]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/rmap.c
mmu-notifier: add clear_young callback
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
c8c06efa 26 * mapping->i_mmap_rwsem
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
c4843a75
GT
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
250df6ed 35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 40 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 41 *
5a505085 42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 43 * ->tasklist_lock
6a46079c 44 * pte map lock
1da177e4
LT
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
5ad64688 53#include <linux/ksm.h>
1da177e4
LT
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
b95f1b31 56#include <linux/export.h>
8a9f3ccd 57#include <linux/memcontrol.h>
cddb8a5c 58#include <linux/mmu_notifier.h>
64cdd548 59#include <linux/migrate.h>
0fe6e20b 60#include <linux/hugetlb.h>
ef5d437f 61#include <linux/backing-dev.h>
1da177e4
LT
62
63#include <asm/tlbflush.h>
64
72b252ae
MG
65#include <trace/events/tlb.h>
66
b291f000
NP
67#include "internal.h"
68
fdd2e5f8 69static struct kmem_cache *anon_vma_cachep;
5beb4930 70static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
71
72static inline struct anon_vma *anon_vma_alloc(void)
73{
01d8b20d
PZ
74 struct anon_vma *anon_vma;
75
76 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
77 if (anon_vma) {
78 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
79 anon_vma->degree = 1; /* Reference for first vma */
80 anon_vma->parent = anon_vma;
01d8b20d
PZ
81 /*
82 * Initialise the anon_vma root to point to itself. If called
83 * from fork, the root will be reset to the parents anon_vma.
84 */
85 anon_vma->root = anon_vma;
86 }
87
88 return anon_vma;
fdd2e5f8
AB
89}
90
01d8b20d 91static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 92{
01d8b20d 93 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
94
95 /*
4fc3f1d6 96 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
97 * we can safely hold the lock without the anon_vma getting
98 * freed.
99 *
100 * Relies on the full mb implied by the atomic_dec_and_test() from
101 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 102 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 103 *
4fc3f1d6
IM
104 * page_lock_anon_vma_read() VS put_anon_vma()
105 * down_read_trylock() atomic_dec_and_test()
88c22088 106 * LOCK MB
4fc3f1d6 107 * atomic_read() rwsem_is_locked()
88c22088
PZ
108 *
109 * LOCK should suffice since the actual taking of the lock must
110 * happen _before_ what follows.
111 */
7f39dda9 112 might_sleep();
5a505085 113 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 114 anon_vma_lock_write(anon_vma);
08b52706 115 anon_vma_unlock_write(anon_vma);
88c22088
PZ
116 }
117
fdd2e5f8
AB
118 kmem_cache_free(anon_vma_cachep, anon_vma);
119}
1da177e4 120
dd34739c 121static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 122{
dd34739c 123 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
124}
125
e574b5fd 126static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
127{
128 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
129}
130
6583a843
KC
131static void anon_vma_chain_link(struct vm_area_struct *vma,
132 struct anon_vma_chain *avc,
133 struct anon_vma *anon_vma)
134{
135 avc->vma = vma;
136 avc->anon_vma = anon_vma;
137 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 138 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
139}
140
d9d332e0
LT
141/**
142 * anon_vma_prepare - attach an anon_vma to a memory region
143 * @vma: the memory region in question
144 *
145 * This makes sure the memory mapping described by 'vma' has
146 * an 'anon_vma' attached to it, so that we can associate the
147 * anonymous pages mapped into it with that anon_vma.
148 *
149 * The common case will be that we already have one, but if
23a0790a 150 * not we either need to find an adjacent mapping that we
d9d332e0
LT
151 * can re-use the anon_vma from (very common when the only
152 * reason for splitting a vma has been mprotect()), or we
153 * allocate a new one.
154 *
155 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 156 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
157 * and that may actually touch the spinlock even in the newly
158 * allocated vma (it depends on RCU to make sure that the
159 * anon_vma isn't actually destroyed).
160 *
161 * As a result, we need to do proper anon_vma locking even
162 * for the new allocation. At the same time, we do not want
163 * to do any locking for the common case of already having
164 * an anon_vma.
165 *
166 * This must be called with the mmap_sem held for reading.
167 */
1da177e4
LT
168int anon_vma_prepare(struct vm_area_struct *vma)
169{
170 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 171 struct anon_vma_chain *avc;
1da177e4
LT
172
173 might_sleep();
174 if (unlikely(!anon_vma)) {
175 struct mm_struct *mm = vma->vm_mm;
d9d332e0 176 struct anon_vma *allocated;
1da177e4 177
dd34739c 178 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
179 if (!avc)
180 goto out_enomem;
181
1da177e4 182 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
183 allocated = NULL;
184 if (!anon_vma) {
1da177e4
LT
185 anon_vma = anon_vma_alloc();
186 if (unlikely(!anon_vma))
5beb4930 187 goto out_enomem_free_avc;
1da177e4 188 allocated = anon_vma;
1da177e4
LT
189 }
190
4fc3f1d6 191 anon_vma_lock_write(anon_vma);
1da177e4
LT
192 /* page_table_lock to protect against threads */
193 spin_lock(&mm->page_table_lock);
194 if (likely(!vma->anon_vma)) {
195 vma->anon_vma = anon_vma;
6583a843 196 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
197 /* vma reference or self-parent link for new root */
198 anon_vma->degree++;
1da177e4 199 allocated = NULL;
31f2b0eb 200 avc = NULL;
1da177e4
LT
201 }
202 spin_unlock(&mm->page_table_lock);
08b52706 203 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
204
205 if (unlikely(allocated))
01d8b20d 206 put_anon_vma(allocated);
31f2b0eb 207 if (unlikely(avc))
5beb4930 208 anon_vma_chain_free(avc);
1da177e4
LT
209 }
210 return 0;
5beb4930
RR
211
212 out_enomem_free_avc:
213 anon_vma_chain_free(avc);
214 out_enomem:
215 return -ENOMEM;
1da177e4
LT
216}
217
bb4aa396
LT
218/*
219 * This is a useful helper function for locking the anon_vma root as
220 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
221 * have the same vma.
222 *
223 * Such anon_vma's should have the same root, so you'd expect to see
224 * just a single mutex_lock for the whole traversal.
225 */
226static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
227{
228 struct anon_vma *new_root = anon_vma->root;
229 if (new_root != root) {
230 if (WARN_ON_ONCE(root))
5a505085 231 up_write(&root->rwsem);
bb4aa396 232 root = new_root;
5a505085 233 down_write(&root->rwsem);
bb4aa396
LT
234 }
235 return root;
236}
237
238static inline void unlock_anon_vma_root(struct anon_vma *root)
239{
240 if (root)
5a505085 241 up_write(&root->rwsem);
bb4aa396
LT
242}
243
5beb4930
RR
244/*
245 * Attach the anon_vmas from src to dst.
246 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
247 *
248 * If dst->anon_vma is NULL this function tries to find and reuse existing
249 * anon_vma which has no vmas and only one child anon_vma. This prevents
250 * degradation of anon_vma hierarchy to endless linear chain in case of
251 * constantly forking task. On the other hand, an anon_vma with more than one
252 * child isn't reused even if there was no alive vma, thus rmap walker has a
253 * good chance of avoiding scanning the whole hierarchy when it searches where
254 * page is mapped.
5beb4930
RR
255 */
256int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 257{
5beb4930 258 struct anon_vma_chain *avc, *pavc;
bb4aa396 259 struct anon_vma *root = NULL;
5beb4930 260
646d87b4 261 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
262 struct anon_vma *anon_vma;
263
dd34739c
LT
264 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
265 if (unlikely(!avc)) {
266 unlock_anon_vma_root(root);
267 root = NULL;
268 avc = anon_vma_chain_alloc(GFP_KERNEL);
269 if (!avc)
270 goto enomem_failure;
271 }
bb4aa396
LT
272 anon_vma = pavc->anon_vma;
273 root = lock_anon_vma_root(root, anon_vma);
274 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
275
276 /*
277 * Reuse existing anon_vma if its degree lower than two,
278 * that means it has no vma and only one anon_vma child.
279 *
280 * Do not chose parent anon_vma, otherwise first child
281 * will always reuse it. Root anon_vma is never reused:
282 * it has self-parent reference and at least one child.
283 */
284 if (!dst->anon_vma && anon_vma != src->anon_vma &&
285 anon_vma->degree < 2)
286 dst->anon_vma = anon_vma;
5beb4930 287 }
7a3ef208
KK
288 if (dst->anon_vma)
289 dst->anon_vma->degree++;
bb4aa396 290 unlock_anon_vma_root(root);
5beb4930 291 return 0;
1da177e4 292
5beb4930 293 enomem_failure:
3fe89b3e
LY
294 /*
295 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
296 * decremented in unlink_anon_vmas().
297 * We can safely do this because callers of anon_vma_clone() don't care
298 * about dst->anon_vma if anon_vma_clone() failed.
299 */
300 dst->anon_vma = NULL;
5beb4930
RR
301 unlink_anon_vmas(dst);
302 return -ENOMEM;
1da177e4
LT
303}
304
5beb4930
RR
305/*
306 * Attach vma to its own anon_vma, as well as to the anon_vmas that
307 * the corresponding VMA in the parent process is attached to.
308 * Returns 0 on success, non-zero on failure.
309 */
310int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 311{
5beb4930
RR
312 struct anon_vma_chain *avc;
313 struct anon_vma *anon_vma;
c4ea95d7 314 int error;
1da177e4 315
5beb4930
RR
316 /* Don't bother if the parent process has no anon_vma here. */
317 if (!pvma->anon_vma)
318 return 0;
319
7a3ef208
KK
320 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
321 vma->anon_vma = NULL;
322
5beb4930
RR
323 /*
324 * First, attach the new VMA to the parent VMA's anon_vmas,
325 * so rmap can find non-COWed pages in child processes.
326 */
c4ea95d7
DF
327 error = anon_vma_clone(vma, pvma);
328 if (error)
329 return error;
5beb4930 330
7a3ef208
KK
331 /* An existing anon_vma has been reused, all done then. */
332 if (vma->anon_vma)
333 return 0;
334
5beb4930
RR
335 /* Then add our own anon_vma. */
336 anon_vma = anon_vma_alloc();
337 if (!anon_vma)
338 goto out_error;
dd34739c 339 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
340 if (!avc)
341 goto out_error_free_anon_vma;
5c341ee1
RR
342
343 /*
344 * The root anon_vma's spinlock is the lock actually used when we
345 * lock any of the anon_vmas in this anon_vma tree.
346 */
347 anon_vma->root = pvma->anon_vma->root;
7a3ef208 348 anon_vma->parent = pvma->anon_vma;
76545066 349 /*
01d8b20d
PZ
350 * With refcounts, an anon_vma can stay around longer than the
351 * process it belongs to. The root anon_vma needs to be pinned until
352 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
353 */
354 get_anon_vma(anon_vma->root);
5beb4930
RR
355 /* Mark this anon_vma as the one where our new (COWed) pages go. */
356 vma->anon_vma = anon_vma;
4fc3f1d6 357 anon_vma_lock_write(anon_vma);
5c341ee1 358 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 359 anon_vma->parent->degree++;
08b52706 360 anon_vma_unlock_write(anon_vma);
5beb4930
RR
361
362 return 0;
363
364 out_error_free_anon_vma:
01d8b20d 365 put_anon_vma(anon_vma);
5beb4930 366 out_error:
4946d54c 367 unlink_anon_vmas(vma);
5beb4930 368 return -ENOMEM;
1da177e4
LT
369}
370
5beb4930
RR
371void unlink_anon_vmas(struct vm_area_struct *vma)
372{
373 struct anon_vma_chain *avc, *next;
eee2acba 374 struct anon_vma *root = NULL;
5beb4930 375
5c341ee1
RR
376 /*
377 * Unlink each anon_vma chained to the VMA. This list is ordered
378 * from newest to oldest, ensuring the root anon_vma gets freed last.
379 */
5beb4930 380 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
381 struct anon_vma *anon_vma = avc->anon_vma;
382
383 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 384 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
385
386 /*
387 * Leave empty anon_vmas on the list - we'll need
388 * to free them outside the lock.
389 */
7a3ef208
KK
390 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
391 anon_vma->parent->degree--;
eee2acba 392 continue;
7a3ef208 393 }
eee2acba
PZ
394
395 list_del(&avc->same_vma);
396 anon_vma_chain_free(avc);
397 }
7a3ef208
KK
398 if (vma->anon_vma)
399 vma->anon_vma->degree--;
eee2acba
PZ
400 unlock_anon_vma_root(root);
401
402 /*
403 * Iterate the list once more, it now only contains empty and unlinked
404 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 405 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
406 */
407 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
408 struct anon_vma *anon_vma = avc->anon_vma;
409
7a3ef208 410 BUG_ON(anon_vma->degree);
eee2acba
PZ
411 put_anon_vma(anon_vma);
412
5beb4930
RR
413 list_del(&avc->same_vma);
414 anon_vma_chain_free(avc);
415 }
416}
417
51cc5068 418static void anon_vma_ctor(void *data)
1da177e4 419{
a35afb83 420 struct anon_vma *anon_vma = data;
1da177e4 421
5a505085 422 init_rwsem(&anon_vma->rwsem);
83813267 423 atomic_set(&anon_vma->refcount, 0);
bf181b9f 424 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
425}
426
427void __init anon_vma_init(void)
428{
429 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 430 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 431 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
432}
433
434/*
6111e4ca
PZ
435 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
436 *
437 * Since there is no serialization what so ever against page_remove_rmap()
438 * the best this function can do is return a locked anon_vma that might
439 * have been relevant to this page.
440 *
441 * The page might have been remapped to a different anon_vma or the anon_vma
442 * returned may already be freed (and even reused).
443 *
bc658c96
PZ
444 * In case it was remapped to a different anon_vma, the new anon_vma will be a
445 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
446 * ensure that any anon_vma obtained from the page will still be valid for as
447 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
448 *
6111e4ca
PZ
449 * All users of this function must be very careful when walking the anon_vma
450 * chain and verify that the page in question is indeed mapped in it
451 * [ something equivalent to page_mapped_in_vma() ].
452 *
453 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
454 * that the anon_vma pointer from page->mapping is valid if there is a
455 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 456 */
746b18d4 457struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 458{
746b18d4 459 struct anon_vma *anon_vma = NULL;
1da177e4
LT
460 unsigned long anon_mapping;
461
462 rcu_read_lock();
4db0c3c2 463 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 464 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
465 goto out;
466 if (!page_mapped(page))
467 goto out;
468
469 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
470 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
471 anon_vma = NULL;
472 goto out;
473 }
f1819427
HD
474
475 /*
476 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
477 * freed. But if it has been unmapped, we have no security against the
478 * anon_vma structure being freed and reused (for another anon_vma:
479 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
480 * above cannot corrupt).
f1819427 481 */
746b18d4 482 if (!page_mapped(page)) {
7f39dda9 483 rcu_read_unlock();
746b18d4 484 put_anon_vma(anon_vma);
7f39dda9 485 return NULL;
746b18d4 486 }
1da177e4
LT
487out:
488 rcu_read_unlock();
746b18d4
PZ
489
490 return anon_vma;
491}
492
88c22088
PZ
493/*
494 * Similar to page_get_anon_vma() except it locks the anon_vma.
495 *
496 * Its a little more complex as it tries to keep the fast path to a single
497 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
498 * reference like with page_get_anon_vma() and then block on the mutex.
499 */
4fc3f1d6 500struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 501{
88c22088 502 struct anon_vma *anon_vma = NULL;
eee0f252 503 struct anon_vma *root_anon_vma;
88c22088 504 unsigned long anon_mapping;
746b18d4 505
88c22088 506 rcu_read_lock();
4db0c3c2 507 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
508 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
509 goto out;
510 if (!page_mapped(page))
511 goto out;
512
513 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 514 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 515 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 516 /*
eee0f252
HD
517 * If the page is still mapped, then this anon_vma is still
518 * its anon_vma, and holding the mutex ensures that it will
bc658c96 519 * not go away, see anon_vma_free().
88c22088 520 */
eee0f252 521 if (!page_mapped(page)) {
4fc3f1d6 522 up_read(&root_anon_vma->rwsem);
88c22088
PZ
523 anon_vma = NULL;
524 }
525 goto out;
526 }
746b18d4 527
88c22088
PZ
528 /* trylock failed, we got to sleep */
529 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
530 anon_vma = NULL;
531 goto out;
532 }
533
534 if (!page_mapped(page)) {
7f39dda9 535 rcu_read_unlock();
88c22088 536 put_anon_vma(anon_vma);
7f39dda9 537 return NULL;
88c22088
PZ
538 }
539
540 /* we pinned the anon_vma, its safe to sleep */
541 rcu_read_unlock();
4fc3f1d6 542 anon_vma_lock_read(anon_vma);
88c22088
PZ
543
544 if (atomic_dec_and_test(&anon_vma->refcount)) {
545 /*
546 * Oops, we held the last refcount, release the lock
547 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 548 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 549 */
4fc3f1d6 550 anon_vma_unlock_read(anon_vma);
88c22088
PZ
551 __put_anon_vma(anon_vma);
552 anon_vma = NULL;
553 }
554
555 return anon_vma;
556
557out:
558 rcu_read_unlock();
746b18d4 559 return anon_vma;
34bbd704
ON
560}
561
4fc3f1d6 562void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 563{
4fc3f1d6 564 anon_vma_unlock_read(anon_vma);
1da177e4
LT
565}
566
567/*
3ad33b24 568 * At what user virtual address is page expected in @vma?
1da177e4 569 */
86c2ad19
ML
570static inline unsigned long
571__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4 572{
a0f7a756 573 pgoff_t pgoff = page_to_pgoff(page);
86c2ad19
ML
574 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
575}
576
577inline unsigned long
578vma_address(struct page *page, struct vm_area_struct *vma)
579{
580 unsigned long address = __vma_address(page, vma);
581
582 /* page should be within @vma mapping range */
81d1b09c 583 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
86c2ad19 584
1da177e4
LT
585 return address;
586}
587
72b252ae
MG
588#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
589static void percpu_flush_tlb_batch_pages(void *data)
590{
591 /*
592 * All TLB entries are flushed on the assumption that it is
593 * cheaper to flush all TLBs and let them be refilled than
594 * flushing individual PFNs. Note that we do not track mm's
595 * to flush as that might simply be multiple full TLB flushes
596 * for no gain.
597 */
598 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
599 flush_tlb_local();
600}
601
602/*
603 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
604 * important if a PTE was dirty when it was unmapped that it's flushed
605 * before any IO is initiated on the page to prevent lost writes. Similarly,
606 * it must be flushed before freeing to prevent data leakage.
607 */
608void try_to_unmap_flush(void)
609{
610 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
611 int cpu;
612
613 if (!tlb_ubc->flush_required)
614 return;
615
616 cpu = get_cpu();
617
618 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
619
620 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
621 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
622
623 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
624 smp_call_function_many(&tlb_ubc->cpumask,
625 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
626 }
627 cpumask_clear(&tlb_ubc->cpumask);
628 tlb_ubc->flush_required = false;
d950c947 629 tlb_ubc->writable = false;
72b252ae
MG
630 put_cpu();
631}
632
d950c947
MG
633/* Flush iff there are potentially writable TLB entries that can race with IO */
634void try_to_unmap_flush_dirty(void)
635{
636 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
637
638 if (tlb_ubc->writable)
639 try_to_unmap_flush();
640}
641
72b252ae 642static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 643 struct page *page, bool writable)
72b252ae
MG
644{
645 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646
647 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
648 tlb_ubc->flush_required = true;
d950c947
MG
649
650 /*
651 * If the PTE was dirty then it's best to assume it's writable. The
652 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
653 * before the page is queued for IO.
654 */
655 if (writable)
656 tlb_ubc->writable = true;
72b252ae
MG
657}
658
659/*
660 * Returns true if the TLB flush should be deferred to the end of a batch of
661 * unmap operations to reduce IPIs.
662 */
663static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
664{
665 bool should_defer = false;
666
667 if (!(flags & TTU_BATCH_FLUSH))
668 return false;
669
670 /* If remote CPUs need to be flushed then defer batch the flush */
671 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
672 should_defer = true;
673 put_cpu();
674
675 return should_defer;
676}
677#else
678static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 679 struct page *page, bool writable)
72b252ae
MG
680{
681}
682
683static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
684{
685 return false;
686}
687#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
688
1da177e4 689/*
bf89c8c8 690 * At what user virtual address is page expected in vma?
ab941e0f 691 * Caller should check the page is actually part of the vma.
1da177e4
LT
692 */
693unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
694{
86c2ad19 695 unsigned long address;
21d0d443 696 if (PageAnon(page)) {
4829b906
HD
697 struct anon_vma *page__anon_vma = page_anon_vma(page);
698 /*
699 * Note: swapoff's unuse_vma() is more efficient with this
700 * check, and needs it to match anon_vma when KSM is active.
701 */
702 if (!vma->anon_vma || !page__anon_vma ||
703 vma->anon_vma->root != page__anon_vma->root)
21d0d443 704 return -EFAULT;
27ba0644
KS
705 } else if (page->mapping) {
706 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
707 return -EFAULT;
708 } else
709 return -EFAULT;
86c2ad19
ML
710 address = __vma_address(page, vma);
711 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
712 return -EFAULT;
713 return address;
1da177e4
LT
714}
715
6219049a
BL
716pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
717{
718 pgd_t *pgd;
719 pud_t *pud;
720 pmd_t *pmd = NULL;
f72e7dcd 721 pmd_t pmde;
6219049a
BL
722
723 pgd = pgd_offset(mm, address);
724 if (!pgd_present(*pgd))
725 goto out;
726
727 pud = pud_offset(pgd, address);
728 if (!pud_present(*pud))
729 goto out;
730
731 pmd = pmd_offset(pud, address);
f72e7dcd 732 /*
8809aa2d 733 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
734 * without holding anon_vma lock for write. So when looking for a
735 * genuine pmde (in which to find pte), test present and !THP together.
736 */
e37c6982
CB
737 pmde = *pmd;
738 barrier();
f72e7dcd 739 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
740 pmd = NULL;
741out:
742 return pmd;
743}
744
81b4082d
ND
745/*
746 * Check that @page is mapped at @address into @mm.
747 *
479db0bf
NP
748 * If @sync is false, page_check_address may perform a racy check to avoid
749 * the page table lock when the pte is not present (helpful when reclaiming
750 * highly shared pages).
751 *
b8072f09 752 * On success returns with pte mapped and locked.
81b4082d 753 */
e9a81a82 754pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 755 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 756{
81b4082d
ND
757 pmd_t *pmd;
758 pte_t *pte;
c0718806 759 spinlock_t *ptl;
81b4082d 760
0fe6e20b 761 if (unlikely(PageHuge(page))) {
98398c32 762 /* when pud is not present, pte will be NULL */
0fe6e20b 763 pte = huge_pte_offset(mm, address);
98398c32
JW
764 if (!pte)
765 return NULL;
766
cb900f41 767 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
768 goto check;
769 }
770
6219049a
BL
771 pmd = mm_find_pmd(mm, address);
772 if (!pmd)
c0718806
HD
773 return NULL;
774
c0718806
HD
775 pte = pte_offset_map(pmd, address);
776 /* Make a quick check before getting the lock */
479db0bf 777 if (!sync && !pte_present(*pte)) {
c0718806
HD
778 pte_unmap(pte);
779 return NULL;
780 }
781
4c21e2f2 782 ptl = pte_lockptr(mm, pmd);
0fe6e20b 783check:
c0718806
HD
784 spin_lock(ptl);
785 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
786 *ptlp = ptl;
787 return pte;
81b4082d 788 }
c0718806
HD
789 pte_unmap_unlock(pte, ptl);
790 return NULL;
81b4082d
ND
791}
792
b291f000
NP
793/**
794 * page_mapped_in_vma - check whether a page is really mapped in a VMA
795 * @page: the page to test
796 * @vma: the VMA to test
797 *
798 * Returns 1 if the page is mapped into the page tables of the VMA, 0
799 * if the page is not mapped into the page tables of this VMA. Only
800 * valid for normal file or anonymous VMAs.
801 */
6a46079c 802int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
803{
804 unsigned long address;
805 pte_t *pte;
806 spinlock_t *ptl;
807
86c2ad19
ML
808 address = __vma_address(page, vma);
809 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
810 return 0;
811 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
812 if (!pte) /* the page is not in this mm */
813 return 0;
814 pte_unmap_unlock(pte, ptl);
815
816 return 1;
817}
818
9f32624b
JK
819struct page_referenced_arg {
820 int mapcount;
821 int referenced;
822 unsigned long vm_flags;
823 struct mem_cgroup *memcg;
824};
1da177e4 825/*
9f32624b 826 * arg: page_referenced_arg will be passed
1da177e4 827 */
ac769501 828static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 829 unsigned long address, void *arg)
1da177e4
LT
830{
831 struct mm_struct *mm = vma->vm_mm;
117b0791 832 spinlock_t *ptl;
1da177e4 833 int referenced = 0;
9f32624b 834 struct page_referenced_arg *pra = arg;
1da177e4 835
71e3aac0
AA
836 if (unlikely(PageTransHuge(page))) {
837 pmd_t *pmd;
838
2da28bfd
AA
839 /*
840 * rmap might return false positives; we must filter
841 * these out using page_check_address_pmd().
842 */
71e3aac0 843 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
844 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
845 if (!pmd)
9f32624b 846 return SWAP_AGAIN;
2da28bfd
AA
847
848 if (vma->vm_flags & VM_LOCKED) {
117b0791 849 spin_unlock(ptl);
9f32624b
JK
850 pra->vm_flags |= VM_LOCKED;
851 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
852 }
853
854 /* go ahead even if the pmd is pmd_trans_splitting() */
855 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 856 referenced++;
117b0791 857 spin_unlock(ptl);
71e3aac0
AA
858 } else {
859 pte_t *pte;
71e3aac0 860
2da28bfd
AA
861 /*
862 * rmap might return false positives; we must filter
863 * these out using page_check_address().
864 */
71e3aac0
AA
865 pte = page_check_address(page, mm, address, &ptl, 0);
866 if (!pte)
9f32624b 867 return SWAP_AGAIN;
71e3aac0 868
2da28bfd
AA
869 if (vma->vm_flags & VM_LOCKED) {
870 pte_unmap_unlock(pte, ptl);
9f32624b
JK
871 pra->vm_flags |= VM_LOCKED;
872 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
873 }
874
71e3aac0
AA
875 if (ptep_clear_flush_young_notify(vma, address, pte)) {
876 /*
877 * Don't treat a reference through a sequentially read
878 * mapping as such. If the page has been used in
879 * another mapping, we will catch it; if this other
880 * mapping is already gone, the unmap path will have
881 * set PG_referenced or activated the page.
882 */
64363aad 883 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
884 referenced++;
885 }
886 pte_unmap_unlock(pte, ptl);
887 }
888
9f32624b
JK
889 if (referenced) {
890 pra->referenced++;
891 pra->vm_flags |= vma->vm_flags;
1da177e4 892 }
34bbd704 893
9f32624b
JK
894 pra->mapcount--;
895 if (!pra->mapcount)
896 return SWAP_SUCCESS; /* To break the loop */
897
898 return SWAP_AGAIN;
1da177e4
LT
899}
900
9f32624b 901static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 902{
9f32624b
JK
903 struct page_referenced_arg *pra = arg;
904 struct mem_cgroup *memcg = pra->memcg;
1da177e4 905
9f32624b
JK
906 if (!mm_match_cgroup(vma->vm_mm, memcg))
907 return true;
1da177e4 908
9f32624b 909 return false;
1da177e4
LT
910}
911
912/**
913 * page_referenced - test if the page was referenced
914 * @page: the page to test
915 * @is_locked: caller holds lock on the page
72835c86 916 * @memcg: target memory cgroup
6fe6b7e3 917 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
918 *
919 * Quick test_and_clear_referenced for all mappings to a page,
920 * returns the number of ptes which referenced the page.
921 */
6fe6b7e3
WF
922int page_referenced(struct page *page,
923 int is_locked,
72835c86 924 struct mem_cgroup *memcg,
6fe6b7e3 925 unsigned long *vm_flags)
1da177e4 926{
9f32624b 927 int ret;
5ad64688 928 int we_locked = 0;
9f32624b
JK
929 struct page_referenced_arg pra = {
930 .mapcount = page_mapcount(page),
931 .memcg = memcg,
932 };
933 struct rmap_walk_control rwc = {
934 .rmap_one = page_referenced_one,
935 .arg = (void *)&pra,
936 .anon_lock = page_lock_anon_vma_read,
937 };
1da177e4 938
6fe6b7e3 939 *vm_flags = 0;
9f32624b
JK
940 if (!page_mapped(page))
941 return 0;
942
943 if (!page_rmapping(page))
944 return 0;
945
946 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
947 we_locked = trylock_page(page);
948 if (!we_locked)
949 return 1;
1da177e4 950 }
9f32624b
JK
951
952 /*
953 * If we are reclaiming on behalf of a cgroup, skip
954 * counting on behalf of references from different
955 * cgroups
956 */
957 if (memcg) {
958 rwc.invalid_vma = invalid_page_referenced_vma;
959 }
960
961 ret = rmap_walk(page, &rwc);
962 *vm_flags = pra.vm_flags;
963
964 if (we_locked)
965 unlock_page(page);
966
967 return pra.referenced;
1da177e4
LT
968}
969
1cb1729b 970static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 971 unsigned long address, void *arg)
d08b3851
PZ
972{
973 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 974 pte_t *pte;
d08b3851
PZ
975 spinlock_t *ptl;
976 int ret = 0;
9853a407 977 int *cleaned = arg;
d08b3851 978
479db0bf 979 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
980 if (!pte)
981 goto out;
982
c2fda5fe
PZ
983 if (pte_dirty(*pte) || pte_write(*pte)) {
984 pte_t entry;
d08b3851 985
c2fda5fe 986 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 987 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
988 entry = pte_wrprotect(entry);
989 entry = pte_mkclean(entry);
d6e88e67 990 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
991 ret = 1;
992 }
d08b3851 993
d08b3851 994 pte_unmap_unlock(pte, ptl);
2ec74c3e 995
9853a407 996 if (ret) {
2ec74c3e 997 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
998 (*cleaned)++;
999 }
d08b3851 1000out:
9853a407 1001 return SWAP_AGAIN;
d08b3851
PZ
1002}
1003
9853a407 1004static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1005{
9853a407 1006 if (vma->vm_flags & VM_SHARED)
871beb8c 1007 return false;
d08b3851 1008
871beb8c 1009 return true;
d08b3851
PZ
1010}
1011
1012int page_mkclean(struct page *page)
1013{
9853a407
JK
1014 int cleaned = 0;
1015 struct address_space *mapping;
1016 struct rmap_walk_control rwc = {
1017 .arg = (void *)&cleaned,
1018 .rmap_one = page_mkclean_one,
1019 .invalid_vma = invalid_mkclean_vma,
1020 };
d08b3851
PZ
1021
1022 BUG_ON(!PageLocked(page));
1023
9853a407
JK
1024 if (!page_mapped(page))
1025 return 0;
1026
1027 mapping = page_mapping(page);
1028 if (!mapping)
1029 return 0;
1030
1031 rmap_walk(page, &rwc);
d08b3851 1032
9853a407 1033 return cleaned;
d08b3851 1034}
60b59bea 1035EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1036
c44b6743
RR
1037/**
1038 * page_move_anon_rmap - move a page to our anon_vma
1039 * @page: the page to move to our anon_vma
1040 * @vma: the vma the page belongs to
1041 * @address: the user virtual address mapped
1042 *
1043 * When a page belongs exclusively to one process after a COW event,
1044 * that page can be moved into the anon_vma that belongs to just that
1045 * process, so the rmap code will not search the parent or sibling
1046 * processes.
1047 */
1048void page_move_anon_rmap(struct page *page,
1049 struct vm_area_struct *vma, unsigned long address)
1050{
1051 struct anon_vma *anon_vma = vma->anon_vma;
1052
309381fe 1053 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1054 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 1055 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
1056
1057 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1058 /*
1059 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1060 * simultaneously, so a concurrent reader (eg page_referenced()'s
1061 * PageAnon()) will not see one without the other.
1062 */
1063 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1064}
1065
9617d95e 1066/**
4e1c1975
AK
1067 * __page_set_anon_rmap - set up new anonymous rmap
1068 * @page: Page to add to rmap
1069 * @vma: VM area to add page to.
1070 * @address: User virtual address of the mapping
e8a03feb 1071 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1072 */
1073static void __page_set_anon_rmap(struct page *page,
e8a03feb 1074 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1075{
e8a03feb 1076 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1077
e8a03feb 1078 BUG_ON(!anon_vma);
ea90002b 1079
4e1c1975
AK
1080 if (PageAnon(page))
1081 return;
1082
ea90002b 1083 /*
e8a03feb
RR
1084 * If the page isn't exclusively mapped into this vma,
1085 * we must use the _oldest_ possible anon_vma for the
1086 * page mapping!
ea90002b 1087 */
4e1c1975 1088 if (!exclusive)
288468c3 1089 anon_vma = anon_vma->root;
9617d95e 1090
9617d95e
NP
1091 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1092 page->mapping = (struct address_space *) anon_vma;
9617d95e 1093 page->index = linear_page_index(vma, address);
9617d95e
NP
1094}
1095
c97a9e10 1096/**
43d8eac4 1097 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1098 * @page: the page to add the mapping to
1099 * @vma: the vm area in which the mapping is added
1100 * @address: the user virtual address mapped
1101 */
1102static void __page_check_anon_rmap(struct page *page,
1103 struct vm_area_struct *vma, unsigned long address)
1104{
1105#ifdef CONFIG_DEBUG_VM
1106 /*
1107 * The page's anon-rmap details (mapping and index) are guaranteed to
1108 * be set up correctly at this point.
1109 *
1110 * We have exclusion against page_add_anon_rmap because the caller
1111 * always holds the page locked, except if called from page_dup_rmap,
1112 * in which case the page is already known to be setup.
1113 *
1114 * We have exclusion against page_add_new_anon_rmap because those pages
1115 * are initially only visible via the pagetables, and the pte is locked
1116 * over the call to page_add_new_anon_rmap.
1117 */
44ab57a0 1118 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1119 BUG_ON(page->index != linear_page_index(vma, address));
1120#endif
1121}
1122
1da177e4
LT
1123/**
1124 * page_add_anon_rmap - add pte mapping to an anonymous page
1125 * @page: the page to add the mapping to
1126 * @vma: the vm area in which the mapping is added
1127 * @address: the user virtual address mapped
1128 *
5ad64688 1129 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1130 * the anon_vma case: to serialize mapping,index checking after setting,
1131 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1132 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1133 */
1134void page_add_anon_rmap(struct page *page,
1135 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1136{
1137 do_page_add_anon_rmap(page, vma, address, 0);
1138}
1139
1140/*
1141 * Special version of the above for do_swap_page, which often runs
1142 * into pages that are exclusively owned by the current process.
1143 * Everybody else should continue to use page_add_anon_rmap above.
1144 */
1145void do_page_add_anon_rmap(struct page *page,
1146 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1147{
5ad64688 1148 int first = atomic_inc_and_test(&page->_mapcount);
79134171 1149 if (first) {
bea04b07
JZ
1150 /*
1151 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1152 * these counters are not modified in interrupt context, and
1153 * pte lock(a spinlock) is held, which implies preemption
1154 * disabled.
1155 */
3cd14fcd 1156 if (PageTransHuge(page))
79134171
AA
1157 __inc_zone_page_state(page,
1158 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1159 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1160 hpage_nr_pages(page));
79134171 1161 }
5ad64688
HD
1162 if (unlikely(PageKsm(page)))
1163 return;
1164
309381fe 1165 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1166 /* address might be in next vma when migration races vma_adjust */
5ad64688 1167 if (first)
ad8c2ee8 1168 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1169 else
c97a9e10 1170 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1171}
1172
43d8eac4 1173/**
9617d95e
NP
1174 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1175 * @page: the page to add the mapping to
1176 * @vma: the vm area in which the mapping is added
1177 * @address: the user virtual address mapped
1178 *
1179 * Same as page_add_anon_rmap but must only be called on *new* pages.
1180 * This means the inc-and-test can be bypassed.
c97a9e10 1181 * Page does not have to be locked.
9617d95e
NP
1182 */
1183void page_add_new_anon_rmap(struct page *page,
1184 struct vm_area_struct *vma, unsigned long address)
1185{
81d1b09c 1186 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a
HD
1187 SetPageSwapBacked(page);
1188 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1189 if (PageTransHuge(page))
79134171 1190 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1191 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1192 hpage_nr_pages(page));
e8a03feb 1193 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1194}
1195
1da177e4
LT
1196/**
1197 * page_add_file_rmap - add pte mapping to a file page
1198 * @page: the page to add the mapping to
1199 *
b8072f09 1200 * The caller needs to hold the pte lock.
1da177e4
LT
1201 */
1202void page_add_file_rmap(struct page *page)
1203{
d7365e78 1204 struct mem_cgroup *memcg;
89c06bd5 1205
6de22619 1206 memcg = mem_cgroup_begin_page_stat(page);
d69b042f 1207 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1208 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1209 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1210 }
6de22619 1211 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
1212}
1213
8186eb6a
JW
1214static void page_remove_file_rmap(struct page *page)
1215{
1216 struct mem_cgroup *memcg;
8186eb6a 1217
6de22619 1218 memcg = mem_cgroup_begin_page_stat(page);
8186eb6a
JW
1219
1220 /* page still mapped by someone else? */
1221 if (!atomic_add_negative(-1, &page->_mapcount))
1222 goto out;
1223
1224 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1225 if (unlikely(PageHuge(page)))
1226 goto out;
1227
1228 /*
1229 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1230 * these counters are not modified in interrupt context, and
1231 * pte lock(a spinlock) is held, which implies preemption disabled.
1232 */
1233 __dec_zone_page_state(page, NR_FILE_MAPPED);
1234 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1235
1236 if (unlikely(PageMlocked(page)))
1237 clear_page_mlock(page);
1238out:
6de22619 1239 mem_cgroup_end_page_stat(memcg);
8186eb6a
JW
1240}
1241
1da177e4
LT
1242/**
1243 * page_remove_rmap - take down pte mapping from a page
1244 * @page: page to remove mapping from
1245 *
b8072f09 1246 * The caller needs to hold the pte lock.
1da177e4 1247 */
edc315fd 1248void page_remove_rmap(struct page *page)
1da177e4 1249{
8186eb6a
JW
1250 if (!PageAnon(page)) {
1251 page_remove_file_rmap(page);
1252 return;
1253 }
89c06bd5 1254
b904dcfe
KM
1255 /* page still mapped by someone else? */
1256 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1257 return;
1258
1259 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1260 if (unlikely(PageHuge(page)))
1261 return;
b904dcfe 1262
0fe6e20b 1263 /*
bea04b07
JZ
1264 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1265 * these counters are not modified in interrupt context, and
bea04b07 1266 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1267 */
8186eb6a
JW
1268 if (PageTransHuge(page))
1269 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1270
1271 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1272 -hpage_nr_pages(page));
1273
e6c509f8
HD
1274 if (unlikely(PageMlocked(page)))
1275 clear_page_mlock(page);
8186eb6a 1276
b904dcfe
KM
1277 /*
1278 * It would be tidy to reset the PageAnon mapping here,
1279 * but that might overwrite a racing page_add_anon_rmap
1280 * which increments mapcount after us but sets mapping
1281 * before us: so leave the reset to free_hot_cold_page,
1282 * and remember that it's only reliable while mapped.
1283 * Leaving it set also helps swapoff to reinstate ptes
1284 * faster for those pages still in swapcache.
1285 */
1da177e4
LT
1286}
1287
1288/*
52629506 1289 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1290 */
ac769501 1291static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1292 unsigned long address, void *arg)
1da177e4
LT
1293{
1294 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1295 pte_t *pte;
1296 pte_t pteval;
c0718806 1297 spinlock_t *ptl;
1da177e4 1298 int ret = SWAP_AGAIN;
52629506 1299 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1300
479db0bf 1301 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1302 if (!pte)
81b4082d 1303 goto out;
1da177e4
LT
1304
1305 /*
1306 * If the page is mlock()d, we cannot swap it out.
1307 * If it's recently referenced (perhaps page_referenced
1308 * skipped over this mm) then we should reactivate it.
1309 */
14fa31b8 1310 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1311 if (vma->vm_flags & VM_LOCKED)
1312 goto out_mlock;
1313
daa5ba76 1314 if (flags & TTU_MUNLOCK)
53f79acb 1315 goto out_unmap;
14fa31b8
AK
1316 }
1317 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1318 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1319 ret = SWAP_FAIL;
1320 goto out_unmap;
1321 }
1322 }
1da177e4 1323
1da177e4
LT
1324 /* Nuke the page table entry. */
1325 flush_cache_page(vma, address, page_to_pfn(page));
72b252ae
MG
1326 if (should_defer_flush(mm, flags)) {
1327 /*
1328 * We clear the PTE but do not flush so potentially a remote
1329 * CPU could still be writing to the page. If the entry was
1330 * previously clean then the architecture must guarantee that
1331 * a clear->dirty transition on a cached TLB entry is written
1332 * through and traps if the PTE is unmapped.
1333 */
1334 pteval = ptep_get_and_clear(mm, address, pte);
1335
d950c947 1336 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
72b252ae
MG
1337 } else {
1338 pteval = ptep_clear_flush(vma, address, pte);
1339 }
1da177e4
LT
1340
1341 /* Move the dirty bit to the physical page now the pte is gone. */
1342 if (pte_dirty(pteval))
1343 set_page_dirty(page);
1344
365e9c87
HD
1345 /* Update high watermark before we lower rss */
1346 update_hiwater_rss(mm);
1347
888b9f7c 1348 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1349 if (!PageHuge(page)) {
1350 if (PageAnon(page))
1351 dec_mm_counter(mm, MM_ANONPAGES);
1352 else
1353 dec_mm_counter(mm, MM_FILEPAGES);
1354 }
888b9f7c 1355 set_pte_at(mm, address, pte,
5f24ae58 1356 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1357 } else if (pte_unused(pteval)) {
1358 /*
1359 * The guest indicated that the page content is of no
1360 * interest anymore. Simply discard the pte, vmscan
1361 * will take care of the rest.
1362 */
1363 if (PageAnon(page))
1364 dec_mm_counter(mm, MM_ANONPAGES);
1365 else
1366 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c 1367 } else if (PageAnon(page)) {
4c21e2f2 1368 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1369 pte_t swp_pte;
0697212a
CL
1370
1371 if (PageSwapCache(page)) {
1372 /*
1373 * Store the swap location in the pte.
1374 * See handle_pte_fault() ...
1375 */
570a335b
HD
1376 if (swap_duplicate(entry) < 0) {
1377 set_pte_at(mm, address, pte, pteval);
1378 ret = SWAP_FAIL;
1379 goto out_unmap;
1380 }
0697212a
CL
1381 if (list_empty(&mm->mmlist)) {
1382 spin_lock(&mmlist_lock);
1383 if (list_empty(&mm->mmlist))
1384 list_add(&mm->mmlist, &init_mm.mmlist);
1385 spin_unlock(&mmlist_lock);
1386 }
d559db08 1387 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1388 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1389 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1390 /*
1391 * Store the pfn of the page in a special migration
1392 * pte. do_swap_page() will wait until the migration
1393 * pte is removed and then restart fault handling.
1394 */
daa5ba76 1395 BUG_ON(!(flags & TTU_MIGRATION));
0697212a 1396 entry = make_migration_entry(page, pte_write(pteval));
1da177e4 1397 }
179ef71c
CG
1398 swp_pte = swp_entry_to_pte(entry);
1399 if (pte_soft_dirty(pteval))
1400 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1401 set_pte_at(mm, address, pte, swp_pte);
ce1744f4 1402 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
daa5ba76 1403 (flags & TTU_MIGRATION)) {
04e62a29
CL
1404 /* Establish migration entry for a file page */
1405 swp_entry_t entry;
1406 entry = make_migration_entry(page, pte_write(pteval));
1407 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1408 } else
d559db08 1409 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1410
edc315fd 1411 page_remove_rmap(page);
1da177e4
LT
1412 page_cache_release(page);
1413
1414out_unmap:
c0718806 1415 pte_unmap_unlock(pte, ptl);
daa5ba76 1416 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
2ec74c3e 1417 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1418out:
1419 return ret;
53f79acb 1420
caed0f48
KM
1421out_mlock:
1422 pte_unmap_unlock(pte, ptl);
1423
1424
1425 /*
1426 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1427 * unstable result and race. Plus, We can't wait here because
c8c06efa 1428 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
caed0f48
KM
1429 * if trylock failed, the page remain in evictable lru and later
1430 * vmscan could retry to move the page to unevictable lru if the
1431 * page is actually mlocked.
1432 */
1433 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1434 if (vma->vm_flags & VM_LOCKED) {
1435 mlock_vma_page(page);
1436 ret = SWAP_MLOCK;
53f79acb 1437 }
caed0f48 1438 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1439 }
1da177e4
LT
1440 return ret;
1441}
1442
71e3aac0 1443bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1444{
1445 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1446
1447 if (!maybe_stack)
1448 return false;
1449
1450 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1451 VM_STACK_INCOMPLETE_SETUP)
1452 return true;
1453
1454 return false;
1455}
1456
52629506
JK
1457static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1458{
1459 return is_vma_temporary_stack(vma);
1460}
1461
52629506
JK
1462static int page_not_mapped(struct page *page)
1463{
1464 return !page_mapped(page);
1465};
1466
1da177e4
LT
1467/**
1468 * try_to_unmap - try to remove all page table mappings to a page
1469 * @page: the page to get unmapped
14fa31b8 1470 * @flags: action and flags
1da177e4
LT
1471 *
1472 * Tries to remove all the page table entries which are mapping this
1473 * page, used in the pageout path. Caller must hold the page lock.
1474 * Return values are:
1475 *
1476 * SWAP_SUCCESS - we succeeded in removing all mappings
1477 * SWAP_AGAIN - we missed a mapping, try again later
1478 * SWAP_FAIL - the page is unswappable
b291f000 1479 * SWAP_MLOCK - page is mlocked.
1da177e4 1480 */
14fa31b8 1481int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1482{
1483 int ret;
52629506
JK
1484 struct rmap_walk_control rwc = {
1485 .rmap_one = try_to_unmap_one,
1486 .arg = (void *)flags,
1487 .done = page_not_mapped,
52629506
JK
1488 .anon_lock = page_lock_anon_vma_read,
1489 };
1da177e4 1490
309381fe 1491 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1492
52629506
JK
1493 /*
1494 * During exec, a temporary VMA is setup and later moved.
1495 * The VMA is moved under the anon_vma lock but not the
1496 * page tables leading to a race where migration cannot
1497 * find the migration ptes. Rather than increasing the
1498 * locking requirements of exec(), migration skips
1499 * temporary VMAs until after exec() completes.
1500 */
daa5ba76 1501 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1502 rwc.invalid_vma = invalid_migration_vma;
1503
1504 ret = rmap_walk(page, &rwc);
1505
b291f000 1506 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1507 ret = SWAP_SUCCESS;
1508 return ret;
1509}
81b4082d 1510
b291f000
NP
1511/**
1512 * try_to_munlock - try to munlock a page
1513 * @page: the page to be munlocked
1514 *
1515 * Called from munlock code. Checks all of the VMAs mapping the page
1516 * to make sure nobody else has this page mlocked. The page will be
1517 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1518 *
1519 * Return values are:
1520 *
53f79acb 1521 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1522 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1523 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1524 * SWAP_MLOCK - page is now mlocked.
1525 */
1526int try_to_munlock(struct page *page)
1527{
e8351ac9
JK
1528 int ret;
1529 struct rmap_walk_control rwc = {
1530 .rmap_one = try_to_unmap_one,
1531 .arg = (void *)TTU_MUNLOCK,
1532 .done = page_not_mapped,
e8351ac9
JK
1533 .anon_lock = page_lock_anon_vma_read,
1534
1535 };
1536
309381fe 1537 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1538
e8351ac9
JK
1539 ret = rmap_walk(page, &rwc);
1540 return ret;
b291f000 1541}
e9995ef9 1542
01d8b20d 1543void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1544{
01d8b20d 1545 struct anon_vma *root = anon_vma->root;
76545066 1546
624483f3 1547 anon_vma_free(anon_vma);
01d8b20d
PZ
1548 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1549 anon_vma_free(root);
76545066 1550}
76545066 1551
0dd1c7bb
JK
1552static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1553 struct rmap_walk_control *rwc)
faecd8dd
JK
1554{
1555 struct anon_vma *anon_vma;
1556
0dd1c7bb
JK
1557 if (rwc->anon_lock)
1558 return rwc->anon_lock(page);
1559
faecd8dd
JK
1560 /*
1561 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1562 * because that depends on page_mapped(); but not all its usages
1563 * are holding mmap_sem. Users without mmap_sem are required to
1564 * take a reference count to prevent the anon_vma disappearing
1565 */
1566 anon_vma = page_anon_vma(page);
1567 if (!anon_vma)
1568 return NULL;
1569
1570 anon_vma_lock_read(anon_vma);
1571 return anon_vma;
1572}
1573
e9995ef9 1574/*
e8351ac9
JK
1575 * rmap_walk_anon - do something to anonymous page using the object-based
1576 * rmap method
1577 * @page: the page to be handled
1578 * @rwc: control variable according to each walk type
1579 *
1580 * Find all the mappings of a page using the mapping pointer and the vma chains
1581 * contained in the anon_vma struct it points to.
1582 *
1583 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1584 * where the page was found will be held for write. So, we won't recheck
1585 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1586 * LOCKED.
e9995ef9 1587 */
051ac83a 1588static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1589{
1590 struct anon_vma *anon_vma;
b258d860 1591 pgoff_t pgoff;
5beb4930 1592 struct anon_vma_chain *avc;
e9995ef9
HD
1593 int ret = SWAP_AGAIN;
1594
0dd1c7bb 1595 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1596 if (!anon_vma)
1597 return ret;
faecd8dd 1598
b258d860 1599 pgoff = page_to_pgoff(page);
bf181b9f 1600 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1601 struct vm_area_struct *vma = avc->vma;
e9995ef9 1602 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1603
1604 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1605 continue;
1606
051ac83a 1607 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1608 if (ret != SWAP_AGAIN)
1609 break;
0dd1c7bb
JK
1610 if (rwc->done && rwc->done(page))
1611 break;
e9995ef9 1612 }
4fc3f1d6 1613 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1614 return ret;
1615}
1616
e8351ac9
JK
1617/*
1618 * rmap_walk_file - do something to file page using the object-based rmap method
1619 * @page: the page to be handled
1620 * @rwc: control variable according to each walk type
1621 *
1622 * Find all the mappings of a page using the mapping pointer and the vma chains
1623 * contained in the address_space struct it points to.
1624 *
1625 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1626 * where the page was found will be held for write. So, we won't recheck
1627 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1628 * LOCKED.
1629 */
051ac83a 1630static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1631{
1632 struct address_space *mapping = page->mapping;
b258d860 1633 pgoff_t pgoff;
e9995ef9 1634 struct vm_area_struct *vma;
e9995ef9
HD
1635 int ret = SWAP_AGAIN;
1636
9f32624b
JK
1637 /*
1638 * The page lock not only makes sure that page->mapping cannot
1639 * suddenly be NULLified by truncation, it makes sure that the
1640 * structure at mapping cannot be freed and reused yet,
c8c06efa 1641 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1642 */
81d1b09c 1643 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1644
e9995ef9
HD
1645 if (!mapping)
1646 return ret;
3dec0ba0 1647
b258d860 1648 pgoff = page_to_pgoff(page);
3dec0ba0 1649 i_mmap_lock_read(mapping);
6b2dbba8 1650 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1651 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1652
1653 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1654 continue;
1655
051ac83a 1656 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1657 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1658 goto done;
1659 if (rwc->done && rwc->done(page))
1660 goto done;
e9995ef9 1661 }
0dd1c7bb 1662
0dd1c7bb 1663done:
3dec0ba0 1664 i_mmap_unlock_read(mapping);
e9995ef9
HD
1665 return ret;
1666}
1667
051ac83a 1668int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1669{
e9995ef9 1670 if (unlikely(PageKsm(page)))
051ac83a 1671 return rmap_walk_ksm(page, rwc);
e9995ef9 1672 else if (PageAnon(page))
051ac83a 1673 return rmap_walk_anon(page, rwc);
e9995ef9 1674 else
051ac83a 1675 return rmap_walk_file(page, rwc);
e9995ef9 1676}
0fe6e20b 1677
e3390f67 1678#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1679/*
1680 * The following three functions are for anonymous (private mapped) hugepages.
1681 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1682 * and no lru code, because we handle hugepages differently from common pages.
1683 */
1684static void __hugepage_set_anon_rmap(struct page *page,
1685 struct vm_area_struct *vma, unsigned long address, int exclusive)
1686{
1687 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1688
0fe6e20b 1689 BUG_ON(!anon_vma);
433abed6
NH
1690
1691 if (PageAnon(page))
1692 return;
1693 if (!exclusive)
1694 anon_vma = anon_vma->root;
1695
0fe6e20b
NH
1696 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1697 page->mapping = (struct address_space *) anon_vma;
1698 page->index = linear_page_index(vma, address);
1699}
1700
1701void hugepage_add_anon_rmap(struct page *page,
1702 struct vm_area_struct *vma, unsigned long address)
1703{
1704 struct anon_vma *anon_vma = vma->anon_vma;
1705 int first;
a850ea30
NH
1706
1707 BUG_ON(!PageLocked(page));
0fe6e20b 1708 BUG_ON(!anon_vma);
5dbe0af4 1709 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1710 first = atomic_inc_and_test(&page->_mapcount);
1711 if (first)
1712 __hugepage_set_anon_rmap(page, vma, address, 0);
1713}
1714
1715void hugepage_add_new_anon_rmap(struct page *page,
1716 struct vm_area_struct *vma, unsigned long address)
1717{
1718 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1719 atomic_set(&page->_mapcount, 0);
1720 __hugepage_set_anon_rmap(page, vma, address, 1);
1721}
e3390f67 1722#endif /* CONFIG_HUGETLB_PAGE */