]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/rmap.c
exit: fix race between wait_consider_task() and wait_task_zombie()
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
c8c06efa 26 * mapping->i_mmap_rwsem
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
5a505085 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
ef5d437f 59#include <linux/backing-dev.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
01d8b20d
PZ
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
fdd2e5f8
AB
83}
84
01d8b20d 85static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 86{
01d8b20d 87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
88
89 /*
4fc3f1d6 90 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 97 *
4fc3f1d6
IM
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
88c22088 100 * LOCK MB
4fc3f1d6 101 * atomic_read() rwsem_is_locked()
88c22088
PZ
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
7f39dda9 106 might_sleep();
5a505085 107 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 108 anon_vma_lock_write(anon_vma);
08b52706 109 anon_vma_unlock_write(anon_vma);
88c22088
PZ
110 }
111
fdd2e5f8
AB
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113}
1da177e4 114
dd34739c 115static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 116{
dd34739c 117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
118}
119
e574b5fd 120static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
121{
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123}
124
6583a843
KC
125static void anon_vma_chain_link(struct vm_area_struct *vma,
126 struct anon_vma_chain *avc,
127 struct anon_vma *anon_vma)
128{
129 avc->vma = vma;
130 avc->anon_vma = anon_vma;
131 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
133}
134
d9d332e0
LT
135/**
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
138 *
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
142 *
143 * The common case will be that we already have one, but if
23a0790a 144 * not we either need to find an adjacent mapping that we
d9d332e0
LT
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
148 *
149 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
154 *
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
159 *
160 * This must be called with the mmap_sem held for reading.
161 */
1da177e4
LT
162int anon_vma_prepare(struct vm_area_struct *vma)
163{
164 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 165 struct anon_vma_chain *avc;
1da177e4
LT
166
167 might_sleep();
168 if (unlikely(!anon_vma)) {
169 struct mm_struct *mm = vma->vm_mm;
d9d332e0 170 struct anon_vma *allocated;
1da177e4 171
dd34739c 172 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
173 if (!avc)
174 goto out_enomem;
175
1da177e4 176 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
177 allocated = NULL;
178 if (!anon_vma) {
1da177e4
LT
179 anon_vma = anon_vma_alloc();
180 if (unlikely(!anon_vma))
5beb4930 181 goto out_enomem_free_avc;
1da177e4 182 allocated = anon_vma;
1da177e4
LT
183 }
184
4fc3f1d6 185 anon_vma_lock_write(anon_vma);
1da177e4
LT
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm->page_table_lock);
188 if (likely(!vma->anon_vma)) {
189 vma->anon_vma = anon_vma;
6583a843 190 anon_vma_chain_link(vma, avc, anon_vma);
1da177e4 191 allocated = NULL;
31f2b0eb 192 avc = NULL;
1da177e4
LT
193 }
194 spin_unlock(&mm->page_table_lock);
08b52706 195 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
196
197 if (unlikely(allocated))
01d8b20d 198 put_anon_vma(allocated);
31f2b0eb 199 if (unlikely(avc))
5beb4930 200 anon_vma_chain_free(avc);
1da177e4
LT
201 }
202 return 0;
5beb4930
RR
203
204 out_enomem_free_avc:
205 anon_vma_chain_free(avc);
206 out_enomem:
207 return -ENOMEM;
1da177e4
LT
208}
209
bb4aa396
LT
210/*
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
214 *
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
217 */
218static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219{
220 struct anon_vma *new_root = anon_vma->root;
221 if (new_root != root) {
222 if (WARN_ON_ONCE(root))
5a505085 223 up_write(&root->rwsem);
bb4aa396 224 root = new_root;
5a505085 225 down_write(&root->rwsem);
bb4aa396
LT
226 }
227 return root;
228}
229
230static inline void unlock_anon_vma_root(struct anon_vma *root)
231{
232 if (root)
5a505085 233 up_write(&root->rwsem);
bb4aa396
LT
234}
235
5beb4930
RR
236/*
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
239 */
240int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 241{
5beb4930 242 struct anon_vma_chain *avc, *pavc;
bb4aa396 243 struct anon_vma *root = NULL;
5beb4930 244
646d87b4 245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
246 struct anon_vma *anon_vma;
247
dd34739c
LT
248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 if (unlikely(!avc)) {
250 unlock_anon_vma_root(root);
251 root = NULL;
252 avc = anon_vma_chain_alloc(GFP_KERNEL);
253 if (!avc)
254 goto enomem_failure;
255 }
bb4aa396
LT
256 anon_vma = pavc->anon_vma;
257 root = lock_anon_vma_root(root, anon_vma);
258 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 259 }
bb4aa396 260 unlock_anon_vma_root(root);
5beb4930 261 return 0;
1da177e4 262
5beb4930
RR
263 enomem_failure:
264 unlink_anon_vmas(dst);
265 return -ENOMEM;
1da177e4
LT
266}
267
5beb4930
RR
268/*
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
272 */
273int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 274{
5beb4930
RR
275 struct anon_vma_chain *avc;
276 struct anon_vma *anon_vma;
c4ea95d7 277 int error;
1da177e4 278
5beb4930
RR
279 /* Don't bother if the parent process has no anon_vma here. */
280 if (!pvma->anon_vma)
281 return 0;
282
283 /*
284 * First, attach the new VMA to the parent VMA's anon_vmas,
285 * so rmap can find non-COWed pages in child processes.
286 */
c4ea95d7
DF
287 error = anon_vma_clone(vma, pvma);
288 if (error)
289 return error;
5beb4930
RR
290
291 /* Then add our own anon_vma. */
292 anon_vma = anon_vma_alloc();
293 if (!anon_vma)
294 goto out_error;
dd34739c 295 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
296 if (!avc)
297 goto out_error_free_anon_vma;
5c341ee1
RR
298
299 /*
300 * The root anon_vma's spinlock is the lock actually used when we
301 * lock any of the anon_vmas in this anon_vma tree.
302 */
303 anon_vma->root = pvma->anon_vma->root;
76545066 304 /*
01d8b20d
PZ
305 * With refcounts, an anon_vma can stay around longer than the
306 * process it belongs to. The root anon_vma needs to be pinned until
307 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
308 */
309 get_anon_vma(anon_vma->root);
5beb4930
RR
310 /* Mark this anon_vma as the one where our new (COWed) pages go. */
311 vma->anon_vma = anon_vma;
4fc3f1d6 312 anon_vma_lock_write(anon_vma);
5c341ee1 313 anon_vma_chain_link(vma, avc, anon_vma);
08b52706 314 anon_vma_unlock_write(anon_vma);
5beb4930
RR
315
316 return 0;
317
318 out_error_free_anon_vma:
01d8b20d 319 put_anon_vma(anon_vma);
5beb4930 320 out_error:
4946d54c 321 unlink_anon_vmas(vma);
5beb4930 322 return -ENOMEM;
1da177e4
LT
323}
324
5beb4930
RR
325void unlink_anon_vmas(struct vm_area_struct *vma)
326{
327 struct anon_vma_chain *avc, *next;
eee2acba 328 struct anon_vma *root = NULL;
5beb4930 329
5c341ee1
RR
330 /*
331 * Unlink each anon_vma chained to the VMA. This list is ordered
332 * from newest to oldest, ensuring the root anon_vma gets freed last.
333 */
5beb4930 334 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
335 struct anon_vma *anon_vma = avc->anon_vma;
336
337 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 338 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
339
340 /*
341 * Leave empty anon_vmas on the list - we'll need
342 * to free them outside the lock.
343 */
bf181b9f 344 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
eee2acba
PZ
345 continue;
346
347 list_del(&avc->same_vma);
348 anon_vma_chain_free(avc);
349 }
350 unlock_anon_vma_root(root);
351
352 /*
353 * Iterate the list once more, it now only contains empty and unlinked
354 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 355 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
356 */
357 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
358 struct anon_vma *anon_vma = avc->anon_vma;
359
360 put_anon_vma(anon_vma);
361
5beb4930
RR
362 list_del(&avc->same_vma);
363 anon_vma_chain_free(avc);
364 }
365}
366
51cc5068 367static void anon_vma_ctor(void *data)
1da177e4 368{
a35afb83 369 struct anon_vma *anon_vma = data;
1da177e4 370
5a505085 371 init_rwsem(&anon_vma->rwsem);
83813267 372 atomic_set(&anon_vma->refcount, 0);
bf181b9f 373 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
374}
375
376void __init anon_vma_init(void)
377{
378 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 379 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 380 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
381}
382
383/*
6111e4ca
PZ
384 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
385 *
386 * Since there is no serialization what so ever against page_remove_rmap()
387 * the best this function can do is return a locked anon_vma that might
388 * have been relevant to this page.
389 *
390 * The page might have been remapped to a different anon_vma or the anon_vma
391 * returned may already be freed (and even reused).
392 *
bc658c96
PZ
393 * In case it was remapped to a different anon_vma, the new anon_vma will be a
394 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
395 * ensure that any anon_vma obtained from the page will still be valid for as
396 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
397 *
6111e4ca
PZ
398 * All users of this function must be very careful when walking the anon_vma
399 * chain and verify that the page in question is indeed mapped in it
400 * [ something equivalent to page_mapped_in_vma() ].
401 *
402 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
403 * that the anon_vma pointer from page->mapping is valid if there is a
404 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 405 */
746b18d4 406struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 407{
746b18d4 408 struct anon_vma *anon_vma = NULL;
1da177e4
LT
409 unsigned long anon_mapping;
410
411 rcu_read_lock();
80e14822 412 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 413 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
414 goto out;
415 if (!page_mapped(page))
416 goto out;
417
418 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
419 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
420 anon_vma = NULL;
421 goto out;
422 }
f1819427
HD
423
424 /*
425 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
426 * freed. But if it has been unmapped, we have no security against the
427 * anon_vma structure being freed and reused (for another anon_vma:
428 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
429 * above cannot corrupt).
f1819427 430 */
746b18d4 431 if (!page_mapped(page)) {
7f39dda9 432 rcu_read_unlock();
746b18d4 433 put_anon_vma(anon_vma);
7f39dda9 434 return NULL;
746b18d4 435 }
1da177e4
LT
436out:
437 rcu_read_unlock();
746b18d4
PZ
438
439 return anon_vma;
440}
441
88c22088
PZ
442/*
443 * Similar to page_get_anon_vma() except it locks the anon_vma.
444 *
445 * Its a little more complex as it tries to keep the fast path to a single
446 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
447 * reference like with page_get_anon_vma() and then block on the mutex.
448 */
4fc3f1d6 449struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 450{
88c22088 451 struct anon_vma *anon_vma = NULL;
eee0f252 452 struct anon_vma *root_anon_vma;
88c22088 453 unsigned long anon_mapping;
746b18d4 454
88c22088
PZ
455 rcu_read_lock();
456 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
457 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
458 goto out;
459 if (!page_mapped(page))
460 goto out;
461
462 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252 463 root_anon_vma = ACCESS_ONCE(anon_vma->root);
4fc3f1d6 464 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 465 /*
eee0f252
HD
466 * If the page is still mapped, then this anon_vma is still
467 * its anon_vma, and holding the mutex ensures that it will
bc658c96 468 * not go away, see anon_vma_free().
88c22088 469 */
eee0f252 470 if (!page_mapped(page)) {
4fc3f1d6 471 up_read(&root_anon_vma->rwsem);
88c22088
PZ
472 anon_vma = NULL;
473 }
474 goto out;
475 }
746b18d4 476
88c22088
PZ
477 /* trylock failed, we got to sleep */
478 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479 anon_vma = NULL;
480 goto out;
481 }
482
483 if (!page_mapped(page)) {
7f39dda9 484 rcu_read_unlock();
88c22088 485 put_anon_vma(anon_vma);
7f39dda9 486 return NULL;
88c22088
PZ
487 }
488
489 /* we pinned the anon_vma, its safe to sleep */
490 rcu_read_unlock();
4fc3f1d6 491 anon_vma_lock_read(anon_vma);
88c22088
PZ
492
493 if (atomic_dec_and_test(&anon_vma->refcount)) {
494 /*
495 * Oops, we held the last refcount, release the lock
496 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 497 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 498 */
4fc3f1d6 499 anon_vma_unlock_read(anon_vma);
88c22088
PZ
500 __put_anon_vma(anon_vma);
501 anon_vma = NULL;
502 }
503
504 return anon_vma;
505
506out:
507 rcu_read_unlock();
746b18d4 508 return anon_vma;
34bbd704
ON
509}
510
4fc3f1d6 511void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 512{
4fc3f1d6 513 anon_vma_unlock_read(anon_vma);
1da177e4
LT
514}
515
516/*
3ad33b24 517 * At what user virtual address is page expected in @vma?
1da177e4 518 */
86c2ad19
ML
519static inline unsigned long
520__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4 521{
a0f7a756 522 pgoff_t pgoff = page_to_pgoff(page);
86c2ad19
ML
523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524}
525
526inline unsigned long
527vma_address(struct page *page, struct vm_area_struct *vma)
528{
529 unsigned long address = __vma_address(page, vma);
530
531 /* page should be within @vma mapping range */
81d1b09c 532 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
86c2ad19 533
1da177e4
LT
534 return address;
535}
536
537/*
bf89c8c8 538 * At what user virtual address is page expected in vma?
ab941e0f 539 * Caller should check the page is actually part of the vma.
1da177e4
LT
540 */
541unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542{
86c2ad19 543 unsigned long address;
21d0d443 544 if (PageAnon(page)) {
4829b906
HD
545 struct anon_vma *page__anon_vma = page_anon_vma(page);
546 /*
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
549 */
550 if (!vma->anon_vma || !page__anon_vma ||
551 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
552 return -EFAULT;
553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
554 if (!vma->vm_file ||
555 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
556 return -EFAULT;
557 } else
558 return -EFAULT;
86c2ad19
ML
559 address = __vma_address(page, vma);
560 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 return -EFAULT;
562 return address;
1da177e4
LT
563}
564
6219049a
BL
565pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566{
567 pgd_t *pgd;
568 pud_t *pud;
569 pmd_t *pmd = NULL;
f72e7dcd 570 pmd_t pmde;
6219049a
BL
571
572 pgd = pgd_offset(mm, address);
573 if (!pgd_present(*pgd))
574 goto out;
575
576 pud = pud_offset(pgd, address);
577 if (!pud_present(*pud))
578 goto out;
579
580 pmd = pmd_offset(pud, address);
f72e7dcd
HD
581 /*
582 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
583 * without holding anon_vma lock for write. So when looking for a
584 * genuine pmde (in which to find pte), test present and !THP together.
585 */
e37c6982
CB
586 pmde = *pmd;
587 barrier();
f72e7dcd 588 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
589 pmd = NULL;
590out:
591 return pmd;
592}
593
81b4082d
ND
594/*
595 * Check that @page is mapped at @address into @mm.
596 *
479db0bf
NP
597 * If @sync is false, page_check_address may perform a racy check to avoid
598 * the page table lock when the pte is not present (helpful when reclaiming
599 * highly shared pages).
600 *
b8072f09 601 * On success returns with pte mapped and locked.
81b4082d 602 */
e9a81a82 603pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 604 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 605{
81b4082d
ND
606 pmd_t *pmd;
607 pte_t *pte;
c0718806 608 spinlock_t *ptl;
81b4082d 609
0fe6e20b 610 if (unlikely(PageHuge(page))) {
98398c32 611 /* when pud is not present, pte will be NULL */
0fe6e20b 612 pte = huge_pte_offset(mm, address);
98398c32
JW
613 if (!pte)
614 return NULL;
615
cb900f41 616 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
617 goto check;
618 }
619
6219049a
BL
620 pmd = mm_find_pmd(mm, address);
621 if (!pmd)
c0718806
HD
622 return NULL;
623
c0718806
HD
624 pte = pte_offset_map(pmd, address);
625 /* Make a quick check before getting the lock */
479db0bf 626 if (!sync && !pte_present(*pte)) {
c0718806
HD
627 pte_unmap(pte);
628 return NULL;
629 }
630
4c21e2f2 631 ptl = pte_lockptr(mm, pmd);
0fe6e20b 632check:
c0718806
HD
633 spin_lock(ptl);
634 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
635 *ptlp = ptl;
636 return pte;
81b4082d 637 }
c0718806
HD
638 pte_unmap_unlock(pte, ptl);
639 return NULL;
81b4082d
ND
640}
641
b291f000
NP
642/**
643 * page_mapped_in_vma - check whether a page is really mapped in a VMA
644 * @page: the page to test
645 * @vma: the VMA to test
646 *
647 * Returns 1 if the page is mapped into the page tables of the VMA, 0
648 * if the page is not mapped into the page tables of this VMA. Only
649 * valid for normal file or anonymous VMAs.
650 */
6a46079c 651int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
652{
653 unsigned long address;
654 pte_t *pte;
655 spinlock_t *ptl;
656
86c2ad19
ML
657 address = __vma_address(page, vma);
658 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
659 return 0;
660 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
661 if (!pte) /* the page is not in this mm */
662 return 0;
663 pte_unmap_unlock(pte, ptl);
664
665 return 1;
666}
667
9f32624b
JK
668struct page_referenced_arg {
669 int mapcount;
670 int referenced;
671 unsigned long vm_flags;
672 struct mem_cgroup *memcg;
673};
1da177e4 674/*
9f32624b 675 * arg: page_referenced_arg will be passed
1da177e4 676 */
ac769501 677static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 678 unsigned long address, void *arg)
1da177e4
LT
679{
680 struct mm_struct *mm = vma->vm_mm;
117b0791 681 spinlock_t *ptl;
1da177e4 682 int referenced = 0;
9f32624b 683 struct page_referenced_arg *pra = arg;
1da177e4 684
71e3aac0
AA
685 if (unlikely(PageTransHuge(page))) {
686 pmd_t *pmd;
687
2da28bfd
AA
688 /*
689 * rmap might return false positives; we must filter
690 * these out using page_check_address_pmd().
691 */
71e3aac0 692 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
693 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
694 if (!pmd)
9f32624b 695 return SWAP_AGAIN;
2da28bfd
AA
696
697 if (vma->vm_flags & VM_LOCKED) {
117b0791 698 spin_unlock(ptl);
9f32624b
JK
699 pra->vm_flags |= VM_LOCKED;
700 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
701 }
702
703 /* go ahead even if the pmd is pmd_trans_splitting() */
704 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 705 referenced++;
117b0791 706 spin_unlock(ptl);
71e3aac0
AA
707 } else {
708 pte_t *pte;
71e3aac0 709
2da28bfd
AA
710 /*
711 * rmap might return false positives; we must filter
712 * these out using page_check_address().
713 */
71e3aac0
AA
714 pte = page_check_address(page, mm, address, &ptl, 0);
715 if (!pte)
9f32624b 716 return SWAP_AGAIN;
71e3aac0 717
2da28bfd
AA
718 if (vma->vm_flags & VM_LOCKED) {
719 pte_unmap_unlock(pte, ptl);
9f32624b
JK
720 pra->vm_flags |= VM_LOCKED;
721 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
722 }
723
71e3aac0
AA
724 if (ptep_clear_flush_young_notify(vma, address, pte)) {
725 /*
726 * Don't treat a reference through a sequentially read
727 * mapping as such. If the page has been used in
728 * another mapping, we will catch it; if this other
729 * mapping is already gone, the unmap path will have
730 * set PG_referenced or activated the page.
731 */
64363aad 732 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
733 referenced++;
734 }
735 pte_unmap_unlock(pte, ptl);
736 }
737
9f32624b
JK
738 if (referenced) {
739 pra->referenced++;
740 pra->vm_flags |= vma->vm_flags;
1da177e4 741 }
34bbd704 742
9f32624b
JK
743 pra->mapcount--;
744 if (!pra->mapcount)
745 return SWAP_SUCCESS; /* To break the loop */
746
747 return SWAP_AGAIN;
1da177e4
LT
748}
749
9f32624b 750static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 751{
9f32624b
JK
752 struct page_referenced_arg *pra = arg;
753 struct mem_cgroup *memcg = pra->memcg;
1da177e4 754
9f32624b
JK
755 if (!mm_match_cgroup(vma->vm_mm, memcg))
756 return true;
1da177e4 757
9f32624b 758 return false;
1da177e4
LT
759}
760
761/**
762 * page_referenced - test if the page was referenced
763 * @page: the page to test
764 * @is_locked: caller holds lock on the page
72835c86 765 * @memcg: target memory cgroup
6fe6b7e3 766 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
767 *
768 * Quick test_and_clear_referenced for all mappings to a page,
769 * returns the number of ptes which referenced the page.
770 */
6fe6b7e3
WF
771int page_referenced(struct page *page,
772 int is_locked,
72835c86 773 struct mem_cgroup *memcg,
6fe6b7e3 774 unsigned long *vm_flags)
1da177e4 775{
9f32624b 776 int ret;
5ad64688 777 int we_locked = 0;
9f32624b
JK
778 struct page_referenced_arg pra = {
779 .mapcount = page_mapcount(page),
780 .memcg = memcg,
781 };
782 struct rmap_walk_control rwc = {
783 .rmap_one = page_referenced_one,
784 .arg = (void *)&pra,
785 .anon_lock = page_lock_anon_vma_read,
786 };
1da177e4 787
6fe6b7e3 788 *vm_flags = 0;
9f32624b
JK
789 if (!page_mapped(page))
790 return 0;
791
792 if (!page_rmapping(page))
793 return 0;
794
795 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
796 we_locked = trylock_page(page);
797 if (!we_locked)
798 return 1;
1da177e4 799 }
9f32624b
JK
800
801 /*
802 * If we are reclaiming on behalf of a cgroup, skip
803 * counting on behalf of references from different
804 * cgroups
805 */
806 if (memcg) {
807 rwc.invalid_vma = invalid_page_referenced_vma;
808 }
809
810 ret = rmap_walk(page, &rwc);
811 *vm_flags = pra.vm_flags;
812
813 if (we_locked)
814 unlock_page(page);
815
816 return pra.referenced;
1da177e4
LT
817}
818
1cb1729b 819static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 820 unsigned long address, void *arg)
d08b3851
PZ
821{
822 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 823 pte_t *pte;
d08b3851
PZ
824 spinlock_t *ptl;
825 int ret = 0;
9853a407 826 int *cleaned = arg;
d08b3851 827
479db0bf 828 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
829 if (!pte)
830 goto out;
831
c2fda5fe
PZ
832 if (pte_dirty(*pte) || pte_write(*pte)) {
833 pte_t entry;
d08b3851 834
c2fda5fe 835 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 836 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
837 entry = pte_wrprotect(entry);
838 entry = pte_mkclean(entry);
d6e88e67 839 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
840 ret = 1;
841 }
d08b3851 842
d08b3851 843 pte_unmap_unlock(pte, ptl);
2ec74c3e 844
9853a407 845 if (ret) {
2ec74c3e 846 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
847 (*cleaned)++;
848 }
d08b3851 849out:
9853a407 850 return SWAP_AGAIN;
d08b3851
PZ
851}
852
9853a407 853static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 854{
9853a407 855 if (vma->vm_flags & VM_SHARED)
871beb8c 856 return false;
d08b3851 857
871beb8c 858 return true;
d08b3851
PZ
859}
860
861int page_mkclean(struct page *page)
862{
9853a407
JK
863 int cleaned = 0;
864 struct address_space *mapping;
865 struct rmap_walk_control rwc = {
866 .arg = (void *)&cleaned,
867 .rmap_one = page_mkclean_one,
868 .invalid_vma = invalid_mkclean_vma,
869 };
d08b3851
PZ
870
871 BUG_ON(!PageLocked(page));
872
9853a407
JK
873 if (!page_mapped(page))
874 return 0;
875
876 mapping = page_mapping(page);
877 if (!mapping)
878 return 0;
879
880 rmap_walk(page, &rwc);
d08b3851 881
9853a407 882 return cleaned;
d08b3851 883}
60b59bea 884EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 885
c44b6743
RR
886/**
887 * page_move_anon_rmap - move a page to our anon_vma
888 * @page: the page to move to our anon_vma
889 * @vma: the vma the page belongs to
890 * @address: the user virtual address mapped
891 *
892 * When a page belongs exclusively to one process after a COW event,
893 * that page can be moved into the anon_vma that belongs to just that
894 * process, so the rmap code will not search the parent or sibling
895 * processes.
896 */
897void page_move_anon_rmap(struct page *page,
898 struct vm_area_struct *vma, unsigned long address)
899{
900 struct anon_vma *anon_vma = vma->anon_vma;
901
309381fe 902 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 903 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 904 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
905
906 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
907 page->mapping = (struct address_space *) anon_vma;
908}
909
9617d95e 910/**
4e1c1975
AK
911 * __page_set_anon_rmap - set up new anonymous rmap
912 * @page: Page to add to rmap
913 * @vma: VM area to add page to.
914 * @address: User virtual address of the mapping
e8a03feb 915 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
916 */
917static void __page_set_anon_rmap(struct page *page,
e8a03feb 918 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 919{
e8a03feb 920 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 921
e8a03feb 922 BUG_ON(!anon_vma);
ea90002b 923
4e1c1975
AK
924 if (PageAnon(page))
925 return;
926
ea90002b 927 /*
e8a03feb
RR
928 * If the page isn't exclusively mapped into this vma,
929 * we must use the _oldest_ possible anon_vma for the
930 * page mapping!
ea90002b 931 */
4e1c1975 932 if (!exclusive)
288468c3 933 anon_vma = anon_vma->root;
9617d95e 934
9617d95e
NP
935 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
936 page->mapping = (struct address_space *) anon_vma;
9617d95e 937 page->index = linear_page_index(vma, address);
9617d95e
NP
938}
939
c97a9e10 940/**
43d8eac4 941 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
942 * @page: the page to add the mapping to
943 * @vma: the vm area in which the mapping is added
944 * @address: the user virtual address mapped
945 */
946static void __page_check_anon_rmap(struct page *page,
947 struct vm_area_struct *vma, unsigned long address)
948{
949#ifdef CONFIG_DEBUG_VM
950 /*
951 * The page's anon-rmap details (mapping and index) are guaranteed to
952 * be set up correctly at this point.
953 *
954 * We have exclusion against page_add_anon_rmap because the caller
955 * always holds the page locked, except if called from page_dup_rmap,
956 * in which case the page is already known to be setup.
957 *
958 * We have exclusion against page_add_new_anon_rmap because those pages
959 * are initially only visible via the pagetables, and the pte is locked
960 * over the call to page_add_new_anon_rmap.
961 */
44ab57a0 962 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
963 BUG_ON(page->index != linear_page_index(vma, address));
964#endif
965}
966
1da177e4
LT
967/**
968 * page_add_anon_rmap - add pte mapping to an anonymous page
969 * @page: the page to add the mapping to
970 * @vma: the vm area in which the mapping is added
971 * @address: the user virtual address mapped
972 *
5ad64688 973 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
974 * the anon_vma case: to serialize mapping,index checking after setting,
975 * and to ensure that PageAnon is not being upgraded racily to PageKsm
976 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
977 */
978void page_add_anon_rmap(struct page *page,
979 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
980{
981 do_page_add_anon_rmap(page, vma, address, 0);
982}
983
984/*
985 * Special version of the above for do_swap_page, which often runs
986 * into pages that are exclusively owned by the current process.
987 * Everybody else should continue to use page_add_anon_rmap above.
988 */
989void do_page_add_anon_rmap(struct page *page,
990 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 991{
5ad64688 992 int first = atomic_inc_and_test(&page->_mapcount);
79134171 993 if (first) {
bea04b07
JZ
994 /*
995 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
996 * these counters are not modified in interrupt context, and
997 * pte lock(a spinlock) is held, which implies preemption
998 * disabled.
999 */
3cd14fcd 1000 if (PageTransHuge(page))
79134171
AA
1001 __inc_zone_page_state(page,
1002 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1003 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1004 hpage_nr_pages(page));
79134171 1005 }
5ad64688
HD
1006 if (unlikely(PageKsm(page)))
1007 return;
1008
309381fe 1009 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1010 /* address might be in next vma when migration races vma_adjust */
5ad64688 1011 if (first)
ad8c2ee8 1012 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1013 else
c97a9e10 1014 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1015}
1016
43d8eac4 1017/**
9617d95e
NP
1018 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1019 * @page: the page to add the mapping to
1020 * @vma: the vm area in which the mapping is added
1021 * @address: the user virtual address mapped
1022 *
1023 * Same as page_add_anon_rmap but must only be called on *new* pages.
1024 * This means the inc-and-test can be bypassed.
c97a9e10 1025 * Page does not have to be locked.
9617d95e
NP
1026 */
1027void page_add_new_anon_rmap(struct page *page,
1028 struct vm_area_struct *vma, unsigned long address)
1029{
81d1b09c 1030 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a
HD
1031 SetPageSwapBacked(page);
1032 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1033 if (PageTransHuge(page))
79134171 1034 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1035 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1036 hpage_nr_pages(page));
e8a03feb 1037 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1038}
1039
1da177e4
LT
1040/**
1041 * page_add_file_rmap - add pte mapping to a file page
1042 * @page: the page to add the mapping to
1043 *
b8072f09 1044 * The caller needs to hold the pte lock.
1da177e4
LT
1045 */
1046void page_add_file_rmap(struct page *page)
1047{
d7365e78 1048 struct mem_cgroup *memcg;
89c06bd5 1049 unsigned long flags;
d7365e78 1050 bool locked;
89c06bd5 1051
d7365e78 1052 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
d69b042f 1053 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1054 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1055 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1056 }
e4bd6a02 1057 mem_cgroup_end_page_stat(memcg, &locked, &flags);
1da177e4
LT
1058}
1059
8186eb6a
JW
1060static void page_remove_file_rmap(struct page *page)
1061{
1062 struct mem_cgroup *memcg;
1063 unsigned long flags;
1064 bool locked;
1065
1066 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1067
1068 /* page still mapped by someone else? */
1069 if (!atomic_add_negative(-1, &page->_mapcount))
1070 goto out;
1071
1072 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1073 if (unlikely(PageHuge(page)))
1074 goto out;
1075
1076 /*
1077 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1078 * these counters are not modified in interrupt context, and
1079 * pte lock(a spinlock) is held, which implies preemption disabled.
1080 */
1081 __dec_zone_page_state(page, NR_FILE_MAPPED);
1082 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1083
1084 if (unlikely(PageMlocked(page)))
1085 clear_page_mlock(page);
1086out:
e4bd6a02 1087 mem_cgroup_end_page_stat(memcg, &locked, &flags);
8186eb6a
JW
1088}
1089
1da177e4
LT
1090/**
1091 * page_remove_rmap - take down pte mapping from a page
1092 * @page: page to remove mapping from
1093 *
b8072f09 1094 * The caller needs to hold the pte lock.
1da177e4 1095 */
edc315fd 1096void page_remove_rmap(struct page *page)
1da177e4 1097{
8186eb6a
JW
1098 if (!PageAnon(page)) {
1099 page_remove_file_rmap(page);
1100 return;
1101 }
89c06bd5 1102
b904dcfe
KM
1103 /* page still mapped by someone else? */
1104 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1105 return;
1106
1107 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1108 if (unlikely(PageHuge(page)))
1109 return;
b904dcfe 1110
0fe6e20b 1111 /*
bea04b07
JZ
1112 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1113 * these counters are not modified in interrupt context, and
bea04b07 1114 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1115 */
8186eb6a
JW
1116 if (PageTransHuge(page))
1117 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1118
1119 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1120 -hpage_nr_pages(page));
1121
e6c509f8
HD
1122 if (unlikely(PageMlocked(page)))
1123 clear_page_mlock(page);
8186eb6a 1124
b904dcfe
KM
1125 /*
1126 * It would be tidy to reset the PageAnon mapping here,
1127 * but that might overwrite a racing page_add_anon_rmap
1128 * which increments mapcount after us but sets mapping
1129 * before us: so leave the reset to free_hot_cold_page,
1130 * and remember that it's only reliable while mapped.
1131 * Leaving it set also helps swapoff to reinstate ptes
1132 * faster for those pages still in swapcache.
1133 */
1da177e4
LT
1134}
1135
1136/*
52629506 1137 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1138 */
ac769501 1139static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1140 unsigned long address, void *arg)
1da177e4
LT
1141{
1142 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1143 pte_t *pte;
1144 pte_t pteval;
c0718806 1145 spinlock_t *ptl;
1da177e4 1146 int ret = SWAP_AGAIN;
52629506 1147 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1148
479db0bf 1149 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1150 if (!pte)
81b4082d 1151 goto out;
1da177e4
LT
1152
1153 /*
1154 * If the page is mlock()d, we cannot swap it out.
1155 * If it's recently referenced (perhaps page_referenced
1156 * skipped over this mm) then we should reactivate it.
1157 */
14fa31b8 1158 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1159 if (vma->vm_flags & VM_LOCKED)
1160 goto out_mlock;
1161
daa5ba76 1162 if (flags & TTU_MUNLOCK)
53f79acb 1163 goto out_unmap;
14fa31b8
AK
1164 }
1165 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1166 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1167 ret = SWAP_FAIL;
1168 goto out_unmap;
1169 }
1170 }
1da177e4 1171
1da177e4
LT
1172 /* Nuke the page table entry. */
1173 flush_cache_page(vma, address, page_to_pfn(page));
2ec74c3e 1174 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1175
1176 /* Move the dirty bit to the physical page now the pte is gone. */
1177 if (pte_dirty(pteval))
1178 set_page_dirty(page);
1179
365e9c87
HD
1180 /* Update high watermark before we lower rss */
1181 update_hiwater_rss(mm);
1182
888b9f7c 1183 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1184 if (!PageHuge(page)) {
1185 if (PageAnon(page))
1186 dec_mm_counter(mm, MM_ANONPAGES);
1187 else
1188 dec_mm_counter(mm, MM_FILEPAGES);
1189 }
888b9f7c 1190 set_pte_at(mm, address, pte,
5f24ae58 1191 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1192 } else if (pte_unused(pteval)) {
1193 /*
1194 * The guest indicated that the page content is of no
1195 * interest anymore. Simply discard the pte, vmscan
1196 * will take care of the rest.
1197 */
1198 if (PageAnon(page))
1199 dec_mm_counter(mm, MM_ANONPAGES);
1200 else
1201 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c 1202 } else if (PageAnon(page)) {
4c21e2f2 1203 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1204 pte_t swp_pte;
0697212a
CL
1205
1206 if (PageSwapCache(page)) {
1207 /*
1208 * Store the swap location in the pte.
1209 * See handle_pte_fault() ...
1210 */
570a335b
HD
1211 if (swap_duplicate(entry) < 0) {
1212 set_pte_at(mm, address, pte, pteval);
1213 ret = SWAP_FAIL;
1214 goto out_unmap;
1215 }
0697212a
CL
1216 if (list_empty(&mm->mmlist)) {
1217 spin_lock(&mmlist_lock);
1218 if (list_empty(&mm->mmlist))
1219 list_add(&mm->mmlist, &init_mm.mmlist);
1220 spin_unlock(&mmlist_lock);
1221 }
d559db08 1222 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1223 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1224 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1225 /*
1226 * Store the pfn of the page in a special migration
1227 * pte. do_swap_page() will wait until the migration
1228 * pte is removed and then restart fault handling.
1229 */
daa5ba76 1230 BUG_ON(!(flags & TTU_MIGRATION));
0697212a 1231 entry = make_migration_entry(page, pte_write(pteval));
1da177e4 1232 }
179ef71c
CG
1233 swp_pte = swp_entry_to_pte(entry);
1234 if (pte_soft_dirty(pteval))
1235 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1236 set_pte_at(mm, address, pte, swp_pte);
1da177e4 1237 BUG_ON(pte_file(*pte));
ce1744f4 1238 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
daa5ba76 1239 (flags & TTU_MIGRATION)) {
04e62a29
CL
1240 /* Establish migration entry for a file page */
1241 swp_entry_t entry;
1242 entry = make_migration_entry(page, pte_write(pteval));
1243 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1244 } else
d559db08 1245 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1246
edc315fd 1247 page_remove_rmap(page);
1da177e4
LT
1248 page_cache_release(page);
1249
1250out_unmap:
c0718806 1251 pte_unmap_unlock(pte, ptl);
daa5ba76 1252 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
2ec74c3e 1253 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1254out:
1255 return ret;
53f79acb 1256
caed0f48
KM
1257out_mlock:
1258 pte_unmap_unlock(pte, ptl);
1259
1260
1261 /*
1262 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1263 * unstable result and race. Plus, We can't wait here because
c8c06efa 1264 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
caed0f48
KM
1265 * if trylock failed, the page remain in evictable lru and later
1266 * vmscan could retry to move the page to unevictable lru if the
1267 * page is actually mlocked.
1268 */
1269 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1270 if (vma->vm_flags & VM_LOCKED) {
1271 mlock_vma_page(page);
1272 ret = SWAP_MLOCK;
53f79acb 1273 }
caed0f48 1274 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1275 }
1da177e4
LT
1276 return ret;
1277}
1278
1279/*
1280 * objrmap doesn't work for nonlinear VMAs because the assumption that
1281 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1282 * Consequently, given a particular page and its ->index, we cannot locate the
1283 * ptes which are mapping that page without an exhaustive linear search.
1284 *
1285 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1286 * maps the file to which the target page belongs. The ->vm_private_data field
1287 * holds the current cursor into that scan. Successive searches will circulate
1288 * around the vma's virtual address space.
1289 *
1290 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1291 * more scanning pressure is placed against them as well. Eventually pages
1292 * will become fully unmapped and are eligible for eviction.
1293 *
1294 * For very sparsely populated VMAs this is a little inefficient - chances are
1295 * there there won't be many ptes located within the scan cluster. In this case
1296 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1297 *
1298 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1299 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1300 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1301 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1302 */
1303#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1304#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1305
b291f000
NP
1306static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1307 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1308{
1309 struct mm_struct *mm = vma->vm_mm;
1da177e4 1310 pmd_t *pmd;
c0718806 1311 pte_t *pte;
1da177e4 1312 pte_t pteval;
c0718806 1313 spinlock_t *ptl;
1da177e4
LT
1314 struct page *page;
1315 unsigned long address;
2ec74c3e
SG
1316 unsigned long mmun_start; /* For mmu_notifiers */
1317 unsigned long mmun_end; /* For mmu_notifiers */
1da177e4 1318 unsigned long end;
b291f000
NP
1319 int ret = SWAP_AGAIN;
1320 int locked_vma = 0;
1da177e4 1321
1da177e4
LT
1322 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1323 end = address + CLUSTER_SIZE;
1324 if (address < vma->vm_start)
1325 address = vma->vm_start;
1326 if (end > vma->vm_end)
1327 end = vma->vm_end;
1328
6219049a
BL
1329 pmd = mm_find_pmd(mm, address);
1330 if (!pmd)
b291f000
NP
1331 return ret;
1332
2ec74c3e
SG
1333 mmun_start = address;
1334 mmun_end = end;
1335 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1336
b291f000 1337 /*
af8e3354 1338 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1339 * keep the sem while scanning the cluster for mlocking pages.
1340 */
af8e3354 1341 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1342 locked_vma = (vma->vm_flags & VM_LOCKED);
1343 if (!locked_vma)
1344 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1345 }
c0718806
HD
1346
1347 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1348
365e9c87
HD
1349 /* Update high watermark before we lower rss */
1350 update_hiwater_rss(mm);
1351
c0718806 1352 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1353 if (!pte_present(*pte))
1354 continue;
6aab341e
LT
1355 page = vm_normal_page(vma, address, *pte);
1356 BUG_ON(!page || PageAnon(page));
1da177e4 1357
b291f000 1358 if (locked_vma) {
57e68e9c
VB
1359 if (page == check_page) {
1360 /* we know we have check_page locked */
1361 mlock_vma_page(page);
b291f000 1362 ret = SWAP_MLOCK;
57e68e9c
VB
1363 } else if (trylock_page(page)) {
1364 /*
1365 * If we can lock the page, perform mlock.
1366 * Otherwise leave the page alone, it will be
1367 * eventually encountered again later.
1368 */
1369 mlock_vma_page(page);
1370 unlock_page(page);
1371 }
b291f000
NP
1372 continue; /* don't unmap */
1373 }
1374
57128468
ALC
1375 /*
1376 * No need for _notify because we're within an
1377 * mmu_notifier_invalidate_range_ {start|end} scope.
1378 */
1379 if (ptep_clear_flush_young(vma, address, pte))
1da177e4
LT
1380 continue;
1381
1382 /* Nuke the page table entry. */
eca35133 1383 flush_cache_page(vma, address, pte_pfn(*pte));
34ee645e 1384 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1385
1386 /* If nonlinear, store the file page offset in the pte. */
41bb3476
CG
1387 if (page->index != linear_page_index(vma, address)) {
1388 pte_t ptfile = pgoff_to_pte(page->index);
1389 if (pte_soft_dirty(pteval))
b43790ee 1390 ptfile = pte_file_mksoft_dirty(ptfile);
41bb3476
CG
1391 set_pte_at(mm, address, pte, ptfile);
1392 }
1da177e4
LT
1393
1394 /* Move the dirty bit to the physical page now the pte is gone. */
1395 if (pte_dirty(pteval))
1396 set_page_dirty(page);
1397
edc315fd 1398 page_remove_rmap(page);
1da177e4 1399 page_cache_release(page);
d559db08 1400 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1401 (*mapcount)--;
1402 }
c0718806 1403 pte_unmap_unlock(pte - 1, ptl);
2ec74c3e 1404 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b291f000
NP
1405 if (locked_vma)
1406 up_read(&vma->vm_mm->mmap_sem);
1407 return ret;
1da177e4
LT
1408}
1409
0f843c6a 1410static int try_to_unmap_nonlinear(struct page *page,
7e09e738 1411 struct address_space *mapping, void *arg)
0f843c6a 1412{
7e09e738 1413 struct vm_area_struct *vma;
0f843c6a
JK
1414 int ret = SWAP_AGAIN;
1415 unsigned long cursor;
1416 unsigned long max_nl_cursor = 0;
1417 unsigned long max_nl_size = 0;
1418 unsigned int mapcount;
1419
1420 list_for_each_entry(vma,
1421 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1422
1423 cursor = (unsigned long) vma->vm_private_data;
1424 if (cursor > max_nl_cursor)
1425 max_nl_cursor = cursor;
1426 cursor = vma->vm_end - vma->vm_start;
1427 if (cursor > max_nl_size)
1428 max_nl_size = cursor;
1429 }
1430
1431 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1432 return SWAP_FAIL;
1433 }
1434
1435 /*
1436 * We don't try to search for this page in the nonlinear vmas,
1437 * and page_referenced wouldn't have found it anyway. Instead
1438 * just walk the nonlinear vmas trying to age and unmap some.
1439 * The mapcount of the page we came in with is irrelevant,
1440 * but even so use it as a guide to how hard we should try?
1441 */
1442 mapcount = page_mapcount(page);
1443 if (!mapcount)
1444 return ret;
1445
1446 cond_resched();
1447
1448 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1449 if (max_nl_cursor == 0)
1450 max_nl_cursor = CLUSTER_SIZE;
1451
1452 do {
1453 list_for_each_entry(vma,
1454 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1455
1456 cursor = (unsigned long) vma->vm_private_data;
1457 while (cursor < max_nl_cursor &&
1458 cursor < vma->vm_end - vma->vm_start) {
1459 if (try_to_unmap_cluster(cursor, &mapcount,
1460 vma, page) == SWAP_MLOCK)
1461 ret = SWAP_MLOCK;
1462 cursor += CLUSTER_SIZE;
1463 vma->vm_private_data = (void *) cursor;
1464 if ((int)mapcount <= 0)
1465 return ret;
1466 }
1467 vma->vm_private_data = (void *) max_nl_cursor;
1468 }
1469 cond_resched();
1470 max_nl_cursor += CLUSTER_SIZE;
1471 } while (max_nl_cursor <= max_nl_size);
1472
1473 /*
1474 * Don't loop forever (perhaps all the remaining pages are
1475 * in locked vmas). Reset cursor on all unreserved nonlinear
1476 * vmas, now forgetting on which ones it had fallen behind.
1477 */
1478 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1479 vma->vm_private_data = NULL;
1480
1481 return ret;
1482}
1483
71e3aac0 1484bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1485{
1486 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1487
1488 if (!maybe_stack)
1489 return false;
1490
1491 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1492 VM_STACK_INCOMPLETE_SETUP)
1493 return true;
1494
1495 return false;
1496}
1497
52629506
JK
1498static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1499{
1500 return is_vma_temporary_stack(vma);
1501}
1502
52629506
JK
1503static int page_not_mapped(struct page *page)
1504{
1505 return !page_mapped(page);
1506};
1507
1da177e4
LT
1508/**
1509 * try_to_unmap - try to remove all page table mappings to a page
1510 * @page: the page to get unmapped
14fa31b8 1511 * @flags: action and flags
1da177e4
LT
1512 *
1513 * Tries to remove all the page table entries which are mapping this
1514 * page, used in the pageout path. Caller must hold the page lock.
1515 * Return values are:
1516 *
1517 * SWAP_SUCCESS - we succeeded in removing all mappings
1518 * SWAP_AGAIN - we missed a mapping, try again later
1519 * SWAP_FAIL - the page is unswappable
b291f000 1520 * SWAP_MLOCK - page is mlocked.
1da177e4 1521 */
14fa31b8 1522int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1523{
1524 int ret;
52629506
JK
1525 struct rmap_walk_control rwc = {
1526 .rmap_one = try_to_unmap_one,
1527 .arg = (void *)flags,
1528 .done = page_not_mapped,
1529 .file_nonlinear = try_to_unmap_nonlinear,
1530 .anon_lock = page_lock_anon_vma_read,
1531 };
1da177e4 1532
309381fe 1533 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1534
52629506
JK
1535 /*
1536 * During exec, a temporary VMA is setup and later moved.
1537 * The VMA is moved under the anon_vma lock but not the
1538 * page tables leading to a race where migration cannot
1539 * find the migration ptes. Rather than increasing the
1540 * locking requirements of exec(), migration skips
1541 * temporary VMAs until after exec() completes.
1542 */
daa5ba76 1543 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1544 rwc.invalid_vma = invalid_migration_vma;
1545
1546 ret = rmap_walk(page, &rwc);
1547
b291f000 1548 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1549 ret = SWAP_SUCCESS;
1550 return ret;
1551}
81b4082d 1552
b291f000
NP
1553/**
1554 * try_to_munlock - try to munlock a page
1555 * @page: the page to be munlocked
1556 *
1557 * Called from munlock code. Checks all of the VMAs mapping the page
1558 * to make sure nobody else has this page mlocked. The page will be
1559 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1560 *
1561 * Return values are:
1562 *
53f79acb 1563 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1564 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1565 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1566 * SWAP_MLOCK - page is now mlocked.
1567 */
1568int try_to_munlock(struct page *page)
1569{
e8351ac9
JK
1570 int ret;
1571 struct rmap_walk_control rwc = {
1572 .rmap_one = try_to_unmap_one,
1573 .arg = (void *)TTU_MUNLOCK,
1574 .done = page_not_mapped,
1575 /*
1576 * We don't bother to try to find the munlocked page in
1577 * nonlinears. It's costly. Instead, later, page reclaim logic
1578 * may call try_to_unmap() and recover PG_mlocked lazily.
1579 */
1580 .file_nonlinear = NULL,
1581 .anon_lock = page_lock_anon_vma_read,
1582
1583 };
1584
309381fe 1585 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1586
e8351ac9
JK
1587 ret = rmap_walk(page, &rwc);
1588 return ret;
b291f000 1589}
e9995ef9 1590
01d8b20d 1591void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1592{
01d8b20d 1593 struct anon_vma *root = anon_vma->root;
76545066 1594
624483f3 1595 anon_vma_free(anon_vma);
01d8b20d
PZ
1596 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1597 anon_vma_free(root);
76545066 1598}
76545066 1599
0dd1c7bb
JK
1600static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1601 struct rmap_walk_control *rwc)
faecd8dd
JK
1602{
1603 struct anon_vma *anon_vma;
1604
0dd1c7bb
JK
1605 if (rwc->anon_lock)
1606 return rwc->anon_lock(page);
1607
faecd8dd
JK
1608 /*
1609 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1610 * because that depends on page_mapped(); but not all its usages
1611 * are holding mmap_sem. Users without mmap_sem are required to
1612 * take a reference count to prevent the anon_vma disappearing
1613 */
1614 anon_vma = page_anon_vma(page);
1615 if (!anon_vma)
1616 return NULL;
1617
1618 anon_vma_lock_read(anon_vma);
1619 return anon_vma;
1620}
1621
e9995ef9 1622/*
e8351ac9
JK
1623 * rmap_walk_anon - do something to anonymous page using the object-based
1624 * rmap method
1625 * @page: the page to be handled
1626 * @rwc: control variable according to each walk type
1627 *
1628 * Find all the mappings of a page using the mapping pointer and the vma chains
1629 * contained in the anon_vma struct it points to.
1630 *
1631 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1632 * where the page was found will be held for write. So, we won't recheck
1633 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1634 * LOCKED.
e9995ef9 1635 */
051ac83a 1636static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1637{
1638 struct anon_vma *anon_vma;
b258d860 1639 pgoff_t pgoff;
5beb4930 1640 struct anon_vma_chain *avc;
e9995ef9
HD
1641 int ret = SWAP_AGAIN;
1642
0dd1c7bb 1643 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1644 if (!anon_vma)
1645 return ret;
faecd8dd 1646
b258d860 1647 pgoff = page_to_pgoff(page);
bf181b9f 1648 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1649 struct vm_area_struct *vma = avc->vma;
e9995ef9 1650 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1651
1652 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1653 continue;
1654
051ac83a 1655 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1656 if (ret != SWAP_AGAIN)
1657 break;
0dd1c7bb
JK
1658 if (rwc->done && rwc->done(page))
1659 break;
e9995ef9 1660 }
4fc3f1d6 1661 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1662 return ret;
1663}
1664
e8351ac9
JK
1665/*
1666 * rmap_walk_file - do something to file page using the object-based rmap method
1667 * @page: the page to be handled
1668 * @rwc: control variable according to each walk type
1669 *
1670 * Find all the mappings of a page using the mapping pointer and the vma chains
1671 * contained in the address_space struct it points to.
1672 *
1673 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1674 * where the page was found will be held for write. So, we won't recheck
1675 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1676 * LOCKED.
1677 */
051ac83a 1678static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1679{
1680 struct address_space *mapping = page->mapping;
b258d860 1681 pgoff_t pgoff;
e9995ef9 1682 struct vm_area_struct *vma;
e9995ef9
HD
1683 int ret = SWAP_AGAIN;
1684
9f32624b
JK
1685 /*
1686 * The page lock not only makes sure that page->mapping cannot
1687 * suddenly be NULLified by truncation, it makes sure that the
1688 * structure at mapping cannot be freed and reused yet,
c8c06efa 1689 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1690 */
81d1b09c 1691 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1692
e9995ef9
HD
1693 if (!mapping)
1694 return ret;
3dec0ba0 1695
b258d860 1696 pgoff = page_to_pgoff(page);
3dec0ba0 1697 i_mmap_lock_read(mapping);
6b2dbba8 1698 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1699 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1700
1701 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1702 continue;
1703
051ac83a 1704 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1705 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1706 goto done;
1707 if (rwc->done && rwc->done(page))
1708 goto done;
e9995ef9 1709 }
0dd1c7bb
JK
1710
1711 if (!rwc->file_nonlinear)
1712 goto done;
1713
1714 if (list_empty(&mapping->i_mmap_nonlinear))
1715 goto done;
1716
7e09e738 1717 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
0dd1c7bb 1718done:
3dec0ba0 1719 i_mmap_unlock_read(mapping);
e9995ef9
HD
1720 return ret;
1721}
1722
051ac83a 1723int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1724{
e9995ef9 1725 if (unlikely(PageKsm(page)))
051ac83a 1726 return rmap_walk_ksm(page, rwc);
e9995ef9 1727 else if (PageAnon(page))
051ac83a 1728 return rmap_walk_anon(page, rwc);
e9995ef9 1729 else
051ac83a 1730 return rmap_walk_file(page, rwc);
e9995ef9 1731}
0fe6e20b 1732
e3390f67 1733#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1734/*
1735 * The following three functions are for anonymous (private mapped) hugepages.
1736 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1737 * and no lru code, because we handle hugepages differently from common pages.
1738 */
1739static void __hugepage_set_anon_rmap(struct page *page,
1740 struct vm_area_struct *vma, unsigned long address, int exclusive)
1741{
1742 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1743
0fe6e20b 1744 BUG_ON(!anon_vma);
433abed6
NH
1745
1746 if (PageAnon(page))
1747 return;
1748 if (!exclusive)
1749 anon_vma = anon_vma->root;
1750
0fe6e20b
NH
1751 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1752 page->mapping = (struct address_space *) anon_vma;
1753 page->index = linear_page_index(vma, address);
1754}
1755
1756void hugepage_add_anon_rmap(struct page *page,
1757 struct vm_area_struct *vma, unsigned long address)
1758{
1759 struct anon_vma *anon_vma = vma->anon_vma;
1760 int first;
a850ea30
NH
1761
1762 BUG_ON(!PageLocked(page));
0fe6e20b 1763 BUG_ON(!anon_vma);
5dbe0af4 1764 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1765 first = atomic_inc_and_test(&page->_mapcount);
1766 if (first)
1767 __hugepage_set_anon_rmap(page, vma, address, 0);
1768}
1769
1770void hugepage_add_new_anon_rmap(struct page *page,
1771 struct vm_area_struct *vma, unsigned long address)
1772{
1773 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1774 atomic_set(&page->_mapcount, 0);
1775 __hugepage_set_anon_rmap(page, vma, address, 1);
1776}
e3390f67 1777#endif /* CONFIG_HUGETLB_PAGE */