]> git.proxmox.com Git - mirror_zfs.git/blame - module/avl/avl.c
Prefix struct rangelock
[mirror_zfs.git] / module / avl / avl.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
23 * Use is subject to license terms.
24 */
25
8951cb8d 26/*
74ea6092
ER
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28 * Copyright (c) 2015 by Delphix. All rights reserved.
8951cb8d
AR
29 */
30
34dc7c2f
BB
31/*
32 * AVL - generic AVL tree implementation for kernel use
33 *
34 * A complete description of AVL trees can be found in many CS textbooks.
35 *
36 * Here is a very brief overview. An AVL tree is a binary search tree that is
37 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
38 * any given node, the left and right subtrees are allowed to differ in height
39 * by at most 1 level.
40 *
41 * This relaxation from a perfectly balanced binary tree allows doing
42 * insertion and deletion relatively efficiently. Searching the tree is
43 * still a fast operation, roughly O(log(N)).
44 *
411bf201 45 * The key to insertion and deletion is a set of tree manipulations called
34dc7c2f
BB
46 * rotations, which bring unbalanced subtrees back into the semi-balanced state.
47 *
48 * This implementation of AVL trees has the following peculiarities:
49 *
50 * - The AVL specific data structures are physically embedded as fields
51 * in the "using" data structures. To maintain generality the code
52 * must constantly translate between "avl_node_t *" and containing
411bf201 53 * data structure "void *"s by adding/subtracting the avl_offset.
34dc7c2f
BB
54 *
55 * - Since the AVL data is always embedded in other structures, there is
56 * no locking or memory allocation in the AVL routines. This must be
57 * provided for by the enclosing data structure's semantics. Typically,
58 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
59 * exclusive write lock. Other operations require a read lock.
60 *
61 * - The implementation uses iteration instead of explicit recursion,
62 * since it is intended to run on limited size kernel stacks. Since
63 * there is no recursion stack present to move "up" in the tree,
64 * there is an explicit "parent" link in the avl_node_t.
65 *
66 * - The left/right children pointers of a node are in an array.
67 * In the code, variables (instead of constants) are used to represent
68 * left and right indices. The implementation is written as if it only
69 * dealt with left handed manipulations. By changing the value assigned
70 * to "left", the code also works for right handed trees. The
71 * following variables/terms are frequently used:
72 *
73 * int left; // 0 when dealing with left children,
74 * // 1 for dealing with right children
75 *
76 * int left_heavy; // -1 when left subtree is taller at some node,
77 * // +1 when right subtree is taller
78 *
79 * int right; // will be the opposite of left (0 or 1)
80 * int right_heavy;// will be the opposite of left_heavy (-1 or 1)
81 *
82 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right)
83 *
84 * Though it is a little more confusing to read the code, the approach
85 * allows using half as much code (and hence cache footprint) for tree
86 * manipulations and eliminates many conditional branches.
87 *
88 * - The avl_index_t is an opaque "cookie" used to find nodes at or
89 * adjacent to where a new value would be inserted in the tree. The value
90 * is a modified "avl_node_t *". The bottom bit (normally 0 for a
91 * pointer) is set to indicate if that the new node has a value greater
92 * than the value of the indicated "avl_node_t *".
8951cb8d
AR
93 *
94 * Note - in addition to userland (e.g. libavl and libutil) and the kernel
95 * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module,
96 * which each have their own compilation environments and subsequent
97 * requirements. Each of these environments must be considered when adding
98 * dependencies from avl.c.
34dc7c2f
BB
99 */
100
101#include <sys/types.h>
102#include <sys/param.h>
103#include <sys/debug.h>
104#include <sys/avl.h>
105#include <sys/cmn_err.h>
106
107/*
411bf201 108 * Small arrays to translate between balance (or diff) values and child indices.
34dc7c2f
BB
109 *
110 * Code that deals with binary tree data structures will randomly use
111 * left and right children when examining a tree. C "if()" statements
112 * which evaluate randomly suffer from very poor hardware branch prediction.
113 * In this code we avoid some of the branch mispredictions by using the
114 * following translation arrays. They replace random branches with an
115 * additional memory reference. Since the translation arrays are both very
116 * small the data should remain efficiently in cache.
117 */
118static const int avl_child2balance[2] = {-1, 1};
119static const int avl_balance2child[] = {0, 0, 1};
120
121
122/*
123 * Walk from one node to the previous valued node (ie. an infix walk
124 * towards the left). At any given node we do one of 2 things:
125 *
126 * - If there is a left child, go to it, then to it's rightmost descendant.
127 *
411bf201
JJS
128 * - otherwise we return through parent nodes until we've come from a right
129 * child.
34dc7c2f
BB
130 *
131 * Return Value:
132 * NULL - if at the end of the nodes
133 * otherwise next node
134 */
135void *
136avl_walk(avl_tree_t *tree, void *oldnode, int left)
137{
138 size_t off = tree->avl_offset;
139 avl_node_t *node = AVL_DATA2NODE(oldnode, off);
140 int right = 1 - left;
141 int was_child;
142
143
144 /*
145 * nowhere to walk to if tree is empty
146 */
147 if (node == NULL)
148 return (NULL);
149
150 /*
151 * Visit the previous valued node. There are two possibilities:
152 *
153 * If this node has a left child, go down one left, then all
154 * the way right.
155 */
156 if (node->avl_child[left] != NULL) {
157 for (node = node->avl_child[left];
158 node->avl_child[right] != NULL;
159 node = node->avl_child[right])
160 ;
161 /*
9f5c1bc6 162 * Otherwise, return through left children as far as we can.
34dc7c2f
BB
163 */
164 } else {
165 for (;;) {
166 was_child = AVL_XCHILD(node);
167 node = AVL_XPARENT(node);
168 if (node == NULL)
169 return (NULL);
170 if (was_child == right)
171 break;
172 }
173 }
174
175 return (AVL_NODE2DATA(node, off));
176}
177
178/*
179 * Return the lowest valued node in a tree or NULL.
180 * (leftmost child from root of tree)
181 */
182void *
183avl_first(avl_tree_t *tree)
184{
185 avl_node_t *node;
186 avl_node_t *prev = NULL;
187 size_t off = tree->avl_offset;
188
189 for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
190 prev = node;
191
192 if (prev != NULL)
193 return (AVL_NODE2DATA(prev, off));
194 return (NULL);
195}
196
197/*
198 * Return the highest valued node in a tree or NULL.
199 * (rightmost child from root of tree)
200 */
201void *
202avl_last(avl_tree_t *tree)
203{
204 avl_node_t *node;
205 avl_node_t *prev = NULL;
206 size_t off = tree->avl_offset;
207
208 for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
209 prev = node;
210
211 if (prev != NULL)
212 return (AVL_NODE2DATA(prev, off));
213 return (NULL);
214}
215
216/*
217 * Access the node immediately before or after an insertion point.
218 *
219 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
220 *
221 * Return value:
222 * NULL: no node in the given direction
223 * "void *" of the found tree node
224 */
225void *
226avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
227{
228 int child = AVL_INDEX2CHILD(where);
229 avl_node_t *node = AVL_INDEX2NODE(where);
230 void *data;
231 size_t off = tree->avl_offset;
232
233 if (node == NULL) {
234 ASSERT(tree->avl_root == NULL);
235 return (NULL);
236 }
237 data = AVL_NODE2DATA(node, off);
238 if (child != direction)
239 return (data);
240
241 return (avl_walk(tree, data, direction));
242}
243
244
245/*
246 * Search for the node which contains "value". The algorithm is a
247 * simple binary tree search.
248 *
249 * return value:
250 * NULL: the value is not in the AVL tree
251 * *where (if not NULL) is set to indicate the insertion point
252 * "void *" of the found tree node
253 */
254void *
428870ff 255avl_find(avl_tree_t *tree, const void *value, avl_index_t *where)
34dc7c2f
BB
256{
257 avl_node_t *node;
258 avl_node_t *prev = NULL;
259 int child = 0;
260 int diff;
261 size_t off = tree->avl_offset;
262
263 for (node = tree->avl_root; node != NULL;
264 node = node->avl_child[child]) {
265
266 prev = node;
267
268 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
269 ASSERT(-1 <= diff && diff <= 1);
270 if (diff == 0) {
271#ifdef DEBUG
272 if (where != NULL)
273 *where = 0;
274#endif
275 return (AVL_NODE2DATA(node, off));
276 }
277 child = avl_balance2child[1 + diff];
278
279 }
280
281 if (where != NULL)
282 *where = AVL_MKINDEX(prev, child);
283
284 return (NULL);
285}
286
287
288/*
289 * Perform a rotation to restore balance at the subtree given by depth.
290 *
291 * This routine is used by both insertion and deletion. The return value
292 * indicates:
293 * 0 : subtree did not change height
294 * !0 : subtree was reduced in height
295 *
296 * The code is written as if handling left rotations, right rotations are
297 * symmetric and handled by swapping values of variables right/left[_heavy]
298 *
299 * On input balance is the "new" balance at "node". This value is either
300 * -2 or +2.
301 */
302static int
303avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
304{
305 int left = !(balance < 0); /* when balance = -2, left will be 0 */
306 int right = 1 - left;
307 int left_heavy = balance >> 1;
308 int right_heavy = -left_heavy;
309 avl_node_t *parent = AVL_XPARENT(node);
310 avl_node_t *child = node->avl_child[left];
311 avl_node_t *cright;
312 avl_node_t *gchild;
313 avl_node_t *gright;
314 avl_node_t *gleft;
315 int which_child = AVL_XCHILD(node);
316 int child_bal = AVL_XBALANCE(child);
317
318 /* BEGIN CSTYLED */
319 /*
320 * case 1 : node is overly left heavy, the left child is balanced or
321 * also left heavy. This requires the following rotation.
322 *
323 * (node bal:-2)
324 * / \
325 * / \
326 * (child bal:0 or -1)
327 * / \
328 * / \
329 * cright
330 *
331 * becomes:
332 *
333 * (child bal:1 or 0)
334 * / \
335 * / \
336 * (node bal:-1 or 0)
337 * / \
338 * / \
339 * cright
340 *
341 * we detect this situation by noting that child's balance is not
342 * right_heavy.
343 */
344 /* END CSTYLED */
345 if (child_bal != right_heavy) {
346
347 /*
348 * compute new balance of nodes
349 *
350 * If child used to be left heavy (now balanced) we reduced
351 * the height of this sub-tree -- used in "return...;" below
352 */
353 child_bal += right_heavy; /* adjust towards right */
354
355 /*
356 * move "cright" to be node's left child
357 */
358 cright = child->avl_child[right];
359 node->avl_child[left] = cright;
360 if (cright != NULL) {
361 AVL_SETPARENT(cright, node);
362 AVL_SETCHILD(cright, left);
363 }
364
365 /*
366 * move node to be child's right child
367 */
368 child->avl_child[right] = node;
369 AVL_SETBALANCE(node, -child_bal);
370 AVL_SETCHILD(node, right);
371 AVL_SETPARENT(node, child);
372
373 /*
374 * update the pointer into this subtree
375 */
376 AVL_SETBALANCE(child, child_bal);
377 AVL_SETCHILD(child, which_child);
378 AVL_SETPARENT(child, parent);
379 if (parent != NULL)
380 parent->avl_child[which_child] = child;
381 else
382 tree->avl_root = child;
383
384 return (child_bal == 0);
385 }
386
387 /* BEGIN CSTYLED */
388 /*
389 * case 2 : When node is left heavy, but child is right heavy we use
390 * a different rotation.
391 *
392 * (node b:-2)
393 * / \
394 * / \
395 * / \
396 * (child b:+1)
397 * / \
398 * / \
399 * (gchild b: != 0)
400 * / \
401 * / \
402 * gleft gright
403 *
404 * becomes:
405 *
406 * (gchild b:0)
407 * / \
408 * / \
409 * / \
410 * (child b:?) (node b:?)
411 * / \ / \
412 * / \ / \
413 * gleft gright
414 *
415 * computing the new balances is more complicated. As an example:
416 * if gchild was right_heavy, then child is now left heavy
417 * else it is balanced
418 */
419 /* END CSTYLED */
420 gchild = child->avl_child[right];
421 gleft = gchild->avl_child[left];
422 gright = gchild->avl_child[right];
423
424 /*
425 * move gright to left child of node and
426 *
427 * move gleft to right child of node
428 */
429 node->avl_child[left] = gright;
430 if (gright != NULL) {
431 AVL_SETPARENT(gright, node);
432 AVL_SETCHILD(gright, left);
433 }
434
435 child->avl_child[right] = gleft;
436 if (gleft != NULL) {
437 AVL_SETPARENT(gleft, child);
438 AVL_SETCHILD(gleft, right);
439 }
440
441 /*
442 * move child to left child of gchild and
443 *
444 * move node to right child of gchild and
445 *
446 * fixup parent of all this to point to gchild
447 */
448 balance = AVL_XBALANCE(gchild);
449 gchild->avl_child[left] = child;
450 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
451 AVL_SETPARENT(child, gchild);
452 AVL_SETCHILD(child, left);
453
454 gchild->avl_child[right] = node;
455 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
456 AVL_SETPARENT(node, gchild);
457 AVL_SETCHILD(node, right);
458
459 AVL_SETBALANCE(gchild, 0);
460 AVL_SETPARENT(gchild, parent);
461 AVL_SETCHILD(gchild, which_child);
462 if (parent != NULL)
463 parent->avl_child[which_child] = gchild;
464 else
465 tree->avl_root = gchild;
466
467 return (1); /* the new tree is always shorter */
468}
469
470
471/*
472 * Insert a new node into an AVL tree at the specified (from avl_find()) place.
473 *
474 * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
475 * searches out to the leaf positions. The avl_index_t indicates the node
476 * which will be the parent of the new node.
477 *
478 * After the node is inserted, a single rotation further up the tree may
479 * be necessary to maintain an acceptable AVL balance.
480 */
481void
482avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
483{
484 avl_node_t *node;
485 avl_node_t *parent = AVL_INDEX2NODE(where);
486 int old_balance;
487 int new_balance;
488 int which_child = AVL_INDEX2CHILD(where);
489 size_t off = tree->avl_offset;
490
491 ASSERT(tree);
492#ifdef _LP64
493 ASSERT(((uintptr_t)new_data & 0x7) == 0);
494#endif
495
496 node = AVL_DATA2NODE(new_data, off);
497
498 /*
499 * First, add the node to the tree at the indicated position.
500 */
501 ++tree->avl_numnodes;
502
503 node->avl_child[0] = NULL;
504 node->avl_child[1] = NULL;
505
506 AVL_SETCHILD(node, which_child);
507 AVL_SETBALANCE(node, 0);
508 AVL_SETPARENT(node, parent);
509 if (parent != NULL) {
510 ASSERT(parent->avl_child[which_child] == NULL);
511 parent->avl_child[which_child] = node;
512 } else {
513 ASSERT(tree->avl_root == NULL);
514 tree->avl_root = node;
515 }
516 /*
517 * Now, back up the tree modifying the balance of all nodes above the
518 * insertion point. If we get to a highly unbalanced ancestor, we
519 * need to do a rotation. If we back out of the tree we are done.
520 * If we brought any subtree into perfect balance (0), we are also done.
521 */
522 for (;;) {
523 node = parent;
524 if (node == NULL)
525 return;
526
527 /*
528 * Compute the new balance
529 */
530 old_balance = AVL_XBALANCE(node);
531 new_balance = old_balance + avl_child2balance[which_child];
532
533 /*
534 * If we introduced equal balance, then we are done immediately
535 */
536 if (new_balance == 0) {
537 AVL_SETBALANCE(node, 0);
538 return;
539 }
540
541 /*
542 * If both old and new are not zero we went
543 * from -1 to -2 balance, do a rotation.
544 */
545 if (old_balance != 0)
546 break;
547
548 AVL_SETBALANCE(node, new_balance);
549 parent = AVL_XPARENT(node);
550 which_child = AVL_XCHILD(node);
551 }
552
553 /*
554 * perform a rotation to fix the tree and return
555 */
556 (void) avl_rotation(tree, node, new_balance);
557}
558
559/*
560 * Insert "new_data" in "tree" in the given "direction" either after or
561 * before (AVL_AFTER, AVL_BEFORE) the data "here".
562 *
563 * Insertions can only be done at empty leaf points in the tree, therefore
564 * if the given child of the node is already present we move to either
565 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
566 * every other node in the tree is a leaf, this always works.
567 *
568 * To help developers using this interface, we assert that the new node
569 * is correctly ordered at every step of the way in DEBUG kernels.
570 */
571void
572avl_insert_here(
573 avl_tree_t *tree,
574 void *new_data,
575 void *here,
576 int direction)
577{
578 avl_node_t *node;
579 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
580#ifdef DEBUG
581 int diff;
582#endif
583
584 ASSERT(tree != NULL);
585 ASSERT(new_data != NULL);
586 ASSERT(here != NULL);
587 ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
588
589 /*
590 * If corresponding child of node is not NULL, go to the neighboring
591 * node and reverse the insertion direction.
592 */
593 node = AVL_DATA2NODE(here, tree->avl_offset);
594
595#ifdef DEBUG
596 diff = tree->avl_compar(new_data, here);
597 ASSERT(-1 <= diff && diff <= 1);
598 ASSERT(diff != 0);
599 ASSERT(diff > 0 ? child == 1 : child == 0);
600#endif
601
602 if (node->avl_child[child] != NULL) {
603 node = node->avl_child[child];
604 child = 1 - child;
605 while (node->avl_child[child] != NULL) {
606#ifdef DEBUG
607 diff = tree->avl_compar(new_data,
608 AVL_NODE2DATA(node, tree->avl_offset));
609 ASSERT(-1 <= diff && diff <= 1);
610 ASSERT(diff != 0);
611 ASSERT(diff > 0 ? child == 1 : child == 0);
612#endif
613 node = node->avl_child[child];
614 }
615#ifdef DEBUG
616 diff = tree->avl_compar(new_data,
617 AVL_NODE2DATA(node, tree->avl_offset));
618 ASSERT(-1 <= diff && diff <= 1);
619 ASSERT(diff != 0);
620 ASSERT(diff > 0 ? child == 1 : child == 0);
621#endif
622 }
623 ASSERT(node->avl_child[child] == NULL);
624
625 avl_insert(tree, new_data, AVL_MKINDEX(node, child));
626}
627
628/*
c11f1004
BB
629 * Add a new node to an AVL tree. Strictly enforce that no duplicates can
630 * be added to the tree with a VERIFY which is enabled for non-DEBUG builds.
34dc7c2f
BB
631 */
632void
633avl_add(avl_tree_t *tree, void *new_node)
634{
273ff9b5 635 avl_index_t where = 0;
34dc7c2f 636
c11f1004
BB
637 VERIFY(avl_find(tree, new_node, &where) == NULL);
638
34dc7c2f
BB
639 avl_insert(tree, new_node, where);
640}
641
642/*
643 * Delete a node from the AVL tree. Deletion is similar to insertion, but
644 * with 2 complications.
645 *
646 * First, we may be deleting an interior node. Consider the following subtree:
647 *
648 * d c c
649 * / \ / \ / \
650 * b e b e b e
651 * / \ / \ /
652 * a c a a
653 *
654 * When we are deleting node (d), we find and bring up an adjacent valued leaf
655 * node, say (c), to take the interior node's place. In the code this is
656 * handled by temporarily swapping (d) and (c) in the tree and then using
657 * common code to delete (d) from the leaf position.
658 *
659 * Secondly, an interior deletion from a deep tree may require more than one
660 * rotation to fix the balance. This is handled by moving up the tree through
661 * parents and applying rotations as needed. The return value from
662 * avl_rotation() is used to detect when a subtree did not change overall
663 * height due to a rotation.
664 */
665void
666avl_remove(avl_tree_t *tree, void *data)
667{
668 avl_node_t *delete;
669 avl_node_t *parent;
670 avl_node_t *node;
671 avl_node_t tmp;
672 int old_balance;
673 int new_balance;
674 int left;
675 int right;
676 int which_child;
677 size_t off = tree->avl_offset;
678
679 ASSERT(tree);
680
681 delete = AVL_DATA2NODE(data, off);
682
683 /*
684 * Deletion is easiest with a node that has at most 1 child.
685 * We swap a node with 2 children with a sequentially valued
686 * neighbor node. That node will have at most 1 child. Note this
687 * has no effect on the ordering of the remaining nodes.
688 *
689 * As an optimization, we choose the greater neighbor if the tree
690 * is right heavy, otherwise the left neighbor. This reduces the
691 * number of rotations needed.
692 */
693 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
694
695 /*
696 * choose node to swap from whichever side is taller
697 */
698 old_balance = AVL_XBALANCE(delete);
699 left = avl_balance2child[old_balance + 1];
700 right = 1 - left;
701
702 /*
703 * get to the previous value'd node
704 * (down 1 left, as far as possible right)
705 */
706 for (node = delete->avl_child[left];
707 node->avl_child[right] != NULL;
708 node = node->avl_child[right])
709 ;
710
711 /*
712 * create a temp placeholder for 'node'
713 * move 'node' to delete's spot in the tree
714 */
715 tmp = *node;
716
717 *node = *delete;
718 if (node->avl_child[left] == node)
719 node->avl_child[left] = &tmp;
720
721 parent = AVL_XPARENT(node);
722 if (parent != NULL)
723 parent->avl_child[AVL_XCHILD(node)] = node;
724 else
725 tree->avl_root = node;
726 AVL_SETPARENT(node->avl_child[left], node);
727 AVL_SETPARENT(node->avl_child[right], node);
728
729 /*
730 * Put tmp where node used to be (just temporary).
731 * It always has a parent and at most 1 child.
732 */
733 delete = &tmp;
734 parent = AVL_XPARENT(delete);
735 parent->avl_child[AVL_XCHILD(delete)] = delete;
736 which_child = (delete->avl_child[1] != 0);
737 if (delete->avl_child[which_child] != NULL)
738 AVL_SETPARENT(delete->avl_child[which_child], delete);
739 }
740
741
742 /*
743 * Here we know "delete" is at least partially a leaf node. It can
744 * be easily removed from the tree.
745 */
746 ASSERT(tree->avl_numnodes > 0);
747 --tree->avl_numnodes;
748 parent = AVL_XPARENT(delete);
749 which_child = AVL_XCHILD(delete);
750 if (delete->avl_child[0] != NULL)
751 node = delete->avl_child[0];
752 else
753 node = delete->avl_child[1];
754
755 /*
756 * Connect parent directly to node (leaving out delete).
757 */
758 if (node != NULL) {
759 AVL_SETPARENT(node, parent);
760 AVL_SETCHILD(node, which_child);
761 }
762 if (parent == NULL) {
763 tree->avl_root = node;
764 return;
765 }
766 parent->avl_child[which_child] = node;
767
768
769 /*
770 * Since the subtree is now shorter, begin adjusting parent balances
771 * and performing any needed rotations.
772 */
773 do {
774
775 /*
776 * Move up the tree and adjust the balance
777 *
778 * Capture the parent and which_child values for the next
779 * iteration before any rotations occur.
780 */
781 node = parent;
782 old_balance = AVL_XBALANCE(node);
783 new_balance = old_balance - avl_child2balance[which_child];
784 parent = AVL_XPARENT(node);
785 which_child = AVL_XCHILD(node);
786
787 /*
788 * If a node was in perfect balance but isn't anymore then
789 * we can stop, since the height didn't change above this point
790 * due to a deletion.
791 */
792 if (old_balance == 0) {
793 AVL_SETBALANCE(node, new_balance);
794 break;
795 }
796
797 /*
798 * If the new balance is zero, we don't need to rotate
799 * else
800 * need a rotation to fix the balance.
801 * If the rotation doesn't change the height
802 * of the sub-tree we have finished adjusting.
803 */
804 if (new_balance == 0)
805 AVL_SETBALANCE(node, new_balance);
806 else if (!avl_rotation(tree, node, new_balance))
807 break;
808 } while (parent != NULL);
809}
810
8951cb8d
AR
811void
812avl_swap(avl_tree_t *tree1, avl_tree_t *tree2)
813{
814 avl_node_t *temp_node;
815 ulong_t temp_numnodes;
816
817 ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar);
818 ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset);
819 ASSERT3U(tree1->avl_size, ==, tree2->avl_size);
820
821 temp_node = tree1->avl_root;
822 temp_numnodes = tree1->avl_numnodes;
823 tree1->avl_root = tree2->avl_root;
824 tree1->avl_numnodes = tree2->avl_numnodes;
825 tree2->avl_root = temp_node;
826 tree2->avl_numnodes = temp_numnodes;
827}
828
34dc7c2f
BB
829/*
830 * initialize a new AVL tree
831 */
832void
833avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
834 size_t size, size_t offset)
835{
836 ASSERT(tree);
837 ASSERT(compar);
838 ASSERT(size > 0);
839 ASSERT(size >= offset + sizeof (avl_node_t));
840#ifdef _LP64
841 ASSERT((offset & 0x7) == 0);
842#endif
843
844 tree->avl_compar = compar;
845 tree->avl_root = NULL;
846 tree->avl_numnodes = 0;
847 tree->avl_size = size;
848 tree->avl_offset = offset;
849}
850
851/*
852 * Delete a tree.
853 */
854/* ARGSUSED */
855void
856avl_destroy(avl_tree_t *tree)
857{
858 ASSERT(tree);
859 ASSERT(tree->avl_numnodes == 0);
860 ASSERT(tree->avl_root == NULL);
861}
862
863
864/*
865 * Return the number of nodes in an AVL tree.
866 */
867ulong_t
868avl_numnodes(avl_tree_t *tree)
869{
870 ASSERT(tree);
871 return (tree->avl_numnodes);
872}
873
b128c09f
BB
874boolean_t
875avl_is_empty(avl_tree_t *tree)
876{
877 ASSERT(tree);
878 return (tree->avl_numnodes == 0);
879}
34dc7c2f
BB
880
881#define CHILDBIT (1L)
882
883/*
884 * Post-order tree walk used to visit all tree nodes and destroy the tree
74ea6092
ER
885 * in post order. This is used for removing all the nodes from a tree without
886 * paying any cost for rebalancing it.
34dc7c2f
BB
887 *
888 * example:
889 *
890 * void *cookie = NULL;
891 * my_data_t *node;
892 *
893 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
894 * free(node);
895 * avl_destroy(tree);
896 *
897 * The cookie is really an avl_node_t to the current node's parent and
898 * an indication of which child you looked at last.
899 *
900 * On input, a cookie value of CHILDBIT indicates the tree is done.
901 */
902void *
903avl_destroy_nodes(avl_tree_t *tree, void **cookie)
904{
905 avl_node_t *node;
906 avl_node_t *parent;
907 int child;
908 void *first;
909 size_t off = tree->avl_offset;
910
911 /*
912 * Initial calls go to the first node or it's right descendant.
913 */
914 if (*cookie == NULL) {
915 first = avl_first(tree);
916
917 /*
918 * deal with an empty tree
919 */
920 if (first == NULL) {
921 *cookie = (void *)CHILDBIT;
922 return (NULL);
923 }
924
925 node = AVL_DATA2NODE(first, off);
926 parent = AVL_XPARENT(node);
927 goto check_right_side;
928 }
929
930 /*
931 * If there is no parent to return to we are done.
932 */
933 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
934 if (parent == NULL) {
935 if (tree->avl_root != NULL) {
936 ASSERT(tree->avl_numnodes == 1);
937 tree->avl_root = NULL;
938 tree->avl_numnodes = 0;
939 }
940 return (NULL);
941 }
942
943 /*
944 * Remove the child pointer we just visited from the parent and tree.
945 */
946 child = (uintptr_t)(*cookie) & CHILDBIT;
947 parent->avl_child[child] = NULL;
948 ASSERT(tree->avl_numnodes > 1);
949 --tree->avl_numnodes;
950
951 /*
952 * If we just did a right child or there isn't one, go up to parent.
953 */
954 if (child == 1 || parent->avl_child[1] == NULL) {
955 node = parent;
956 parent = AVL_XPARENT(parent);
957 goto done;
958 }
959
960 /*
961 * Do parent's right child, then leftmost descendent.
962 */
963 node = parent->avl_child[1];
964 while (node->avl_child[0] != NULL) {
965 parent = node;
966 node = node->avl_child[0];
967 }
968
969 /*
970 * If here, we moved to a left child. It may have one
971 * child on the right (when balance == +1).
972 */
973check_right_side:
974 if (node->avl_child[1] != NULL) {
975 ASSERT(AVL_XBALANCE(node) == 1);
976 parent = node;
977 node = node->avl_child[1];
978 ASSERT(node->avl_child[0] == NULL &&
979 node->avl_child[1] == NULL);
980 } else {
981 ASSERT(AVL_XBALANCE(node) <= 0);
982 }
983
984done:
985 if (parent == NULL) {
986 *cookie = (void *)CHILDBIT;
987 ASSERT(node == tree->avl_root);
988 } else {
989 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
990 }
991
992 return (AVL_NODE2DATA(node, off));
993}
c28b2279 994
93ce2b4c
BB
995#if defined(_KERNEL)
996#include <linux/module.h>
997
b4f3666a
BB
998static int __init
999avl_init(void)
1000{
1001 return (0);
1002}
c28b2279 1003
b4f3666a
BB
1004static void __exit
1005avl_fini(void)
1006{
1007}
c28b2279 1008
b4f3666a
BB
1009module_init(avl_init);
1010module_exit(avl_fini);
c28b2279
BB
1011
1012MODULE_DESCRIPTION("Generic AVL tree implementation");
1013MODULE_AUTHOR(ZFS_META_AUTHOR);
1014MODULE_LICENSE(ZFS_META_LICENSE);
99e349db 1015MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
c28b2279
BB
1016
1017EXPORT_SYMBOL(avl_create);
1018EXPORT_SYMBOL(avl_find);
1019EXPORT_SYMBOL(avl_insert);
1020EXPORT_SYMBOL(avl_insert_here);
1021EXPORT_SYMBOL(avl_walk);
1022EXPORT_SYMBOL(avl_first);
1023EXPORT_SYMBOL(avl_last);
1024EXPORT_SYMBOL(avl_nearest);
1025EXPORT_SYMBOL(avl_add);
8951cb8d
AR
1026EXPORT_SYMBOL(avl_swap);
1027EXPORT_SYMBOL(avl_is_empty);
c28b2279
BB
1028EXPORT_SYMBOL(avl_remove);
1029EXPORT_SYMBOL(avl_numnodes);
1030EXPORT_SYMBOL(avl_destroy_nodes);
1031EXPORT_SYMBOL(avl_destroy);
1032#endif