]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
Merge tag 'stable/for-linus-3.8-rc7-tag-two' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
92#endif
93#ifdef CONFIG_MOVABLE_NODE
94 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
95#endif
96 [N_CPU] = { { [0] = 1UL } },
97#endif /* NUMA */
98};
99EXPORT_SYMBOL(node_states);
100
6c231b7b 101unsigned long totalram_pages __read_mostly;
cb45b0e9 102unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
103/*
104 * When calculating the number of globally allowed dirty pages, there
105 * is a certain number of per-zone reserves that should not be
106 * considered dirtyable memory. This is the sum of those reserves
107 * over all existing zones that contribute dirtyable memory.
108 */
109unsigned long dirty_balance_reserve __read_mostly;
110
1b76b02f 111int percpu_pagelist_fraction;
dcce284a 112gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 113
452aa699
RW
114#ifdef CONFIG_PM_SLEEP
115/*
116 * The following functions are used by the suspend/hibernate code to temporarily
117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118 * while devices are suspended. To avoid races with the suspend/hibernate code,
119 * they should always be called with pm_mutex held (gfp_allowed_mask also should
120 * only be modified with pm_mutex held, unless the suspend/hibernate code is
121 * guaranteed not to run in parallel with that modification).
122 */
c9e664f1
RW
123
124static gfp_t saved_gfp_mask;
125
126void pm_restore_gfp_mask(void)
452aa699
RW
127{
128 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
129 if (saved_gfp_mask) {
130 gfp_allowed_mask = saved_gfp_mask;
131 saved_gfp_mask = 0;
132 }
452aa699
RW
133}
134
c9e664f1 135void pm_restrict_gfp_mask(void)
452aa699 136{
452aa699 137 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
138 WARN_ON(saved_gfp_mask);
139 saved_gfp_mask = gfp_allowed_mask;
140 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 141}
f90ac398
MG
142
143bool pm_suspended_storage(void)
144{
145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 return false;
147 return true;
148}
452aa699
RW
149#endif /* CONFIG_PM_SLEEP */
150
d9c23400
MG
151#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152int pageblock_order __read_mostly;
153#endif
154
d98c7a09 155static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 156
1da177e4
LT
157/*
158 * results with 256, 32 in the lowmem_reserve sysctl:
159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160 * 1G machine -> (16M dma, 784M normal, 224M high)
161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
164 *
165 * TBD: should special case ZONE_DMA32 machines here - in those we normally
166 * don't need any ZONE_NORMAL reservation
1da177e4 167 */
2f1b6248 168int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 169#ifdef CONFIG_ZONE_DMA
2f1b6248 170 256,
4b51d669 171#endif
fb0e7942 172#ifdef CONFIG_ZONE_DMA32
2f1b6248 173 256,
fb0e7942 174#endif
e53ef38d 175#ifdef CONFIG_HIGHMEM
2a1e274a 176 32,
e53ef38d 177#endif
2a1e274a 178 32,
2f1b6248 179};
1da177e4
LT
180
181EXPORT_SYMBOL(totalram_pages);
1da177e4 182
15ad7cdc 183static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 184#ifdef CONFIG_ZONE_DMA
2f1b6248 185 "DMA",
4b51d669 186#endif
fb0e7942 187#ifdef CONFIG_ZONE_DMA32
2f1b6248 188 "DMA32",
fb0e7942 189#endif
2f1b6248 190 "Normal",
e53ef38d 191#ifdef CONFIG_HIGHMEM
2a1e274a 192 "HighMem",
e53ef38d 193#endif
2a1e274a 194 "Movable",
2f1b6248
CL
195};
196
1da177e4
LT
197int min_free_kbytes = 1024;
198
2c85f51d
JB
199static unsigned long __meminitdata nr_kernel_pages;
200static unsigned long __meminitdata nr_all_pages;
a3142c8e 201static unsigned long __meminitdata dma_reserve;
1da177e4 202
0ee332c1
TH
203#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206static unsigned long __initdata required_kernelcore;
207static unsigned long __initdata required_movablecore;
208static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209
210/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211int movable_zone;
212EXPORT_SYMBOL(movable_zone);
213#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 214
418508c1
MS
215#if MAX_NUMNODES > 1
216int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 217int nr_online_nodes __read_mostly = 1;
418508c1 218EXPORT_SYMBOL(nr_node_ids);
62bc62a8 219EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
220#endif
221
9ef9acb0
MG
222int page_group_by_mobility_disabled __read_mostly;
223
ee6f509c 224void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 225{
49255c61
MG
226
227 if (unlikely(page_group_by_mobility_disabled))
228 migratetype = MIGRATE_UNMOVABLE;
229
b2a0ac88
MG
230 set_pageblock_flags_group(page, (unsigned long)migratetype,
231 PB_migrate, PB_migrate_end);
232}
233
7f33d49a
RW
234bool oom_killer_disabled __read_mostly;
235
13e7444b 236#ifdef CONFIG_DEBUG_VM
c6a57e19 237static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 238{
bdc8cb98
DH
239 int ret = 0;
240 unsigned seq;
241 unsigned long pfn = page_to_pfn(page);
c6a57e19 242
bdc8cb98
DH
243 do {
244 seq = zone_span_seqbegin(zone);
245 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
246 ret = 1;
247 else if (pfn < zone->zone_start_pfn)
248 ret = 1;
249 } while (zone_span_seqretry(zone, seq));
250
251 return ret;
c6a57e19
DH
252}
253
254static int page_is_consistent(struct zone *zone, struct page *page)
255{
14e07298 256 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 257 return 0;
1da177e4 258 if (zone != page_zone(page))
c6a57e19
DH
259 return 0;
260
261 return 1;
262}
263/*
264 * Temporary debugging check for pages not lying within a given zone.
265 */
266static int bad_range(struct zone *zone, struct page *page)
267{
268 if (page_outside_zone_boundaries(zone, page))
1da177e4 269 return 1;
c6a57e19
DH
270 if (!page_is_consistent(zone, page))
271 return 1;
272
1da177e4
LT
273 return 0;
274}
13e7444b
NP
275#else
276static inline int bad_range(struct zone *zone, struct page *page)
277{
278 return 0;
279}
280#endif
281
224abf92 282static void bad_page(struct page *page)
1da177e4 283{
d936cf9b
HD
284 static unsigned long resume;
285 static unsigned long nr_shown;
286 static unsigned long nr_unshown;
287
2a7684a2
WF
288 /* Don't complain about poisoned pages */
289 if (PageHWPoison(page)) {
ef2b4b95 290 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
291 return;
292 }
293
d936cf9b
HD
294 /*
295 * Allow a burst of 60 reports, then keep quiet for that minute;
296 * or allow a steady drip of one report per second.
297 */
298 if (nr_shown == 60) {
299 if (time_before(jiffies, resume)) {
300 nr_unshown++;
301 goto out;
302 }
303 if (nr_unshown) {
1e9e6365
HD
304 printk(KERN_ALERT
305 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
306 nr_unshown);
307 nr_unshown = 0;
308 }
309 nr_shown = 0;
310 }
311 if (nr_shown++ == 0)
312 resume = jiffies + 60 * HZ;
313
1e9e6365 314 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 315 current->comm, page_to_pfn(page));
718a3821 316 dump_page(page);
3dc14741 317
4f31888c 318 print_modules();
1da177e4 319 dump_stack();
d936cf9b 320out:
8cc3b392 321 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 322 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 323 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
324}
325
1da177e4
LT
326/*
327 * Higher-order pages are called "compound pages". They are structured thusly:
328 *
329 * The first PAGE_SIZE page is called the "head page".
330 *
331 * The remaining PAGE_SIZE pages are called "tail pages".
332 *
6416b9fa
WSH
333 * All pages have PG_compound set. All tail pages have their ->first_page
334 * pointing at the head page.
1da177e4 335 *
41d78ba5
HD
336 * The first tail page's ->lru.next holds the address of the compound page's
337 * put_page() function. Its ->lru.prev holds the order of allocation.
338 * This usage means that zero-order pages may not be compound.
1da177e4 339 */
d98c7a09
HD
340
341static void free_compound_page(struct page *page)
342{
d85f3385 343 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
344}
345
01ad1c08 346void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
347{
348 int i;
349 int nr_pages = 1 << order;
350
351 set_compound_page_dtor(page, free_compound_page);
352 set_compound_order(page, order);
353 __SetPageHead(page);
354 for (i = 1; i < nr_pages; i++) {
355 struct page *p = page + i;
18229df5 356 __SetPageTail(p);
58a84aa9 357 set_page_count(p, 0);
18229df5
AW
358 p->first_page = page;
359 }
360}
361
59ff4216 362/* update __split_huge_page_refcount if you change this function */
8cc3b392 363static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
364{
365 int i;
366 int nr_pages = 1 << order;
8cc3b392 367 int bad = 0;
1da177e4 368
0bb2c763 369 if (unlikely(compound_order(page) != order)) {
224abf92 370 bad_page(page);
8cc3b392
HD
371 bad++;
372 }
1da177e4 373
6d777953 374 __ClearPageHead(page);
8cc3b392 375
18229df5
AW
376 for (i = 1; i < nr_pages; i++) {
377 struct page *p = page + i;
1da177e4 378
e713a21d 379 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 380 bad_page(page);
8cc3b392
HD
381 bad++;
382 }
d85f3385 383 __ClearPageTail(p);
1da177e4 384 }
8cc3b392
HD
385
386 return bad;
1da177e4 387}
1da177e4 388
17cf4406
NP
389static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
390{
391 int i;
392
6626c5d5
AM
393 /*
394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 */
725d704e 397 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
398 for (i = 0; i < (1 << order); i++)
399 clear_highpage(page + i);
400}
401
c0a32fc5
SG
402#ifdef CONFIG_DEBUG_PAGEALLOC
403unsigned int _debug_guardpage_minorder;
404
405static int __init debug_guardpage_minorder_setup(char *buf)
406{
407 unsigned long res;
408
409 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
410 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
411 return 0;
412 }
413 _debug_guardpage_minorder = res;
414 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
415 return 0;
416}
417__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
418
419static inline void set_page_guard_flag(struct page *page)
420{
421 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
422}
423
424static inline void clear_page_guard_flag(struct page *page)
425{
426 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427}
428#else
429static inline void set_page_guard_flag(struct page *page) { }
430static inline void clear_page_guard_flag(struct page *page) { }
431#endif
432
6aa3001b
AM
433static inline void set_page_order(struct page *page, int order)
434{
4c21e2f2 435 set_page_private(page, order);
676165a8 436 __SetPageBuddy(page);
1da177e4
LT
437}
438
439static inline void rmv_page_order(struct page *page)
440{
676165a8 441 __ClearPageBuddy(page);
4c21e2f2 442 set_page_private(page, 0);
1da177e4
LT
443}
444
445/*
446 * Locate the struct page for both the matching buddy in our
447 * pair (buddy1) and the combined O(n+1) page they form (page).
448 *
449 * 1) Any buddy B1 will have an order O twin B2 which satisfies
450 * the following equation:
451 * B2 = B1 ^ (1 << O)
452 * For example, if the starting buddy (buddy2) is #8 its order
453 * 1 buddy is #10:
454 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
455 *
456 * 2) Any buddy B will have an order O+1 parent P which
457 * satisfies the following equation:
458 * P = B & ~(1 << O)
459 *
d6e05edc 460 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 461 */
1da177e4 462static inline unsigned long
43506fad 463__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 464{
43506fad 465 return page_idx ^ (1 << order);
1da177e4
LT
466}
467
468/*
469 * This function checks whether a page is free && is the buddy
470 * we can do coalesce a page and its buddy if
13e7444b 471 * (a) the buddy is not in a hole &&
676165a8 472 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
473 * (c) a page and its buddy have the same order &&
474 * (d) a page and its buddy are in the same zone.
676165a8 475 *
5f24ce5f
AA
476 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
477 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 478 *
676165a8 479 * For recording page's order, we use page_private(page).
1da177e4 480 */
cb2b95e1
AW
481static inline int page_is_buddy(struct page *page, struct page *buddy,
482 int order)
1da177e4 483{
14e07298 484 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 485 return 0;
13e7444b 486
cb2b95e1
AW
487 if (page_zone_id(page) != page_zone_id(buddy))
488 return 0;
489
c0a32fc5
SG
490 if (page_is_guard(buddy) && page_order(buddy) == order) {
491 VM_BUG_ON(page_count(buddy) != 0);
492 return 1;
493 }
494
cb2b95e1 495 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 496 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 497 return 1;
676165a8 498 }
6aa3001b 499 return 0;
1da177e4
LT
500}
501
502/*
503 * Freeing function for a buddy system allocator.
504 *
505 * The concept of a buddy system is to maintain direct-mapped table
506 * (containing bit values) for memory blocks of various "orders".
507 * The bottom level table contains the map for the smallest allocatable
508 * units of memory (here, pages), and each level above it describes
509 * pairs of units from the levels below, hence, "buddies".
510 * At a high level, all that happens here is marking the table entry
511 * at the bottom level available, and propagating the changes upward
512 * as necessary, plus some accounting needed to play nicely with other
513 * parts of the VM system.
514 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 515 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 516 * order is recorded in page_private(page) field.
1da177e4 517 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
518 * other. That is, if we allocate a small block, and both were
519 * free, the remainder of the region must be split into blocks.
1da177e4 520 * If a block is freed, and its buddy is also free, then this
5f63b720 521 * triggers coalescing into a block of larger size.
1da177e4 522 *
6d49e352 523 * -- nyc
1da177e4
LT
524 */
525
48db57f8 526static inline void __free_one_page(struct page *page,
ed0ae21d
MG
527 struct zone *zone, unsigned int order,
528 int migratetype)
1da177e4
LT
529{
530 unsigned long page_idx;
6dda9d55 531 unsigned long combined_idx;
43506fad 532 unsigned long uninitialized_var(buddy_idx);
6dda9d55 533 struct page *buddy;
1da177e4 534
224abf92 535 if (unlikely(PageCompound(page)))
8cc3b392
HD
536 if (unlikely(destroy_compound_page(page, order)))
537 return;
1da177e4 538
ed0ae21d
MG
539 VM_BUG_ON(migratetype == -1);
540
1da177e4
LT
541 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
542
f2260e6b 543 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 544 VM_BUG_ON(bad_range(zone, page));
1da177e4 545
1da177e4 546 while (order < MAX_ORDER-1) {
43506fad
KC
547 buddy_idx = __find_buddy_index(page_idx, order);
548 buddy = page + (buddy_idx - page_idx);
cb2b95e1 549 if (!page_is_buddy(page, buddy, order))
3c82d0ce 550 break;
c0a32fc5
SG
551 /*
552 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
553 * merge with it and move up one order.
554 */
555 if (page_is_guard(buddy)) {
556 clear_page_guard_flag(buddy);
557 set_page_private(page, 0);
d1ce749a
BZ
558 __mod_zone_freepage_state(zone, 1 << order,
559 migratetype);
c0a32fc5
SG
560 } else {
561 list_del(&buddy->lru);
562 zone->free_area[order].nr_free--;
563 rmv_page_order(buddy);
564 }
43506fad 565 combined_idx = buddy_idx & page_idx;
1da177e4
LT
566 page = page + (combined_idx - page_idx);
567 page_idx = combined_idx;
568 order++;
569 }
570 set_page_order(page, order);
6dda9d55
CZ
571
572 /*
573 * If this is not the largest possible page, check if the buddy
574 * of the next-highest order is free. If it is, it's possible
575 * that pages are being freed that will coalesce soon. In case,
576 * that is happening, add the free page to the tail of the list
577 * so it's less likely to be used soon and more likely to be merged
578 * as a higher order page
579 */
b7f50cfa 580 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 581 struct page *higher_page, *higher_buddy;
43506fad
KC
582 combined_idx = buddy_idx & page_idx;
583 higher_page = page + (combined_idx - page_idx);
584 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 585 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
586 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
587 list_add_tail(&page->lru,
588 &zone->free_area[order].free_list[migratetype]);
589 goto out;
590 }
591 }
592
593 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
594out:
1da177e4
LT
595 zone->free_area[order].nr_free++;
596}
597
224abf92 598static inline int free_pages_check(struct page *page)
1da177e4 599{
92be2e33
NP
600 if (unlikely(page_mapcount(page) |
601 (page->mapping != NULL) |
a3af9c38 602 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
603 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
604 (mem_cgroup_bad_page_check(page)))) {
224abf92 605 bad_page(page);
79f4b7bf 606 return 1;
8cc3b392 607 }
57e0a030 608 reset_page_last_nid(page);
79f4b7bf
HD
609 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
610 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
611 return 0;
1da177e4
LT
612}
613
614/*
5f8dcc21 615 * Frees a number of pages from the PCP lists
1da177e4 616 * Assumes all pages on list are in same zone, and of same order.
207f36ee 617 * count is the number of pages to free.
1da177e4
LT
618 *
619 * If the zone was previously in an "all pages pinned" state then look to
620 * see if this freeing clears that state.
621 *
622 * And clear the zone's pages_scanned counter, to hold off the "all pages are
623 * pinned" detection logic.
624 */
5f8dcc21
MG
625static void free_pcppages_bulk(struct zone *zone, int count,
626 struct per_cpu_pages *pcp)
1da177e4 627{
5f8dcc21 628 int migratetype = 0;
a6f9edd6 629 int batch_free = 0;
72853e29 630 int to_free = count;
5f8dcc21 631
c54ad30c 632 spin_lock(&zone->lock);
93e4a89a 633 zone->all_unreclaimable = 0;
1da177e4 634 zone->pages_scanned = 0;
f2260e6b 635
72853e29 636 while (to_free) {
48db57f8 637 struct page *page;
5f8dcc21
MG
638 struct list_head *list;
639
640 /*
a6f9edd6
MG
641 * Remove pages from lists in a round-robin fashion. A
642 * batch_free count is maintained that is incremented when an
643 * empty list is encountered. This is so more pages are freed
644 * off fuller lists instead of spinning excessively around empty
645 * lists
5f8dcc21
MG
646 */
647 do {
a6f9edd6 648 batch_free++;
5f8dcc21
MG
649 if (++migratetype == MIGRATE_PCPTYPES)
650 migratetype = 0;
651 list = &pcp->lists[migratetype];
652 } while (list_empty(list));
48db57f8 653
1d16871d
NK
654 /* This is the only non-empty list. Free them all. */
655 if (batch_free == MIGRATE_PCPTYPES)
656 batch_free = to_free;
657
a6f9edd6 658 do {
770c8aaa
BZ
659 int mt; /* migratetype of the to-be-freed page */
660
a6f9edd6
MG
661 page = list_entry(list->prev, struct page, lru);
662 /* must delete as __free_one_page list manipulates */
663 list_del(&page->lru);
b12c4ad1 664 mt = get_freepage_migratetype(page);
a7016235 665 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
666 __free_one_page(page, zone, 0, mt);
667 trace_mm_page_pcpu_drain(page, 0, mt);
97d0da22
WC
668 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
669 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
672 }
72853e29 673 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 674 }
c54ad30c 675 spin_unlock(&zone->lock);
1da177e4
LT
676}
677
ed0ae21d
MG
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
1da177e4 680{
006d22d9 681 spin_lock(&zone->lock);
93e4a89a 682 zone->all_unreclaimable = 0;
006d22d9 683 zone->pages_scanned = 0;
f2260e6b 684
ed0ae21d 685 __free_one_page(page, zone, order, migratetype);
2139cbe6 686 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 688 spin_unlock(&zone->lock);
48db57f8
NP
689}
690
ec95f53a 691static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 692{
1da177e4 693 int i;
8cc3b392 694 int bad = 0;
1da177e4 695
b413d48a 696 trace_mm_page_free(page, order);
b1eeab67
VN
697 kmemcheck_free_shadow(page, order);
698
8dd60a3a
AA
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
8cc3b392 703 if (bad)
ec95f53a 704 return false;
689bcebf 705
3ac7fe5a 706 if (!PageHighMem(page)) {
9858db50 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
dafb1367 711 arch_free_page(page, order);
48db57f8 712 kernel_map_pages(page, 1 << order, 0);
dafb1367 713
ec95f53a
KM
714 return true;
715}
716
717static void __free_pages_ok(struct page *page, unsigned int order)
718{
719 unsigned long flags;
95e34412 720 int migratetype;
ec95f53a
KM
721
722 if (!free_pages_prepare(page, order))
723 return;
724
c54ad30c 725 local_irq_save(flags);
f8891e5e 726 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 730 local_irq_restore(flags);
1da177e4
LT
731}
732
9feedc9d
JL
733/*
734 * Read access to zone->managed_pages is safe because it's unsigned long,
735 * but we still need to serialize writers. Currently all callers of
736 * __free_pages_bootmem() except put_page_bootmem() should only be used
737 * at boot time. So for shorter boot time, we shift the burden to
738 * put_page_bootmem() to serialize writers.
739 */
af370fb8 740void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 741{
c3993076
JW
742 unsigned int nr_pages = 1 << order;
743 unsigned int loop;
a226f6c8 744
c3993076
JW
745 prefetchw(page);
746 for (loop = 0; loop < nr_pages; loop++) {
747 struct page *p = &page[loop];
748
749 if (loop + 1 < nr_pages)
750 prefetchw(p + 1);
751 __ClearPageReserved(p);
752 set_page_count(p, 0);
a226f6c8 753 }
c3993076 754
9feedc9d 755 page_zone(page)->managed_pages += 1 << order;
c3993076
JW
756 set_page_refcounted(page);
757 __free_pages(page, order);
a226f6c8
DH
758}
759
47118af0
MN
760#ifdef CONFIG_CMA
761/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
762void __init init_cma_reserved_pageblock(struct page *page)
763{
764 unsigned i = pageblock_nr_pages;
765 struct page *p = page;
766
767 do {
768 __ClearPageReserved(p);
769 set_page_count(p, 0);
770 } while (++p, --i);
771
772 set_page_refcounted(page);
773 set_pageblock_migratetype(page, MIGRATE_CMA);
774 __free_pages(page, pageblock_order);
775 totalram_pages += pageblock_nr_pages;
41a79734
MS
776#ifdef CONFIG_HIGHMEM
777 if (PageHighMem(page))
778 totalhigh_pages += pageblock_nr_pages;
779#endif
47118af0
MN
780}
781#endif
1da177e4
LT
782
783/*
784 * The order of subdivision here is critical for the IO subsystem.
785 * Please do not alter this order without good reasons and regression
786 * testing. Specifically, as large blocks of memory are subdivided,
787 * the order in which smaller blocks are delivered depends on the order
788 * they're subdivided in this function. This is the primary factor
789 * influencing the order in which pages are delivered to the IO
790 * subsystem according to empirical testing, and this is also justified
791 * by considering the behavior of a buddy system containing a single
792 * large block of memory acted on by a series of small allocations.
793 * This behavior is a critical factor in sglist merging's success.
794 *
6d49e352 795 * -- nyc
1da177e4 796 */
085cc7d5 797static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
798 int low, int high, struct free_area *area,
799 int migratetype)
1da177e4
LT
800{
801 unsigned long size = 1 << high;
802
803 while (high > low) {
804 area--;
805 high--;
806 size >>= 1;
725d704e 807 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
808
809#ifdef CONFIG_DEBUG_PAGEALLOC
810 if (high < debug_guardpage_minorder()) {
811 /*
812 * Mark as guard pages (or page), that will allow to
813 * merge back to allocator when buddy will be freed.
814 * Corresponding page table entries will not be touched,
815 * pages will stay not present in virtual address space
816 */
817 INIT_LIST_HEAD(&page[size].lru);
818 set_page_guard_flag(&page[size]);
819 set_page_private(&page[size], high);
820 /* Guard pages are not available for any usage */
d1ce749a
BZ
821 __mod_zone_freepage_state(zone, -(1 << high),
822 migratetype);
c0a32fc5
SG
823 continue;
824 }
825#endif
b2a0ac88 826 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
827 area->nr_free++;
828 set_page_order(&page[size], high);
829 }
1da177e4
LT
830}
831
1da177e4
LT
832/*
833 * This page is about to be returned from the page allocator
834 */
2a7684a2 835static inline int check_new_page(struct page *page)
1da177e4 836{
92be2e33
NP
837 if (unlikely(page_mapcount(page) |
838 (page->mapping != NULL) |
a3af9c38 839 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
840 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
841 (mem_cgroup_bad_page_check(page)))) {
224abf92 842 bad_page(page);
689bcebf 843 return 1;
8cc3b392 844 }
2a7684a2
WF
845 return 0;
846}
847
848static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
849{
850 int i;
851
852 for (i = 0; i < (1 << order); i++) {
853 struct page *p = page + i;
854 if (unlikely(check_new_page(p)))
855 return 1;
856 }
689bcebf 857
4c21e2f2 858 set_page_private(page, 0);
7835e98b 859 set_page_refcounted(page);
cc102509
NP
860
861 arch_alloc_page(page, order);
1da177e4 862 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
863
864 if (gfp_flags & __GFP_ZERO)
865 prep_zero_page(page, order, gfp_flags);
866
867 if (order && (gfp_flags & __GFP_COMP))
868 prep_compound_page(page, order);
869
689bcebf 870 return 0;
1da177e4
LT
871}
872
56fd56b8
MG
873/*
874 * Go through the free lists for the given migratetype and remove
875 * the smallest available page from the freelists
876 */
728ec980
MG
877static inline
878struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
879 int migratetype)
880{
881 unsigned int current_order;
882 struct free_area * area;
883 struct page *page;
884
885 /* Find a page of the appropriate size in the preferred list */
886 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
887 area = &(zone->free_area[current_order]);
888 if (list_empty(&area->free_list[migratetype]))
889 continue;
890
891 page = list_entry(area->free_list[migratetype].next,
892 struct page, lru);
893 list_del(&page->lru);
894 rmv_page_order(page);
895 area->nr_free--;
56fd56b8
MG
896 expand(zone, page, order, current_order, area, migratetype);
897 return page;
898 }
899
900 return NULL;
901}
902
903
b2a0ac88
MG
904/*
905 * This array describes the order lists are fallen back to when
906 * the free lists for the desirable migrate type are depleted
907 */
47118af0
MN
908static int fallbacks[MIGRATE_TYPES][4] = {
909 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
910 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
911#ifdef CONFIG_CMA
912 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
913 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
914#else
915 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
916#endif
6d4a4916
MN
917 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
918 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
919};
920
c361be55
MG
921/*
922 * Move the free pages in a range to the free lists of the requested type.
d9c23400 923 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
924 * boundary. If alignment is required, use move_freepages_block()
925 */
435b405c 926int move_freepages(struct zone *zone,
b69a7288
AB
927 struct page *start_page, struct page *end_page,
928 int migratetype)
c361be55
MG
929{
930 struct page *page;
931 unsigned long order;
d100313f 932 int pages_moved = 0;
c361be55
MG
933
934#ifndef CONFIG_HOLES_IN_ZONE
935 /*
936 * page_zone is not safe to call in this context when
937 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
938 * anyway as we check zone boundaries in move_freepages_block().
939 * Remove at a later date when no bug reports exist related to
ac0e5b7a 940 * grouping pages by mobility
c361be55
MG
941 */
942 BUG_ON(page_zone(start_page) != page_zone(end_page));
943#endif
944
945 for (page = start_page; page <= end_page;) {
344c790e
AL
946 /* Make sure we are not inadvertently changing nodes */
947 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
948
c361be55
MG
949 if (!pfn_valid_within(page_to_pfn(page))) {
950 page++;
951 continue;
952 }
953
954 if (!PageBuddy(page)) {
955 page++;
956 continue;
957 }
958
959 order = page_order(page);
84be48d8
KS
960 list_move(&page->lru,
961 &zone->free_area[order].free_list[migratetype]);
95e34412 962 set_freepage_migratetype(page, migratetype);
c361be55 963 page += 1 << order;
d100313f 964 pages_moved += 1 << order;
c361be55
MG
965 }
966
d100313f 967 return pages_moved;
c361be55
MG
968}
969
ee6f509c 970int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 971 int migratetype)
c361be55
MG
972{
973 unsigned long start_pfn, end_pfn;
974 struct page *start_page, *end_page;
975
976 start_pfn = page_to_pfn(page);
d9c23400 977 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 978 start_page = pfn_to_page(start_pfn);
d9c23400
MG
979 end_page = start_page + pageblock_nr_pages - 1;
980 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
981
982 /* Do not cross zone boundaries */
983 if (start_pfn < zone->zone_start_pfn)
984 start_page = page;
985 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
986 return 0;
987
988 return move_freepages(zone, start_page, end_page, migratetype);
989}
990
2f66a68f
MG
991static void change_pageblock_range(struct page *pageblock_page,
992 int start_order, int migratetype)
993{
994 int nr_pageblocks = 1 << (start_order - pageblock_order);
995
996 while (nr_pageblocks--) {
997 set_pageblock_migratetype(pageblock_page, migratetype);
998 pageblock_page += pageblock_nr_pages;
999 }
1000}
1001
b2a0ac88 1002/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1003static inline struct page *
1004__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1005{
1006 struct free_area * area;
1007 int current_order;
1008 struct page *page;
1009 int migratetype, i;
1010
1011 /* Find the largest possible block of pages in the other list */
1012 for (current_order = MAX_ORDER-1; current_order >= order;
1013 --current_order) {
6d4a4916 1014 for (i = 0;; i++) {
b2a0ac88
MG
1015 migratetype = fallbacks[start_migratetype][i];
1016
56fd56b8
MG
1017 /* MIGRATE_RESERVE handled later if necessary */
1018 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1019 break;
e010487d 1020
b2a0ac88
MG
1021 area = &(zone->free_area[current_order]);
1022 if (list_empty(&area->free_list[migratetype]))
1023 continue;
1024
1025 page = list_entry(area->free_list[migratetype].next,
1026 struct page, lru);
1027 area->nr_free--;
1028
1029 /*
c361be55 1030 * If breaking a large block of pages, move all free
46dafbca
MG
1031 * pages to the preferred allocation list. If falling
1032 * back for a reclaimable kernel allocation, be more
25985edc 1033 * aggressive about taking ownership of free pages
47118af0
MN
1034 *
1035 * On the other hand, never change migration
1036 * type of MIGRATE_CMA pageblocks nor move CMA
1037 * pages on different free lists. We don't
1038 * want unmovable pages to be allocated from
1039 * MIGRATE_CMA areas.
b2a0ac88 1040 */
47118af0
MN
1041 if (!is_migrate_cma(migratetype) &&
1042 (unlikely(current_order >= pageblock_order / 2) ||
1043 start_migratetype == MIGRATE_RECLAIMABLE ||
1044 page_group_by_mobility_disabled)) {
1045 int pages;
46dafbca
MG
1046 pages = move_freepages_block(zone, page,
1047 start_migratetype);
1048
1049 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1050 if (pages >= (1 << (pageblock_order-1)) ||
1051 page_group_by_mobility_disabled)
46dafbca
MG
1052 set_pageblock_migratetype(page,
1053 start_migratetype);
1054
b2a0ac88 1055 migratetype = start_migratetype;
c361be55 1056 }
b2a0ac88
MG
1057
1058 /* Remove the page from the freelists */
1059 list_del(&page->lru);
1060 rmv_page_order(page);
b2a0ac88 1061
2f66a68f 1062 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1063 if (current_order >= pageblock_order &&
1064 !is_migrate_cma(migratetype))
2f66a68f 1065 change_pageblock_range(page, current_order,
b2a0ac88
MG
1066 start_migratetype);
1067
47118af0
MN
1068 expand(zone, page, order, current_order, area,
1069 is_migrate_cma(migratetype)
1070 ? migratetype : start_migratetype);
e0fff1bd
MG
1071
1072 trace_mm_page_alloc_extfrag(page, order, current_order,
1073 start_migratetype, migratetype);
1074
b2a0ac88
MG
1075 return page;
1076 }
1077 }
1078
728ec980 1079 return NULL;
b2a0ac88
MG
1080}
1081
56fd56b8 1082/*
1da177e4
LT
1083 * Do the hard work of removing an element from the buddy allocator.
1084 * Call me with the zone->lock already held.
1085 */
b2a0ac88
MG
1086static struct page *__rmqueue(struct zone *zone, unsigned int order,
1087 int migratetype)
1da177e4 1088{
1da177e4
LT
1089 struct page *page;
1090
728ec980 1091retry_reserve:
56fd56b8 1092 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1093
728ec980 1094 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1095 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1096
728ec980
MG
1097 /*
1098 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1099 * is used because __rmqueue_smallest is an inline function
1100 * and we want just one call site
1101 */
1102 if (!page) {
1103 migratetype = MIGRATE_RESERVE;
1104 goto retry_reserve;
1105 }
1106 }
1107
0d3d062a 1108 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1109 return page;
1da177e4
LT
1110}
1111
5f63b720 1112/*
1da177e4
LT
1113 * Obtain a specified number of elements from the buddy allocator, all under
1114 * a single hold of the lock, for efficiency. Add them to the supplied list.
1115 * Returns the number of new pages which were placed at *list.
1116 */
5f63b720 1117static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1118 unsigned long count, struct list_head *list,
e084b2d9 1119 int migratetype, int cold)
1da177e4 1120{
47118af0 1121 int mt = migratetype, i;
5f63b720 1122
c54ad30c 1123 spin_lock(&zone->lock);
1da177e4 1124 for (i = 0; i < count; ++i) {
b2a0ac88 1125 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1126 if (unlikely(page == NULL))
1da177e4 1127 break;
81eabcbe
MG
1128
1129 /*
1130 * Split buddy pages returned by expand() are received here
1131 * in physical page order. The page is added to the callers and
1132 * list and the list head then moves forward. From the callers
1133 * perspective, the linked list is ordered by page number in
1134 * some conditions. This is useful for IO devices that can
1135 * merge IO requests if the physical pages are ordered
1136 * properly.
1137 */
e084b2d9
MG
1138 if (likely(cold == 0))
1139 list_add(&page->lru, list);
1140 else
1141 list_add_tail(&page->lru, list);
47118af0
MN
1142 if (IS_ENABLED(CONFIG_CMA)) {
1143 mt = get_pageblock_migratetype(page);
1144 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1145 mt = migratetype;
1146 }
b12c4ad1 1147 set_freepage_migratetype(page, mt);
81eabcbe 1148 list = &page->lru;
d1ce749a
BZ
1149 if (is_migrate_cma(mt))
1150 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1151 -(1 << order));
1da177e4 1152 }
f2260e6b 1153 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1154 spin_unlock(&zone->lock);
085cc7d5 1155 return i;
1da177e4
LT
1156}
1157
4ae7c039 1158#ifdef CONFIG_NUMA
8fce4d8e 1159/*
4037d452
CL
1160 * Called from the vmstat counter updater to drain pagesets of this
1161 * currently executing processor on remote nodes after they have
1162 * expired.
1163 *
879336c3
CL
1164 * Note that this function must be called with the thread pinned to
1165 * a single processor.
8fce4d8e 1166 */
4037d452 1167void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1168{
4ae7c039 1169 unsigned long flags;
4037d452 1170 int to_drain;
4ae7c039 1171
4037d452
CL
1172 local_irq_save(flags);
1173 if (pcp->count >= pcp->batch)
1174 to_drain = pcp->batch;
1175 else
1176 to_drain = pcp->count;
2a13515c
KM
1177 if (to_drain > 0) {
1178 free_pcppages_bulk(zone, to_drain, pcp);
1179 pcp->count -= to_drain;
1180 }
4037d452 1181 local_irq_restore(flags);
4ae7c039
CL
1182}
1183#endif
1184
9f8f2172
CL
1185/*
1186 * Drain pages of the indicated processor.
1187 *
1188 * The processor must either be the current processor and the
1189 * thread pinned to the current processor or a processor that
1190 * is not online.
1191 */
1192static void drain_pages(unsigned int cpu)
1da177e4 1193{
c54ad30c 1194 unsigned long flags;
1da177e4 1195 struct zone *zone;
1da177e4 1196
ee99c71c 1197 for_each_populated_zone(zone) {
1da177e4 1198 struct per_cpu_pageset *pset;
3dfa5721 1199 struct per_cpu_pages *pcp;
1da177e4 1200
99dcc3e5
CL
1201 local_irq_save(flags);
1202 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1203
1204 pcp = &pset->pcp;
2ff754fa
DR
1205 if (pcp->count) {
1206 free_pcppages_bulk(zone, pcp->count, pcp);
1207 pcp->count = 0;
1208 }
3dfa5721 1209 local_irq_restore(flags);
1da177e4
LT
1210 }
1211}
1da177e4 1212
9f8f2172
CL
1213/*
1214 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1215 */
1216void drain_local_pages(void *arg)
1217{
1218 drain_pages(smp_processor_id());
1219}
1220
1221/*
74046494
GBY
1222 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1223 *
1224 * Note that this code is protected against sending an IPI to an offline
1225 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1226 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1227 * nothing keeps CPUs from showing up after we populated the cpumask and
1228 * before the call to on_each_cpu_mask().
9f8f2172
CL
1229 */
1230void drain_all_pages(void)
1231{
74046494
GBY
1232 int cpu;
1233 struct per_cpu_pageset *pcp;
1234 struct zone *zone;
1235
1236 /*
1237 * Allocate in the BSS so we wont require allocation in
1238 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1239 */
1240 static cpumask_t cpus_with_pcps;
1241
1242 /*
1243 * We don't care about racing with CPU hotplug event
1244 * as offline notification will cause the notified
1245 * cpu to drain that CPU pcps and on_each_cpu_mask
1246 * disables preemption as part of its processing
1247 */
1248 for_each_online_cpu(cpu) {
1249 bool has_pcps = false;
1250 for_each_populated_zone(zone) {
1251 pcp = per_cpu_ptr(zone->pageset, cpu);
1252 if (pcp->pcp.count) {
1253 has_pcps = true;
1254 break;
1255 }
1256 }
1257 if (has_pcps)
1258 cpumask_set_cpu(cpu, &cpus_with_pcps);
1259 else
1260 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1261 }
1262 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1263}
1264
296699de 1265#ifdef CONFIG_HIBERNATION
1da177e4
LT
1266
1267void mark_free_pages(struct zone *zone)
1268{
f623f0db
RW
1269 unsigned long pfn, max_zone_pfn;
1270 unsigned long flags;
b2a0ac88 1271 int order, t;
1da177e4
LT
1272 struct list_head *curr;
1273
1274 if (!zone->spanned_pages)
1275 return;
1276
1277 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1278
1279 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1280 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1281 if (pfn_valid(pfn)) {
1282 struct page *page = pfn_to_page(pfn);
1283
7be98234
RW
1284 if (!swsusp_page_is_forbidden(page))
1285 swsusp_unset_page_free(page);
f623f0db 1286 }
1da177e4 1287
b2a0ac88
MG
1288 for_each_migratetype_order(order, t) {
1289 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1290 unsigned long i;
1da177e4 1291
f623f0db
RW
1292 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1293 for (i = 0; i < (1UL << order); i++)
7be98234 1294 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1295 }
b2a0ac88 1296 }
1da177e4
LT
1297 spin_unlock_irqrestore(&zone->lock, flags);
1298}
e2c55dc8 1299#endif /* CONFIG_PM */
1da177e4 1300
1da177e4
LT
1301/*
1302 * Free a 0-order page
fc91668e 1303 * cold == 1 ? free a cold page : free a hot page
1da177e4 1304 */
fc91668e 1305void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1306{
1307 struct zone *zone = page_zone(page);
1308 struct per_cpu_pages *pcp;
1309 unsigned long flags;
5f8dcc21 1310 int migratetype;
1da177e4 1311
ec95f53a 1312 if (!free_pages_prepare(page, 0))
689bcebf
HD
1313 return;
1314
5f8dcc21 1315 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1316 set_freepage_migratetype(page, migratetype);
1da177e4 1317 local_irq_save(flags);
f8891e5e 1318 __count_vm_event(PGFREE);
da456f14 1319
5f8dcc21
MG
1320 /*
1321 * We only track unmovable, reclaimable and movable on pcp lists.
1322 * Free ISOLATE pages back to the allocator because they are being
1323 * offlined but treat RESERVE as movable pages so we can get those
1324 * areas back if necessary. Otherwise, we may have to free
1325 * excessively into the page allocator
1326 */
1327 if (migratetype >= MIGRATE_PCPTYPES) {
1328 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1329 free_one_page(zone, page, 0, migratetype);
1330 goto out;
1331 }
1332 migratetype = MIGRATE_MOVABLE;
1333 }
1334
99dcc3e5 1335 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1336 if (cold)
5f8dcc21 1337 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1338 else
5f8dcc21 1339 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1340 pcp->count++;
48db57f8 1341 if (pcp->count >= pcp->high) {
5f8dcc21 1342 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1343 pcp->count -= pcp->batch;
1344 }
5f8dcc21
MG
1345
1346out:
1da177e4 1347 local_irq_restore(flags);
1da177e4
LT
1348}
1349
cc59850e
KK
1350/*
1351 * Free a list of 0-order pages
1352 */
1353void free_hot_cold_page_list(struct list_head *list, int cold)
1354{
1355 struct page *page, *next;
1356
1357 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1358 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1359 free_hot_cold_page(page, cold);
1360 }
1361}
1362
8dfcc9ba
NP
1363/*
1364 * split_page takes a non-compound higher-order page, and splits it into
1365 * n (1<<order) sub-pages: page[0..n]
1366 * Each sub-page must be freed individually.
1367 *
1368 * Note: this is probably too low level an operation for use in drivers.
1369 * Please consult with lkml before using this in your driver.
1370 */
1371void split_page(struct page *page, unsigned int order)
1372{
1373 int i;
1374
725d704e
NP
1375 VM_BUG_ON(PageCompound(page));
1376 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1377
1378#ifdef CONFIG_KMEMCHECK
1379 /*
1380 * Split shadow pages too, because free(page[0]) would
1381 * otherwise free the whole shadow.
1382 */
1383 if (kmemcheck_page_is_tracked(page))
1384 split_page(virt_to_page(page[0].shadow), order);
1385#endif
1386
7835e98b
NP
1387 for (i = 1; i < (1 << order); i++)
1388 set_page_refcounted(page + i);
8dfcc9ba 1389}
8dfcc9ba 1390
8fb74b9f 1391static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1392{
748446bb
MG
1393 unsigned long watermark;
1394 struct zone *zone;
2139cbe6 1395 int mt;
748446bb
MG
1396
1397 BUG_ON(!PageBuddy(page));
1398
1399 zone = page_zone(page);
2e30abd1 1400 mt = get_pageblock_migratetype(page);
748446bb 1401
2e30abd1
MS
1402 if (mt != MIGRATE_ISOLATE) {
1403 /* Obey watermarks as if the page was being allocated */
1404 watermark = low_wmark_pages(zone) + (1 << order);
1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 return 0;
1407
8fb74b9f 1408 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1409 }
748446bb
MG
1410
1411 /* Remove page from free list */
1412 list_del(&page->lru);
1413 zone->free_area[order].nr_free--;
1414 rmv_page_order(page);
2139cbe6 1415
8fb74b9f 1416 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1417 if (order >= pageblock_order - 1) {
1418 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1419 for (; page < endpage; page += pageblock_nr_pages) {
1420 int mt = get_pageblock_migratetype(page);
1421 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1422 set_pageblock_migratetype(page,
1423 MIGRATE_MOVABLE);
1424 }
748446bb
MG
1425 }
1426
8fb74b9f 1427 return 1UL << order;
1fb3f8ca
MG
1428}
1429
1430/*
1431 * Similar to split_page except the page is already free. As this is only
1432 * being used for migration, the migratetype of the block also changes.
1433 * As this is called with interrupts disabled, the caller is responsible
1434 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1435 * are enabled.
1436 *
1437 * Note: this is probably too low level an operation for use in drivers.
1438 * Please consult with lkml before using this in your driver.
1439 */
1440int split_free_page(struct page *page)
1441{
1442 unsigned int order;
1443 int nr_pages;
1444
1fb3f8ca
MG
1445 order = page_order(page);
1446
8fb74b9f 1447 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1448 if (!nr_pages)
1449 return 0;
1450
1451 /* Split into individual pages */
1452 set_page_refcounted(page);
1453 split_page(page, order);
1454 return nr_pages;
748446bb
MG
1455}
1456
1da177e4
LT
1457/*
1458 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1459 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1460 * or two.
1461 */
0a15c3e9
MG
1462static inline
1463struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1464 struct zone *zone, int order, gfp_t gfp_flags,
1465 int migratetype)
1da177e4
LT
1466{
1467 unsigned long flags;
689bcebf 1468 struct page *page;
1da177e4
LT
1469 int cold = !!(gfp_flags & __GFP_COLD);
1470
689bcebf 1471again:
48db57f8 1472 if (likely(order == 0)) {
1da177e4 1473 struct per_cpu_pages *pcp;
5f8dcc21 1474 struct list_head *list;
1da177e4 1475
1da177e4 1476 local_irq_save(flags);
99dcc3e5
CL
1477 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1478 list = &pcp->lists[migratetype];
5f8dcc21 1479 if (list_empty(list)) {
535131e6 1480 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1481 pcp->batch, list,
e084b2d9 1482 migratetype, cold);
5f8dcc21 1483 if (unlikely(list_empty(list)))
6fb332fa 1484 goto failed;
535131e6 1485 }
b92a6edd 1486
5f8dcc21
MG
1487 if (cold)
1488 page = list_entry(list->prev, struct page, lru);
1489 else
1490 page = list_entry(list->next, struct page, lru);
1491
b92a6edd
MG
1492 list_del(&page->lru);
1493 pcp->count--;
7fb1d9fc 1494 } else {
dab48dab
AM
1495 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1496 /*
1497 * __GFP_NOFAIL is not to be used in new code.
1498 *
1499 * All __GFP_NOFAIL callers should be fixed so that they
1500 * properly detect and handle allocation failures.
1501 *
1502 * We most definitely don't want callers attempting to
4923abf9 1503 * allocate greater than order-1 page units with
dab48dab
AM
1504 * __GFP_NOFAIL.
1505 */
4923abf9 1506 WARN_ON_ONCE(order > 1);
dab48dab 1507 }
1da177e4 1508 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1509 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1510 spin_unlock(&zone->lock);
1511 if (!page)
1512 goto failed;
d1ce749a
BZ
1513 __mod_zone_freepage_state(zone, -(1 << order),
1514 get_pageblock_migratetype(page));
1da177e4
LT
1515 }
1516
f8891e5e 1517 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1518 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1519 local_irq_restore(flags);
1da177e4 1520
725d704e 1521 VM_BUG_ON(bad_range(zone, page));
17cf4406 1522 if (prep_new_page(page, order, gfp_flags))
a74609fa 1523 goto again;
1da177e4 1524 return page;
a74609fa
NP
1525
1526failed:
1527 local_irq_restore(flags);
a74609fa 1528 return NULL;
1da177e4
LT
1529}
1530
933e312e
AM
1531#ifdef CONFIG_FAIL_PAGE_ALLOC
1532
b2588c4b 1533static struct {
933e312e
AM
1534 struct fault_attr attr;
1535
1536 u32 ignore_gfp_highmem;
1537 u32 ignore_gfp_wait;
54114994 1538 u32 min_order;
933e312e
AM
1539} fail_page_alloc = {
1540 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1541 .ignore_gfp_wait = 1,
1542 .ignore_gfp_highmem = 1,
54114994 1543 .min_order = 1,
933e312e
AM
1544};
1545
1546static int __init setup_fail_page_alloc(char *str)
1547{
1548 return setup_fault_attr(&fail_page_alloc.attr, str);
1549}
1550__setup("fail_page_alloc=", setup_fail_page_alloc);
1551
deaf386e 1552static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1553{
54114994 1554 if (order < fail_page_alloc.min_order)
deaf386e 1555 return false;
933e312e 1556 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1557 return false;
933e312e 1558 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1559 return false;
933e312e 1560 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1561 return false;
933e312e
AM
1562
1563 return should_fail(&fail_page_alloc.attr, 1 << order);
1564}
1565
1566#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1567
1568static int __init fail_page_alloc_debugfs(void)
1569{
f4ae40a6 1570 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1571 struct dentry *dir;
933e312e 1572
dd48c085
AM
1573 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1574 &fail_page_alloc.attr);
1575 if (IS_ERR(dir))
1576 return PTR_ERR(dir);
933e312e 1577
b2588c4b
AM
1578 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1579 &fail_page_alloc.ignore_gfp_wait))
1580 goto fail;
1581 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1582 &fail_page_alloc.ignore_gfp_highmem))
1583 goto fail;
1584 if (!debugfs_create_u32("min-order", mode, dir,
1585 &fail_page_alloc.min_order))
1586 goto fail;
1587
1588 return 0;
1589fail:
dd48c085 1590 debugfs_remove_recursive(dir);
933e312e 1591
b2588c4b 1592 return -ENOMEM;
933e312e
AM
1593}
1594
1595late_initcall(fail_page_alloc_debugfs);
1596
1597#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1598
1599#else /* CONFIG_FAIL_PAGE_ALLOC */
1600
deaf386e 1601static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1602{
deaf386e 1603 return false;
933e312e
AM
1604}
1605
1606#endif /* CONFIG_FAIL_PAGE_ALLOC */
1607
1da177e4 1608/*
88f5acf8 1609 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1610 * of the allocation.
1611 */
88f5acf8
MG
1612static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1613 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1614{
1615 /* free_pages my go negative - that's OK */
d23ad423 1616 long min = mark;
2cfed075 1617 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1618 int o;
1619
df0a6daa 1620 free_pages -= (1 << order) - 1;
7fb1d9fc 1621 if (alloc_flags & ALLOC_HIGH)
1da177e4 1622 min -= min / 2;
7fb1d9fc 1623 if (alloc_flags & ALLOC_HARDER)
1da177e4 1624 min -= min / 4;
d95ea5d1
BZ
1625#ifdef CONFIG_CMA
1626 /* If allocation can't use CMA areas don't use free CMA pages */
1627 if (!(alloc_flags & ALLOC_CMA))
1628 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1629#endif
2cfed075 1630 if (free_pages <= min + lowmem_reserve)
88f5acf8 1631 return false;
1da177e4
LT
1632 for (o = 0; o < order; o++) {
1633 /* At the next order, this order's pages become unavailable */
1634 free_pages -= z->free_area[o].nr_free << o;
1635
1636 /* Require fewer higher order pages to be free */
1637 min >>= 1;
1638
1639 if (free_pages <= min)
88f5acf8 1640 return false;
1da177e4 1641 }
88f5acf8
MG
1642 return true;
1643}
1644
1645bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1646 int classzone_idx, int alloc_flags)
1647{
1648 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1649 zone_page_state(z, NR_FREE_PAGES));
1650}
1651
1652bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1653 int classzone_idx, int alloc_flags)
1654{
1655 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1656
1657 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1658 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1659
1660 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1661 free_pages);
1da177e4
LT
1662}
1663
9276b1bc
PJ
1664#ifdef CONFIG_NUMA
1665/*
1666 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1667 * skip over zones that are not allowed by the cpuset, or that have
1668 * been recently (in last second) found to be nearly full. See further
1669 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1670 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1671 *
1672 * If the zonelist cache is present in the passed in zonelist, then
1673 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1674 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1675 *
1676 * If the zonelist cache is not available for this zonelist, does
1677 * nothing and returns NULL.
1678 *
1679 * If the fullzones BITMAP in the zonelist cache is stale (more than
1680 * a second since last zap'd) then we zap it out (clear its bits.)
1681 *
1682 * We hold off even calling zlc_setup, until after we've checked the
1683 * first zone in the zonelist, on the theory that most allocations will
1684 * be satisfied from that first zone, so best to examine that zone as
1685 * quickly as we can.
1686 */
1687static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1688{
1689 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1690 nodemask_t *allowednodes; /* zonelist_cache approximation */
1691
1692 zlc = zonelist->zlcache_ptr;
1693 if (!zlc)
1694 return NULL;
1695
f05111f5 1696 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1697 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1698 zlc->last_full_zap = jiffies;
1699 }
1700
1701 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1702 &cpuset_current_mems_allowed :
4b0ef1fe 1703 &node_states[N_MEMORY];
9276b1bc
PJ
1704 return allowednodes;
1705}
1706
1707/*
1708 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1709 * if it is worth looking at further for free memory:
1710 * 1) Check that the zone isn't thought to be full (doesn't have its
1711 * bit set in the zonelist_cache fullzones BITMAP).
1712 * 2) Check that the zones node (obtained from the zonelist_cache
1713 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1714 * Return true (non-zero) if zone is worth looking at further, or
1715 * else return false (zero) if it is not.
1716 *
1717 * This check -ignores- the distinction between various watermarks,
1718 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1719 * found to be full for any variation of these watermarks, it will
1720 * be considered full for up to one second by all requests, unless
1721 * we are so low on memory on all allowed nodes that we are forced
1722 * into the second scan of the zonelist.
1723 *
1724 * In the second scan we ignore this zonelist cache and exactly
1725 * apply the watermarks to all zones, even it is slower to do so.
1726 * We are low on memory in the second scan, and should leave no stone
1727 * unturned looking for a free page.
1728 */
dd1a239f 1729static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1730 nodemask_t *allowednodes)
1731{
1732 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1733 int i; /* index of *z in zonelist zones */
1734 int n; /* node that zone *z is on */
1735
1736 zlc = zonelist->zlcache_ptr;
1737 if (!zlc)
1738 return 1;
1739
dd1a239f 1740 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1741 n = zlc->z_to_n[i];
1742
1743 /* This zone is worth trying if it is allowed but not full */
1744 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1745}
1746
1747/*
1748 * Given 'z' scanning a zonelist, set the corresponding bit in
1749 * zlc->fullzones, so that subsequent attempts to allocate a page
1750 * from that zone don't waste time re-examining it.
1751 */
dd1a239f 1752static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1753{
1754 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1755 int i; /* index of *z in zonelist zones */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return;
1760
dd1a239f 1761 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1762
1763 set_bit(i, zlc->fullzones);
1764}
1765
76d3fbf8
MG
1766/*
1767 * clear all zones full, called after direct reclaim makes progress so that
1768 * a zone that was recently full is not skipped over for up to a second
1769 */
1770static void zlc_clear_zones_full(struct zonelist *zonelist)
1771{
1772 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1773
1774 zlc = zonelist->zlcache_ptr;
1775 if (!zlc)
1776 return;
1777
1778 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1779}
1780
957f822a
DR
1781static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1782{
1783 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1784}
1785
1786static void __paginginit init_zone_allows_reclaim(int nid)
1787{
1788 int i;
1789
1790 for_each_online_node(i)
6b187d02 1791 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1792 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1793 else
957f822a 1794 zone_reclaim_mode = 1;
957f822a
DR
1795}
1796
9276b1bc
PJ
1797#else /* CONFIG_NUMA */
1798
1799static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1800{
1801 return NULL;
1802}
1803
dd1a239f 1804static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1805 nodemask_t *allowednodes)
1806{
1807 return 1;
1808}
1809
dd1a239f 1810static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1811{
1812}
76d3fbf8
MG
1813
1814static void zlc_clear_zones_full(struct zonelist *zonelist)
1815{
1816}
957f822a
DR
1817
1818static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1819{
1820 return true;
1821}
1822
1823static inline void init_zone_allows_reclaim(int nid)
1824{
1825}
9276b1bc
PJ
1826#endif /* CONFIG_NUMA */
1827
7fb1d9fc 1828/*
0798e519 1829 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1830 * a page.
1831 */
1832static struct page *
19770b32 1833get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1834 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1835 struct zone *preferred_zone, int migratetype)
753ee728 1836{
dd1a239f 1837 struct zoneref *z;
7fb1d9fc 1838 struct page *page = NULL;
54a6eb5c 1839 int classzone_idx;
5117f45d 1840 struct zone *zone;
9276b1bc
PJ
1841 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1842 int zlc_active = 0; /* set if using zonelist_cache */
1843 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1844
19770b32 1845 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1846zonelist_scan:
7fb1d9fc 1847 /*
9276b1bc 1848 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1849 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1850 */
19770b32
MG
1851 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1852 high_zoneidx, nodemask) {
e5adfffc 1853 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1854 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1855 continue;
7fb1d9fc 1856 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1857 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1858 continue;
a756cf59
JW
1859 /*
1860 * When allocating a page cache page for writing, we
1861 * want to get it from a zone that is within its dirty
1862 * limit, such that no single zone holds more than its
1863 * proportional share of globally allowed dirty pages.
1864 * The dirty limits take into account the zone's
1865 * lowmem reserves and high watermark so that kswapd
1866 * should be able to balance it without having to
1867 * write pages from its LRU list.
1868 *
1869 * This may look like it could increase pressure on
1870 * lower zones by failing allocations in higher zones
1871 * before they are full. But the pages that do spill
1872 * over are limited as the lower zones are protected
1873 * by this very same mechanism. It should not become
1874 * a practical burden to them.
1875 *
1876 * XXX: For now, allow allocations to potentially
1877 * exceed the per-zone dirty limit in the slowpath
1878 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1879 * which is important when on a NUMA setup the allowed
1880 * zones are together not big enough to reach the
1881 * global limit. The proper fix for these situations
1882 * will require awareness of zones in the
1883 * dirty-throttling and the flusher threads.
1884 */
1885 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1886 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1887 goto this_zone_full;
7fb1d9fc 1888
41858966 1889 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1890 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1891 unsigned long mark;
fa5e084e
MG
1892 int ret;
1893
41858966 1894 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1895 if (zone_watermark_ok(zone, order, mark,
1896 classzone_idx, alloc_flags))
1897 goto try_this_zone;
1898
e5adfffc
KS
1899 if (IS_ENABLED(CONFIG_NUMA) &&
1900 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1901 /*
1902 * we do zlc_setup if there are multiple nodes
1903 * and before considering the first zone allowed
1904 * by the cpuset.
1905 */
1906 allowednodes = zlc_setup(zonelist, alloc_flags);
1907 zlc_active = 1;
1908 did_zlc_setup = 1;
1909 }
1910
957f822a
DR
1911 if (zone_reclaim_mode == 0 ||
1912 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1913 goto this_zone_full;
1914
cd38b115
MG
1915 /*
1916 * As we may have just activated ZLC, check if the first
1917 * eligible zone has failed zone_reclaim recently.
1918 */
e5adfffc 1919 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1920 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1921 continue;
1922
fa5e084e
MG
1923 ret = zone_reclaim(zone, gfp_mask, order);
1924 switch (ret) {
1925 case ZONE_RECLAIM_NOSCAN:
1926 /* did not scan */
cd38b115 1927 continue;
fa5e084e
MG
1928 case ZONE_RECLAIM_FULL:
1929 /* scanned but unreclaimable */
cd38b115 1930 continue;
fa5e084e
MG
1931 default:
1932 /* did we reclaim enough */
1933 if (!zone_watermark_ok(zone, order, mark,
1934 classzone_idx, alloc_flags))
9276b1bc 1935 goto this_zone_full;
0798e519 1936 }
7fb1d9fc
RS
1937 }
1938
fa5e084e 1939try_this_zone:
3dd28266
MG
1940 page = buffered_rmqueue(preferred_zone, zone, order,
1941 gfp_mask, migratetype);
0798e519 1942 if (page)
7fb1d9fc 1943 break;
9276b1bc 1944this_zone_full:
e5adfffc 1945 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1946 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1947 }
9276b1bc 1948
e5adfffc 1949 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1950 /* Disable zlc cache for second zonelist scan */
1951 zlc_active = 0;
1952 goto zonelist_scan;
1953 }
b121186a
AS
1954
1955 if (page)
1956 /*
1957 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1958 * necessary to allocate the page. The expectation is
1959 * that the caller is taking steps that will free more
1960 * memory. The caller should avoid the page being used
1961 * for !PFMEMALLOC purposes.
1962 */
1963 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1964
7fb1d9fc 1965 return page;
753ee728
MH
1966}
1967
29423e77
DR
1968/*
1969 * Large machines with many possible nodes should not always dump per-node
1970 * meminfo in irq context.
1971 */
1972static inline bool should_suppress_show_mem(void)
1973{
1974 bool ret = false;
1975
1976#if NODES_SHIFT > 8
1977 ret = in_interrupt();
1978#endif
1979 return ret;
1980}
1981
a238ab5b
DH
1982static DEFINE_RATELIMIT_STATE(nopage_rs,
1983 DEFAULT_RATELIMIT_INTERVAL,
1984 DEFAULT_RATELIMIT_BURST);
1985
1986void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1987{
a238ab5b
DH
1988 unsigned int filter = SHOW_MEM_FILTER_NODES;
1989
c0a32fc5
SG
1990 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1991 debug_guardpage_minorder() > 0)
a238ab5b
DH
1992 return;
1993
1994 /*
1995 * This documents exceptions given to allocations in certain
1996 * contexts that are allowed to allocate outside current's set
1997 * of allowed nodes.
1998 */
1999 if (!(gfp_mask & __GFP_NOMEMALLOC))
2000 if (test_thread_flag(TIF_MEMDIE) ||
2001 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2002 filter &= ~SHOW_MEM_FILTER_NODES;
2003 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2004 filter &= ~SHOW_MEM_FILTER_NODES;
2005
2006 if (fmt) {
3ee9a4f0
JP
2007 struct va_format vaf;
2008 va_list args;
2009
a238ab5b 2010 va_start(args, fmt);
3ee9a4f0
JP
2011
2012 vaf.fmt = fmt;
2013 vaf.va = &args;
2014
2015 pr_warn("%pV", &vaf);
2016
a238ab5b
DH
2017 va_end(args);
2018 }
2019
3ee9a4f0
JP
2020 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2021 current->comm, order, gfp_mask);
a238ab5b
DH
2022
2023 dump_stack();
2024 if (!should_suppress_show_mem())
2025 show_mem(filter);
2026}
2027
11e33f6a
MG
2028static inline int
2029should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2030 unsigned long did_some_progress,
11e33f6a 2031 unsigned long pages_reclaimed)
1da177e4 2032{
11e33f6a
MG
2033 /* Do not loop if specifically requested */
2034 if (gfp_mask & __GFP_NORETRY)
2035 return 0;
1da177e4 2036
f90ac398
MG
2037 /* Always retry if specifically requested */
2038 if (gfp_mask & __GFP_NOFAIL)
2039 return 1;
2040
2041 /*
2042 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2043 * making forward progress without invoking OOM. Suspend also disables
2044 * storage devices so kswapd will not help. Bail if we are suspending.
2045 */
2046 if (!did_some_progress && pm_suspended_storage())
2047 return 0;
2048
11e33f6a
MG
2049 /*
2050 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2051 * means __GFP_NOFAIL, but that may not be true in other
2052 * implementations.
2053 */
2054 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2055 return 1;
2056
2057 /*
2058 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2059 * specified, then we retry until we no longer reclaim any pages
2060 * (above), or we've reclaimed an order of pages at least as
2061 * large as the allocation's order. In both cases, if the
2062 * allocation still fails, we stop retrying.
2063 */
2064 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2065 return 1;
cf40bd16 2066
11e33f6a
MG
2067 return 0;
2068}
933e312e 2069
11e33f6a
MG
2070static inline struct page *
2071__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2072 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2073 nodemask_t *nodemask, struct zone *preferred_zone,
2074 int migratetype)
11e33f6a
MG
2075{
2076 struct page *page;
2077
2078 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2079 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2080 schedule_timeout_uninterruptible(1);
1da177e4
LT
2081 return NULL;
2082 }
6b1de916 2083
11e33f6a
MG
2084 /*
2085 * Go through the zonelist yet one more time, keep very high watermark
2086 * here, this is only to catch a parallel oom killing, we must fail if
2087 * we're still under heavy pressure.
2088 */
2089 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2090 order, zonelist, high_zoneidx,
5117f45d 2091 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2092 preferred_zone, migratetype);
7fb1d9fc 2093 if (page)
11e33f6a
MG
2094 goto out;
2095
4365a567
KH
2096 if (!(gfp_mask & __GFP_NOFAIL)) {
2097 /* The OOM killer will not help higher order allocs */
2098 if (order > PAGE_ALLOC_COSTLY_ORDER)
2099 goto out;
03668b3c
DR
2100 /* The OOM killer does not needlessly kill tasks for lowmem */
2101 if (high_zoneidx < ZONE_NORMAL)
2102 goto out;
4365a567
KH
2103 /*
2104 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2105 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2106 * The caller should handle page allocation failure by itself if
2107 * it specifies __GFP_THISNODE.
2108 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2109 */
2110 if (gfp_mask & __GFP_THISNODE)
2111 goto out;
2112 }
11e33f6a 2113 /* Exhausted what can be done so it's blamo time */
08ab9b10 2114 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2115
2116out:
2117 clear_zonelist_oom(zonelist, gfp_mask);
2118 return page;
2119}
2120
56de7263
MG
2121#ifdef CONFIG_COMPACTION
2122/* Try memory compaction for high-order allocations before reclaim */
2123static struct page *
2124__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2125 struct zonelist *zonelist, enum zone_type high_zoneidx,
2126 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2127 int migratetype, bool sync_migration,
c67fe375 2128 bool *contended_compaction, bool *deferred_compaction,
66199712 2129 unsigned long *did_some_progress)
56de7263 2130{
66199712 2131 if (!order)
56de7263
MG
2132 return NULL;
2133
aff62249 2134 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2135 *deferred_compaction = true;
2136 return NULL;
2137 }
2138
c06b1fca 2139 current->flags |= PF_MEMALLOC;
56de7263 2140 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2141 nodemask, sync_migration,
8fb74b9f 2142 contended_compaction);
c06b1fca 2143 current->flags &= ~PF_MEMALLOC;
56de7263 2144
1fb3f8ca 2145 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2146 struct page *page;
2147
56de7263
MG
2148 /* Page migration frees to the PCP lists but we want merging */
2149 drain_pages(get_cpu());
2150 put_cpu();
2151
2152 page = get_page_from_freelist(gfp_mask, nodemask,
2153 order, zonelist, high_zoneidx,
cfd19c5a
MG
2154 alloc_flags & ~ALLOC_NO_WATERMARKS,
2155 preferred_zone, migratetype);
56de7263 2156 if (page) {
62997027 2157 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2158 preferred_zone->compact_considered = 0;
2159 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2160 if (order >= preferred_zone->compact_order_failed)
2161 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2162 count_vm_event(COMPACTSUCCESS);
2163 return page;
2164 }
2165
2166 /*
2167 * It's bad if compaction run occurs and fails.
2168 * The most likely reason is that pages exist,
2169 * but not enough to satisfy watermarks.
2170 */
2171 count_vm_event(COMPACTFAIL);
66199712
MG
2172
2173 /*
2174 * As async compaction considers a subset of pageblocks, only
2175 * defer if the failure was a sync compaction failure.
2176 */
2177 if (sync_migration)
aff62249 2178 defer_compaction(preferred_zone, order);
56de7263
MG
2179
2180 cond_resched();
2181 }
2182
2183 return NULL;
2184}
2185#else
2186static inline struct page *
2187__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2188 struct zonelist *zonelist, enum zone_type high_zoneidx,
2189 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2190 int migratetype, bool sync_migration,
c67fe375 2191 bool *contended_compaction, bool *deferred_compaction,
66199712 2192 unsigned long *did_some_progress)
56de7263
MG
2193{
2194 return NULL;
2195}
2196#endif /* CONFIG_COMPACTION */
2197
bba90710
MS
2198/* Perform direct synchronous page reclaim */
2199static int
2200__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2201 nodemask_t *nodemask)
11e33f6a 2202{
11e33f6a 2203 struct reclaim_state reclaim_state;
bba90710 2204 int progress;
11e33f6a
MG
2205
2206 cond_resched();
2207
2208 /* We now go into synchronous reclaim */
2209 cpuset_memory_pressure_bump();
c06b1fca 2210 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2211 lockdep_set_current_reclaim_state(gfp_mask);
2212 reclaim_state.reclaimed_slab = 0;
c06b1fca 2213 current->reclaim_state = &reclaim_state;
11e33f6a 2214
bba90710 2215 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2216
c06b1fca 2217 current->reclaim_state = NULL;
11e33f6a 2218 lockdep_clear_current_reclaim_state();
c06b1fca 2219 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2220
2221 cond_resched();
2222
bba90710
MS
2223 return progress;
2224}
2225
2226/* The really slow allocator path where we enter direct reclaim */
2227static inline struct page *
2228__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2229 struct zonelist *zonelist, enum zone_type high_zoneidx,
2230 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2231 int migratetype, unsigned long *did_some_progress)
2232{
2233 struct page *page = NULL;
2234 bool drained = false;
2235
2236 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2237 nodemask);
9ee493ce
MG
2238 if (unlikely(!(*did_some_progress)))
2239 return NULL;
11e33f6a 2240
76d3fbf8 2241 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2242 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2243 zlc_clear_zones_full(zonelist);
2244
9ee493ce
MG
2245retry:
2246 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2247 zonelist, high_zoneidx,
cfd19c5a
MG
2248 alloc_flags & ~ALLOC_NO_WATERMARKS,
2249 preferred_zone, migratetype);
9ee493ce
MG
2250
2251 /*
2252 * If an allocation failed after direct reclaim, it could be because
2253 * pages are pinned on the per-cpu lists. Drain them and try again
2254 */
2255 if (!page && !drained) {
2256 drain_all_pages();
2257 drained = true;
2258 goto retry;
2259 }
2260
11e33f6a
MG
2261 return page;
2262}
2263
1da177e4 2264/*
11e33f6a
MG
2265 * This is called in the allocator slow-path if the allocation request is of
2266 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2267 */
11e33f6a
MG
2268static inline struct page *
2269__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2270 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2271 nodemask_t *nodemask, struct zone *preferred_zone,
2272 int migratetype)
11e33f6a
MG
2273{
2274 struct page *page;
2275
2276 do {
2277 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2278 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2279 preferred_zone, migratetype);
11e33f6a
MG
2280
2281 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2282 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2283 } while (!page && (gfp_mask & __GFP_NOFAIL));
2284
2285 return page;
2286}
2287
2288static inline
2289void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2290 enum zone_type high_zoneidx,
2291 enum zone_type classzone_idx)
1da177e4 2292{
dd1a239f
MG
2293 struct zoneref *z;
2294 struct zone *zone;
1da177e4 2295
11e33f6a 2296 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2297 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2298}
cf40bd16 2299
341ce06f
PZ
2300static inline int
2301gfp_to_alloc_flags(gfp_t gfp_mask)
2302{
341ce06f
PZ
2303 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2304 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2305
a56f57ff 2306 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2307 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2308
341ce06f
PZ
2309 /*
2310 * The caller may dip into page reserves a bit more if the caller
2311 * cannot run direct reclaim, or if the caller has realtime scheduling
2312 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2313 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2314 */
e6223a3b 2315 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2316
341ce06f 2317 if (!wait) {
5c3240d9
AA
2318 /*
2319 * Not worth trying to allocate harder for
2320 * __GFP_NOMEMALLOC even if it can't schedule.
2321 */
2322 if (!(gfp_mask & __GFP_NOMEMALLOC))
2323 alloc_flags |= ALLOC_HARDER;
523b9458 2324 /*
341ce06f
PZ
2325 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2326 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2327 */
341ce06f 2328 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2329 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2330 alloc_flags |= ALLOC_HARDER;
2331
b37f1dd0
MG
2332 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2333 if (gfp_mask & __GFP_MEMALLOC)
2334 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2335 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2336 alloc_flags |= ALLOC_NO_WATERMARKS;
2337 else if (!in_interrupt() &&
2338 ((current->flags & PF_MEMALLOC) ||
2339 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2340 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2341 }
d95ea5d1
BZ
2342#ifdef CONFIG_CMA
2343 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2344 alloc_flags |= ALLOC_CMA;
2345#endif
341ce06f
PZ
2346 return alloc_flags;
2347}
2348
072bb0aa
MG
2349bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2350{
b37f1dd0 2351 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2352}
2353
11e33f6a
MG
2354static inline struct page *
2355__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2356 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2357 nodemask_t *nodemask, struct zone *preferred_zone,
2358 int migratetype)
11e33f6a
MG
2359{
2360 const gfp_t wait = gfp_mask & __GFP_WAIT;
2361 struct page *page = NULL;
2362 int alloc_flags;
2363 unsigned long pages_reclaimed = 0;
2364 unsigned long did_some_progress;
77f1fe6b 2365 bool sync_migration = false;
66199712 2366 bool deferred_compaction = false;
c67fe375 2367 bool contended_compaction = false;
1da177e4 2368
72807a74
MG
2369 /*
2370 * In the slowpath, we sanity check order to avoid ever trying to
2371 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2372 * be using allocators in order of preference for an area that is
2373 * too large.
2374 */
1fc28b70
MG
2375 if (order >= MAX_ORDER) {
2376 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2377 return NULL;
1fc28b70 2378 }
1da177e4 2379
952f3b51
CL
2380 /*
2381 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2382 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2383 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2384 * using a larger set of nodes after it has established that the
2385 * allowed per node queues are empty and that nodes are
2386 * over allocated.
2387 */
e5adfffc
KS
2388 if (IS_ENABLED(CONFIG_NUMA) &&
2389 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2390 goto nopage;
2391
cc4a6851 2392restart:
caf49191
LT
2393 if (!(gfp_mask & __GFP_NO_KSWAPD))
2394 wake_all_kswapd(order, zonelist, high_zoneidx,
2395 zone_idx(preferred_zone));
1da177e4 2396
9bf2229f 2397 /*
7fb1d9fc
RS
2398 * OK, we're below the kswapd watermark and have kicked background
2399 * reclaim. Now things get more complex, so set up alloc_flags according
2400 * to how we want to proceed.
9bf2229f 2401 */
341ce06f 2402 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2403
f33261d7
DR
2404 /*
2405 * Find the true preferred zone if the allocation is unconstrained by
2406 * cpusets.
2407 */
2408 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2409 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2410 &preferred_zone);
2411
cfa54a0f 2412rebalance:
341ce06f 2413 /* This is the last chance, in general, before the goto nopage. */
19770b32 2414 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2415 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2416 preferred_zone, migratetype);
7fb1d9fc
RS
2417 if (page)
2418 goto got_pg;
1da177e4 2419
11e33f6a 2420 /* Allocate without watermarks if the context allows */
341ce06f 2421 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2422 /*
2423 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2424 * the allocation is high priority and these type of
2425 * allocations are system rather than user orientated
2426 */
2427 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2428
341ce06f
PZ
2429 page = __alloc_pages_high_priority(gfp_mask, order,
2430 zonelist, high_zoneidx, nodemask,
2431 preferred_zone, migratetype);
cfd19c5a 2432 if (page) {
341ce06f 2433 goto got_pg;
cfd19c5a 2434 }
1da177e4
LT
2435 }
2436
2437 /* Atomic allocations - we can't balance anything */
2438 if (!wait)
2439 goto nopage;
2440
341ce06f 2441 /* Avoid recursion of direct reclaim */
c06b1fca 2442 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2443 goto nopage;
2444
6583bb64
DR
2445 /* Avoid allocations with no watermarks from looping endlessly */
2446 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2447 goto nopage;
2448
77f1fe6b
MG
2449 /*
2450 * Try direct compaction. The first pass is asynchronous. Subsequent
2451 * attempts after direct reclaim are synchronous
2452 */
56de7263
MG
2453 page = __alloc_pages_direct_compact(gfp_mask, order,
2454 zonelist, high_zoneidx,
2455 nodemask,
2456 alloc_flags, preferred_zone,
66199712 2457 migratetype, sync_migration,
c67fe375 2458 &contended_compaction,
66199712
MG
2459 &deferred_compaction,
2460 &did_some_progress);
56de7263
MG
2461 if (page)
2462 goto got_pg;
c6a140bf 2463 sync_migration = true;
56de7263 2464
31f8d42d
LT
2465 /*
2466 * If compaction is deferred for high-order allocations, it is because
2467 * sync compaction recently failed. In this is the case and the caller
2468 * requested a movable allocation that does not heavily disrupt the
2469 * system then fail the allocation instead of entering direct reclaim.
2470 */
2471 if ((deferred_compaction || contended_compaction) &&
caf49191 2472 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2473 goto nopage;
66199712 2474
11e33f6a
MG
2475 /* Try direct reclaim and then allocating */
2476 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2477 zonelist, high_zoneidx,
2478 nodemask,
5117f45d 2479 alloc_flags, preferred_zone,
3dd28266 2480 migratetype, &did_some_progress);
11e33f6a
MG
2481 if (page)
2482 goto got_pg;
1da177e4 2483
e33c3b5e 2484 /*
11e33f6a
MG
2485 * If we failed to make any progress reclaiming, then we are
2486 * running out of options and have to consider going OOM
e33c3b5e 2487 */
11e33f6a
MG
2488 if (!did_some_progress) {
2489 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2490 if (oom_killer_disabled)
2491 goto nopage;
29fd66d2
DR
2492 /* Coredumps can quickly deplete all memory reserves */
2493 if ((current->flags & PF_DUMPCORE) &&
2494 !(gfp_mask & __GFP_NOFAIL))
2495 goto nopage;
11e33f6a
MG
2496 page = __alloc_pages_may_oom(gfp_mask, order,
2497 zonelist, high_zoneidx,
3dd28266
MG
2498 nodemask, preferred_zone,
2499 migratetype);
11e33f6a
MG
2500 if (page)
2501 goto got_pg;
1da177e4 2502
03668b3c
DR
2503 if (!(gfp_mask & __GFP_NOFAIL)) {
2504 /*
2505 * The oom killer is not called for high-order
2506 * allocations that may fail, so if no progress
2507 * is being made, there are no other options and
2508 * retrying is unlikely to help.
2509 */
2510 if (order > PAGE_ALLOC_COSTLY_ORDER)
2511 goto nopage;
2512 /*
2513 * The oom killer is not called for lowmem
2514 * allocations to prevent needlessly killing
2515 * innocent tasks.
2516 */
2517 if (high_zoneidx < ZONE_NORMAL)
2518 goto nopage;
2519 }
e2c55dc8 2520
ff0ceb9d
DR
2521 goto restart;
2522 }
1da177e4
LT
2523 }
2524
11e33f6a 2525 /* Check if we should retry the allocation */
a41f24ea 2526 pages_reclaimed += did_some_progress;
f90ac398
MG
2527 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2528 pages_reclaimed)) {
11e33f6a 2529 /* Wait for some write requests to complete then retry */
0e093d99 2530 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2531 goto rebalance;
3e7d3449
MG
2532 } else {
2533 /*
2534 * High-order allocations do not necessarily loop after
2535 * direct reclaim and reclaim/compaction depends on compaction
2536 * being called after reclaim so call directly if necessary
2537 */
2538 page = __alloc_pages_direct_compact(gfp_mask, order,
2539 zonelist, high_zoneidx,
2540 nodemask,
2541 alloc_flags, preferred_zone,
66199712 2542 migratetype, sync_migration,
c67fe375 2543 &contended_compaction,
66199712
MG
2544 &deferred_compaction,
2545 &did_some_progress);
3e7d3449
MG
2546 if (page)
2547 goto got_pg;
1da177e4
LT
2548 }
2549
2550nopage:
a238ab5b 2551 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2552 return page;
1da177e4 2553got_pg:
b1eeab67
VN
2554 if (kmemcheck_enabled)
2555 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2556
072bb0aa 2557 return page;
1da177e4 2558}
11e33f6a
MG
2559
2560/*
2561 * This is the 'heart' of the zoned buddy allocator.
2562 */
2563struct page *
2564__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2565 struct zonelist *zonelist, nodemask_t *nodemask)
2566{
2567 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2568 struct zone *preferred_zone;
cc9a6c87 2569 struct page *page = NULL;
3dd28266 2570 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2571 unsigned int cpuset_mems_cookie;
d95ea5d1 2572 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2573 struct mem_cgroup *memcg = NULL;
11e33f6a 2574
dcce284a
BH
2575 gfp_mask &= gfp_allowed_mask;
2576
11e33f6a
MG
2577 lockdep_trace_alloc(gfp_mask);
2578
2579 might_sleep_if(gfp_mask & __GFP_WAIT);
2580
2581 if (should_fail_alloc_page(gfp_mask, order))
2582 return NULL;
2583
2584 /*
2585 * Check the zones suitable for the gfp_mask contain at least one
2586 * valid zone. It's possible to have an empty zonelist as a result
2587 * of GFP_THISNODE and a memoryless node
2588 */
2589 if (unlikely(!zonelist->_zonerefs->zone))
2590 return NULL;
2591
6a1a0d3b
GC
2592 /*
2593 * Will only have any effect when __GFP_KMEMCG is set. This is
2594 * verified in the (always inline) callee
2595 */
2596 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2597 return NULL;
2598
cc9a6c87
MG
2599retry_cpuset:
2600 cpuset_mems_cookie = get_mems_allowed();
2601
5117f45d 2602 /* The preferred zone is used for statistics later */
f33261d7
DR
2603 first_zones_zonelist(zonelist, high_zoneidx,
2604 nodemask ? : &cpuset_current_mems_allowed,
2605 &preferred_zone);
cc9a6c87
MG
2606 if (!preferred_zone)
2607 goto out;
5117f45d 2608
d95ea5d1
BZ
2609#ifdef CONFIG_CMA
2610 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2611 alloc_flags |= ALLOC_CMA;
2612#endif
5117f45d 2613 /* First allocation attempt */
11e33f6a 2614 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2615 zonelist, high_zoneidx, alloc_flags,
3dd28266 2616 preferred_zone, migratetype);
11e33f6a
MG
2617 if (unlikely(!page))
2618 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2619 zonelist, high_zoneidx, nodemask,
3dd28266 2620 preferred_zone, migratetype);
11e33f6a 2621
4b4f278c 2622 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2623
2624out:
2625 /*
2626 * When updating a task's mems_allowed, it is possible to race with
2627 * parallel threads in such a way that an allocation can fail while
2628 * the mask is being updated. If a page allocation is about to fail,
2629 * check if the cpuset changed during allocation and if so, retry.
2630 */
2631 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2632 goto retry_cpuset;
2633
6a1a0d3b
GC
2634 memcg_kmem_commit_charge(page, memcg, order);
2635
11e33f6a 2636 return page;
1da177e4 2637}
d239171e 2638EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2639
2640/*
2641 * Common helper functions.
2642 */
920c7a5d 2643unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2644{
945a1113
AM
2645 struct page *page;
2646
2647 /*
2648 * __get_free_pages() returns a 32-bit address, which cannot represent
2649 * a highmem page
2650 */
2651 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2652
1da177e4
LT
2653 page = alloc_pages(gfp_mask, order);
2654 if (!page)
2655 return 0;
2656 return (unsigned long) page_address(page);
2657}
1da177e4
LT
2658EXPORT_SYMBOL(__get_free_pages);
2659
920c7a5d 2660unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2661{
945a1113 2662 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2663}
1da177e4
LT
2664EXPORT_SYMBOL(get_zeroed_page);
2665
920c7a5d 2666void __free_pages(struct page *page, unsigned int order)
1da177e4 2667{
b5810039 2668 if (put_page_testzero(page)) {
1da177e4 2669 if (order == 0)
fc91668e 2670 free_hot_cold_page(page, 0);
1da177e4
LT
2671 else
2672 __free_pages_ok(page, order);
2673 }
2674}
2675
2676EXPORT_SYMBOL(__free_pages);
2677
920c7a5d 2678void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2679{
2680 if (addr != 0) {
725d704e 2681 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2682 __free_pages(virt_to_page((void *)addr), order);
2683 }
2684}
2685
2686EXPORT_SYMBOL(free_pages);
2687
6a1a0d3b
GC
2688/*
2689 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2690 * pages allocated with __GFP_KMEMCG.
2691 *
2692 * Those pages are accounted to a particular memcg, embedded in the
2693 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2694 * for that information only to find out that it is NULL for users who have no
2695 * interest in that whatsoever, we provide these functions.
2696 *
2697 * The caller knows better which flags it relies on.
2698 */
2699void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2700{
2701 memcg_kmem_uncharge_pages(page, order);
2702 __free_pages(page, order);
2703}
2704
2705void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2706{
2707 if (addr != 0) {
2708 VM_BUG_ON(!virt_addr_valid((void *)addr));
2709 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2710 }
2711}
2712
ee85c2e1
AK
2713static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2714{
2715 if (addr) {
2716 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2717 unsigned long used = addr + PAGE_ALIGN(size);
2718
2719 split_page(virt_to_page((void *)addr), order);
2720 while (used < alloc_end) {
2721 free_page(used);
2722 used += PAGE_SIZE;
2723 }
2724 }
2725 return (void *)addr;
2726}
2727
2be0ffe2
TT
2728/**
2729 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2730 * @size: the number of bytes to allocate
2731 * @gfp_mask: GFP flags for the allocation
2732 *
2733 * This function is similar to alloc_pages(), except that it allocates the
2734 * minimum number of pages to satisfy the request. alloc_pages() can only
2735 * allocate memory in power-of-two pages.
2736 *
2737 * This function is also limited by MAX_ORDER.
2738 *
2739 * Memory allocated by this function must be released by free_pages_exact().
2740 */
2741void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2742{
2743 unsigned int order = get_order(size);
2744 unsigned long addr;
2745
2746 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2747 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2748}
2749EXPORT_SYMBOL(alloc_pages_exact);
2750
ee85c2e1
AK
2751/**
2752 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2753 * pages on a node.
b5e6ab58 2754 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2755 * @size: the number of bytes to allocate
2756 * @gfp_mask: GFP flags for the allocation
2757 *
2758 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2759 * back.
2760 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2761 * but is not exact.
2762 */
2763void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2764{
2765 unsigned order = get_order(size);
2766 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2767 if (!p)
2768 return NULL;
2769 return make_alloc_exact((unsigned long)page_address(p), order, size);
2770}
2771EXPORT_SYMBOL(alloc_pages_exact_nid);
2772
2be0ffe2
TT
2773/**
2774 * free_pages_exact - release memory allocated via alloc_pages_exact()
2775 * @virt: the value returned by alloc_pages_exact.
2776 * @size: size of allocation, same value as passed to alloc_pages_exact().
2777 *
2778 * Release the memory allocated by a previous call to alloc_pages_exact.
2779 */
2780void free_pages_exact(void *virt, size_t size)
2781{
2782 unsigned long addr = (unsigned long)virt;
2783 unsigned long end = addr + PAGE_ALIGN(size);
2784
2785 while (addr < end) {
2786 free_page(addr);
2787 addr += PAGE_SIZE;
2788 }
2789}
2790EXPORT_SYMBOL(free_pages_exact);
2791
1da177e4
LT
2792static unsigned int nr_free_zone_pages(int offset)
2793{
dd1a239f 2794 struct zoneref *z;
54a6eb5c
MG
2795 struct zone *zone;
2796
e310fd43 2797 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2798 unsigned int sum = 0;
2799
0e88460d 2800 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2801
54a6eb5c 2802 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2803 unsigned long size = zone->present_pages;
41858966 2804 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2805 if (size > high)
2806 sum += size - high;
1da177e4
LT
2807 }
2808
2809 return sum;
2810}
2811
2812/*
2813 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2814 */
2815unsigned int nr_free_buffer_pages(void)
2816{
af4ca457 2817 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2818}
c2f1a551 2819EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2820
2821/*
2822 * Amount of free RAM allocatable within all zones
2823 */
2824unsigned int nr_free_pagecache_pages(void)
2825{
2a1e274a 2826 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2827}
08e0f6a9
CL
2828
2829static inline void show_node(struct zone *zone)
1da177e4 2830{
e5adfffc 2831 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2832 printk("Node %d ", zone_to_nid(zone));
1da177e4 2833}
1da177e4 2834
1da177e4
LT
2835void si_meminfo(struct sysinfo *val)
2836{
2837 val->totalram = totalram_pages;
2838 val->sharedram = 0;
d23ad423 2839 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2840 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2841 val->totalhigh = totalhigh_pages;
2842 val->freehigh = nr_free_highpages();
1da177e4
LT
2843 val->mem_unit = PAGE_SIZE;
2844}
2845
2846EXPORT_SYMBOL(si_meminfo);
2847
2848#ifdef CONFIG_NUMA
2849void si_meminfo_node(struct sysinfo *val, int nid)
2850{
2851 pg_data_t *pgdat = NODE_DATA(nid);
2852
2853 val->totalram = pgdat->node_present_pages;
d23ad423 2854 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2855#ifdef CONFIG_HIGHMEM
1da177e4 2856 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2857 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2858 NR_FREE_PAGES);
98d2b0eb
CL
2859#else
2860 val->totalhigh = 0;
2861 val->freehigh = 0;
2862#endif
1da177e4
LT
2863 val->mem_unit = PAGE_SIZE;
2864}
2865#endif
2866
ddd588b5 2867/*
7bf02ea2
DR
2868 * Determine whether the node should be displayed or not, depending on whether
2869 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2870 */
7bf02ea2 2871bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2872{
2873 bool ret = false;
cc9a6c87 2874 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2875
2876 if (!(flags & SHOW_MEM_FILTER_NODES))
2877 goto out;
2878
cc9a6c87
MG
2879 do {
2880 cpuset_mems_cookie = get_mems_allowed();
2881 ret = !node_isset(nid, cpuset_current_mems_allowed);
2882 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2883out:
2884 return ret;
2885}
2886
1da177e4
LT
2887#define K(x) ((x) << (PAGE_SHIFT-10))
2888
377e4f16
RV
2889static void show_migration_types(unsigned char type)
2890{
2891 static const char types[MIGRATE_TYPES] = {
2892 [MIGRATE_UNMOVABLE] = 'U',
2893 [MIGRATE_RECLAIMABLE] = 'E',
2894 [MIGRATE_MOVABLE] = 'M',
2895 [MIGRATE_RESERVE] = 'R',
2896#ifdef CONFIG_CMA
2897 [MIGRATE_CMA] = 'C',
2898#endif
2899 [MIGRATE_ISOLATE] = 'I',
2900 };
2901 char tmp[MIGRATE_TYPES + 1];
2902 char *p = tmp;
2903 int i;
2904
2905 for (i = 0; i < MIGRATE_TYPES; i++) {
2906 if (type & (1 << i))
2907 *p++ = types[i];
2908 }
2909
2910 *p = '\0';
2911 printk("(%s) ", tmp);
2912}
2913
1da177e4
LT
2914/*
2915 * Show free area list (used inside shift_scroll-lock stuff)
2916 * We also calculate the percentage fragmentation. We do this by counting the
2917 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2918 * Suppresses nodes that are not allowed by current's cpuset if
2919 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2920 */
7bf02ea2 2921void show_free_areas(unsigned int filter)
1da177e4 2922{
c7241913 2923 int cpu;
1da177e4
LT
2924 struct zone *zone;
2925
ee99c71c 2926 for_each_populated_zone(zone) {
7bf02ea2 2927 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2928 continue;
c7241913
JS
2929 show_node(zone);
2930 printk("%s per-cpu:\n", zone->name);
1da177e4 2931
6b482c67 2932 for_each_online_cpu(cpu) {
1da177e4
LT
2933 struct per_cpu_pageset *pageset;
2934
99dcc3e5 2935 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2936
3dfa5721
CL
2937 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2938 cpu, pageset->pcp.high,
2939 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2940 }
2941 }
2942
a731286d
KM
2943 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2944 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2945 " unevictable:%lu"
b76146ed 2946 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2947 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2948 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2949 " free_cma:%lu\n",
4f98a2fe 2950 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2951 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2952 global_page_state(NR_ISOLATED_ANON),
2953 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2954 global_page_state(NR_INACTIVE_FILE),
a731286d 2955 global_page_state(NR_ISOLATED_FILE),
7b854121 2956 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2957 global_page_state(NR_FILE_DIRTY),
ce866b34 2958 global_page_state(NR_WRITEBACK),
fd39fc85 2959 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2960 global_page_state(NR_FREE_PAGES),
3701b033
KM
2961 global_page_state(NR_SLAB_RECLAIMABLE),
2962 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2963 global_page_state(NR_FILE_MAPPED),
4b02108a 2964 global_page_state(NR_SHMEM),
a25700a5 2965 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2966 global_page_state(NR_BOUNCE),
2967 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2968
ee99c71c 2969 for_each_populated_zone(zone) {
1da177e4
LT
2970 int i;
2971
7bf02ea2 2972 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2973 continue;
1da177e4
LT
2974 show_node(zone);
2975 printk("%s"
2976 " free:%lukB"
2977 " min:%lukB"
2978 " low:%lukB"
2979 " high:%lukB"
4f98a2fe
RR
2980 " active_anon:%lukB"
2981 " inactive_anon:%lukB"
2982 " active_file:%lukB"
2983 " inactive_file:%lukB"
7b854121 2984 " unevictable:%lukB"
a731286d
KM
2985 " isolated(anon):%lukB"
2986 " isolated(file):%lukB"
1da177e4 2987 " present:%lukB"
9feedc9d 2988 " managed:%lukB"
4a0aa73f
KM
2989 " mlocked:%lukB"
2990 " dirty:%lukB"
2991 " writeback:%lukB"
2992 " mapped:%lukB"
4b02108a 2993 " shmem:%lukB"
4a0aa73f
KM
2994 " slab_reclaimable:%lukB"
2995 " slab_unreclaimable:%lukB"
c6a7f572 2996 " kernel_stack:%lukB"
4a0aa73f
KM
2997 " pagetables:%lukB"
2998 " unstable:%lukB"
2999 " bounce:%lukB"
d1ce749a 3000 " free_cma:%lukB"
4a0aa73f 3001 " writeback_tmp:%lukB"
1da177e4
LT
3002 " pages_scanned:%lu"
3003 " all_unreclaimable? %s"
3004 "\n",
3005 zone->name,
88f5acf8 3006 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3007 K(min_wmark_pages(zone)),
3008 K(low_wmark_pages(zone)),
3009 K(high_wmark_pages(zone)),
4f98a2fe
RR
3010 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3011 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3012 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3013 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3014 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3015 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3016 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3017 K(zone->present_pages),
9feedc9d 3018 K(zone->managed_pages),
4a0aa73f
KM
3019 K(zone_page_state(zone, NR_MLOCK)),
3020 K(zone_page_state(zone, NR_FILE_DIRTY)),
3021 K(zone_page_state(zone, NR_WRITEBACK)),
3022 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3023 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3024 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3025 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3026 zone_page_state(zone, NR_KERNEL_STACK) *
3027 THREAD_SIZE / 1024,
4a0aa73f
KM
3028 K(zone_page_state(zone, NR_PAGETABLE)),
3029 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3030 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3031 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3032 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3033 zone->pages_scanned,
93e4a89a 3034 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3035 );
3036 printk("lowmem_reserve[]:");
3037 for (i = 0; i < MAX_NR_ZONES; i++)
3038 printk(" %lu", zone->lowmem_reserve[i]);
3039 printk("\n");
3040 }
3041
ee99c71c 3042 for_each_populated_zone(zone) {
8f9de51a 3043 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3044 unsigned char types[MAX_ORDER];
1da177e4 3045
7bf02ea2 3046 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3047 continue;
1da177e4
LT
3048 show_node(zone);
3049 printk("%s: ", zone->name);
1da177e4
LT
3050
3051 spin_lock_irqsave(&zone->lock, flags);
3052 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3053 struct free_area *area = &zone->free_area[order];
3054 int type;
3055
3056 nr[order] = area->nr_free;
8f9de51a 3057 total += nr[order] << order;
377e4f16
RV
3058
3059 types[order] = 0;
3060 for (type = 0; type < MIGRATE_TYPES; type++) {
3061 if (!list_empty(&area->free_list[type]))
3062 types[order] |= 1 << type;
3063 }
1da177e4
LT
3064 }
3065 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3066 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3067 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3068 if (nr[order])
3069 show_migration_types(types[order]);
3070 }
1da177e4
LT
3071 printk("= %lukB\n", K(total));
3072 }
3073
e6f3602d
LW
3074 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3075
1da177e4
LT
3076 show_swap_cache_info();
3077}
3078
19770b32
MG
3079static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3080{
3081 zoneref->zone = zone;
3082 zoneref->zone_idx = zone_idx(zone);
3083}
3084
1da177e4
LT
3085/*
3086 * Builds allocation fallback zone lists.
1a93205b
CL
3087 *
3088 * Add all populated zones of a node to the zonelist.
1da177e4 3089 */
f0c0b2b8
KH
3090static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3091 int nr_zones, enum zone_type zone_type)
1da177e4 3092{
1a93205b
CL
3093 struct zone *zone;
3094
98d2b0eb 3095 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3096 zone_type++;
02a68a5e
CL
3097
3098 do {
2f6726e5 3099 zone_type--;
070f8032 3100 zone = pgdat->node_zones + zone_type;
1a93205b 3101 if (populated_zone(zone)) {
dd1a239f
MG
3102 zoneref_set_zone(zone,
3103 &zonelist->_zonerefs[nr_zones++]);
070f8032 3104 check_highest_zone(zone_type);
1da177e4 3105 }
02a68a5e 3106
2f6726e5 3107 } while (zone_type);
070f8032 3108 return nr_zones;
1da177e4
LT
3109}
3110
f0c0b2b8
KH
3111
3112/*
3113 * zonelist_order:
3114 * 0 = automatic detection of better ordering.
3115 * 1 = order by ([node] distance, -zonetype)
3116 * 2 = order by (-zonetype, [node] distance)
3117 *
3118 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3119 * the same zonelist. So only NUMA can configure this param.
3120 */
3121#define ZONELIST_ORDER_DEFAULT 0
3122#define ZONELIST_ORDER_NODE 1
3123#define ZONELIST_ORDER_ZONE 2
3124
3125/* zonelist order in the kernel.
3126 * set_zonelist_order() will set this to NODE or ZONE.
3127 */
3128static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3129static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3130
3131
1da177e4 3132#ifdef CONFIG_NUMA
f0c0b2b8
KH
3133/* The value user specified ....changed by config */
3134static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3135/* string for sysctl */
3136#define NUMA_ZONELIST_ORDER_LEN 16
3137char numa_zonelist_order[16] = "default";
3138
3139/*
3140 * interface for configure zonelist ordering.
3141 * command line option "numa_zonelist_order"
3142 * = "[dD]efault - default, automatic configuration.
3143 * = "[nN]ode - order by node locality, then by zone within node
3144 * = "[zZ]one - order by zone, then by locality within zone
3145 */
3146
3147static int __parse_numa_zonelist_order(char *s)
3148{
3149 if (*s == 'd' || *s == 'D') {
3150 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3151 } else if (*s == 'n' || *s == 'N') {
3152 user_zonelist_order = ZONELIST_ORDER_NODE;
3153 } else if (*s == 'z' || *s == 'Z') {
3154 user_zonelist_order = ZONELIST_ORDER_ZONE;
3155 } else {
3156 printk(KERN_WARNING
3157 "Ignoring invalid numa_zonelist_order value: "
3158 "%s\n", s);
3159 return -EINVAL;
3160 }
3161 return 0;
3162}
3163
3164static __init int setup_numa_zonelist_order(char *s)
3165{
ecb256f8
VL
3166 int ret;
3167
3168 if (!s)
3169 return 0;
3170
3171 ret = __parse_numa_zonelist_order(s);
3172 if (ret == 0)
3173 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3174
3175 return ret;
f0c0b2b8
KH
3176}
3177early_param("numa_zonelist_order", setup_numa_zonelist_order);
3178
3179/*
3180 * sysctl handler for numa_zonelist_order
3181 */
3182int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3183 void __user *buffer, size_t *length,
f0c0b2b8
KH
3184 loff_t *ppos)
3185{
3186 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3187 int ret;
443c6f14 3188 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3189
443c6f14 3190 mutex_lock(&zl_order_mutex);
f0c0b2b8 3191 if (write)
443c6f14 3192 strcpy(saved_string, (char*)table->data);
8d65af78 3193 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3194 if (ret)
443c6f14 3195 goto out;
f0c0b2b8
KH
3196 if (write) {
3197 int oldval = user_zonelist_order;
3198 if (__parse_numa_zonelist_order((char*)table->data)) {
3199 /*
3200 * bogus value. restore saved string
3201 */
3202 strncpy((char*)table->data, saved_string,
3203 NUMA_ZONELIST_ORDER_LEN);
3204 user_zonelist_order = oldval;
4eaf3f64
HL
3205 } else if (oldval != user_zonelist_order) {
3206 mutex_lock(&zonelists_mutex);
9adb62a5 3207 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3208 mutex_unlock(&zonelists_mutex);
3209 }
f0c0b2b8 3210 }
443c6f14
AK
3211out:
3212 mutex_unlock(&zl_order_mutex);
3213 return ret;
f0c0b2b8
KH
3214}
3215
3216
62bc62a8 3217#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3218static int node_load[MAX_NUMNODES];
3219
1da177e4 3220/**
4dc3b16b 3221 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3222 * @node: node whose fallback list we're appending
3223 * @used_node_mask: nodemask_t of already used nodes
3224 *
3225 * We use a number of factors to determine which is the next node that should
3226 * appear on a given node's fallback list. The node should not have appeared
3227 * already in @node's fallback list, and it should be the next closest node
3228 * according to the distance array (which contains arbitrary distance values
3229 * from each node to each node in the system), and should also prefer nodes
3230 * with no CPUs, since presumably they'll have very little allocation pressure
3231 * on them otherwise.
3232 * It returns -1 if no node is found.
3233 */
f0c0b2b8 3234static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3235{
4cf808eb 3236 int n, val;
1da177e4
LT
3237 int min_val = INT_MAX;
3238 int best_node = -1;
a70f7302 3239 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3240
4cf808eb
LT
3241 /* Use the local node if we haven't already */
3242 if (!node_isset(node, *used_node_mask)) {
3243 node_set(node, *used_node_mask);
3244 return node;
3245 }
1da177e4 3246
4b0ef1fe 3247 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3248
3249 /* Don't want a node to appear more than once */
3250 if (node_isset(n, *used_node_mask))
3251 continue;
3252
1da177e4
LT
3253 /* Use the distance array to find the distance */
3254 val = node_distance(node, n);
3255
4cf808eb
LT
3256 /* Penalize nodes under us ("prefer the next node") */
3257 val += (n < node);
3258
1da177e4 3259 /* Give preference to headless and unused nodes */
a70f7302
RR
3260 tmp = cpumask_of_node(n);
3261 if (!cpumask_empty(tmp))
1da177e4
LT
3262 val += PENALTY_FOR_NODE_WITH_CPUS;
3263
3264 /* Slight preference for less loaded node */
3265 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3266 val += node_load[n];
3267
3268 if (val < min_val) {
3269 min_val = val;
3270 best_node = n;
3271 }
3272 }
3273
3274 if (best_node >= 0)
3275 node_set(best_node, *used_node_mask);
3276
3277 return best_node;
3278}
3279
f0c0b2b8
KH
3280
3281/*
3282 * Build zonelists ordered by node and zones within node.
3283 * This results in maximum locality--normal zone overflows into local
3284 * DMA zone, if any--but risks exhausting DMA zone.
3285 */
3286static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3287{
f0c0b2b8 3288 int j;
1da177e4 3289 struct zonelist *zonelist;
f0c0b2b8 3290
54a6eb5c 3291 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3292 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3293 ;
3294 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3295 MAX_NR_ZONES - 1);
dd1a239f
MG
3296 zonelist->_zonerefs[j].zone = NULL;
3297 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3298}
3299
523b9458
CL
3300/*
3301 * Build gfp_thisnode zonelists
3302 */
3303static void build_thisnode_zonelists(pg_data_t *pgdat)
3304{
523b9458
CL
3305 int j;
3306 struct zonelist *zonelist;
3307
54a6eb5c
MG
3308 zonelist = &pgdat->node_zonelists[1];
3309 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3310 zonelist->_zonerefs[j].zone = NULL;
3311 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3312}
3313
f0c0b2b8
KH
3314/*
3315 * Build zonelists ordered by zone and nodes within zones.
3316 * This results in conserving DMA zone[s] until all Normal memory is
3317 * exhausted, but results in overflowing to remote node while memory
3318 * may still exist in local DMA zone.
3319 */
3320static int node_order[MAX_NUMNODES];
3321
3322static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3323{
f0c0b2b8
KH
3324 int pos, j, node;
3325 int zone_type; /* needs to be signed */
3326 struct zone *z;
3327 struct zonelist *zonelist;
3328
54a6eb5c
MG
3329 zonelist = &pgdat->node_zonelists[0];
3330 pos = 0;
3331 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3332 for (j = 0; j < nr_nodes; j++) {
3333 node = node_order[j];
3334 z = &NODE_DATA(node)->node_zones[zone_type];
3335 if (populated_zone(z)) {
dd1a239f
MG
3336 zoneref_set_zone(z,
3337 &zonelist->_zonerefs[pos++]);
54a6eb5c 3338 check_highest_zone(zone_type);
f0c0b2b8
KH
3339 }
3340 }
f0c0b2b8 3341 }
dd1a239f
MG
3342 zonelist->_zonerefs[pos].zone = NULL;
3343 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3344}
3345
3346static int default_zonelist_order(void)
3347{
3348 int nid, zone_type;
3349 unsigned long low_kmem_size,total_size;
3350 struct zone *z;
3351 int average_size;
3352 /*
88393161 3353 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3354 * If they are really small and used heavily, the system can fall
3355 * into OOM very easily.
e325c90f 3356 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3357 */
3358 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3359 low_kmem_size = 0;
3360 total_size = 0;
3361 for_each_online_node(nid) {
3362 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3363 z = &NODE_DATA(nid)->node_zones[zone_type];
3364 if (populated_zone(z)) {
3365 if (zone_type < ZONE_NORMAL)
3366 low_kmem_size += z->present_pages;
3367 total_size += z->present_pages;
e325c90f
DR
3368 } else if (zone_type == ZONE_NORMAL) {
3369 /*
3370 * If any node has only lowmem, then node order
3371 * is preferred to allow kernel allocations
3372 * locally; otherwise, they can easily infringe
3373 * on other nodes when there is an abundance of
3374 * lowmem available to allocate from.
3375 */
3376 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3377 }
3378 }
3379 }
3380 if (!low_kmem_size || /* there are no DMA area. */
3381 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3382 return ZONELIST_ORDER_NODE;
3383 /*
3384 * look into each node's config.
3385 * If there is a node whose DMA/DMA32 memory is very big area on
3386 * local memory, NODE_ORDER may be suitable.
3387 */
37b07e41 3388 average_size = total_size /
4b0ef1fe 3389 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3390 for_each_online_node(nid) {
3391 low_kmem_size = 0;
3392 total_size = 0;
3393 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3394 z = &NODE_DATA(nid)->node_zones[zone_type];
3395 if (populated_zone(z)) {
3396 if (zone_type < ZONE_NORMAL)
3397 low_kmem_size += z->present_pages;
3398 total_size += z->present_pages;
3399 }
3400 }
3401 if (low_kmem_size &&
3402 total_size > average_size && /* ignore small node */
3403 low_kmem_size > total_size * 70/100)
3404 return ZONELIST_ORDER_NODE;
3405 }
3406 return ZONELIST_ORDER_ZONE;
3407}
3408
3409static void set_zonelist_order(void)
3410{
3411 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3412 current_zonelist_order = default_zonelist_order();
3413 else
3414 current_zonelist_order = user_zonelist_order;
3415}
3416
3417static void build_zonelists(pg_data_t *pgdat)
3418{
3419 int j, node, load;
3420 enum zone_type i;
1da177e4 3421 nodemask_t used_mask;
f0c0b2b8
KH
3422 int local_node, prev_node;
3423 struct zonelist *zonelist;
3424 int order = current_zonelist_order;
1da177e4
LT
3425
3426 /* initialize zonelists */
523b9458 3427 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3428 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3429 zonelist->_zonerefs[0].zone = NULL;
3430 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3431 }
3432
3433 /* NUMA-aware ordering of nodes */
3434 local_node = pgdat->node_id;
62bc62a8 3435 load = nr_online_nodes;
1da177e4
LT
3436 prev_node = local_node;
3437 nodes_clear(used_mask);
f0c0b2b8 3438
f0c0b2b8
KH
3439 memset(node_order, 0, sizeof(node_order));
3440 j = 0;
3441
1da177e4
LT
3442 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3443 /*
3444 * We don't want to pressure a particular node.
3445 * So adding penalty to the first node in same
3446 * distance group to make it round-robin.
3447 */
957f822a
DR
3448 if (node_distance(local_node, node) !=
3449 node_distance(local_node, prev_node))
f0c0b2b8
KH
3450 node_load[node] = load;
3451
1da177e4
LT
3452 prev_node = node;
3453 load--;
f0c0b2b8
KH
3454 if (order == ZONELIST_ORDER_NODE)
3455 build_zonelists_in_node_order(pgdat, node);
3456 else
3457 node_order[j++] = node; /* remember order */
3458 }
1da177e4 3459
f0c0b2b8
KH
3460 if (order == ZONELIST_ORDER_ZONE) {
3461 /* calculate node order -- i.e., DMA last! */
3462 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3463 }
523b9458
CL
3464
3465 build_thisnode_zonelists(pgdat);
1da177e4
LT
3466}
3467
9276b1bc 3468/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3469static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3470{
54a6eb5c
MG
3471 struct zonelist *zonelist;
3472 struct zonelist_cache *zlc;
dd1a239f 3473 struct zoneref *z;
9276b1bc 3474
54a6eb5c
MG
3475 zonelist = &pgdat->node_zonelists[0];
3476 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3477 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3478 for (z = zonelist->_zonerefs; z->zone; z++)
3479 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3480}
3481
7aac7898
LS
3482#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3483/*
3484 * Return node id of node used for "local" allocations.
3485 * I.e., first node id of first zone in arg node's generic zonelist.
3486 * Used for initializing percpu 'numa_mem', which is used primarily
3487 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3488 */
3489int local_memory_node(int node)
3490{
3491 struct zone *zone;
3492
3493 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3494 gfp_zone(GFP_KERNEL),
3495 NULL,
3496 &zone);
3497 return zone->node;
3498}
3499#endif
f0c0b2b8 3500
1da177e4
LT
3501#else /* CONFIG_NUMA */
3502
f0c0b2b8
KH
3503static void set_zonelist_order(void)
3504{
3505 current_zonelist_order = ZONELIST_ORDER_ZONE;
3506}
3507
3508static void build_zonelists(pg_data_t *pgdat)
1da177e4 3509{
19655d34 3510 int node, local_node;
54a6eb5c
MG
3511 enum zone_type j;
3512 struct zonelist *zonelist;
1da177e4
LT
3513
3514 local_node = pgdat->node_id;
1da177e4 3515
54a6eb5c
MG
3516 zonelist = &pgdat->node_zonelists[0];
3517 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3518
54a6eb5c
MG
3519 /*
3520 * Now we build the zonelist so that it contains the zones
3521 * of all the other nodes.
3522 * We don't want to pressure a particular node, so when
3523 * building the zones for node N, we make sure that the
3524 * zones coming right after the local ones are those from
3525 * node N+1 (modulo N)
3526 */
3527 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3528 if (!node_online(node))
3529 continue;
3530 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3531 MAX_NR_ZONES - 1);
1da177e4 3532 }
54a6eb5c
MG
3533 for (node = 0; node < local_node; node++) {
3534 if (!node_online(node))
3535 continue;
3536 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3537 MAX_NR_ZONES - 1);
3538 }
3539
dd1a239f
MG
3540 zonelist->_zonerefs[j].zone = NULL;
3541 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3542}
3543
9276b1bc 3544/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3545static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3546{
54a6eb5c 3547 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3548}
3549
1da177e4
LT
3550#endif /* CONFIG_NUMA */
3551
99dcc3e5
CL
3552/*
3553 * Boot pageset table. One per cpu which is going to be used for all
3554 * zones and all nodes. The parameters will be set in such a way
3555 * that an item put on a list will immediately be handed over to
3556 * the buddy list. This is safe since pageset manipulation is done
3557 * with interrupts disabled.
3558 *
3559 * The boot_pagesets must be kept even after bootup is complete for
3560 * unused processors and/or zones. They do play a role for bootstrapping
3561 * hotplugged processors.
3562 *
3563 * zoneinfo_show() and maybe other functions do
3564 * not check if the processor is online before following the pageset pointer.
3565 * Other parts of the kernel may not check if the zone is available.
3566 */
3567static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3568static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3569static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3570
4eaf3f64
HL
3571/*
3572 * Global mutex to protect against size modification of zonelists
3573 * as well as to serialize pageset setup for the new populated zone.
3574 */
3575DEFINE_MUTEX(zonelists_mutex);
3576
9b1a4d38 3577/* return values int ....just for stop_machine() */
4ed7e022 3578static int __build_all_zonelists(void *data)
1da177e4 3579{
6811378e 3580 int nid;
99dcc3e5 3581 int cpu;
9adb62a5 3582 pg_data_t *self = data;
9276b1bc 3583
7f9cfb31
BL
3584#ifdef CONFIG_NUMA
3585 memset(node_load, 0, sizeof(node_load));
3586#endif
9adb62a5
JL
3587
3588 if (self && !node_online(self->node_id)) {
3589 build_zonelists(self);
3590 build_zonelist_cache(self);
3591 }
3592
9276b1bc 3593 for_each_online_node(nid) {
7ea1530a
CL
3594 pg_data_t *pgdat = NODE_DATA(nid);
3595
3596 build_zonelists(pgdat);
3597 build_zonelist_cache(pgdat);
9276b1bc 3598 }
99dcc3e5
CL
3599
3600 /*
3601 * Initialize the boot_pagesets that are going to be used
3602 * for bootstrapping processors. The real pagesets for
3603 * each zone will be allocated later when the per cpu
3604 * allocator is available.
3605 *
3606 * boot_pagesets are used also for bootstrapping offline
3607 * cpus if the system is already booted because the pagesets
3608 * are needed to initialize allocators on a specific cpu too.
3609 * F.e. the percpu allocator needs the page allocator which
3610 * needs the percpu allocator in order to allocate its pagesets
3611 * (a chicken-egg dilemma).
3612 */
7aac7898 3613 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3614 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3615
7aac7898
LS
3616#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3617 /*
3618 * We now know the "local memory node" for each node--
3619 * i.e., the node of the first zone in the generic zonelist.
3620 * Set up numa_mem percpu variable for on-line cpus. During
3621 * boot, only the boot cpu should be on-line; we'll init the
3622 * secondary cpus' numa_mem as they come on-line. During
3623 * node/memory hotplug, we'll fixup all on-line cpus.
3624 */
3625 if (cpu_online(cpu))
3626 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3627#endif
3628 }
3629
6811378e
YG
3630 return 0;
3631}
3632
4eaf3f64
HL
3633/*
3634 * Called with zonelists_mutex held always
3635 * unless system_state == SYSTEM_BOOTING.
3636 */
9adb62a5 3637void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3638{
f0c0b2b8
KH
3639 set_zonelist_order();
3640
6811378e 3641 if (system_state == SYSTEM_BOOTING) {
423b41d7 3642 __build_all_zonelists(NULL);
68ad8df4 3643 mminit_verify_zonelist();
6811378e
YG
3644 cpuset_init_current_mems_allowed();
3645 } else {
183ff22b 3646 /* we have to stop all cpus to guarantee there is no user
6811378e 3647 of zonelist */
e9959f0f 3648#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3649 if (zone)
3650 setup_zone_pageset(zone);
e9959f0f 3651#endif
9adb62a5 3652 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3653 /* cpuset refresh routine should be here */
3654 }
bd1e22b8 3655 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3656 /*
3657 * Disable grouping by mobility if the number of pages in the
3658 * system is too low to allow the mechanism to work. It would be
3659 * more accurate, but expensive to check per-zone. This check is
3660 * made on memory-hotadd so a system can start with mobility
3661 * disabled and enable it later
3662 */
d9c23400 3663 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3664 page_group_by_mobility_disabled = 1;
3665 else
3666 page_group_by_mobility_disabled = 0;
3667
3668 printk("Built %i zonelists in %s order, mobility grouping %s. "
3669 "Total pages: %ld\n",
62bc62a8 3670 nr_online_nodes,
f0c0b2b8 3671 zonelist_order_name[current_zonelist_order],
9ef9acb0 3672 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3673 vm_total_pages);
3674#ifdef CONFIG_NUMA
3675 printk("Policy zone: %s\n", zone_names[policy_zone]);
3676#endif
1da177e4
LT
3677}
3678
3679/*
3680 * Helper functions to size the waitqueue hash table.
3681 * Essentially these want to choose hash table sizes sufficiently
3682 * large so that collisions trying to wait on pages are rare.
3683 * But in fact, the number of active page waitqueues on typical
3684 * systems is ridiculously low, less than 200. So this is even
3685 * conservative, even though it seems large.
3686 *
3687 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3688 * waitqueues, i.e. the size of the waitq table given the number of pages.
3689 */
3690#define PAGES_PER_WAITQUEUE 256
3691
cca448fe 3692#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3693static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3694{
3695 unsigned long size = 1;
3696
3697 pages /= PAGES_PER_WAITQUEUE;
3698
3699 while (size < pages)
3700 size <<= 1;
3701
3702 /*
3703 * Once we have dozens or even hundreds of threads sleeping
3704 * on IO we've got bigger problems than wait queue collision.
3705 * Limit the size of the wait table to a reasonable size.
3706 */
3707 size = min(size, 4096UL);
3708
3709 return max(size, 4UL);
3710}
cca448fe
YG
3711#else
3712/*
3713 * A zone's size might be changed by hot-add, so it is not possible to determine
3714 * a suitable size for its wait_table. So we use the maximum size now.
3715 *
3716 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3717 *
3718 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3719 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3720 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3721 *
3722 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3723 * or more by the traditional way. (See above). It equals:
3724 *
3725 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3726 * ia64(16K page size) : = ( 8G + 4M)byte.
3727 * powerpc (64K page size) : = (32G +16M)byte.
3728 */
3729static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3730{
3731 return 4096UL;
3732}
3733#endif
1da177e4
LT
3734
3735/*
3736 * This is an integer logarithm so that shifts can be used later
3737 * to extract the more random high bits from the multiplicative
3738 * hash function before the remainder is taken.
3739 */
3740static inline unsigned long wait_table_bits(unsigned long size)
3741{
3742 return ffz(~size);
3743}
3744
3745#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3746
6d3163ce
AH
3747/*
3748 * Check if a pageblock contains reserved pages
3749 */
3750static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3751{
3752 unsigned long pfn;
3753
3754 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3755 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3756 return 1;
3757 }
3758 return 0;
3759}
3760
56fd56b8 3761/*
d9c23400 3762 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3763 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3764 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3765 * higher will lead to a bigger reserve which will get freed as contiguous
3766 * blocks as reclaim kicks in
3767 */
3768static void setup_zone_migrate_reserve(struct zone *zone)
3769{
6d3163ce 3770 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3771 struct page *page;
78986a67
MG
3772 unsigned long block_migratetype;
3773 int reserve;
56fd56b8 3774
d0215638
MH
3775 /*
3776 * Get the start pfn, end pfn and the number of blocks to reserve
3777 * We have to be careful to be aligned to pageblock_nr_pages to
3778 * make sure that we always check pfn_valid for the first page in
3779 * the block.
3780 */
56fd56b8
MG
3781 start_pfn = zone->zone_start_pfn;
3782 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3783 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3784 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3785 pageblock_order;
56fd56b8 3786
78986a67
MG
3787 /*
3788 * Reserve blocks are generally in place to help high-order atomic
3789 * allocations that are short-lived. A min_free_kbytes value that
3790 * would result in more than 2 reserve blocks for atomic allocations
3791 * is assumed to be in place to help anti-fragmentation for the
3792 * future allocation of hugepages at runtime.
3793 */
3794 reserve = min(2, reserve);
3795
d9c23400 3796 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3797 if (!pfn_valid(pfn))
3798 continue;
3799 page = pfn_to_page(pfn);
3800
344c790e
AL
3801 /* Watch out for overlapping nodes */
3802 if (page_to_nid(page) != zone_to_nid(zone))
3803 continue;
3804
56fd56b8
MG
3805 block_migratetype = get_pageblock_migratetype(page);
3806
938929f1
MG
3807 /* Only test what is necessary when the reserves are not met */
3808 if (reserve > 0) {
3809 /*
3810 * Blocks with reserved pages will never free, skip
3811 * them.
3812 */
3813 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3814 if (pageblock_is_reserved(pfn, block_end_pfn))
3815 continue;
56fd56b8 3816
938929f1
MG
3817 /* If this block is reserved, account for it */
3818 if (block_migratetype == MIGRATE_RESERVE) {
3819 reserve--;
3820 continue;
3821 }
3822
3823 /* Suitable for reserving if this block is movable */
3824 if (block_migratetype == MIGRATE_MOVABLE) {
3825 set_pageblock_migratetype(page,
3826 MIGRATE_RESERVE);
3827 move_freepages_block(zone, page,
3828 MIGRATE_RESERVE);
3829 reserve--;
3830 continue;
3831 }
56fd56b8
MG
3832 }
3833
3834 /*
3835 * If the reserve is met and this is a previous reserved block,
3836 * take it back
3837 */
3838 if (block_migratetype == MIGRATE_RESERVE) {
3839 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3840 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3841 }
3842 }
3843}
ac0e5b7a 3844
1da177e4
LT
3845/*
3846 * Initially all pages are reserved - free ones are freed
3847 * up by free_all_bootmem() once the early boot process is
3848 * done. Non-atomic initialization, single-pass.
3849 */
c09b4240 3850void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3851 unsigned long start_pfn, enum memmap_context context)
1da177e4 3852{
1da177e4 3853 struct page *page;
29751f69
AW
3854 unsigned long end_pfn = start_pfn + size;
3855 unsigned long pfn;
86051ca5 3856 struct zone *z;
1da177e4 3857
22b31eec
HD
3858 if (highest_memmap_pfn < end_pfn - 1)
3859 highest_memmap_pfn = end_pfn - 1;
3860
86051ca5 3861 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3862 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3863 /*
3864 * There can be holes in boot-time mem_map[]s
3865 * handed to this function. They do not
3866 * exist on hotplugged memory.
3867 */
3868 if (context == MEMMAP_EARLY) {
3869 if (!early_pfn_valid(pfn))
3870 continue;
3871 if (!early_pfn_in_nid(pfn, nid))
3872 continue;
3873 }
d41dee36
AW
3874 page = pfn_to_page(pfn);
3875 set_page_links(page, zone, nid, pfn);
708614e6 3876 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3877 init_page_count(page);
1da177e4 3878 reset_page_mapcount(page);
57e0a030 3879 reset_page_last_nid(page);
1da177e4 3880 SetPageReserved(page);
b2a0ac88
MG
3881 /*
3882 * Mark the block movable so that blocks are reserved for
3883 * movable at startup. This will force kernel allocations
3884 * to reserve their blocks rather than leaking throughout
3885 * the address space during boot when many long-lived
56fd56b8
MG
3886 * kernel allocations are made. Later some blocks near
3887 * the start are marked MIGRATE_RESERVE by
3888 * setup_zone_migrate_reserve()
86051ca5
KH
3889 *
3890 * bitmap is created for zone's valid pfn range. but memmap
3891 * can be created for invalid pages (for alignment)
3892 * check here not to call set_pageblock_migratetype() against
3893 * pfn out of zone.
b2a0ac88 3894 */
86051ca5
KH
3895 if ((z->zone_start_pfn <= pfn)
3896 && (pfn < z->zone_start_pfn + z->spanned_pages)
3897 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3898 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3899
1da177e4
LT
3900 INIT_LIST_HEAD(&page->lru);
3901#ifdef WANT_PAGE_VIRTUAL
3902 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3903 if (!is_highmem_idx(zone))
3212c6be 3904 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3905#endif
1da177e4
LT
3906 }
3907}
3908
1e548deb 3909static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3910{
b2a0ac88
MG
3911 int order, t;
3912 for_each_migratetype_order(order, t) {
3913 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3914 zone->free_area[order].nr_free = 0;
3915 }
3916}
3917
3918#ifndef __HAVE_ARCH_MEMMAP_INIT
3919#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3920 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3921#endif
3922
4ed7e022 3923static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3924{
3a6be87f 3925#ifdef CONFIG_MMU
e7c8d5c9
CL
3926 int batch;
3927
3928 /*
3929 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3930 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3931 *
3932 * OK, so we don't know how big the cache is. So guess.
3933 */
3934 batch = zone->present_pages / 1024;
ba56e91c
SR
3935 if (batch * PAGE_SIZE > 512 * 1024)
3936 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3937 batch /= 4; /* We effectively *= 4 below */
3938 if (batch < 1)
3939 batch = 1;
3940
3941 /*
0ceaacc9
NP
3942 * Clamp the batch to a 2^n - 1 value. Having a power
3943 * of 2 value was found to be more likely to have
3944 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3945 *
0ceaacc9
NP
3946 * For example if 2 tasks are alternately allocating
3947 * batches of pages, one task can end up with a lot
3948 * of pages of one half of the possible page colors
3949 * and the other with pages of the other colors.
e7c8d5c9 3950 */
9155203a 3951 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3952
e7c8d5c9 3953 return batch;
3a6be87f
DH
3954
3955#else
3956 /* The deferral and batching of frees should be suppressed under NOMMU
3957 * conditions.
3958 *
3959 * The problem is that NOMMU needs to be able to allocate large chunks
3960 * of contiguous memory as there's no hardware page translation to
3961 * assemble apparent contiguous memory from discontiguous pages.
3962 *
3963 * Queueing large contiguous runs of pages for batching, however,
3964 * causes the pages to actually be freed in smaller chunks. As there
3965 * can be a significant delay between the individual batches being
3966 * recycled, this leads to the once large chunks of space being
3967 * fragmented and becoming unavailable for high-order allocations.
3968 */
3969 return 0;
3970#endif
e7c8d5c9
CL
3971}
3972
b69a7288 3973static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3974{
3975 struct per_cpu_pages *pcp;
5f8dcc21 3976 int migratetype;
2caaad41 3977
1c6fe946
MD
3978 memset(p, 0, sizeof(*p));
3979
3dfa5721 3980 pcp = &p->pcp;
2caaad41 3981 pcp->count = 0;
2caaad41
CL
3982 pcp->high = 6 * batch;
3983 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3984 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3985 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3986}
3987
8ad4b1fb
RS
3988/*
3989 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3990 * to the value high for the pageset p.
3991 */
3992
3993static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3994 unsigned long high)
3995{
3996 struct per_cpu_pages *pcp;
3997
3dfa5721 3998 pcp = &p->pcp;
8ad4b1fb
RS
3999 pcp->high = high;
4000 pcp->batch = max(1UL, high/4);
4001 if ((high/4) > (PAGE_SHIFT * 8))
4002 pcp->batch = PAGE_SHIFT * 8;
4003}
4004
4ed7e022 4005static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4006{
4007 int cpu;
4008
4009 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4010
4011 for_each_possible_cpu(cpu) {
4012 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4013
4014 setup_pageset(pcp, zone_batchsize(zone));
4015
4016 if (percpu_pagelist_fraction)
4017 setup_pagelist_highmark(pcp,
4018 (zone->present_pages /
4019 percpu_pagelist_fraction));
4020 }
4021}
4022
2caaad41 4023/*
99dcc3e5
CL
4024 * Allocate per cpu pagesets and initialize them.
4025 * Before this call only boot pagesets were available.
e7c8d5c9 4026 */
99dcc3e5 4027void __init setup_per_cpu_pageset(void)
e7c8d5c9 4028{
99dcc3e5 4029 struct zone *zone;
e7c8d5c9 4030
319774e2
WF
4031 for_each_populated_zone(zone)
4032 setup_zone_pageset(zone);
e7c8d5c9
CL
4033}
4034
577a32f6 4035static noinline __init_refok
cca448fe 4036int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4037{
4038 int i;
4039 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4040 size_t alloc_size;
ed8ece2e
DH
4041
4042 /*
4043 * The per-page waitqueue mechanism uses hashed waitqueues
4044 * per zone.
4045 */
02b694de
YG
4046 zone->wait_table_hash_nr_entries =
4047 wait_table_hash_nr_entries(zone_size_pages);
4048 zone->wait_table_bits =
4049 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4050 alloc_size = zone->wait_table_hash_nr_entries
4051 * sizeof(wait_queue_head_t);
4052
cd94b9db 4053 if (!slab_is_available()) {
cca448fe 4054 zone->wait_table = (wait_queue_head_t *)
8f389a99 4055 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4056 } else {
4057 /*
4058 * This case means that a zone whose size was 0 gets new memory
4059 * via memory hot-add.
4060 * But it may be the case that a new node was hot-added. In
4061 * this case vmalloc() will not be able to use this new node's
4062 * memory - this wait_table must be initialized to use this new
4063 * node itself as well.
4064 * To use this new node's memory, further consideration will be
4065 * necessary.
4066 */
8691f3a7 4067 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4068 }
4069 if (!zone->wait_table)
4070 return -ENOMEM;
ed8ece2e 4071
02b694de 4072 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4073 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4074
4075 return 0;
ed8ece2e
DH
4076}
4077
c09b4240 4078static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4079{
99dcc3e5
CL
4080 /*
4081 * per cpu subsystem is not up at this point. The following code
4082 * relies on the ability of the linker to provide the
4083 * offset of a (static) per cpu variable into the per cpu area.
4084 */
4085 zone->pageset = &boot_pageset;
ed8ece2e 4086
f5335c0f 4087 if (zone->present_pages)
99dcc3e5
CL
4088 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4089 zone->name, zone->present_pages,
4090 zone_batchsize(zone));
ed8ece2e
DH
4091}
4092
4ed7e022 4093int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4094 unsigned long zone_start_pfn,
a2f3aa02
DH
4095 unsigned long size,
4096 enum memmap_context context)
ed8ece2e
DH
4097{
4098 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4099 int ret;
4100 ret = zone_wait_table_init(zone, size);
4101 if (ret)
4102 return ret;
ed8ece2e
DH
4103 pgdat->nr_zones = zone_idx(zone) + 1;
4104
ed8ece2e
DH
4105 zone->zone_start_pfn = zone_start_pfn;
4106
708614e6
MG
4107 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4108 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4109 pgdat->node_id,
4110 (unsigned long)zone_idx(zone),
4111 zone_start_pfn, (zone_start_pfn + size));
4112
1e548deb 4113 zone_init_free_lists(zone);
718127cc
YG
4114
4115 return 0;
ed8ece2e
DH
4116}
4117
0ee332c1 4118#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4119#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4120/*
4121 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4122 * Architectures may implement their own version but if add_active_range()
4123 * was used and there are no special requirements, this is a convenient
4124 * alternative
4125 */
f2dbcfa7 4126int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4127{
c13291a5
TH
4128 unsigned long start_pfn, end_pfn;
4129 int i, nid;
c713216d 4130
c13291a5 4131 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4132 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4133 return nid;
cc2559bc
KH
4134 /* This is a memory hole */
4135 return -1;
c713216d
MG
4136}
4137#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4138
f2dbcfa7
KH
4139int __meminit early_pfn_to_nid(unsigned long pfn)
4140{
cc2559bc
KH
4141 int nid;
4142
4143 nid = __early_pfn_to_nid(pfn);
4144 if (nid >= 0)
4145 return nid;
4146 /* just returns 0 */
4147 return 0;
f2dbcfa7
KH
4148}
4149
cc2559bc
KH
4150#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4151bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4152{
4153 int nid;
4154
4155 nid = __early_pfn_to_nid(pfn);
4156 if (nid >= 0 && nid != node)
4157 return false;
4158 return true;
4159}
4160#endif
f2dbcfa7 4161
c713216d
MG
4162/**
4163 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4164 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4165 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4166 *
4167 * If an architecture guarantees that all ranges registered with
4168 * add_active_ranges() contain no holes and may be freed, this
4169 * this function may be used instead of calling free_bootmem() manually.
4170 */
c13291a5 4171void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4172{
c13291a5
TH
4173 unsigned long start_pfn, end_pfn;
4174 int i, this_nid;
edbe7d23 4175
c13291a5
TH
4176 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4177 start_pfn = min(start_pfn, max_low_pfn);
4178 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4179
c13291a5
TH
4180 if (start_pfn < end_pfn)
4181 free_bootmem_node(NODE_DATA(this_nid),
4182 PFN_PHYS(start_pfn),
4183 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4184 }
edbe7d23 4185}
edbe7d23 4186
c713216d
MG
4187/**
4188 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4189 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4190 *
4191 * If an architecture guarantees that all ranges registered with
4192 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4193 * function may be used instead of calling memory_present() manually.
c713216d
MG
4194 */
4195void __init sparse_memory_present_with_active_regions(int nid)
4196{
c13291a5
TH
4197 unsigned long start_pfn, end_pfn;
4198 int i, this_nid;
c713216d 4199
c13291a5
TH
4200 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4201 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4202}
4203
4204/**
4205 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4206 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4207 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4208 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4209 *
4210 * It returns the start and end page frame of a node based on information
4211 * provided by an arch calling add_active_range(). If called for a node
4212 * with no available memory, a warning is printed and the start and end
88ca3b94 4213 * PFNs will be 0.
c713216d 4214 */
a3142c8e 4215void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4216 unsigned long *start_pfn, unsigned long *end_pfn)
4217{
c13291a5 4218 unsigned long this_start_pfn, this_end_pfn;
c713216d 4219 int i;
c13291a5 4220
c713216d
MG
4221 *start_pfn = -1UL;
4222 *end_pfn = 0;
4223
c13291a5
TH
4224 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4225 *start_pfn = min(*start_pfn, this_start_pfn);
4226 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4227 }
4228
633c0666 4229 if (*start_pfn == -1UL)
c713216d 4230 *start_pfn = 0;
c713216d
MG
4231}
4232
2a1e274a
MG
4233/*
4234 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4235 * assumption is made that zones within a node are ordered in monotonic
4236 * increasing memory addresses so that the "highest" populated zone is used
4237 */
b69a7288 4238static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4239{
4240 int zone_index;
4241 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4242 if (zone_index == ZONE_MOVABLE)
4243 continue;
4244
4245 if (arch_zone_highest_possible_pfn[zone_index] >
4246 arch_zone_lowest_possible_pfn[zone_index])
4247 break;
4248 }
4249
4250 VM_BUG_ON(zone_index == -1);
4251 movable_zone = zone_index;
4252}
4253
4254/*
4255 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4256 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4257 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4258 * in each node depending on the size of each node and how evenly kernelcore
4259 * is distributed. This helper function adjusts the zone ranges
4260 * provided by the architecture for a given node by using the end of the
4261 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4262 * zones within a node are in order of monotonic increases memory addresses
4263 */
b69a7288 4264static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4265 unsigned long zone_type,
4266 unsigned long node_start_pfn,
4267 unsigned long node_end_pfn,
4268 unsigned long *zone_start_pfn,
4269 unsigned long *zone_end_pfn)
4270{
4271 /* Only adjust if ZONE_MOVABLE is on this node */
4272 if (zone_movable_pfn[nid]) {
4273 /* Size ZONE_MOVABLE */
4274 if (zone_type == ZONE_MOVABLE) {
4275 *zone_start_pfn = zone_movable_pfn[nid];
4276 *zone_end_pfn = min(node_end_pfn,
4277 arch_zone_highest_possible_pfn[movable_zone]);
4278
4279 /* Adjust for ZONE_MOVABLE starting within this range */
4280 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4281 *zone_end_pfn > zone_movable_pfn[nid]) {
4282 *zone_end_pfn = zone_movable_pfn[nid];
4283
4284 /* Check if this whole range is within ZONE_MOVABLE */
4285 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4286 *zone_start_pfn = *zone_end_pfn;
4287 }
4288}
4289
c713216d
MG
4290/*
4291 * Return the number of pages a zone spans in a node, including holes
4292 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4293 */
6ea6e688 4294static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4295 unsigned long zone_type,
4296 unsigned long *ignored)
4297{
4298 unsigned long node_start_pfn, node_end_pfn;
4299 unsigned long zone_start_pfn, zone_end_pfn;
4300
4301 /* Get the start and end of the node and zone */
4302 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4303 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4304 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4305 adjust_zone_range_for_zone_movable(nid, zone_type,
4306 node_start_pfn, node_end_pfn,
4307 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4308
4309 /* Check that this node has pages within the zone's required range */
4310 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4311 return 0;
4312
4313 /* Move the zone boundaries inside the node if necessary */
4314 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4315 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4316
4317 /* Return the spanned pages */
4318 return zone_end_pfn - zone_start_pfn;
4319}
4320
4321/*
4322 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4323 * then all holes in the requested range will be accounted for.
c713216d 4324 */
32996250 4325unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4326 unsigned long range_start_pfn,
4327 unsigned long range_end_pfn)
4328{
96e907d1
TH
4329 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4330 unsigned long start_pfn, end_pfn;
4331 int i;
c713216d 4332
96e907d1
TH
4333 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4334 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4335 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4336 nr_absent -= end_pfn - start_pfn;
c713216d 4337 }
96e907d1 4338 return nr_absent;
c713216d
MG
4339}
4340
4341/**
4342 * absent_pages_in_range - Return number of page frames in holes within a range
4343 * @start_pfn: The start PFN to start searching for holes
4344 * @end_pfn: The end PFN to stop searching for holes
4345 *
88ca3b94 4346 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4347 */
4348unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4349 unsigned long end_pfn)
4350{
4351 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4352}
4353
4354/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4355static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4356 unsigned long zone_type,
4357 unsigned long *ignored)
4358{
96e907d1
TH
4359 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4360 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4361 unsigned long node_start_pfn, node_end_pfn;
4362 unsigned long zone_start_pfn, zone_end_pfn;
4363
4364 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4365 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4366 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4367
2a1e274a
MG
4368 adjust_zone_range_for_zone_movable(nid, zone_type,
4369 node_start_pfn, node_end_pfn,
4370 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4371 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4372}
0e0b864e 4373
0ee332c1 4374#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4375static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4376 unsigned long zone_type,
4377 unsigned long *zones_size)
4378{
4379 return zones_size[zone_type];
4380}
4381
6ea6e688 4382static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4383 unsigned long zone_type,
4384 unsigned long *zholes_size)
4385{
4386 if (!zholes_size)
4387 return 0;
4388
4389 return zholes_size[zone_type];
4390}
0e0b864e 4391
0ee332c1 4392#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4393
a3142c8e 4394static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4395 unsigned long *zones_size, unsigned long *zholes_size)
4396{
4397 unsigned long realtotalpages, totalpages = 0;
4398 enum zone_type i;
4399
4400 for (i = 0; i < MAX_NR_ZONES; i++)
4401 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4402 zones_size);
4403 pgdat->node_spanned_pages = totalpages;
4404
4405 realtotalpages = totalpages;
4406 for (i = 0; i < MAX_NR_ZONES; i++)
4407 realtotalpages -=
4408 zone_absent_pages_in_node(pgdat->node_id, i,
4409 zholes_size);
4410 pgdat->node_present_pages = realtotalpages;
4411 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4412 realtotalpages);
4413}
4414
835c134e
MG
4415#ifndef CONFIG_SPARSEMEM
4416/*
4417 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4418 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4419 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4420 * round what is now in bits to nearest long in bits, then return it in
4421 * bytes.
4422 */
4423static unsigned long __init usemap_size(unsigned long zonesize)
4424{
4425 unsigned long usemapsize;
4426
d9c23400
MG
4427 usemapsize = roundup(zonesize, pageblock_nr_pages);
4428 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4429 usemapsize *= NR_PAGEBLOCK_BITS;
4430 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4431
4432 return usemapsize / 8;
4433}
4434
4435static void __init setup_usemap(struct pglist_data *pgdat,
4436 struct zone *zone, unsigned long zonesize)
4437{
4438 unsigned long usemapsize = usemap_size(zonesize);
4439 zone->pageblock_flags = NULL;
58a01a45 4440 if (usemapsize)
8f389a99
YL
4441 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4442 usemapsize);
835c134e
MG
4443}
4444#else
fa9f90be 4445static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4446 struct zone *zone, unsigned long zonesize) {}
4447#endif /* CONFIG_SPARSEMEM */
4448
d9c23400 4449#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4450
d9c23400 4451/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4452void __init set_pageblock_order(void)
d9c23400 4453{
955c1cd7
AM
4454 unsigned int order;
4455
d9c23400
MG
4456 /* Check that pageblock_nr_pages has not already been setup */
4457 if (pageblock_order)
4458 return;
4459
955c1cd7
AM
4460 if (HPAGE_SHIFT > PAGE_SHIFT)
4461 order = HUGETLB_PAGE_ORDER;
4462 else
4463 order = MAX_ORDER - 1;
4464
d9c23400
MG
4465 /*
4466 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4467 * This value may be variable depending on boot parameters on IA64 and
4468 * powerpc.
d9c23400
MG
4469 */
4470 pageblock_order = order;
4471}
4472#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4473
ba72cb8c
MG
4474/*
4475 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4476 * is unused as pageblock_order is set at compile-time. See
4477 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4478 * the kernel config
ba72cb8c 4479 */
ca57df79 4480void __init set_pageblock_order(void)
ba72cb8c 4481{
ba72cb8c 4482}
d9c23400
MG
4483
4484#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4485
01cefaef
JL
4486static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4487 unsigned long present_pages)
4488{
4489 unsigned long pages = spanned_pages;
4490
4491 /*
4492 * Provide a more accurate estimation if there are holes within
4493 * the zone and SPARSEMEM is in use. If there are holes within the
4494 * zone, each populated memory region may cost us one or two extra
4495 * memmap pages due to alignment because memmap pages for each
4496 * populated regions may not naturally algined on page boundary.
4497 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4498 */
4499 if (spanned_pages > present_pages + (present_pages >> 4) &&
4500 IS_ENABLED(CONFIG_SPARSEMEM))
4501 pages = present_pages;
4502
4503 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4504}
4505
1da177e4
LT
4506/*
4507 * Set up the zone data structures:
4508 * - mark all pages reserved
4509 * - mark all memory queues empty
4510 * - clear the memory bitmaps
6527af5d
MK
4511 *
4512 * NOTE: pgdat should get zeroed by caller.
1da177e4 4513 */
b5a0e011 4514static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4515 unsigned long *zones_size, unsigned long *zholes_size)
4516{
2f1b6248 4517 enum zone_type j;
ed8ece2e 4518 int nid = pgdat->node_id;
1da177e4 4519 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4520 int ret;
1da177e4 4521
208d54e5 4522 pgdat_resize_init(pgdat);
8177a420
AA
4523#ifdef CONFIG_NUMA_BALANCING
4524 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4525 pgdat->numabalancing_migrate_nr_pages = 0;
4526 pgdat->numabalancing_migrate_next_window = jiffies;
4527#endif
1da177e4 4528 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4529 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4530 pgdat_page_cgroup_init(pgdat);
5f63b720 4531
1da177e4
LT
4532 for (j = 0; j < MAX_NR_ZONES; j++) {
4533 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4534 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4535
c713216d 4536 size = zone_spanned_pages_in_node(nid, j, zones_size);
9feedc9d 4537 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
c713216d 4538 zholes_size);
1da177e4 4539
0e0b864e 4540 /*
9feedc9d 4541 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4542 * is used by this zone for memmap. This affects the watermark
4543 * and per-cpu initialisations
4544 */
01cefaef 4545 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4546 if (freesize >= memmap_pages) {
4547 freesize -= memmap_pages;
5594c8c8
YL
4548 if (memmap_pages)
4549 printk(KERN_DEBUG
4550 " %s zone: %lu pages used for memmap\n",
4551 zone_names[j], memmap_pages);
0e0b864e
MG
4552 } else
4553 printk(KERN_WARNING
9feedc9d
JL
4554 " %s zone: %lu pages exceeds freesize %lu\n",
4555 zone_names[j], memmap_pages, freesize);
0e0b864e 4556
6267276f 4557 /* Account for reserved pages */
9feedc9d
JL
4558 if (j == 0 && freesize > dma_reserve) {
4559 freesize -= dma_reserve;
d903ef9f 4560 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4561 zone_names[0], dma_reserve);
0e0b864e
MG
4562 }
4563
98d2b0eb 4564 if (!is_highmem_idx(j))
9feedc9d 4565 nr_kernel_pages += freesize;
01cefaef
JL
4566 /* Charge for highmem memmap if there are enough kernel pages */
4567 else if (nr_kernel_pages > memmap_pages * 2)
4568 nr_kernel_pages -= memmap_pages;
9feedc9d 4569 nr_all_pages += freesize;
1da177e4
LT
4570
4571 zone->spanned_pages = size;
9feedc9d
JL
4572 zone->present_pages = freesize;
4573 /*
4574 * Set an approximate value for lowmem here, it will be adjusted
4575 * when the bootmem allocator frees pages into the buddy system.
4576 * And all highmem pages will be managed by the buddy system.
4577 */
4578 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4579#ifdef CONFIG_NUMA
d5f541ed 4580 zone->node = nid;
9feedc9d 4581 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4582 / 100;
9feedc9d 4583 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4584#endif
1da177e4
LT
4585 zone->name = zone_names[j];
4586 spin_lock_init(&zone->lock);
4587 spin_lock_init(&zone->lru_lock);
bdc8cb98 4588 zone_seqlock_init(zone);
1da177e4 4589 zone->zone_pgdat = pgdat;
1da177e4 4590
ed8ece2e 4591 zone_pcp_init(zone);
bea8c150 4592 lruvec_init(&zone->lruvec);
1da177e4
LT
4593 if (!size)
4594 continue;
4595
955c1cd7 4596 set_pageblock_order();
835c134e 4597 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4598 ret = init_currently_empty_zone(zone, zone_start_pfn,
4599 size, MEMMAP_EARLY);
718127cc 4600 BUG_ON(ret);
76cdd58e 4601 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4602 zone_start_pfn += size;
1da177e4
LT
4603 }
4604}
4605
577a32f6 4606static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4607{
1da177e4
LT
4608 /* Skip empty nodes */
4609 if (!pgdat->node_spanned_pages)
4610 return;
4611
d41dee36 4612#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4613 /* ia64 gets its own node_mem_map, before this, without bootmem */
4614 if (!pgdat->node_mem_map) {
e984bb43 4615 unsigned long size, start, end;
d41dee36
AW
4616 struct page *map;
4617
e984bb43
BP
4618 /*
4619 * The zone's endpoints aren't required to be MAX_ORDER
4620 * aligned but the node_mem_map endpoints must be in order
4621 * for the buddy allocator to function correctly.
4622 */
4623 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4624 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4625 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4626 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4627 map = alloc_remap(pgdat->node_id, size);
4628 if (!map)
8f389a99 4629 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4630 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4631 }
12d810c1 4632#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4633 /*
4634 * With no DISCONTIG, the global mem_map is just set as node 0's
4635 */
c713216d 4636 if (pgdat == NODE_DATA(0)) {
1da177e4 4637 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4638#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4639 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4640 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4641#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4642 }
1da177e4 4643#endif
d41dee36 4644#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4645}
4646
9109fb7b
JW
4647void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4648 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4649{
9109fb7b
JW
4650 pg_data_t *pgdat = NODE_DATA(nid);
4651
88fdf75d 4652 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4653 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4654
1da177e4
LT
4655 pgdat->node_id = nid;
4656 pgdat->node_start_pfn = node_start_pfn;
957f822a 4657 init_zone_allows_reclaim(nid);
c713216d 4658 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4659
4660 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4661#ifdef CONFIG_FLAT_NODE_MEM_MAP
4662 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4663 nid, (unsigned long)pgdat,
4664 (unsigned long)pgdat->node_mem_map);
4665#endif
1da177e4
LT
4666
4667 free_area_init_core(pgdat, zones_size, zholes_size);
4668}
4669
0ee332c1 4670#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4671
4672#if MAX_NUMNODES > 1
4673/*
4674 * Figure out the number of possible node ids.
4675 */
4676static void __init setup_nr_node_ids(void)
4677{
4678 unsigned int node;
4679 unsigned int highest = 0;
4680
4681 for_each_node_mask(node, node_possible_map)
4682 highest = node;
4683 nr_node_ids = highest + 1;
4684}
4685#else
4686static inline void setup_nr_node_ids(void)
4687{
4688}
4689#endif
4690
1e01979c
TH
4691/**
4692 * node_map_pfn_alignment - determine the maximum internode alignment
4693 *
4694 * This function should be called after node map is populated and sorted.
4695 * It calculates the maximum power of two alignment which can distinguish
4696 * all the nodes.
4697 *
4698 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4699 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4700 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4701 * shifted, 1GiB is enough and this function will indicate so.
4702 *
4703 * This is used to test whether pfn -> nid mapping of the chosen memory
4704 * model has fine enough granularity to avoid incorrect mapping for the
4705 * populated node map.
4706 *
4707 * Returns the determined alignment in pfn's. 0 if there is no alignment
4708 * requirement (single node).
4709 */
4710unsigned long __init node_map_pfn_alignment(void)
4711{
4712 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4713 unsigned long start, end, mask;
1e01979c 4714 int last_nid = -1;
c13291a5 4715 int i, nid;
1e01979c 4716
c13291a5 4717 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4718 if (!start || last_nid < 0 || last_nid == nid) {
4719 last_nid = nid;
4720 last_end = end;
4721 continue;
4722 }
4723
4724 /*
4725 * Start with a mask granular enough to pin-point to the
4726 * start pfn and tick off bits one-by-one until it becomes
4727 * too coarse to separate the current node from the last.
4728 */
4729 mask = ~((1 << __ffs(start)) - 1);
4730 while (mask && last_end <= (start & (mask << 1)))
4731 mask <<= 1;
4732
4733 /* accumulate all internode masks */
4734 accl_mask |= mask;
4735 }
4736
4737 /* convert mask to number of pages */
4738 return ~accl_mask + 1;
4739}
4740
a6af2bc3 4741/* Find the lowest pfn for a node */
b69a7288 4742static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4743{
a6af2bc3 4744 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4745 unsigned long start_pfn;
4746 int i;
1abbfb41 4747
c13291a5
TH
4748 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4749 min_pfn = min(min_pfn, start_pfn);
c713216d 4750
a6af2bc3
MG
4751 if (min_pfn == ULONG_MAX) {
4752 printk(KERN_WARNING
2bc0d261 4753 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4754 return 0;
4755 }
4756
4757 return min_pfn;
c713216d
MG
4758}
4759
4760/**
4761 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4762 *
4763 * It returns the minimum PFN based on information provided via
88ca3b94 4764 * add_active_range().
c713216d
MG
4765 */
4766unsigned long __init find_min_pfn_with_active_regions(void)
4767{
4768 return find_min_pfn_for_node(MAX_NUMNODES);
4769}
4770
37b07e41
LS
4771/*
4772 * early_calculate_totalpages()
4773 * Sum pages in active regions for movable zone.
4b0ef1fe 4774 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4775 */
484f51f8 4776static unsigned long __init early_calculate_totalpages(void)
7e63efef 4777{
7e63efef 4778 unsigned long totalpages = 0;
c13291a5
TH
4779 unsigned long start_pfn, end_pfn;
4780 int i, nid;
4781
4782 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4783 unsigned long pages = end_pfn - start_pfn;
7e63efef 4784
37b07e41
LS
4785 totalpages += pages;
4786 if (pages)
4b0ef1fe 4787 node_set_state(nid, N_MEMORY);
37b07e41
LS
4788 }
4789 return totalpages;
7e63efef
MG
4790}
4791
2a1e274a
MG
4792/*
4793 * Find the PFN the Movable zone begins in each node. Kernel memory
4794 * is spread evenly between nodes as long as the nodes have enough
4795 * memory. When they don't, some nodes will have more kernelcore than
4796 * others
4797 */
b224ef85 4798static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4799{
4800 int i, nid;
4801 unsigned long usable_startpfn;
4802 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4803 /* save the state before borrow the nodemask */
4b0ef1fe 4804 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4805 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4806 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4807
7e63efef
MG
4808 /*
4809 * If movablecore was specified, calculate what size of
4810 * kernelcore that corresponds so that memory usable for
4811 * any allocation type is evenly spread. If both kernelcore
4812 * and movablecore are specified, then the value of kernelcore
4813 * will be used for required_kernelcore if it's greater than
4814 * what movablecore would have allowed.
4815 */
4816 if (required_movablecore) {
7e63efef
MG
4817 unsigned long corepages;
4818
4819 /*
4820 * Round-up so that ZONE_MOVABLE is at least as large as what
4821 * was requested by the user
4822 */
4823 required_movablecore =
4824 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4825 corepages = totalpages - required_movablecore;
4826
4827 required_kernelcore = max(required_kernelcore, corepages);
4828 }
4829
2a1e274a
MG
4830 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4831 if (!required_kernelcore)
66918dcd 4832 goto out;
2a1e274a
MG
4833
4834 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4835 find_usable_zone_for_movable();
4836 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4837
4838restart:
4839 /* Spread kernelcore memory as evenly as possible throughout nodes */
4840 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4841 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4842 unsigned long start_pfn, end_pfn;
4843
2a1e274a
MG
4844 /*
4845 * Recalculate kernelcore_node if the division per node
4846 * now exceeds what is necessary to satisfy the requested
4847 * amount of memory for the kernel
4848 */
4849 if (required_kernelcore < kernelcore_node)
4850 kernelcore_node = required_kernelcore / usable_nodes;
4851
4852 /*
4853 * As the map is walked, we track how much memory is usable
4854 * by the kernel using kernelcore_remaining. When it is
4855 * 0, the rest of the node is usable by ZONE_MOVABLE
4856 */
4857 kernelcore_remaining = kernelcore_node;
4858
4859 /* Go through each range of PFNs within this node */
c13291a5 4860 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4861 unsigned long size_pages;
4862
c13291a5 4863 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4864 if (start_pfn >= end_pfn)
4865 continue;
4866
4867 /* Account for what is only usable for kernelcore */
4868 if (start_pfn < usable_startpfn) {
4869 unsigned long kernel_pages;
4870 kernel_pages = min(end_pfn, usable_startpfn)
4871 - start_pfn;
4872
4873 kernelcore_remaining -= min(kernel_pages,
4874 kernelcore_remaining);
4875 required_kernelcore -= min(kernel_pages,
4876 required_kernelcore);
4877
4878 /* Continue if range is now fully accounted */
4879 if (end_pfn <= usable_startpfn) {
4880
4881 /*
4882 * Push zone_movable_pfn to the end so
4883 * that if we have to rebalance
4884 * kernelcore across nodes, we will
4885 * not double account here
4886 */
4887 zone_movable_pfn[nid] = end_pfn;
4888 continue;
4889 }
4890 start_pfn = usable_startpfn;
4891 }
4892
4893 /*
4894 * The usable PFN range for ZONE_MOVABLE is from
4895 * start_pfn->end_pfn. Calculate size_pages as the
4896 * number of pages used as kernelcore
4897 */
4898 size_pages = end_pfn - start_pfn;
4899 if (size_pages > kernelcore_remaining)
4900 size_pages = kernelcore_remaining;
4901 zone_movable_pfn[nid] = start_pfn + size_pages;
4902
4903 /*
4904 * Some kernelcore has been met, update counts and
4905 * break if the kernelcore for this node has been
4906 * satisified
4907 */
4908 required_kernelcore -= min(required_kernelcore,
4909 size_pages);
4910 kernelcore_remaining -= size_pages;
4911 if (!kernelcore_remaining)
4912 break;
4913 }
4914 }
4915
4916 /*
4917 * If there is still required_kernelcore, we do another pass with one
4918 * less node in the count. This will push zone_movable_pfn[nid] further
4919 * along on the nodes that still have memory until kernelcore is
4920 * satisified
4921 */
4922 usable_nodes--;
4923 if (usable_nodes && required_kernelcore > usable_nodes)
4924 goto restart;
4925
4926 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4927 for (nid = 0; nid < MAX_NUMNODES; nid++)
4928 zone_movable_pfn[nid] =
4929 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4930
4931out:
4932 /* restore the node_state */
4b0ef1fe 4933 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
4934}
4935
4b0ef1fe
LJ
4936/* Any regular or high memory on that node ? */
4937static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 4938{
37b07e41
LS
4939 enum zone_type zone_type;
4940
4b0ef1fe
LJ
4941 if (N_MEMORY == N_NORMAL_MEMORY)
4942 return;
4943
4944 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 4945 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4946 if (zone->present_pages) {
4b0ef1fe
LJ
4947 node_set_state(nid, N_HIGH_MEMORY);
4948 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4949 zone_type <= ZONE_NORMAL)
4950 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
4951 break;
4952 }
37b07e41 4953 }
37b07e41
LS
4954}
4955
c713216d
MG
4956/**
4957 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4958 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4959 *
4960 * This will call free_area_init_node() for each active node in the system.
4961 * Using the page ranges provided by add_active_range(), the size of each
4962 * zone in each node and their holes is calculated. If the maximum PFN
4963 * between two adjacent zones match, it is assumed that the zone is empty.
4964 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4965 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4966 * starts where the previous one ended. For example, ZONE_DMA32 starts
4967 * at arch_max_dma_pfn.
4968 */
4969void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4970{
c13291a5
TH
4971 unsigned long start_pfn, end_pfn;
4972 int i, nid;
a6af2bc3 4973
c713216d
MG
4974 /* Record where the zone boundaries are */
4975 memset(arch_zone_lowest_possible_pfn, 0,
4976 sizeof(arch_zone_lowest_possible_pfn));
4977 memset(arch_zone_highest_possible_pfn, 0,
4978 sizeof(arch_zone_highest_possible_pfn));
4979 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4980 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4981 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4982 if (i == ZONE_MOVABLE)
4983 continue;
c713216d
MG
4984 arch_zone_lowest_possible_pfn[i] =
4985 arch_zone_highest_possible_pfn[i-1];
4986 arch_zone_highest_possible_pfn[i] =
4987 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4988 }
2a1e274a
MG
4989 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4990 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4991
4992 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4993 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4994 find_zone_movable_pfns_for_nodes();
c713216d 4995
c713216d 4996 /* Print out the zone ranges */
a62e2f4f 4997 printk("Zone ranges:\n");
2a1e274a
MG
4998 for (i = 0; i < MAX_NR_ZONES; i++) {
4999 if (i == ZONE_MOVABLE)
5000 continue;
155cbfc8 5001 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5002 if (arch_zone_lowest_possible_pfn[i] ==
5003 arch_zone_highest_possible_pfn[i])
155cbfc8 5004 printk(KERN_CONT "empty\n");
72f0ba02 5005 else
a62e2f4f
BH
5006 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5007 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5008 (arch_zone_highest_possible_pfn[i]
5009 << PAGE_SHIFT) - 1);
2a1e274a
MG
5010 }
5011
5012 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5013 printk("Movable zone start for each node\n");
2a1e274a
MG
5014 for (i = 0; i < MAX_NUMNODES; i++) {
5015 if (zone_movable_pfn[i])
a62e2f4f
BH
5016 printk(" Node %d: %#010lx\n", i,
5017 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5018 }
c713216d 5019
f2d52fe5 5020 /* Print out the early node map */
a62e2f4f 5021 printk("Early memory node ranges\n");
c13291a5 5022 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5023 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5024 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5025
5026 /* Initialise every node */
708614e6 5027 mminit_verify_pageflags_layout();
8ef82866 5028 setup_nr_node_ids();
c713216d
MG
5029 for_each_online_node(nid) {
5030 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5031 free_area_init_node(nid, NULL,
c713216d 5032 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5033
5034 /* Any memory on that node */
5035 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5036 node_set_state(nid, N_MEMORY);
5037 check_for_memory(pgdat, nid);
c713216d
MG
5038 }
5039}
2a1e274a 5040
7e63efef 5041static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5042{
5043 unsigned long long coremem;
5044 if (!p)
5045 return -EINVAL;
5046
5047 coremem = memparse(p, &p);
7e63efef 5048 *core = coremem >> PAGE_SHIFT;
2a1e274a 5049
7e63efef 5050 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5051 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5052
5053 return 0;
5054}
ed7ed365 5055
7e63efef
MG
5056/*
5057 * kernelcore=size sets the amount of memory for use for allocations that
5058 * cannot be reclaimed or migrated.
5059 */
5060static int __init cmdline_parse_kernelcore(char *p)
5061{
5062 return cmdline_parse_core(p, &required_kernelcore);
5063}
5064
5065/*
5066 * movablecore=size sets the amount of memory for use for allocations that
5067 * can be reclaimed or migrated.
5068 */
5069static int __init cmdline_parse_movablecore(char *p)
5070{
5071 return cmdline_parse_core(p, &required_movablecore);
5072}
5073
ed7ed365 5074early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5075early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5076
0ee332c1 5077#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5078
0e0b864e 5079/**
88ca3b94
RD
5080 * set_dma_reserve - set the specified number of pages reserved in the first zone
5081 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5082 *
5083 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5084 * In the DMA zone, a significant percentage may be consumed by kernel image
5085 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5086 * function may optionally be used to account for unfreeable pages in the
5087 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5088 * smaller per-cpu batchsize.
0e0b864e
MG
5089 */
5090void __init set_dma_reserve(unsigned long new_dma_reserve)
5091{
5092 dma_reserve = new_dma_reserve;
5093}
5094
1da177e4
LT
5095void __init free_area_init(unsigned long *zones_size)
5096{
9109fb7b 5097 free_area_init_node(0, zones_size,
1da177e4
LT
5098 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5099}
1da177e4 5100
1da177e4
LT
5101static int page_alloc_cpu_notify(struct notifier_block *self,
5102 unsigned long action, void *hcpu)
5103{
5104 int cpu = (unsigned long)hcpu;
1da177e4 5105
8bb78442 5106 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5107 lru_add_drain_cpu(cpu);
9f8f2172
CL
5108 drain_pages(cpu);
5109
5110 /*
5111 * Spill the event counters of the dead processor
5112 * into the current processors event counters.
5113 * This artificially elevates the count of the current
5114 * processor.
5115 */
f8891e5e 5116 vm_events_fold_cpu(cpu);
9f8f2172
CL
5117
5118 /*
5119 * Zero the differential counters of the dead processor
5120 * so that the vm statistics are consistent.
5121 *
5122 * This is only okay since the processor is dead and cannot
5123 * race with what we are doing.
5124 */
2244b95a 5125 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5126 }
5127 return NOTIFY_OK;
5128}
1da177e4
LT
5129
5130void __init page_alloc_init(void)
5131{
5132 hotcpu_notifier(page_alloc_cpu_notify, 0);
5133}
5134
cb45b0e9
HA
5135/*
5136 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5137 * or min_free_kbytes changes.
5138 */
5139static void calculate_totalreserve_pages(void)
5140{
5141 struct pglist_data *pgdat;
5142 unsigned long reserve_pages = 0;
2f6726e5 5143 enum zone_type i, j;
cb45b0e9
HA
5144
5145 for_each_online_pgdat(pgdat) {
5146 for (i = 0; i < MAX_NR_ZONES; i++) {
5147 struct zone *zone = pgdat->node_zones + i;
5148 unsigned long max = 0;
5149
5150 /* Find valid and maximum lowmem_reserve in the zone */
5151 for (j = i; j < MAX_NR_ZONES; j++) {
5152 if (zone->lowmem_reserve[j] > max)
5153 max = zone->lowmem_reserve[j];
5154 }
5155
41858966
MG
5156 /* we treat the high watermark as reserved pages. */
5157 max += high_wmark_pages(zone);
cb45b0e9
HA
5158
5159 if (max > zone->present_pages)
5160 max = zone->present_pages;
5161 reserve_pages += max;
ab8fabd4
JW
5162 /*
5163 * Lowmem reserves are not available to
5164 * GFP_HIGHUSER page cache allocations and
5165 * kswapd tries to balance zones to their high
5166 * watermark. As a result, neither should be
5167 * regarded as dirtyable memory, to prevent a
5168 * situation where reclaim has to clean pages
5169 * in order to balance the zones.
5170 */
5171 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5172 }
5173 }
ab8fabd4 5174 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5175 totalreserve_pages = reserve_pages;
5176}
5177
1da177e4
LT
5178/*
5179 * setup_per_zone_lowmem_reserve - called whenever
5180 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5181 * has a correct pages reserved value, so an adequate number of
5182 * pages are left in the zone after a successful __alloc_pages().
5183 */
5184static void setup_per_zone_lowmem_reserve(void)
5185{
5186 struct pglist_data *pgdat;
2f6726e5 5187 enum zone_type j, idx;
1da177e4 5188
ec936fc5 5189 for_each_online_pgdat(pgdat) {
1da177e4
LT
5190 for (j = 0; j < MAX_NR_ZONES; j++) {
5191 struct zone *zone = pgdat->node_zones + j;
5192 unsigned long present_pages = zone->present_pages;
5193
5194 zone->lowmem_reserve[j] = 0;
5195
2f6726e5
CL
5196 idx = j;
5197 while (idx) {
1da177e4
LT
5198 struct zone *lower_zone;
5199
2f6726e5
CL
5200 idx--;
5201
1da177e4
LT
5202 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5203 sysctl_lowmem_reserve_ratio[idx] = 1;
5204
5205 lower_zone = pgdat->node_zones + idx;
5206 lower_zone->lowmem_reserve[j] = present_pages /
5207 sysctl_lowmem_reserve_ratio[idx];
5208 present_pages += lower_zone->present_pages;
5209 }
5210 }
5211 }
cb45b0e9
HA
5212
5213 /* update totalreserve_pages */
5214 calculate_totalreserve_pages();
1da177e4
LT
5215}
5216
cfd3da1e 5217static void __setup_per_zone_wmarks(void)
1da177e4
LT
5218{
5219 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5220 unsigned long lowmem_pages = 0;
5221 struct zone *zone;
5222 unsigned long flags;
5223
5224 /* Calculate total number of !ZONE_HIGHMEM pages */
5225 for_each_zone(zone) {
5226 if (!is_highmem(zone))
5227 lowmem_pages += zone->present_pages;
5228 }
5229
5230 for_each_zone(zone) {
ac924c60
AM
5231 u64 tmp;
5232
1125b4e3 5233 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5234 tmp = (u64)pages_min * zone->present_pages;
5235 do_div(tmp, lowmem_pages);
1da177e4
LT
5236 if (is_highmem(zone)) {
5237 /*
669ed175
NP
5238 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5239 * need highmem pages, so cap pages_min to a small
5240 * value here.
5241 *
41858966 5242 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5243 * deltas controls asynch page reclaim, and so should
5244 * not be capped for highmem.
1da177e4
LT
5245 */
5246 int min_pages;
5247
5248 min_pages = zone->present_pages / 1024;
5249 if (min_pages < SWAP_CLUSTER_MAX)
5250 min_pages = SWAP_CLUSTER_MAX;
5251 if (min_pages > 128)
5252 min_pages = 128;
41858966 5253 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5254 } else {
669ed175
NP
5255 /*
5256 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5257 * proportionate to the zone's size.
5258 */
41858966 5259 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5260 }
5261
41858966
MG
5262 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5263 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5264
56fd56b8 5265 setup_zone_migrate_reserve(zone);
1125b4e3 5266 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5267 }
cb45b0e9
HA
5268
5269 /* update totalreserve_pages */
5270 calculate_totalreserve_pages();
1da177e4
LT
5271}
5272
cfd3da1e
MG
5273/**
5274 * setup_per_zone_wmarks - called when min_free_kbytes changes
5275 * or when memory is hot-{added|removed}
5276 *
5277 * Ensures that the watermark[min,low,high] values for each zone are set
5278 * correctly with respect to min_free_kbytes.
5279 */
5280void setup_per_zone_wmarks(void)
5281{
5282 mutex_lock(&zonelists_mutex);
5283 __setup_per_zone_wmarks();
5284 mutex_unlock(&zonelists_mutex);
5285}
5286
55a4462a 5287/*
556adecb
RR
5288 * The inactive anon list should be small enough that the VM never has to
5289 * do too much work, but large enough that each inactive page has a chance
5290 * to be referenced again before it is swapped out.
5291 *
5292 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5293 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5294 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5295 * the anonymous pages are kept on the inactive list.
5296 *
5297 * total target max
5298 * memory ratio inactive anon
5299 * -------------------------------------
5300 * 10MB 1 5MB
5301 * 100MB 1 50MB
5302 * 1GB 3 250MB
5303 * 10GB 10 0.9GB
5304 * 100GB 31 3GB
5305 * 1TB 101 10GB
5306 * 10TB 320 32GB
5307 */
1b79acc9 5308static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5309{
96cb4df5 5310 unsigned int gb, ratio;
556adecb 5311
96cb4df5
MK
5312 /* Zone size in gigabytes */
5313 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5314 if (gb)
556adecb 5315 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5316 else
5317 ratio = 1;
556adecb 5318
96cb4df5
MK
5319 zone->inactive_ratio = ratio;
5320}
556adecb 5321
839a4fcc 5322static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5323{
5324 struct zone *zone;
5325
5326 for_each_zone(zone)
5327 calculate_zone_inactive_ratio(zone);
556adecb
RR
5328}
5329
1da177e4
LT
5330/*
5331 * Initialise min_free_kbytes.
5332 *
5333 * For small machines we want it small (128k min). For large machines
5334 * we want it large (64MB max). But it is not linear, because network
5335 * bandwidth does not increase linearly with machine size. We use
5336 *
5337 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5338 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5339 *
5340 * which yields
5341 *
5342 * 16MB: 512k
5343 * 32MB: 724k
5344 * 64MB: 1024k
5345 * 128MB: 1448k
5346 * 256MB: 2048k
5347 * 512MB: 2896k
5348 * 1024MB: 4096k
5349 * 2048MB: 5792k
5350 * 4096MB: 8192k
5351 * 8192MB: 11584k
5352 * 16384MB: 16384k
5353 */
1b79acc9 5354int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5355{
5356 unsigned long lowmem_kbytes;
5357
5358 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5359
5360 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5361 if (min_free_kbytes < 128)
5362 min_free_kbytes = 128;
5363 if (min_free_kbytes > 65536)
5364 min_free_kbytes = 65536;
bc75d33f 5365 setup_per_zone_wmarks();
a6cccdc3 5366 refresh_zone_stat_thresholds();
1da177e4 5367 setup_per_zone_lowmem_reserve();
556adecb 5368 setup_per_zone_inactive_ratio();
1da177e4
LT
5369 return 0;
5370}
bc75d33f 5371module_init(init_per_zone_wmark_min)
1da177e4
LT
5372
5373/*
5374 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5375 * that we can call two helper functions whenever min_free_kbytes
5376 * changes.
5377 */
5378int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5379 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5380{
8d65af78 5381 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5382 if (write)
bc75d33f 5383 setup_per_zone_wmarks();
1da177e4
LT
5384 return 0;
5385}
5386
9614634f
CL
5387#ifdef CONFIG_NUMA
5388int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5389 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5390{
5391 struct zone *zone;
5392 int rc;
5393
8d65af78 5394 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5395 if (rc)
5396 return rc;
5397
5398 for_each_zone(zone)
8417bba4 5399 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5400 sysctl_min_unmapped_ratio) / 100;
5401 return 0;
5402}
0ff38490
CL
5403
5404int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5405 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5406{
5407 struct zone *zone;
5408 int rc;
5409
8d65af78 5410 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5411 if (rc)
5412 return rc;
5413
5414 for_each_zone(zone)
5415 zone->min_slab_pages = (zone->present_pages *
5416 sysctl_min_slab_ratio) / 100;
5417 return 0;
5418}
9614634f
CL
5419#endif
5420
1da177e4
LT
5421/*
5422 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5423 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5424 * whenever sysctl_lowmem_reserve_ratio changes.
5425 *
5426 * The reserve ratio obviously has absolutely no relation with the
41858966 5427 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5428 * if in function of the boot time zone sizes.
5429 */
5430int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5431 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5432{
8d65af78 5433 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5434 setup_per_zone_lowmem_reserve();
5435 return 0;
5436}
5437
8ad4b1fb
RS
5438/*
5439 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5440 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5441 * can have before it gets flushed back to buddy allocator.
5442 */
5443
5444int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5445 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5446{
5447 struct zone *zone;
5448 unsigned int cpu;
5449 int ret;
5450
8d65af78 5451 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5452 if (!write || (ret < 0))
8ad4b1fb 5453 return ret;
364df0eb 5454 for_each_populated_zone(zone) {
99dcc3e5 5455 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5456 unsigned long high;
5457 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5458 setup_pagelist_highmark(
5459 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5460 }
5461 }
5462 return 0;
5463}
5464
f034b5d4 5465int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5466
5467#ifdef CONFIG_NUMA
5468static int __init set_hashdist(char *str)
5469{
5470 if (!str)
5471 return 0;
5472 hashdist = simple_strtoul(str, &str, 0);
5473 return 1;
5474}
5475__setup("hashdist=", set_hashdist);
5476#endif
5477
5478/*
5479 * allocate a large system hash table from bootmem
5480 * - it is assumed that the hash table must contain an exact power-of-2
5481 * quantity of entries
5482 * - limit is the number of hash buckets, not the total allocation size
5483 */
5484void *__init alloc_large_system_hash(const char *tablename,
5485 unsigned long bucketsize,
5486 unsigned long numentries,
5487 int scale,
5488 int flags,
5489 unsigned int *_hash_shift,
5490 unsigned int *_hash_mask,
31fe62b9
TB
5491 unsigned long low_limit,
5492 unsigned long high_limit)
1da177e4 5493{
31fe62b9 5494 unsigned long long max = high_limit;
1da177e4
LT
5495 unsigned long log2qty, size;
5496 void *table = NULL;
5497
5498 /* allow the kernel cmdline to have a say */
5499 if (!numentries) {
5500 /* round applicable memory size up to nearest megabyte */
04903664 5501 numentries = nr_kernel_pages;
1da177e4
LT
5502 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5503 numentries >>= 20 - PAGE_SHIFT;
5504 numentries <<= 20 - PAGE_SHIFT;
5505
5506 /* limit to 1 bucket per 2^scale bytes of low memory */
5507 if (scale > PAGE_SHIFT)
5508 numentries >>= (scale - PAGE_SHIFT);
5509 else
5510 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5511
5512 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5513 if (unlikely(flags & HASH_SMALL)) {
5514 /* Makes no sense without HASH_EARLY */
5515 WARN_ON(!(flags & HASH_EARLY));
5516 if (!(numentries >> *_hash_shift)) {
5517 numentries = 1UL << *_hash_shift;
5518 BUG_ON(!numentries);
5519 }
5520 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5521 numentries = PAGE_SIZE / bucketsize;
1da177e4 5522 }
6e692ed3 5523 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5524
5525 /* limit allocation size to 1/16 total memory by default */
5526 if (max == 0) {
5527 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5528 do_div(max, bucketsize);
5529 }
074b8517 5530 max = min(max, 0x80000000ULL);
1da177e4 5531
31fe62b9
TB
5532 if (numentries < low_limit)
5533 numentries = low_limit;
1da177e4
LT
5534 if (numentries > max)
5535 numentries = max;
5536
f0d1b0b3 5537 log2qty = ilog2(numentries);
1da177e4
LT
5538
5539 do {
5540 size = bucketsize << log2qty;
5541 if (flags & HASH_EARLY)
74768ed8 5542 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5543 else if (hashdist)
5544 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5545 else {
1037b83b
ED
5546 /*
5547 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5548 * some pages at the end of hash table which
5549 * alloc_pages_exact() automatically does
1037b83b 5550 */
264ef8a9 5551 if (get_order(size) < MAX_ORDER) {
a1dd268c 5552 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5553 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5554 }
1da177e4
LT
5555 }
5556 } while (!table && size > PAGE_SIZE && --log2qty);
5557
5558 if (!table)
5559 panic("Failed to allocate %s hash table\n", tablename);
5560
f241e660 5561 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5562 tablename,
f241e660 5563 (1UL << log2qty),
f0d1b0b3 5564 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5565 size);
5566
5567 if (_hash_shift)
5568 *_hash_shift = log2qty;
5569 if (_hash_mask)
5570 *_hash_mask = (1 << log2qty) - 1;
5571
5572 return table;
5573}
a117e66e 5574
835c134e
MG
5575/* Return a pointer to the bitmap storing bits affecting a block of pages */
5576static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5577 unsigned long pfn)
5578{
5579#ifdef CONFIG_SPARSEMEM
5580 return __pfn_to_section(pfn)->pageblock_flags;
5581#else
5582 return zone->pageblock_flags;
5583#endif /* CONFIG_SPARSEMEM */
5584}
5585
5586static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5587{
5588#ifdef CONFIG_SPARSEMEM
5589 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5590 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5591#else
c060f943 5592 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5593 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5594#endif /* CONFIG_SPARSEMEM */
5595}
5596
5597/**
d9c23400 5598 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5599 * @page: The page within the block of interest
5600 * @start_bitidx: The first bit of interest to retrieve
5601 * @end_bitidx: The last bit of interest
5602 * returns pageblock_bits flags
5603 */
5604unsigned long get_pageblock_flags_group(struct page *page,
5605 int start_bitidx, int end_bitidx)
5606{
5607 struct zone *zone;
5608 unsigned long *bitmap;
5609 unsigned long pfn, bitidx;
5610 unsigned long flags = 0;
5611 unsigned long value = 1;
5612
5613 zone = page_zone(page);
5614 pfn = page_to_pfn(page);
5615 bitmap = get_pageblock_bitmap(zone, pfn);
5616 bitidx = pfn_to_bitidx(zone, pfn);
5617
5618 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5619 if (test_bit(bitidx + start_bitidx, bitmap))
5620 flags |= value;
6220ec78 5621
835c134e
MG
5622 return flags;
5623}
5624
5625/**
d9c23400 5626 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5627 * @page: The page within the block of interest
5628 * @start_bitidx: The first bit of interest
5629 * @end_bitidx: The last bit of interest
5630 * @flags: The flags to set
5631 */
5632void set_pageblock_flags_group(struct page *page, unsigned long flags,
5633 int start_bitidx, int end_bitidx)
5634{
5635 struct zone *zone;
5636 unsigned long *bitmap;
5637 unsigned long pfn, bitidx;
5638 unsigned long value = 1;
5639
5640 zone = page_zone(page);
5641 pfn = page_to_pfn(page);
5642 bitmap = get_pageblock_bitmap(zone, pfn);
5643 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5644 VM_BUG_ON(pfn < zone->zone_start_pfn);
5645 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5646
5647 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5648 if (flags & value)
5649 __set_bit(bitidx + start_bitidx, bitmap);
5650 else
5651 __clear_bit(bitidx + start_bitidx, bitmap);
5652}
a5d76b54
KH
5653
5654/*
80934513
MK
5655 * This function checks whether pageblock includes unmovable pages or not.
5656 * If @count is not zero, it is okay to include less @count unmovable pages
5657 *
5658 * PageLRU check wihtout isolation or lru_lock could race so that
5659 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5660 * expect this function should be exact.
a5d76b54 5661 */
b023f468
WC
5662bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5663 bool skip_hwpoisoned_pages)
49ac8255
KH
5664{
5665 unsigned long pfn, iter, found;
47118af0
MN
5666 int mt;
5667
49ac8255
KH
5668 /*
5669 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5670 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5671 */
5672 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5673 return false;
47118af0
MN
5674 mt = get_pageblock_migratetype(page);
5675 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5676 return false;
49ac8255
KH
5677
5678 pfn = page_to_pfn(page);
5679 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5680 unsigned long check = pfn + iter;
5681
29723fcc 5682 if (!pfn_valid_within(check))
49ac8255 5683 continue;
29723fcc 5684
49ac8255 5685 page = pfn_to_page(check);
97d255c8
MK
5686 /*
5687 * We can't use page_count without pin a page
5688 * because another CPU can free compound page.
5689 * This check already skips compound tails of THP
5690 * because their page->_count is zero at all time.
5691 */
5692 if (!atomic_read(&page->_count)) {
49ac8255
KH
5693 if (PageBuddy(page))
5694 iter += (1 << page_order(page)) - 1;
5695 continue;
5696 }
97d255c8 5697
b023f468
WC
5698 /*
5699 * The HWPoisoned page may be not in buddy system, and
5700 * page_count() is not 0.
5701 */
5702 if (skip_hwpoisoned_pages && PageHWPoison(page))
5703 continue;
5704
49ac8255
KH
5705 if (!PageLRU(page))
5706 found++;
5707 /*
5708 * If there are RECLAIMABLE pages, we need to check it.
5709 * But now, memory offline itself doesn't call shrink_slab()
5710 * and it still to be fixed.
5711 */
5712 /*
5713 * If the page is not RAM, page_count()should be 0.
5714 * we don't need more check. This is an _used_ not-movable page.
5715 *
5716 * The problematic thing here is PG_reserved pages. PG_reserved
5717 * is set to both of a memory hole page and a _used_ kernel
5718 * page at boot.
5719 */
5720 if (found > count)
80934513 5721 return true;
49ac8255 5722 }
80934513 5723 return false;
49ac8255
KH
5724}
5725
5726bool is_pageblock_removable_nolock(struct page *page)
5727{
656a0706
MH
5728 struct zone *zone;
5729 unsigned long pfn;
687875fb
MH
5730
5731 /*
5732 * We have to be careful here because we are iterating over memory
5733 * sections which are not zone aware so we might end up outside of
5734 * the zone but still within the section.
656a0706
MH
5735 * We have to take care about the node as well. If the node is offline
5736 * its NODE_DATA will be NULL - see page_zone.
687875fb 5737 */
656a0706
MH
5738 if (!node_online(page_to_nid(page)))
5739 return false;
5740
5741 zone = page_zone(page);
5742 pfn = page_to_pfn(page);
5743 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5744 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5745 return false;
5746
b023f468 5747 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5748}
0c0e6195 5749
041d3a8c
MN
5750#ifdef CONFIG_CMA
5751
5752static unsigned long pfn_max_align_down(unsigned long pfn)
5753{
5754 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5755 pageblock_nr_pages) - 1);
5756}
5757
5758static unsigned long pfn_max_align_up(unsigned long pfn)
5759{
5760 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5761 pageblock_nr_pages));
5762}
5763
041d3a8c 5764/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5765static int __alloc_contig_migrate_range(struct compact_control *cc,
5766 unsigned long start, unsigned long end)
041d3a8c
MN
5767{
5768 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5769 unsigned long nr_reclaimed;
041d3a8c
MN
5770 unsigned long pfn = start;
5771 unsigned int tries = 0;
5772 int ret = 0;
5773
be49a6e1 5774 migrate_prep();
041d3a8c 5775
bb13ffeb 5776 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5777 if (fatal_signal_pending(current)) {
5778 ret = -EINTR;
5779 break;
5780 }
5781
bb13ffeb
MG
5782 if (list_empty(&cc->migratepages)) {
5783 cc->nr_migratepages = 0;
5784 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5785 pfn, end, true);
041d3a8c
MN
5786 if (!pfn) {
5787 ret = -EINTR;
5788 break;
5789 }
5790 tries = 0;
5791 } else if (++tries == 5) {
5792 ret = ret < 0 ? ret : -EBUSY;
5793 break;
5794 }
5795
beb51eaa
MK
5796 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5797 &cc->migratepages);
5798 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5799
bb13ffeb 5800 ret = migrate_pages(&cc->migratepages,
723a0644 5801 alloc_migrate_target,
7b2a2d4a
MG
5802 0, false, MIGRATE_SYNC,
5803 MR_CMA);
041d3a8c
MN
5804 }
5805
5733c7d1 5806 putback_movable_pages(&cc->migratepages);
041d3a8c
MN
5807 return ret > 0 ? 0 : ret;
5808}
5809
5810/**
5811 * alloc_contig_range() -- tries to allocate given range of pages
5812 * @start: start PFN to allocate
5813 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5814 * @migratetype: migratetype of the underlaying pageblocks (either
5815 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5816 * in range must have the same migratetype and it must
5817 * be either of the two.
041d3a8c
MN
5818 *
5819 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5820 * aligned, however it's the caller's responsibility to guarantee that
5821 * we are the only thread that changes migrate type of pageblocks the
5822 * pages fall in.
5823 *
5824 * The PFN range must belong to a single zone.
5825 *
5826 * Returns zero on success or negative error code. On success all
5827 * pages which PFN is in [start, end) are allocated for the caller and
5828 * need to be freed with free_contig_range().
5829 */
0815f3d8
MN
5830int alloc_contig_range(unsigned long start, unsigned long end,
5831 unsigned migratetype)
041d3a8c 5832{
041d3a8c
MN
5833 unsigned long outer_start, outer_end;
5834 int ret = 0, order;
5835
bb13ffeb
MG
5836 struct compact_control cc = {
5837 .nr_migratepages = 0,
5838 .order = -1,
5839 .zone = page_zone(pfn_to_page(start)),
5840 .sync = true,
5841 .ignore_skip_hint = true,
5842 };
5843 INIT_LIST_HEAD(&cc.migratepages);
5844
041d3a8c
MN
5845 /*
5846 * What we do here is we mark all pageblocks in range as
5847 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5848 * have different sizes, and due to the way page allocator
5849 * work, we align the range to biggest of the two pages so
5850 * that page allocator won't try to merge buddies from
5851 * different pageblocks and change MIGRATE_ISOLATE to some
5852 * other migration type.
5853 *
5854 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5855 * migrate the pages from an unaligned range (ie. pages that
5856 * we are interested in). This will put all the pages in
5857 * range back to page allocator as MIGRATE_ISOLATE.
5858 *
5859 * When this is done, we take the pages in range from page
5860 * allocator removing them from the buddy system. This way
5861 * page allocator will never consider using them.
5862 *
5863 * This lets us mark the pageblocks back as
5864 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5865 * aligned range but not in the unaligned, original range are
5866 * put back to page allocator so that buddy can use them.
5867 */
5868
5869 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
5870 pfn_max_align_up(end), migratetype,
5871 false);
041d3a8c 5872 if (ret)
86a595f9 5873 return ret;
041d3a8c 5874
bb13ffeb 5875 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
5876 if (ret)
5877 goto done;
5878
5879 /*
5880 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5881 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5882 * more, all pages in [start, end) are free in page allocator.
5883 * What we are going to do is to allocate all pages from
5884 * [start, end) (that is remove them from page allocator).
5885 *
5886 * The only problem is that pages at the beginning and at the
5887 * end of interesting range may be not aligned with pages that
5888 * page allocator holds, ie. they can be part of higher order
5889 * pages. Because of this, we reserve the bigger range and
5890 * once this is done free the pages we are not interested in.
5891 *
5892 * We don't have to hold zone->lock here because the pages are
5893 * isolated thus they won't get removed from buddy.
5894 */
5895
5896 lru_add_drain_all();
5897 drain_all_pages();
5898
5899 order = 0;
5900 outer_start = start;
5901 while (!PageBuddy(pfn_to_page(outer_start))) {
5902 if (++order >= MAX_ORDER) {
5903 ret = -EBUSY;
5904 goto done;
5905 }
5906 outer_start &= ~0UL << order;
5907 }
5908
5909 /* Make sure the range is really isolated. */
b023f468 5910 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
5911 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5912 outer_start, end);
5913 ret = -EBUSY;
5914 goto done;
5915 }
5916
49f223a9
MS
5917
5918 /* Grab isolated pages from freelists. */
bb13ffeb 5919 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
5920 if (!outer_end) {
5921 ret = -EBUSY;
5922 goto done;
5923 }
5924
5925 /* Free head and tail (if any) */
5926 if (start != outer_start)
5927 free_contig_range(outer_start, start - outer_start);
5928 if (end != outer_end)
5929 free_contig_range(end, outer_end - end);
5930
5931done:
5932 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5933 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5934 return ret;
5935}
5936
5937void free_contig_range(unsigned long pfn, unsigned nr_pages)
5938{
bcc2b02f
MS
5939 unsigned int count = 0;
5940
5941 for (; nr_pages--; pfn++) {
5942 struct page *page = pfn_to_page(pfn);
5943
5944 count += page_count(page) != 1;
5945 __free_page(page);
5946 }
5947 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
5948}
5949#endif
5950
4ed7e022
JL
5951#ifdef CONFIG_MEMORY_HOTPLUG
5952static int __meminit __zone_pcp_update(void *data)
5953{
5954 struct zone *zone = data;
5955 int cpu;
5956 unsigned long batch = zone_batchsize(zone), flags;
5957
5958 for_each_possible_cpu(cpu) {
5959 struct per_cpu_pageset *pset;
5960 struct per_cpu_pages *pcp;
5961
5962 pset = per_cpu_ptr(zone->pageset, cpu);
5963 pcp = &pset->pcp;
5964
5965 local_irq_save(flags);
5966 if (pcp->count > 0)
5967 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 5968 drain_zonestat(zone, pset);
4ed7e022
JL
5969 setup_pageset(pset, batch);
5970 local_irq_restore(flags);
5971 }
5972 return 0;
5973}
5974
5975void __meminit zone_pcp_update(struct zone *zone)
5976{
5977 stop_machine(__zone_pcp_update, zone, NULL);
5978}
5979#endif
5980
340175b7
JL
5981void zone_pcp_reset(struct zone *zone)
5982{
5983 unsigned long flags;
5a883813
MK
5984 int cpu;
5985 struct per_cpu_pageset *pset;
340175b7
JL
5986
5987 /* avoid races with drain_pages() */
5988 local_irq_save(flags);
5989 if (zone->pageset != &boot_pageset) {
5a883813
MK
5990 for_each_online_cpu(cpu) {
5991 pset = per_cpu_ptr(zone->pageset, cpu);
5992 drain_zonestat(zone, pset);
5993 }
340175b7
JL
5994 free_percpu(zone->pageset);
5995 zone->pageset = &boot_pageset;
5996 }
5997 local_irq_restore(flags);
5998}
5999
6dcd73d7 6000#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6001/*
6002 * All pages in the range must be isolated before calling this.
6003 */
6004void
6005__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6006{
6007 struct page *page;
6008 struct zone *zone;
6009 int order, i;
6010 unsigned long pfn;
6011 unsigned long flags;
6012 /* find the first valid pfn */
6013 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6014 if (pfn_valid(pfn))
6015 break;
6016 if (pfn == end_pfn)
6017 return;
6018 zone = page_zone(pfn_to_page(pfn));
6019 spin_lock_irqsave(&zone->lock, flags);
6020 pfn = start_pfn;
6021 while (pfn < end_pfn) {
6022 if (!pfn_valid(pfn)) {
6023 pfn++;
6024 continue;
6025 }
6026 page = pfn_to_page(pfn);
b023f468
WC
6027 /*
6028 * The HWPoisoned page may be not in buddy system, and
6029 * page_count() is not 0.
6030 */
6031 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6032 pfn++;
6033 SetPageReserved(page);
6034 continue;
6035 }
6036
0c0e6195
KH
6037 BUG_ON(page_count(page));
6038 BUG_ON(!PageBuddy(page));
6039 order = page_order(page);
6040#ifdef CONFIG_DEBUG_VM
6041 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6042 pfn, 1 << order, end_pfn);
6043#endif
6044 list_del(&page->lru);
6045 rmv_page_order(page);
6046 zone->free_area[order].nr_free--;
0c0e6195
KH
6047 for (i = 0; i < (1 << order); i++)
6048 SetPageReserved((page+i));
6049 pfn += (1 << order);
6050 }
6051 spin_unlock_irqrestore(&zone->lock, flags);
6052}
6053#endif
8d22ba1b
WF
6054
6055#ifdef CONFIG_MEMORY_FAILURE
6056bool is_free_buddy_page(struct page *page)
6057{
6058 struct zone *zone = page_zone(page);
6059 unsigned long pfn = page_to_pfn(page);
6060 unsigned long flags;
6061 int order;
6062
6063 spin_lock_irqsave(&zone->lock, flags);
6064 for (order = 0; order < MAX_ORDER; order++) {
6065 struct page *page_head = page - (pfn & ((1 << order) - 1));
6066
6067 if (PageBuddy(page_head) && page_order(page_head) >= order)
6068 break;
6069 }
6070 spin_unlock_irqrestore(&zone->lock, flags);
6071
6072 return order < MAX_ORDER;
6073}
6074#endif
718a3821 6075
51300cef 6076static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6077 {1UL << PG_locked, "locked" },
6078 {1UL << PG_error, "error" },
6079 {1UL << PG_referenced, "referenced" },
6080 {1UL << PG_uptodate, "uptodate" },
6081 {1UL << PG_dirty, "dirty" },
6082 {1UL << PG_lru, "lru" },
6083 {1UL << PG_active, "active" },
6084 {1UL << PG_slab, "slab" },
6085 {1UL << PG_owner_priv_1, "owner_priv_1" },
6086 {1UL << PG_arch_1, "arch_1" },
6087 {1UL << PG_reserved, "reserved" },
6088 {1UL << PG_private, "private" },
6089 {1UL << PG_private_2, "private_2" },
6090 {1UL << PG_writeback, "writeback" },
6091#ifdef CONFIG_PAGEFLAGS_EXTENDED
6092 {1UL << PG_head, "head" },
6093 {1UL << PG_tail, "tail" },
6094#else
6095 {1UL << PG_compound, "compound" },
6096#endif
6097 {1UL << PG_swapcache, "swapcache" },
6098 {1UL << PG_mappedtodisk, "mappedtodisk" },
6099 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6100 {1UL << PG_swapbacked, "swapbacked" },
6101 {1UL << PG_unevictable, "unevictable" },
6102#ifdef CONFIG_MMU
6103 {1UL << PG_mlocked, "mlocked" },
6104#endif
6105#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6106 {1UL << PG_uncached, "uncached" },
6107#endif
6108#ifdef CONFIG_MEMORY_FAILURE
6109 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6110#endif
6111#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6112 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6113#endif
718a3821
WF
6114};
6115
6116static void dump_page_flags(unsigned long flags)
6117{
6118 const char *delim = "";
6119 unsigned long mask;
6120 int i;
6121
51300cef 6122 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6123
718a3821
WF
6124 printk(KERN_ALERT "page flags: %#lx(", flags);
6125
6126 /* remove zone id */
6127 flags &= (1UL << NR_PAGEFLAGS) - 1;
6128
51300cef 6129 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6130
6131 mask = pageflag_names[i].mask;
6132 if ((flags & mask) != mask)
6133 continue;
6134
6135 flags &= ~mask;
6136 printk("%s%s", delim, pageflag_names[i].name);
6137 delim = "|";
6138 }
6139
6140 /* check for left over flags */
6141 if (flags)
6142 printk("%s%#lx", delim, flags);
6143
6144 printk(")\n");
6145}
6146
6147void dump_page(struct page *page)
6148{
6149 printk(KERN_ALERT
6150 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6151 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6152 page->mapping, page->index);
6153 dump_page_flags(page->flags);
f212ad7c 6154 mem_cgroup_print_bad_page(page);
718a3821 6155}