]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/rmap.c
mm, thp: remove infrastructure for handling splitting PMDs
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
c8c06efa 26 * mapping->i_mmap_rwsem
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
c4843a75
GT
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
250df6ed 35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 40 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 41 *
5a505085 42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 43 * ->tasklist_lock
6a46079c 44 * pte map lock
1da177e4
LT
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
5ad64688 53#include <linux/ksm.h>
1da177e4
LT
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
b95f1b31 56#include <linux/export.h>
8a9f3ccd 57#include <linux/memcontrol.h>
cddb8a5c 58#include <linux/mmu_notifier.h>
64cdd548 59#include <linux/migrate.h>
0fe6e20b 60#include <linux/hugetlb.h>
ef5d437f 61#include <linux/backing-dev.h>
33c3fc71 62#include <linux/page_idle.h>
1da177e4
LT
63
64#include <asm/tlbflush.h>
65
72b252ae
MG
66#include <trace/events/tlb.h>
67
b291f000
NP
68#include "internal.h"
69
fdd2e5f8 70static struct kmem_cache *anon_vma_cachep;
5beb4930 71static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
72
73static inline struct anon_vma *anon_vma_alloc(void)
74{
01d8b20d
PZ
75 struct anon_vma *anon_vma;
76
77 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 if (anon_vma) {
79 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
80 anon_vma->degree = 1; /* Reference for first vma */
81 anon_vma->parent = anon_vma;
01d8b20d
PZ
82 /*
83 * Initialise the anon_vma root to point to itself. If called
84 * from fork, the root will be reset to the parents anon_vma.
85 */
86 anon_vma->root = anon_vma;
87 }
88
89 return anon_vma;
fdd2e5f8
AB
90}
91
01d8b20d 92static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 93{
01d8b20d 94 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
95
96 /*
4fc3f1d6 97 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
98 * we can safely hold the lock without the anon_vma getting
99 * freed.
100 *
101 * Relies on the full mb implied by the atomic_dec_and_test() from
102 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 103 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 104 *
4fc3f1d6
IM
105 * page_lock_anon_vma_read() VS put_anon_vma()
106 * down_read_trylock() atomic_dec_and_test()
88c22088 107 * LOCK MB
4fc3f1d6 108 * atomic_read() rwsem_is_locked()
88c22088
PZ
109 *
110 * LOCK should suffice since the actual taking of the lock must
111 * happen _before_ what follows.
112 */
7f39dda9 113 might_sleep();
5a505085 114 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 115 anon_vma_lock_write(anon_vma);
08b52706 116 anon_vma_unlock_write(anon_vma);
88c22088
PZ
117 }
118
fdd2e5f8
AB
119 kmem_cache_free(anon_vma_cachep, anon_vma);
120}
1da177e4 121
dd34739c 122static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 123{
dd34739c 124 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
125}
126
e574b5fd 127static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
128{
129 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
130}
131
6583a843
KC
132static void anon_vma_chain_link(struct vm_area_struct *vma,
133 struct anon_vma_chain *avc,
134 struct anon_vma *anon_vma)
135{
136 avc->vma = vma;
137 avc->anon_vma = anon_vma;
138 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 139 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
140}
141
d9d332e0
LT
142/**
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
145 *
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
149 *
150 * The common case will be that we already have one, but if
23a0790a 151 * not we either need to find an adjacent mapping that we
d9d332e0
LT
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
155 *
156 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 157 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
161 *
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
165 * an anon_vma.
166 *
167 * This must be called with the mmap_sem held for reading.
168 */
1da177e4
LT
169int anon_vma_prepare(struct vm_area_struct *vma)
170{
171 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 172 struct anon_vma_chain *avc;
1da177e4
LT
173
174 might_sleep();
175 if (unlikely(!anon_vma)) {
176 struct mm_struct *mm = vma->vm_mm;
d9d332e0 177 struct anon_vma *allocated;
1da177e4 178
dd34739c 179 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
180 if (!avc)
181 goto out_enomem;
182
1da177e4 183 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
184 allocated = NULL;
185 if (!anon_vma) {
1da177e4
LT
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
5beb4930 188 goto out_enomem_free_avc;
1da177e4 189 allocated = anon_vma;
1da177e4
LT
190 }
191
4fc3f1d6 192 anon_vma_lock_write(anon_vma);
1da177e4
LT
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
6583a843 197 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
1da177e4 200 allocated = NULL;
31f2b0eb 201 avc = NULL;
1da177e4
LT
202 }
203 spin_unlock(&mm->page_table_lock);
08b52706 204 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
205
206 if (unlikely(allocated))
01d8b20d 207 put_anon_vma(allocated);
31f2b0eb 208 if (unlikely(avc))
5beb4930 209 anon_vma_chain_free(avc);
1da177e4
LT
210 }
211 return 0;
5beb4930
RR
212
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
1da177e4
LT
217}
218
bb4aa396
LT
219/*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228{
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
5a505085 232 up_write(&root->rwsem);
bb4aa396 233 root = new_root;
5a505085 234 down_write(&root->rwsem);
bb4aa396
LT
235 }
236 return root;
237}
238
239static inline void unlock_anon_vma_root(struct anon_vma *root)
240{
241 if (root)
5a505085 242 up_write(&root->rwsem);
bb4aa396
LT
243}
244
5beb4930
RR
245/*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
5beb4930
RR
256 */
257int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 258{
5beb4930 259 struct anon_vma_chain *avc, *pavc;
bb4aa396 260 struct anon_vma *root = NULL;
5beb4930 261
646d87b4 262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
263 struct anon_vma *anon_vma;
264
dd34739c
LT
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
272 }
bb4aa396
LT
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
276
277 /*
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
280 *
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
284 */
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
5beb4930 288 }
7a3ef208
KK
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
bb4aa396 291 unlock_anon_vma_root(root);
5beb4930 292 return 0;
1da177e4 293
5beb4930 294 enomem_failure:
3fe89b3e
LY
295 /*
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
300 */
301 dst->anon_vma = NULL;
5beb4930
RR
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
1da177e4
LT
304}
305
5beb4930
RR
306/*
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
310 */
311int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 312{
5beb4930
RR
313 struct anon_vma_chain *avc;
314 struct anon_vma *anon_vma;
c4ea95d7 315 int error;
1da177e4 316
5beb4930
RR
317 /* Don't bother if the parent process has no anon_vma here. */
318 if (!pvma->anon_vma)
319 return 0;
320
7a3ef208
KK
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma->anon_vma = NULL;
323
5beb4930
RR
324 /*
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
327 */
c4ea95d7
DF
328 error = anon_vma_clone(vma, pvma);
329 if (error)
330 return error;
5beb4930 331
7a3ef208
KK
332 /* An existing anon_vma has been reused, all done then. */
333 if (vma->anon_vma)
334 return 0;
335
5beb4930
RR
336 /* Then add our own anon_vma. */
337 anon_vma = anon_vma_alloc();
338 if (!anon_vma)
339 goto out_error;
dd34739c 340 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
341 if (!avc)
342 goto out_error_free_anon_vma;
5c341ee1
RR
343
344 /*
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
347 */
348 anon_vma->root = pvma->anon_vma->root;
7a3ef208 349 anon_vma->parent = pvma->anon_vma;
76545066 350 /*
01d8b20d
PZ
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
354 */
355 get_anon_vma(anon_vma->root);
5beb4930
RR
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
4fc3f1d6 358 anon_vma_lock_write(anon_vma);
5c341ee1 359 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 360 anon_vma->parent->degree++;
08b52706 361 anon_vma_unlock_write(anon_vma);
5beb4930
RR
362
363 return 0;
364
365 out_error_free_anon_vma:
01d8b20d 366 put_anon_vma(anon_vma);
5beb4930 367 out_error:
4946d54c 368 unlink_anon_vmas(vma);
5beb4930 369 return -ENOMEM;
1da177e4
LT
370}
371
5beb4930
RR
372void unlink_anon_vmas(struct vm_area_struct *vma)
373{
374 struct anon_vma_chain *avc, *next;
eee2acba 375 struct anon_vma *root = NULL;
5beb4930 376
5c341ee1
RR
377 /*
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 */
5beb4930 381 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
382 struct anon_vma *anon_vma = avc->anon_vma;
383
384 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 385 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
386
387 /*
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
390 */
7a3ef208
KK
391 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 anon_vma->parent->degree--;
eee2acba 393 continue;
7a3ef208 394 }
eee2acba
PZ
395
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
398 }
7a3ef208
KK
399 if (vma->anon_vma)
400 vma->anon_vma->degree--;
eee2acba
PZ
401 unlock_anon_vma_root(root);
402
403 /*
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 406 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
407 */
408 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 struct anon_vma *anon_vma = avc->anon_vma;
410
7a3ef208 411 BUG_ON(anon_vma->degree);
eee2acba
PZ
412 put_anon_vma(anon_vma);
413
5beb4930
RR
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
417}
418
51cc5068 419static void anon_vma_ctor(void *data)
1da177e4 420{
a35afb83 421 struct anon_vma *anon_vma = data;
1da177e4 422
5a505085 423 init_rwsem(&anon_vma->rwsem);
83813267 424 atomic_set(&anon_vma->refcount, 0);
bf181b9f 425 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
426}
427
428void __init anon_vma_init(void)
429{
430 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5d097056
VD
431 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
432 anon_vma_ctor);
433 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
434 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
435}
436
437/*
6111e4ca
PZ
438 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
439 *
440 * Since there is no serialization what so ever against page_remove_rmap()
441 * the best this function can do is return a locked anon_vma that might
442 * have been relevant to this page.
443 *
444 * The page might have been remapped to a different anon_vma or the anon_vma
445 * returned may already be freed (and even reused).
446 *
bc658c96
PZ
447 * In case it was remapped to a different anon_vma, the new anon_vma will be a
448 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
449 * ensure that any anon_vma obtained from the page will still be valid for as
450 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
451 *
6111e4ca
PZ
452 * All users of this function must be very careful when walking the anon_vma
453 * chain and verify that the page in question is indeed mapped in it
454 * [ something equivalent to page_mapped_in_vma() ].
455 *
456 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
457 * that the anon_vma pointer from page->mapping is valid if there is a
458 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 459 */
746b18d4 460struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 461{
746b18d4 462 struct anon_vma *anon_vma = NULL;
1da177e4
LT
463 unsigned long anon_mapping;
464
465 rcu_read_lock();
4db0c3c2 466 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 467 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
468 goto out;
469 if (!page_mapped(page))
470 goto out;
471
472 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
473 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 anon_vma = NULL;
475 goto out;
476 }
f1819427
HD
477
478 /*
479 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
480 * freed. But if it has been unmapped, we have no security against the
481 * anon_vma structure being freed and reused (for another anon_vma:
482 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
483 * above cannot corrupt).
f1819427 484 */
746b18d4 485 if (!page_mapped(page)) {
7f39dda9 486 rcu_read_unlock();
746b18d4 487 put_anon_vma(anon_vma);
7f39dda9 488 return NULL;
746b18d4 489 }
1da177e4
LT
490out:
491 rcu_read_unlock();
746b18d4
PZ
492
493 return anon_vma;
494}
495
88c22088
PZ
496/*
497 * Similar to page_get_anon_vma() except it locks the anon_vma.
498 *
499 * Its a little more complex as it tries to keep the fast path to a single
500 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
501 * reference like with page_get_anon_vma() and then block on the mutex.
502 */
4fc3f1d6 503struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 504{
88c22088 505 struct anon_vma *anon_vma = NULL;
eee0f252 506 struct anon_vma *root_anon_vma;
88c22088 507 unsigned long anon_mapping;
746b18d4 508
88c22088 509 rcu_read_lock();
4db0c3c2 510 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
511 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
512 goto out;
513 if (!page_mapped(page))
514 goto out;
515
516 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 517 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 518 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 519 /*
eee0f252
HD
520 * If the page is still mapped, then this anon_vma is still
521 * its anon_vma, and holding the mutex ensures that it will
bc658c96 522 * not go away, see anon_vma_free().
88c22088 523 */
eee0f252 524 if (!page_mapped(page)) {
4fc3f1d6 525 up_read(&root_anon_vma->rwsem);
88c22088
PZ
526 anon_vma = NULL;
527 }
528 goto out;
529 }
746b18d4 530
88c22088
PZ
531 /* trylock failed, we got to sleep */
532 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
533 anon_vma = NULL;
534 goto out;
535 }
536
537 if (!page_mapped(page)) {
7f39dda9 538 rcu_read_unlock();
88c22088 539 put_anon_vma(anon_vma);
7f39dda9 540 return NULL;
88c22088
PZ
541 }
542
543 /* we pinned the anon_vma, its safe to sleep */
544 rcu_read_unlock();
4fc3f1d6 545 anon_vma_lock_read(anon_vma);
88c22088
PZ
546
547 if (atomic_dec_and_test(&anon_vma->refcount)) {
548 /*
549 * Oops, we held the last refcount, release the lock
550 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 551 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 552 */
4fc3f1d6 553 anon_vma_unlock_read(anon_vma);
88c22088
PZ
554 __put_anon_vma(anon_vma);
555 anon_vma = NULL;
556 }
557
558 return anon_vma;
559
560out:
561 rcu_read_unlock();
746b18d4 562 return anon_vma;
34bbd704
ON
563}
564
4fc3f1d6 565void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 566{
4fc3f1d6 567 anon_vma_unlock_read(anon_vma);
1da177e4
LT
568}
569
570/*
3ad33b24 571 * At what user virtual address is page expected in @vma?
1da177e4 572 */
86c2ad19
ML
573static inline unsigned long
574__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4 575{
a0f7a756 576 pgoff_t pgoff = page_to_pgoff(page);
86c2ad19
ML
577 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
578}
579
580inline unsigned long
581vma_address(struct page *page, struct vm_area_struct *vma)
582{
583 unsigned long address = __vma_address(page, vma);
584
585 /* page should be within @vma mapping range */
81d1b09c 586 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
86c2ad19 587
1da177e4
LT
588 return address;
589}
590
72b252ae
MG
591#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
592static void percpu_flush_tlb_batch_pages(void *data)
593{
594 /*
595 * All TLB entries are flushed on the assumption that it is
596 * cheaper to flush all TLBs and let them be refilled than
597 * flushing individual PFNs. Note that we do not track mm's
598 * to flush as that might simply be multiple full TLB flushes
599 * for no gain.
600 */
601 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
602 flush_tlb_local();
603}
604
605/*
606 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
607 * important if a PTE was dirty when it was unmapped that it's flushed
608 * before any IO is initiated on the page to prevent lost writes. Similarly,
609 * it must be flushed before freeing to prevent data leakage.
610 */
611void try_to_unmap_flush(void)
612{
613 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
614 int cpu;
615
616 if (!tlb_ubc->flush_required)
617 return;
618
619 cpu = get_cpu();
620
621 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
622
623 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
624 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
625
626 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
627 smp_call_function_many(&tlb_ubc->cpumask,
628 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
629 }
630 cpumask_clear(&tlb_ubc->cpumask);
631 tlb_ubc->flush_required = false;
d950c947 632 tlb_ubc->writable = false;
72b252ae
MG
633 put_cpu();
634}
635
d950c947
MG
636/* Flush iff there are potentially writable TLB entries that can race with IO */
637void try_to_unmap_flush_dirty(void)
638{
639 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
640
641 if (tlb_ubc->writable)
642 try_to_unmap_flush();
643}
644
72b252ae 645static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 646 struct page *page, bool writable)
72b252ae
MG
647{
648 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
649
650 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
651 tlb_ubc->flush_required = true;
d950c947
MG
652
653 /*
654 * If the PTE was dirty then it's best to assume it's writable. The
655 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
656 * before the page is queued for IO.
657 */
658 if (writable)
659 tlb_ubc->writable = true;
72b252ae
MG
660}
661
662/*
663 * Returns true if the TLB flush should be deferred to the end of a batch of
664 * unmap operations to reduce IPIs.
665 */
666static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
667{
668 bool should_defer = false;
669
670 if (!(flags & TTU_BATCH_FLUSH))
671 return false;
672
673 /* If remote CPUs need to be flushed then defer batch the flush */
674 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
675 should_defer = true;
676 put_cpu();
677
678 return should_defer;
679}
680#else
681static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 682 struct page *page, bool writable)
72b252ae
MG
683{
684}
685
686static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
687{
688 return false;
689}
690#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
691
1da177e4 692/*
bf89c8c8 693 * At what user virtual address is page expected in vma?
ab941e0f 694 * Caller should check the page is actually part of the vma.
1da177e4
LT
695 */
696unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
697{
86c2ad19 698 unsigned long address;
21d0d443 699 if (PageAnon(page)) {
4829b906
HD
700 struct anon_vma *page__anon_vma = page_anon_vma(page);
701 /*
702 * Note: swapoff's unuse_vma() is more efficient with this
703 * check, and needs it to match anon_vma when KSM is active.
704 */
705 if (!vma->anon_vma || !page__anon_vma ||
706 vma->anon_vma->root != page__anon_vma->root)
21d0d443 707 return -EFAULT;
27ba0644
KS
708 } else if (page->mapping) {
709 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
710 return -EFAULT;
711 } else
712 return -EFAULT;
86c2ad19
ML
713 address = __vma_address(page, vma);
714 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
715 return -EFAULT;
716 return address;
1da177e4
LT
717}
718
6219049a
BL
719pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
720{
721 pgd_t *pgd;
722 pud_t *pud;
723 pmd_t *pmd = NULL;
f72e7dcd 724 pmd_t pmde;
6219049a
BL
725
726 pgd = pgd_offset(mm, address);
727 if (!pgd_present(*pgd))
728 goto out;
729
730 pud = pud_offset(pgd, address);
731 if (!pud_present(*pud))
732 goto out;
733
734 pmd = pmd_offset(pud, address);
f72e7dcd 735 /*
8809aa2d 736 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
737 * without holding anon_vma lock for write. So when looking for a
738 * genuine pmde (in which to find pte), test present and !THP together.
739 */
e37c6982
CB
740 pmde = *pmd;
741 barrier();
f72e7dcd 742 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
743 pmd = NULL;
744out:
745 return pmd;
746}
747
81b4082d
ND
748/*
749 * Check that @page is mapped at @address into @mm.
750 *
479db0bf
NP
751 * If @sync is false, page_check_address may perform a racy check to avoid
752 * the page table lock when the pte is not present (helpful when reclaiming
753 * highly shared pages).
754 *
b8072f09 755 * On success returns with pte mapped and locked.
81b4082d 756 */
e9a81a82 757pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 758 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 759{
81b4082d
ND
760 pmd_t *pmd;
761 pte_t *pte;
c0718806 762 spinlock_t *ptl;
81b4082d 763
0fe6e20b 764 if (unlikely(PageHuge(page))) {
98398c32 765 /* when pud is not present, pte will be NULL */
0fe6e20b 766 pte = huge_pte_offset(mm, address);
98398c32
JW
767 if (!pte)
768 return NULL;
769
cb900f41 770 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
771 goto check;
772 }
773
6219049a
BL
774 pmd = mm_find_pmd(mm, address);
775 if (!pmd)
c0718806
HD
776 return NULL;
777
c0718806
HD
778 pte = pte_offset_map(pmd, address);
779 /* Make a quick check before getting the lock */
479db0bf 780 if (!sync && !pte_present(*pte)) {
c0718806
HD
781 pte_unmap(pte);
782 return NULL;
783 }
784
4c21e2f2 785 ptl = pte_lockptr(mm, pmd);
0fe6e20b 786check:
c0718806
HD
787 spin_lock(ptl);
788 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
789 *ptlp = ptl;
790 return pte;
81b4082d 791 }
c0718806
HD
792 pte_unmap_unlock(pte, ptl);
793 return NULL;
81b4082d
ND
794}
795
b291f000
NP
796/**
797 * page_mapped_in_vma - check whether a page is really mapped in a VMA
798 * @page: the page to test
799 * @vma: the VMA to test
800 *
801 * Returns 1 if the page is mapped into the page tables of the VMA, 0
802 * if the page is not mapped into the page tables of this VMA. Only
803 * valid for normal file or anonymous VMAs.
804 */
6a46079c 805int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
806{
807 unsigned long address;
808 pte_t *pte;
809 spinlock_t *ptl;
810
86c2ad19
ML
811 address = __vma_address(page, vma);
812 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
813 return 0;
814 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
815 if (!pte) /* the page is not in this mm */
816 return 0;
817 pte_unmap_unlock(pte, ptl);
818
819 return 1;
820}
821
9f32624b
JK
822struct page_referenced_arg {
823 int mapcount;
824 int referenced;
825 unsigned long vm_flags;
826 struct mem_cgroup *memcg;
827};
1da177e4 828/*
9f32624b 829 * arg: page_referenced_arg will be passed
1da177e4 830 */
ac769501 831static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 832 unsigned long address, void *arg)
1da177e4
LT
833{
834 struct mm_struct *mm = vma->vm_mm;
117b0791 835 spinlock_t *ptl;
1da177e4 836 int referenced = 0;
9f32624b 837 struct page_referenced_arg *pra = arg;
1da177e4 838
71e3aac0
AA
839 if (unlikely(PageTransHuge(page))) {
840 pmd_t *pmd;
841
2da28bfd
AA
842 /*
843 * rmap might return false positives; we must filter
844 * these out using page_check_address_pmd().
845 */
4b471e88 846 pmd = page_check_address_pmd(page, mm, address, &ptl);
117b0791 847 if (!pmd)
9f32624b 848 return SWAP_AGAIN;
2da28bfd
AA
849
850 if (vma->vm_flags & VM_LOCKED) {
117b0791 851 spin_unlock(ptl);
9f32624b
JK
852 pra->vm_flags |= VM_LOCKED;
853 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
854 }
855
2da28bfd 856 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 857 referenced++;
117b0791 858 spin_unlock(ptl);
71e3aac0
AA
859 } else {
860 pte_t *pte;
71e3aac0 861
2da28bfd
AA
862 /*
863 * rmap might return false positives; we must filter
864 * these out using page_check_address().
865 */
71e3aac0
AA
866 pte = page_check_address(page, mm, address, &ptl, 0);
867 if (!pte)
9f32624b 868 return SWAP_AGAIN;
71e3aac0 869
2da28bfd
AA
870 if (vma->vm_flags & VM_LOCKED) {
871 pte_unmap_unlock(pte, ptl);
9f32624b
JK
872 pra->vm_flags |= VM_LOCKED;
873 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
874 }
875
71e3aac0
AA
876 if (ptep_clear_flush_young_notify(vma, address, pte)) {
877 /*
878 * Don't treat a reference through a sequentially read
879 * mapping as such. If the page has been used in
880 * another mapping, we will catch it; if this other
881 * mapping is already gone, the unmap path will have
882 * set PG_referenced or activated the page.
883 */
64363aad 884 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
885 referenced++;
886 }
887 pte_unmap_unlock(pte, ptl);
888 }
889
33c3fc71
VD
890 if (referenced)
891 clear_page_idle(page);
892 if (test_and_clear_page_young(page))
893 referenced++;
894
9f32624b
JK
895 if (referenced) {
896 pra->referenced++;
897 pra->vm_flags |= vma->vm_flags;
1da177e4 898 }
34bbd704 899
9f32624b
JK
900 pra->mapcount--;
901 if (!pra->mapcount)
902 return SWAP_SUCCESS; /* To break the loop */
903
904 return SWAP_AGAIN;
1da177e4
LT
905}
906
9f32624b 907static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 908{
9f32624b
JK
909 struct page_referenced_arg *pra = arg;
910 struct mem_cgroup *memcg = pra->memcg;
1da177e4 911
9f32624b
JK
912 if (!mm_match_cgroup(vma->vm_mm, memcg))
913 return true;
1da177e4 914
9f32624b 915 return false;
1da177e4
LT
916}
917
918/**
919 * page_referenced - test if the page was referenced
920 * @page: the page to test
921 * @is_locked: caller holds lock on the page
72835c86 922 * @memcg: target memory cgroup
6fe6b7e3 923 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
924 *
925 * Quick test_and_clear_referenced for all mappings to a page,
926 * returns the number of ptes which referenced the page.
927 */
6fe6b7e3
WF
928int page_referenced(struct page *page,
929 int is_locked,
72835c86 930 struct mem_cgroup *memcg,
6fe6b7e3 931 unsigned long *vm_flags)
1da177e4 932{
9f32624b 933 int ret;
5ad64688 934 int we_locked = 0;
9f32624b
JK
935 struct page_referenced_arg pra = {
936 .mapcount = page_mapcount(page),
937 .memcg = memcg,
938 };
939 struct rmap_walk_control rwc = {
940 .rmap_one = page_referenced_one,
941 .arg = (void *)&pra,
942 .anon_lock = page_lock_anon_vma_read,
943 };
1da177e4 944
6fe6b7e3 945 *vm_flags = 0;
9f32624b
JK
946 if (!page_mapped(page))
947 return 0;
948
949 if (!page_rmapping(page))
950 return 0;
951
952 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
953 we_locked = trylock_page(page);
954 if (!we_locked)
955 return 1;
1da177e4 956 }
9f32624b
JK
957
958 /*
959 * If we are reclaiming on behalf of a cgroup, skip
960 * counting on behalf of references from different
961 * cgroups
962 */
963 if (memcg) {
964 rwc.invalid_vma = invalid_page_referenced_vma;
965 }
966
967 ret = rmap_walk(page, &rwc);
968 *vm_flags = pra.vm_flags;
969
970 if (we_locked)
971 unlock_page(page);
972
973 return pra.referenced;
1da177e4
LT
974}
975
1cb1729b 976static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 977 unsigned long address, void *arg)
d08b3851
PZ
978{
979 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 980 pte_t *pte;
d08b3851
PZ
981 spinlock_t *ptl;
982 int ret = 0;
9853a407 983 int *cleaned = arg;
d08b3851 984
479db0bf 985 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
986 if (!pte)
987 goto out;
988
c2fda5fe
PZ
989 if (pte_dirty(*pte) || pte_write(*pte)) {
990 pte_t entry;
d08b3851 991
c2fda5fe 992 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 993 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
994 entry = pte_wrprotect(entry);
995 entry = pte_mkclean(entry);
d6e88e67 996 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
997 ret = 1;
998 }
d08b3851 999
d08b3851 1000 pte_unmap_unlock(pte, ptl);
2ec74c3e 1001
9853a407 1002 if (ret) {
2ec74c3e 1003 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
1004 (*cleaned)++;
1005 }
d08b3851 1006out:
9853a407 1007 return SWAP_AGAIN;
d08b3851
PZ
1008}
1009
9853a407 1010static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1011{
9853a407 1012 if (vma->vm_flags & VM_SHARED)
871beb8c 1013 return false;
d08b3851 1014
871beb8c 1015 return true;
d08b3851
PZ
1016}
1017
1018int page_mkclean(struct page *page)
1019{
9853a407
JK
1020 int cleaned = 0;
1021 struct address_space *mapping;
1022 struct rmap_walk_control rwc = {
1023 .arg = (void *)&cleaned,
1024 .rmap_one = page_mkclean_one,
1025 .invalid_vma = invalid_mkclean_vma,
1026 };
d08b3851
PZ
1027
1028 BUG_ON(!PageLocked(page));
1029
9853a407
JK
1030 if (!page_mapped(page))
1031 return 0;
1032
1033 mapping = page_mapping(page);
1034 if (!mapping)
1035 return 0;
1036
1037 rmap_walk(page, &rwc);
d08b3851 1038
9853a407 1039 return cleaned;
d08b3851 1040}
60b59bea 1041EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1042
c44b6743
RR
1043/**
1044 * page_move_anon_rmap - move a page to our anon_vma
1045 * @page: the page to move to our anon_vma
1046 * @vma: the vma the page belongs to
1047 * @address: the user virtual address mapped
1048 *
1049 * When a page belongs exclusively to one process after a COW event,
1050 * that page can be moved into the anon_vma that belongs to just that
1051 * process, so the rmap code will not search the parent or sibling
1052 * processes.
1053 */
1054void page_move_anon_rmap(struct page *page,
1055 struct vm_area_struct *vma, unsigned long address)
1056{
1057 struct anon_vma *anon_vma = vma->anon_vma;
1058
309381fe 1059 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1060 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 1061 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
1062
1063 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1064 /*
1065 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1066 * simultaneously, so a concurrent reader (eg page_referenced()'s
1067 * PageAnon()) will not see one without the other.
1068 */
1069 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1070}
1071
9617d95e 1072/**
4e1c1975
AK
1073 * __page_set_anon_rmap - set up new anonymous rmap
1074 * @page: Page to add to rmap
1075 * @vma: VM area to add page to.
1076 * @address: User virtual address of the mapping
e8a03feb 1077 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1078 */
1079static void __page_set_anon_rmap(struct page *page,
e8a03feb 1080 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1081{
e8a03feb 1082 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1083
e8a03feb 1084 BUG_ON(!anon_vma);
ea90002b 1085
4e1c1975
AK
1086 if (PageAnon(page))
1087 return;
1088
ea90002b 1089 /*
e8a03feb
RR
1090 * If the page isn't exclusively mapped into this vma,
1091 * we must use the _oldest_ possible anon_vma for the
1092 * page mapping!
ea90002b 1093 */
4e1c1975 1094 if (!exclusive)
288468c3 1095 anon_vma = anon_vma->root;
9617d95e 1096
9617d95e
NP
1097 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1098 page->mapping = (struct address_space *) anon_vma;
9617d95e 1099 page->index = linear_page_index(vma, address);
9617d95e
NP
1100}
1101
c97a9e10 1102/**
43d8eac4 1103 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1104 * @page: the page to add the mapping to
1105 * @vma: the vm area in which the mapping is added
1106 * @address: the user virtual address mapped
1107 */
1108static void __page_check_anon_rmap(struct page *page,
1109 struct vm_area_struct *vma, unsigned long address)
1110{
1111#ifdef CONFIG_DEBUG_VM
1112 /*
1113 * The page's anon-rmap details (mapping and index) are guaranteed to
1114 * be set up correctly at this point.
1115 *
1116 * We have exclusion against page_add_anon_rmap because the caller
1117 * always holds the page locked, except if called from page_dup_rmap,
1118 * in which case the page is already known to be setup.
1119 *
1120 * We have exclusion against page_add_new_anon_rmap because those pages
1121 * are initially only visible via the pagetables, and the pte is locked
1122 * over the call to page_add_new_anon_rmap.
1123 */
44ab57a0 1124 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1125 BUG_ON(page->index != linear_page_index(vma, address));
1126#endif
1127}
1128
1da177e4
LT
1129/**
1130 * page_add_anon_rmap - add pte mapping to an anonymous page
1131 * @page: the page to add the mapping to
1132 * @vma: the vm area in which the mapping is added
1133 * @address: the user virtual address mapped
d281ee61 1134 * @compound: charge the page as compound or small page
1da177e4 1135 *
5ad64688 1136 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1137 * the anon_vma case: to serialize mapping,index checking after setting,
1138 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1139 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1140 */
1141void page_add_anon_rmap(struct page *page,
d281ee61 1142 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1143{
d281ee61 1144 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1145}
1146
1147/*
1148 * Special version of the above for do_swap_page, which often runs
1149 * into pages that are exclusively owned by the current process.
1150 * Everybody else should continue to use page_add_anon_rmap above.
1151 */
1152void do_page_add_anon_rmap(struct page *page,
d281ee61 1153 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1154{
5ad64688 1155 int first = atomic_inc_and_test(&page->_mapcount);
79134171 1156 if (first) {
d281ee61
KS
1157 bool compound = flags & RMAP_COMPOUND;
1158 int nr = compound ? hpage_nr_pages(page) : 1;
bea04b07
JZ
1159 /*
1160 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1161 * these counters are not modified in interrupt context, and
1162 * pte lock(a spinlock) is held, which implies preemption
1163 * disabled.
1164 */
d281ee61
KS
1165 if (compound) {
1166 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
79134171
AA
1167 __inc_zone_page_state(page,
1168 NR_ANON_TRANSPARENT_HUGEPAGES);
d281ee61
KS
1169 }
1170 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
79134171 1171 }
5ad64688
HD
1172 if (unlikely(PageKsm(page)))
1173 return;
1174
309381fe 1175 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1176 /* address might be in next vma when migration races vma_adjust */
5ad64688 1177 if (first)
d281ee61
KS
1178 __page_set_anon_rmap(page, vma, address,
1179 flags & RMAP_EXCLUSIVE);
69029cd5 1180 else
c97a9e10 1181 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1182}
1183
43d8eac4 1184/**
9617d95e
NP
1185 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1186 * @page: the page to add the mapping to
1187 * @vma: the vm area in which the mapping is added
1188 * @address: the user virtual address mapped
d281ee61 1189 * @compound: charge the page as compound or small page
9617d95e
NP
1190 *
1191 * Same as page_add_anon_rmap but must only be called on *new* pages.
1192 * This means the inc-and-test can be bypassed.
c97a9e10 1193 * Page does not have to be locked.
9617d95e
NP
1194 */
1195void page_add_new_anon_rmap(struct page *page,
d281ee61 1196 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1197{
d281ee61
KS
1198 int nr = compound ? hpage_nr_pages(page) : 1;
1199
81d1b09c 1200 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a
HD
1201 SetPageSwapBacked(page);
1202 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
d281ee61
KS
1203 if (compound) {
1204 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
79134171 1205 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
d281ee61
KS
1206 }
1207 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
e8a03feb 1208 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1209}
1210
1da177e4
LT
1211/**
1212 * page_add_file_rmap - add pte mapping to a file page
1213 * @page: the page to add the mapping to
1214 *
b8072f09 1215 * The caller needs to hold the pte lock.
1da177e4
LT
1216 */
1217void page_add_file_rmap(struct page *page)
1218{
d7365e78 1219 struct mem_cgroup *memcg;
89c06bd5 1220
6de22619 1221 memcg = mem_cgroup_begin_page_stat(page);
d69b042f 1222 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1223 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1224 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1225 }
6de22619 1226 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
1227}
1228
8186eb6a
JW
1229static void page_remove_file_rmap(struct page *page)
1230{
1231 struct mem_cgroup *memcg;
8186eb6a 1232
6de22619 1233 memcg = mem_cgroup_begin_page_stat(page);
8186eb6a
JW
1234
1235 /* page still mapped by someone else? */
1236 if (!atomic_add_negative(-1, &page->_mapcount))
1237 goto out;
1238
1239 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1240 if (unlikely(PageHuge(page)))
1241 goto out;
1242
1243 /*
1244 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1245 * these counters are not modified in interrupt context, and
1246 * pte lock(a spinlock) is held, which implies preemption disabled.
1247 */
1248 __dec_zone_page_state(page, NR_FILE_MAPPED);
1249 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1250
1251 if (unlikely(PageMlocked(page)))
1252 clear_page_mlock(page);
1253out:
6de22619 1254 mem_cgroup_end_page_stat(memcg);
8186eb6a
JW
1255}
1256
1da177e4
LT
1257/**
1258 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1259 * @page: page to remove mapping from
1260 * @compound: uncharge the page as compound or small page
1da177e4 1261 *
b8072f09 1262 * The caller needs to hold the pte lock.
1da177e4 1263 */
d281ee61 1264void page_remove_rmap(struct page *page, bool compound)
1da177e4 1265{
d281ee61
KS
1266 int nr = compound ? hpage_nr_pages(page) : 1;
1267
8186eb6a 1268 if (!PageAnon(page)) {
d281ee61 1269 VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
8186eb6a
JW
1270 page_remove_file_rmap(page);
1271 return;
1272 }
89c06bd5 1273
b904dcfe
KM
1274 /* page still mapped by someone else? */
1275 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1276 return;
1277
1278 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1279 if (unlikely(PageHuge(page)))
1280 return;
b904dcfe 1281
0fe6e20b 1282 /*
bea04b07
JZ
1283 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1284 * these counters are not modified in interrupt context, and
bea04b07 1285 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1286 */
d281ee61
KS
1287 if (compound) {
1288 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8186eb6a 1289 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
d281ee61 1290 }
8186eb6a 1291
d281ee61 1292 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
8186eb6a 1293
e6c509f8
HD
1294 if (unlikely(PageMlocked(page)))
1295 clear_page_mlock(page);
8186eb6a 1296
b904dcfe
KM
1297 /*
1298 * It would be tidy to reset the PageAnon mapping here,
1299 * but that might overwrite a racing page_add_anon_rmap
1300 * which increments mapcount after us but sets mapping
1301 * before us: so leave the reset to free_hot_cold_page,
1302 * and remember that it's only reliable while mapped.
1303 * Leaving it set also helps swapoff to reinstate ptes
1304 * faster for those pages still in swapcache.
1305 */
1da177e4
LT
1306}
1307
1308/*
52629506 1309 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1310 */
ac769501 1311static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1312 unsigned long address, void *arg)
1da177e4
LT
1313{
1314 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1315 pte_t *pte;
1316 pte_t pteval;
c0718806 1317 spinlock_t *ptl;
1da177e4 1318 int ret = SWAP_AGAIN;
52629506 1319 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1320
b87537d9
HD
1321 /* munlock has nothing to gain from examining un-locked vmas */
1322 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1323 goto out;
1324
479db0bf 1325 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1326 if (!pte)
81b4082d 1327 goto out;
1da177e4
LT
1328
1329 /*
1330 * If the page is mlock()d, we cannot swap it out.
1331 * If it's recently referenced (perhaps page_referenced
1332 * skipped over this mm) then we should reactivate it.
1333 */
14fa31b8 1334 if (!(flags & TTU_IGNORE_MLOCK)) {
b87537d9
HD
1335 if (vma->vm_flags & VM_LOCKED) {
1336 /* Holding pte lock, we do *not* need mmap_sem here */
1337 mlock_vma_page(page);
1338 ret = SWAP_MLOCK;
1339 goto out_unmap;
1340 }
daa5ba76 1341 if (flags & TTU_MUNLOCK)
53f79acb 1342 goto out_unmap;
14fa31b8
AK
1343 }
1344 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1345 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1346 ret = SWAP_FAIL;
1347 goto out_unmap;
1348 }
1349 }
1da177e4 1350
1da177e4
LT
1351 /* Nuke the page table entry. */
1352 flush_cache_page(vma, address, page_to_pfn(page));
72b252ae
MG
1353 if (should_defer_flush(mm, flags)) {
1354 /*
1355 * We clear the PTE but do not flush so potentially a remote
1356 * CPU could still be writing to the page. If the entry was
1357 * previously clean then the architecture must guarantee that
1358 * a clear->dirty transition on a cached TLB entry is written
1359 * through and traps if the PTE is unmapped.
1360 */
1361 pteval = ptep_get_and_clear(mm, address, pte);
1362
d950c947 1363 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
72b252ae
MG
1364 } else {
1365 pteval = ptep_clear_flush(vma, address, pte);
1366 }
1da177e4
LT
1367
1368 /* Move the dirty bit to the physical page now the pte is gone. */
1369 if (pte_dirty(pteval))
1370 set_page_dirty(page);
1371
365e9c87
HD
1372 /* Update high watermark before we lower rss */
1373 update_hiwater_rss(mm);
1374
888b9f7c 1375 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5d317b2b
NH
1376 if (PageHuge(page)) {
1377 hugetlb_count_sub(1 << compound_order(page), mm);
1378 } else {
eca56ff9 1379 dec_mm_counter(mm, mm_counter(page));
5f24ae58 1380 }
888b9f7c 1381 set_pte_at(mm, address, pte,
5f24ae58 1382 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1383 } else if (pte_unused(pteval)) {
1384 /*
1385 * The guest indicated that the page content is of no
1386 * interest anymore. Simply discard the pte, vmscan
1387 * will take care of the rest.
1388 */
eca56ff9 1389 dec_mm_counter(mm, mm_counter(page));
470f119f
HD
1390 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1391 swp_entry_t entry;
1392 pte_t swp_pte;
1393 /*
1394 * Store the pfn of the page in a special migration
1395 * pte. do_swap_page() will wait until the migration
1396 * pte is removed and then restart fault handling.
1397 */
1398 entry = make_migration_entry(page, pte_write(pteval));
1399 swp_pte = swp_entry_to_pte(entry);
1400 if (pte_soft_dirty(pteval))
1401 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1402 set_pte_at(mm, address, pte, swp_pte);
888b9f7c 1403 } else if (PageAnon(page)) {
4c21e2f2 1404 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1405 pte_t swp_pte;
470f119f
HD
1406 /*
1407 * Store the swap location in the pte.
1408 * See handle_pte_fault() ...
1409 */
1410 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1411 if (swap_duplicate(entry) < 0) {
1412 set_pte_at(mm, address, pte, pteval);
1413 ret = SWAP_FAIL;
1414 goto out_unmap;
1415 }
1416 if (list_empty(&mm->mmlist)) {
1417 spin_lock(&mmlist_lock);
1418 if (list_empty(&mm->mmlist))
1419 list_add(&mm->mmlist, &init_mm.mmlist);
1420 spin_unlock(&mmlist_lock);
1da177e4 1421 }
470f119f
HD
1422 dec_mm_counter(mm, MM_ANONPAGES);
1423 inc_mm_counter(mm, MM_SWAPENTS);
179ef71c
CG
1424 swp_pte = swp_entry_to_pte(entry);
1425 if (pte_soft_dirty(pteval))
1426 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1427 set_pte_at(mm, address, pte, swp_pte);
04e62a29 1428 } else
eca56ff9 1429 dec_mm_counter(mm, mm_counter_file(page));
1da177e4 1430
d281ee61 1431 page_remove_rmap(page, PageHuge(page));
1da177e4
LT
1432 page_cache_release(page);
1433
1434out_unmap:
c0718806 1435 pte_unmap_unlock(pte, ptl);
b87537d9 1436 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
2ec74c3e 1437 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1438out:
1439 return ret;
1da177e4
LT
1440}
1441
71e3aac0 1442bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1443{
1444 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1445
1446 if (!maybe_stack)
1447 return false;
1448
1449 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1450 VM_STACK_INCOMPLETE_SETUP)
1451 return true;
1452
1453 return false;
1454}
1455
52629506
JK
1456static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1457{
1458 return is_vma_temporary_stack(vma);
1459}
1460
52629506
JK
1461static int page_not_mapped(struct page *page)
1462{
1463 return !page_mapped(page);
1464};
1465
1da177e4
LT
1466/**
1467 * try_to_unmap - try to remove all page table mappings to a page
1468 * @page: the page to get unmapped
14fa31b8 1469 * @flags: action and flags
1da177e4
LT
1470 *
1471 * Tries to remove all the page table entries which are mapping this
1472 * page, used in the pageout path. Caller must hold the page lock.
1473 * Return values are:
1474 *
1475 * SWAP_SUCCESS - we succeeded in removing all mappings
1476 * SWAP_AGAIN - we missed a mapping, try again later
1477 * SWAP_FAIL - the page is unswappable
b291f000 1478 * SWAP_MLOCK - page is mlocked.
1da177e4 1479 */
14fa31b8 1480int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1481{
1482 int ret;
52629506
JK
1483 struct rmap_walk_control rwc = {
1484 .rmap_one = try_to_unmap_one,
1485 .arg = (void *)flags,
1486 .done = page_not_mapped,
52629506
JK
1487 .anon_lock = page_lock_anon_vma_read,
1488 };
1da177e4 1489
309381fe 1490 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1491
52629506
JK
1492 /*
1493 * During exec, a temporary VMA is setup and later moved.
1494 * The VMA is moved under the anon_vma lock but not the
1495 * page tables leading to a race where migration cannot
1496 * find the migration ptes. Rather than increasing the
1497 * locking requirements of exec(), migration skips
1498 * temporary VMAs until after exec() completes.
1499 */
daa5ba76 1500 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1501 rwc.invalid_vma = invalid_migration_vma;
1502
1503 ret = rmap_walk(page, &rwc);
1504
b291f000 1505 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1506 ret = SWAP_SUCCESS;
1507 return ret;
1508}
81b4082d 1509
b291f000
NP
1510/**
1511 * try_to_munlock - try to munlock a page
1512 * @page: the page to be munlocked
1513 *
1514 * Called from munlock code. Checks all of the VMAs mapping the page
1515 * to make sure nobody else has this page mlocked. The page will be
1516 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1517 *
1518 * Return values are:
1519 *
53f79acb 1520 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1521 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1522 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1523 * SWAP_MLOCK - page is now mlocked.
1524 */
1525int try_to_munlock(struct page *page)
1526{
e8351ac9
JK
1527 int ret;
1528 struct rmap_walk_control rwc = {
1529 .rmap_one = try_to_unmap_one,
1530 .arg = (void *)TTU_MUNLOCK,
1531 .done = page_not_mapped,
e8351ac9
JK
1532 .anon_lock = page_lock_anon_vma_read,
1533
1534 };
1535
309381fe 1536 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1537
e8351ac9
JK
1538 ret = rmap_walk(page, &rwc);
1539 return ret;
b291f000 1540}
e9995ef9 1541
01d8b20d 1542void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1543{
01d8b20d 1544 struct anon_vma *root = anon_vma->root;
76545066 1545
624483f3 1546 anon_vma_free(anon_vma);
01d8b20d
PZ
1547 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1548 anon_vma_free(root);
76545066 1549}
76545066 1550
0dd1c7bb
JK
1551static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1552 struct rmap_walk_control *rwc)
faecd8dd
JK
1553{
1554 struct anon_vma *anon_vma;
1555
0dd1c7bb
JK
1556 if (rwc->anon_lock)
1557 return rwc->anon_lock(page);
1558
faecd8dd
JK
1559 /*
1560 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1561 * because that depends on page_mapped(); but not all its usages
1562 * are holding mmap_sem. Users without mmap_sem are required to
1563 * take a reference count to prevent the anon_vma disappearing
1564 */
1565 anon_vma = page_anon_vma(page);
1566 if (!anon_vma)
1567 return NULL;
1568
1569 anon_vma_lock_read(anon_vma);
1570 return anon_vma;
1571}
1572
e9995ef9 1573/*
e8351ac9
JK
1574 * rmap_walk_anon - do something to anonymous page using the object-based
1575 * rmap method
1576 * @page: the page to be handled
1577 * @rwc: control variable according to each walk type
1578 *
1579 * Find all the mappings of a page using the mapping pointer and the vma chains
1580 * contained in the anon_vma struct it points to.
1581 *
1582 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1583 * where the page was found will be held for write. So, we won't recheck
1584 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1585 * LOCKED.
e9995ef9 1586 */
051ac83a 1587static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1588{
1589 struct anon_vma *anon_vma;
b258d860 1590 pgoff_t pgoff;
5beb4930 1591 struct anon_vma_chain *avc;
e9995ef9
HD
1592 int ret = SWAP_AGAIN;
1593
0dd1c7bb 1594 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1595 if (!anon_vma)
1596 return ret;
faecd8dd 1597
b258d860 1598 pgoff = page_to_pgoff(page);
bf181b9f 1599 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1600 struct vm_area_struct *vma = avc->vma;
e9995ef9 1601 unsigned long address = vma_address(page, vma);
0dd1c7bb 1602
ad12695f
AA
1603 cond_resched();
1604
0dd1c7bb
JK
1605 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1606 continue;
1607
051ac83a 1608 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1609 if (ret != SWAP_AGAIN)
1610 break;
0dd1c7bb
JK
1611 if (rwc->done && rwc->done(page))
1612 break;
e9995ef9 1613 }
4fc3f1d6 1614 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1615 return ret;
1616}
1617
e8351ac9
JK
1618/*
1619 * rmap_walk_file - do something to file page using the object-based rmap method
1620 * @page: the page to be handled
1621 * @rwc: control variable according to each walk type
1622 *
1623 * Find all the mappings of a page using the mapping pointer and the vma chains
1624 * contained in the address_space struct it points to.
1625 *
1626 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1627 * where the page was found will be held for write. So, we won't recheck
1628 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1629 * LOCKED.
1630 */
051ac83a 1631static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1632{
1633 struct address_space *mapping = page->mapping;
b258d860 1634 pgoff_t pgoff;
e9995ef9 1635 struct vm_area_struct *vma;
e9995ef9
HD
1636 int ret = SWAP_AGAIN;
1637
9f32624b
JK
1638 /*
1639 * The page lock not only makes sure that page->mapping cannot
1640 * suddenly be NULLified by truncation, it makes sure that the
1641 * structure at mapping cannot be freed and reused yet,
c8c06efa 1642 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1643 */
81d1b09c 1644 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1645
e9995ef9
HD
1646 if (!mapping)
1647 return ret;
3dec0ba0 1648
b258d860 1649 pgoff = page_to_pgoff(page);
3dec0ba0 1650 i_mmap_lock_read(mapping);
6b2dbba8 1651 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1652 unsigned long address = vma_address(page, vma);
0dd1c7bb 1653
ad12695f
AA
1654 cond_resched();
1655
0dd1c7bb
JK
1656 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1657 continue;
1658
051ac83a 1659 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1660 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1661 goto done;
1662 if (rwc->done && rwc->done(page))
1663 goto done;
e9995ef9 1664 }
0dd1c7bb 1665
0dd1c7bb 1666done:
3dec0ba0 1667 i_mmap_unlock_read(mapping);
e9995ef9
HD
1668 return ret;
1669}
1670
051ac83a 1671int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1672{
e9995ef9 1673 if (unlikely(PageKsm(page)))
051ac83a 1674 return rmap_walk_ksm(page, rwc);
e9995ef9 1675 else if (PageAnon(page))
051ac83a 1676 return rmap_walk_anon(page, rwc);
e9995ef9 1677 else
051ac83a 1678 return rmap_walk_file(page, rwc);
e9995ef9 1679}
0fe6e20b 1680
e3390f67 1681#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1682/*
1683 * The following three functions are for anonymous (private mapped) hugepages.
1684 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1685 * and no lru code, because we handle hugepages differently from common pages.
1686 */
1687static void __hugepage_set_anon_rmap(struct page *page,
1688 struct vm_area_struct *vma, unsigned long address, int exclusive)
1689{
1690 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1691
0fe6e20b 1692 BUG_ON(!anon_vma);
433abed6
NH
1693
1694 if (PageAnon(page))
1695 return;
1696 if (!exclusive)
1697 anon_vma = anon_vma->root;
1698
0fe6e20b
NH
1699 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1700 page->mapping = (struct address_space *) anon_vma;
1701 page->index = linear_page_index(vma, address);
1702}
1703
1704void hugepage_add_anon_rmap(struct page *page,
1705 struct vm_area_struct *vma, unsigned long address)
1706{
1707 struct anon_vma *anon_vma = vma->anon_vma;
1708 int first;
a850ea30
NH
1709
1710 BUG_ON(!PageLocked(page));
0fe6e20b 1711 BUG_ON(!anon_vma);
5dbe0af4 1712 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1713 first = atomic_inc_and_test(&page->_mapcount);
1714 if (first)
1715 __hugepage_set_anon_rmap(page, vma, address, 0);
1716}
1717
1718void hugepage_add_new_anon_rmap(struct page *page,
1719 struct vm_area_struct *vma, unsigned long address)
1720{
1721 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1722 atomic_set(&page->_mapcount, 0);
1723 __hugepage_set_anon_rmap(page, vma, address, 1);
1724}
e3390f67 1725#endif /* CONFIG_HUGETLB_PAGE */