
2500 * system then fail the allocation instead of entering direct reclaim.
2501 */
2502 if ((deferred_compaction || contended_compaction) &&
caf49191 2503 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2504 goto nopage;
66199712 2505
11e33f6a
MG
2506 /* Try direct reclaim and then allocating */
2507 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2508 zonelist, high_zoneidx,
2509 nodemask,
5117f45d 2510 alloc_flags, preferred_zone,
3dd28266 2511 migratetype, &did_some_progress);
11e33f6a
MG
2512 if (page)
2513 goto got_pg;
1da177e4 2514
e33c3b5e 2515 /*
11e33f6a
MG
2516 * If we failed to make any progress reclaiming, then we are
2517 * running out of options and have to consider going OOM
e33c3b5e 2518 */
11e33f6a
MG
2519 if (!did_some_progress) {
2520 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2521 if (oom_killer_disabled)
2522 goto nopage;
29fd66d2
DR
2523 /* Coredumps can quickly deplete all memory reserves */
2524 if ((current->flags & PF_DUMPCORE) &&
2525 !(gfp_mask & __GFP_NOFAIL))
2526 goto nopage;
11e33f6a
MG
2527 page = __alloc_pages_may_oom(gfp_mask, order,
2528 zonelist, high_zoneidx,
3dd28266
MG
2529 nodemask, preferred_zone,
2530 migratetype);
11e33f6a
MG
2531 if (page)
2532 goto got_pg;
1da177e4 2533
03668b3c
DR
2534 if (!(gfp_mask & __GFP_NOFAIL)) {
2535 /*
2536 * The oom killer is not called for high-order
2537 * allocations that may fail, so if no progress
2538 * is being made, there are no other options and
2539 * retrying is unlikely to help.
2540 */
2541 if (order > PAGE_ALLOC_COSTLY_ORDER)
2542 goto nopage;
2543 /*
2544 * The oom killer is not called for lowmem
2545 * allocations to prevent needlessly killing
2546 * innocent tasks.
2547 */
2548 if (high_zoneidx < ZONE_NORMAL)
2549 goto nopage;
2550 }
e2c55dc8 2551
ff0ceb9d
DR
2552 goto restart;
2553 }
1da177e4
LT
2554 }
2555
11e33f6a 2556 /* Check if we should retry the allocation */
a41f24ea 2557 pages_reclaimed += did_some_progress;
f90ac398
MG
2558 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2559 pages_reclaimed)) {
11e33f6a 2560 /* Wait for some write requests to complete then retry */
0e093d99 2561 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2562 goto rebalance;
3e7d3449
MG
2563 } else {
2564 /*
2565 * High-order allocations do not necessarily loop after
2566 * direct reclaim and reclaim/compaction depends on compaction
2567 * being called after reclaim so call directly if necessary
2568 */
2569 page = __alloc_pages_direct_compact(gfp_mask, order,
2570 zonelist, high_zoneidx,
2571 nodemask,
2572 alloc_flags, preferred_zone,
66199712 2573 migratetype, sync_migration,
c67fe375 2574 &contended_compaction,
66199712
MG
2575 &deferred_compaction,
2576 &did_some_progress);
3e7d3449
MG
2577 if (page)
2578 goto got_pg;
1da177e4
LT
2579 }
2580
2581nopage:
a238ab5b 2582 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2583 return page;
1da177e4 2584got_pg:
b1eeab67
VN
2585 if (kmemcheck_enabled)
2586 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2587
072bb0aa 2588 return page;
1da177e4 2589}
11e33f6a
MG
2590
2591/*
2592 * This is the 'heart' of the zoned buddy allocator.
2593 */
2594struct page *
2595__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2596 struct zonelist *zonelist, nodemask_t *nodemask)
2597{
2598 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2599 struct zone *preferred_zone;
cc9a6c87 2600 struct page *page = NULL;
3dd28266 2601 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2602 unsigned int cpuset_mems_cookie;
d95ea5d1 2603 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
11e33f6a 2604
dcce284a
BH
2605 gfp_mask &= gfp_allowed_mask;
2606
11e33f6a
MG
2607 lockdep_trace_alloc(gfp_mask);
2608
2609 might_sleep_if(gfp_mask & __GFP_WAIT);
2610
2611 if (should_fail_alloc_page(gfp_mask, order))
2612 return NULL;
2613
2614 /*
2615 * Check the zones suitable for the gfp_mask contain at least one
2616 * valid zone. It's possible to have an empty zonelist as a result
2617 * of GFP_THISNODE and a memoryless node
2618 */
2619 if (unlikely(!zonelist->_zonerefs->zone))
2620 return NULL;
2621
cc9a6c87
MG
2622retry_cpuset:
2623 cpuset_mems_cookie = get_mems_allowed();
2624
5117f45d 2625 /* The preferred zone is used for statistics later */
f33261d7
DR
2626 first_zones_zonelist(zonelist, high_zoneidx,
2627 nodemask ? : &cpuset_current_mems_allowed,
2628 &preferred_zone);
cc9a6c87
MG
2629 if (!preferred_zone)
2630 goto out;
5117f45d 2631
d95ea5d1
BZ
2632#ifdef CONFIG_CMA
2633 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2634 alloc_flags |= ALLOC_CMA;
2635#endif
5117f45d 2636 /* First allocation attempt */
11e33f6a 2637 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2638 zonelist, high_zoneidx, alloc_flags,
3dd28266 2639 preferred_zone, migratetype);
11e33f6a
MG
2640 if (unlikely(!page))
2641 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2642 zonelist, high_zoneidx, nodemask,
3dd28266 2643 preferred_zone, migratetype);
11e33f6a 2644
4b4f278c 2645 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2646
2647out:
2648 /*
2649 * When updating a task's mems_allowed, it is possible to race with
2650 * parallel threads in such a way that an allocation can fail while
2651 * the mask is being updated. If a page allocation is about to fail,
2652 * check if the cpuset changed during allocation and if so, retry.
2653 */
2654 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2655 goto retry_cpuset;
2656
11e33f6a 2657 return page;
1da177e4 2658}
d239171e 2659EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2660
2661/*
2662 * Common helper functions.
2663 */
920c7a5d 2664unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2665{
945a1113
AM
2666 struct page *page;
2667
2668 /*
2669 * __get_free_pages() returns a 32-bit address, which cannot represent
2670 * a highmem page
2671 */
2672 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2673
1da177e4
LT
2674 page = alloc_pages(gfp_mask, order);
2675 if (!page)
2676 return 0;
2677 return (unsigned long) page_address(page);
2678}
1da177e4
LT
2679EXPORT_SYMBOL(__get_free_pages);
2680
920c7a5d 2681unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2682{
945a1113 2683 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2684}
1da177e4
LT
2685EXPORT_SYMBOL(get_zeroed_page);
2686
920c7a5d 2687void __free_pages(struct page *page, unsigned int order)
1da177e4 2688{
b5810039 2689 if (put_page_testzero(page)) {
1da177e4 2690 if (order == 0)
fc91668e 2691 free_hot_cold_page(page, 0);
1da177e4
LT
2692 else
2693 __free_pages_ok(page, order);
2694 }
2695}
2696
2697EXPORT_SYMBOL(__free_pages);
2698
920c7a5d 2699void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2700{
2701 if (addr != 0) {
725d704e 2702 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2703 __free_pages(virt_to_page((void *)addr), order);
2704 }
2705}
2706
2707EXPORT_SYMBOL(free_pages);
2708
ee85c2e1
AK
2709static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2710{
2711 if (addr) {
2712 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2713 unsigned long used = addr + PAGE_ALIGN(size);
2714
2715 split_page(virt_to_page((void *)addr), order);
2716 while (used < alloc_end) {
2717 free_page(used);
2718 used += PAGE_SIZE;
2719 }
2720 }
2721 return (void *)addr;
2722}
2723
2be0ffe2
TT
2724/**
2725 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2726 * @size: the number of bytes to allocate
2727 * @gfp_mask: GFP flags for the allocation
2728 *
2729 * This function is similar to alloc_pages(), except that it allocates the
2730 * minimum number of pages to satisfy the request. alloc_pages() can only
2731 * allocate memory in power-of-two pages.
2732 *
2733 * This function is also limited by MAX_ORDER.
2734 *
2735 * Memory allocated by this function must be released by free_pages_exact().
2736 */
2737void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2738{
2739 unsigned int order = get_order(size);
2740 unsigned long addr;
2741
2742 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2743 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2744}
2745EXPORT_SYMBOL(alloc_pages_exact);
2746
ee85c2e1
AK
2747/**
2748 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2749 * pages on a node.
b5e6ab58 2750 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2751 * @size: the number of bytes to allocate
2752 * @gfp_mask: GFP flags for the allocation
2753 *
2754 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2755 * back.
2756 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2757 * but is not exact.
2758 */
2759void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2760{
2761 unsigned order = get_order(size);
2762 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2763 if (!p)
2764 return NULL;
2765 return make_alloc_exact((unsigned long)page_address(p), order, size);
2766}
2767EXPORT_SYMBOL(alloc_pages_exact_nid);
2768
2be0ffe2
TT
2769/**
2770 * free_pages_exact - release memory allocated via alloc_pages_exact()
2771 * @virt: the value returned by alloc_pages_exact.
2772 * @size: size of allocation, same value as passed to alloc_pages_exact().
2773 *
2774 * Release the memory allocated by a previous call to alloc_pages_exact.
2775 */
2776void free_pages_exact(void *virt, size_t size)
2777{
2778 unsigned long addr = (unsigned long)virt;
2779 unsigned long end = addr + PAGE_ALIGN(size);
2780
2781 while (addr < end) {
2782 free_page(addr);
2783 addr += PAGE_SIZE;
2784 }
2785}
2786EXPORT_SYMBOL(free_pages_exact);
2787
1da177e4
LT
2788static unsigned int nr_free_zone_pages(int offset)
2789{
dd1a239f 2790 struct zoneref *z;
54a6eb5c
MG
2791 struct zone *zone;
2792
e310fd43 2793 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2794 unsigned int sum = 0;
2795
0e88460d 2796 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2797
54a6eb5c 2798 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2799 unsigned long size = zone->present_pages;
41858966 2800 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2801 if (size > high)
2802 sum += size - high;
1da177e4
LT
2803 }
2804
2805 return sum;
2806}
2807
2808/*
2809 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2810 */
2811unsigned int nr_free_buffer_pages(void)
2812{
af4ca457 2813 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2814}
c2f1a551 2815EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2816
2817/*
2818 * Amount of free RAM allocatable within all zones
2819 */
2820unsigned int nr_free_pagecache_pages(void)
2821{
2a1e274a 2822 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2823}
08e0f6a9
CL
2824
2825static inline void show_node(struct zone *zone)
1da177e4 2826{
e5adfffc 2827 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2828 printk("Node %d ", zone_to_nid(zone));
1da177e4 2829}
1da177e4 2830
1da177e4
LT
2831void si_meminfo(struct sysinfo *val)
2832{
2833 val->totalram = totalram_pages;
2834 val->sharedram = 0;
d23ad423 2835 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2836 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2837 val->totalhigh = totalhigh_pages;
2838 val->freehigh = nr_free_highpages();
1da177e4
LT
2839 val->mem_unit = PAGE_SIZE;
2840}
2841
2842EXPORT_SYMBOL(si_meminfo);
2843
2844#ifdef CONFIG_NUMA
2845void si_meminfo_node(struct sysinfo *val, int nid)
2846{
2847 pg_data_t *pgdat = NODE_DATA(nid);
2848
2849 val->totalram = pgdat->node_present_pages;
d23ad423 2850 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2851#ifdef CONFIG_HIGHMEM
1da177e4 2852 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2853 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2854 NR_FREE_PAGES);
98d2b0eb
CL
2855#else
2856 val->totalhigh = 0;
2857 val->freehigh = 0;
2858#endif
1da177e4
LT
2859 val->mem_unit = PAGE_SIZE;
2860}
2861#endif
2862
ddd588b5 2863/*
7bf02ea2
DR
2864 * Determine whether the node should be displayed or not, depending on whether
2865 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2866 */
7bf02ea2 2867bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2868{
2869 bool ret = false;
cc9a6c87 2870 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2871
2872 if (!(flags & SHOW_MEM_FILTER_NODES))
2873 goto out;
2874
cc9a6c87
MG
2875 do {
2876 cpuset_mems_cookie = get_mems_allowed();
2877 ret = !node_isset(nid, cpuset_current_mems_allowed);
2878 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2879out:
2880 return ret;
2881}
2882
1da177e4
LT
2883#define K(x) ((x) << (PAGE_SHIFT-10))
2884
377e4f16
RV
2885static void show_migration_types(unsigned char type)
2886{
2887 static const char types[MIGRATE_TYPES] = {
2888 [MIGRATE_UNMOVABLE] = 'U',
2889 [MIGRATE_RECLAIMABLE] = 'E',
2890 [MIGRATE_MOVABLE] = 'M',
2891 [MIGRATE_RESERVE] = 'R',
2892#ifdef CONFIG_CMA
2893 [MIGRATE_CMA] = 'C',
2894#endif
2895 [MIGRATE_ISOLATE] = 'I',
2896 };
2897 char tmp[MIGRATE_TYPES + 1];
2898 char *p = tmp;
2899 int i;
2900
2901 for (i = 0; i < MIGRATE_TYPES; i++) {
2902 if (type & (1 << i))
2903 *p++ = types[i];
2904 }
2905
2906 *p = '\0';
2907 printk("(%s) ", tmp);
2908}
2909
1da177e4
LT
2910/*
2911 * Show free area list (used inside shift_scroll-lock stuff)
2912 * We also calculate the percentage fragmentation. We do this by counting the
2913 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2914 * Suppresses nodes that are not allowed by current's cpuset if
2915 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2916 */
7bf02ea2 2917void show_free_areas(unsigned int filter)
1da177e4 2918{
c7241913 2919 int cpu;
1da177e4
LT
2920 struct zone *zone;
2921
ee99c71c 2922 for_each_populated_zone(zone) {
7bf02ea2 2923 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2924 continue;
c7241913
JS
2925 show_node(zone);
2926 printk("%s per-cpu:\n", zone->name);
1da177e4 2927
6b482c67 2928 for_each_online_cpu(cpu) {
1da177e4
LT
2929 struct per_cpu_pageset *pageset;
2930
99dcc3e5 2931 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2932
3dfa5721
CL
2933 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2934 cpu, pageset->pcp.high,
2935 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2936 }
2937 }
2938
a731286d
KM
2939 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2940 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2941 " unevictable:%lu"
b76146ed 2942 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2943 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2944 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2945 " free_cma:%lu\n",
4f98a2fe 2946 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2947 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2948 global_page_state(NR_ISOLATED_ANON),
2949 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2950 global_page_state(NR_INACTIVE_FILE),
a731286d 2951 global_page_state(NR_ISOLATED_FILE),
7b854121 2952 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2953 global_page_state(NR_FILE_DIRTY),
ce866b34 2954 global_page_state(NR_WRITEBACK),
fd39fc85 2955 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2956 global_page_state(NR_FREE_PAGES),
3701b033
KM
2957 global_page_state(NR_SLAB_RECLAIMABLE),
2958 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2959 global_page_state(NR_FILE_MAPPED),
4b02108a 2960 global_page_state(NR_SHMEM),
a25700a5 2961 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2962 global_page_state(NR_BOUNCE),
2963 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2964
ee99c71c 2965 for_each_populated_zone(zone) {
1da177e4
LT
2966 int i;
2967
7bf02ea2 2968 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2969 continue;
1da177e4
LT
2970 show_node(zone);
2971 printk("%s"
2972 " free:%lukB"
2973 " min:%lukB"
2974 " low:%lukB"
2975 " high:%lukB"
4f98a2fe
RR
2976 " active_anon:%lukB"
2977 " inactive_anon:%lukB"
2978 " active_file:%lukB"
2979 " inactive_file:%lukB"
7b854121 2980 " unevictable:%lukB"
a731286d
KM
2981 " isolated(anon):%lukB"
2982 " isolated(file):%lukB"
1da177e4 2983 " present:%lukB"
4a0aa73f
KM
2984 " mlocked:%lukB"
2985 " dirty:%lukB"
2986 " writeback:%lukB"
2987 " mapped:%lukB"
4b02108a 2988 " shmem:%lukB"
4a0aa73f
KM
2989 " slab_reclaimable:%lukB"
2990 " slab_unreclaimable:%lukB"
c6a7f572 2991 " kernel_stack:%lukB"
4a0aa73f
KM
2992 " pagetables:%lukB"
2993 " unstable:%lukB"
2994 " bounce:%lukB"
d1ce749a 2995 " free_cma:%lukB"
4a0aa73f 2996 " writeback_tmp:%lukB"
1da177e4
LT
2997 " pages_scanned:%lu"
2998 " all_unreclaimable? %s"
2999 "\n",
3000 zone->name,
88f5acf8 3001 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3002 K(min_wmark_pages(zone)),
3003 K(low_wmark_pages(zone)),
3004 K(high_wmark_pages(zone)),
4f98a2fe
RR
3005 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3006 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3007 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3008 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3009 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3010 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3011 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3012 K(zone->present_pages),
4a0aa73f
KM
3013 K(zone_page_state(zone, NR_MLOCK)),
3014 K(zone_page_state(zone, NR_FILE_DIRTY)),
3015 K(zone_page_state(zone, NR_WRITEBACK)),
3016 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3017 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3018 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3019 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3020 zone_page_state(zone, NR_KERNEL_STACK) *
3021 THREAD_SIZE / 1024,
4a0aa73f
KM
3022 K(zone_page_state(zone, NR_PAGETABLE)),
3023 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3024 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3025 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3026 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3027 zone->pages_scanned,
93e4a89a 3028 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3029 );
3030 printk("lowmem_reserve[]:");
3031 for (i = 0; i < MAX_NR_ZONES; i++)
3032 printk(" %lu", zone->lowmem_reserve[i]);
3033 printk("\n");
3034 }
3035
ee99c71c 3036 for_each_populated_zone(zone) {
8f9de51a 3037 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3038 unsigned char types[MAX_ORDER];
1da177e4 3039
7bf02ea2 3040 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3041 continue;
1da177e4
LT
3042 show_node(zone);
3043 printk("%s: ", zone->name);
1da177e4
LT
3044
3045 spin_lock_irqsave(&zone->lock, flags);
3046 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3047 struct free_area *area = &zone->free_area[order];
3048 int type;
3049
3050 nr[order] = area->nr_free;
8f9de51a 3051 total += nr[order] << order;
377e4f16
RV
3052
3053 types[order] = 0;
3054 for (type = 0; type < MIGRATE_TYPES; type++) {
3055 if (!list_empty(&area->free_list[type]))
3056 types[order] |= 1 << type;
3057 }
1da177e4
LT
3058 }
3059 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3060 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3061 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3062 if (nr[order])
3063 show_migration_types(types[order]);
3064 }
1da177e4
LT
3065 printk("= %lukB\n", K(total));
3066 }
3067
e6f3602d
LW
3068 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3069
1da177e4
LT
3070 show_swap_cache_info();
3071}
3072
19770b32
MG
3073static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3074{
3075 zoneref->zone = zone;
3076 zoneref->zone_idx = zone_idx(zone);
3077}
3078
1da177e4
LT
3079/*
3080 * Builds allocation fallback zone lists.
1a93205b
CL
3081 *
3082 * Add all populated zones of a node to the zonelist.
1da177e4 3083 */
f0c0b2b8
KH
3084static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3085 int nr_zones, enum zone_type zone_type)
1da177e4 3086{
1a93205b
CL
3087 struct zone *zone;
3088
98d2b0eb 3089 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3090 zone_type++;
02a68a5e
CL
3091
3092 do {
2f6726e5 3093 zone_type--;
070f8032 3094 zone = pgdat->node_zones + zone_type;
1a93205b 3095 if (populated_zone(zone)) {
dd1a239f
MG
3096 zoneref_set_zone(zone,
3097 &zonelist->_zonerefs[nr_zones++]);
070f8032 3098 check_highest_zone(zone_type);
1da177e4 3099 }
02a68a5e 3100
2f6726e5 3101 } while (zone_type);
070f8032 3102 return nr_zones;
1da177e4
LT
3103}
3104
f0c0b2b8
KH
3105
3106/*
3107 * zonelist_order:
3108 * 0 = automatic detection of better ordering.
3109 * 1 = order by ([node] distance, -zonetype)
3110 * 2 = order by (-zonetype, [node] distance)
3111 *
3112 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3113 * the same zonelist. So only NUMA can configure this param.
3114 */
3115#define ZONELIST_ORDER_DEFAULT 0
3116#define ZONELIST_ORDER_NODE 1
3117#define ZONELIST_ORDER_ZONE 2
3118
3119/* zonelist order in the kernel.
3120 * set_zonelist_order() will set this to NODE or ZONE.
3121 */
3122static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3123static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3124
3125
1da177e4 3126#ifdef CONFIG_NUMA
f0c0b2b8
KH
3127/* The value user specified ....changed by config */
3128static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3129/* string for sysctl */
3130#define NUMA_ZONELIST_ORDER_LEN 16
3131char numa_zonelist_order[16] = "default";
3132
3133/*
3134 * interface for configure zonelist ordering.
3135 * command line option "numa_zonelist_order"
3136 * = "[dD]efault - default, automatic configuration.
3137 * = "[nN]ode - order by node locality, then by zone within node
3138 * = "[zZ]one - order by zone, then by locality within zone
3139 */
3140
3141static int __parse_numa_zonelist_order(char *s)
3142{
3143 if (*s == 'd' || *s == 'D') {
3144 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3145 } else if (*s == 'n' || *s == 'N') {
3146 user_zonelist_order = ZONELIST_ORDER_NODE;
3147 } else if (*s == 'z' || *s == 'Z') {
3148 user_zonelist_order = ZONELIST_ORDER_ZONE;
3149 } else {
3150 printk(KERN_WARNING
3151 "Ignoring invalid numa_zonelist_order value: "
3152 "%s\n", s);
3153 return -EINVAL;
3154 }
3155 return 0;
3156}
3157
3158static __init int setup_numa_zonelist_order(char *s)
3159{
ecb256f8
VL
3160 int ret;
3161
3162 if (!s)
3163 return 0;
3164
3165 ret = __parse_numa_zonelist_order(s);
3166 if (ret == 0)
3167 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3168
3169 return ret;
f0c0b2b8
KH
3170}
3171early_param("numa_zonelist_order", setup_numa_zonelist_order);
3172
3173/*
3174 * sysctl handler for numa_zonelist_order
3175 */
3176int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3177 void __user *buffer, size_t *length,
f0c0b2b8
KH
3178 loff_t *ppos)
3179{
3180 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3181 int ret;
443c6f14 3182 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3183
443c6f14 3184 mutex_lock(&zl_order_mutex);
f0c0b2b8 3185 if (write)
443c6f14 3186 strcpy(saved_string, (char*)table->data);
8d65af78 3187 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3188 if (ret)
443c6f14 3189 goto out;
f0c0b2b8
KH
3190 if (write) {
3191 int oldval = user_zonelist_order;
3192 if (__parse_numa_zonelist_order((char*)table->data)) {
3193 /*
3194 * bogus value. restore saved string
3195 */
3196 strncpy((char*)table->data, saved_string,
3197 NUMA_ZONELIST_ORDER_LEN);
3198 user_zonelist_order = oldval;
4eaf3f64
HL
3199 } else if (oldval != user_zonelist_order) {
3200 mutex_lock(&zonelists_mutex);
9adb62a5 3201 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3202 mutex_unlock(&zonelists_mutex);
3203 }
f0c0b2b8 3204 }
443c6f14
AK
3205out:
3206 mutex_unlock(&zl_order_mutex);
3207 return ret;
f0c0b2b8
KH
3208}
3209
3210
62bc62a8 3211#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3212static int node_load[MAX_NUMNODES];
3213
1da177e4 3214/**
4dc3b16b 3215 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3216 * @node: node whose fallback list we're appending
3217 * @used_node_mask: nodemask_t of already used nodes
3218 *
3219 * We use a number of factors to determine which is the next node that should
3220 * appear on a given node's fallback list. The node should not have appeared
3221 * already in @node's fallback list, and it should be the next closest node
3222 * according to the distance array (which contains arbitrary distance values
3223 * from each node to each node in the system), and should also prefer nodes
3224 * with no CPUs, since presumably they'll have very little allocation pressure
3225 * on them otherwise.
3226 * It returns -1 if no node is found.
3227 */
f0c0b2b8 3228static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3229{
4cf808eb 3230 int n, val;
1da177e4
LT
3231 int min_val = INT_MAX;
3232 int best_node = -1;
a70f7302 3233 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3234
4cf808eb
LT
3235 /* Use the local node if we haven't already */
3236 if (!node_isset(node, *used_node_mask)) {
3237 node_set(node, *used_node_mask);
3238 return node;
3239 }
1da177e4 3240
4b0ef1fe 3241 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3242
3243 /* Don't want a node to appear more than once */
3244 if (node_isset(n, *used_node_mask))
3245 continue;
3246
1da177e4
LT
3247 /* Use the distance array to find the distance */
3248 val = node_distance(node, n);
3249
4cf808eb
LT
3250 /* Penalize nodes under us ("prefer the next node") */
3251 val += (n < node);
3252
1da177e4 3253 /* Give preference to headless and unused nodes */
a70f7302
RR
3254 tmp = cpumask_of_node(n);
3255 if (!cpumask_empty(tmp))
1da177e4
LT
3256 val += PENALTY_FOR_NODE_WITH_CPUS;
3257
3258 /* Slight preference for less loaded node */
3259 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3260 val += node_load[n];
3261
3262 if (val < min_val) {
3263 min_val = val;
3264 best_node = n;
3265 }
3266 }
3267
3268 if (best_node >= 0)
3269 node_set(best_node, *used_node_mask);
3270
3271 return best_node;
3272}
3273
f0c0b2b8
KH
3274
3275/*
3276 * Build zonelists ordered by node and zones within node.
3277 * This results in maximum locality--normal zone overflows into local
3278 * DMA zone, if any--but risks exhausting DMA zone.
3279 */
3280static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3281{
f0c0b2b8 3282 int j;
1da177e4 3283 struct zonelist *zonelist;
f0c0b2b8 3284
54a6eb5c 3285 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3286 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3287 ;
3288 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3289 MAX_NR_ZONES - 1);
dd1a239f
MG
3290 zonelist->_zonerefs[j].zone = NULL;
3291 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3292}
3293
523b9458
CL
3294/*
3295 * Build gfp_thisnode zonelists
3296 */
3297static void build_thisnode_zonelists(pg_data_t *pgdat)
3298{
523b9458
CL
3299 int j;
3300 struct zonelist *zonelist;
3301
54a6eb5c
MG
3302 zonelist = &pgdat->node_zonelists[1];
3303 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3304 zonelist->_zonerefs[j].zone = NULL;
3305 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3306}
3307
f0c0b2b8
KH
3308/*
3309 * Build zonelists ordered by zone and nodes within zones.
3310 * This results in conserving DMA zone[s] until all Normal memory is
3311 * exhausted, but results in overflowing to remote node while memory
3312 * may still exist in local DMA zone.
3313 */
3314static int node_order[MAX_NUMNODES];
3315
3316static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3317{
f0c0b2b8
KH
3318 int pos, j, node;
3319 int zone_type; /* needs to be signed */
3320 struct zone *z;
3321 struct zonelist *zonelist;
3322
54a6eb5c
MG
3323 zonelist = &pgdat->node_zonelists[0];
3324 pos = 0;
3325 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3326 for (j = 0; j < nr_nodes; j++) {
3327 node = node_order[j];
3328 z = &NODE_DATA(node)->node_zones[zone_type];
3329 if (populated_zone(z)) {
dd1a239f
MG
3330 zoneref_set_zone(z,
3331 &zonelist->_zonerefs[pos++]);
54a6eb5c 3332 check_highest_zone(zone_type);
f0c0b2b8
KH
3333 }
3334 }
f0c0b2b8 3335 }
dd1a239f
MG
3336 zonelist->_zonerefs[pos].zone = NULL;
3337 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3338}
3339
3340static int default_zonelist_order(void)
3341{
3342 int nid, zone_type;
3343 unsigned long low_kmem_size,total_size;
3344 struct zone *z;
3345 int average_size;
3346 /*
88393161 3347 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3348 * If they are really small and used heavily, the system can fall
3349 * into OOM very easily.
e325c90f 3350 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3351 */
3352 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3353 low_kmem_size = 0;
3354 total_size = 0;
3355 for_each_online_node(nid) {
3356 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3357 z = &NODE_DATA(nid)->node_zones[zone_type];
3358 if (populated_zone(z)) {
3359 if (zone_type < ZONE_NORMAL)
3360 low_kmem_size += z->present_pages;
3361 total_size += z->present_pages;
e325c90f
DR
3362 } else if (zone_type == ZONE_NORMAL) {
3363 /*
3364 * If any node has only lowmem, then node order
3365 * is preferred to allow kernel allocations
3366 * locally; otherwise, they can easily infringe
3367 * on other nodes when there is an abundance of
3368 * lowmem available to allocate from.
3369 */
3370 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3371 }
3372 }
3373 }
3374 if (!low_kmem_size || /* there are no DMA area. */
3375 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3376 return ZONELIST_ORDER_NODE;
3377 /*
3378 * look into each node's config.
3379 * If there is a node whose DMA/DMA32 memory is very big area on
3380 * local memory, NODE_ORDER may be suitable.
3381 */
37b07e41 3382 average_size = total_size /
4b0ef1fe 3383 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3384 for_each_online_node(nid) {
3385 low_kmem_size = 0;
3386 total_size = 0;
3387 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3388 z = &NODE_DATA(nid)->node_zones[zone_type];
3389 if (populated_zone(z)) {
3390 if (zone_type < ZONE_NORMAL)
3391 low_kmem_size += z->present_pages;
3392 total_size += z->present_pages;
3393 }
3394 }
3395 if (low_kmem_size &&
3396 total_size > average_size && /* ignore small node */
3397 low_kmem_size > total_size * 70/100)
3398 return ZONELIST_ORDER_NODE;
3399 }
3400 return ZONELIST_ORDER_ZONE;
3401}
3402
3403static void set_zonelist_order(void)
3404{
3405 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3406 current_zonelist_order = default_zonelist_order();
3407 else
3408 current_zonelist_order = user_zonelist_order;
3409}
3410
3411static void build_zonelists(pg_data_t *pgdat)
3412{
3413 int j, node, load;
3414 enum zone_type i;
1da177e4 3415 nodemask_t used_mask;
f0c0b2b8
KH
3416 int local_node, prev_node;
3417 struct zonelist *zonelist;
3418 int order = current_zonelist_order;
1da177e4
LT
3419
3420 /* initialize zonelists */
523b9458 3421 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3422 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3423 zonelist->_zonerefs[0].zone = NULL;
3424 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3425 }
3426
3427 /* NUMA-aware ordering of nodes */
3428 local_node = pgdat->node_id;
62bc62a8 3429 load = nr_online_nodes;
1da177e4
LT
3430 prev_node = local_node;
3431 nodes_clear(used_mask);
f0c0b2b8 3432
f0c0b2b8
KH
3433 memset(node_order, 0, sizeof(node_order));
3434 j = 0;
3435
1da177e4
LT
3436 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3437 /*
3438 * We don't want to pressure a particular node.
3439 * So adding penalty to the first node in same
3440 * distance group to make it round-robin.
3441 */
957f822a
DR
3442 if (node_distance(local_node, node) !=
3443 node_distance(local_node, prev_node))
f0c0b2b8
KH
3444 node_load[node] = load;
3445
1da177e4
LT
3446 prev_node = node;
3447 load--;
f0c0b2b8
KH
3448 if (order == ZONELIST_ORDER_NODE)
3449 build_zonelists_in_node_order(pgdat, node);
3450 else
3451 node_order[j++] = node; /* remember order */
3452 }
1da177e4 3453
f0c0b2b8
KH
3454 if (order == ZONELIST_ORDER_ZONE) {
3455 /* calculate node order -- i.e., DMA last! */
3456 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3457 }
523b9458
CL
3458
3459 build_thisnode_zonelists(pgdat);
1da177e4
LT
3460}
3461
9276b1bc 3462/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3463static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3464{
54a6eb5c
MG
3465 struct zonelist *zonelist;
3466 struct zonelist_cache *zlc;
dd1a239f 3467 struct zoneref *z;
9276b1bc 3468
54a6eb5c
MG
3469 zonelist = &pgdat->node_zonelists[0];
3470 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3471 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3472 for (z = zonelist->_zonerefs; z->zone; z++)
3473 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3474}
3475
7aac7898
LS
3476#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3477/*
3478 * Return node id of node used for "local" allocations.
3479 * I.e., first node id of first zone in arg node's generic zonelist.
3480 * Used for initializing percpu 'numa_mem', which is used primarily
3481 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3482 */
3483int local_memory_node(int node)
3484{
3485 struct zone *zone;
3486
3487 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3488 gfp_zone(GFP_KERNEL),
3489 NULL,
3490 &zone);
3491 return zone->node;
3492}
3493#endif
f0c0b2b8 3494
1da177e4
LT
3495#else /* CONFIG_NUMA */
3496
f0c0b2b8
KH
3497static void set_zonelist_order(void)
3498{
3499 current_zonelist_order = ZONELIST_ORDER_ZONE;
3500}
3501
3502static void build_zonelists(pg_data_t *pgdat)
1da177e4 3503{
19655d34 3504 int node, local_node;
54a6eb5c
MG
3505 enum zone_type j;
3506 struct zonelist *zonelist;
1da177e4
LT
3507
3508 local_node = pgdat->node_id;
1da177e4 3509
54a6eb5c
MG
3510 zonelist = &pgdat->node_zonelists[0];
3511 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3512
54a6eb5c
MG
3513 /*
3514 * Now we build the zonelist so that it contains the zones
3515 * of all the other nodes.
3516 * We don't want to pressure a particular node, so when
3517 * building the zones for node N, we make sure that the
3518 * zones coming right after the local ones are those from
3519 * node N+1 (modulo N)
3520 */
3521 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3522 if (!node_online(node))
3523 continue;
3524 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3525 MAX_NR_ZONES - 1);
1da177e4 3526 }
54a6eb5c
MG
3527 for (node = 0; node < local_node; node++) {
3528 if (!node_online(node))
3529 continue;
3530 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3531 MAX_NR_ZONES - 1);
3532 }
3533
dd1a239f
MG
3534 zonelist->_zonerefs[j].zone = NULL;
3535 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3536}
3537
9276b1bc 3538/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3539static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3540{
54a6eb5c 3541 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3542}
3543
1da177e4
LT
3544#endif /* CONFIG_NUMA */
3545
99dcc3e5
CL
3546/*
3547 * Boot pageset table. One per cpu which is going to be used for all
3548 * zones and all nodes. The parameters will be set in such a way
3549 * that an item put on a list will immediately be handed over to
3550 * the buddy list. This is safe since pageset manipulation is done
3551 * with interrupts disabled.
3552 *
3553 * The boot_pagesets must be kept even after bootup is complete for
3554 * unused processors and/or zones. They do play a role for bootstrapping
3555 * hotplugged processors.
3556 *
3557 * zoneinfo_show() and maybe other functions do
3558 * not check if the processor is online before following the pageset pointer.
3559 * Other parts of the kernel may not check if the zone is available.
3560 */
3561static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3562static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3563static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3564
4eaf3f64
HL
3565/*
3566 * Global mutex to protect against size modification of zonelists
3567 * as well as to serialize pageset setup for the new populated zone.
3568 */
3569DEFINE_MUTEX(zonelists_mutex);
3570
9b1a4d38 3571/* return values int ....just for stop_machine() */
4ed7e022 3572static int __build_all_zonelists(void *data)
1da177e4 3573{
6811378e 3574 int nid;
99dcc3e5 3575 int cpu;
9adb62a5 3576 pg_data_t *self = data;
9276b1bc 3577
7f9cfb31
BL
3578#ifdef CONFIG_NUMA
3579 memset(node_load, 0, sizeof(node_load));
3580#endif
9adb62a5
JL
3581
3582 if (self && !node_online(self->node_id)) {
3583 build_zonelists(self);
3584 build_zonelist_cache(self);
3585 }
3586
9276b1bc 3587 for_each_online_node(nid) {
7ea1530a
CL
3588 pg_data_t *pgdat = NODE_DATA(nid);
3589
3590 build_zonelists(pgdat);
3591 build_zonelist_cache(pgdat);
9276b1bc 3592 }
99dcc3e5
CL
3593
3594 /*
3595 * Initialize the boot_pagesets that are going to be used
3596 * for bootstrapping processors. The real pagesets for
3597 * each zone will be allocated later when the per cpu
3598 * allocator is available.
3599 *
3600 * boot_pagesets are used also for bootstrapping offline
3601 * cpus if the system is already booted because the pagesets
3602 * are needed to initialize allocators on a specific cpu too.
3603 * F.e. the percpu allocator needs the page allocator which
3604 * needs the percpu allocator in order to allocate its pagesets
3605 * (a chicken-egg dilemma).
3606 */
7aac7898 3607 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3608 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3609
7aac7898
LS
3610#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3611 /*
3612 * We now know the "local memory node" for each node--
3613 * i.e., the node of the first zone in the generic zonelist.
3614 * Set up numa_mem percpu variable for on-line cpus. During
3615 * boot, only the boot cpu should be on-line; we'll init the
3616 * secondary cpus' numa_mem as they come on-line. During
3617 * node/memory hotplug, we'll fixup all on-line cpus.
3618 */
3619 if (cpu_online(cpu))
3620 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3621#endif
3622 }
3623
6811378e
YG
3624 return 0;
3625}
3626
4eaf3f64
HL
3627/*
3628 * Called with zonelists_mutex held always
3629 * unless system_state == SYSTEM_BOOTING.
3630 */
9adb62a5 3631void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3632{
f0c0b2b8
KH
3633 set_zonelist_order();
3634
6811378e 3635 if (system_state == SYSTEM_BOOTING) {
423b41d7 3636 __build_all_zonelists(NULL);
68ad8df4 3637 mminit_verify_zonelist();
6811378e
YG
3638 cpuset_init_current_mems_allowed();
3639 } else {
183ff22b 3640 /* we have to stop all cpus to guarantee there is no user
6811378e 3641 of zonelist */
e9959f0f 3642#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3643 if (zone)
3644 setup_zone_pageset(zone);
e9959f0f 3645#endif
9adb62a5 3646 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3647 /* cpuset refresh routine should be here */
3648 }
bd1e22b8 3649 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3650 /*
3651 * Disable grouping by mobility if the number of pages in the
3652 * system is too low to allow the mechanism to work. It would be
3653 * more accurate, but expensive to check per-zone. This check is
3654 * made on memory-hotadd so a system can start with mobility
3655 * disabled and enable it later
3656 */
d9c23400 3657 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3658 page_group_by_mobility_disabled = 1;
3659 else
3660 page_group_by_mobility_disabled = 0;
3661
3662 printk("Built %i zonelists in %s order, mobility grouping %s. "
3663 "Total pages: %ld\n",
62bc62a8 3664 nr_online_nodes,
f0c0b2b8 3665 zonelist_order_name[current_zonelist_order],
9ef9acb0 3666 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3667 vm_total_pages);
3668#ifdef CONFIG_NUMA
3669 printk("Policy zone: %s\n", zone_names[policy_zone]);
3670#endif
1da177e4
LT
3671}
3672
3673/*
3674 * Helper functions to size the waitqueue hash table.
3675 * Essentially these want to choose hash table sizes sufficiently
3676 * large so that collisions trying to wait on pages are rare.
3677 * But in fact, the number of active page waitqueues on typical
3678 * systems is ridiculously low, less than 200. So this is even
3679 * conservative, even though it seems large.
3680 *
3681 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3682 * waitqueues, i.e. the size of the waitq table given the number of pages.
3683 */
3684#define PAGES_PER_WAITQUEUE 256
3685
cca448fe 3686#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3687static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3688{
3689 unsigned long size = 1;
3690
3691 pages /= PAGES_PER_WAITQUEUE;
3692
3693 while (size < pages)
3694 size <<= 1;
3695
3696 /*
3697 * Once we have dozens or even hundreds of threads sleeping
3698 * on IO we've got bigger problems than wait queue collision.
3699 * Limit the size of the wait table to a reasonable size.
3700 */
3701 size = min(size, 4096UL);
3702
3703 return max(size, 4UL);
3704}
cca448fe
YG
3705#else
3706/*
3707 * A zone's size might be changed by hot-add, so it is not possible to determine
3708 * a suitable size for its wait_table. So we use the maximum size now.
3709 *
3710 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3711 *
3712 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3713 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3714 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3715 *
3716 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3717 * or more by the traditional way. (See above). It equals:
3718 *
3719 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3720 * ia64(16K page size) : = ( 8G + 4M)byte.
3721 * powerpc (64K page size) : = (32G +16M)byte.
3722 */
3723static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3724{
3725 return 4096UL;
3726}
3727#endif
1da177e4
LT
3728
3729/*
3730 * This is an integer logarithm so that shifts can be used later
3731 * to extract the more random high bits from the multiplicative
3732 * hash function before the remainder is taken.
3733 */
3734static inline unsigned long wait_table_bits(unsigned long size)
3735{
3736 return ffz(~size);
3737}
3738
3739#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3740
6d3163ce
AH
3741/*
3742 * Check if a pageblock contains reserved pages
3743 */
3744static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3745{
3746 unsigned long pfn;
3747
3748 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3749 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3750 return 1;
3751 }
3752 return 0;
3753}
3754
56fd56b8 3755/*
d9c23400 3756 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3757 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3758 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3759 * higher will lead to a bigger reserve which will get freed as contiguous
3760 * blocks as reclaim kicks in
3761 */
3762static void setup_zone_migrate_reserve(struct zone *zone)
3763{
6d3163ce 3764 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3765 struct page *page;
78986a67
MG
3766 unsigned long block_migratetype;
3767 int reserve;
56fd56b8 3768
d0215638
MH
3769 /*
3770 * Get the start pfn, end pfn and the number of blocks to reserve
3771 * We have to be careful to be aligned to pageblock_nr_pages to
3772 * make sure that we always check pfn_valid for the first page in
3773 * the block.
3774 */
56fd56b8
MG
3775 start_pfn = zone->zone_start_pfn;
3776 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3777 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3778 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3779 pageblock_order;
56fd56b8 3780
78986a67
MG
3781 /*
3782 * Reserve blocks are generally in place to help high-order atomic
3783 * allocations that are short-lived. A min_free_kbytes value that
3784 * would result in more than 2 reserve blocks for atomic allocations
3785 * is assumed to be in place to help anti-fragmentation for the
3786 * future allocation of hugepages at runtime.
3787 */
3788 reserve = min(2, reserve);
3789
d9c23400 3790 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3791 if (!pfn_valid(pfn))
3792 continue;
3793 page = pfn_to_page(pfn);
3794
344c790e
AL
3795 /* Watch out for overlapping nodes */
3796 if (page_to_nid(page) != zone_to_nid(zone))
3797 continue;
3798
56fd56b8
MG
3799 block_migratetype = get_pageblock_migratetype(page);
3800
938929f1
MG
3801 /* Only test what is necessary when the reserves are not met */
3802 if (reserve > 0) {
3803 /*
3804 * Blocks with reserved pages will never free, skip
3805 * them.
3806 */
3807 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3808 if (pageblock_is_reserved(pfn, block_end_pfn))
3809 continue;
56fd56b8 3810
938929f1
MG
3811 /* If this block is reserved, account for it */
3812 if (block_migratetype == MIGRATE_RESERVE) {
3813 reserve--;
3814 continue;
3815 }
3816
3817 /* Suitable for reserving if this block is movable */
3818 if (block_migratetype == MIGRATE_MOVABLE) {
3819 set_pageblock_migratetype(page,
3820 MIGRATE_RESERVE);
3821 move_freepages_block(zone, page,
3822 MIGRATE_RESERVE);
3823 reserve--;
3824 continue;
3825 }
56fd56b8
MG
3826 }
3827
3828 /*
3829 * If the reserve is met and this is a previous reserved block,
3830 * take it back
3831 */
3832 if (block_migratetype == MIGRATE_RESERVE) {
3833 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3834 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3835 }
3836 }
3837}
ac0e5b7a 3838
1da177e4
LT
3839/*
3840 * Initially all pages are reserved - free ones are freed
3841 * up by free_all_bootmem() once the early boot process is
3842 * done. Non-atomic initialization, single-pass.
3843 */
c09b4240 3844void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3845 unsigned long start_pfn, enum memmap_context context)
1da177e4 3846{
1da177e4 3847 struct page *page;
29751f69
AW
3848 unsigned long end_pfn = start_pfn + size;
3849 unsigned long pfn;
86051ca5 3850 struct zone *z;
1da177e4 3851
22b31eec
HD
3852 if (highest_memmap_pfn < end_pfn - 1)
3853 highest_memmap_pfn = end_pfn - 1;
3854
86051ca5 3855 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3856 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3857 /*
3858 * There can be holes in boot-time mem_map[]s
3859 * handed to this function. They do not
3860 * exist on hotplugged memory.
3861 */
3862 if (context == MEMMAP_EARLY) {
3863 if (!early_pfn_valid(pfn))
3864 continue;
3865 if (!early_pfn_in_nid(pfn, nid))
3866 continue;
3867 }
d41dee36
AW
3868 page = pfn_to_page(pfn);
3869 set_page_links(page, zone, nid, pfn);
708614e6 3870 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3871 init_page_count(page);
1da177e4
LT
3872 reset_page_mapcount(page);
3873 SetPageReserved(page);
b2a0ac88
MG
3874 /*
3875 * Mark the block movable so that blocks are reserved for
3876 * movable at startup. This will force kernel allocations
3877 * to reserve their blocks rather than leaking throughout
3878 * the address space during boot when many long-lived
56fd56b8
MG
3879 * kernel allocations are made. Later some blocks near
3880 * the start are marked MIGRATE_RESERVE by
3881 * setup_zone_migrate_reserve()
86051ca5
KH
3882 *
3883 * bitmap is created for zone's valid pfn range. but memmap
3884 * can be created for invalid pages (for alignment)
3885 * check here not to call set_pageblock_migratetype() against
3886 * pfn out of zone.
b2a0ac88 3887 */
86051ca5
KH
3888 if ((z->zone_start_pfn <= pfn)
3889 && (pfn < z->zone_start_pfn + z->spanned_pages)
3890 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3891 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3892
1da177e4
LT
3893 INIT_LIST_HEAD(&page->lru);
3894#ifdef WANT_PAGE_VIRTUAL
3895 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3896 if (!is_highmem_idx(zone))
3212c6be 3897 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3898#endif
1da177e4
LT
3899 }
3900}
3901
1e548deb 3902static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3903{
b2a0ac88
MG
3904 int order, t;
3905 for_each_migratetype_order(order, t) {
3906 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3907 zone->free_area[order].nr_free = 0;
3908 }
3909}
3910
3911#ifndef __HAVE_ARCH_MEMMAP_INIT
3912#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3913 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3914#endif
3915
4ed7e022 3916static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3917{
3a6be87f 3918#ifdef CONFIG_MMU
e7c8d5c9
CL
3919 int batch;
3920
3921 /*
3922 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3923 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3924 *
3925 * OK, so we don't know how big the cache is. So guess.
3926 */
3927 batch = zone->present_pages / 1024;
ba56e91c
SR
3928 if (batch * PAGE_SIZE > 512 * 1024)
3929 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3930 batch /= 4; /* We effectively *= 4 below */
3931 if (batch < 1)
3932 batch = 1;
3933
3934 /*
0ceaacc9
NP
3935 * Clamp the batch to a 2^n - 1 value. Having a power
3936 * of 2 value was found to be more likely to have
3937 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3938 *
0ceaacc9
NP
3939 * For example if 2 tasks are alternately allocating
3940 * batches of pages, one task can end up with a lot
3941 * of pages of one half of the possible page colors
3942 * and the other with pages of the other colors.
e7c8d5c9 3943 */
9155203a 3944 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3945
e7c8d5c9 3946 return batch;
3a6be87f
DH
3947
3948#else
3949 /* The deferral and batching of frees should be suppressed under NOMMU
3950 * conditions.
3951 *
3952 * The problem is that NOMMU needs to be able to allocate large chunks
3953 * of contiguous memory as there's no hardware page translation to
3954 * assemble apparent contiguous memory from discontiguous pages.
3955 *
3956 * Queueing large contiguous runs of pages for batching, however,
3957 * causes the pages to actually be freed in smaller chunks. As there
3958 * can be a significant delay between the individual batches being
3959 * recycled, this leads to the once large chunks of space being
3960 * fragmented and becoming unavailable for high-order allocations.
3961 */
3962 return 0;
3963#endif
e7c8d5c9
CL
3964}
3965
b69a7288 3966static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3967{
3968 struct per_cpu_pages *pcp;
5f8dcc21 3969 int migratetype;
2caaad41 3970
1c6fe946
MD
3971 memset(p, 0, sizeof(*p));
3972
3dfa5721 3973 pcp = &p->pcp;
2caaad41 3974 pcp->count = 0;
2caaad41
CL
3975 pcp->high = 6 * batch;
3976 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3977 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3978 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3979}
3980
8ad4b1fb
RS
3981/*
3982 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3983 * to the value high for the pageset p.
3984 */
3985
3986static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3987 unsigned long high)
3988{
3989 struct per_cpu_pages *pcp;
3990
3dfa5721 3991 pcp = &p->pcp;
8ad4b1fb
RS
3992 pcp->high = high;
3993 pcp->batch = max(1UL, high/4);
3994 if ((high/4) > (PAGE_SHIFT * 8))
3995 pcp->batch = PAGE_SHIFT * 8;
3996}
3997
4ed7e022 3998static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3999{
4000 int cpu;
4001
4002 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4003
4004 for_each_possible_cpu(cpu) {
4005 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4006
4007 setup_pageset(pcp, zone_batchsize(zone));
4008
4009 if (percpu_pagelist_fraction)
4010 setup_pagelist_highmark(pcp,
4011 (zone->present_pages /
4012 percpu_pagelist_fraction));
4013 }
4014}
4015
2caaad41 4016/*
99dcc3e5
CL
4017 * Allocate per cpu pagesets and initialize them.
4018 * Before this call only boot pagesets were available.
e7c8d5c9 4019 */
99dcc3e5 4020void __init setup_per_cpu_pageset(void)
e7c8d5c9 4021{
99dcc3e5 4022 struct zone *zone;
e7c8d5c9 4023
319774e2
WF
4024 for_each_populated_zone(zone)
4025 setup_zone_pageset(zone);
e7c8d5c9
CL
4026}
4027
577a32f6 4028static noinline __init_refok
cca448fe 4029int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4030{
4031 int i;
4032 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4033 size_t alloc_size;
ed8ece2e
DH
4034
4035 /*
4036 * The per-page waitqueue mechanism uses hashed waitqueues
4037 * per zone.
4038 */
02b694de
YG
4039 zone->wait_table_hash_nr_entries =
4040 wait_table_hash_nr_entries(zone_size_pages);
4041 zone->wait_table_bits =
4042 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4043 alloc_size = zone->wait_table_hash_nr_entries
4044 * sizeof(wait_queue_head_t);
4045
cd94b9db 4046 if (!slab_is_available()) {
cca448fe 4047 zone->wait_table = (wait_queue_head_t *)
8f389a99 4048 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4049 } else {
4050 /*
4051 * This case means that a zone whose size was 0 gets new memory
4052 * via memory hot-add.
4053 * But it may be the case that a new node was hot-added. In
4054 * this case vmalloc() will not be able to use this new node's
4055 * memory - this wait_table must be initialized to use this new
4056 * node itself as well.
4057 * To use this new node's memory, further consideration will be
4058 * necessary.
4059 */
8691f3a7 4060 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4061 }
4062 if (!zone->wait_table)
4063 return -ENOMEM;
ed8ece2e 4064
02b694de 4065 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4066 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4067
4068 return 0;
ed8ece2e
DH
4069}
4070
c09b4240 4071static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4072{
99dcc3e5
CL
4073 /*
4074 * per cpu subsystem is not up at this point. The following code
4075 * relies on the ability of the linker to provide the
4076 * offset of a (static) per cpu variable into the per cpu area.
4077 */
4078 zone->pageset = &boot_pageset;
ed8ece2e 4079
f5335c0f 4080 if (zone->present_pages)
99dcc3e5
CL
4081 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4082 zone->name, zone->present_pages,
4083 zone_batchsize(zone));
ed8ece2e
DH
4084}
4085
4ed7e022 4086int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4087 unsigned long zone_start_pfn,
a2f3aa02
DH
4088 unsigned long size,
4089 enum memmap_context context)
ed8ece2e
DH
4090{
4091 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4092 int ret;
4093 ret = zone_wait_table_init(zone, size);
4094 if (ret)
4095 return ret;
ed8ece2e
DH
4096 pgdat->nr_zones = zone_idx(zone) + 1;
4097
ed8ece2e
DH
4098 zone->zone_start_pfn = zone_start_pfn;
4099
708614e6
MG
4100 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4101 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4102 pgdat->node_id,
4103 (unsigned long)zone_idx(zone),
4104 zone_start_pfn, (zone_start_pfn + size));
4105
1e548deb 4106 zone_init_free_lists(zone);
718127cc
YG
4107
4108 return 0;
ed8ece2e
DH
4109}
4110
0ee332c1 4111#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4112#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4113/*
4114 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4115 * Architectures may implement their own version but if add_active_range()
4116 * was used and there are no special requirements, this is a convenient
4117 * alternative
4118 */
f2dbcfa7 4119int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4120{
c13291a5
TH
4121 unsigned long start_pfn, end_pfn;
4122 int i, nid;
c713216d 4123
c13291a5 4124 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4125 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4126 return nid;
cc2559bc
KH
4127 /* This is a memory hole */
4128 return -1;
c713216d
MG
4129}
4130#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4131
f2dbcfa7
KH
4132int __meminit early_pfn_to_nid(unsigned long pfn)
4133{
cc2559bc
KH
4134 int nid;
4135
4136 nid = __early_pfn_to_nid(pfn);
4137 if (nid >= 0)
4138 return nid;
4139 /* just returns 0 */
4140 return 0;
f2dbcfa7
KH
4141}
4142
cc2559bc
KH
4143#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4144bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4145{
4146 int nid;
4147
4148 nid = __early_pfn_to_nid(pfn);
4149 if (nid >= 0 && nid != node)
4150 return false;
4151 return true;
4152}
4153#endif
f2dbcfa7 4154
c713216d
MG
4155/**
4156 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4157 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4158 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4159 *
4160 * If an architecture guarantees that all ranges registered with
4161 * add_active_ranges() contain no holes and may be freed, this
4162 * this function may be used instead of calling free_bootmem() manually.
4163 */
c13291a5 4164void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4165{
c13291a5
TH
4166 unsigned long start_pfn, end_pfn;
4167 int i, this_nid;
edbe7d23 4168
c13291a5
TH
4169 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4170 start_pfn = min(start_pfn, max_low_pfn);
4171 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4172
c13291a5
TH
4173 if (start_pfn < end_pfn)
4174 free_bootmem_node(NODE_DATA(this_nid),
4175 PFN_PHYS(start_pfn),
4176 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4177 }
edbe7d23 4178}
edbe7d23 4179
c713216d
MG
4180/**
4181 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4182 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4183 *
4184 * If an architecture guarantees that all ranges registered with
4185 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4186 * function may be used instead of calling memory_present() manually.
c713216d
MG
4187 */
4188void __init sparse_memory_present_with_active_regions(int nid)
4189{
c13291a5
TH
4190 unsigned long start_pfn, end_pfn;
4191 int i, this_nid;
c713216d 4192
c13291a5
TH
4193 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4194 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4195}
4196
4197/**
4198 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4199 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4200 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4201 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4202 *
4203 * It returns the start and end page frame of a node based on information
4204 * provided by an arch calling add_active_range(). If called for a node
4205 * with no available memory, a warning is printed and the start and end
88ca3b94 4206 * PFNs will be 0.
c713216d 4207 */
a3142c8e 4208void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4209 unsigned long *start_pfn, unsigned long *end_pfn)
4210{
c13291a5 4211 unsigned long this_start_pfn, this_end_pfn;
c713216d 4212 int i;
c13291a5 4213
c713216d
MG
4214 *start_pfn = -1UL;
4215 *end_pfn = 0;
4216
c13291a5
TH
4217 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4218 *start_pfn = min(*start_pfn, this_start_pfn);
4219 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4220 }
4221
633c0666 4222 if (*start_pfn == -1UL)
c713216d 4223 *start_pfn = 0;
c713216d
MG
4224}
4225
2a1e274a
MG
4226/*
4227 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4228 * assumption is made that zones within a node are ordered in monotonic
4229 * increasing memory addresses so that the "highest" populated zone is used
4230 */
b69a7288 4231static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4232{
4233 int zone_index;
4234 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4235 if (zone_index == ZONE_MOVABLE)
4236 continue;
4237
4238 if (arch_zone_highest_possible_pfn[zone_index] >
4239 arch_zone_lowest_possible_pfn[zone_index])
4240 break;
4241 }
4242
4243 VM_BUG_ON(zone_index == -1);
4244 movable_zone = zone_index;
4245}
4246
4247/*
4248 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4249 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4250 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4251 * in each node depending on the size of each node and how evenly kernelcore
4252 * is distributed. This helper function adjusts the zone ranges
4253 * provided by the architecture for a given node by using the end of the
4254 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4255 * zones within a node are in order of monotonic increases memory addresses
4256 */
b69a7288 4257static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4258 unsigned long zone_type,
4259 unsigned long node_start_pfn,
4260 unsigned long node_end_pfn,
4261 unsigned long *zone_start_pfn,
4262 unsigned long *zone_end_pfn)
4263{
4264 /* Only adjust if ZONE_MOVABLE is on this node */
4265 if (zone_movable_pfn[nid]) {
4266 /* Size ZONE_MOVABLE */
4267 if (zone_type == ZONE_MOVABLE) {
4268 *zone_start_pfn = zone_movable_pfn[nid];
4269 *zone_end_pfn = min(node_end_pfn,
4270 arch_zone_highest_possible_pfn[movable_zone]);
4271
4272 /* Adjust for ZONE_MOVABLE starting within this range */
4273 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4274 *zone_end_pfn > zone_movable_pfn[nid]) {
4275 *zone_end_pfn = zone_movable_pfn[nid];
4276
4277 /* Check if this whole range is within ZONE_MOVABLE */
4278 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4279 *zone_start_pfn = *zone_end_pfn;
4280 }
4281}
4282
c713216d
MG
4283/*
4284 * Return the number of pages a zone spans in a node, including holes
4285 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4286 */
6ea6e688 4287static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4288 unsigned long zone_type,
4289 unsigned long *ignored)
4290{
4291 unsigned long node_start_pfn, node_end_pfn;
4292 unsigned long zone_start_pfn, zone_end_pfn;
4293
4294 /* Get the start and end of the node and zone */
4295 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4296 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4297 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4298 adjust_zone_range_for_zone_movable(nid, zone_type,
4299 node_start_pfn, node_end_pfn,
4300 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4301
4302 /* Check that this node has pages within the zone's required range */
4303 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4304 return 0;
4305
4306 /* Move the zone boundaries inside the node if necessary */
4307 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4308 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4309
4310 /* Return the spanned pages */
4311 return zone_end_pfn - zone_start_pfn;
4312}
4313
4314/*
4315 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4316 * then all holes in the requested range will be accounted for.
c713216d 4317 */
32996250 4318unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4319 unsigned long range_start_pfn,
4320 unsigned long range_end_pfn)
4321{
96e907d1
TH
4322 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4323 unsigned long start_pfn, end_pfn;
4324 int i;
c713216d 4325
96e907d1
TH
4326 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4327 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4328 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4329 nr_absent -= end_pfn - start_pfn;
c713216d 4330 }
96e907d1 4331 return nr_absent;
c713216d
MG
4332}
4333
4334/**
4335 * absent_pages_in_range - Return number of page frames in holes within a range
4336 * @start_pfn: The start PFN to start searching for holes
4337 * @end_pfn: The end PFN to stop searching for holes
4338 *
88ca3b94 4339 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4340 */
4341unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4342 unsigned long end_pfn)
4343{
4344 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4345}
4346
4347/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4348static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4349 unsigned long zone_type,
4350 unsigned long *ignored)
4351{
96e907d1
TH
4352 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4353 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4354 unsigned long node_start_pfn, node_end_pfn;
4355 unsigned long zone_start_pfn, zone_end_pfn;
4356
4357 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4358 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4359 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4360
2a1e274a
MG
4361 adjust_zone_range_for_zone_movable(nid, zone_type,
4362 node_start_pfn, node_end_pfn,
4363 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4364 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4365}
0e0b864e 4366
0ee332c1 4367#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4368static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4369 unsigned long zone_type,
4370 unsigned long *zones_size)
4371{
4372 return zones_size[zone_type];
4373}
4374
6ea6e688 4375static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4376 unsigned long zone_type,
4377 unsigned long *zholes_size)
4378{
4379 if (!zholes_size)
4380 return 0;
4381
4382 return zholes_size[zone_type];
4383}
0e0b864e 4384
0ee332c1 4385#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4386
a3142c8e 4387static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4388 unsigned long *zones_size, unsigned long *zholes_size)
4389{
4390 unsigned long realtotalpages, totalpages = 0;
4391 enum zone_type i;
4392
4393 for (i = 0; i < MAX_NR_ZONES; i++)
4394 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4395 zones_size);
4396 pgdat->node_spanned_pages = totalpages;
4397
4398 realtotalpages = totalpages;
4399 for (i = 0; i < MAX_NR_ZONES; i++)
4400 realtotalpages -=
4401 zone_absent_pages_in_node(pgdat->node_id, i,
4402 zholes_size);
4403 pgdat->node_present_pages = realtotalpages;
4404 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4405 realtotalpages);
4406}
4407
835c134e
MG
4408#ifndef CONFIG_SPARSEMEM
4409/*
4410 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4411 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4412 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4413 * round what is now in bits to nearest long in bits, then return it in
4414 * bytes.
4415 */
4416static unsigned long __init usemap_size(unsigned long zonesize)
4417{
4418 unsigned long usemapsize;
4419
d9c23400
MG
4420 usemapsize = roundup(zonesize, pageblock_nr_pages);
4421 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4422 usemapsize *= NR_PAGEBLOCK_BITS;
4423 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4424
4425 return usemapsize / 8;
4426}
4427
4428static void __init setup_usemap(struct pglist_data *pgdat,
4429 struct zone *zone, unsigned long zonesize)
4430{
4431 unsigned long usemapsize = usemap_size(zonesize);
4432 zone->pageblock_flags = NULL;
58a01a45 4433 if (usemapsize)
8f389a99
YL
4434 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4435 usemapsize);
835c134e
MG
4436}
4437#else
fa9f90be 4438static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4439 struct zone *zone, unsigned long zonesize) {}
4440#endif /* CONFIG_SPARSEMEM */
4441
d9c23400 4442#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4443
d9c23400 4444/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4445void __init set_pageblock_order(void)
d9c23400 4446{
955c1cd7
AM
4447 unsigned int order;
4448
d9c23400
MG
4449 /* Check that pageblock_nr_pages has not already been setup */
4450 if (pageblock_order)
4451 return;
4452
955c1cd7
AM
4453 if (HPAGE_SHIFT > PAGE_SHIFT)
4454 order = HUGETLB_PAGE_ORDER;
4455 else
4456 order = MAX_ORDER - 1;
4457
d9c23400
MG
4458 /*
4459 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4460 * This value may be variable depending on boot parameters on IA64 and
4461 * powerpc.
d9c23400
MG
4462 */
4463 pageblock_order = order;
4464}
4465#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4466
ba72cb8c
MG
4467/*
4468 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4469 * is unused as pageblock_order is set at compile-time. See
4470 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4471 * the kernel config
ba72cb8c 4472 */
ca57df79 4473void __init set_pageblock_order(void)
ba72cb8c 4474{
ba72cb8c 4475}
d9c23400
MG
4476
4477#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4478
1da177e4
LT
4479/*
4480 * Set up the zone data structures:
4481 * - mark all pages reserved
4482 * - mark all memory queues empty
4483 * - clear the memory bitmaps
6527af5d
MK
4484 *
4485 * NOTE: pgdat should get zeroed by caller.
1da177e4 4486 */
b5a0e011 4487static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4488 unsigned long *zones_size, unsigned long *zholes_size)
4489{
2f1b6248 4490 enum zone_type j;
ed8ece2e 4491 int nid = pgdat->node_id;
1da177e4 4492 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4493 int ret;
1da177e4 4494
208d54e5 4495 pgdat_resize_init(pgdat);
1da177e4 4496 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4497 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4498 pgdat_page_cgroup_init(pgdat);
5f63b720 4499
1da177e4
LT
4500 for (j = 0; j < MAX_NR_ZONES; j++) {
4501 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4502 unsigned long size, realsize, memmap_pages;
1da177e4 4503
c713216d
MG
4504 size = zone_spanned_pages_in_node(nid, j, zones_size);
4505 realsize = size - zone_absent_pages_in_node(nid, j,
4506 zholes_size);
1da177e4 4507
0e0b864e
MG
4508 /*
4509 * Adjust realsize so that it accounts for how much memory
4510 * is used by this zone for memmap. This affects the watermark
4511 * and per-cpu initialisations
4512 */
f7232154
JW
4513 memmap_pages =
4514 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4515 if (realsize >= memmap_pages) {
4516 realsize -= memmap_pages;
5594c8c8
YL
4517 if (memmap_pages)
4518 printk(KERN_DEBUG
4519 " %s zone: %lu pages used for memmap\n",
4520 zone_names[j], memmap_pages);
0e0b864e
MG
4521 } else
4522 printk(KERN_WARNING
4523 " %s zone: %lu pages exceeds realsize %lu\n",
4524 zone_names[j], memmap_pages, realsize);
4525
6267276f
CL
4526 /* Account for reserved pages */
4527 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4528 realsize -= dma_reserve;
d903ef9f 4529 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4530 zone_names[0], dma_reserve);
0e0b864e
MG
4531 }
4532
98d2b0eb 4533 if (!is_highmem_idx(j))
1da177e4
LT
4534 nr_kernel_pages += realsize;
4535 nr_all_pages += realsize;
4536
4537 zone->spanned_pages = size;
4538 zone->present_pages = realsize;
9614634f 4539#ifdef CONFIG_NUMA
d5f541ed 4540 zone->node = nid;
8417bba4 4541 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4542 / 100;
0ff38490 4543 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4544#endif
1da177e4
LT
4545 zone->name = zone_names[j];
4546 spin_lock_init(&zone->lock);
4547 spin_lock_init(&zone->lru_lock);
bdc8cb98 4548 zone_seqlock_init(zone);
1da177e4 4549 zone->zone_pgdat = pgdat;
1da177e4 4550
ed8ece2e 4551 zone_pcp_init(zone);
bea8c150 4552 lruvec_init(&zone->lruvec);
1da177e4
LT
4553 if (!size)
4554 continue;
4555
955c1cd7 4556 set_pageblock_order();
835c134e 4557 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4558 ret = init_currently_empty_zone(zone, zone_start_pfn,
4559 size, MEMMAP_EARLY);
718127cc 4560 BUG_ON(ret);
76cdd58e 4561 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4562 zone_start_pfn += size;
1da177e4
LT
4563 }
4564}
4565
577a32f6 4566static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4567{
1da177e4
LT
4568 /* Skip empty nodes */
4569 if (!pgdat->node_spanned_pages)
4570 return;
4571
d41dee36 4572#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4573 /* ia64 gets its own node_mem_map, before this, without bootmem */
4574 if (!pgdat->node_mem_map) {
e984bb43 4575 unsigned long size, start, end;
d41dee36
AW
4576 struct page *map;
4577
e984bb43
BP
4578 /*
4579 * The zone's endpoints aren't required to be MAX_ORDER
4580 * aligned but the node_mem_map endpoints must be in order
4581 * for the buddy allocator to function correctly.
4582 */
4583 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4584 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4585 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4586 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4587 map = alloc_remap(pgdat->node_id, size);
4588 if (!map)
8f389a99 4589 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4590 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4591 }
12d810c1 4592#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4593 /*
4594 * With no DISCONTIG, the global mem_map is just set as node 0's
4595 */
c713216d 4596 if (pgdat == NODE_DATA(0)) {
1da177e4 4597 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4598#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4599 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4600 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4601#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4602 }
1da177e4 4603#endif
d41dee36 4604#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4605}
4606
9109fb7b
JW
4607void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4608 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4609{
9109fb7b
JW
4610 pg_data_t *pgdat = NODE_DATA(nid);
4611
88fdf75d 4612 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4613 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4614
1da177e4
LT
4615 pgdat->node_id = nid;
4616 pgdat->node_start_pfn = node_start_pfn;
957f822a 4617 init_zone_allows_reclaim(nid);
c713216d 4618 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4619
4620 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4621#ifdef CONFIG_FLAT_NODE_MEM_MAP
4622 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4623 nid, (unsigned long)pgdat,
4624 (unsigned long)pgdat->node_mem_map);
4625#endif
1da177e4
LT
4626
4627 free_area_init_core(pgdat, zones_size, zholes_size);
4628}
4629
0ee332c1 4630#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4631
4632#if MAX_NUMNODES > 1
4633/*
4634 * Figure out the number of possible node ids.
4635 */
4636static void __init setup_nr_node_ids(void)
4637{
4638 unsigned int node;
4639 unsigned int highest = 0;
4640
4641 for_each_node_mask(node, node_possible_map)
4642 highest = node;
4643 nr_node_ids = highest + 1;
4644}
4645#else
4646static inline void setup_nr_node_ids(void)
4647{
4648}
4649#endif
4650
1e01979c
TH
4651/**
4652 * node_map_pfn_alignment - determine the maximum internode alignment
4653 *
4654 * This function should be called after node map is populated and sorted.
4655 * It calculates the maximum power of two alignment which can distinguish
4656 * all the nodes.
4657 *
4658 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4659 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4660 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4661 * shifted, 1GiB is enough and this function will indicate so.
4662 *
4663 * This is used to test whether pfn -> nid mapping of the chosen memory
4664 * model has fine enough granularity to avoid incorrect mapping for the
4665 * populated node map.
4666 *
4667 * Returns the determined alignment in pfn's. 0 if there is no alignment
4668 * requirement (single node).
4669 */
4670unsigned long __init node_map_pfn_alignment(void)
4671{
4672 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4673 unsigned long start, end, mask;
1e01979c 4674 int last_nid = -1;
c13291a5 4675 int i, nid;
1e01979c 4676
c13291a5 4677 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4678 if (!start || last_nid < 0 || last_nid == nid) {
4679 last_nid = nid;
4680 last_end = end;
4681 continue;
4682 }
4683
4684 /*
4685 * Start with a mask granular enough to pin-point to the
4686 * start pfn and tick off bits one-by-one until it becomes
4687 * too coarse to separate the current node from the last.
4688 */
4689 mask = ~((1 << __ffs(start)) - 1);
4690 while (mask && last_end <= (start & (mask << 1)))
4691 mask <<= 1;
4692
4693 /* accumulate all internode masks */
4694 accl_mask |= mask;
4695 }
4696
4697 /* convert mask to number of pages */
4698 return ~accl_mask + 1;
4699}
4700
a6af2bc3 4701/* Find the lowest pfn for a node */
b69a7288 4702static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4703{
a6af2bc3 4704 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4705 unsigned long start_pfn;
4706 int i;
1abbfb41 4707
c13291a5
TH
4708 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4709 min_pfn = min(min_pfn, start_pfn);
c713216d 4710
a6af2bc3
MG
4711 if (min_pfn == ULONG_MAX) {
4712 printk(KERN_WARNING
2bc0d261 4713 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4714 return 0;
4715 }
4716
4717 return min_pfn;
c713216d
MG
4718}
4719
4720/**
4721 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4722 *
4723 * It returns the minimum PFN based on information provided via
88ca3b94 4724 * add_active_range().
c713216d
MG
4725 */
4726unsigned long __init find_min_pfn_with_active_regions(void)
4727{
4728 return find_min_pfn_for_node(MAX_NUMNODES);
4729}
4730
37b07e41
LS
4731/*
4732 * early_calculate_totalpages()
4733 * Sum pages in active regions for movable zone.
4b0ef1fe 4734 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4735 */
484f51f8 4736static unsigned long __init early_calculate_totalpages(void)
7e63efef 4737{
7e63efef 4738 unsigned long totalpages = 0;
c13291a5
TH
4739 unsigned long start_pfn, end_pfn;
4740 int i, nid;
4741
4742 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4743 unsigned long pages = end_pfn - start_pfn;
7e63efef 4744
37b07e41
LS
4745 totalpages += pages;
4746 if (pages)
4b0ef1fe 4747 node_set_state(nid, N_MEMORY);
37b07e41
LS
4748 }
4749 return totalpages;
7e63efef
MG
4750}
4751
2a1e274a
MG
4752/*
4753 * Find the PFN the Movable zone begins in each node. Kernel memory
4754 * is spread evenly between nodes as long as the nodes have enough
4755 * memory. When they don't, some nodes will have more kernelcore than
4756 * others
4757 */
b224ef85 4758static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4759{
4760 int i, nid;
4761 unsigned long usable_startpfn;
4762 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4763 /* save the state before borrow the nodemask */
4b0ef1fe 4764 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4765 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4766 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4767
7e63efef
MG
4768 /*
4769 * If movablecore was specified, calculate what size of
4770 * kernelcore that corresponds so that memory usable for
4771 * any allocation type is evenly spread. If both kernelcore
4772 * and movablecore are specified, then the value of kernelcore
4773 * will be used for required_kernelcore if it's greater than
4774 * what movablecore would have allowed.
4775 */
4776 if (required_movablecore) {
7e63efef
MG
4777 unsigned long corepages;
4778
4779 /*
4780 * Round-up so that ZONE_MOVABLE is at least as large as what
4781 * was requested by the user
4782 */
4783 required_movablecore =
4784 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4785 corepages = totalpages - required_movablecore;
4786
4787 required_kernelcore = max(required_kernelcore, corepages);
4788 }
4789
2a1e274a
MG
4790 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4791 if (!required_kernelcore)
66918dcd 4792 goto out;
2a1e274a
MG
4793
4794 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4795 find_usable_zone_for_movable();
4796 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4797
4798restart:
4799 /* Spread kernelcore memory as evenly as possible throughout nodes */
4800 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4801 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4802 unsigned long start_pfn, end_pfn;
4803
2a1e274a
MG
4804 /*
4805 * Recalculate kernelcore_node if the division per node
4806 * now exceeds what is necessary to satisfy the requested
4807 * amount of memory for the kernel
4808 */
4809 if (required_kernelcore < kernelcore_node)
4810 kernelcore_node = required_kernelcore / usable_nodes;
4811
4812 /*
4813 * As the map is walked, we track how much memory is usable
4814 * by the kernel using kernelcore_remaining. When it is
4815 * 0, the rest of the node is usable by ZONE_MOVABLE
4816 */
4817 kernelcore_remaining = kernelcore_node;
4818
4819 /* Go through each range of PFNs within this node */
c13291a5 4820 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4821 unsigned long size_pages;
4822
c13291a5 4823 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4824 if (start_pfn >= end_pfn)
4825 continue;
4826
4827 /* Account for what is only usable for kernelcore */
4828 if (start_pfn < usable_startpfn) {
4829 unsigned long kernel_pages;
4830 kernel_pages = min(end_pfn, usable_startpfn)
4831 - start_pfn;
4832
4833 kernelcore_remaining -= min(kernel_pages,
4834 kernelcore_remaining);
4835 required_kernelcore -= min(kernel_pages,
4836 required_kernelcore);
4837
4838 /* Continue if range is now fully accounted */
4839 if (end_pfn <= usable_startpfn) {
4840
4841 /*
4842 * Push zone_movable_pfn to the end so
4843 * that if we have to rebalance
4844 * kernelcore across nodes, we will
4845 * not double account here
4846 */
4847 zone_movable_pfn[nid] = end_pfn;
4848 continue;
4849 }
4850 start_pfn = usable_startpfn;
4851 }
4852
4853 /*
4854 * The usable PFN range for ZONE_MOVABLE is from
4855 * start_pfn->end_pfn. Calculate size_pages as the
4856 * number of pages used as kernelcore
4857 */
4858 size_pages = end_pfn - start_pfn;
4859 if (size_pages > kernelcore_remaining)
4860 size_pages = kernelcore_remaining;
4861 zone_movable_pfn[nid] = start_pfn + size_pages;
4862
4863 /*
4864 * Some kernelcore has been met, update counts and
4865 * break if the kernelcore for this node has been
4866 * satisified
4867 */
4868 required_kernelcore -= min(required_kernelcore,
4869 size_pages);
4870 kernelcore_remaining -= size_pages;
4871 if (!kernelcore_remaining)
4872 break;
4873 }
4874 }
4875
4876 /*
4877 * If there is still required_kernelcore, we do another pass with one
4878 * less node in the count. This will push zone_movable_pfn[nid] further
4879 * along on the nodes that still have memory until kernelcore is
4880 * satisified
4881 */
4882 usable_nodes--;
4883 if (usable_nodes && required_kernelcore > usable_nodes)
4884 goto restart;
4885
4886 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4887 for (nid = 0; nid < MAX_NUMNODES; nid++)
4888 zone_movable_pfn[nid] =
4889 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4890
4891out:
4892 /* restore the node_state */
4b0ef1fe 4893 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
4894}
4895
4b0ef1fe
LJ
4896/* Any regular or high memory on that node ? */
4897static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 4898{
37b07e41
LS
4899 enum zone_type zone_type;
4900
4b0ef1fe
LJ
4901 if (N_MEMORY == N_NORMAL_MEMORY)
4902 return;
4903
4904 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 4905 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4906 if (zone->present_pages) {
4b0ef1fe
LJ
4907 node_set_state(nid, N_HIGH_MEMORY);
4908 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4909 zone_type <= ZONE_NORMAL)
4910 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
4911 break;
4912 }
37b07e41 4913 }
37b07e41
LS
4914}
4915
c713216d
MG
4916/**
4917 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4918 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4919 *
4920 * This will call free_area_init_node() for each active node in the system.
4921 * Using the page ranges provided by add_active_range(), the size of each
4922 * zone in each node and their holes is calculated. If the maximum PFN
4923 * between two adjacent zones match, it is assumed that the zone is empty.
4924 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4925 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4926 * starts where the previous one ended. For example, ZONE_DMA32 starts
4927 * at arch_max_dma_pfn.
4928 */
4929void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4930{
c13291a5
TH
4931 unsigned long start_pfn, end_pfn;
4932 int i, nid;
a6af2bc3 4933
c713216d
MG
4934 /* Record where the zone boundaries are */
4935 memset(arch_zone_lowest_possible_pfn, 0,
4936 sizeof(arch_zone_lowest_possible_pfn));
4937 memset(arch_zone_highest_possible_pfn, 0,
4938 sizeof(arch_zone_highest_possible_pfn));
4939 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4940 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4941 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4942 if (i == ZONE_MOVABLE)
4943 continue;
c713216d
MG
4944 arch_zone_lowest_possible_pfn[i] =
4945 arch_zone_highest_possible_pfn[i-1];
4946 arch_zone_highest_possible_pfn[i] =
4947 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4948 }
2a1e274a
MG
4949 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4950 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4951
4952 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4953 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4954 find_zone_movable_pfns_for_nodes();
c713216d 4955
c713216d 4956 /* Print out the zone ranges */
a62e2f4f 4957 printk("Zone ranges:\n");
2a1e274a
MG
4958 for (i = 0; i < MAX_NR_ZONES; i++) {
4959 if (i == ZONE_MOVABLE)
4960 continue;
155cbfc8 4961 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4962 if (arch_zone_lowest_possible_pfn[i] ==
4963 arch_zone_highest_possible_pfn[i])
155cbfc8 4964 printk(KERN_CONT "empty\n");
72f0ba02 4965 else
a62e2f4f
BH
4966 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4967 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4968 (arch_zone_highest_possible_pfn[i]
4969 << PAGE_SHIFT) - 1);
2a1e274a
MG
4970 }
4971
4972 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4973 printk("Movable zone start for each node\n");
2a1e274a
MG
4974 for (i = 0; i < MAX_NUMNODES; i++) {
4975 if (zone_movable_pfn[i])
a62e2f4f
BH
4976 printk(" Node %d: %#010lx\n", i,
4977 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4978 }
c713216d 4979
f2d52fe5 4980 /* Print out the early node map */
a62e2f4f 4981 printk("Early memory node ranges\n");
c13291a5 4982 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4983 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4984 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4985
4986 /* Initialise every node */
708614e6 4987 mminit_verify_pageflags_layout();
8ef82866 4988 setup_nr_node_ids();
c713216d
MG
4989 for_each_online_node(nid) {
4990 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4991 free_area_init_node(nid, NULL,
c713216d 4992 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4993
4994 /* Any memory on that node */
4995 if (pgdat->node_present_pages)
4b0ef1fe
LJ
4996 node_set_state(nid, N_MEMORY);
4997 check_for_memory(pgdat, nid);
c713216d
MG
4998 }
4999}
2a1e274a 5000
7e63efef 5001static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5002{
5003 unsigned long long coremem;
5004 if (!p)
5005 return -EINVAL;
5006
5007 coremem = memparse(p, &p);
7e63efef 5008 *core = coremem >> PAGE_SHIFT;
2a1e274a 5009
7e63efef 5010 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5011 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5012
5013 return 0;
5014}
ed7ed365 5015
7e63efef
MG
5016/*
5017 * kernelcore=size sets the amount of memory for use for allocations that
5018 * cannot be reclaimed or migrated.
5019 */
5020static int __init cmdline_parse_kernelcore(char *p)
5021{
5022 return cmdline_parse_core(p, &required_kernelcore);
5023}
5024
5025/*
5026 * movablecore=size sets the amount of memory for use for allocations that
5027 * can be reclaimed or migrated.
5028 */
5029static int __init cmdline_parse_movablecore(char *p)
5030{
5031 return cmdline_parse_core(p, &required_movablecore);
5032}
5033
ed7ed365 5034early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5035early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5036
0ee332c1 5037#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5038
0e0b864e 5039/**
88ca3b94
RD
5040 * set_dma_reserve - set the specified number of pages reserved in the first zone
5041 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5042 *
5043 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5044 * In the DMA zone, a significant percentage may be consumed by kernel image
5045 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5046 * function may optionally be used to account for unfreeable pages in the
5047 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5048 * smaller per-cpu batchsize.
0e0b864e
MG
5049 */
5050void __init set_dma_reserve(unsigned long new_dma_reserve)
5051{
5052 dma_reserve = new_dma_reserve;
5053}
5054
1da177e4
LT
5055void __init free_area_init(unsigned long *zones_size)
5056{
9109fb7b 5057 free_area_init_node(0, zones_size,
1da177e4
LT
5058 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5059}
1da177e4 5060
1da177e4
LT
5061static int page_alloc_cpu_notify(struct notifier_block *self,
5062 unsigned long action, void *hcpu)
5063{
5064 int cpu = (unsigned long)hcpu;
1da177e4 5065
8bb78442 5066 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5067 lru_add_drain_cpu(cpu);
9f8f2172
CL
5068 drain_pages(cpu);
5069
5070 /*
5071 * Spill the event counters of the dead processor
5072 * into the current processors event counters.
5073 * This artificially elevates the count of the current
5074 * processor.
5075 */
f8891e5e 5076 vm_events_fold_cpu(cpu);
9f8f2172
CL
5077
5078 /*
5079 * Zero the differential counters of the dead processor
5080 * so that the vm statistics are consistent.
5081 *
5082 * This is only okay since the processor is dead and cannot
5083 * race with what we are doing.
5084 */
2244b95a 5085 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5086 }
5087 return NOTIFY_OK;
5088}
1da177e4
LT
5089
5090void __init page_alloc_init(void)
5091{
5092 hotcpu_notifier(page_alloc_cpu_notify, 0);
5093}
5094
cb45b0e9
HA
5095/*
5096 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5097 * or min_free_kbytes changes.
5098 */
5099static void calculate_totalreserve_pages(void)
5100{
5101 struct pglist_data *pgdat;
5102 unsigned long reserve_pages = 0;
2f6726e5 5103 enum zone_type i, j;
cb45b0e9
HA
5104
5105 for_each_online_pgdat(pgdat) {
5106 for (i = 0; i < MAX_NR_ZONES; i++) {
5107 struct zone *zone = pgdat->node_zones + i;
5108 unsigned long max = 0;
5109
5110 /* Find valid and maximum lowmem_reserve in the zone */
5111 for (j = i; j < MAX_NR_ZONES; j++) {
5112 if (zone->lowmem_reserve[j] > max)
5113 max = zone->lowmem_reserve[j];
5114 }
5115
41858966
MG
5116 /* we treat the high watermark as reserved pages. */
5117 max += high_wmark_pages(zone);
cb45b0e9
HA
5118
5119 if (max > zone->present_pages)
5120 max = zone->present_pages;
5121 reserve_pages += max;
ab8fabd4
JW
5122 /*
5123 * Lowmem reserves are not available to
5124 * GFP_HIGHUSER page cache allocations and
5125 * kswapd tries to balance zones to their high
5126 * watermark. As a result, neither should be
5127 * regarded as dirtyable memory, to prevent a
5128 * situation where reclaim has to clean pages
5129 * in order to balance the zones.
5130 */
5131 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5132 }
5133 }
ab8fabd4 5134 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5135 totalreserve_pages = reserve_pages;
5136}
5137
1da177e4
LT
5138/*
5139 * setup_per_zone_lowmem_reserve - called whenever
5140 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5141 * has a correct pages reserved value, so an adequate number of
5142 * pages are left in the zone after a successful __alloc_pages().
5143 */
5144static void setup_per_zone_lowmem_reserve(void)
5145{
5146 struct pglist_data *pgdat;
2f6726e5 5147 enum zone_type j, idx;
1da177e4 5148
ec936fc5 5149 for_each_online_pgdat(pgdat) {
1da177e4
LT
5150 for (j = 0; j < MAX_NR_ZONES; j++) {
5151 struct zone *zone = pgdat->node_zones + j;
5152 unsigned long present_pages = zone->present_pages;
5153
5154 zone->lowmem_reserve[j] = 0;
5155
2f6726e5
CL
5156 idx = j;
5157 while (idx) {
1da177e4
LT
5158 struct zone *lower_zone;
5159
2f6726e5
CL
5160 idx--;
5161
1da177e4
LT
5162 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5163 sysctl_lowmem_reserve_ratio[idx] = 1;
5164
5165 lower_zone = pgdat->node_zones + idx;
5166 lower_zone->lowmem_reserve[j] = present_pages /
5167 sysctl_lowmem_reserve_ratio[idx];
5168 present_pages += lower_zone->present_pages;
5169 }
5170 }
5171 }
cb45b0e9
HA
5172
5173 /* update totalreserve_pages */
5174 calculate_totalreserve_pages();
1da177e4
LT
5175}
5176
cfd3da1e 5177static void __setup_per_zone_wmarks(void)
1da177e4
LT
5178{
5179 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5180 unsigned long lowmem_pages = 0;
5181 struct zone *zone;
5182 unsigned long flags;
5183
5184 /* Calculate total number of !ZONE_HIGHMEM pages */
5185 for_each_zone(zone) {
5186 if (!is_highmem(zone))
5187 lowmem_pages += zone->present_pages;
5188 }
5189
5190 for_each_zone(zone) {
ac924c60
AM
5191 u64 tmp;
5192
1125b4e3 5193 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5194 tmp = (u64)pages_min * zone->present_pages;
5195 do_div(tmp, lowmem_pages);
1da177e4
LT
5196 if (is_highmem(zone)) {
5197 /*
669ed175
NP
5198 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5199 * need highmem pages, so cap pages_min to a small
5200 * value here.
5201 *
41858966 5202 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5203 * deltas controls asynch page reclaim, and so should
5204 * not be capped for highmem.
1da177e4
LT
5205 */
5206 int min_pages;
5207
5208 min_pages = zone->present_pages / 1024;
5209 if (min_pages < SWAP_CLUSTER_MAX)
5210 min_pages = SWAP_CLUSTER_MAX;
5211 if (min_pages > 128)
5212 min_pages = 128;
41858966 5213 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5214 } else {
669ed175
NP
5215 /*
5216 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5217 * proportionate to the zone's size.
5218 */
41858966 5219 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5220 }
5221
41858966
MG
5222 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5223 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5224
56fd56b8 5225 setup_zone_migrate_reserve(zone);
1125b4e3 5226 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5227 }
cb45b0e9
HA
5228
5229 /* update totalreserve_pages */
5230 calculate_totalreserve_pages();
1da177e4
LT
5231}
5232
cfd3da1e
MG
5233/**
5234 * setup_per_zone_wmarks - called when min_free_kbytes changes
5235 * or when memory is hot-{added|removed}
5236 *
5237 * Ensures that the watermark[min,low,high] values for each zone are set
5238 * correctly with respect to min_free_kbytes.
5239 */
5240void setup_per_zone_wmarks(void)
5241{
5242 mutex_lock(&zonelists_mutex);
5243 __setup_per_zone_wmarks();
5244 mutex_unlock(&zonelists_mutex);
5245}
5246
55a4462a 5247/*
556adecb
RR
5248 * The inactive anon list should be small enough that the VM never has to
5249 * do too much work, but large enough that each inactive page has a chance
5250 * to be referenced again before it is swapped out.
5251 *
5252 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5253 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5254 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5255 * the anonymous pages are kept on the inactive list.
5256 *
5257 * total target max
5258 * memory ratio inactive anon
5259 * -------------------------------------
5260 * 10MB 1 5MB
5261 * 100MB 1 50MB
5262 * 1GB 3 250MB
5263 * 10GB 10 0.9GB
5264 * 100GB 31 3GB
5265 * 1TB 101 10GB
5266 * 10TB 320 32GB
5267 */
1b79acc9 5268static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5269{
96cb4df5 5270 unsigned int gb, ratio;
556adecb 5271
96cb4df5
MK
5272 /* Zone size in gigabytes */
5273 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5274 if (gb)
556adecb 5275 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5276 else
5277 ratio = 1;
556adecb 5278
96cb4df5
MK
5279 zone->inactive_ratio = ratio;
5280}
556adecb 5281
839a4fcc 5282static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5283{
5284 struct zone *zone;
5285
5286 for_each_zone(zone)
5287 calculate_zone_inactive_ratio(zone);
556adecb
RR
5288}
5289
1da177e4
LT
5290/*
5291 * Initialise min_free_kbytes.
5292 *
5293 * For small machines we want it small (128k min). For large machines
5294 * we want it large (64MB max). But it is not linear, because network
5295 * bandwidth does not increase linearly with machine size. We use
5296 *
5297 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5298 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5299 *
5300 * which yields
5301 *
5302 * 16MB: 512k
5303 * 32MB: 724k
5304 * 64MB: 1024k
5305 * 128MB: 1448k
5306 * 256MB: 2048k
5307 * 512MB: 2896k
5308 * 1024MB: 4096k
5309 * 2048MB: 5792k
5310 * 4096MB: 8192k
5311 * 8192MB: 11584k
5312 * 16384MB: 16384k
5313 */
1b79acc9 5314int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5315{
5316 unsigned long lowmem_kbytes;
5317
5318 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5319
5320 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5321 if (min_free_kbytes < 128)
5322 min_free_kbytes = 128;
5323 if (min_free_kbytes > 65536)
5324 min_free_kbytes = 65536;
bc75d33f 5325 setup_per_zone_wmarks();
a6cccdc3 5326 refresh_zone_stat_thresholds();
1da177e4 5327 setup_per_zone_lowmem_reserve();
556adecb 5328 setup_per_zone_inactive_ratio();
1da177e4
LT
5329 return 0;
5330}
bc75d33f 5331module_init(init_per_zone_wmark_min)
1da177e4
LT
5332
5333/*
5334 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5335 * that we can call two helper functions whenever min_free_kbytes
5336 * changes.
5337 */
5338int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5339 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5340{
8d65af78 5341 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5342 if (write)
bc75d33f 5343 setup_per_zone_wmarks();
1da177e4
LT
5344 return 0;
5345}
5346
9614634f
CL
5347#ifdef CONFIG_NUMA
5348int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5349 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5350{
5351 struct zone *zone;
5352 int rc;
5353
8d65af78 5354 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5355 if (rc)
5356 return rc;
5357
5358 for_each_zone(zone)
8417bba4 5359 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5360 sysctl_min_unmapped_ratio) / 100;
5361 return 0;
5362}
0ff38490
CL
5363
5364int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5365 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5366{
5367 struct zone *zone;
5368 int rc;
5369
8d65af78 5370 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5371 if (rc)
5372 return rc;
5373
5374 for_each_zone(zone)
5375 zone->min_slab_pages = (zone->present_pages *
5376 sysctl_min_slab_ratio) / 100;
5377 return 0;
5378}
9614634f
CL
5379#endif
5380
1da177e4
LT
5381/*
5382 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5383 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5384 * whenever sysctl_lowmem_reserve_ratio changes.
5385 *
5386 * The reserve ratio obviously has absolutely no relation with the
41858966 5387 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5388 * if in function of the boot time zone sizes.
5389 */
5390int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5391 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5392{
8d65af78 5393 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5394 setup_per_zone_lowmem_reserve();
5395 return 0;
5396}
5397
8ad4b1fb
RS
5398/*
5399 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5400 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5401 * can have before it gets flushed back to buddy allocator.
5402 */
5403
5404int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5405 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5406{
5407 struct zone *zone;
5408 unsigned int cpu;
5409 int ret;
5410
8d65af78 5411 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5412 if (!write || (ret < 0))
8ad4b1fb 5413 return ret;
364df0eb 5414 for_each_populated_zone(zone) {
99dcc3e5 5415 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5416 unsigned long high;
5417 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5418 setup_pagelist_highmark(
5419 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5420 }
5421 }
5422 return 0;
5423}
5424
f034b5d4 5425int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5426
5427#ifdef CONFIG_NUMA
5428static int __init set_hashdist(char *str)
5429{
5430 if (!str)
5431 return 0;
5432 hashdist = simple_strtoul(str, &str, 0);
5433 return 1;
5434}
5435__setup("hashdist=", set_hashdist);
5436#endif
5437
5438/*
5439 * allocate a large system hash table from bootmem
5440 * - it is assumed that the hash table must contain an exact power-of-2
5441 * quantity of entries
5442 * - limit is the number of hash buckets, not the total allocation size
5443 */
5444void *__init alloc_large_system_hash(const char *tablename,
5445 unsigned long bucketsize,
5446 unsigned long numentries,
5447 int scale,
5448 int flags,
5449 unsigned int *_hash_shift,
5450 unsigned int *_hash_mask,
31fe62b9
TB
5451 unsigned long low_limit,
5452 unsigned long high_limit)
1da177e4 5453{
31fe62b9 5454 unsigned long long max = high_limit;
1da177e4
LT
5455 unsigned long log2qty, size;
5456 void *table = NULL;
5457
5458 /* allow the kernel cmdline to have a say */
5459 if (!numentries) {
5460 /* round applicable memory size up to nearest megabyte */
04903664 5461 numentries = nr_kernel_pages;
1da177e4
LT
5462 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5463 numentries >>= 20 - PAGE_SHIFT;
5464 numentries <<= 20 - PAGE_SHIFT;
5465
5466 /* limit to 1 bucket per 2^scale bytes of low memory */
5467 if (scale > PAGE_SHIFT)
5468 numentries >>= (scale - PAGE_SHIFT);
5469 else
5470 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5471
5472 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5473 if (unlikely(flags & HASH_SMALL)) {
5474 /* Makes no sense without HASH_EARLY */
5475 WARN_ON(!(flags & HASH_EARLY));
5476 if (!(numentries >> *_hash_shift)) {
5477 numentries = 1UL << *_hash_shift;
5478 BUG_ON(!numentries);
5479 }
5480 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5481 numentries = PAGE_SIZE / bucketsize;
1da177e4 5482 }
6e692ed3 5483 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5484
5485 /* limit allocation size to 1/16 total memory by default */
5486 if (max == 0) {
5487 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5488 do_div(max, bucketsize);
5489 }
074b8517 5490 max = min(max, 0x80000000ULL);
1da177e4 5491
31fe62b9
TB
5492 if (numentries < low_limit)
5493 numentries = low_limit;
1da177e4
LT
5494 if (numentries > max)
5495 numentries = max;
5496
f0d1b0b3 5497 log2qty = ilog2(numentries);
1da177e4
LT
5498
5499 do {
5500 size = bucketsize << log2qty;
5501 if (flags & HASH_EARLY)
74768ed8 5502 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5503 else if (hashdist)
5504 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5505 else {
1037b83b
ED
5506 /*
5507 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5508 * some pages at the end of hash table which
5509 * alloc_pages_exact() automatically does
1037b83b 5510 */
264ef8a9 5511 if (get_order(size) < MAX_ORDER) {
a1dd268c 5512 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5513 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5514 }
1da177e4
LT
5515 }
5516 } while (!table && size > PAGE_SIZE && --log2qty);
5517
5518 if (!table)
5519 panic("Failed to allocate %s hash table\n", tablename);
5520
f241e660 5521 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5522 tablename,
f241e660 5523 (1UL << log2qty),
f0d1b0b3 5524 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5525 size);
5526
5527 if (_hash_shift)
5528 *_hash_shift = log2qty;
5529 if (_hash_mask)
5530 *_hash_mask = (1 << log2qty) - 1;
5531
5532 return table;
5533}
a117e66e 5534
835c134e
MG
5535/* Return a pointer to the bitmap storing bits affecting a block of pages */
5536static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5537 unsigned long pfn)
5538{
5539#ifdef CONFIG_SPARSEMEM
5540 return __pfn_to_section(pfn)->pageblock_flags;
5541#else
5542 return zone->pageblock_flags;
5543#endif /* CONFIG_SPARSEMEM */
5544}
5545
5546static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5547{
5548#ifdef CONFIG_SPARSEMEM
5549 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5551#else
5552 pfn = pfn - zone->zone_start_pfn;
d9c23400 5553 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5554#endif /* CONFIG_SPARSEMEM */
5555}
5556
5557/**
d9c23400 5558 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5559 * @page: The page within the block of interest
5560 * @start_bitidx: The first bit of interest to retrieve
5561 * @end_bitidx: The last bit of interest
5562 * returns pageblock_bits flags
5563 */
5564unsigned long get_pageblock_flags_group(struct page *page,
5565 int start_bitidx, int end_bitidx)
5566{
5567 struct zone *zone;
5568 unsigned long *bitmap;
5569 unsigned long pfn, bitidx;
5570 unsigned long flags = 0;
5571 unsigned long value = 1;
5572
5573 zone = page_zone(page);
5574 pfn = page_to_pfn(page);
5575 bitmap = get_pageblock_bitmap(zone, pfn);
5576 bitidx = pfn_to_bitidx(zone, pfn);
5577
5578 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5579 if (test_bit(bitidx + start_bitidx, bitmap))
5580 flags |= value;
6220ec78 5581
835c134e
MG
5582 return flags;
5583}
5584
5585/**
d9c23400 5586 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5587 * @page: The page within the block of interest
5588 * @start_bitidx: The first bit of interest
5589 * @end_bitidx: The last bit of interest
5590 * @flags: The flags to set
5591 */
5592void set_pageblock_flags_group(struct page *page, unsigned long flags,
5593 int start_bitidx, int end_bitidx)
5594{
5595 struct zone *zone;
5596 unsigned long *bitmap;
5597 unsigned long pfn, bitidx;
5598 unsigned long value = 1;
5599
5600 zone = page_zone(page);
5601 pfn = page_to_pfn(page);
5602 bitmap = get_pageblock_bitmap(zone, pfn);
5603 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5604 VM_BUG_ON(pfn < zone->zone_start_pfn);
5605 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5606
5607 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5608 if (flags & value)
5609 __set_bit(bitidx + start_bitidx, bitmap);
5610 else
5611 __clear_bit(bitidx + start_bitidx, bitmap);
5612}
a5d76b54
KH
5613
5614/*
80934513
MK
5615 * This function checks whether pageblock includes unmovable pages or not.
5616 * If @count is not zero, it is okay to include less @count unmovable pages
5617 *
5618 * PageLRU check wihtout isolation or lru_lock could race so that
5619 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5620 * expect this function should be exact.
a5d76b54 5621 */
b023f468
WC
5622bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5623 bool skip_hwpoisoned_pages)
49ac8255
KH
5624{
5625 unsigned long pfn, iter, found;
47118af0
MN
5626 int mt;
5627
49ac8255
KH
5628 /*
5629 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5630 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5631 */
5632 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5633 return false;
47118af0
MN
5634 mt = get_pageblock_migratetype(page);
5635 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5636 return false;
49ac8255
KH
5637
5638 pfn = page_to_pfn(page);
5639 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5640 unsigned long check = pfn + iter;
5641
29723fcc 5642 if (!pfn_valid_within(check))
49ac8255 5643 continue;
29723fcc 5644
49ac8255 5645 page = pfn_to_page(check);
97d255c8
MK
5646 /*
5647 * We can't use page_count without pin a page
5648 * because another CPU can free compound page.
5649 * This check already skips compound tails of THP
5650 * because their page->_count is zero at all time.
5651 */
5652 if (!atomic_read(&page->_count)) {
49ac8255
KH
5653 if (PageBuddy(page))
5654 iter += (1 << page_order(page)) - 1;
5655 continue;
5656 }
97d255c8 5657
b023f468
WC
5658 /*
5659 * The HWPoisoned page may be not in buddy system, and
5660 * page_count() is not 0.
5661 */
5662 if (skip_hwpoisoned_pages && PageHWPoison(page))
5663 continue;
5664
49ac8255
KH
5665 if (!PageLRU(page))
5666 found++;
5667 /*
5668 * If there are RECLAIMABLE pages, we need to check it.
5669 * But now, memory offline itself doesn't call shrink_slab()
5670 * and it still to be fixed.
5671 */
5672 /*
5673 * If the page is not RAM, page_count()should be 0.
5674 * we don't need more check. This is an _used_ not-movable page.
5675 *
5676 * The problematic thing here is PG_reserved pages. PG_reserved
5677 * is set to both of a memory hole page and a _used_ kernel
5678 * page at boot.
5679 */
5680 if (found > count)
80934513 5681 return true;
49ac8255 5682 }
80934513 5683 return false;
49ac8255
KH
5684}
5685
5686bool is_pageblock_removable_nolock(struct page *page)
5687{
656a0706
MH
5688 struct zone *zone;
5689 unsigned long pfn;
687875fb
MH
5690
5691 /*
5692 * We have to be careful here because we are iterating over memory
5693 * sections which are not zone aware so we might end up outside of
5694 * the zone but still within the section.
656a0706
MH
5695 * We have to take care about the node as well. If the node is offline
5696 * its NODE_DATA will be NULL - see page_zone.
687875fb 5697 */
656a0706
MH
5698 if (!node_online(page_to_nid(page)))
5699 return false;
5700
5701 zone = page_zone(page);
5702 pfn = page_to_pfn(page);
5703 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5704 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5705 return false;
5706
b023f468 5707 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5708}
0c0e6195 5709
041d3a8c
MN
5710#ifdef CONFIG_CMA
5711
5712static unsigned long pfn_max_align_down(unsigned long pfn)
5713{
5714 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5715 pageblock_nr_pages) - 1);
5716}
5717
5718static unsigned long pfn_max_align_up(unsigned long pfn)
5719{
5720 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5721 pageblock_nr_pages));
5722}
5723
041d3a8c 5724/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5725static int __alloc_contig_migrate_range(struct compact_control *cc,
5726 unsigned long start, unsigned long end)
041d3a8c
MN
5727{
5728 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5729 unsigned long nr_reclaimed;
041d3a8c
MN
5730 unsigned long pfn = start;
5731 unsigned int tries = 0;
5732 int ret = 0;
5733
be49a6e1 5734 migrate_prep();
041d3a8c 5735
bb13ffeb 5736 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5737 if (fatal_signal_pending(current)) {
5738 ret = -EINTR;
5739 break;
5740 }
5741
bb13ffeb
MG
5742 if (list_empty(&cc->migratepages)) {
5743 cc->nr_migratepages = 0;
5744 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5745 pfn, end, true);
041d3a8c
MN
5746 if (!pfn) {
5747 ret = -EINTR;
5748 break;
5749 }
5750 tries = 0;
5751 } else if (++tries == 5) {
5752 ret = ret < 0 ? ret : -EBUSY;
5753 break;
5754 }
5755
beb51eaa
MK
5756 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5757 &cc->migratepages);
5758 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5759
bb13ffeb 5760 ret = migrate_pages(&cc->migratepages,
723a0644 5761 alloc_migrate_target,
58f42fd5 5762 0, false, MIGRATE_SYNC);
041d3a8c
MN
5763 }
5764
5733c7d1 5765 putback_movable_pages(&cc->migratepages);
041d3a8c
MN
5766 return ret > 0 ? 0 : ret;
5767}
5768
5769/**
5770 * alloc_contig_range() -- tries to allocate given range of pages
5771 * @start: start PFN to allocate
5772 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5773 * @migratetype: migratetype of the underlaying pageblocks (either
5774 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5775 * in range must have the same migratetype and it must
5776 * be either of the two.
041d3a8c
MN
5777 *
5778 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5779 * aligned, however it's the caller's responsibility to guarantee that
5780 * we are the only thread that changes migrate type of pageblocks the
5781 * pages fall in.
5782 *
5783 * The PFN range must belong to a single zone.
5784 *
5785 * Returns zero on success or negative error code. On success all
5786 * pages which PFN is in [start, end) are allocated for the caller and
5787 * need to be freed with free_contig_range().
5788 */
0815f3d8
MN
5789int alloc_contig_range(unsigned long start, unsigned long end,
5790 unsigned migratetype)
041d3a8c 5791{
041d3a8c
MN
5792 unsigned long outer_start, outer_end;
5793 int ret = 0, order;
5794
bb13ffeb
MG
5795 struct compact_control cc = {
5796 .nr_migratepages = 0,
5797 .order = -1,
5798 .zone = page_zone(pfn_to_page(start)),
5799 .sync = true,
5800 .ignore_skip_hint = true,
5801 };
5802 INIT_LIST_HEAD(&cc.migratepages);
5803
041d3a8c
MN
5804 /*
5805 * What we do here is we mark all pageblocks in range as
5806 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5807 * have different sizes, and due to the way page allocator
5808 * work, we align the range to biggest of the two pages so
5809 * that page allocator won't try to merge buddies from
5810 * different pageblocks and change MIGRATE_ISOLATE to some
5811 * other migration type.
5812 *
5813 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5814 * migrate the pages from an unaligned range (ie. pages that
5815 * we are interested in). This will put all the pages in
5816 * range back to page allocator as MIGRATE_ISOLATE.
5817 *
5818 * When this is done, we take the pages in range from page
5819 * allocator removing them from the buddy system. This way
5820 * page allocator will never consider using them.
5821 *
5822 * This lets us mark the pageblocks back as
5823 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5824 * aligned range but not in the unaligned, original range are
5825 * put back to page allocator so that buddy can use them.
5826 */
5827
5828 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
5829 pfn_max_align_up(end), migratetype,
5830 false);
041d3a8c 5831 if (ret)
86a595f9 5832 return ret;
041d3a8c 5833
bb13ffeb 5834 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
5835 if (ret)
5836 goto done;
5837
5838 /*
5839 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5840 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5841 * more, all pages in [start, end) are free in page allocator.
5842 * What we are going to do is to allocate all pages from
5843 * [start, end) (that is remove them from page allocator).
5844 *
5845 * The only problem is that pages at the beginning and at the
5846 * end of interesting range may be not aligned with pages that
5847 * page allocator holds, ie. they can be part of higher order
5848 * pages. Because of this, we reserve the bigger range and
5849 * once this is done free the pages we are not interested in.
5850 *
5851 * We don't have to hold zone->lock here because the pages are
5852 * isolated thus they won't get removed from buddy.
5853 */
5854
5855 lru_add_drain_all();
5856 drain_all_pages();
5857
5858 order = 0;
5859 outer_start = start;
5860 while (!PageBuddy(pfn_to_page(outer_start))) {
5861 if (++order >= MAX_ORDER) {
5862 ret = -EBUSY;
5863 goto done;
5864 }
5865 outer_start &= ~0UL << order;
5866 }
5867
5868 /* Make sure the range is really isolated. */
b023f468 5869 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
5870 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5871 outer_start, end);
5872 ret = -EBUSY;
5873 goto done;
5874 }
5875
49f223a9
MS
5876
5877 /* Grab isolated pages from freelists. */
bb13ffeb 5878 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
5879 if (!outer_end) {
5880 ret = -EBUSY;
5881 goto done;
5882 }
5883
5884 /* Free head and tail (if any) */
5885 if (start != outer_start)
5886 free_contig_range(outer_start, start - outer_start);
5887 if (end != outer_end)
5888 free_contig_range(end, outer_end - end);
5889
5890done:
5891 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5892 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5893 return ret;
5894}
5895
5896void free_contig_range(unsigned long pfn, unsigned nr_pages)
5897{
5898 for (; nr_pages--; ++pfn)
5899 __free_page(pfn_to_page(pfn));
5900}
5901#endif
5902
4ed7e022
JL
5903#ifdef CONFIG_MEMORY_HOTPLUG
5904static int __meminit __zone_pcp_update(void *data)
5905{
5906 struct zone *zone = data;
5907 int cpu;
5908 unsigned long batch = zone_batchsize(zone), flags;
5909
5910 for_each_possible_cpu(cpu) {
5911 struct per_cpu_pageset *pset;
5912 struct per_cpu_pages *pcp;
5913
5914 pset = per_cpu_ptr(zone->pageset, cpu);
5915 pcp = &pset->pcp;
5916
5917 local_irq_save(flags);
5918 if (pcp->count > 0)
5919 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 5920 drain_zonestat(zone, pset);
4ed7e022
JL
5921 setup_pageset(pset, batch);
5922 local_irq_restore(flags);
5923 }
5924 return 0;
5925}
5926
5927void __meminit zone_pcp_update(struct zone *zone)
5928{
5929 stop_machine(__zone_pcp_update, zone, NULL);
5930}
5931#endif
5932
340175b7
JL
5933void zone_pcp_reset(struct zone *zone)
5934{
5935 unsigned long flags;
5a883813
MK
5936 int cpu;
5937 struct per_cpu_pageset *pset;
340175b7
JL
5938
5939 /* avoid races with drain_pages() */
5940 local_irq_save(flags);
5941 if (zone->pageset != &boot_pageset) {
5a883813
MK
5942 for_each_online_cpu(cpu) {
5943 pset = per_cpu_ptr(zone->pageset, cpu);
5944 drain_zonestat(zone, pset);
5945 }
340175b7
JL
5946 free_percpu(zone->pageset);
5947 zone->pageset = &boot_pageset;
5948 }
5949 local_irq_restore(flags);
5950}
5951
6dcd73d7 5952#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
5953/*
5954 * All pages in the range must be isolated before calling this.
5955 */
5956void
5957__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5958{
5959 struct page *page;
5960 struct zone *zone;
5961 int order, i;
5962 unsigned long pfn;
5963 unsigned long flags;
5964 /* find the first valid pfn */
5965 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5966 if (pfn_valid(pfn))
5967 break;
5968 if (pfn == end_pfn)
5969 return;
5970 zone = page_zone(pfn_to_page(pfn));
5971 spin_lock_irqsave(&zone->lock, flags);
5972 pfn = start_pfn;
5973 while (pfn < end_pfn) {
5974 if (!pfn_valid(pfn)) {
5975 pfn++;
5976 continue;
5977 }
5978 page = pfn_to_page(pfn);
b023f468
WC
5979 /*
5980 * The HWPoisoned page may be not in buddy system, and
5981 * page_count() is not 0.
5982 */
5983 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
5984 pfn++;
5985 SetPageReserved(page);
5986 continue;
5987 }
5988
0c0e6195
KH
5989 BUG_ON(page_count(page));
5990 BUG_ON(!PageBuddy(page));
5991 order = page_order(page);
5992#ifdef CONFIG_DEBUG_VM
5993 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5994 pfn, 1 << order, end_pfn);
5995#endif
5996 list_del(&page->lru);
5997 rmv_page_order(page);
5998 zone->free_area[order].nr_free--;
0c0e6195
KH
5999 for (i = 0; i < (1 << order); i++)
6000 SetPageReserved((page+i));
6001 pfn += (1 << order);
6002 }
6003 spin_unlock_irqrestore(&zone->lock, flags);
6004}
6005#endif
8d22ba1b
WF
6006
6007#ifdef CONFIG_MEMORY_FAILURE
6008bool is_free_buddy_page(struct page *page)
6009{
6010 struct zone *zone = page_zone(page);
6011 unsigned long pfn = page_to_pfn(page);
6012 unsigned long flags;
6013 int order;
6014
6015 spin_lock_irqsave(&zone->lock, flags);
6016 for (order = 0; order < MAX_ORDER; order++) {
6017 struct page *page_head = page - (pfn & ((1 << order) - 1));
6018
6019 if (PageBuddy(page_head) && page_order(page_head) >= order)
6020 break;
6021 }
6022 spin_unlock_irqrestore(&zone->lock, flags);
6023
6024 return order < MAX_ORDER;
6025}
6026#endif
718a3821 6027
51300cef 6028static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6029 {1UL << PG_locked, "locked" },
6030 {1UL << PG_error, "error" },
6031 {1UL << PG_referenced, "referenced" },
6032 {1UL << PG_uptodate, "uptodate" },
6033 {1UL << PG_dirty, "dirty" },
6034 {1UL << PG_lru, "lru" },
6035 {1UL << PG_active, "active" },
6036 {1UL << PG_slab, "slab" },
6037 {1UL << PG_owner_priv_1, "owner_priv_1" },
6038 {1UL << PG_arch_1, "arch_1" },
6039 {1UL << PG_reserved, "reserved" },
6040 {1UL << PG_private, "private" },
6041 {1UL << PG_private_2, "private_2" },
6042 {1UL << PG_writeback, "writeback" },
6043#ifdef CONFIG_PAGEFLAGS_EXTENDED
6044 {1UL << PG_head, "head" },
6045 {1UL << PG_tail, "tail" },
6046#else
6047 {1UL << PG_compound, "compound" },
6048#endif
6049 {1UL << PG_swapcache, "swapcache" },
6050 {1UL << PG_mappedtodisk, "mappedtodisk" },
6051 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6052 {1UL << PG_swapbacked, "swapbacked" },
6053 {1UL << PG_unevictable, "unevictable" },
6054#ifdef CONFIG_MMU
6055 {1UL << PG_mlocked, "mlocked" },
6056#endif
6057#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6058 {1UL << PG_uncached, "uncached" },
6059#endif
6060#ifdef CONFIG_MEMORY_FAILURE
6061 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6062#endif
6063#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6064 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6065#endif
718a3821
WF
6066};
6067
6068static void dump_page_flags(unsigned long flags)
6069{
6070 const char *delim = "";
6071 unsigned long mask;
6072 int i;
6073
51300cef 6074 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6075
718a3821
WF
6076 printk(KERN_ALERT "page flags: %#lx(", flags);
6077
6078 /* remove zone id */
6079 flags &= (1UL << NR_PAGEFLAGS) - 1;
6080
51300cef 6081 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6082
6083 mask = pageflag_names[i].mask;
6084 if ((flags & mask) != mask)
6085 continue;
6086
6087 flags &= ~mask;
6088 printk("%s%s", delim, pageflag_names[i].name);
6089 delim = "|";
6090 }
6091
6092 /* check for left over flags */
6093 if (flags)
6094 printk("%s%#lx", delim, flags);
6095
6096 printk(")\n");
6097}
6098
6099void dump_page(struct page *page)
6100{
6101 printk(KERN_ALERT
6102 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6103 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6104 page->mapping, page->index);
6105 dump_page_flags(page->flags);
f212ad7c 6106 mem_cgroup_print_bad_page(page);
718a3821 6107}