]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <riel@conectiva.com.br> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <riel@conectiva.com.br> 2001 | |
15 | * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * mm->mmap_sem |
25 | * page->flags PG_locked (lock_page) | |
88f306b6 KS |
26 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) |
27 | * mapping->i_mmap_rwsem | |
28 | * anon_vma->rwsem | |
29 | * mm->page_table_lock or pte_lock | |
a52633d8 | 30 | * zone_lru_lock (in mark_page_accessed, isolate_lru_page) |
88f306b6 KS |
31 | * swap_lock (in swap_duplicate, swap_info_get) |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) | |
35 | * mapping->tree_lock (widely used) | |
36 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) | |
37 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
38 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
39 | * mapping->tree_lock (widely used, in set_page_dirty, | |
40 | * in arch-dependent flush_dcache_mmap_lock, | |
41 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 42 | * |
5a505085 | 43 | * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) |
9b679320 | 44 | * ->tasklist_lock |
6a46079c | 45 | * pte map lock |
1da177e4 LT |
46 | */ |
47 | ||
48 | #include <linux/mm.h> | |
49 | #include <linux/pagemap.h> | |
50 | #include <linux/swap.h> | |
51 | #include <linux/swapops.h> | |
52 | #include <linux/slab.h> | |
53 | #include <linux/init.h> | |
5ad64688 | 54 | #include <linux/ksm.h> |
1da177e4 LT |
55 | #include <linux/rmap.h> |
56 | #include <linux/rcupdate.h> | |
b95f1b31 | 57 | #include <linux/export.h> |
8a9f3ccd | 58 | #include <linux/memcontrol.h> |
cddb8a5c | 59 | #include <linux/mmu_notifier.h> |
64cdd548 | 60 | #include <linux/migrate.h> |
0fe6e20b | 61 | #include <linux/hugetlb.h> |
ef5d437f | 62 | #include <linux/backing-dev.h> |
33c3fc71 | 63 | #include <linux/page_idle.h> |
1da177e4 LT |
64 | |
65 | #include <asm/tlbflush.h> | |
66 | ||
72b252ae MG |
67 | #include <trace/events/tlb.h> |
68 | ||
b291f000 NP |
69 | #include "internal.h" |
70 | ||
fdd2e5f8 | 71 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 72 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
73 | |
74 | static inline struct anon_vma *anon_vma_alloc(void) | |
75 | { | |
01d8b20d PZ |
76 | struct anon_vma *anon_vma; |
77 | ||
78 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
79 | if (anon_vma) { | |
80 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
81 | anon_vma->degree = 1; /* Reference for first vma */ |
82 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
83 | /* |
84 | * Initialise the anon_vma root to point to itself. If called | |
85 | * from fork, the root will be reset to the parents anon_vma. | |
86 | */ | |
87 | anon_vma->root = anon_vma; | |
88 | } | |
89 | ||
90 | return anon_vma; | |
fdd2e5f8 AB |
91 | } |
92 | ||
01d8b20d | 93 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 94 | { |
01d8b20d | 95 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
96 | |
97 | /* | |
4fc3f1d6 | 98 | * Synchronize against page_lock_anon_vma_read() such that |
88c22088 PZ |
99 | * we can safely hold the lock without the anon_vma getting |
100 | * freed. | |
101 | * | |
102 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
103 | * put_anon_vma() against the acquire barrier implied by | |
4fc3f1d6 | 104 | * down_read_trylock() from page_lock_anon_vma_read(). This orders: |
88c22088 | 105 | * |
4fc3f1d6 IM |
106 | * page_lock_anon_vma_read() VS put_anon_vma() |
107 | * down_read_trylock() atomic_dec_and_test() | |
88c22088 | 108 | * LOCK MB |
4fc3f1d6 | 109 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
110 | * |
111 | * LOCK should suffice since the actual taking of the lock must | |
112 | * happen _before_ what follows. | |
113 | */ | |
7f39dda9 | 114 | might_sleep(); |
5a505085 | 115 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 116 | anon_vma_lock_write(anon_vma); |
08b52706 | 117 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
118 | } |
119 | ||
fdd2e5f8 AB |
120 | kmem_cache_free(anon_vma_cachep, anon_vma); |
121 | } | |
1da177e4 | 122 | |
dd34739c | 123 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 124 | { |
dd34739c | 125 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
126 | } |
127 | ||
e574b5fd | 128 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
129 | { |
130 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
131 | } | |
132 | ||
6583a843 KC |
133 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
134 | struct anon_vma_chain *avc, | |
135 | struct anon_vma *anon_vma) | |
136 | { | |
137 | avc->vma = vma; | |
138 | avc->anon_vma = anon_vma; | |
139 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 140 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
141 | } |
142 | ||
d9d332e0 | 143 | /** |
d5a187da | 144 | * __anon_vma_prepare - attach an anon_vma to a memory region |
d9d332e0 LT |
145 | * @vma: the memory region in question |
146 | * | |
147 | * This makes sure the memory mapping described by 'vma' has | |
148 | * an 'anon_vma' attached to it, so that we can associate the | |
149 | * anonymous pages mapped into it with that anon_vma. | |
150 | * | |
d5a187da VB |
151 | * The common case will be that we already have one, which |
152 | * is handled inline by anon_vma_prepare(). But if | |
23a0790a | 153 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
154 | * can re-use the anon_vma from (very common when the only |
155 | * reason for splitting a vma has been mprotect()), or we | |
156 | * allocate a new one. | |
157 | * | |
158 | * Anon-vma allocations are very subtle, because we may have | |
4fc3f1d6 | 159 | * optimistically looked up an anon_vma in page_lock_anon_vma_read() |
d9d332e0 LT |
160 | * and that may actually touch the spinlock even in the newly |
161 | * allocated vma (it depends on RCU to make sure that the | |
162 | * anon_vma isn't actually destroyed). | |
163 | * | |
164 | * As a result, we need to do proper anon_vma locking even | |
165 | * for the new allocation. At the same time, we do not want | |
166 | * to do any locking for the common case of already having | |
167 | * an anon_vma. | |
168 | * | |
169 | * This must be called with the mmap_sem held for reading. | |
170 | */ | |
d5a187da | 171 | int __anon_vma_prepare(struct vm_area_struct *vma) |
1da177e4 | 172 | { |
d5a187da VB |
173 | struct mm_struct *mm = vma->vm_mm; |
174 | struct anon_vma *anon_vma, *allocated; | |
5beb4930 | 175 | struct anon_vma_chain *avc; |
1da177e4 LT |
176 | |
177 | might_sleep(); | |
1da177e4 | 178 | |
d5a187da VB |
179 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
180 | if (!avc) | |
181 | goto out_enomem; | |
182 | ||
183 | anon_vma = find_mergeable_anon_vma(vma); | |
184 | allocated = NULL; | |
185 | if (!anon_vma) { | |
186 | anon_vma = anon_vma_alloc(); | |
187 | if (unlikely(!anon_vma)) | |
188 | goto out_enomem_free_avc; | |
189 | allocated = anon_vma; | |
190 | } | |
5beb4930 | 191 | |
d5a187da VB |
192 | anon_vma_lock_write(anon_vma); |
193 | /* page_table_lock to protect against threads */ | |
194 | spin_lock(&mm->page_table_lock); | |
195 | if (likely(!vma->anon_vma)) { | |
196 | vma->anon_vma = anon_vma; | |
197 | anon_vma_chain_link(vma, avc, anon_vma); | |
198 | /* vma reference or self-parent link for new root */ | |
199 | anon_vma->degree++; | |
d9d332e0 | 200 | allocated = NULL; |
d5a187da VB |
201 | avc = NULL; |
202 | } | |
203 | spin_unlock(&mm->page_table_lock); | |
204 | anon_vma_unlock_write(anon_vma); | |
1da177e4 | 205 | |
d5a187da VB |
206 | if (unlikely(allocated)) |
207 | put_anon_vma(allocated); | |
208 | if (unlikely(avc)) | |
209 | anon_vma_chain_free(avc); | |
31f2b0eb | 210 | |
1da177e4 | 211 | return 0; |
5beb4930 RR |
212 | |
213 | out_enomem_free_avc: | |
214 | anon_vma_chain_free(avc); | |
215 | out_enomem: | |
216 | return -ENOMEM; | |
1da177e4 LT |
217 | } |
218 | ||
bb4aa396 LT |
219 | /* |
220 | * This is a useful helper function for locking the anon_vma root as | |
221 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
222 | * have the same vma. | |
223 | * | |
224 | * Such anon_vma's should have the same root, so you'd expect to see | |
225 | * just a single mutex_lock for the whole traversal. | |
226 | */ | |
227 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
228 | { | |
229 | struct anon_vma *new_root = anon_vma->root; | |
230 | if (new_root != root) { | |
231 | if (WARN_ON_ONCE(root)) | |
5a505085 | 232 | up_write(&root->rwsem); |
bb4aa396 | 233 | root = new_root; |
5a505085 | 234 | down_write(&root->rwsem); |
bb4aa396 LT |
235 | } |
236 | return root; | |
237 | } | |
238 | ||
239 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
240 | { | |
241 | if (root) | |
5a505085 | 242 | up_write(&root->rwsem); |
bb4aa396 LT |
243 | } |
244 | ||
5beb4930 RR |
245 | /* |
246 | * Attach the anon_vmas from src to dst. | |
247 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 KK |
248 | * |
249 | * If dst->anon_vma is NULL this function tries to find and reuse existing | |
250 | * anon_vma which has no vmas and only one child anon_vma. This prevents | |
251 | * degradation of anon_vma hierarchy to endless linear chain in case of | |
252 | * constantly forking task. On the other hand, an anon_vma with more than one | |
253 | * child isn't reused even if there was no alive vma, thus rmap walker has a | |
254 | * good chance of avoiding scanning the whole hierarchy when it searches where | |
255 | * page is mapped. | |
5beb4930 RR |
256 | */ |
257 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 258 | { |
5beb4930 | 259 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 260 | struct anon_vma *root = NULL; |
5beb4930 | 261 | |
646d87b4 | 262 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
263 | struct anon_vma *anon_vma; |
264 | ||
dd34739c LT |
265 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
266 | if (unlikely(!avc)) { | |
267 | unlock_anon_vma_root(root); | |
268 | root = NULL; | |
269 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
270 | if (!avc) | |
271 | goto enomem_failure; | |
272 | } | |
bb4aa396 LT |
273 | anon_vma = pavc->anon_vma; |
274 | root = lock_anon_vma_root(root, anon_vma); | |
275 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
276 | |
277 | /* | |
278 | * Reuse existing anon_vma if its degree lower than two, | |
279 | * that means it has no vma and only one anon_vma child. | |
280 | * | |
281 | * Do not chose parent anon_vma, otherwise first child | |
282 | * will always reuse it. Root anon_vma is never reused: | |
283 | * it has self-parent reference and at least one child. | |
284 | */ | |
285 | if (!dst->anon_vma && anon_vma != src->anon_vma && | |
286 | anon_vma->degree < 2) | |
287 | dst->anon_vma = anon_vma; | |
5beb4930 | 288 | } |
7a3ef208 KK |
289 | if (dst->anon_vma) |
290 | dst->anon_vma->degree++; | |
bb4aa396 | 291 | unlock_anon_vma_root(root); |
5beb4930 | 292 | return 0; |
1da177e4 | 293 | |
5beb4930 | 294 | enomem_failure: |
3fe89b3e LY |
295 | /* |
296 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
297 | * decremented in unlink_anon_vmas(). | |
298 | * We can safely do this because callers of anon_vma_clone() don't care | |
299 | * about dst->anon_vma if anon_vma_clone() failed. | |
300 | */ | |
301 | dst->anon_vma = NULL; | |
5beb4930 RR |
302 | unlink_anon_vmas(dst); |
303 | return -ENOMEM; | |
1da177e4 LT |
304 | } |
305 | ||
5beb4930 RR |
306 | /* |
307 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
308 | * the corresponding VMA in the parent process is attached to. | |
309 | * Returns 0 on success, non-zero on failure. | |
310 | */ | |
311 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 312 | { |
5beb4930 RR |
313 | struct anon_vma_chain *avc; |
314 | struct anon_vma *anon_vma; | |
c4ea95d7 | 315 | int error; |
1da177e4 | 316 | |
5beb4930 RR |
317 | /* Don't bother if the parent process has no anon_vma here. */ |
318 | if (!pvma->anon_vma) | |
319 | return 0; | |
320 | ||
7a3ef208 KK |
321 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
322 | vma->anon_vma = NULL; | |
323 | ||
5beb4930 RR |
324 | /* |
325 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
326 | * so rmap can find non-COWed pages in child processes. | |
327 | */ | |
c4ea95d7 DF |
328 | error = anon_vma_clone(vma, pvma); |
329 | if (error) | |
330 | return error; | |
5beb4930 | 331 | |
7a3ef208 KK |
332 | /* An existing anon_vma has been reused, all done then. */ |
333 | if (vma->anon_vma) | |
334 | return 0; | |
335 | ||
5beb4930 RR |
336 | /* Then add our own anon_vma. */ |
337 | anon_vma = anon_vma_alloc(); | |
338 | if (!anon_vma) | |
339 | goto out_error; | |
dd34739c | 340 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
341 | if (!avc) |
342 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
343 | |
344 | /* | |
345 | * The root anon_vma's spinlock is the lock actually used when we | |
346 | * lock any of the anon_vmas in this anon_vma tree. | |
347 | */ | |
348 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 349 | anon_vma->parent = pvma->anon_vma; |
76545066 | 350 | /* |
01d8b20d PZ |
351 | * With refcounts, an anon_vma can stay around longer than the |
352 | * process it belongs to. The root anon_vma needs to be pinned until | |
353 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
354 | */ |
355 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
356 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
357 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 358 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 359 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 360 | anon_vma->parent->degree++; |
08b52706 | 361 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
362 | |
363 | return 0; | |
364 | ||
365 | out_error_free_anon_vma: | |
01d8b20d | 366 | put_anon_vma(anon_vma); |
5beb4930 | 367 | out_error: |
4946d54c | 368 | unlink_anon_vmas(vma); |
5beb4930 | 369 | return -ENOMEM; |
1da177e4 LT |
370 | } |
371 | ||
5beb4930 RR |
372 | void unlink_anon_vmas(struct vm_area_struct *vma) |
373 | { | |
374 | struct anon_vma_chain *avc, *next; | |
eee2acba | 375 | struct anon_vma *root = NULL; |
5beb4930 | 376 | |
5c341ee1 RR |
377 | /* |
378 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
379 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
380 | */ | |
5beb4930 | 381 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
382 | struct anon_vma *anon_vma = avc->anon_vma; |
383 | ||
384 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 385 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
386 | |
387 | /* | |
388 | * Leave empty anon_vmas on the list - we'll need | |
389 | * to free them outside the lock. | |
390 | */ | |
7a3ef208 KK |
391 | if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { |
392 | anon_vma->parent->degree--; | |
eee2acba | 393 | continue; |
7a3ef208 | 394 | } |
eee2acba PZ |
395 | |
396 | list_del(&avc->same_vma); | |
397 | anon_vma_chain_free(avc); | |
398 | } | |
7a3ef208 KK |
399 | if (vma->anon_vma) |
400 | vma->anon_vma->degree--; | |
eee2acba PZ |
401 | unlock_anon_vma_root(root); |
402 | ||
403 | /* | |
404 | * Iterate the list once more, it now only contains empty and unlinked | |
405 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 406 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
407 | */ |
408 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
409 | struct anon_vma *anon_vma = avc->anon_vma; | |
410 | ||
e4c5800a | 411 | VM_WARN_ON(anon_vma->degree); |
eee2acba PZ |
412 | put_anon_vma(anon_vma); |
413 | ||
5beb4930 RR |
414 | list_del(&avc->same_vma); |
415 | anon_vma_chain_free(avc); | |
416 | } | |
417 | } | |
418 | ||
51cc5068 | 419 | static void anon_vma_ctor(void *data) |
1da177e4 | 420 | { |
a35afb83 | 421 | struct anon_vma *anon_vma = data; |
1da177e4 | 422 | |
5a505085 | 423 | init_rwsem(&anon_vma->rwsem); |
83813267 | 424 | atomic_set(&anon_vma->refcount, 0); |
bf181b9f | 425 | anon_vma->rb_root = RB_ROOT; |
1da177e4 LT |
426 | } |
427 | ||
428 | void __init anon_vma_init(void) | |
429 | { | |
430 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5d097056 VD |
431 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
432 | anon_vma_ctor); | |
433 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
434 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
435 | } |
436 | ||
437 | /* | |
6111e4ca PZ |
438 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
439 | * | |
440 | * Since there is no serialization what so ever against page_remove_rmap() | |
441 | * the best this function can do is return a locked anon_vma that might | |
442 | * have been relevant to this page. | |
443 | * | |
444 | * The page might have been remapped to a different anon_vma or the anon_vma | |
445 | * returned may already be freed (and even reused). | |
446 | * | |
bc658c96 PZ |
447 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
448 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
449 | * ensure that any anon_vma obtained from the page will still be valid for as | |
450 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
451 | * | |
6111e4ca PZ |
452 | * All users of this function must be very careful when walking the anon_vma |
453 | * chain and verify that the page in question is indeed mapped in it | |
454 | * [ something equivalent to page_mapped_in_vma() ]. | |
455 | * | |
456 | * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() | |
457 | * that the anon_vma pointer from page->mapping is valid if there is a | |
458 | * mapcount, we can dereference the anon_vma after observing those. | |
1da177e4 | 459 | */ |
746b18d4 | 460 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 461 | { |
746b18d4 | 462 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
463 | unsigned long anon_mapping; |
464 | ||
465 | rcu_read_lock(); | |
4db0c3c2 | 466 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 467 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
468 | goto out; |
469 | if (!page_mapped(page)) | |
470 | goto out; | |
471 | ||
472 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
473 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
474 | anon_vma = NULL; | |
475 | goto out; | |
476 | } | |
f1819427 HD |
477 | |
478 | /* | |
479 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
480 | * freed. But if it has been unmapped, we have no security against the |
481 | * anon_vma structure being freed and reused (for another anon_vma: | |
482 | * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() | |
483 | * above cannot corrupt). | |
f1819427 | 484 | */ |
746b18d4 | 485 | if (!page_mapped(page)) { |
7f39dda9 | 486 | rcu_read_unlock(); |
746b18d4 | 487 | put_anon_vma(anon_vma); |
7f39dda9 | 488 | return NULL; |
746b18d4 | 489 | } |
1da177e4 LT |
490 | out: |
491 | rcu_read_unlock(); | |
746b18d4 PZ |
492 | |
493 | return anon_vma; | |
494 | } | |
495 | ||
88c22088 PZ |
496 | /* |
497 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
498 | * | |
499 | * Its a little more complex as it tries to keep the fast path to a single | |
500 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
501 | * reference like with page_get_anon_vma() and then block on the mutex. | |
502 | */ | |
4fc3f1d6 | 503 | struct anon_vma *page_lock_anon_vma_read(struct page *page) |
746b18d4 | 504 | { |
88c22088 | 505 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 506 | struct anon_vma *root_anon_vma; |
88c22088 | 507 | unsigned long anon_mapping; |
746b18d4 | 508 | |
88c22088 | 509 | rcu_read_lock(); |
4db0c3c2 | 510 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
88c22088 PZ |
511 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
512 | goto out; | |
513 | if (!page_mapped(page)) | |
514 | goto out; | |
515 | ||
516 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 517 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 518 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 519 | /* |
eee0f252 HD |
520 | * If the page is still mapped, then this anon_vma is still |
521 | * its anon_vma, and holding the mutex ensures that it will | |
bc658c96 | 522 | * not go away, see anon_vma_free(). |
88c22088 | 523 | */ |
eee0f252 | 524 | if (!page_mapped(page)) { |
4fc3f1d6 | 525 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
526 | anon_vma = NULL; |
527 | } | |
528 | goto out; | |
529 | } | |
746b18d4 | 530 | |
88c22088 PZ |
531 | /* trylock failed, we got to sleep */ |
532 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
533 | anon_vma = NULL; | |
534 | goto out; | |
535 | } | |
536 | ||
537 | if (!page_mapped(page)) { | |
7f39dda9 | 538 | rcu_read_unlock(); |
88c22088 | 539 | put_anon_vma(anon_vma); |
7f39dda9 | 540 | return NULL; |
88c22088 PZ |
541 | } |
542 | ||
543 | /* we pinned the anon_vma, its safe to sleep */ | |
544 | rcu_read_unlock(); | |
4fc3f1d6 | 545 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
546 | |
547 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
548 | /* | |
549 | * Oops, we held the last refcount, release the lock | |
550 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 551 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 552 | */ |
4fc3f1d6 | 553 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
554 | __put_anon_vma(anon_vma); |
555 | anon_vma = NULL; | |
556 | } | |
557 | ||
558 | return anon_vma; | |
559 | ||
560 | out: | |
561 | rcu_read_unlock(); | |
746b18d4 | 562 | return anon_vma; |
34bbd704 ON |
563 | } |
564 | ||
4fc3f1d6 | 565 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 566 | { |
4fc3f1d6 | 567 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
568 | } |
569 | ||
72b252ae | 570 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
72b252ae MG |
571 | /* |
572 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
573 | * important if a PTE was dirty when it was unmapped that it's flushed | |
574 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
575 | * it must be flushed before freeing to prevent data leakage. | |
576 | */ | |
577 | void try_to_unmap_flush(void) | |
578 | { | |
579 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
580 | int cpu; | |
581 | ||
582 | if (!tlb_ubc->flush_required) | |
583 | return; | |
584 | ||
585 | cpu = get_cpu(); | |
586 | ||
858eaaa7 NA |
587 | if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) { |
588 | count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); | |
589 | local_flush_tlb(); | |
590 | trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL); | |
72b252ae | 591 | } |
858eaaa7 NA |
592 | |
593 | if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) | |
594 | flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL); | |
72b252ae MG |
595 | cpumask_clear(&tlb_ubc->cpumask); |
596 | tlb_ubc->flush_required = false; | |
d950c947 | 597 | tlb_ubc->writable = false; |
72b252ae MG |
598 | put_cpu(); |
599 | } | |
600 | ||
d950c947 MG |
601 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
602 | void try_to_unmap_flush_dirty(void) | |
603 | { | |
604 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
605 | ||
606 | if (tlb_ubc->writable) | |
607 | try_to_unmap_flush(); | |
608 | } | |
609 | ||
72b252ae | 610 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, |
d950c947 | 611 | struct page *page, bool writable) |
72b252ae MG |
612 | { |
613 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
614 | ||
615 | cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm)); | |
616 | tlb_ubc->flush_required = true; | |
d950c947 MG |
617 | |
618 | /* | |
619 | * If the PTE was dirty then it's best to assume it's writable. The | |
620 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
621 | * before the page is queued for IO. | |
622 | */ | |
623 | if (writable) | |
624 | tlb_ubc->writable = true; | |
72b252ae MG |
625 | } |
626 | ||
627 | /* | |
628 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
629 | * unmap operations to reduce IPIs. | |
630 | */ | |
631 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
632 | { | |
633 | bool should_defer = false; | |
634 | ||
635 | if (!(flags & TTU_BATCH_FLUSH)) | |
636 | return false; | |
637 | ||
638 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
639 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
640 | should_defer = true; | |
641 | put_cpu(); | |
642 | ||
643 | return should_defer; | |
644 | } | |
645 | #else | |
646 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, | |
d950c947 | 647 | struct page *page, bool writable) |
72b252ae MG |
648 | { |
649 | } | |
650 | ||
651 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
652 | { | |
653 | return false; | |
654 | } | |
655 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
656 | ||
1da177e4 | 657 | /* |
bf89c8c8 | 658 | * At what user virtual address is page expected in vma? |
ab941e0f | 659 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
660 | */ |
661 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
662 | { | |
86c2ad19 | 663 | unsigned long address; |
21d0d443 | 664 | if (PageAnon(page)) { |
4829b906 HD |
665 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
666 | /* | |
667 | * Note: swapoff's unuse_vma() is more efficient with this | |
668 | * check, and needs it to match anon_vma when KSM is active. | |
669 | */ | |
670 | if (!vma->anon_vma || !page__anon_vma || | |
671 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 672 | return -EFAULT; |
27ba0644 KS |
673 | } else if (page->mapping) { |
674 | if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
675 | return -EFAULT; |
676 | } else | |
677 | return -EFAULT; | |
86c2ad19 ML |
678 | address = __vma_address(page, vma); |
679 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
680 | return -EFAULT; | |
681 | return address; | |
1da177e4 LT |
682 | } |
683 | ||
6219049a BL |
684 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
685 | { | |
686 | pgd_t *pgd; | |
687 | pud_t *pud; | |
688 | pmd_t *pmd = NULL; | |
f72e7dcd | 689 | pmd_t pmde; |
6219049a BL |
690 | |
691 | pgd = pgd_offset(mm, address); | |
692 | if (!pgd_present(*pgd)) | |
693 | goto out; | |
694 | ||
695 | pud = pud_offset(pgd, address); | |
696 | if (!pud_present(*pud)) | |
697 | goto out; | |
698 | ||
699 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 700 | /* |
8809aa2d | 701 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
702 | * without holding anon_vma lock for write. So when looking for a |
703 | * genuine pmde (in which to find pte), test present and !THP together. | |
704 | */ | |
e37c6982 CB |
705 | pmde = *pmd; |
706 | barrier(); | |
f72e7dcd | 707 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
708 | pmd = NULL; |
709 | out: | |
710 | return pmd; | |
711 | } | |
712 | ||
81b4082d ND |
713 | /* |
714 | * Check that @page is mapped at @address into @mm. | |
715 | * | |
479db0bf NP |
716 | * If @sync is false, page_check_address may perform a racy check to avoid |
717 | * the page table lock when the pte is not present (helpful when reclaiming | |
718 | * highly shared pages). | |
719 | * | |
b8072f09 | 720 | * On success returns with pte mapped and locked. |
81b4082d | 721 | */ |
e9a81a82 | 722 | pte_t *__page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 723 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d | 724 | { |
81b4082d ND |
725 | pmd_t *pmd; |
726 | pte_t *pte; | |
c0718806 | 727 | spinlock_t *ptl; |
81b4082d | 728 | |
0fe6e20b | 729 | if (unlikely(PageHuge(page))) { |
98398c32 | 730 | /* when pud is not present, pte will be NULL */ |
0fe6e20b | 731 | pte = huge_pte_offset(mm, address); |
98398c32 JW |
732 | if (!pte) |
733 | return NULL; | |
734 | ||
cb900f41 | 735 | ptl = huge_pte_lockptr(page_hstate(page), mm, pte); |
0fe6e20b NH |
736 | goto check; |
737 | } | |
738 | ||
6219049a BL |
739 | pmd = mm_find_pmd(mm, address); |
740 | if (!pmd) | |
c0718806 HD |
741 | return NULL; |
742 | ||
c0718806 HD |
743 | pte = pte_offset_map(pmd, address); |
744 | /* Make a quick check before getting the lock */ | |
479db0bf | 745 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
746 | pte_unmap(pte); |
747 | return NULL; | |
748 | } | |
749 | ||
4c21e2f2 | 750 | ptl = pte_lockptr(mm, pmd); |
0fe6e20b | 751 | check: |
c0718806 HD |
752 | spin_lock(ptl); |
753 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
754 | *ptlp = ptl; | |
755 | return pte; | |
81b4082d | 756 | } |
c0718806 HD |
757 | pte_unmap_unlock(pte, ptl); |
758 | return NULL; | |
81b4082d ND |
759 | } |
760 | ||
b291f000 NP |
761 | /** |
762 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
763 | * @page: the page to test | |
764 | * @vma: the VMA to test | |
765 | * | |
766 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
767 | * if the page is not mapped into the page tables of this VMA. Only | |
768 | * valid for normal file or anonymous VMAs. | |
769 | */ | |
6a46079c | 770 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) |
b291f000 NP |
771 | { |
772 | unsigned long address; | |
773 | pte_t *pte; | |
774 | spinlock_t *ptl; | |
775 | ||
86c2ad19 ML |
776 | address = __vma_address(page, vma); |
777 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
b291f000 NP |
778 | return 0; |
779 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
780 | if (!pte) /* the page is not in this mm */ | |
781 | return 0; | |
782 | pte_unmap_unlock(pte, ptl); | |
783 | ||
784 | return 1; | |
785 | } | |
786 | ||
8749cfea | 787 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
1da177e4 | 788 | /* |
8749cfea VD |
789 | * Check that @page is mapped at @address into @mm. In contrast to |
790 | * page_check_address(), this function can handle transparent huge pages. | |
791 | * | |
792 | * On success returns true with pte mapped and locked. For PMD-mapped | |
793 | * transparent huge pages *@ptep is set to NULL. | |
1da177e4 | 794 | */ |
8749cfea VD |
795 | bool page_check_address_transhuge(struct page *page, struct mm_struct *mm, |
796 | unsigned long address, pmd_t **pmdp, | |
797 | pte_t **ptep, spinlock_t **ptlp) | |
1da177e4 | 798 | { |
b20ce5e0 KS |
799 | pgd_t *pgd; |
800 | pud_t *pud; | |
801 | pmd_t *pmd; | |
802 | pte_t *pte; | |
8749cfea | 803 | spinlock_t *ptl; |
1da177e4 | 804 | |
b20ce5e0 KS |
805 | if (unlikely(PageHuge(page))) { |
806 | /* when pud is not present, pte will be NULL */ | |
807 | pte = huge_pte_offset(mm, address); | |
808 | if (!pte) | |
8749cfea | 809 | return false; |
2da28bfd | 810 | |
b20ce5e0 | 811 | ptl = huge_pte_lockptr(page_hstate(page), mm, pte); |
8749cfea | 812 | pmd = NULL; |
b20ce5e0 KS |
813 | goto check_pte; |
814 | } | |
815 | ||
816 | pgd = pgd_offset(mm, address); | |
817 | if (!pgd_present(*pgd)) | |
8749cfea | 818 | return false; |
b20ce5e0 KS |
819 | pud = pud_offset(pgd, address); |
820 | if (!pud_present(*pud)) | |
8749cfea | 821 | return false; |
b20ce5e0 KS |
822 | pmd = pmd_offset(pud, address); |
823 | ||
824 | if (pmd_trans_huge(*pmd)) { | |
b20ce5e0 KS |
825 | ptl = pmd_lock(mm, pmd); |
826 | if (!pmd_present(*pmd)) | |
827 | goto unlock_pmd; | |
828 | if (unlikely(!pmd_trans_huge(*pmd))) { | |
117b0791 | 829 | spin_unlock(ptl); |
b20ce5e0 KS |
830 | goto map_pte; |
831 | } | |
832 | ||
833 | if (pmd_page(*pmd) != page) | |
834 | goto unlock_pmd; | |
835 | ||
8749cfea | 836 | pte = NULL; |
b20ce5e0 KS |
837 | goto found; |
838 | unlock_pmd: | |
839 | spin_unlock(ptl); | |
8749cfea | 840 | return false; |
71e3aac0 | 841 | } else { |
b20ce5e0 | 842 | pmd_t pmde = *pmd; |
71e3aac0 | 843 | |
b20ce5e0 KS |
844 | barrier(); |
845 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) | |
8749cfea | 846 | return false; |
b20ce5e0 KS |
847 | } |
848 | map_pte: | |
849 | pte = pte_offset_map(pmd, address); | |
850 | if (!pte_present(*pte)) { | |
851 | pte_unmap(pte); | |
8749cfea | 852 | return false; |
b20ce5e0 | 853 | } |
71e3aac0 | 854 | |
b20ce5e0 KS |
855 | ptl = pte_lockptr(mm, pmd); |
856 | check_pte: | |
857 | spin_lock(ptl); | |
2da28bfd | 858 | |
b20ce5e0 KS |
859 | if (!pte_present(*pte)) { |
860 | pte_unmap_unlock(pte, ptl); | |
8749cfea | 861 | return false; |
b20ce5e0 KS |
862 | } |
863 | ||
864 | /* THP can be referenced by any subpage */ | |
865 | if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) { | |
866 | pte_unmap_unlock(pte, ptl); | |
8749cfea | 867 | return false; |
b20ce5e0 | 868 | } |
8749cfea VD |
869 | found: |
870 | *ptep = pte; | |
871 | *pmdp = pmd; | |
872 | *ptlp = ptl; | |
873 | return true; | |
874 | } | |
875 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
876 | ||
877 | struct page_referenced_arg { | |
878 | int mapcount; | |
879 | int referenced; | |
880 | unsigned long vm_flags; | |
881 | struct mem_cgroup *memcg; | |
882 | }; | |
883 | /* | |
884 | * arg: page_referenced_arg will be passed | |
885 | */ | |
886 | static int page_referenced_one(struct page *page, struct vm_area_struct *vma, | |
887 | unsigned long address, void *arg) | |
888 | { | |
889 | struct mm_struct *mm = vma->vm_mm; | |
890 | struct page_referenced_arg *pra = arg; | |
891 | pmd_t *pmd; | |
892 | pte_t *pte; | |
893 | spinlock_t *ptl; | |
894 | int referenced = 0; | |
895 | ||
896 | if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl)) | |
897 | return SWAP_AGAIN; | |
b20ce5e0 KS |
898 | |
899 | if (vma->vm_flags & VM_LOCKED) { | |
8749cfea VD |
900 | if (pte) |
901 | pte_unmap(pte); | |
902 | spin_unlock(ptl); | |
b20ce5e0 KS |
903 | pra->vm_flags |= VM_LOCKED; |
904 | return SWAP_FAIL; /* To break the loop */ | |
71e3aac0 AA |
905 | } |
906 | ||
8749cfea VD |
907 | if (pte) { |
908 | if (ptep_clear_flush_young_notify(vma, address, pte)) { | |
909 | /* | |
910 | * Don't treat a reference through a sequentially read | |
911 | * mapping as such. If the page has been used in | |
912 | * another mapping, we will catch it; if this other | |
913 | * mapping is already gone, the unmap path will have | |
914 | * set PG_referenced or activated the page. | |
915 | */ | |
916 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | |
917 | referenced++; | |
918 | } | |
919 | pte_unmap(pte); | |
920 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | |
921 | if (pmdp_clear_flush_young_notify(vma, address, pmd)) | |
b20ce5e0 | 922 | referenced++; |
8749cfea VD |
923 | } else { |
924 | /* unexpected pmd-mapped page? */ | |
925 | WARN_ON_ONCE(1); | |
b20ce5e0 | 926 | } |
8749cfea | 927 | spin_unlock(ptl); |
b20ce5e0 | 928 | |
33c3fc71 VD |
929 | if (referenced) |
930 | clear_page_idle(page); | |
931 | if (test_and_clear_page_young(page)) | |
932 | referenced++; | |
933 | ||
9f32624b JK |
934 | if (referenced) { |
935 | pra->referenced++; | |
936 | pra->vm_flags |= vma->vm_flags; | |
1da177e4 | 937 | } |
34bbd704 | 938 | |
9f32624b JK |
939 | pra->mapcount--; |
940 | if (!pra->mapcount) | |
941 | return SWAP_SUCCESS; /* To break the loop */ | |
942 | ||
943 | return SWAP_AGAIN; | |
1da177e4 LT |
944 | } |
945 | ||
9f32624b | 946 | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 947 | { |
9f32624b JK |
948 | struct page_referenced_arg *pra = arg; |
949 | struct mem_cgroup *memcg = pra->memcg; | |
1da177e4 | 950 | |
9f32624b JK |
951 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
952 | return true; | |
1da177e4 | 953 | |
9f32624b | 954 | return false; |
1da177e4 LT |
955 | } |
956 | ||
957 | /** | |
958 | * page_referenced - test if the page was referenced | |
959 | * @page: the page to test | |
960 | * @is_locked: caller holds lock on the page | |
72835c86 | 961 | * @memcg: target memory cgroup |
6fe6b7e3 | 962 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
963 | * |
964 | * Quick test_and_clear_referenced for all mappings to a page, | |
965 | * returns the number of ptes which referenced the page. | |
966 | */ | |
6fe6b7e3 WF |
967 | int page_referenced(struct page *page, |
968 | int is_locked, | |
72835c86 | 969 | struct mem_cgroup *memcg, |
6fe6b7e3 | 970 | unsigned long *vm_flags) |
1da177e4 | 971 | { |
9f32624b | 972 | int ret; |
5ad64688 | 973 | int we_locked = 0; |
9f32624b | 974 | struct page_referenced_arg pra = { |
b20ce5e0 | 975 | .mapcount = total_mapcount(page), |
9f32624b JK |
976 | .memcg = memcg, |
977 | }; | |
978 | struct rmap_walk_control rwc = { | |
979 | .rmap_one = page_referenced_one, | |
980 | .arg = (void *)&pra, | |
981 | .anon_lock = page_lock_anon_vma_read, | |
982 | }; | |
1da177e4 | 983 | |
6fe6b7e3 | 984 | *vm_flags = 0; |
9f32624b JK |
985 | if (!page_mapped(page)) |
986 | return 0; | |
987 | ||
988 | if (!page_rmapping(page)) | |
989 | return 0; | |
990 | ||
991 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | |
992 | we_locked = trylock_page(page); | |
993 | if (!we_locked) | |
994 | return 1; | |
1da177e4 | 995 | } |
9f32624b JK |
996 | |
997 | /* | |
998 | * If we are reclaiming on behalf of a cgroup, skip | |
999 | * counting on behalf of references from different | |
1000 | * cgroups | |
1001 | */ | |
1002 | if (memcg) { | |
1003 | rwc.invalid_vma = invalid_page_referenced_vma; | |
1004 | } | |
1005 | ||
1006 | ret = rmap_walk(page, &rwc); | |
1007 | *vm_flags = pra.vm_flags; | |
1008 | ||
1009 | if (we_locked) | |
1010 | unlock_page(page); | |
1011 | ||
1012 | return pra.referenced; | |
1da177e4 LT |
1013 | } |
1014 | ||
1cb1729b | 1015 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
9853a407 | 1016 | unsigned long address, void *arg) |
d08b3851 PZ |
1017 | { |
1018 | struct mm_struct *mm = vma->vm_mm; | |
c2fda5fe | 1019 | pte_t *pte; |
d08b3851 PZ |
1020 | spinlock_t *ptl; |
1021 | int ret = 0; | |
9853a407 | 1022 | int *cleaned = arg; |
d08b3851 | 1023 | |
479db0bf | 1024 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
1025 | if (!pte) |
1026 | goto out; | |
1027 | ||
c2fda5fe PZ |
1028 | if (pte_dirty(*pte) || pte_write(*pte)) { |
1029 | pte_t entry; | |
d08b3851 | 1030 | |
c2fda5fe | 1031 | flush_cache_page(vma, address, pte_pfn(*pte)); |
2ec74c3e | 1032 | entry = ptep_clear_flush(vma, address, pte); |
c2fda5fe PZ |
1033 | entry = pte_wrprotect(entry); |
1034 | entry = pte_mkclean(entry); | |
d6e88e67 | 1035 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
1036 | ret = 1; |
1037 | } | |
d08b3851 | 1038 | |
d08b3851 | 1039 | pte_unmap_unlock(pte, ptl); |
2ec74c3e | 1040 | |
9853a407 | 1041 | if (ret) { |
2ec74c3e | 1042 | mmu_notifier_invalidate_page(mm, address); |
9853a407 JK |
1043 | (*cleaned)++; |
1044 | } | |
d08b3851 | 1045 | out: |
9853a407 | 1046 | return SWAP_AGAIN; |
d08b3851 PZ |
1047 | } |
1048 | ||
9853a407 | 1049 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 1050 | { |
9853a407 | 1051 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 1052 | return false; |
d08b3851 | 1053 | |
871beb8c | 1054 | return true; |
d08b3851 PZ |
1055 | } |
1056 | ||
1057 | int page_mkclean(struct page *page) | |
1058 | { | |
9853a407 JK |
1059 | int cleaned = 0; |
1060 | struct address_space *mapping; | |
1061 | struct rmap_walk_control rwc = { | |
1062 | .arg = (void *)&cleaned, | |
1063 | .rmap_one = page_mkclean_one, | |
1064 | .invalid_vma = invalid_mkclean_vma, | |
1065 | }; | |
d08b3851 PZ |
1066 | |
1067 | BUG_ON(!PageLocked(page)); | |
1068 | ||
9853a407 JK |
1069 | if (!page_mapped(page)) |
1070 | return 0; | |
1071 | ||
1072 | mapping = page_mapping(page); | |
1073 | if (!mapping) | |
1074 | return 0; | |
1075 | ||
1076 | rmap_walk(page, &rwc); | |
d08b3851 | 1077 | |
9853a407 | 1078 | return cleaned; |
d08b3851 | 1079 | } |
60b59bea | 1080 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 1081 | |
c44b6743 RR |
1082 | /** |
1083 | * page_move_anon_rmap - move a page to our anon_vma | |
1084 | * @page: the page to move to our anon_vma | |
1085 | * @vma: the vma the page belongs to | |
c44b6743 RR |
1086 | * |
1087 | * When a page belongs exclusively to one process after a COW event, | |
1088 | * that page can be moved into the anon_vma that belongs to just that | |
1089 | * process, so the rmap code will not search the parent or sibling | |
1090 | * processes. | |
1091 | */ | |
5a49973d | 1092 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) |
c44b6743 RR |
1093 | { |
1094 | struct anon_vma *anon_vma = vma->anon_vma; | |
1095 | ||
5a49973d HD |
1096 | page = compound_head(page); |
1097 | ||
309381fe | 1098 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 1099 | VM_BUG_ON_VMA(!anon_vma, vma); |
c44b6743 RR |
1100 | |
1101 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
1102 | /* |
1103 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
1104 | * simultaneously, so a concurrent reader (eg page_referenced()'s | |
1105 | * PageAnon()) will not see one without the other. | |
1106 | */ | |
1107 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
c44b6743 RR |
1108 | } |
1109 | ||
9617d95e | 1110 | /** |
4e1c1975 AK |
1111 | * __page_set_anon_rmap - set up new anonymous rmap |
1112 | * @page: Page to add to rmap | |
1113 | * @vma: VM area to add page to. | |
1114 | * @address: User virtual address of the mapping | |
e8a03feb | 1115 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1116 | */ |
1117 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1118 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1119 | { |
e8a03feb | 1120 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1121 | |
e8a03feb | 1122 | BUG_ON(!anon_vma); |
ea90002b | 1123 | |
4e1c1975 AK |
1124 | if (PageAnon(page)) |
1125 | return; | |
1126 | ||
ea90002b | 1127 | /* |
e8a03feb RR |
1128 | * If the page isn't exclusively mapped into this vma, |
1129 | * we must use the _oldest_ possible anon_vma for the | |
1130 | * page mapping! | |
ea90002b | 1131 | */ |
4e1c1975 | 1132 | if (!exclusive) |
288468c3 | 1133 | anon_vma = anon_vma->root; |
9617d95e | 1134 | |
9617d95e NP |
1135 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1136 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 1137 | page->index = linear_page_index(vma, address); |
9617d95e NP |
1138 | } |
1139 | ||
c97a9e10 | 1140 | /** |
43d8eac4 | 1141 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1142 | * @page: the page to add the mapping to |
1143 | * @vma: the vm area in which the mapping is added | |
1144 | * @address: the user virtual address mapped | |
1145 | */ | |
1146 | static void __page_check_anon_rmap(struct page *page, | |
1147 | struct vm_area_struct *vma, unsigned long address) | |
1148 | { | |
1149 | #ifdef CONFIG_DEBUG_VM | |
1150 | /* | |
1151 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1152 | * be set up correctly at this point. | |
1153 | * | |
1154 | * We have exclusion against page_add_anon_rmap because the caller | |
1155 | * always holds the page locked, except if called from page_dup_rmap, | |
1156 | * in which case the page is already known to be setup. | |
1157 | * | |
1158 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1159 | * are initially only visible via the pagetables, and the pte is locked | |
1160 | * over the call to page_add_new_anon_rmap. | |
1161 | */ | |
44ab57a0 | 1162 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
53f9263b | 1163 | BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); |
c97a9e10 NP |
1164 | #endif |
1165 | } | |
1166 | ||
1da177e4 LT |
1167 | /** |
1168 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1169 | * @page: the page to add the mapping to | |
1170 | * @vma: the vm area in which the mapping is added | |
1171 | * @address: the user virtual address mapped | |
d281ee61 | 1172 | * @compound: charge the page as compound or small page |
1da177e4 | 1173 | * |
5ad64688 | 1174 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1175 | * the anon_vma case: to serialize mapping,index checking after setting, |
1176 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1177 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1178 | */ |
1179 | void page_add_anon_rmap(struct page *page, | |
d281ee61 | 1180 | struct vm_area_struct *vma, unsigned long address, bool compound) |
ad8c2ee8 | 1181 | { |
d281ee61 | 1182 | do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); |
ad8c2ee8 RR |
1183 | } |
1184 | ||
1185 | /* | |
1186 | * Special version of the above for do_swap_page, which often runs | |
1187 | * into pages that are exclusively owned by the current process. | |
1188 | * Everybody else should continue to use page_add_anon_rmap above. | |
1189 | */ | |
1190 | void do_page_add_anon_rmap(struct page *page, | |
d281ee61 | 1191 | struct vm_area_struct *vma, unsigned long address, int flags) |
1da177e4 | 1192 | { |
53f9263b KS |
1193 | bool compound = flags & RMAP_COMPOUND; |
1194 | bool first; | |
1195 | ||
e9b61f19 KS |
1196 | if (compound) { |
1197 | atomic_t *mapcount; | |
53f9263b | 1198 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9b61f19 KS |
1199 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
1200 | mapcount = compound_mapcount_ptr(page); | |
1201 | first = atomic_inc_and_test(mapcount); | |
53f9263b KS |
1202 | } else { |
1203 | first = atomic_inc_and_test(&page->_mapcount); | |
1204 | } | |
1205 | ||
79134171 | 1206 | if (first) { |
d281ee61 | 1207 | int nr = compound ? hpage_nr_pages(page) : 1; |
bea04b07 JZ |
1208 | /* |
1209 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1210 | * these counters are not modified in interrupt context, and | |
1211 | * pte lock(a spinlock) is held, which implies preemption | |
1212 | * disabled. | |
1213 | */ | |
65c45377 | 1214 | if (compound) |
11fb9989 | 1215 | __inc_node_page_state(page, NR_ANON_THPS); |
4b9d0fab | 1216 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); |
79134171 | 1217 | } |
5ad64688 HD |
1218 | if (unlikely(PageKsm(page))) |
1219 | return; | |
1220 | ||
309381fe | 1221 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
53f9263b | 1222 | |
5dbe0af4 | 1223 | /* address might be in next vma when migration races vma_adjust */ |
5ad64688 | 1224 | if (first) |
d281ee61 KS |
1225 | __page_set_anon_rmap(page, vma, address, |
1226 | flags & RMAP_EXCLUSIVE); | |
69029cd5 | 1227 | else |
c97a9e10 | 1228 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
1229 | } |
1230 | ||
43d8eac4 | 1231 | /** |
9617d95e NP |
1232 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1233 | * @page: the page to add the mapping to | |
1234 | * @vma: the vm area in which the mapping is added | |
1235 | * @address: the user virtual address mapped | |
d281ee61 | 1236 | * @compound: charge the page as compound or small page |
9617d95e NP |
1237 | * |
1238 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1239 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1240 | * Page does not have to be locked. |
9617d95e NP |
1241 | */ |
1242 | void page_add_new_anon_rmap(struct page *page, | |
d281ee61 | 1243 | struct vm_area_struct *vma, unsigned long address, bool compound) |
9617d95e | 1244 | { |
d281ee61 KS |
1245 | int nr = compound ? hpage_nr_pages(page) : 1; |
1246 | ||
81d1b09c | 1247 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
fa9949da | 1248 | __SetPageSwapBacked(page); |
d281ee61 KS |
1249 | if (compound) { |
1250 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
53f9263b KS |
1251 | /* increment count (starts at -1) */ |
1252 | atomic_set(compound_mapcount_ptr(page), 0); | |
11fb9989 | 1253 | __inc_node_page_state(page, NR_ANON_THPS); |
53f9263b KS |
1254 | } else { |
1255 | /* Anon THP always mapped first with PMD */ | |
1256 | VM_BUG_ON_PAGE(PageTransCompound(page), page); | |
1257 | /* increment count (starts at -1) */ | |
1258 | atomic_set(&page->_mapcount, 0); | |
d281ee61 | 1259 | } |
4b9d0fab | 1260 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); |
e8a03feb | 1261 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1262 | } |
1263 | ||
1da177e4 LT |
1264 | /** |
1265 | * page_add_file_rmap - add pte mapping to a file page | |
1266 | * @page: the page to add the mapping to | |
1267 | * | |
b8072f09 | 1268 | * The caller needs to hold the pte lock. |
1da177e4 | 1269 | */ |
dd78fedd | 1270 | void page_add_file_rmap(struct page *page, bool compound) |
1da177e4 | 1271 | { |
dd78fedd KS |
1272 | int i, nr = 1; |
1273 | ||
1274 | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | |
62cccb8c | 1275 | lock_page_memcg(page); |
dd78fedd KS |
1276 | if (compound && PageTransHuge(page)) { |
1277 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1278 | if (atomic_inc_and_test(&page[i]._mapcount)) | |
1279 | nr++; | |
1280 | } | |
1281 | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | |
1282 | goto out; | |
65c45377 | 1283 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); |
11fb9989 | 1284 | __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); |
dd78fedd | 1285 | } else { |
c8efc390 KS |
1286 | if (PageTransCompound(page) && page_mapping(page)) { |
1287 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
1288 | ||
9a73f61b KS |
1289 | SetPageDoubleMap(compound_head(page)); |
1290 | if (PageMlocked(page)) | |
1291 | clear_page_mlock(compound_head(page)); | |
1292 | } | |
dd78fedd KS |
1293 | if (!atomic_inc_and_test(&page->_mapcount)) |
1294 | goto out; | |
d69b042f | 1295 | } |
50658e2e | 1296 | __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr); |
dd78fedd KS |
1297 | mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); |
1298 | out: | |
62cccb8c | 1299 | unlock_page_memcg(page); |
1da177e4 LT |
1300 | } |
1301 | ||
dd78fedd | 1302 | static void page_remove_file_rmap(struct page *page, bool compound) |
8186eb6a | 1303 | { |
dd78fedd KS |
1304 | int i, nr = 1; |
1305 | ||
57dea93a | 1306 | VM_BUG_ON_PAGE(compound && !PageHead(page), page); |
62cccb8c | 1307 | lock_page_memcg(page); |
8186eb6a | 1308 | |
53f9263b KS |
1309 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ |
1310 | if (unlikely(PageHuge(page))) { | |
1311 | /* hugetlb pages are always mapped with pmds */ | |
1312 | atomic_dec(compound_mapcount_ptr(page)); | |
8186eb6a | 1313 | goto out; |
53f9263b | 1314 | } |
8186eb6a | 1315 | |
53f9263b | 1316 | /* page still mapped by someone else? */ |
dd78fedd KS |
1317 | if (compound && PageTransHuge(page)) { |
1318 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1319 | if (atomic_add_negative(-1, &page[i]._mapcount)) | |
1320 | nr++; | |
1321 | } | |
1322 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1323 | goto out; | |
65c45377 | 1324 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); |
11fb9989 | 1325 | __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); |
dd78fedd KS |
1326 | } else { |
1327 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
1328 | goto out; | |
1329 | } | |
8186eb6a JW |
1330 | |
1331 | /* | |
50658e2e | 1332 | * We use the irq-unsafe __{inc|mod}_zone_page_state because |
8186eb6a JW |
1333 | * these counters are not modified in interrupt context, and |
1334 | * pte lock(a spinlock) is held, which implies preemption disabled. | |
1335 | */ | |
50658e2e | 1336 | __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr); |
62cccb8c | 1337 | mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); |
8186eb6a JW |
1338 | |
1339 | if (unlikely(PageMlocked(page))) | |
1340 | clear_page_mlock(page); | |
1341 | out: | |
62cccb8c | 1342 | unlock_page_memcg(page); |
8186eb6a JW |
1343 | } |
1344 | ||
53f9263b KS |
1345 | static void page_remove_anon_compound_rmap(struct page *page) |
1346 | { | |
1347 | int i, nr; | |
1348 | ||
1349 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1350 | return; | |
1351 | ||
1352 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1353 | if (unlikely(PageHuge(page))) | |
1354 | return; | |
1355 | ||
1356 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | |
1357 | return; | |
1358 | ||
11fb9989 | 1359 | __dec_node_page_state(page, NR_ANON_THPS); |
53f9263b KS |
1360 | |
1361 | if (TestClearPageDoubleMap(page)) { | |
1362 | /* | |
1363 | * Subpages can be mapped with PTEs too. Check how many of | |
1364 | * themi are still mapped. | |
1365 | */ | |
1366 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1367 | if (atomic_add_negative(-1, &page[i]._mapcount)) | |
1368 | nr++; | |
1369 | } | |
1370 | } else { | |
1371 | nr = HPAGE_PMD_NR; | |
1372 | } | |
1373 | ||
e90309c9 KS |
1374 | if (unlikely(PageMlocked(page))) |
1375 | clear_page_mlock(page); | |
1376 | ||
9a982250 | 1377 | if (nr) { |
4b9d0fab | 1378 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); |
9a982250 KS |
1379 | deferred_split_huge_page(page); |
1380 | } | |
53f9263b KS |
1381 | } |
1382 | ||
1da177e4 LT |
1383 | /** |
1384 | * page_remove_rmap - take down pte mapping from a page | |
d281ee61 KS |
1385 | * @page: page to remove mapping from |
1386 | * @compound: uncharge the page as compound or small page | |
1da177e4 | 1387 | * |
b8072f09 | 1388 | * The caller needs to hold the pte lock. |
1da177e4 | 1389 | */ |
d281ee61 | 1390 | void page_remove_rmap(struct page *page, bool compound) |
1da177e4 | 1391 | { |
dd78fedd KS |
1392 | if (!PageAnon(page)) |
1393 | return page_remove_file_rmap(page, compound); | |
89c06bd5 | 1394 | |
53f9263b KS |
1395 | if (compound) |
1396 | return page_remove_anon_compound_rmap(page); | |
1397 | ||
b904dcfe KM |
1398 | /* page still mapped by someone else? */ |
1399 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
8186eb6a JW |
1400 | return; |
1401 | ||
0fe6e20b | 1402 | /* |
bea04b07 JZ |
1403 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1404 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1405 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1406 | */ |
4b9d0fab | 1407 | __dec_node_page_state(page, NR_ANON_MAPPED); |
8186eb6a | 1408 | |
e6c509f8 HD |
1409 | if (unlikely(PageMlocked(page))) |
1410 | clear_page_mlock(page); | |
8186eb6a | 1411 | |
9a982250 KS |
1412 | if (PageTransCompound(page)) |
1413 | deferred_split_huge_page(compound_head(page)); | |
1414 | ||
b904dcfe KM |
1415 | /* |
1416 | * It would be tidy to reset the PageAnon mapping here, | |
1417 | * but that might overwrite a racing page_add_anon_rmap | |
1418 | * which increments mapcount after us but sets mapping | |
1419 | * before us: so leave the reset to free_hot_cold_page, | |
1420 | * and remember that it's only reliable while mapped. | |
1421 | * Leaving it set also helps swapoff to reinstate ptes | |
1422 | * faster for those pages still in swapcache. | |
1423 | */ | |
1da177e4 LT |
1424 | } |
1425 | ||
854e9ed0 MK |
1426 | struct rmap_private { |
1427 | enum ttu_flags flags; | |
1428 | int lazyfreed; | |
1429 | }; | |
1430 | ||
1da177e4 | 1431 | /* |
52629506 | 1432 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1433 | */ |
ac769501 | 1434 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
52629506 | 1435 | unsigned long address, void *arg) |
1da177e4 LT |
1436 | { |
1437 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 LT |
1438 | pte_t *pte; |
1439 | pte_t pteval; | |
c0718806 | 1440 | spinlock_t *ptl; |
1da177e4 | 1441 | int ret = SWAP_AGAIN; |
854e9ed0 MK |
1442 | struct rmap_private *rp = arg; |
1443 | enum ttu_flags flags = rp->flags; | |
1da177e4 | 1444 | |
b87537d9 HD |
1445 | /* munlock has nothing to gain from examining un-locked vmas */ |
1446 | if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) | |
1447 | goto out; | |
1448 | ||
fec89c10 KS |
1449 | if (flags & TTU_SPLIT_HUGE_PMD) { |
1450 | split_huge_pmd_address(vma, address, | |
1451 | flags & TTU_MIGRATION, page); | |
1452 | /* check if we have anything to do after split */ | |
1453 | if (page_mapcount(page) == 0) | |
1454 | goto out; | |
1455 | } | |
1456 | ||
55bda43b NH |
1457 | pte = page_check_address(page, mm, address, &ptl, |
1458 | PageTransCompound(page)); | |
c0718806 | 1459 | if (!pte) |
81b4082d | 1460 | goto out; |
1da177e4 LT |
1461 | |
1462 | /* | |
1463 | * If the page is mlock()d, we cannot swap it out. | |
1464 | * If it's recently referenced (perhaps page_referenced | |
1465 | * skipped over this mm) then we should reactivate it. | |
1466 | */ | |
14fa31b8 | 1467 | if (!(flags & TTU_IGNORE_MLOCK)) { |
b87537d9 | 1468 | if (vma->vm_flags & VM_LOCKED) { |
9a73f61b KS |
1469 | /* PTE-mapped THP are never mlocked */ |
1470 | if (!PageTransCompound(page)) { | |
1471 | /* | |
1472 | * Holding pte lock, we do *not* need | |
1473 | * mmap_sem here | |
1474 | */ | |
1475 | mlock_vma_page(page); | |
1476 | } | |
b87537d9 HD |
1477 | ret = SWAP_MLOCK; |
1478 | goto out_unmap; | |
1479 | } | |
daa5ba76 | 1480 | if (flags & TTU_MUNLOCK) |
53f79acb | 1481 | goto out_unmap; |
14fa31b8 AK |
1482 | } |
1483 | if (!(flags & TTU_IGNORE_ACCESS)) { | |
b291f000 NP |
1484 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
1485 | ret = SWAP_FAIL; | |
1486 | goto out_unmap; | |
1487 | } | |
1488 | } | |
1da177e4 | 1489 | |
1da177e4 LT |
1490 | /* Nuke the page table entry. */ |
1491 | flush_cache_page(vma, address, page_to_pfn(page)); | |
72b252ae MG |
1492 | if (should_defer_flush(mm, flags)) { |
1493 | /* | |
1494 | * We clear the PTE but do not flush so potentially a remote | |
1495 | * CPU could still be writing to the page. If the entry was | |
1496 | * previously clean then the architecture must guarantee that | |
1497 | * a clear->dirty transition on a cached TLB entry is written | |
1498 | * through and traps if the PTE is unmapped. | |
1499 | */ | |
1500 | pteval = ptep_get_and_clear(mm, address, pte); | |
1501 | ||
d950c947 | 1502 | set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval)); |
72b252ae MG |
1503 | } else { |
1504 | pteval = ptep_clear_flush(vma, address, pte); | |
1505 | } | |
1da177e4 LT |
1506 | |
1507 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
1508 | if (pte_dirty(pteval)) | |
1509 | set_page_dirty(page); | |
1510 | ||
365e9c87 HD |
1511 | /* Update high watermark before we lower rss */ |
1512 | update_hiwater_rss(mm); | |
1513 | ||
888b9f7c | 1514 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
5d317b2b NH |
1515 | if (PageHuge(page)) { |
1516 | hugetlb_count_sub(1 << compound_order(page), mm); | |
1517 | } else { | |
eca56ff9 | 1518 | dec_mm_counter(mm, mm_counter(page)); |
5f24ae58 | 1519 | } |
888b9f7c | 1520 | set_pte_at(mm, address, pte, |
5f24ae58 | 1521 | swp_entry_to_pte(make_hwpoison_entry(page))); |
45961722 KW |
1522 | } else if (pte_unused(pteval)) { |
1523 | /* | |
1524 | * The guest indicated that the page content is of no | |
1525 | * interest anymore. Simply discard the pte, vmscan | |
1526 | * will take care of the rest. | |
1527 | */ | |
eca56ff9 | 1528 | dec_mm_counter(mm, mm_counter(page)); |
470f119f HD |
1529 | } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) { |
1530 | swp_entry_t entry; | |
1531 | pte_t swp_pte; | |
1532 | /* | |
1533 | * Store the pfn of the page in a special migration | |
1534 | * pte. do_swap_page() will wait until the migration | |
1535 | * pte is removed and then restart fault handling. | |
1536 | */ | |
1537 | entry = make_migration_entry(page, pte_write(pteval)); | |
1538 | swp_pte = swp_entry_to_pte(entry); | |
1539 | if (pte_soft_dirty(pteval)) | |
1540 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1541 | set_pte_at(mm, address, pte, swp_pte); | |
888b9f7c | 1542 | } else if (PageAnon(page)) { |
4c21e2f2 | 1543 | swp_entry_t entry = { .val = page_private(page) }; |
179ef71c | 1544 | pte_t swp_pte; |
470f119f HD |
1545 | /* |
1546 | * Store the swap location in the pte. | |
1547 | * See handle_pte_fault() ... | |
1548 | */ | |
1549 | VM_BUG_ON_PAGE(!PageSwapCache(page), page); | |
854e9ed0 MK |
1550 | |
1551 | if (!PageDirty(page) && (flags & TTU_LZFREE)) { | |
1552 | /* It's a freeable page by MADV_FREE */ | |
1553 | dec_mm_counter(mm, MM_ANONPAGES); | |
1554 | rp->lazyfreed++; | |
1555 | goto discard; | |
1556 | } | |
1557 | ||
470f119f HD |
1558 | if (swap_duplicate(entry) < 0) { |
1559 | set_pte_at(mm, address, pte, pteval); | |
1560 | ret = SWAP_FAIL; | |
1561 | goto out_unmap; | |
1562 | } | |
1563 | if (list_empty(&mm->mmlist)) { | |
1564 | spin_lock(&mmlist_lock); | |
1565 | if (list_empty(&mm->mmlist)) | |
1566 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1567 | spin_unlock(&mmlist_lock); | |
1da177e4 | 1568 | } |
470f119f HD |
1569 | dec_mm_counter(mm, MM_ANONPAGES); |
1570 | inc_mm_counter(mm, MM_SWAPENTS); | |
179ef71c CG |
1571 | swp_pte = swp_entry_to_pte(entry); |
1572 | if (pte_soft_dirty(pteval)) | |
1573 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1574 | set_pte_at(mm, address, pte, swp_pte); | |
04e62a29 | 1575 | } else |
eca56ff9 | 1576 | dec_mm_counter(mm, mm_counter_file(page)); |
1da177e4 | 1577 | |
854e9ed0 | 1578 | discard: |
d281ee61 | 1579 | page_remove_rmap(page, PageHuge(page)); |
09cbfeaf | 1580 | put_page(page); |
1da177e4 LT |
1581 | |
1582 | out_unmap: | |
c0718806 | 1583 | pte_unmap_unlock(pte, ptl); |
b87537d9 | 1584 | if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK)) |
2ec74c3e | 1585 | mmu_notifier_invalidate_page(mm, address); |
caed0f48 KM |
1586 | out: |
1587 | return ret; | |
1da177e4 LT |
1588 | } |
1589 | ||
71e3aac0 | 1590 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
a8bef8ff MG |
1591 | { |
1592 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | |
1593 | ||
1594 | if (!maybe_stack) | |
1595 | return false; | |
1596 | ||
1597 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | |
1598 | VM_STACK_INCOMPLETE_SETUP) | |
1599 | return true; | |
1600 | ||
1601 | return false; | |
1602 | } | |
1603 | ||
52629506 JK |
1604 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1605 | { | |
1606 | return is_vma_temporary_stack(vma); | |
1607 | } | |
1608 | ||
2a52bcbc | 1609 | static int page_mapcount_is_zero(struct page *page) |
52629506 | 1610 | { |
2a52bcbc KS |
1611 | return !page_mapcount(page); |
1612 | } | |
52629506 | 1613 | |
1da177e4 LT |
1614 | /** |
1615 | * try_to_unmap - try to remove all page table mappings to a page | |
1616 | * @page: the page to get unmapped | |
14fa31b8 | 1617 | * @flags: action and flags |
1da177e4 LT |
1618 | * |
1619 | * Tries to remove all the page table entries which are mapping this | |
1620 | * page, used in the pageout path. Caller must hold the page lock. | |
1621 | * Return values are: | |
1622 | * | |
1623 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1624 | * SWAP_AGAIN - we missed a mapping, try again later | |
1625 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1626 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1627 | */ |
14fa31b8 | 1628 | int try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1629 | { |
1630 | int ret; | |
854e9ed0 MK |
1631 | struct rmap_private rp = { |
1632 | .flags = flags, | |
1633 | .lazyfreed = 0, | |
1634 | }; | |
1635 | ||
52629506 JK |
1636 | struct rmap_walk_control rwc = { |
1637 | .rmap_one = try_to_unmap_one, | |
854e9ed0 | 1638 | .arg = &rp, |
2a52bcbc | 1639 | .done = page_mapcount_is_zero, |
52629506 JK |
1640 | .anon_lock = page_lock_anon_vma_read, |
1641 | }; | |
1da177e4 | 1642 | |
52629506 JK |
1643 | /* |
1644 | * During exec, a temporary VMA is setup and later moved. | |
1645 | * The VMA is moved under the anon_vma lock but not the | |
1646 | * page tables leading to a race where migration cannot | |
1647 | * find the migration ptes. Rather than increasing the | |
1648 | * locking requirements of exec(), migration skips | |
1649 | * temporary VMAs until after exec() completes. | |
1650 | */ | |
daa5ba76 | 1651 | if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) |
52629506 JK |
1652 | rwc.invalid_vma = invalid_migration_vma; |
1653 | ||
2a52bcbc KS |
1654 | if (flags & TTU_RMAP_LOCKED) |
1655 | ret = rmap_walk_locked(page, &rwc); | |
1656 | else | |
1657 | ret = rmap_walk(page, &rwc); | |
52629506 | 1658 | |
2a52bcbc | 1659 | if (ret != SWAP_MLOCK && !page_mapcount(page)) { |
1da177e4 | 1660 | ret = SWAP_SUCCESS; |
854e9ed0 MK |
1661 | if (rp.lazyfreed && !PageDirty(page)) |
1662 | ret = SWAP_LZFREE; | |
1663 | } | |
1da177e4 LT |
1664 | return ret; |
1665 | } | |
81b4082d | 1666 | |
2a52bcbc KS |
1667 | static int page_not_mapped(struct page *page) |
1668 | { | |
1669 | return !page_mapped(page); | |
1670 | }; | |
1671 | ||
b291f000 NP |
1672 | /** |
1673 | * try_to_munlock - try to munlock a page | |
1674 | * @page: the page to be munlocked | |
1675 | * | |
1676 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1677 | * to make sure nobody else has this page mlocked. The page will be | |
1678 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1679 | * | |
1680 | * Return values are: | |
1681 | * | |
53f79acb | 1682 | * SWAP_AGAIN - no vma is holding page mlocked, or, |
b291f000 | 1683 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem |
5ad64688 | 1684 | * SWAP_FAIL - page cannot be located at present |
b291f000 NP |
1685 | * SWAP_MLOCK - page is now mlocked. |
1686 | */ | |
1687 | int try_to_munlock(struct page *page) | |
1688 | { | |
e8351ac9 | 1689 | int ret; |
854e9ed0 MK |
1690 | struct rmap_private rp = { |
1691 | .flags = TTU_MUNLOCK, | |
1692 | .lazyfreed = 0, | |
1693 | }; | |
1694 | ||
e8351ac9 JK |
1695 | struct rmap_walk_control rwc = { |
1696 | .rmap_one = try_to_unmap_one, | |
854e9ed0 | 1697 | .arg = &rp, |
e8351ac9 | 1698 | .done = page_not_mapped, |
e8351ac9 JK |
1699 | .anon_lock = page_lock_anon_vma_read, |
1700 | ||
1701 | }; | |
1702 | ||
309381fe | 1703 | VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); |
b291f000 | 1704 | |
e8351ac9 JK |
1705 | ret = rmap_walk(page, &rwc); |
1706 | return ret; | |
b291f000 | 1707 | } |
e9995ef9 | 1708 | |
01d8b20d | 1709 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 1710 | { |
01d8b20d | 1711 | struct anon_vma *root = anon_vma->root; |
76545066 | 1712 | |
624483f3 | 1713 | anon_vma_free(anon_vma); |
01d8b20d PZ |
1714 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
1715 | anon_vma_free(root); | |
76545066 | 1716 | } |
76545066 | 1717 | |
0dd1c7bb JK |
1718 | static struct anon_vma *rmap_walk_anon_lock(struct page *page, |
1719 | struct rmap_walk_control *rwc) | |
faecd8dd JK |
1720 | { |
1721 | struct anon_vma *anon_vma; | |
1722 | ||
0dd1c7bb JK |
1723 | if (rwc->anon_lock) |
1724 | return rwc->anon_lock(page); | |
1725 | ||
faecd8dd JK |
1726 | /* |
1727 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | |
1728 | * because that depends on page_mapped(); but not all its usages | |
1729 | * are holding mmap_sem. Users without mmap_sem are required to | |
1730 | * take a reference count to prevent the anon_vma disappearing | |
1731 | */ | |
1732 | anon_vma = page_anon_vma(page); | |
1733 | if (!anon_vma) | |
1734 | return NULL; | |
1735 | ||
1736 | anon_vma_lock_read(anon_vma); | |
1737 | return anon_vma; | |
1738 | } | |
1739 | ||
e9995ef9 | 1740 | /* |
e8351ac9 JK |
1741 | * rmap_walk_anon - do something to anonymous page using the object-based |
1742 | * rmap method | |
1743 | * @page: the page to be handled | |
1744 | * @rwc: control variable according to each walk type | |
1745 | * | |
1746 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1747 | * contained in the anon_vma struct it points to. | |
1748 | * | |
1749 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1750 | * where the page was found will be held for write. So, we won't recheck | |
1751 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1752 | * LOCKED. | |
e9995ef9 | 1753 | */ |
b9773199 KS |
1754 | static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, |
1755 | bool locked) | |
e9995ef9 HD |
1756 | { |
1757 | struct anon_vma *anon_vma; | |
b258d860 | 1758 | pgoff_t pgoff; |
5beb4930 | 1759 | struct anon_vma_chain *avc; |
e9995ef9 HD |
1760 | int ret = SWAP_AGAIN; |
1761 | ||
b9773199 KS |
1762 | if (locked) { |
1763 | anon_vma = page_anon_vma(page); | |
1764 | /* anon_vma disappear under us? */ | |
1765 | VM_BUG_ON_PAGE(!anon_vma, page); | |
1766 | } else { | |
1767 | anon_vma = rmap_walk_anon_lock(page, rwc); | |
1768 | } | |
e9995ef9 HD |
1769 | if (!anon_vma) |
1770 | return ret; | |
faecd8dd | 1771 | |
b258d860 | 1772 | pgoff = page_to_pgoff(page); |
bf181b9f | 1773 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { |
5beb4930 | 1774 | struct vm_area_struct *vma = avc->vma; |
e9995ef9 | 1775 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1776 | |
ad12695f AA |
1777 | cond_resched(); |
1778 | ||
0dd1c7bb JK |
1779 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1780 | continue; | |
1781 | ||
051ac83a | 1782 | ret = rwc->rmap_one(page, vma, address, rwc->arg); |
e9995ef9 HD |
1783 | if (ret != SWAP_AGAIN) |
1784 | break; | |
0dd1c7bb JK |
1785 | if (rwc->done && rwc->done(page)) |
1786 | break; | |
e9995ef9 | 1787 | } |
b9773199 KS |
1788 | |
1789 | if (!locked) | |
1790 | anon_vma_unlock_read(anon_vma); | |
e9995ef9 HD |
1791 | return ret; |
1792 | } | |
1793 | ||
e8351ac9 JK |
1794 | /* |
1795 | * rmap_walk_file - do something to file page using the object-based rmap method | |
1796 | * @page: the page to be handled | |
1797 | * @rwc: control variable according to each walk type | |
1798 | * | |
1799 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1800 | * contained in the address_space struct it points to. | |
1801 | * | |
1802 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1803 | * where the page was found will be held for write. So, we won't recheck | |
1804 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1805 | * LOCKED. | |
1806 | */ | |
b9773199 KS |
1807 | static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, |
1808 | bool locked) | |
e9995ef9 | 1809 | { |
b9773199 | 1810 | struct address_space *mapping = page_mapping(page); |
b258d860 | 1811 | pgoff_t pgoff; |
e9995ef9 | 1812 | struct vm_area_struct *vma; |
e9995ef9 HD |
1813 | int ret = SWAP_AGAIN; |
1814 | ||
9f32624b JK |
1815 | /* |
1816 | * The page lock not only makes sure that page->mapping cannot | |
1817 | * suddenly be NULLified by truncation, it makes sure that the | |
1818 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 1819 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 1820 | */ |
81d1b09c | 1821 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
9f32624b | 1822 | |
e9995ef9 HD |
1823 | if (!mapping) |
1824 | return ret; | |
3dec0ba0 | 1825 | |
b258d860 | 1826 | pgoff = page_to_pgoff(page); |
b9773199 KS |
1827 | if (!locked) |
1828 | i_mmap_lock_read(mapping); | |
6b2dbba8 | 1829 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { |
e9995ef9 | 1830 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1831 | |
ad12695f AA |
1832 | cond_resched(); |
1833 | ||
0dd1c7bb JK |
1834 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1835 | continue; | |
1836 | ||
051ac83a | 1837 | ret = rwc->rmap_one(page, vma, address, rwc->arg); |
e9995ef9 | 1838 | if (ret != SWAP_AGAIN) |
0dd1c7bb JK |
1839 | goto done; |
1840 | if (rwc->done && rwc->done(page)) | |
1841 | goto done; | |
e9995ef9 | 1842 | } |
0dd1c7bb | 1843 | |
0dd1c7bb | 1844 | done: |
b9773199 KS |
1845 | if (!locked) |
1846 | i_mmap_unlock_read(mapping); | |
e9995ef9 HD |
1847 | return ret; |
1848 | } | |
1849 | ||
051ac83a | 1850 | int rmap_walk(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 | 1851 | { |
e9995ef9 | 1852 | if (unlikely(PageKsm(page))) |
051ac83a | 1853 | return rmap_walk_ksm(page, rwc); |
e9995ef9 | 1854 | else if (PageAnon(page)) |
b9773199 KS |
1855 | return rmap_walk_anon(page, rwc, false); |
1856 | else | |
1857 | return rmap_walk_file(page, rwc, false); | |
1858 | } | |
1859 | ||
1860 | /* Like rmap_walk, but caller holds relevant rmap lock */ | |
1861 | int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) | |
1862 | { | |
1863 | /* no ksm support for now */ | |
1864 | VM_BUG_ON_PAGE(PageKsm(page), page); | |
1865 | if (PageAnon(page)) | |
1866 | return rmap_walk_anon(page, rwc, true); | |
e9995ef9 | 1867 | else |
b9773199 | 1868 | return rmap_walk_file(page, rwc, true); |
e9995ef9 | 1869 | } |
0fe6e20b | 1870 | |
e3390f67 | 1871 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b NH |
1872 | /* |
1873 | * The following three functions are for anonymous (private mapped) hugepages. | |
1874 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | |
1875 | * and no lru code, because we handle hugepages differently from common pages. | |
1876 | */ | |
1877 | static void __hugepage_set_anon_rmap(struct page *page, | |
1878 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1879 | { | |
1880 | struct anon_vma *anon_vma = vma->anon_vma; | |
433abed6 | 1881 | |
0fe6e20b | 1882 | BUG_ON(!anon_vma); |
433abed6 NH |
1883 | |
1884 | if (PageAnon(page)) | |
1885 | return; | |
1886 | if (!exclusive) | |
1887 | anon_vma = anon_vma->root; | |
1888 | ||
0fe6e20b NH |
1889 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1890 | page->mapping = (struct address_space *) anon_vma; | |
1891 | page->index = linear_page_index(vma, address); | |
1892 | } | |
1893 | ||
1894 | void hugepage_add_anon_rmap(struct page *page, | |
1895 | struct vm_area_struct *vma, unsigned long address) | |
1896 | { | |
1897 | struct anon_vma *anon_vma = vma->anon_vma; | |
1898 | int first; | |
a850ea30 NH |
1899 | |
1900 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 1901 | BUG_ON(!anon_vma); |
5dbe0af4 | 1902 | /* address might be in next vma when migration races vma_adjust */ |
53f9263b | 1903 | first = atomic_inc_and_test(compound_mapcount_ptr(page)); |
0fe6e20b NH |
1904 | if (first) |
1905 | __hugepage_set_anon_rmap(page, vma, address, 0); | |
1906 | } | |
1907 | ||
1908 | void hugepage_add_new_anon_rmap(struct page *page, | |
1909 | struct vm_area_struct *vma, unsigned long address) | |
1910 | { | |
1911 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
53f9263b | 1912 | atomic_set(compound_mapcount_ptr(page), 0); |
0fe6e20b NH |
1913 | __hugepage_set_anon_rmap(page, vma, address, 1); |
1914 | } | |
e3390f67 | 1915 | #endif /* CONFIG_HUGETLB_PAGE */ |