]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/rmap.c
Merge tag 'cc-4.0-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char...
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
c8c06efa 26 * mapping->i_mmap_rwsem
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
5a505085 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
ef5d437f 59#include <linux/backing-dev.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
01d8b20d
PZ
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
75 anon_vma->degree = 1; /* Reference for first vma */
76 anon_vma->parent = anon_vma;
01d8b20d
PZ
77 /*
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
80 */
81 anon_vma->root = anon_vma;
82 }
83
84 return anon_vma;
fdd2e5f8
AB
85}
86
01d8b20d 87static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 88{
01d8b20d 89 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
90
91 /*
4fc3f1d6 92 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
93 * we can safely hold the lock without the anon_vma getting
94 * freed.
95 *
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 98 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 99 *
4fc3f1d6
IM
100 * page_lock_anon_vma_read() VS put_anon_vma()
101 * down_read_trylock() atomic_dec_and_test()
88c22088 102 * LOCK MB
4fc3f1d6 103 * atomic_read() rwsem_is_locked()
88c22088
PZ
104 *
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
107 */
7f39dda9 108 might_sleep();
5a505085 109 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 110 anon_vma_lock_write(anon_vma);
08b52706 111 anon_vma_unlock_write(anon_vma);
88c22088
PZ
112 }
113
fdd2e5f8
AB
114 kmem_cache_free(anon_vma_cachep, anon_vma);
115}
1da177e4 116
dd34739c 117static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 118{
dd34739c 119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
120}
121
e574b5fd 122static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
123{
124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125}
126
6583a843
KC
127static void anon_vma_chain_link(struct vm_area_struct *vma,
128 struct anon_vma_chain *avc,
129 struct anon_vma *anon_vma)
130{
131 avc->vma = vma;
132 avc->anon_vma = anon_vma;
133 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 134 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
135}
136
d9d332e0
LT
137/**
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
140 *
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
144 *
145 * The common case will be that we already have one, but if
23a0790a 146 * not we either need to find an adjacent mapping that we
d9d332e0
LT
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
150 *
151 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
156 *
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
160 * an anon_vma.
161 *
162 * This must be called with the mmap_sem held for reading.
163 */
1da177e4
LT
164int anon_vma_prepare(struct vm_area_struct *vma)
165{
166 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 167 struct anon_vma_chain *avc;
1da177e4
LT
168
169 might_sleep();
170 if (unlikely(!anon_vma)) {
171 struct mm_struct *mm = vma->vm_mm;
d9d332e0 172 struct anon_vma *allocated;
1da177e4 173
dd34739c 174 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
175 if (!avc)
176 goto out_enomem;
177
1da177e4 178 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
179 allocated = NULL;
180 if (!anon_vma) {
1da177e4
LT
181 anon_vma = anon_vma_alloc();
182 if (unlikely(!anon_vma))
5beb4930 183 goto out_enomem_free_avc;
1da177e4 184 allocated = anon_vma;
1da177e4
LT
185 }
186
4fc3f1d6 187 anon_vma_lock_write(anon_vma);
1da177e4
LT
188 /* page_table_lock to protect against threads */
189 spin_lock(&mm->page_table_lock);
190 if (likely(!vma->anon_vma)) {
191 vma->anon_vma = anon_vma;
6583a843 192 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
193 /* vma reference or self-parent link for new root */
194 anon_vma->degree++;
1da177e4 195 allocated = NULL;
31f2b0eb 196 avc = NULL;
1da177e4
LT
197 }
198 spin_unlock(&mm->page_table_lock);
08b52706 199 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
200
201 if (unlikely(allocated))
01d8b20d 202 put_anon_vma(allocated);
31f2b0eb 203 if (unlikely(avc))
5beb4930 204 anon_vma_chain_free(avc);
1da177e4
LT
205 }
206 return 0;
5beb4930
RR
207
208 out_enomem_free_avc:
209 anon_vma_chain_free(avc);
210 out_enomem:
211 return -ENOMEM;
1da177e4
LT
212}
213
bb4aa396
LT
214/*
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217 * have the same vma.
218 *
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
221 */
222static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
223{
224 struct anon_vma *new_root = anon_vma->root;
225 if (new_root != root) {
226 if (WARN_ON_ONCE(root))
5a505085 227 up_write(&root->rwsem);
bb4aa396 228 root = new_root;
5a505085 229 down_write(&root->rwsem);
bb4aa396
LT
230 }
231 return root;
232}
233
234static inline void unlock_anon_vma_root(struct anon_vma *root)
235{
236 if (root)
5a505085 237 up_write(&root->rwsem);
bb4aa396
LT
238}
239
5beb4930
RR
240/*
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
243 *
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
250 * page is mapped.
5beb4930
RR
251 */
252int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 253{
5beb4930 254 struct anon_vma_chain *avc, *pavc;
bb4aa396 255 struct anon_vma *root = NULL;
5beb4930 256
646d87b4 257 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
258 struct anon_vma *anon_vma;
259
dd34739c
LT
260 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261 if (unlikely(!avc)) {
262 unlock_anon_vma_root(root);
263 root = NULL;
264 avc = anon_vma_chain_alloc(GFP_KERNEL);
265 if (!avc)
266 goto enomem_failure;
267 }
bb4aa396
LT
268 anon_vma = pavc->anon_vma;
269 root = lock_anon_vma_root(root, anon_vma);
270 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
271
272 /*
273 * Reuse existing anon_vma if its degree lower than two,
274 * that means it has no vma and only one anon_vma child.
275 *
276 * Do not chose parent anon_vma, otherwise first child
277 * will always reuse it. Root anon_vma is never reused:
278 * it has self-parent reference and at least one child.
279 */
280 if (!dst->anon_vma && anon_vma != src->anon_vma &&
281 anon_vma->degree < 2)
282 dst->anon_vma = anon_vma;
5beb4930 283 }
7a3ef208
KK
284 if (dst->anon_vma)
285 dst->anon_vma->degree++;
bb4aa396 286 unlock_anon_vma_root(root);
5beb4930 287 return 0;
1da177e4 288
5beb4930
RR
289 enomem_failure:
290 unlink_anon_vmas(dst);
291 return -ENOMEM;
1da177e4
LT
292}
293
5beb4930
RR
294/*
295 * Attach vma to its own anon_vma, as well as to the anon_vmas that
296 * the corresponding VMA in the parent process is attached to.
297 * Returns 0 on success, non-zero on failure.
298 */
299int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 300{
5beb4930
RR
301 struct anon_vma_chain *avc;
302 struct anon_vma *anon_vma;
c4ea95d7 303 int error;
1da177e4 304
5beb4930
RR
305 /* Don't bother if the parent process has no anon_vma here. */
306 if (!pvma->anon_vma)
307 return 0;
308
7a3ef208
KK
309 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
310 vma->anon_vma = NULL;
311
5beb4930
RR
312 /*
313 * First, attach the new VMA to the parent VMA's anon_vmas,
314 * so rmap can find non-COWed pages in child processes.
315 */
c4ea95d7
DF
316 error = anon_vma_clone(vma, pvma);
317 if (error)
318 return error;
5beb4930 319
7a3ef208
KK
320 /* An existing anon_vma has been reused, all done then. */
321 if (vma->anon_vma)
322 return 0;
323
5beb4930
RR
324 /* Then add our own anon_vma. */
325 anon_vma = anon_vma_alloc();
326 if (!anon_vma)
327 goto out_error;
dd34739c 328 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
329 if (!avc)
330 goto out_error_free_anon_vma;
5c341ee1
RR
331
332 /*
333 * The root anon_vma's spinlock is the lock actually used when we
334 * lock any of the anon_vmas in this anon_vma tree.
335 */
336 anon_vma->root = pvma->anon_vma->root;
7a3ef208 337 anon_vma->parent = pvma->anon_vma;
76545066 338 /*
01d8b20d
PZ
339 * With refcounts, an anon_vma can stay around longer than the
340 * process it belongs to. The root anon_vma needs to be pinned until
341 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
342 */
343 get_anon_vma(anon_vma->root);
5beb4930
RR
344 /* Mark this anon_vma as the one where our new (COWed) pages go. */
345 vma->anon_vma = anon_vma;
4fc3f1d6 346 anon_vma_lock_write(anon_vma);
5c341ee1 347 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 348 anon_vma->parent->degree++;
08b52706 349 anon_vma_unlock_write(anon_vma);
5beb4930
RR
350
351 return 0;
352
353 out_error_free_anon_vma:
01d8b20d 354 put_anon_vma(anon_vma);
5beb4930 355 out_error:
4946d54c 356 unlink_anon_vmas(vma);
5beb4930 357 return -ENOMEM;
1da177e4
LT
358}
359
5beb4930
RR
360void unlink_anon_vmas(struct vm_area_struct *vma)
361{
362 struct anon_vma_chain *avc, *next;
eee2acba 363 struct anon_vma *root = NULL;
5beb4930 364
5c341ee1
RR
365 /*
366 * Unlink each anon_vma chained to the VMA. This list is ordered
367 * from newest to oldest, ensuring the root anon_vma gets freed last.
368 */
5beb4930 369 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
370 struct anon_vma *anon_vma = avc->anon_vma;
371
372 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 373 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
374
375 /*
376 * Leave empty anon_vmas on the list - we'll need
377 * to free them outside the lock.
378 */
7a3ef208
KK
379 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
380 anon_vma->parent->degree--;
eee2acba 381 continue;
7a3ef208 382 }
eee2acba
PZ
383
384 list_del(&avc->same_vma);
385 anon_vma_chain_free(avc);
386 }
7a3ef208
KK
387 if (vma->anon_vma)
388 vma->anon_vma->degree--;
eee2acba
PZ
389 unlock_anon_vma_root(root);
390
391 /*
392 * Iterate the list once more, it now only contains empty and unlinked
393 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 394 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
395 */
396 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
397 struct anon_vma *anon_vma = avc->anon_vma;
398
7a3ef208 399 BUG_ON(anon_vma->degree);
eee2acba
PZ
400 put_anon_vma(anon_vma);
401
5beb4930
RR
402 list_del(&avc->same_vma);
403 anon_vma_chain_free(avc);
404 }
405}
406
51cc5068 407static void anon_vma_ctor(void *data)
1da177e4 408{
a35afb83 409 struct anon_vma *anon_vma = data;
1da177e4 410
5a505085 411 init_rwsem(&anon_vma->rwsem);
83813267 412 atomic_set(&anon_vma->refcount, 0);
bf181b9f 413 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
414}
415
416void __init anon_vma_init(void)
417{
418 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 419 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 420 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
421}
422
423/*
6111e4ca
PZ
424 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
425 *
426 * Since there is no serialization what so ever against page_remove_rmap()
427 * the best this function can do is return a locked anon_vma that might
428 * have been relevant to this page.
429 *
430 * The page might have been remapped to a different anon_vma or the anon_vma
431 * returned may already be freed (and even reused).
432 *
bc658c96
PZ
433 * In case it was remapped to a different anon_vma, the new anon_vma will be a
434 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
435 * ensure that any anon_vma obtained from the page will still be valid for as
436 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
437 *
6111e4ca
PZ
438 * All users of this function must be very careful when walking the anon_vma
439 * chain and verify that the page in question is indeed mapped in it
440 * [ something equivalent to page_mapped_in_vma() ].
441 *
442 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
443 * that the anon_vma pointer from page->mapping is valid if there is a
444 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 445 */
746b18d4 446struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 447{
746b18d4 448 struct anon_vma *anon_vma = NULL;
1da177e4
LT
449 unsigned long anon_mapping;
450
451 rcu_read_lock();
80e14822 452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
454 goto out;
455 if (!page_mapped(page))
456 goto out;
457
458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
459 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
460 anon_vma = NULL;
461 goto out;
462 }
f1819427
HD
463
464 /*
465 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
466 * freed. But if it has been unmapped, we have no security against the
467 * anon_vma structure being freed and reused (for another anon_vma:
468 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
469 * above cannot corrupt).
f1819427 470 */
746b18d4 471 if (!page_mapped(page)) {
7f39dda9 472 rcu_read_unlock();
746b18d4 473 put_anon_vma(anon_vma);
7f39dda9 474 return NULL;
746b18d4 475 }
1da177e4
LT
476out:
477 rcu_read_unlock();
746b18d4
PZ
478
479 return anon_vma;
480}
481
88c22088
PZ
482/*
483 * Similar to page_get_anon_vma() except it locks the anon_vma.
484 *
485 * Its a little more complex as it tries to keep the fast path to a single
486 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
487 * reference like with page_get_anon_vma() and then block on the mutex.
488 */
4fc3f1d6 489struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 490{
88c22088 491 struct anon_vma *anon_vma = NULL;
eee0f252 492 struct anon_vma *root_anon_vma;
88c22088 493 unsigned long anon_mapping;
746b18d4 494
88c22088
PZ
495 rcu_read_lock();
496 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
497 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
498 goto out;
499 if (!page_mapped(page))
500 goto out;
501
502 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252 503 root_anon_vma = ACCESS_ONCE(anon_vma->root);
4fc3f1d6 504 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 505 /*
eee0f252
HD
506 * If the page is still mapped, then this anon_vma is still
507 * its anon_vma, and holding the mutex ensures that it will
bc658c96 508 * not go away, see anon_vma_free().
88c22088 509 */
eee0f252 510 if (!page_mapped(page)) {
4fc3f1d6 511 up_read(&root_anon_vma->rwsem);
88c22088
PZ
512 anon_vma = NULL;
513 }
514 goto out;
515 }
746b18d4 516
88c22088
PZ
517 /* trylock failed, we got to sleep */
518 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
519 anon_vma = NULL;
520 goto out;
521 }
522
523 if (!page_mapped(page)) {
7f39dda9 524 rcu_read_unlock();
88c22088 525 put_anon_vma(anon_vma);
7f39dda9 526 return NULL;
88c22088
PZ
527 }
528
529 /* we pinned the anon_vma, its safe to sleep */
530 rcu_read_unlock();
4fc3f1d6 531 anon_vma_lock_read(anon_vma);
88c22088
PZ
532
533 if (atomic_dec_and_test(&anon_vma->refcount)) {
534 /*
535 * Oops, we held the last refcount, release the lock
536 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 537 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 538 */
4fc3f1d6 539 anon_vma_unlock_read(anon_vma);
88c22088
PZ
540 __put_anon_vma(anon_vma);
541 anon_vma = NULL;
542 }
543
544 return anon_vma;
545
546out:
547 rcu_read_unlock();
746b18d4 548 return anon_vma;
34bbd704
ON
549}
550
4fc3f1d6 551void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 552{
4fc3f1d6 553 anon_vma_unlock_read(anon_vma);
1da177e4
LT
554}
555
556/*
3ad33b24 557 * At what user virtual address is page expected in @vma?
1da177e4 558 */
86c2ad19
ML
559static inline unsigned long
560__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4 561{
a0f7a756 562 pgoff_t pgoff = page_to_pgoff(page);
86c2ad19
ML
563 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
564}
565
566inline unsigned long
567vma_address(struct page *page, struct vm_area_struct *vma)
568{
569 unsigned long address = __vma_address(page, vma);
570
571 /* page should be within @vma mapping range */
81d1b09c 572 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
86c2ad19 573
1da177e4
LT
574 return address;
575}
576
577/*
bf89c8c8 578 * At what user virtual address is page expected in vma?
ab941e0f 579 * Caller should check the page is actually part of the vma.
1da177e4
LT
580 */
581unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
582{
86c2ad19 583 unsigned long address;
21d0d443 584 if (PageAnon(page)) {
4829b906
HD
585 struct anon_vma *page__anon_vma = page_anon_vma(page);
586 /*
587 * Note: swapoff's unuse_vma() is more efficient with this
588 * check, and needs it to match anon_vma when KSM is active.
589 */
590 if (!vma->anon_vma || !page__anon_vma ||
591 vma->anon_vma->root != page__anon_vma->root)
21d0d443 592 return -EFAULT;
27ba0644
KS
593 } else if (page->mapping) {
594 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
595 return -EFAULT;
596 } else
597 return -EFAULT;
86c2ad19
ML
598 address = __vma_address(page, vma);
599 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
600 return -EFAULT;
601 return address;
1da177e4
LT
602}
603
6219049a
BL
604pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
605{
606 pgd_t *pgd;
607 pud_t *pud;
608 pmd_t *pmd = NULL;
f72e7dcd 609 pmd_t pmde;
6219049a
BL
610
611 pgd = pgd_offset(mm, address);
612 if (!pgd_present(*pgd))
613 goto out;
614
615 pud = pud_offset(pgd, address);
616 if (!pud_present(*pud))
617 goto out;
618
619 pmd = pmd_offset(pud, address);
f72e7dcd
HD
620 /*
621 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
622 * without holding anon_vma lock for write. So when looking for a
623 * genuine pmde (in which to find pte), test present and !THP together.
624 */
e37c6982
CB
625 pmde = *pmd;
626 barrier();
f72e7dcd 627 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
628 pmd = NULL;
629out:
630 return pmd;
631}
632
81b4082d
ND
633/*
634 * Check that @page is mapped at @address into @mm.
635 *
479db0bf
NP
636 * If @sync is false, page_check_address may perform a racy check to avoid
637 * the page table lock when the pte is not present (helpful when reclaiming
638 * highly shared pages).
639 *
b8072f09 640 * On success returns with pte mapped and locked.
81b4082d 641 */
e9a81a82 642pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 643 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 644{
81b4082d
ND
645 pmd_t *pmd;
646 pte_t *pte;
c0718806 647 spinlock_t *ptl;
81b4082d 648
0fe6e20b 649 if (unlikely(PageHuge(page))) {
98398c32 650 /* when pud is not present, pte will be NULL */
0fe6e20b 651 pte = huge_pte_offset(mm, address);
98398c32
JW
652 if (!pte)
653 return NULL;
654
cb900f41 655 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
656 goto check;
657 }
658
6219049a
BL
659 pmd = mm_find_pmd(mm, address);
660 if (!pmd)
c0718806
HD
661 return NULL;
662
c0718806
HD
663 pte = pte_offset_map(pmd, address);
664 /* Make a quick check before getting the lock */
479db0bf 665 if (!sync && !pte_present(*pte)) {
c0718806
HD
666 pte_unmap(pte);
667 return NULL;
668 }
669
4c21e2f2 670 ptl = pte_lockptr(mm, pmd);
0fe6e20b 671check:
c0718806
HD
672 spin_lock(ptl);
673 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
674 *ptlp = ptl;
675 return pte;
81b4082d 676 }
c0718806
HD
677 pte_unmap_unlock(pte, ptl);
678 return NULL;
81b4082d
ND
679}
680
b291f000
NP
681/**
682 * page_mapped_in_vma - check whether a page is really mapped in a VMA
683 * @page: the page to test
684 * @vma: the VMA to test
685 *
686 * Returns 1 if the page is mapped into the page tables of the VMA, 0
687 * if the page is not mapped into the page tables of this VMA. Only
688 * valid for normal file or anonymous VMAs.
689 */
6a46079c 690int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
691{
692 unsigned long address;
693 pte_t *pte;
694 spinlock_t *ptl;
695
86c2ad19
ML
696 address = __vma_address(page, vma);
697 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
698 return 0;
699 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
700 if (!pte) /* the page is not in this mm */
701 return 0;
702 pte_unmap_unlock(pte, ptl);
703
704 return 1;
705}
706
9f32624b
JK
707struct page_referenced_arg {
708 int mapcount;
709 int referenced;
710 unsigned long vm_flags;
711 struct mem_cgroup *memcg;
712};
1da177e4 713/*
9f32624b 714 * arg: page_referenced_arg will be passed
1da177e4 715 */
ac769501 716static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 717 unsigned long address, void *arg)
1da177e4
LT
718{
719 struct mm_struct *mm = vma->vm_mm;
117b0791 720 spinlock_t *ptl;
1da177e4 721 int referenced = 0;
9f32624b 722 struct page_referenced_arg *pra = arg;
1da177e4 723
71e3aac0
AA
724 if (unlikely(PageTransHuge(page))) {
725 pmd_t *pmd;
726
2da28bfd
AA
727 /*
728 * rmap might return false positives; we must filter
729 * these out using page_check_address_pmd().
730 */
71e3aac0 731 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
732 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
733 if (!pmd)
9f32624b 734 return SWAP_AGAIN;
2da28bfd
AA
735
736 if (vma->vm_flags & VM_LOCKED) {
117b0791 737 spin_unlock(ptl);
9f32624b
JK
738 pra->vm_flags |= VM_LOCKED;
739 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
740 }
741
742 /* go ahead even if the pmd is pmd_trans_splitting() */
743 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 744 referenced++;
117b0791 745 spin_unlock(ptl);
71e3aac0
AA
746 } else {
747 pte_t *pte;
71e3aac0 748
2da28bfd
AA
749 /*
750 * rmap might return false positives; we must filter
751 * these out using page_check_address().
752 */
71e3aac0
AA
753 pte = page_check_address(page, mm, address, &ptl, 0);
754 if (!pte)
9f32624b 755 return SWAP_AGAIN;
71e3aac0 756
2da28bfd
AA
757 if (vma->vm_flags & VM_LOCKED) {
758 pte_unmap_unlock(pte, ptl);
9f32624b
JK
759 pra->vm_flags |= VM_LOCKED;
760 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
761 }
762
71e3aac0
AA
763 if (ptep_clear_flush_young_notify(vma, address, pte)) {
764 /*
765 * Don't treat a reference through a sequentially read
766 * mapping as such. If the page has been used in
767 * another mapping, we will catch it; if this other
768 * mapping is already gone, the unmap path will have
769 * set PG_referenced or activated the page.
770 */
64363aad 771 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
772 referenced++;
773 }
774 pte_unmap_unlock(pte, ptl);
775 }
776
9f32624b
JK
777 if (referenced) {
778 pra->referenced++;
779 pra->vm_flags |= vma->vm_flags;
1da177e4 780 }
34bbd704 781
9f32624b
JK
782 pra->mapcount--;
783 if (!pra->mapcount)
784 return SWAP_SUCCESS; /* To break the loop */
785
786 return SWAP_AGAIN;
1da177e4
LT
787}
788
9f32624b 789static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 790{
9f32624b
JK
791 struct page_referenced_arg *pra = arg;
792 struct mem_cgroup *memcg = pra->memcg;
1da177e4 793
9f32624b
JK
794 if (!mm_match_cgroup(vma->vm_mm, memcg))
795 return true;
1da177e4 796
9f32624b 797 return false;
1da177e4
LT
798}
799
800/**
801 * page_referenced - test if the page was referenced
802 * @page: the page to test
803 * @is_locked: caller holds lock on the page
72835c86 804 * @memcg: target memory cgroup
6fe6b7e3 805 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
806 *
807 * Quick test_and_clear_referenced for all mappings to a page,
808 * returns the number of ptes which referenced the page.
809 */
6fe6b7e3
WF
810int page_referenced(struct page *page,
811 int is_locked,
72835c86 812 struct mem_cgroup *memcg,
6fe6b7e3 813 unsigned long *vm_flags)
1da177e4 814{
9f32624b 815 int ret;
5ad64688 816 int we_locked = 0;
9f32624b
JK
817 struct page_referenced_arg pra = {
818 .mapcount = page_mapcount(page),
819 .memcg = memcg,
820 };
821 struct rmap_walk_control rwc = {
822 .rmap_one = page_referenced_one,
823 .arg = (void *)&pra,
824 .anon_lock = page_lock_anon_vma_read,
825 };
1da177e4 826
6fe6b7e3 827 *vm_flags = 0;
9f32624b
JK
828 if (!page_mapped(page))
829 return 0;
830
831 if (!page_rmapping(page))
832 return 0;
833
834 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
835 we_locked = trylock_page(page);
836 if (!we_locked)
837 return 1;
1da177e4 838 }
9f32624b
JK
839
840 /*
841 * If we are reclaiming on behalf of a cgroup, skip
842 * counting on behalf of references from different
843 * cgroups
844 */
845 if (memcg) {
846 rwc.invalid_vma = invalid_page_referenced_vma;
847 }
848
849 ret = rmap_walk(page, &rwc);
850 *vm_flags = pra.vm_flags;
851
852 if (we_locked)
853 unlock_page(page);
854
855 return pra.referenced;
1da177e4
LT
856}
857
1cb1729b 858static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 859 unsigned long address, void *arg)
d08b3851
PZ
860{
861 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 862 pte_t *pte;
d08b3851
PZ
863 spinlock_t *ptl;
864 int ret = 0;
9853a407 865 int *cleaned = arg;
d08b3851 866
479db0bf 867 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
868 if (!pte)
869 goto out;
870
c2fda5fe
PZ
871 if (pte_dirty(*pte) || pte_write(*pte)) {
872 pte_t entry;
d08b3851 873
c2fda5fe 874 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 875 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
876 entry = pte_wrprotect(entry);
877 entry = pte_mkclean(entry);
d6e88e67 878 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
879 ret = 1;
880 }
d08b3851 881
d08b3851 882 pte_unmap_unlock(pte, ptl);
2ec74c3e 883
9853a407 884 if (ret) {
2ec74c3e 885 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
886 (*cleaned)++;
887 }
d08b3851 888out:
9853a407 889 return SWAP_AGAIN;
d08b3851
PZ
890}
891
9853a407 892static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 893{
9853a407 894 if (vma->vm_flags & VM_SHARED)
871beb8c 895 return false;
d08b3851 896
871beb8c 897 return true;
d08b3851
PZ
898}
899
900int page_mkclean(struct page *page)
901{
9853a407
JK
902 int cleaned = 0;
903 struct address_space *mapping;
904 struct rmap_walk_control rwc = {
905 .arg = (void *)&cleaned,
906 .rmap_one = page_mkclean_one,
907 .invalid_vma = invalid_mkclean_vma,
908 };
d08b3851
PZ
909
910 BUG_ON(!PageLocked(page));
911
9853a407
JK
912 if (!page_mapped(page))
913 return 0;
914
915 mapping = page_mapping(page);
916 if (!mapping)
917 return 0;
918
919 rmap_walk(page, &rwc);
d08b3851 920
9853a407 921 return cleaned;
d08b3851 922}
60b59bea 923EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 924
c44b6743
RR
925/**
926 * page_move_anon_rmap - move a page to our anon_vma
927 * @page: the page to move to our anon_vma
928 * @vma: the vma the page belongs to
929 * @address: the user virtual address mapped
930 *
931 * When a page belongs exclusively to one process after a COW event,
932 * that page can be moved into the anon_vma that belongs to just that
933 * process, so the rmap code will not search the parent or sibling
934 * processes.
935 */
936void page_move_anon_rmap(struct page *page,
937 struct vm_area_struct *vma, unsigned long address)
938{
939 struct anon_vma *anon_vma = vma->anon_vma;
940
309381fe 941 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 942 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 943 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
944
945 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
946 page->mapping = (struct address_space *) anon_vma;
947}
948
9617d95e 949/**
4e1c1975
AK
950 * __page_set_anon_rmap - set up new anonymous rmap
951 * @page: Page to add to rmap
952 * @vma: VM area to add page to.
953 * @address: User virtual address of the mapping
e8a03feb 954 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
955 */
956static void __page_set_anon_rmap(struct page *page,
e8a03feb 957 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 958{
e8a03feb 959 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 960
e8a03feb 961 BUG_ON(!anon_vma);
ea90002b 962
4e1c1975
AK
963 if (PageAnon(page))
964 return;
965
ea90002b 966 /*
e8a03feb
RR
967 * If the page isn't exclusively mapped into this vma,
968 * we must use the _oldest_ possible anon_vma for the
969 * page mapping!
ea90002b 970 */
4e1c1975 971 if (!exclusive)
288468c3 972 anon_vma = anon_vma->root;
9617d95e 973
9617d95e
NP
974 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
975 page->mapping = (struct address_space *) anon_vma;
9617d95e 976 page->index = linear_page_index(vma, address);
9617d95e
NP
977}
978
c97a9e10 979/**
43d8eac4 980 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
981 * @page: the page to add the mapping to
982 * @vma: the vm area in which the mapping is added
983 * @address: the user virtual address mapped
984 */
985static void __page_check_anon_rmap(struct page *page,
986 struct vm_area_struct *vma, unsigned long address)
987{
988#ifdef CONFIG_DEBUG_VM
989 /*
990 * The page's anon-rmap details (mapping and index) are guaranteed to
991 * be set up correctly at this point.
992 *
993 * We have exclusion against page_add_anon_rmap because the caller
994 * always holds the page locked, except if called from page_dup_rmap,
995 * in which case the page is already known to be setup.
996 *
997 * We have exclusion against page_add_new_anon_rmap because those pages
998 * are initially only visible via the pagetables, and the pte is locked
999 * over the call to page_add_new_anon_rmap.
1000 */
44ab57a0 1001 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1002 BUG_ON(page->index != linear_page_index(vma, address));
1003#endif
1004}
1005
1da177e4
LT
1006/**
1007 * page_add_anon_rmap - add pte mapping to an anonymous page
1008 * @page: the page to add the mapping to
1009 * @vma: the vm area in which the mapping is added
1010 * @address: the user virtual address mapped
1011 *
5ad64688 1012 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1013 * the anon_vma case: to serialize mapping,index checking after setting,
1014 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1015 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1016 */
1017void page_add_anon_rmap(struct page *page,
1018 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1019{
1020 do_page_add_anon_rmap(page, vma, address, 0);
1021}
1022
1023/*
1024 * Special version of the above for do_swap_page, which often runs
1025 * into pages that are exclusively owned by the current process.
1026 * Everybody else should continue to use page_add_anon_rmap above.
1027 */
1028void do_page_add_anon_rmap(struct page *page,
1029 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1030{
5ad64688 1031 int first = atomic_inc_and_test(&page->_mapcount);
79134171 1032 if (first) {
bea04b07
JZ
1033 /*
1034 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1035 * these counters are not modified in interrupt context, and
1036 * pte lock(a spinlock) is held, which implies preemption
1037 * disabled.
1038 */
3cd14fcd 1039 if (PageTransHuge(page))
79134171
AA
1040 __inc_zone_page_state(page,
1041 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1042 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1043 hpage_nr_pages(page));
79134171 1044 }
5ad64688
HD
1045 if (unlikely(PageKsm(page)))
1046 return;
1047
309381fe 1048 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1049 /* address might be in next vma when migration races vma_adjust */
5ad64688 1050 if (first)
ad8c2ee8 1051 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1052 else
c97a9e10 1053 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1054}
1055
43d8eac4 1056/**
9617d95e
NP
1057 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1058 * @page: the page to add the mapping to
1059 * @vma: the vm area in which the mapping is added
1060 * @address: the user virtual address mapped
1061 *
1062 * Same as page_add_anon_rmap but must only be called on *new* pages.
1063 * This means the inc-and-test can be bypassed.
c97a9e10 1064 * Page does not have to be locked.
9617d95e
NP
1065 */
1066void page_add_new_anon_rmap(struct page *page,
1067 struct vm_area_struct *vma, unsigned long address)
1068{
81d1b09c 1069 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a
HD
1070 SetPageSwapBacked(page);
1071 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1072 if (PageTransHuge(page))
79134171 1073 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1074 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1075 hpage_nr_pages(page));
e8a03feb 1076 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1077}
1078
1da177e4
LT
1079/**
1080 * page_add_file_rmap - add pte mapping to a file page
1081 * @page: the page to add the mapping to
1082 *
b8072f09 1083 * The caller needs to hold the pte lock.
1da177e4
LT
1084 */
1085void page_add_file_rmap(struct page *page)
1086{
d7365e78 1087 struct mem_cgroup *memcg;
89c06bd5 1088
6de22619 1089 memcg = mem_cgroup_begin_page_stat(page);
d69b042f 1090 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1091 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1092 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1093 }
6de22619 1094 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
1095}
1096
8186eb6a
JW
1097static void page_remove_file_rmap(struct page *page)
1098{
1099 struct mem_cgroup *memcg;
8186eb6a 1100
6de22619 1101 memcg = mem_cgroup_begin_page_stat(page);
8186eb6a
JW
1102
1103 /* page still mapped by someone else? */
1104 if (!atomic_add_negative(-1, &page->_mapcount))
1105 goto out;
1106
1107 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1108 if (unlikely(PageHuge(page)))
1109 goto out;
1110
1111 /*
1112 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1113 * these counters are not modified in interrupt context, and
1114 * pte lock(a spinlock) is held, which implies preemption disabled.
1115 */
1116 __dec_zone_page_state(page, NR_FILE_MAPPED);
1117 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1118
1119 if (unlikely(PageMlocked(page)))
1120 clear_page_mlock(page);
1121out:
6de22619 1122 mem_cgroup_end_page_stat(memcg);
8186eb6a
JW
1123}
1124
1da177e4
LT
1125/**
1126 * page_remove_rmap - take down pte mapping from a page
1127 * @page: page to remove mapping from
1128 *
b8072f09 1129 * The caller needs to hold the pte lock.
1da177e4 1130 */
edc315fd 1131void page_remove_rmap(struct page *page)
1da177e4 1132{
8186eb6a
JW
1133 if (!PageAnon(page)) {
1134 page_remove_file_rmap(page);
1135 return;
1136 }
89c06bd5 1137
b904dcfe
KM
1138 /* page still mapped by someone else? */
1139 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1140 return;
1141
1142 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1143 if (unlikely(PageHuge(page)))
1144 return;
b904dcfe 1145
0fe6e20b 1146 /*
bea04b07
JZ
1147 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1148 * these counters are not modified in interrupt context, and
bea04b07 1149 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1150 */
8186eb6a
JW
1151 if (PageTransHuge(page))
1152 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1153
1154 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1155 -hpage_nr_pages(page));
1156
e6c509f8
HD
1157 if (unlikely(PageMlocked(page)))
1158 clear_page_mlock(page);
8186eb6a 1159
b904dcfe
KM
1160 /*
1161 * It would be tidy to reset the PageAnon mapping here,
1162 * but that might overwrite a racing page_add_anon_rmap
1163 * which increments mapcount after us but sets mapping
1164 * before us: so leave the reset to free_hot_cold_page,
1165 * and remember that it's only reliable while mapped.
1166 * Leaving it set also helps swapoff to reinstate ptes
1167 * faster for those pages still in swapcache.
1168 */
1da177e4
LT
1169}
1170
1171/*
52629506 1172 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1173 */
ac769501 1174static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1175 unsigned long address, void *arg)
1da177e4
LT
1176{
1177 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1178 pte_t *pte;
1179 pte_t pteval;
c0718806 1180 spinlock_t *ptl;
1da177e4 1181 int ret = SWAP_AGAIN;
52629506 1182 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1183
479db0bf 1184 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1185 if (!pte)
81b4082d 1186 goto out;
1da177e4
LT
1187
1188 /*
1189 * If the page is mlock()d, we cannot swap it out.
1190 * If it's recently referenced (perhaps page_referenced
1191 * skipped over this mm) then we should reactivate it.
1192 */
14fa31b8 1193 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1194 if (vma->vm_flags & VM_LOCKED)
1195 goto out_mlock;
1196
daa5ba76 1197 if (flags & TTU_MUNLOCK)
53f79acb 1198 goto out_unmap;
14fa31b8
AK
1199 }
1200 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1201 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1202 ret = SWAP_FAIL;
1203 goto out_unmap;
1204 }
1205 }
1da177e4 1206
1da177e4
LT
1207 /* Nuke the page table entry. */
1208 flush_cache_page(vma, address, page_to_pfn(page));
2ec74c3e 1209 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1210
1211 /* Move the dirty bit to the physical page now the pte is gone. */
1212 if (pte_dirty(pteval))
1213 set_page_dirty(page);
1214
365e9c87
HD
1215 /* Update high watermark before we lower rss */
1216 update_hiwater_rss(mm);
1217
888b9f7c 1218 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1219 if (!PageHuge(page)) {
1220 if (PageAnon(page))
1221 dec_mm_counter(mm, MM_ANONPAGES);
1222 else
1223 dec_mm_counter(mm, MM_FILEPAGES);
1224 }
888b9f7c 1225 set_pte_at(mm, address, pte,
5f24ae58 1226 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1227 } else if (pte_unused(pteval)) {
1228 /*
1229 * The guest indicated that the page content is of no
1230 * interest anymore. Simply discard the pte, vmscan
1231 * will take care of the rest.
1232 */
1233 if (PageAnon(page))
1234 dec_mm_counter(mm, MM_ANONPAGES);
1235 else
1236 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c 1237 } else if (PageAnon(page)) {
4c21e2f2 1238 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1239 pte_t swp_pte;
0697212a
CL
1240
1241 if (PageSwapCache(page)) {
1242 /*
1243 * Store the swap location in the pte.
1244 * See handle_pte_fault() ...
1245 */
570a335b
HD
1246 if (swap_duplicate(entry) < 0) {
1247 set_pte_at(mm, address, pte, pteval);
1248 ret = SWAP_FAIL;
1249 goto out_unmap;
1250 }
0697212a
CL
1251 if (list_empty(&mm->mmlist)) {
1252 spin_lock(&mmlist_lock);
1253 if (list_empty(&mm->mmlist))
1254 list_add(&mm->mmlist, &init_mm.mmlist);
1255 spin_unlock(&mmlist_lock);
1256 }
d559db08 1257 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1258 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1259 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1260 /*
1261 * Store the pfn of the page in a special migration
1262 * pte. do_swap_page() will wait until the migration
1263 * pte is removed and then restart fault handling.
1264 */
daa5ba76 1265 BUG_ON(!(flags & TTU_MIGRATION));
0697212a 1266 entry = make_migration_entry(page, pte_write(pteval));
1da177e4 1267 }
179ef71c
CG
1268 swp_pte = swp_entry_to_pte(entry);
1269 if (pte_soft_dirty(pteval))
1270 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1271 set_pte_at(mm, address, pte, swp_pte);
ce1744f4 1272 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
daa5ba76 1273 (flags & TTU_MIGRATION)) {
04e62a29
CL
1274 /* Establish migration entry for a file page */
1275 swp_entry_t entry;
1276 entry = make_migration_entry(page, pte_write(pteval));
1277 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1278 } else
d559db08 1279 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1280
edc315fd 1281 page_remove_rmap(page);
1da177e4
LT
1282 page_cache_release(page);
1283
1284out_unmap:
c0718806 1285 pte_unmap_unlock(pte, ptl);
daa5ba76 1286 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
2ec74c3e 1287 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1288out:
1289 return ret;
53f79acb 1290
caed0f48
KM
1291out_mlock:
1292 pte_unmap_unlock(pte, ptl);
1293
1294
1295 /*
1296 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1297 * unstable result and race. Plus, We can't wait here because
c8c06efa 1298 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
caed0f48
KM
1299 * if trylock failed, the page remain in evictable lru and later
1300 * vmscan could retry to move the page to unevictable lru if the
1301 * page is actually mlocked.
1302 */
1303 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1304 if (vma->vm_flags & VM_LOCKED) {
1305 mlock_vma_page(page);
1306 ret = SWAP_MLOCK;
53f79acb 1307 }
caed0f48 1308 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1309 }
1da177e4
LT
1310 return ret;
1311}
1312
71e3aac0 1313bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1314{
1315 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1316
1317 if (!maybe_stack)
1318 return false;
1319
1320 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1321 VM_STACK_INCOMPLETE_SETUP)
1322 return true;
1323
1324 return false;
1325}
1326
52629506
JK
1327static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1328{
1329 return is_vma_temporary_stack(vma);
1330}
1331
52629506
JK
1332static int page_not_mapped(struct page *page)
1333{
1334 return !page_mapped(page);
1335};
1336
1da177e4
LT
1337/**
1338 * try_to_unmap - try to remove all page table mappings to a page
1339 * @page: the page to get unmapped
14fa31b8 1340 * @flags: action and flags
1da177e4
LT
1341 *
1342 * Tries to remove all the page table entries which are mapping this
1343 * page, used in the pageout path. Caller must hold the page lock.
1344 * Return values are:
1345 *
1346 * SWAP_SUCCESS - we succeeded in removing all mappings
1347 * SWAP_AGAIN - we missed a mapping, try again later
1348 * SWAP_FAIL - the page is unswappable
b291f000 1349 * SWAP_MLOCK - page is mlocked.
1da177e4 1350 */
14fa31b8 1351int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1352{
1353 int ret;
52629506
JK
1354 struct rmap_walk_control rwc = {
1355 .rmap_one = try_to_unmap_one,
1356 .arg = (void *)flags,
1357 .done = page_not_mapped,
52629506
JK
1358 .anon_lock = page_lock_anon_vma_read,
1359 };
1da177e4 1360
309381fe 1361 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1362
52629506
JK
1363 /*
1364 * During exec, a temporary VMA is setup and later moved.
1365 * The VMA is moved under the anon_vma lock but not the
1366 * page tables leading to a race where migration cannot
1367 * find the migration ptes. Rather than increasing the
1368 * locking requirements of exec(), migration skips
1369 * temporary VMAs until after exec() completes.
1370 */
daa5ba76 1371 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1372 rwc.invalid_vma = invalid_migration_vma;
1373
1374 ret = rmap_walk(page, &rwc);
1375
b291f000 1376 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1377 ret = SWAP_SUCCESS;
1378 return ret;
1379}
81b4082d 1380
b291f000
NP
1381/**
1382 * try_to_munlock - try to munlock a page
1383 * @page: the page to be munlocked
1384 *
1385 * Called from munlock code. Checks all of the VMAs mapping the page
1386 * to make sure nobody else has this page mlocked. The page will be
1387 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1388 *
1389 * Return values are:
1390 *
53f79acb 1391 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1392 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1393 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1394 * SWAP_MLOCK - page is now mlocked.
1395 */
1396int try_to_munlock(struct page *page)
1397{
e8351ac9
JK
1398 int ret;
1399 struct rmap_walk_control rwc = {
1400 .rmap_one = try_to_unmap_one,
1401 .arg = (void *)TTU_MUNLOCK,
1402 .done = page_not_mapped,
e8351ac9
JK
1403 .anon_lock = page_lock_anon_vma_read,
1404
1405 };
1406
309381fe 1407 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1408
e8351ac9
JK
1409 ret = rmap_walk(page, &rwc);
1410 return ret;
b291f000 1411}
e9995ef9 1412
01d8b20d 1413void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1414{
01d8b20d 1415 struct anon_vma *root = anon_vma->root;
76545066 1416
624483f3 1417 anon_vma_free(anon_vma);
01d8b20d
PZ
1418 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1419 anon_vma_free(root);
76545066 1420}
76545066 1421
0dd1c7bb
JK
1422static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1423 struct rmap_walk_control *rwc)
faecd8dd
JK
1424{
1425 struct anon_vma *anon_vma;
1426
0dd1c7bb
JK
1427 if (rwc->anon_lock)
1428 return rwc->anon_lock(page);
1429
faecd8dd
JK
1430 /*
1431 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1432 * because that depends on page_mapped(); but not all its usages
1433 * are holding mmap_sem. Users without mmap_sem are required to
1434 * take a reference count to prevent the anon_vma disappearing
1435 */
1436 anon_vma = page_anon_vma(page);
1437 if (!anon_vma)
1438 return NULL;
1439
1440 anon_vma_lock_read(anon_vma);
1441 return anon_vma;
1442}
1443
e9995ef9 1444/*
e8351ac9
JK
1445 * rmap_walk_anon - do something to anonymous page using the object-based
1446 * rmap method
1447 * @page: the page to be handled
1448 * @rwc: control variable according to each walk type
1449 *
1450 * Find all the mappings of a page using the mapping pointer and the vma chains
1451 * contained in the anon_vma struct it points to.
1452 *
1453 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1454 * where the page was found will be held for write. So, we won't recheck
1455 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1456 * LOCKED.
e9995ef9 1457 */
051ac83a 1458static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1459{
1460 struct anon_vma *anon_vma;
b258d860 1461 pgoff_t pgoff;
5beb4930 1462 struct anon_vma_chain *avc;
e9995ef9
HD
1463 int ret = SWAP_AGAIN;
1464
0dd1c7bb 1465 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1466 if (!anon_vma)
1467 return ret;
faecd8dd 1468
b258d860 1469 pgoff = page_to_pgoff(page);
bf181b9f 1470 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1471 struct vm_area_struct *vma = avc->vma;
e9995ef9 1472 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1473
1474 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1475 continue;
1476
051ac83a 1477 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1478 if (ret != SWAP_AGAIN)
1479 break;
0dd1c7bb
JK
1480 if (rwc->done && rwc->done(page))
1481 break;
e9995ef9 1482 }
4fc3f1d6 1483 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1484 return ret;
1485}
1486
e8351ac9
JK
1487/*
1488 * rmap_walk_file - do something to file page using the object-based rmap method
1489 * @page: the page to be handled
1490 * @rwc: control variable according to each walk type
1491 *
1492 * Find all the mappings of a page using the mapping pointer and the vma chains
1493 * contained in the address_space struct it points to.
1494 *
1495 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1496 * where the page was found will be held for write. So, we won't recheck
1497 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1498 * LOCKED.
1499 */
051ac83a 1500static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1501{
1502 struct address_space *mapping = page->mapping;
b258d860 1503 pgoff_t pgoff;
e9995ef9 1504 struct vm_area_struct *vma;
e9995ef9
HD
1505 int ret = SWAP_AGAIN;
1506
9f32624b
JK
1507 /*
1508 * The page lock not only makes sure that page->mapping cannot
1509 * suddenly be NULLified by truncation, it makes sure that the
1510 * structure at mapping cannot be freed and reused yet,
c8c06efa 1511 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1512 */
81d1b09c 1513 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1514
e9995ef9
HD
1515 if (!mapping)
1516 return ret;
3dec0ba0 1517
b258d860 1518 pgoff = page_to_pgoff(page);
3dec0ba0 1519 i_mmap_lock_read(mapping);
6b2dbba8 1520 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1521 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1522
1523 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1524 continue;
1525
051ac83a 1526 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1527 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1528 goto done;
1529 if (rwc->done && rwc->done(page))
1530 goto done;
e9995ef9 1531 }
0dd1c7bb 1532
0dd1c7bb 1533done:
3dec0ba0 1534 i_mmap_unlock_read(mapping);
e9995ef9
HD
1535 return ret;
1536}
1537
051ac83a 1538int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1539{
e9995ef9 1540 if (unlikely(PageKsm(page)))
051ac83a 1541 return rmap_walk_ksm(page, rwc);
e9995ef9 1542 else if (PageAnon(page))
051ac83a 1543 return rmap_walk_anon(page, rwc);
e9995ef9 1544 else
051ac83a 1545 return rmap_walk_file(page, rwc);
e9995ef9 1546}
0fe6e20b 1547
e3390f67 1548#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1549/*
1550 * The following three functions are for anonymous (private mapped) hugepages.
1551 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1552 * and no lru code, because we handle hugepages differently from common pages.
1553 */
1554static void __hugepage_set_anon_rmap(struct page *page,
1555 struct vm_area_struct *vma, unsigned long address, int exclusive)
1556{
1557 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1558
0fe6e20b 1559 BUG_ON(!anon_vma);
433abed6
NH
1560
1561 if (PageAnon(page))
1562 return;
1563 if (!exclusive)
1564 anon_vma = anon_vma->root;
1565
0fe6e20b
NH
1566 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1567 page->mapping = (struct address_space *) anon_vma;
1568 page->index = linear_page_index(vma, address);
1569}
1570
1571void hugepage_add_anon_rmap(struct page *page,
1572 struct vm_area_struct *vma, unsigned long address)
1573{
1574 struct anon_vma *anon_vma = vma->anon_vma;
1575 int first;
a850ea30
NH
1576
1577 BUG_ON(!PageLocked(page));
0fe6e20b 1578 BUG_ON(!anon_vma);
5dbe0af4 1579 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1580 first = atomic_inc_and_test(&page->_mapcount);
1581 if (first)
1582 __hugepage_set_anon_rmap(page, vma, address, 0);
1583}
1584
1585void hugepage_add_new_anon_rmap(struct page *page,
1586 struct vm_area_struct *vma, unsigned long address)
1587{
1588 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1589 atomic_set(&page->_mapcount, 0);
1590 __hugepage_set_anon_rmap(page, vma, address, 1);
1591}
e3390f67 1592#endif /* CONFIG_HUGETLB_PAGE */