]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
mm: always lock the root (oldest) anon_vma
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70}
71
db114b83 72void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
73{
74 kmem_cache_free(anon_vma_cachep, anon_vma);
75}
1da177e4 76
5beb4930
RR
77static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78{
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80}
81
82void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83{
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85}
86
d9d332e0
LT
87/**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
90 *
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
94 *
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
100 *
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
106 *
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
111 *
112 * This must be called with the mmap_sem held for reading.
113 */
1da177e4
LT
114int anon_vma_prepare(struct vm_area_struct *vma)
115{
116 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 117 struct anon_vma_chain *avc;
1da177e4
LT
118
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
d9d332e0 122 struct anon_vma *allocated;
1da177e4 123
5beb4930
RR
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
127
1da177e4 128 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
129 allocated = NULL;
130 if (!anon_vma) {
1da177e4
LT
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
5beb4930 133 goto out_enomem_free_avc;
1da177e4 134 allocated = anon_vma;
5c341ee1
RR
135 /*
136 * This VMA had no anon_vma yet. This anon_vma is
137 * the root of any anon_vma tree that might form.
138 */
139 anon_vma->root = anon_vma;
1da177e4
LT
140 }
141
cba48b98 142 anon_vma_lock(anon_vma);
1da177e4
LT
143 /* page_table_lock to protect against threads */
144 spin_lock(&mm->page_table_lock);
145 if (likely(!vma->anon_vma)) {
146 vma->anon_vma = anon_vma;
5beb4930
RR
147 avc->anon_vma = anon_vma;
148 avc->vma = vma;
149 list_add(&avc->same_vma, &vma->anon_vma_chain);
150 list_add(&avc->same_anon_vma, &anon_vma->head);
1da177e4 151 allocated = NULL;
31f2b0eb 152 avc = NULL;
1da177e4
LT
153 }
154 spin_unlock(&mm->page_table_lock);
cba48b98 155 anon_vma_unlock(anon_vma);
31f2b0eb
ON
156
157 if (unlikely(allocated))
1da177e4 158 anon_vma_free(allocated);
31f2b0eb 159 if (unlikely(avc))
5beb4930 160 anon_vma_chain_free(avc);
1da177e4
LT
161 }
162 return 0;
5beb4930
RR
163
164 out_enomem_free_avc:
165 anon_vma_chain_free(avc);
166 out_enomem:
167 return -ENOMEM;
1da177e4
LT
168}
169
5beb4930
RR
170static void anon_vma_chain_link(struct vm_area_struct *vma,
171 struct anon_vma_chain *avc,
172 struct anon_vma *anon_vma)
1da177e4 173{
5beb4930
RR
174 avc->vma = vma;
175 avc->anon_vma = anon_vma;
176 list_add(&avc->same_vma, &vma->anon_vma_chain);
177
cba48b98 178 anon_vma_lock(anon_vma);
5beb4930 179 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
cba48b98 180 anon_vma_unlock(anon_vma);
1da177e4
LT
181}
182
5beb4930
RR
183/*
184 * Attach the anon_vmas from src to dst.
185 * Returns 0 on success, -ENOMEM on failure.
186 */
187int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 188{
5beb4930
RR
189 struct anon_vma_chain *avc, *pavc;
190
646d87b4 191 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
192 avc = anon_vma_chain_alloc();
193 if (!avc)
194 goto enomem_failure;
195 anon_vma_chain_link(dst, avc, pavc->anon_vma);
196 }
197 return 0;
1da177e4 198
5beb4930
RR
199 enomem_failure:
200 unlink_anon_vmas(dst);
201 return -ENOMEM;
1da177e4
LT
202}
203
5beb4930
RR
204/*
205 * Attach vma to its own anon_vma, as well as to the anon_vmas that
206 * the corresponding VMA in the parent process is attached to.
207 * Returns 0 on success, non-zero on failure.
208 */
209int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 210{
5beb4930
RR
211 struct anon_vma_chain *avc;
212 struct anon_vma *anon_vma;
1da177e4 213
5beb4930
RR
214 /* Don't bother if the parent process has no anon_vma here. */
215 if (!pvma->anon_vma)
216 return 0;
217
218 /*
219 * First, attach the new VMA to the parent VMA's anon_vmas,
220 * so rmap can find non-COWed pages in child processes.
221 */
222 if (anon_vma_clone(vma, pvma))
223 return -ENOMEM;
224
225 /* Then add our own anon_vma. */
226 anon_vma = anon_vma_alloc();
227 if (!anon_vma)
228 goto out_error;
229 avc = anon_vma_chain_alloc();
230 if (!avc)
231 goto out_error_free_anon_vma;
5c341ee1
RR
232
233 /*
234 * The root anon_vma's spinlock is the lock actually used when we
235 * lock any of the anon_vmas in this anon_vma tree.
236 */
237 anon_vma->root = pvma->anon_vma->root;
5beb4930
RR
238 /* Mark this anon_vma as the one where our new (COWed) pages go. */
239 vma->anon_vma = anon_vma;
5c341ee1 240 anon_vma_chain_link(vma, avc, anon_vma);
5beb4930
RR
241
242 return 0;
243
244 out_error_free_anon_vma:
245 anon_vma_free(anon_vma);
246 out_error:
4946d54c 247 unlink_anon_vmas(vma);
5beb4930 248 return -ENOMEM;
1da177e4
LT
249}
250
5beb4930 251static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 252{
5beb4930 253 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
254 int empty;
255
5beb4930 256 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
257 if (!anon_vma)
258 return;
259
cba48b98 260 anon_vma_lock(anon_vma);
5beb4930 261 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
262
263 /* We must garbage collect the anon_vma if it's empty */
7f60c214 264 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
cba48b98 265 anon_vma_unlock(anon_vma);
1da177e4
LT
266
267 if (empty)
268 anon_vma_free(anon_vma);
269}
270
5beb4930
RR
271void unlink_anon_vmas(struct vm_area_struct *vma)
272{
273 struct anon_vma_chain *avc, *next;
274
5c341ee1
RR
275 /*
276 * Unlink each anon_vma chained to the VMA. This list is ordered
277 * from newest to oldest, ensuring the root anon_vma gets freed last.
278 */
5beb4930
RR
279 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
280 anon_vma_unlink(avc);
281 list_del(&avc->same_vma);
282 anon_vma_chain_free(avc);
283 }
284}
285
51cc5068 286static void anon_vma_ctor(void *data)
1da177e4 287{
a35afb83 288 struct anon_vma *anon_vma = data;
1da177e4 289
a35afb83 290 spin_lock_init(&anon_vma->lock);
7f60c214 291 anonvma_external_refcount_init(anon_vma);
a35afb83 292 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
293}
294
295void __init anon_vma_init(void)
296{
297 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 298 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 299 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
300}
301
302/*
303 * Getting a lock on a stable anon_vma from a page off the LRU is
304 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
305 */
10be22df 306struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 307{
34bbd704 308 struct anon_vma *anon_vma;
1da177e4
LT
309 unsigned long anon_mapping;
310
311 rcu_read_lock();
80e14822 312 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 313 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
314 goto out;
315 if (!page_mapped(page))
316 goto out;
317
318 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
cba48b98 319 anon_vma_lock(anon_vma);
34bbd704 320 return anon_vma;
1da177e4
LT
321out:
322 rcu_read_unlock();
34bbd704
ON
323 return NULL;
324}
325
10be22df 326void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 327{
cba48b98 328 anon_vma_unlock(anon_vma);
34bbd704 329 rcu_read_unlock();
1da177e4
LT
330}
331
332/*
3ad33b24
LS
333 * At what user virtual address is page expected in @vma?
334 * Returns virtual address or -EFAULT if page's index/offset is not
335 * within the range mapped the @vma.
1da177e4
LT
336 */
337static inline unsigned long
338vma_address(struct page *page, struct vm_area_struct *vma)
339{
340 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
341 unsigned long address;
342
343 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
344 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 345 /* page should be within @vma mapping range */
1da177e4
LT
346 return -EFAULT;
347 }
348 return address;
349}
350
351/*
bf89c8c8 352 * At what user virtual address is page expected in vma?
ab941e0f 353 * Caller should check the page is actually part of the vma.
1da177e4
LT
354 */
355unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
356{
ab941e0f
NH
357 if (PageAnon(page))
358 ;
359 else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
360 if (!vma->vm_file ||
361 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
362 return -EFAULT;
363 } else
364 return -EFAULT;
365 return vma_address(page, vma);
366}
367
81b4082d
ND
368/*
369 * Check that @page is mapped at @address into @mm.
370 *
479db0bf
NP
371 * If @sync is false, page_check_address may perform a racy check to avoid
372 * the page table lock when the pte is not present (helpful when reclaiming
373 * highly shared pages).
374 *
b8072f09 375 * On success returns with pte mapped and locked.
81b4082d 376 */
ceffc078 377pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 378 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
379{
380 pgd_t *pgd;
381 pud_t *pud;
382 pmd_t *pmd;
383 pte_t *pte;
c0718806 384 spinlock_t *ptl;
81b4082d 385
81b4082d 386 pgd = pgd_offset(mm, address);
c0718806
HD
387 if (!pgd_present(*pgd))
388 return NULL;
389
390 pud = pud_offset(pgd, address);
391 if (!pud_present(*pud))
392 return NULL;
393
394 pmd = pmd_offset(pud, address);
395 if (!pmd_present(*pmd))
396 return NULL;
397
398 pte = pte_offset_map(pmd, address);
399 /* Make a quick check before getting the lock */
479db0bf 400 if (!sync && !pte_present(*pte)) {
c0718806
HD
401 pte_unmap(pte);
402 return NULL;
403 }
404
4c21e2f2 405 ptl = pte_lockptr(mm, pmd);
c0718806
HD
406 spin_lock(ptl);
407 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
408 *ptlp = ptl;
409 return pte;
81b4082d 410 }
c0718806
HD
411 pte_unmap_unlock(pte, ptl);
412 return NULL;
81b4082d
ND
413}
414
b291f000
NP
415/**
416 * page_mapped_in_vma - check whether a page is really mapped in a VMA
417 * @page: the page to test
418 * @vma: the VMA to test
419 *
420 * Returns 1 if the page is mapped into the page tables of the VMA, 0
421 * if the page is not mapped into the page tables of this VMA. Only
422 * valid for normal file or anonymous VMAs.
423 */
6a46079c 424int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
425{
426 unsigned long address;
427 pte_t *pte;
428 spinlock_t *ptl;
429
430 address = vma_address(page, vma);
431 if (address == -EFAULT) /* out of vma range */
432 return 0;
433 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
434 if (!pte) /* the page is not in this mm */
435 return 0;
436 pte_unmap_unlock(pte, ptl);
437
438 return 1;
439}
440
1da177e4
LT
441/*
442 * Subfunctions of page_referenced: page_referenced_one called
443 * repeatedly from either page_referenced_anon or page_referenced_file.
444 */
5ad64688
HD
445int page_referenced_one(struct page *page, struct vm_area_struct *vma,
446 unsigned long address, unsigned int *mapcount,
447 unsigned long *vm_flags)
1da177e4
LT
448{
449 struct mm_struct *mm = vma->vm_mm;
1da177e4 450 pte_t *pte;
c0718806 451 spinlock_t *ptl;
1da177e4
LT
452 int referenced = 0;
453
479db0bf 454 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
455 if (!pte)
456 goto out;
1da177e4 457
b291f000
NP
458 /*
459 * Don't want to elevate referenced for mlocked page that gets this far,
460 * in order that it progresses to try_to_unmap and is moved to the
461 * unevictable list.
462 */
5a9bbdcd 463 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 464 *mapcount = 1; /* break early from loop */
03ef83af 465 *vm_flags |= VM_LOCKED;
b291f000
NP
466 goto out_unmap;
467 }
468
4917e5d0
JW
469 if (ptep_clear_flush_young_notify(vma, address, pte)) {
470 /*
471 * Don't treat a reference through a sequentially read
472 * mapping as such. If the page has been used in
473 * another mapping, we will catch it; if this other
474 * mapping is already gone, the unmap path will have
475 * set PG_referenced or activated the page.
476 */
477 if (likely(!VM_SequentialReadHint(vma)))
478 referenced++;
479 }
1da177e4 480
c0718806
HD
481 /* Pretend the page is referenced if the task has the
482 swap token and is in the middle of a page fault. */
f7b7fd8f 483 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
484 rwsem_is_locked(&mm->mmap_sem))
485 referenced++;
486
b291f000 487out_unmap:
c0718806
HD
488 (*mapcount)--;
489 pte_unmap_unlock(pte, ptl);
273f047e 490
6fe6b7e3
WF
491 if (referenced)
492 *vm_flags |= vma->vm_flags;
273f047e 493out:
1da177e4
LT
494 return referenced;
495}
496
bed7161a 497static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
498 struct mem_cgroup *mem_cont,
499 unsigned long *vm_flags)
1da177e4
LT
500{
501 unsigned int mapcount;
502 struct anon_vma *anon_vma;
5beb4930 503 struct anon_vma_chain *avc;
1da177e4
LT
504 int referenced = 0;
505
506 anon_vma = page_lock_anon_vma(page);
507 if (!anon_vma)
508 return referenced;
509
510 mapcount = page_mapcount(page);
5beb4930
RR
511 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
512 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
513 unsigned long address = vma_address(page, vma);
514 if (address == -EFAULT)
515 continue;
bed7161a
BS
516 /*
517 * If we are reclaiming on behalf of a cgroup, skip
518 * counting on behalf of references from different
519 * cgroups
520 */
bd845e38 521 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 522 continue;
1cb1729b 523 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 524 &mapcount, vm_flags);
1da177e4
LT
525 if (!mapcount)
526 break;
527 }
34bbd704
ON
528
529 page_unlock_anon_vma(anon_vma);
1da177e4
LT
530 return referenced;
531}
532
533/**
534 * page_referenced_file - referenced check for object-based rmap
535 * @page: the page we're checking references on.
43d8eac4 536 * @mem_cont: target memory controller
6fe6b7e3 537 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
538 *
539 * For an object-based mapped page, find all the places it is mapped and
540 * check/clear the referenced flag. This is done by following the page->mapping
541 * pointer, then walking the chain of vmas it holds. It returns the number
542 * of references it found.
543 *
544 * This function is only called from page_referenced for object-based pages.
545 */
bed7161a 546static int page_referenced_file(struct page *page,
6fe6b7e3
WF
547 struct mem_cgroup *mem_cont,
548 unsigned long *vm_flags)
1da177e4
LT
549{
550 unsigned int mapcount;
551 struct address_space *mapping = page->mapping;
552 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
553 struct vm_area_struct *vma;
554 struct prio_tree_iter iter;
555 int referenced = 0;
556
557 /*
558 * The caller's checks on page->mapping and !PageAnon have made
559 * sure that this is a file page: the check for page->mapping
560 * excludes the case just before it gets set on an anon page.
561 */
562 BUG_ON(PageAnon(page));
563
564 /*
565 * The page lock not only makes sure that page->mapping cannot
566 * suddenly be NULLified by truncation, it makes sure that the
567 * structure at mapping cannot be freed and reused yet,
568 * so we can safely take mapping->i_mmap_lock.
569 */
570 BUG_ON(!PageLocked(page));
571
572 spin_lock(&mapping->i_mmap_lock);
573
574 /*
575 * i_mmap_lock does not stabilize mapcount at all, but mapcount
576 * is more likely to be accurate if we note it after spinning.
577 */
578 mapcount = page_mapcount(page);
579
580 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
581 unsigned long address = vma_address(page, vma);
582 if (address == -EFAULT)
583 continue;
bed7161a
BS
584 /*
585 * If we are reclaiming on behalf of a cgroup, skip
586 * counting on behalf of references from different
587 * cgroups
588 */
bd845e38 589 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 590 continue;
1cb1729b 591 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 592 &mapcount, vm_flags);
1da177e4
LT
593 if (!mapcount)
594 break;
595 }
596
597 spin_unlock(&mapping->i_mmap_lock);
598 return referenced;
599}
600
601/**
602 * page_referenced - test if the page was referenced
603 * @page: the page to test
604 * @is_locked: caller holds lock on the page
43d8eac4 605 * @mem_cont: target memory controller
6fe6b7e3 606 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
607 *
608 * Quick test_and_clear_referenced for all mappings to a page,
609 * returns the number of ptes which referenced the page.
610 */
6fe6b7e3
WF
611int page_referenced(struct page *page,
612 int is_locked,
613 struct mem_cgroup *mem_cont,
614 unsigned long *vm_flags)
1da177e4
LT
615{
616 int referenced = 0;
5ad64688 617 int we_locked = 0;
1da177e4 618
6fe6b7e3 619 *vm_flags = 0;
3ca7b3c5 620 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
621 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
622 we_locked = trylock_page(page);
623 if (!we_locked) {
624 referenced++;
625 goto out;
626 }
627 }
628 if (unlikely(PageKsm(page)))
629 referenced += page_referenced_ksm(page, mem_cont,
630 vm_flags);
631 else if (PageAnon(page))
6fe6b7e3
WF
632 referenced += page_referenced_anon(page, mem_cont,
633 vm_flags);
5ad64688 634 else if (page->mapping)
6fe6b7e3
WF
635 referenced += page_referenced_file(page, mem_cont,
636 vm_flags);
5ad64688 637 if (we_locked)
1da177e4 638 unlock_page(page);
1da177e4 639 }
5ad64688 640out:
5b7baf05
CB
641 if (page_test_and_clear_young(page))
642 referenced++;
643
1da177e4
LT
644 return referenced;
645}
646
1cb1729b
HD
647static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
648 unsigned long address)
d08b3851
PZ
649{
650 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 651 pte_t *pte;
d08b3851
PZ
652 spinlock_t *ptl;
653 int ret = 0;
654
479db0bf 655 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
656 if (!pte)
657 goto out;
658
c2fda5fe
PZ
659 if (pte_dirty(*pte) || pte_write(*pte)) {
660 pte_t entry;
d08b3851 661
c2fda5fe 662 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 663 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
664 entry = pte_wrprotect(entry);
665 entry = pte_mkclean(entry);
d6e88e67 666 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
667 ret = 1;
668 }
d08b3851 669
d08b3851
PZ
670 pte_unmap_unlock(pte, ptl);
671out:
672 return ret;
673}
674
675static int page_mkclean_file(struct address_space *mapping, struct page *page)
676{
677 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
678 struct vm_area_struct *vma;
679 struct prio_tree_iter iter;
680 int ret = 0;
681
682 BUG_ON(PageAnon(page));
683
684 spin_lock(&mapping->i_mmap_lock);
685 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
686 if (vma->vm_flags & VM_SHARED) {
687 unsigned long address = vma_address(page, vma);
688 if (address == -EFAULT)
689 continue;
690 ret += page_mkclean_one(page, vma, address);
691 }
d08b3851
PZ
692 }
693 spin_unlock(&mapping->i_mmap_lock);
694 return ret;
695}
696
697int page_mkclean(struct page *page)
698{
699 int ret = 0;
700
701 BUG_ON(!PageLocked(page));
702
703 if (page_mapped(page)) {
704 struct address_space *mapping = page_mapping(page);
ce7e9fae 705 if (mapping) {
d08b3851 706 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
707 if (page_test_dirty(page)) {
708 page_clear_dirty(page);
709 ret = 1;
710 }
6c210482 711 }
d08b3851
PZ
712 }
713
714 return ret;
715}
60b59bea 716EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 717
c44b6743
RR
718/**
719 * page_move_anon_rmap - move a page to our anon_vma
720 * @page: the page to move to our anon_vma
721 * @vma: the vma the page belongs to
722 * @address: the user virtual address mapped
723 *
724 * When a page belongs exclusively to one process after a COW event,
725 * that page can be moved into the anon_vma that belongs to just that
726 * process, so the rmap code will not search the parent or sibling
727 * processes.
728 */
729void page_move_anon_rmap(struct page *page,
730 struct vm_area_struct *vma, unsigned long address)
731{
732 struct anon_vma *anon_vma = vma->anon_vma;
733
734 VM_BUG_ON(!PageLocked(page));
735 VM_BUG_ON(!anon_vma);
736 VM_BUG_ON(page->index != linear_page_index(vma, address));
737
738 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
739 page->mapping = (struct address_space *) anon_vma;
740}
741
9617d95e 742/**
43d8eac4 743 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
744 * @page: the page to add the mapping to
745 * @vma: the vm area in which the mapping is added
746 * @address: the user virtual address mapped
e8a03feb 747 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
748 */
749static void __page_set_anon_rmap(struct page *page,
e8a03feb 750 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 751{
e8a03feb 752 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 753
e8a03feb 754 BUG_ON(!anon_vma);
ea90002b
LT
755
756 /*
e8a03feb
RR
757 * If the page isn't exclusively mapped into this vma,
758 * we must use the _oldest_ possible anon_vma for the
759 * page mapping!
ea90002b 760 *
e8a03feb
RR
761 * So take the last AVC chain entry in the vma, which is
762 * the deepest ancestor, and use the anon_vma from that.
ea90002b 763 */
e8a03feb
RR
764 if (!exclusive) {
765 struct anon_vma_chain *avc;
766 avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
767 anon_vma = avc->anon_vma;
768 }
9617d95e 769
9617d95e
NP
770 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
771 page->mapping = (struct address_space *) anon_vma;
9617d95e 772 page->index = linear_page_index(vma, address);
9617d95e
NP
773}
774
c97a9e10 775/**
43d8eac4 776 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
777 * @page: the page to add the mapping to
778 * @vma: the vm area in which the mapping is added
779 * @address: the user virtual address mapped
780 */
781static void __page_check_anon_rmap(struct page *page,
782 struct vm_area_struct *vma, unsigned long address)
783{
784#ifdef CONFIG_DEBUG_VM
785 /*
786 * The page's anon-rmap details (mapping and index) are guaranteed to
787 * be set up correctly at this point.
788 *
789 * We have exclusion against page_add_anon_rmap because the caller
790 * always holds the page locked, except if called from page_dup_rmap,
791 * in which case the page is already known to be setup.
792 *
793 * We have exclusion against page_add_new_anon_rmap because those pages
794 * are initially only visible via the pagetables, and the pte is locked
795 * over the call to page_add_new_anon_rmap.
796 */
c97a9e10
NP
797 BUG_ON(page->index != linear_page_index(vma, address));
798#endif
799}
800
1da177e4
LT
801/**
802 * page_add_anon_rmap - add pte mapping to an anonymous page
803 * @page: the page to add the mapping to
804 * @vma: the vm area in which the mapping is added
805 * @address: the user virtual address mapped
806 *
5ad64688 807 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
808 * the anon_vma case: to serialize mapping,index checking after setting,
809 * and to ensure that PageAnon is not being upgraded racily to PageKsm
810 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
811 */
812void page_add_anon_rmap(struct page *page,
813 struct vm_area_struct *vma, unsigned long address)
814{
5ad64688
HD
815 int first = atomic_inc_and_test(&page->_mapcount);
816 if (first)
817 __inc_zone_page_state(page, NR_ANON_PAGES);
818 if (unlikely(PageKsm(page)))
819 return;
820
c97a9e10
NP
821 VM_BUG_ON(!PageLocked(page));
822 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 823 if (first)
e8a03feb 824 __page_set_anon_rmap(page, vma, address, 0);
69029cd5 825 else
c97a9e10 826 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
827}
828
43d8eac4 829/**
9617d95e
NP
830 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
831 * @page: the page to add the mapping to
832 * @vma: the vm area in which the mapping is added
833 * @address: the user virtual address mapped
834 *
835 * Same as page_add_anon_rmap but must only be called on *new* pages.
836 * This means the inc-and-test can be bypassed.
c97a9e10 837 * Page does not have to be locked.
9617d95e
NP
838 */
839void page_add_new_anon_rmap(struct page *page,
840 struct vm_area_struct *vma, unsigned long address)
841{
b5934c53 842 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
843 SetPageSwapBacked(page);
844 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 845 __inc_zone_page_state(page, NR_ANON_PAGES);
e8a03feb 846 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 847 if (page_evictable(page, vma))
cbf84b7a 848 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
849 else
850 add_page_to_unevictable_list(page);
9617d95e
NP
851}
852
1da177e4
LT
853/**
854 * page_add_file_rmap - add pte mapping to a file page
855 * @page: the page to add the mapping to
856 *
b8072f09 857 * The caller needs to hold the pte lock.
1da177e4
LT
858 */
859void page_add_file_rmap(struct page *page)
860{
d69b042f 861 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 862 __inc_zone_page_state(page, NR_FILE_MAPPED);
d8046582 863 mem_cgroup_update_file_mapped(page, 1);
d69b042f 864 }
1da177e4
LT
865}
866
867/**
868 * page_remove_rmap - take down pte mapping from a page
869 * @page: page to remove mapping from
870 *
b8072f09 871 * The caller needs to hold the pte lock.
1da177e4 872 */
edc315fd 873void page_remove_rmap(struct page *page)
1da177e4 874{
b904dcfe
KM
875 /* page still mapped by someone else? */
876 if (!atomic_add_negative(-1, &page->_mapcount))
877 return;
878
879 /*
880 * Now that the last pte has gone, s390 must transfer dirty
881 * flag from storage key to struct page. We can usually skip
882 * this if the page is anon, so about to be freed; but perhaps
883 * not if it's in swapcache - there might be another pte slot
884 * containing the swap entry, but page not yet written to swap.
885 */
886 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
887 page_clear_dirty(page);
888 set_page_dirty(page);
1da177e4 889 }
b904dcfe
KM
890 if (PageAnon(page)) {
891 mem_cgroup_uncharge_page(page);
892 __dec_zone_page_state(page, NR_ANON_PAGES);
893 } else {
894 __dec_zone_page_state(page, NR_FILE_MAPPED);
d8046582 895 mem_cgroup_update_file_mapped(page, -1);
b904dcfe 896 }
b904dcfe
KM
897 /*
898 * It would be tidy to reset the PageAnon mapping here,
899 * but that might overwrite a racing page_add_anon_rmap
900 * which increments mapcount after us but sets mapping
901 * before us: so leave the reset to free_hot_cold_page,
902 * and remember that it's only reliable while mapped.
903 * Leaving it set also helps swapoff to reinstate ptes
904 * faster for those pages still in swapcache.
905 */
1da177e4
LT
906}
907
908/*
909 * Subfunctions of try_to_unmap: try_to_unmap_one called
910 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
911 */
5ad64688
HD
912int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
913 unsigned long address, enum ttu_flags flags)
1da177e4
LT
914{
915 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
916 pte_t *pte;
917 pte_t pteval;
c0718806 918 spinlock_t *ptl;
1da177e4
LT
919 int ret = SWAP_AGAIN;
920
479db0bf 921 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 922 if (!pte)
81b4082d 923 goto out;
1da177e4
LT
924
925 /*
926 * If the page is mlock()d, we cannot swap it out.
927 * If it's recently referenced (perhaps page_referenced
928 * skipped over this mm) then we should reactivate it.
929 */
14fa31b8 930 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
931 if (vma->vm_flags & VM_LOCKED)
932 goto out_mlock;
933
af8e3354 934 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 935 goto out_unmap;
14fa31b8
AK
936 }
937 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
938 if (ptep_clear_flush_young_notify(vma, address, pte)) {
939 ret = SWAP_FAIL;
940 goto out_unmap;
941 }
942 }
1da177e4 943
1da177e4
LT
944 /* Nuke the page table entry. */
945 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 946 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
947
948 /* Move the dirty bit to the physical page now the pte is gone. */
949 if (pte_dirty(pteval))
950 set_page_dirty(page);
951
365e9c87
HD
952 /* Update high watermark before we lower rss */
953 update_hiwater_rss(mm);
954
888b9f7c
AK
955 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
956 if (PageAnon(page))
d559db08 957 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 958 else
d559db08 959 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
960 set_pte_at(mm, address, pte,
961 swp_entry_to_pte(make_hwpoison_entry(page)));
962 } else if (PageAnon(page)) {
4c21e2f2 963 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
964
965 if (PageSwapCache(page)) {
966 /*
967 * Store the swap location in the pte.
968 * See handle_pte_fault() ...
969 */
570a335b
HD
970 if (swap_duplicate(entry) < 0) {
971 set_pte_at(mm, address, pte, pteval);
972 ret = SWAP_FAIL;
973 goto out_unmap;
974 }
0697212a
CL
975 if (list_empty(&mm->mmlist)) {
976 spin_lock(&mmlist_lock);
977 if (list_empty(&mm->mmlist))
978 list_add(&mm->mmlist, &init_mm.mmlist);
979 spin_unlock(&mmlist_lock);
980 }
d559db08 981 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 982 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 983 } else if (PAGE_MIGRATION) {
0697212a
CL
984 /*
985 * Store the pfn of the page in a special migration
986 * pte. do_swap_page() will wait until the migration
987 * pte is removed and then restart fault handling.
988 */
14fa31b8 989 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 990 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
991 }
992 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
993 BUG_ON(pte_file(*pte));
14fa31b8 994 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
995 /* Establish migration entry for a file page */
996 swp_entry_t entry;
997 entry = make_migration_entry(page, pte_write(pteval));
998 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
999 } else
d559db08 1000 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1001
edc315fd 1002 page_remove_rmap(page);
1da177e4
LT
1003 page_cache_release(page);
1004
1005out_unmap:
c0718806 1006 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1007out:
1008 return ret;
53f79acb 1009
caed0f48
KM
1010out_mlock:
1011 pte_unmap_unlock(pte, ptl);
1012
1013
1014 /*
1015 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1016 * unstable result and race. Plus, We can't wait here because
1017 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1018 * if trylock failed, the page remain in evictable lru and later
1019 * vmscan could retry to move the page to unevictable lru if the
1020 * page is actually mlocked.
1021 */
1022 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1023 if (vma->vm_flags & VM_LOCKED) {
1024 mlock_vma_page(page);
1025 ret = SWAP_MLOCK;
53f79acb 1026 }
caed0f48 1027 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1028 }
1da177e4
LT
1029 return ret;
1030}
1031
1032/*
1033 * objrmap doesn't work for nonlinear VMAs because the assumption that
1034 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1035 * Consequently, given a particular page and its ->index, we cannot locate the
1036 * ptes which are mapping that page without an exhaustive linear search.
1037 *
1038 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1039 * maps the file to which the target page belongs. The ->vm_private_data field
1040 * holds the current cursor into that scan. Successive searches will circulate
1041 * around the vma's virtual address space.
1042 *
1043 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1044 * more scanning pressure is placed against them as well. Eventually pages
1045 * will become fully unmapped and are eligible for eviction.
1046 *
1047 * For very sparsely populated VMAs this is a little inefficient - chances are
1048 * there there won't be many ptes located within the scan cluster. In this case
1049 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1050 *
1051 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1052 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1053 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1054 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1055 */
1056#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1057#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1058
b291f000
NP
1059static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1060 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1061{
1062 struct mm_struct *mm = vma->vm_mm;
1063 pgd_t *pgd;
1064 pud_t *pud;
1065 pmd_t *pmd;
c0718806 1066 pte_t *pte;
1da177e4 1067 pte_t pteval;
c0718806 1068 spinlock_t *ptl;
1da177e4
LT
1069 struct page *page;
1070 unsigned long address;
1071 unsigned long end;
b291f000
NP
1072 int ret = SWAP_AGAIN;
1073 int locked_vma = 0;
1da177e4 1074
1da177e4
LT
1075 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1076 end = address + CLUSTER_SIZE;
1077 if (address < vma->vm_start)
1078 address = vma->vm_start;
1079 if (end > vma->vm_end)
1080 end = vma->vm_end;
1081
1082 pgd = pgd_offset(mm, address);
1083 if (!pgd_present(*pgd))
b291f000 1084 return ret;
1da177e4
LT
1085
1086 pud = pud_offset(pgd, address);
1087 if (!pud_present(*pud))
b291f000 1088 return ret;
1da177e4
LT
1089
1090 pmd = pmd_offset(pud, address);
1091 if (!pmd_present(*pmd))
b291f000
NP
1092 return ret;
1093
1094 /*
af8e3354 1095 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1096 * keep the sem while scanning the cluster for mlocking pages.
1097 */
af8e3354 1098 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1099 locked_vma = (vma->vm_flags & VM_LOCKED);
1100 if (!locked_vma)
1101 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1102 }
c0718806
HD
1103
1104 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1105
365e9c87
HD
1106 /* Update high watermark before we lower rss */
1107 update_hiwater_rss(mm);
1108
c0718806 1109 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1110 if (!pte_present(*pte))
1111 continue;
6aab341e
LT
1112 page = vm_normal_page(vma, address, *pte);
1113 BUG_ON(!page || PageAnon(page));
1da177e4 1114
b291f000
NP
1115 if (locked_vma) {
1116 mlock_vma_page(page); /* no-op if already mlocked */
1117 if (page == check_page)
1118 ret = SWAP_MLOCK;
1119 continue; /* don't unmap */
1120 }
1121
cddb8a5c 1122 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1123 continue;
1124
1125 /* Nuke the page table entry. */
eca35133 1126 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1127 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1128
1129 /* If nonlinear, store the file page offset in the pte. */
1130 if (page->index != linear_page_index(vma, address))
1131 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1132
1133 /* Move the dirty bit to the physical page now the pte is gone. */
1134 if (pte_dirty(pteval))
1135 set_page_dirty(page);
1136
edc315fd 1137 page_remove_rmap(page);
1da177e4 1138 page_cache_release(page);
d559db08 1139 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1140 (*mapcount)--;
1141 }
c0718806 1142 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1143 if (locked_vma)
1144 up_read(&vma->vm_mm->mmap_sem);
1145 return ret;
1da177e4
LT
1146}
1147
a8bef8ff
MG
1148static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1149{
1150 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1151
1152 if (!maybe_stack)
1153 return false;
1154
1155 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1156 VM_STACK_INCOMPLETE_SETUP)
1157 return true;
1158
1159 return false;
1160}
1161
b291f000
NP
1162/**
1163 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1164 * rmap method
1165 * @page: the page to unmap/unlock
8051be5e 1166 * @flags: action and flags
b291f000
NP
1167 *
1168 * Find all the mappings of a page using the mapping pointer and the vma chains
1169 * contained in the anon_vma struct it points to.
1170 *
1171 * This function is only called from try_to_unmap/try_to_munlock for
1172 * anonymous pages.
1173 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1174 * where the page was found will be held for write. So, we won't recheck
1175 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1176 * 'LOCKED.
1177 */
14fa31b8 1178static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1179{
1180 struct anon_vma *anon_vma;
5beb4930 1181 struct anon_vma_chain *avc;
1da177e4 1182 int ret = SWAP_AGAIN;
b291f000 1183
1da177e4
LT
1184 anon_vma = page_lock_anon_vma(page);
1185 if (!anon_vma)
1186 return ret;
1187
5beb4930
RR
1188 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1189 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1190 unsigned long address;
1191
1192 /*
1193 * During exec, a temporary VMA is setup and later moved.
1194 * The VMA is moved under the anon_vma lock but not the
1195 * page tables leading to a race where migration cannot
1196 * find the migration ptes. Rather than increasing the
1197 * locking requirements of exec(), migration skips
1198 * temporary VMAs until after exec() completes.
1199 */
1200 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1201 is_vma_temporary_stack(vma))
1202 continue;
1203
1204 address = vma_address(page, vma);
1cb1729b
HD
1205 if (address == -EFAULT)
1206 continue;
1207 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1208 if (ret != SWAP_AGAIN || !page_mapped(page))
1209 break;
1da177e4 1210 }
34bbd704
ON
1211
1212 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1213 return ret;
1214}
1215
1216/**
b291f000
NP
1217 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1218 * @page: the page to unmap/unlock
14fa31b8 1219 * @flags: action and flags
1da177e4
LT
1220 *
1221 * Find all the mappings of a page using the mapping pointer and the vma chains
1222 * contained in the address_space struct it points to.
1223 *
b291f000
NP
1224 * This function is only called from try_to_unmap/try_to_munlock for
1225 * object-based pages.
1226 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1227 * where the page was found will be held for write. So, we won't recheck
1228 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1229 * 'LOCKED.
1da177e4 1230 */
14fa31b8 1231static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1232{
1233 struct address_space *mapping = page->mapping;
1234 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1235 struct vm_area_struct *vma;
1236 struct prio_tree_iter iter;
1237 int ret = SWAP_AGAIN;
1238 unsigned long cursor;
1239 unsigned long max_nl_cursor = 0;
1240 unsigned long max_nl_size = 0;
1241 unsigned int mapcount;
1242
1243 spin_lock(&mapping->i_mmap_lock);
1244 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1245 unsigned long address = vma_address(page, vma);
1246 if (address == -EFAULT)
1247 continue;
1248 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1249 if (ret != SWAP_AGAIN || !page_mapped(page))
1250 goto out;
1da177e4
LT
1251 }
1252
1253 if (list_empty(&mapping->i_mmap_nonlinear))
1254 goto out;
1255
53f79acb
HD
1256 /*
1257 * We don't bother to try to find the munlocked page in nonlinears.
1258 * It's costly. Instead, later, page reclaim logic may call
1259 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1260 */
1261 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1262 goto out;
1263
1da177e4
LT
1264 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1265 shared.vm_set.list) {
1da177e4
LT
1266 cursor = (unsigned long) vma->vm_private_data;
1267 if (cursor > max_nl_cursor)
1268 max_nl_cursor = cursor;
1269 cursor = vma->vm_end - vma->vm_start;
1270 if (cursor > max_nl_size)
1271 max_nl_size = cursor;
1272 }
1273
b291f000 1274 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1275 ret = SWAP_FAIL;
1276 goto out;
1277 }
1278
1279 /*
1280 * We don't try to search for this page in the nonlinear vmas,
1281 * and page_referenced wouldn't have found it anyway. Instead
1282 * just walk the nonlinear vmas trying to age and unmap some.
1283 * The mapcount of the page we came in with is irrelevant,
1284 * but even so use it as a guide to how hard we should try?
1285 */
1286 mapcount = page_mapcount(page);
1287 if (!mapcount)
1288 goto out;
1289 cond_resched_lock(&mapping->i_mmap_lock);
1290
1291 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1292 if (max_nl_cursor == 0)
1293 max_nl_cursor = CLUSTER_SIZE;
1294
1295 do {
1296 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1297 shared.vm_set.list) {
1da177e4 1298 cursor = (unsigned long) vma->vm_private_data;
839b9685 1299 while ( cursor < max_nl_cursor &&
1da177e4 1300 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1301 if (try_to_unmap_cluster(cursor, &mapcount,
1302 vma, page) == SWAP_MLOCK)
1303 ret = SWAP_MLOCK;
1da177e4
LT
1304 cursor += CLUSTER_SIZE;
1305 vma->vm_private_data = (void *) cursor;
1306 if ((int)mapcount <= 0)
1307 goto out;
1308 }
1309 vma->vm_private_data = (void *) max_nl_cursor;
1310 }
1311 cond_resched_lock(&mapping->i_mmap_lock);
1312 max_nl_cursor += CLUSTER_SIZE;
1313 } while (max_nl_cursor <= max_nl_size);
1314
1315 /*
1316 * Don't loop forever (perhaps all the remaining pages are
1317 * in locked vmas). Reset cursor on all unreserved nonlinear
1318 * vmas, now forgetting on which ones it had fallen behind.
1319 */
101d2be7
HD
1320 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1321 vma->vm_private_data = NULL;
1da177e4
LT
1322out:
1323 spin_unlock(&mapping->i_mmap_lock);
1324 return ret;
1325}
1326
1327/**
1328 * try_to_unmap - try to remove all page table mappings to a page
1329 * @page: the page to get unmapped
14fa31b8 1330 * @flags: action and flags
1da177e4
LT
1331 *
1332 * Tries to remove all the page table entries which are mapping this
1333 * page, used in the pageout path. Caller must hold the page lock.
1334 * Return values are:
1335 *
1336 * SWAP_SUCCESS - we succeeded in removing all mappings
1337 * SWAP_AGAIN - we missed a mapping, try again later
1338 * SWAP_FAIL - the page is unswappable
b291f000 1339 * SWAP_MLOCK - page is mlocked.
1da177e4 1340 */
14fa31b8 1341int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1342{
1343 int ret;
1344
1da177e4
LT
1345 BUG_ON(!PageLocked(page));
1346
5ad64688
HD
1347 if (unlikely(PageKsm(page)))
1348 ret = try_to_unmap_ksm(page, flags);
1349 else if (PageAnon(page))
14fa31b8 1350 ret = try_to_unmap_anon(page, flags);
1da177e4 1351 else
14fa31b8 1352 ret = try_to_unmap_file(page, flags);
b291f000 1353 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1354 ret = SWAP_SUCCESS;
1355 return ret;
1356}
81b4082d 1357
b291f000
NP
1358/**
1359 * try_to_munlock - try to munlock a page
1360 * @page: the page to be munlocked
1361 *
1362 * Called from munlock code. Checks all of the VMAs mapping the page
1363 * to make sure nobody else has this page mlocked. The page will be
1364 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1365 *
1366 * Return values are:
1367 *
53f79acb 1368 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1369 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1370 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1371 * SWAP_MLOCK - page is now mlocked.
1372 */
1373int try_to_munlock(struct page *page)
1374{
1375 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1376
5ad64688
HD
1377 if (unlikely(PageKsm(page)))
1378 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1379 else if (PageAnon(page))
14fa31b8 1380 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1381 else
14fa31b8 1382 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1383}
e9995ef9
HD
1384
1385#ifdef CONFIG_MIGRATION
1386/*
1387 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1388 * Called by migrate.c to remove migration ptes, but might be used more later.
1389 */
1390static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1391 struct vm_area_struct *, unsigned long, void *), void *arg)
1392{
1393 struct anon_vma *anon_vma;
5beb4930 1394 struct anon_vma_chain *avc;
e9995ef9
HD
1395 int ret = SWAP_AGAIN;
1396
1397 /*
1398 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1399 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1400 * are holding mmap_sem. Users without mmap_sem are required to
1401 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1402 */
1403 anon_vma = page_anon_vma(page);
1404 if (!anon_vma)
1405 return ret;
cba48b98 1406 anon_vma_lock(anon_vma);
5beb4930
RR
1407 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1408 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1409 unsigned long address = vma_address(page, vma);
1410 if (address == -EFAULT)
1411 continue;
1412 ret = rmap_one(page, vma, address, arg);
1413 if (ret != SWAP_AGAIN)
1414 break;
1415 }
cba48b98 1416 anon_vma_unlock(anon_vma);
e9995ef9
HD
1417 return ret;
1418}
1419
1420static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1421 struct vm_area_struct *, unsigned long, void *), void *arg)
1422{
1423 struct address_space *mapping = page->mapping;
1424 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1425 struct vm_area_struct *vma;
1426 struct prio_tree_iter iter;
1427 int ret = SWAP_AGAIN;
1428
1429 if (!mapping)
1430 return ret;
1431 spin_lock(&mapping->i_mmap_lock);
1432 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1433 unsigned long address = vma_address(page, vma);
1434 if (address == -EFAULT)
1435 continue;
1436 ret = rmap_one(page, vma, address, arg);
1437 if (ret != SWAP_AGAIN)
1438 break;
1439 }
1440 /*
1441 * No nonlinear handling: being always shared, nonlinear vmas
1442 * never contain migration ptes. Decide what to do about this
1443 * limitation to linear when we need rmap_walk() on nonlinear.
1444 */
1445 spin_unlock(&mapping->i_mmap_lock);
1446 return ret;
1447}
1448
1449int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1450 struct vm_area_struct *, unsigned long, void *), void *arg)
1451{
1452 VM_BUG_ON(!PageLocked(page));
1453
1454 if (unlikely(PageKsm(page)))
1455 return rmap_walk_ksm(page, rmap_one, arg);
1456 else if (PageAnon(page))
1457 return rmap_walk_anon(page, rmap_one, arg);
1458 else
1459 return rmap_walk_file(page, rmap_one, arg);
1460}
1461#endif /* CONFIG_MIGRATION */