]> git.proxmox.com Git - mirror_zfs.git/blame - module/os/linux/zfs/zvol_os.c
zvol_os: fix build on Linux <3.13
[mirror_zfs.git] / module / os / linux / zfs / zvol_os.c
CommitLineData
5df7e9d8
MM
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
5df7e9d8
MM
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
0929c4de
MA
21/*
22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
23 */
5df7e9d8
MM
24
25#include <sys/dataset_kstats.h>
26#include <sys/dbuf.h>
27#include <sys/dmu_traverse.h>
28#include <sys/dsl_dataset.h>
29#include <sys/dsl_prop.h>
30#include <sys/dsl_dir.h>
31#include <sys/zap.h>
32#include <sys/zfeature.h>
33#include <sys/zil_impl.h>
34#include <sys/dmu_tx.h>
35#include <sys/zio.h>
36#include <sys/zfs_rlock.h>
37#include <sys/spa_impl.h>
38#include <sys/zvol.h>
39#include <sys/zvol_impl.h>
99741bde 40#include <cityhash.h>
5df7e9d8
MM
41
42#include <linux/blkdev_compat.h>
43#include <linux/task_io_accounting_ops.h>
44
6f73d021
TH
45#ifdef HAVE_BLK_MQ
46#include <linux/blk-mq.h>
47#endif
48
49static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
50 struct request *rq, boolean_t force_sync);
51
18168da7
AZ
52static unsigned int zvol_major = ZVOL_MAJOR;
53static unsigned int zvol_request_sync = 0;
54static unsigned int zvol_prefetch_bytes = (128 * 1024);
55static unsigned long zvol_max_discard_blocks = 16384;
abdcef47 56
99741bde
AH
57/*
58 * Switch taskq at multiple of 512 MB offset. This can be set to a lower value
59 * to utilize more threads for small files but may affect prefetch hits.
60 */
61#define ZVOL_TASKQ_OFFSET_SHIFT 29
62
abdcef47 63#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
945e39fc 64static unsigned int zvol_open_timeout_ms = 1000;
abdcef47 65#endif
5df7e9d8 66
6f73d021
TH
67static unsigned int zvol_threads = 0;
68#ifdef HAVE_BLK_MQ
69static unsigned int zvol_blk_mq_threads = 0;
70static unsigned int zvol_blk_mq_actual_threads;
71static boolean_t zvol_use_blk_mq = B_FALSE;
72
73/*
74 * The maximum number of volblocksize blocks to process per thread. Typically,
75 * write heavy workloads preform better with higher values here, and read
76 * heavy workloads preform better with lower values, but that's not a hard
77 * and fast rule. It's basically a knob to tune between "less overhead with
78 * less parallelism" and "more overhead, but more parallelism".
79 *
80 * '8' was chosen as a reasonable, balanced, default based off of sequential
81 * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
82 */
83static unsigned int zvol_blk_mq_blocks_per_thread = 8;
84#endif
85
c13400c9
RN
86static unsigned int zvol_num_taskqs = 0;
87
6f73d021
TH
88#ifndef BLKDEV_DEFAULT_RQ
89/* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
90#define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
91#endif
92
93/*
94 * Finalize our BIO or request.
95 */
96#ifdef HAVE_BLK_MQ
97#define END_IO(zv, bio, rq, error) do { \
98 if (bio) { \
99 BIO_END_IO(bio, error); \
100 } else { \
101 blk_mq_end_request(rq, errno_to_bi_status(error)); \
102 } \
103} while (0)
104#else
105#define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error)
106#endif
107
108#ifdef HAVE_BLK_MQ
109static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
110static unsigned int zvol_actual_blk_mq_queue_depth;
111#endif
112
5df7e9d8
MM
113struct zvol_state_os {
114 struct gendisk *zvo_disk; /* generic disk */
115 struct request_queue *zvo_queue; /* request queue */
5df7e9d8 116 dev_t zvo_dev; /* device id */
6f73d021
TH
117
118#ifdef HAVE_BLK_MQ
119 struct blk_mq_tag_set tag_set;
120#endif
121
122 /* Set from the global 'zvol_use_blk_mq' at zvol load */
123 boolean_t use_blk_mq;
5df7e9d8
MM
124};
125
99741bde
AH
126typedef struct zv_taskq {
127 uint_t tqs_cnt;
128 taskq_t **tqs_taskq;
129} zv_taskq_t;
130static zv_taskq_t zvol_taskqs;
5df7e9d8
MM
131static struct ida zvol_ida;
132
e439ee83 133typedef struct zv_request_stack {
5df7e9d8
MM
134 zvol_state_t *zv;
135 struct bio *bio;
6f73d021 136 struct request *rq;
5df7e9d8
MM
137} zv_request_t;
138
6f73d021
TH
139typedef struct zv_work {
140 struct request *rq;
141 struct work_struct work;
142} zv_work_t;
143
e439ee83
CS
144typedef struct zv_request_task {
145 zv_request_t zvr;
146 taskq_ent_t ent;
147} zv_request_task_t;
148
149static zv_request_task_t *
150zv_request_task_create(zv_request_t zvr)
151{
152 zv_request_task_t *task;
153 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
154 taskq_init_ent(&task->ent);
155 task->zvr = zvr;
156 return (task);
157}
158
159static void
160zv_request_task_free(zv_request_task_t *task)
161{
162 kmem_free(task, sizeof (*task));
163}
164
6f73d021
TH
165#ifdef HAVE_BLK_MQ
166
167/*
168 * This is called when a new block multiqueue request comes in. A request
169 * contains one or more BIOs.
170 */
171static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
172 const struct blk_mq_queue_data *bd)
173{
174 struct request *rq = bd->rq;
175 zvol_state_t *zv = rq->q->queuedata;
176
177 /* Tell the kernel that we are starting to process this request */
178 blk_mq_start_request(rq);
179
180 if (blk_rq_is_passthrough(rq)) {
181 /* Skip non filesystem request */
182 blk_mq_end_request(rq, BLK_STS_IOERR);
183 return (BLK_STS_IOERR);
184 }
185
186 zvol_request_impl(zv, NULL, rq, 0);
187
188 /* Acknowledge to the kernel that we got this request */
189 return (BLK_STS_OK);
190}
191
192static struct blk_mq_ops zvol_blk_mq_queue_ops = {
193 .queue_rq = zvol_mq_queue_rq,
194};
195
196/* Initialize our blk-mq struct */
197static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
198{
199 struct zvol_state_os *zso = zv->zv_zso;
200
201 memset(&zso->tag_set, 0, sizeof (zso->tag_set));
202
203 /* Initialize tag set. */
204 zso->tag_set.ops = &zvol_blk_mq_queue_ops;
205 zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
206 zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
207 zso->tag_set.numa_node = NUMA_NO_NODE;
208 zso->tag_set.cmd_size = 0;
209
210 /*
211 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
212 * zvol_request_impl()
213 */
214 zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
215 zso->tag_set.driver_data = zv;
216
217 return (blk_mq_alloc_tag_set(&zso->tag_set));
218}
219#endif /* HAVE_BLK_MQ */
220
5df7e9d8
MM
221/*
222 * Given a path, return TRUE if path is a ZVOL.
223 */
1dccfd7a
CS
224boolean_t
225zvol_os_is_zvol(const char *path)
5df7e9d8 226{
b7281c88 227 dev_t dev = 0;
5df7e9d8 228
b7281c88 229 if (vdev_lookup_bdev(path, &dev) != 0)
5df7e9d8
MM
230 return (B_FALSE);
231
b7281c88 232 if (MAJOR(dev) == zvol_major)
5df7e9d8
MM
233 return (B_TRUE);
234
235 return (B_FALSE);
236}
237
5df7e9d8 238static void
e439ee83 239zvol_write(zv_request_t *zvr)
5df7e9d8 240{
5df7e9d8 241 struct bio *bio = zvr->bio;
6f73d021 242 struct request *rq = zvr->rq;
1c2358c1 243 int error = 0;
d0cd9a5c 244 zfs_uio_t uio;
5df7e9d8 245 zvol_state_t *zv = zvr->zv;
6f73d021
TH
246 struct request_queue *q;
247 struct gendisk *disk;
248 unsigned long start_time = 0;
249 boolean_t acct = B_FALSE;
250
0b32d817
RM
251 ASSERT3P(zv, !=, NULL);
252 ASSERT3U(zv->zv_open_count, >, 0);
253 ASSERT3P(zv->zv_zilog, !=, NULL);
5df7e9d8 254
6f73d021
TH
255 q = zv->zv_zso->zvo_queue;
256 disk = zv->zv_zso->zvo_disk;
257
0929c4de 258 /* bio marked as FLUSH need to flush before write */
6f73d021 259 if (io_is_flush(bio, rq))
0929c4de
MA
260 zil_commit(zv->zv_zilog, ZVOL_OBJ);
261
262 /* Some requests are just for flush and nothing else. */
6f73d021 263 if (io_size(bio, rq) == 0) {
0929c4de 264 rw_exit(&zv->zv_suspend_lock);
6f73d021 265 END_IO(zv, bio, rq, 0);
0929c4de
MA
266 return;
267 }
268
6f73d021
TH
269 zfs_uio_bvec_init(&uio, bio, rq);
270
5df7e9d8 271 ssize_t start_resid = uio.uio_resid;
a970f059 272
6f73d021
TH
273 /*
274 * With use_blk_mq, accounting is done by blk_mq_start_request()
275 * and blk_mq_end_request(), so we can skip it here.
276 */
277 if (bio) {
278 acct = blk_queue_io_stat(q);
279 if (acct) {
280 start_time = blk_generic_start_io_acct(q, disk, WRITE,
281 bio);
282 }
283 }
5df7e9d8
MM
284
285 boolean_t sync =
6f73d021 286 io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
5df7e9d8 287
0929c4de
MA
288 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
289 uio.uio_loffset, uio.uio_resid, RL_WRITER);
290
5df7e9d8
MM
291 uint64_t volsize = zv->zv_volsize;
292 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
293 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
294 uint64_t off = uio.uio_loffset;
295 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
296
297 if (bytes > volsize - off) /* don't write past the end */
298 bytes = volsize - off;
299
20f28785 300 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
5df7e9d8
MM
301
302 /* This will only fail for ENOSPC */
303 error = dmu_tx_assign(tx, TXG_WAIT);
304 if (error) {
305 dmu_tx_abort(tx);
306 break;
307 }
308 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
309 if (error == 0) {
310 zvol_log_write(zv, tx, off, bytes, sync);
311 }
312 dmu_tx_commit(tx);
313
314 if (error)
315 break;
316 }
0929c4de 317 zfs_rangelock_exit(lr);
5df7e9d8
MM
318
319 int64_t nwritten = start_resid - uio.uio_resid;
4547fc4e 320 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
5df7e9d8
MM
321 task_io_account_write(nwritten);
322
323 if (sync)
324 zil_commit(zv->zv_zilog, ZVOL_OBJ);
325
326 rw_exit(&zv->zv_suspend_lock);
a970f059 327
6f73d021 328 if (bio && acct) {
a970f059 329 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
6f73d021 330 }
a970f059 331
6f73d021 332 END_IO(zv, bio, rq, -error);
5df7e9d8
MM
333}
334
335static void
e439ee83
CS
336zvol_write_task(void *arg)
337{
338 zv_request_task_t *task = arg;
339 zvol_write(&task->zvr);
340 zv_request_task_free(task);
341}
342
343static void
344zvol_discard(zv_request_t *zvr)
5df7e9d8 345{
5df7e9d8 346 struct bio *bio = zvr->bio;
6f73d021 347 struct request *rq = zvr->rq;
5df7e9d8 348 zvol_state_t *zv = zvr->zv;
6f73d021
TH
349 uint64_t start = io_offset(bio, rq);
350 uint64_t size = io_size(bio, rq);
5df7e9d8
MM
351 uint64_t end = start + size;
352 boolean_t sync;
353 int error = 0;
354 dmu_tx_t *tx;
6f73d021
TH
355 struct request_queue *q = zv->zv_zso->zvo_queue;
356 struct gendisk *disk = zv->zv_zso->zvo_disk;
357 unsigned long start_time = 0;
5dd0f019 358 boolean_t acct = B_FALSE;
5df7e9d8 359
0b32d817
RM
360 ASSERT3P(zv, !=, NULL);
361 ASSERT3U(zv->zv_open_count, >, 0);
362 ASSERT3P(zv->zv_zilog, !=, NULL);
5df7e9d8 363
6f73d021
TH
364 if (bio) {
365 acct = blk_queue_io_stat(q);
366 if (acct) {
367 start_time = blk_generic_start_io_acct(q, disk, WRITE,
368 bio);
369 }
370 }
5df7e9d8 371
6f73d021 372 sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
5df7e9d8
MM
373
374 if (end > zv->zv_volsize) {
375 error = SET_ERROR(EIO);
376 goto unlock;
377 }
378
379 /*
380 * Align the request to volume block boundaries when a secure erase is
381 * not required. This will prevent dnode_free_range() from zeroing out
382 * the unaligned parts which is slow (read-modify-write) and useless
383 * since we are not freeing any space by doing so.
384 */
6f73d021 385 if (!io_is_secure_erase(bio, rq)) {
5df7e9d8
MM
386 start = P2ROUNDUP(start, zv->zv_volblocksize);
387 end = P2ALIGN(end, zv->zv_volblocksize);
388 size = end - start;
389 }
390
391 if (start >= end)
392 goto unlock;
393
0929c4de
MA
394 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
395 start, size, RL_WRITER);
396
5df7e9d8
MM
397 tx = dmu_tx_create(zv->zv_objset);
398 dmu_tx_mark_netfree(tx);
399 error = dmu_tx_assign(tx, TXG_WAIT);
400 if (error != 0) {
401 dmu_tx_abort(tx);
402 } else {
c3773de1 403 zvol_log_truncate(zv, tx, start, size);
5df7e9d8
MM
404 dmu_tx_commit(tx);
405 error = dmu_free_long_range(zv->zv_objset,
406 ZVOL_OBJ, start, size);
407 }
0929c4de 408 zfs_rangelock_exit(lr);
5df7e9d8
MM
409
410 if (error == 0 && sync)
411 zil_commit(zv->zv_zilog, ZVOL_OBJ);
412
0929c4de 413unlock:
5df7e9d8 414 rw_exit(&zv->zv_suspend_lock);
a970f059 415
6f73d021
TH
416 if (bio && acct) {
417 blk_generic_end_io_acct(q, disk, WRITE, bio,
418 start_time);
419 }
a970f059 420
6f73d021 421 END_IO(zv, bio, rq, -error);
5df7e9d8
MM
422}
423
424static void
e439ee83
CS
425zvol_discard_task(void *arg)
426{
427 zv_request_task_t *task = arg;
428 zvol_discard(&task->zvr);
429 zv_request_task_free(task);
430}
431
432static void
433zvol_read(zv_request_t *zvr)
5df7e9d8 434{
5df7e9d8 435 struct bio *bio = zvr->bio;
6f73d021 436 struct request *rq = zvr->rq;
1c2358c1 437 int error = 0;
d0cd9a5c 438 zfs_uio_t uio;
6f73d021 439 boolean_t acct = B_FALSE;
5df7e9d8 440 zvol_state_t *zv = zvr->zv;
6f73d021
TH
441 struct request_queue *q;
442 struct gendisk *disk;
443 unsigned long start_time = 0;
444
0b32d817
RM
445 ASSERT3P(zv, !=, NULL);
446 ASSERT3U(zv->zv_open_count, >, 0);
5df7e9d8 447
6f73d021
TH
448 zfs_uio_bvec_init(&uio, bio, rq);
449
450 q = zv->zv_zso->zvo_queue;
451 disk = zv->zv_zso->zvo_disk;
452
5df7e9d8 453 ssize_t start_resid = uio.uio_resid;
a970f059 454
6f73d021
TH
455 /*
456 * When blk-mq is being used, accounting is done by
457 * blk_mq_start_request() and blk_mq_end_request().
458 */
459 if (bio) {
460 acct = blk_queue_io_stat(q);
461 if (acct)
462 start_time = blk_generic_start_io_acct(q, disk, READ,
463 bio);
464 }
5df7e9d8 465
0929c4de
MA
466 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
467 uio.uio_loffset, uio.uio_resid, RL_READER);
468
5df7e9d8 469 uint64_t volsize = zv->zv_volsize;
6f73d021 470
5df7e9d8
MM
471 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
472 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
473
474 /* don't read past the end */
475 if (bytes > volsize - uio.uio_loffset)
476 bytes = volsize - uio.uio_loffset;
477
478 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
479 if (error) {
480 /* convert checksum errors into IO errors */
481 if (error == ECKSUM)
482 error = SET_ERROR(EIO);
483 break;
484 }
485 }
0929c4de 486 zfs_rangelock_exit(lr);
5df7e9d8
MM
487
488 int64_t nread = start_resid - uio.uio_resid;
4547fc4e 489 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
5df7e9d8
MM
490 task_io_account_read(nread);
491
492 rw_exit(&zv->zv_suspend_lock);
a970f059 493
6f73d021 494 if (bio && acct) {
a970f059 495 blk_generic_end_io_acct(q, disk, READ, bio, start_time);
6f73d021 496 }
a970f059 497
6f73d021 498 END_IO(zv, bio, rq, -error);
e439ee83
CS
499}
500
501static void
502zvol_read_task(void *arg)
503{
504 zv_request_task_t *task = arg;
505 zvol_read(&task->zvr);
506 zv_request_task_free(task);
5df7e9d8
MM
507}
508
6f73d021
TH
509
510/*
511 * Process a BIO or request
512 *
513 * Either 'bio' or 'rq' should be set depending on if we are processing a
514 * bio or a request (both should not be set).
515 *
516 * force_sync: Set to 0 to defer processing to a background taskq
517 * Set to 1 to process data synchronously
518 */
435a451e 519static void
6f73d021
TH
520zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
521 boolean_t force_sync)
5df7e9d8 522{
5df7e9d8 523 fstrans_cookie_t cookie = spl_fstrans_mark();
6f73d021
TH
524 uint64_t offset = io_offset(bio, rq);
525 uint64_t size = io_size(bio, rq);
526 int rw = io_data_dir(bio, rq);
5df7e9d8 527
60387fac 528 if (zvol_request_sync || zv->zv_threading == B_FALSE)
6f73d021
TH
529 force_sync = 1;
530
531 zv_request_t zvr = {
532 .zv = zv,
533 .bio = bio,
534 .rq = rq,
535 };
536
537 if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
538 printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
5df7e9d8
MM
539 zv->zv_zso->zvo_disk->disk_name,
540 (long long unsigned)offset,
541 (long unsigned)size);
542
6f73d021 543 END_IO(zv, bio, rq, -SET_ERROR(EIO));
5df7e9d8
MM
544 goto out;
545 }
546
e439ee83 547 zv_request_task_t *task;
99741bde
AH
548 zv_taskq_t *ztqs = &zvol_taskqs;
549 uint_t blk_mq_hw_queue = 0;
550 uint_t tq_idx;
551 uint_t taskq_hash;
552#ifdef HAVE_BLK_MQ
553 if (rq)
554 blk_mq_hw_queue = rq->mq_hctx->queue_num;
555#endif
556 taskq_hash = cityhash4((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT,
557 blk_mq_hw_queue, 0);
558 tq_idx = taskq_hash % ztqs->tqs_cnt;
e439ee83 559
5df7e9d8 560 if (rw == WRITE) {
5df7e9d8 561 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
6f73d021 562 END_IO(zv, bio, rq, -SET_ERROR(EROFS));
5df7e9d8
MM
563 goto out;
564 }
565
566 /*
0929c4de
MA
567 * Prevents the zvol from being suspended, or the ZIL being
568 * concurrently opened. Will be released after the i/o
569 * completes.
5df7e9d8
MM
570 */
571 rw_enter(&zv->zv_suspend_lock, RW_READER);
572
573 /*
574 * Open a ZIL if this is the first time we have written to this
575 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
576 * than zv_state_lock so that we don't need to acquire an
577 * additional lock in this path.
578 */
579 if (zv->zv_zilog == NULL) {
580 rw_exit(&zv->zv_suspend_lock);
581 rw_enter(&zv->zv_suspend_lock, RW_WRITER);
582 if (zv->zv_zilog == NULL) {
583 zv->zv_zilog = zil_open(zv->zv_objset,
fb087146 584 zvol_get_data, &zv->zv_kstat.dk_zil_sums);
5df7e9d8 585 zv->zv_flags |= ZVOL_WRITTEN_TO;
93e36580
CS
586 /* replay / destroy done in zvol_create_minor */
587 VERIFY0((zv->zv_zilog->zl_header->zh_flags &
588 ZIL_REPLAY_NEEDED));
5df7e9d8
MM
589 }
590 rw_downgrade(&zv->zv_suspend_lock);
591 }
592
5df7e9d8 593 /*
0929c4de
MA
594 * We don't want this thread to be blocked waiting for i/o to
595 * complete, so we instead wait from a taskq callback. The
596 * i/o may be a ZIL write (via zil_commit()), or a read of an
597 * indirect block, or a read of a data block (if this is a
598 * partial-block write). We will indicate that the i/o is
6f73d021 599 * complete by calling END_IO() from the taskq callback.
0929c4de
MA
600 *
601 * This design allows the calling thread to continue and
602 * initiate more concurrent operations by calling
603 * zvol_request() again. There are typically only a small
604 * number of threads available to call zvol_request() (e.g.
605 * one per iSCSI target), so keeping the latency of
606 * zvol_request() low is important for performance.
607 *
608 * The zvol_request_sync module parameter allows this
609 * behavior to be altered, for performance evaluation
610 * purposes. If the callback blocks, setting
611 * zvol_request_sync=1 will result in much worse performance.
612 *
613 * We can have up to zvol_threads concurrent i/o's being
614 * processed for all zvols on the system. This is typically
615 * a vast improvement over the zvol_request_sync=1 behavior
616 * of one i/o at a time per zvol. However, an even better
617 * design would be for zvol_request() to initiate the zio
618 * directly, and then be notified by the zio_done callback,
6f73d021 619 * which would call END_IO(). Unfortunately, the DMU/ZIL
0929c4de
MA
620 * interfaces lack this functionality (they block waiting for
621 * the i/o to complete).
5df7e9d8 622 */
6f73d021
TH
623 if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
624 if (force_sync) {
e439ee83 625 zvol_discard(&zvr);
0929c4de 626 } else {
e439ee83 627 task = zv_request_task_create(zvr);
99741bde 628 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
e439ee83 629 zvol_discard_task, task, 0, &task->ent);
0929c4de 630 }
5df7e9d8 631 } else {
6f73d021 632 if (force_sync) {
e439ee83 633 zvol_write(&zvr);
0929c4de 634 } else {
e439ee83 635 task = zv_request_task_create(zvr);
99741bde 636 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
e439ee83 637 zvol_write_task, task, 0, &task->ent);
0929c4de 638 }
5df7e9d8
MM
639 }
640 } else {
641 /*
642 * The SCST driver, and possibly others, may issue READ I/Os
643 * with a length of zero bytes. These empty I/Os contain no
644 * data and require no additional handling.
645 */
646 if (size == 0) {
6f73d021 647 END_IO(zv, bio, rq, 0);
5df7e9d8
MM
648 goto out;
649 }
650
5df7e9d8
MM
651 rw_enter(&zv->zv_suspend_lock, RW_READER);
652
0929c4de 653 /* See comment in WRITE case above. */
6f73d021 654 if (force_sync) {
e439ee83 655 zvol_read(&zvr);
0929c4de 656 } else {
e439ee83 657 task = zv_request_task_create(zvr);
99741bde 658 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
e439ee83 659 zvol_read_task, task, 0, &task->ent);
0929c4de 660 }
5df7e9d8
MM
661 }
662
663out:
664 spl_fstrans_unmark(cookie);
6f73d021
TH
665}
666
667#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
668#ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
669static void
670zvol_submit_bio(struct bio *bio)
671#else
672static blk_qc_t
673zvol_submit_bio(struct bio *bio)
674#endif
675#else
676static MAKE_REQUEST_FN_RET
677zvol_request(struct request_queue *q, struct bio *bio)
678#endif
679{
680#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
681#if defined(HAVE_BIO_BDEV_DISK)
682 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
683#else
684 struct request_queue *q = bio->bi_disk->queue;
685#endif
686#endif
687 zvol_state_t *zv = q->queuedata;
688
689 zvol_request_impl(zv, bio, NULL, 0);
690#if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
691 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
435a451e 692 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
5df7e9d8
MM
693 return (BLK_QC_T_NONE);
694#endif
695}
696
697static int
43e8f6e3
CK
698#ifdef HAVE_BLK_MODE_T
699zvol_open(struct gendisk *disk, blk_mode_t flag)
700#else
5df7e9d8 701zvol_open(struct block_device *bdev, fmode_t flag)
43e8f6e3 702#endif
5df7e9d8
MM
703{
704 zvol_state_t *zv;
705 int error = 0;
8a02d01e 706 boolean_t drop_suspend = B_FALSE;
77e2756d
BB
707#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
708 hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
709 hrtime_t start = gethrtime();
5df7e9d8 710
77e2756d
BB
711retry:
712#endif
5df7e9d8
MM
713 rw_enter(&zvol_state_lock, RW_READER);
714 /*
715 * Obtain a copy of private_data under the zvol_state_lock to make
716 * sure that either the result of zvol free code path setting
43e8f6e3 717 * disk->private_data to NULL is observed, or zvol_os_free()
5df7e9d8
MM
718 * is not called on this zv because of the positive zv_open_count.
719 */
43e8f6e3
CK
720#ifdef HAVE_BLK_MODE_T
721 zv = disk->private_data;
722#else
5df7e9d8 723 zv = bdev->bd_disk->private_data;
43e8f6e3 724#endif
5df7e9d8
MM
725 if (zv == NULL) {
726 rw_exit(&zvol_state_lock);
727 return (SET_ERROR(-ENXIO));
728 }
729
8a02d01e
BB
730 mutex_enter(&zv->zv_state_lock);
731 /*
732 * Make sure zvol is not suspended during first open
733 * (hold zv_suspend_lock) and respect proper lock acquisition
734 * ordering - zv_suspend_lock before zv_state_lock
735 */
736 if (zv->zv_open_count == 0) {
737 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
738 mutex_exit(&zv->zv_state_lock);
739 rw_enter(&zv->zv_suspend_lock, RW_READER);
740 mutex_enter(&zv->zv_state_lock);
741 /* check to see if zv_suspend_lock is needed */
742 if (zv->zv_open_count != 0) {
743 rw_exit(&zv->zv_suspend_lock);
744 } else {
745 drop_suspend = B_TRUE;
746 }
747 } else {
748 drop_suspend = B_TRUE;
749 }
750 }
751 rw_exit(&zvol_state_lock);
752
753 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
754
755 if (zv->zv_open_count == 0) {
756 boolean_t drop_namespace = B_FALSE;
757
758 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
759
77e2756d
BB
760 /*
761 * In all other call paths the spa_namespace_lock is taken
762 * before the bdev->bd_mutex lock. However, on open(2)
763 * the __blkdev_get() function calls fops->open() with the
764 * bdev->bd_mutex lock held. This can result in a deadlock
765 * when zvols from one pool are used as vdevs in another.
766 *
767 * To prevent a lock inversion deadlock we preemptively
768 * take the spa_namespace_lock. Normally the lock will not
769 * be contended and this is safe because spa_open_common()
770 * handles the case where the caller already holds the
771 * spa_namespace_lock.
772 *
773 * When the lock cannot be aquired after multiple retries
774 * this must be the vdev on zvol deadlock case and we have
775 * no choice but to return an error. For 5.12 and older
776 * kernels returning -ERESTARTSYS will result in the
777 * bdev->bd_mutex being dropped, then reacquired, and
778 * fops->open() being called again. This process can be
779 * repeated safely until both locks are acquired. For 5.13
780 * and newer the -ERESTARTSYS retry logic was removed from
781 * the kernel so the only option is to return the error for
782 * the caller to handle it.
783 */
8a02d01e
BB
784 if (!mutex_owned(&spa_namespace_lock)) {
785 if (!mutex_tryenter(&spa_namespace_lock)) {
786 mutex_exit(&zv->zv_state_lock);
787 rw_exit(&zv->zv_suspend_lock);
77e2756d
BB
788
789#ifdef HAVE_BLKDEV_GET_ERESTARTSYS
8a02d01e 790 schedule();
77e2756d 791 return (SET_ERROR(-ERESTARTSYS));
8a02d01e
BB
792#else
793 if ((gethrtime() - start) > timeout)
794 return (SET_ERROR(-ERESTARTSYS));
77e2756d 795
8a02d01e
BB
796 schedule_timeout(MSEC_TO_TICK(10));
797 goto retry;
77e2756d 798#endif
8a02d01e
BB
799 } else {
800 drop_namespace = B_TRUE;
5df7e9d8
MM
801 }
802 }
5df7e9d8 803
43e8f6e3 804 error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
5df7e9d8 805
8a02d01e
BB
806 if (drop_namespace)
807 mutex_exit(&spa_namespace_lock);
5df7e9d8
MM
808 }
809
8a02d01e 810 if (error == 0) {
43e8f6e3
CK
811 if ((blk_mode_is_open_write(flag)) &&
812 (zv->zv_flags & ZVOL_RDONLY)) {
8a02d01e
BB
813 if (zv->zv_open_count == 0)
814 zvol_last_close(zv);
5df7e9d8 815
8a02d01e
BB
816 error = SET_ERROR(-EROFS);
817 } else {
818 zv->zv_open_count++;
819 }
820 }
5df7e9d8 821
5df7e9d8
MM
822 mutex_exit(&zv->zv_state_lock);
823 if (drop_suspend)
824 rw_exit(&zv->zv_suspend_lock);
77e2756d 825
8a02d01e 826 if (error == 0)
43e8f6e3
CK
827#ifdef HAVE_BLK_MODE_T
828 disk_check_media_change(disk);
829#else
8a02d01e 830 zfs_check_media_change(bdev);
43e8f6e3 831#endif
8a02d01e
BB
832
833 return (error);
5df7e9d8
MM
834}
835
5df7e9d8 836static void
43e8f6e3
CK
837#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
838zvol_release(struct gendisk *disk)
839#else
840zvol_release(struct gendisk *disk, fmode_t unused)
841#endif
5df7e9d8 842{
43e8f6e3
CK
843#if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
844 (void) unused;
845#endif
5df7e9d8
MM
846 zvol_state_t *zv;
847 boolean_t drop_suspend = B_TRUE;
848
849 rw_enter(&zvol_state_lock, RW_READER);
850 zv = disk->private_data;
851
852 mutex_enter(&zv->zv_state_lock);
0b32d817 853 ASSERT3U(zv->zv_open_count, >, 0);
5df7e9d8
MM
854 /*
855 * make sure zvol is not suspended during last close
856 * (hold zv_suspend_lock) and respect proper lock acquisition
857 * ordering - zv_suspend_lock before zv_state_lock
858 */
859 if (zv->zv_open_count == 1) {
860 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
861 mutex_exit(&zv->zv_state_lock);
862 rw_enter(&zv->zv_suspend_lock, RW_READER);
863 mutex_enter(&zv->zv_state_lock);
864 /* check to see if zv_suspend_lock is needed */
865 if (zv->zv_open_count != 1) {
866 rw_exit(&zv->zv_suspend_lock);
867 drop_suspend = B_FALSE;
868 }
869 }
870 } else {
871 drop_suspend = B_FALSE;
872 }
873 rw_exit(&zvol_state_lock);
874
875 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
5df7e9d8
MM
876
877 zv->zv_open_count--;
0b32d817
RM
878 if (zv->zv_open_count == 0) {
879 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
5df7e9d8 880 zvol_last_close(zv);
0b32d817 881 }
5df7e9d8
MM
882
883 mutex_exit(&zv->zv_state_lock);
884
885 if (drop_suspend)
886 rw_exit(&zv->zv_suspend_lock);
5df7e9d8
MM
887}
888
889static int
890zvol_ioctl(struct block_device *bdev, fmode_t mode,
891 unsigned int cmd, unsigned long arg)
892{
893 zvol_state_t *zv = bdev->bd_disk->private_data;
894 int error = 0;
895
896 ASSERT3U(zv->zv_open_count, >, 0);
897
898 switch (cmd) {
899 case BLKFLSBUF:
7ac56b86 900#ifdef HAVE_FSYNC_BDEV
5df7e9d8 901 fsync_bdev(bdev);
7ac56b86
CK
902#elif defined(HAVE_SYNC_BLOCKDEV)
903 sync_blockdev(bdev);
904#else
905#error "Neither fsync_bdev() nor sync_blockdev() found"
906#endif
5df7e9d8
MM
907 invalidate_bdev(bdev);
908 rw_enter(&zv->zv_suspend_lock, RW_READER);
909
910 if (!(zv->zv_flags & ZVOL_RDONLY))
911 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
912
913 rw_exit(&zv->zv_suspend_lock);
914 break;
915
916 case BLKZNAME:
917 mutex_enter(&zv->zv_state_lock);
918 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
919 mutex_exit(&zv->zv_state_lock);
920 break;
921
922 default:
923 error = -ENOTTY;
924 break;
925 }
926
927 return (SET_ERROR(error));
928}
929
930#ifdef CONFIG_COMPAT
931static int
932zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
933 unsigned cmd, unsigned long arg)
934{
935 return (zvol_ioctl(bdev, mode, cmd, arg));
936}
937#else
938#define zvol_compat_ioctl NULL
939#endif
940
5df7e9d8
MM
941static unsigned int
942zvol_check_events(struct gendisk *disk, unsigned int clearing)
943{
944 unsigned int mask = 0;
945
946 rw_enter(&zvol_state_lock, RW_READER);
947
948 zvol_state_t *zv = disk->private_data;
949 if (zv != NULL) {
950 mutex_enter(&zv->zv_state_lock);
951 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
952 zv->zv_changed = 0;
953 mutex_exit(&zv->zv_state_lock);
954 }
955
956 rw_exit(&zvol_state_lock);
957
958 return (mask);
959}
5df7e9d8
MM
960
961static int
962zvol_revalidate_disk(struct gendisk *disk)
963{
964 rw_enter(&zvol_state_lock, RW_READER);
965
966 zvol_state_t *zv = disk->private_data;
967 if (zv != NULL) {
968 mutex_enter(&zv->zv_state_lock);
969 set_capacity(zv->zv_zso->zvo_disk,
970 zv->zv_volsize >> SECTOR_BITS);
971 mutex_exit(&zv->zv_state_lock);
972 }
973
974 rw_exit(&zvol_state_lock);
975
976 return (0);
977}
978
1dccfd7a
CS
979int
980zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
5df7e9d8 981{
1c0bbd52 982 struct gendisk *disk = zv->zv_zso->zvo_disk;
5df7e9d8 983
19697e45 984#if defined(HAVE_REVALIDATE_DISK_SIZE)
1c0bbd52 985 revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
19697e45 986#elif defined(HAVE_REVALIDATE_DISK)
1c0bbd52 987 revalidate_disk(disk);
19697e45
BB
988#else
989 zvol_revalidate_disk(disk);
59b68723 990#endif
5df7e9d8
MM
991 return (0);
992}
993
1dccfd7a
CS
994void
995zvol_os_clear_private(zvol_state_t *zv)
5df7e9d8
MM
996{
997 /*
998 * Cleared while holding zvol_state_lock as a writer
999 * which will prevent zvol_open() from opening it.
1000 */
1001 zv->zv_zso->zvo_disk->private_data = NULL;
1002}
1003
1004/*
1005 * Provide a simple virtual geometry for legacy compatibility. For devices
1006 * smaller than 1 MiB a small head and sector count is used to allow very
1007 * tiny devices. For devices over 1 Mib a standard head and sector count
1008 * is used to keep the cylinders count reasonable.
1009 */
1010static int
1011zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1012{
1013 zvol_state_t *zv = bdev->bd_disk->private_data;
1014 sector_t sectors;
1015
1016 ASSERT3U(zv->zv_open_count, >, 0);
1017
1018 sectors = get_capacity(zv->zv_zso->zvo_disk);
1019
1020 if (sectors > 2048) {
1021 geo->heads = 16;
1022 geo->sectors = 63;
1023 } else {
1024 geo->heads = 2;
1025 geo->sectors = 4;
1026 }
1027
1028 geo->start = 0;
1029 geo->cylinders = sectors / (geo->heads * geo->sectors);
1030
1031 return (0);
1032}
1033
6f73d021
TH
1034/*
1035 * Why have two separate block_device_operations structs?
1036 *
1037 * Normally we'd just have one, and assign 'submit_bio' as needed. However,
1038 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
1039 * can't just change submit_bio dynamically at runtime. So just create two
1040 * separate structs to get around this.
1041 */
1042static const struct block_device_operations zvol_ops_blk_mq = {
1043 .open = zvol_open,
1044 .release = zvol_release,
1045 .ioctl = zvol_ioctl,
1046 .compat_ioctl = zvol_compat_ioctl,
1047 .check_events = zvol_check_events,
1048#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1049 .revalidate_disk = zvol_revalidate_disk,
1050#endif
1051 .getgeo = zvol_getgeo,
1052 .owner = THIS_MODULE,
1053};
1054
18168da7 1055static const struct block_device_operations zvol_ops = {
5df7e9d8
MM
1056 .open = zvol_open,
1057 .release = zvol_release,
1058 .ioctl = zvol_ioctl,
1059 .compat_ioctl = zvol_compat_ioctl,
5df7e9d8 1060 .check_events = zvol_check_events,
48c7b0e4 1061#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
5df7e9d8 1062 .revalidate_disk = zvol_revalidate_disk,
48c7b0e4 1063#endif
5df7e9d8
MM
1064 .getgeo = zvol_getgeo,
1065 .owner = THIS_MODULE,
d817c171 1066#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1b06b03a 1067 .submit_bio = zvol_submit_bio,
d817c171 1068#endif
5df7e9d8
MM
1069};
1070
6f73d021
TH
1071static int
1072zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
1073{
1074#if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1075#if defined(HAVE_BLK_ALLOC_DISK)
1076 zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
1077 if (zso->zvo_disk == NULL)
1078 return (1);
1079
6097a7ba
RN
1080 zso->zvo_disk->minors = ZVOL_MINORS;
1081 zso->zvo_queue = zso->zvo_disk->queue;
1082#elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1083 struct gendisk *disk = blk_alloc_disk(NULL, NUMA_NO_NODE);
1084 if (IS_ERR(disk)) {
1085 zso->zvo_disk = NULL;
1086 return (1);
1087 }
1088
1089 zso->zvo_disk = disk;
6f73d021
TH
1090 zso->zvo_disk->minors = ZVOL_MINORS;
1091 zso->zvo_queue = zso->zvo_disk->queue;
1092#else
1093 zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
1094 if (zso->zvo_queue == NULL)
1095 return (1);
1096
1097 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1098 if (zso->zvo_disk == NULL) {
1099 blk_cleanup_queue(zso->zvo_queue);
1100 return (1);
1101 }
1102
1103 zso->zvo_disk->queue = zso->zvo_queue;
1104#endif /* HAVE_BLK_ALLOC_DISK */
1105#else
1106 zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
1107 if (zso->zvo_queue == NULL)
1108 return (1);
1109
1110 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1111 if (zso->zvo_disk == NULL) {
1112 blk_cleanup_queue(zso->zvo_queue);
1113 return (1);
1114 }
1115
1116 zso->zvo_disk->queue = zso->zvo_queue;
1117#endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1118 return (0);
1119
1120}
1121
1122static int
1123zvol_alloc_blk_mq(zvol_state_t *zv)
1124{
1125#ifdef HAVE_BLK_MQ
1126 struct zvol_state_os *zso = zv->zv_zso;
1127
1128 /* Allocate our blk-mq tag_set */
1129 if (zvol_blk_mq_alloc_tag_set(zv) != 0)
1130 return (1);
1131
1132#if defined(HAVE_BLK_ALLOC_DISK)
1133 zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
1134 if (zso->zvo_disk == NULL) {
1135 blk_mq_free_tag_set(&zso->tag_set);
1136 return (1);
1137 }
1138 zso->zvo_queue = zso->zvo_disk->queue;
1139 zso->zvo_disk->minors = ZVOL_MINORS;
6097a7ba
RN
1140#elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1141 struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, NULL, zv);
1142 if (IS_ERR(disk)) {
1143 zso->zvo_disk = NULL;
1144 blk_mq_free_tag_set(&zso->tag_set);
1145 return (1);
1146 }
1147
1148 zso->zvo_disk = disk;
1149 zso->zvo_queue = zso->zvo_disk->queue;
1150 zso->zvo_disk->minors = ZVOL_MINORS;
6f73d021
TH
1151#else
1152 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1153 if (zso->zvo_disk == NULL) {
1154 blk_cleanup_queue(zso->zvo_queue);
1155 blk_mq_free_tag_set(&zso->tag_set);
1156 return (1);
1157 }
1158 /* Allocate queue */
1159 zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
1160 if (IS_ERR(zso->zvo_queue)) {
1161 blk_mq_free_tag_set(&zso->tag_set);
1162 return (1);
1163 }
1164
1165 /* Our queue is now created, assign it to our disk */
1166 zso->zvo_disk->queue = zso->zvo_queue;
1167
1168#endif
1169#endif
1170 return (0);
1171}
1172
5df7e9d8
MM
1173/*
1174 * Allocate memory for a new zvol_state_t and setup the required
1175 * request queue and generic disk structures for the block device.
1176 */
1177static zvol_state_t *
1178zvol_alloc(dev_t dev, const char *name)
1179{
1180 zvol_state_t *zv;
68dde63d 1181 struct zvol_state_os *zso;
5df7e9d8 1182 uint64_t volmode;
6f73d021 1183 int ret;
5df7e9d8
MM
1184
1185 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1186 return (NULL);
1187
1188 if (volmode == ZFS_VOLMODE_DEFAULT)
1189 volmode = zvol_volmode;
1190
1191 if (volmode == ZFS_VOLMODE_NONE)
1192 return (NULL);
1193
1194 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
68dde63d
BB
1195 zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
1196 zv->zv_zso = zso;
0ca45cb3 1197 zv->zv_volmode = volmode;
5df7e9d8
MM
1198
1199 list_link_init(&zv->zv_next);
5df7e9d8
MM
1200 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1201
6f73d021
TH
1202#ifdef HAVE_BLK_MQ
1203 zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
1204#endif
1b06b03a 1205
6f73d021
TH
1206 /*
1207 * The block layer has 3 interfaces for getting BIOs:
1208 *
1209 * 1. blk-mq request queues (new)
1210 * 2. submit_bio() (oldest)
1211 * 3. regular request queues (old).
1212 *
1213 * Each of those interfaces has two permutations:
1214 *
1215 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1216 * both the disk and its queue (5.14 kernel or newer)
1217 *
1218 * b) We don't have blk_*alloc_disk(), and have to allocate the
1219 * disk and the queue separately. (5.13 kernel or older)
1220 */
1221 if (zv->zv_zso->use_blk_mq) {
1222 ret = zvol_alloc_blk_mq(zv);
1223 zso->zvo_disk->fops = &zvol_ops_blk_mq;
1224 } else {
1225 ret = zvol_alloc_non_blk_mq(zso);
1226 zso->zvo_disk->fops = &zvol_ops;
1b06b03a 1227 }
6f73d021 1228 if (ret != 0)
5df7e9d8
MM
1229 goto out_kmem;
1230
68dde63d 1231 blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
5df7e9d8
MM
1232
1233 /* Limit read-ahead to a single page to prevent over-prefetching. */
68dde63d 1234 blk_queue_set_read_ahead(zso->zvo_queue, 1);
5df7e9d8 1235
6f73d021
TH
1236 if (!zv->zv_zso->use_blk_mq) {
1237 /* Disable write merging in favor of the ZIO pipeline. */
1238 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
1239 }
5df7e9d8 1240
ae1e40b3
BB
1241 /* Enable /proc/diskstats */
1242 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
1243
68dde63d
BB
1244 zso->zvo_queue->queuedata = zv;
1245 zso->zvo_dev = dev;
5df7e9d8 1246 zv->zv_open_count = 0;
cf331663 1247 strlcpy(zv->zv_name, name, sizeof (zv->zv_name));
5df7e9d8 1248
2cc479d0 1249 zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
5df7e9d8
MM
1250 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1251
68dde63d
BB
1252 zso->zvo_disk->major = zvol_major;
1253 zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
5df7e9d8 1254
026f126b
BB
1255 /*
1256 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1257 * This is accomplished by limiting the number of minors for the
1258 * device to one and explicitly disabling partition scanning.
1259 */
5df7e9d8 1260 if (volmode == ZFS_VOLMODE_DEV) {
68dde63d 1261 zso->zvo_disk->minors = 1;
026f126b
BB
1262 zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
1263 zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
5df7e9d8 1264 }
026f126b 1265
68dde63d 1266 zso->zvo_disk->first_minor = (dev & MINORMASK);
68dde63d 1267 zso->zvo_disk->private_data = zv;
68dde63d 1268 snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
5df7e9d8
MM
1269 ZVOL_DEV_NAME, (dev & MINORMASK));
1270
1271 return (zv);
1272
5df7e9d8 1273out_kmem:
68dde63d 1274 kmem_free(zso, sizeof (struct zvol_state_os));
5df7e9d8
MM
1275 kmem_free(zv, sizeof (zvol_state_t));
1276 return (NULL);
1277}
1278
1279/*
1280 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1281 * At this time, the structure is not opened by anyone, is taken off
1282 * the zvol_state_list, and has its private data set to NULL.
1283 * The zvol_state_lock is dropped.
99573cc0
PS
1284 *
1285 * This function may take many milliseconds to complete (e.g. we've seen
1286 * it take over 256ms), due to the calls to "blk_cleanup_queue" and
1287 * "del_gendisk". Thus, consumers need to be careful to account for this
1288 * latency when calling this function.
5df7e9d8 1289 */
1dccfd7a
CS
1290void
1291zvol_os_free(zvol_state_t *zv)
5df7e9d8
MM
1292{
1293
1294 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1295 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
0b32d817
RM
1296 ASSERT0(zv->zv_open_count);
1297 ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
5df7e9d8
MM
1298
1299 rw_destroy(&zv->zv_suspend_lock);
2cc479d0 1300 zfs_rangelock_fini(&zv->zv_rangelock);
5df7e9d8
MM
1301
1302 del_gendisk(zv->zv_zso->zvo_disk);
1b06b03a 1303#if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
6097a7ba 1304 (defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG))
c26045b4 1305#if defined(HAVE_BLK_CLEANUP_DISK)
1b06b03a 1306 blk_cleanup_disk(zv->zv_zso->zvo_disk);
c26045b4
BB
1307#else
1308 put_disk(zv->zv_zso->zvo_disk);
1309#endif
1b06b03a 1310#else
5df7e9d8
MM
1311 blk_cleanup_queue(zv->zv_zso->zvo_queue);
1312 put_disk(zv->zv_zso->zvo_disk);
1b06b03a 1313#endif
5df7e9d8 1314
6f73d021
TH
1315#ifdef HAVE_BLK_MQ
1316 if (zv->zv_zso->use_blk_mq)
1317 blk_mq_free_tag_set(&zv->zv_zso->tag_set);
1318#endif
1319
5df7e9d8
MM
1320 ida_simple_remove(&zvol_ida,
1321 MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
1322
1323 mutex_destroy(&zv->zv_state_lock);
4547fc4e 1324 dataset_kstats_destroy(&zv->zv_kstat);
5df7e9d8
MM
1325
1326 kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
1327 kmem_free(zv, sizeof (zvol_state_t));
1328}
1329
0ca45cb3
MM
1330void
1331zvol_wait_close(zvol_state_t *zv)
1332{
1333}
1334
5df7e9d8
MM
1335/*
1336 * Create a block device minor node and setup the linkage between it
1337 * and the specified volume. Once this function returns the block
1338 * device is live and ready for use.
1339 */
1dccfd7a 1340int
ec213971 1341zvol_os_create_minor(const char *name)
5df7e9d8
MM
1342{
1343 zvol_state_t *zv;
1344 objset_t *os;
1345 dmu_object_info_t *doi;
1346 uint64_t volsize;
1347 uint64_t len;
1348 unsigned minor = 0;
1349 int error = 0;
1350 int idx;
1351 uint64_t hash = zvol_name_hash(name);
60387fac 1352 uint64_t volthreading;
e197bb24 1353 bool replayed_zil = B_FALSE;
5df7e9d8
MM
1354
1355 if (zvol_inhibit_dev)
1356 return (0);
1357
1358 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1359 if (idx < 0)
1360 return (SET_ERROR(-idx));
1361 minor = idx << ZVOL_MINOR_BITS;
c0aab8b8
FG
1362 if (MINOR(minor) != minor) {
1363 /* too many partitions can cause an overflow */
1364 zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u",
1365 name, minor, MINOR(minor));
1366 ida_simple_remove(&zvol_ida, idx);
1367 return (SET_ERROR(EINVAL));
1368 }
5df7e9d8
MM
1369
1370 zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1371 if (zv) {
1372 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1373 mutex_exit(&zv->zv_state_lock);
1374 ida_simple_remove(&zvol_ida, idx);
1375 return (SET_ERROR(EEXIST));
1376 }
1377
1378 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1379
1380 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1381 if (error)
1382 goto out_doi;
1383
1384 error = dmu_object_info(os, ZVOL_OBJ, doi);
1385 if (error)
1386 goto out_dmu_objset_disown;
1387
1388 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1389 if (error)
1390 goto out_dmu_objset_disown;
1391
1392 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1393 if (zv == NULL) {
1394 error = SET_ERROR(EAGAIN);
1395 goto out_dmu_objset_disown;
1396 }
1397 zv->zv_hash = hash;
1398
1399 if (dmu_objset_is_snapshot(os))
1400 zv->zv_flags |= ZVOL_RDONLY;
1401
1402 zv->zv_volblocksize = doi->doi_data_block_size;
1403 zv->zv_volsize = volsize;
1404 zv->zv_objset = os;
1405
60387fac
AH
1406 /* Default */
1407 zv->zv_threading = B_TRUE;
1408 if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL)
1409 == 0)
1410 zv->zv_threading = volthreading;
1411
5df7e9d8
MM
1412 set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1413
1414 blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
1415 (DMU_MAX_ACCESS / 4) >> 9);
6f73d021
TH
1416
1417 if (zv->zv_zso->use_blk_mq) {
1418 /*
1419 * IO requests can be really big (1MB). When an IO request
1420 * comes in, it is passed off to zvol_read() or zvol_write()
1421 * in a new thread, where it is chunked up into 'volblocksize'
1422 * sized pieces and processed. So for example, if the request
1423 * is a 1MB write and your volblocksize is 128k, one zvol_write
1424 * thread will take that request and sequentially do ten 128k
1425 * IOs. This is due to the fact that the thread needs to lock
1426 * each volblocksize sized block. So you might be wondering:
1427 * "instead of passing the whole 1MB request to one thread,
1428 * why not pass ten individual 128k chunks to ten threads and
1429 * process the whole write in parallel?" The short answer is
1430 * that there's a sweet spot number of chunks that balances
1431 * the greater parallelism with the added overhead of more
1432 * threads. The sweet spot can be different depending on if you
1433 * have a read or write heavy workload. Writes typically want
1434 * high chunk counts while reads typically want lower ones. On
1435 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1436 * configuration, with volblocksize=8k, the sweet spot for good
1437 * sequential reads and writes was at 8 chunks.
1438 */
1439
1440 /*
1441 * Below we tell the kernel how big we want our requests
1442 * to be. You would think that blk_queue_io_opt() would be
1443 * used to do this since it is used to "set optimal request
1444 * size for the queue", but that doesn't seem to do
1445 * anything - the kernel still gives you huge requests
1446 * with tons of little PAGE_SIZE segments contained within it.
1447 *
1448 * Knowing that the kernel will just give you PAGE_SIZE segments
1449 * no matter what, you can say "ok, I want PAGE_SIZE byte
1450 * segments, and I want 'N' of them per request", where N is
1451 * the correct number of segments for the volblocksize and
1452 * number of chunks you want.
1453 */
1454#ifdef HAVE_BLK_MQ
1455 if (zvol_blk_mq_blocks_per_thread != 0) {
1456 unsigned int chunks;
1457 chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
1458
1459 blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1460 PAGE_SIZE);
1461 blk_queue_max_segments(zv->zv_zso->zvo_queue,
1462 (zv->zv_volblocksize * chunks) / PAGE_SIZE);
1463 } else {
1464 /*
1465 * Special case: zvol_blk_mq_blocks_per_thread = 0
1466 * Max everything out.
1467 */
1468 blk_queue_max_segments(zv->zv_zso->zvo_queue,
1469 UINT16_MAX);
1470 blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1471 UINT_MAX);
1472 }
1473#endif
1474 } else {
1475 blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
1476 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
1477 }
1478
5df7e9d8
MM
1479 blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
1480 zv->zv_volblocksize);
1481 blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
1482 blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
1483 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1484 blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
1485 zv->zv_volblocksize);
5e4aedac 1486#ifdef QUEUE_FLAG_DISCARD
5df7e9d8 1487 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
5e4aedac 1488#endif
5df7e9d8
MM
1489#ifdef QUEUE_FLAG_NONROT
1490 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1491#endif
1492#ifdef QUEUE_FLAG_ADD_RANDOM
1493 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1494#endif
1495 /* This flag was introduced in kernel version 4.12. */
1496#ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1497 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1498#endif
1499
fb087146
AH
1500 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1501 error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1502 if (error)
1503 goto out_dmu_objset_disown;
93e36580 1504 ASSERT3P(zv->zv_zilog, ==, NULL);
fb087146 1505 zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
5df7e9d8
MM
1506 if (spa_writeable(dmu_objset_spa(os))) {
1507 if (zil_replay_disable)
e197bb24 1508 replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
5df7e9d8 1509 else
e197bb24 1510 replayed_zil = zil_replay(os, zv, zvol_replay_vector);
5df7e9d8 1511 }
e197bb24
AS
1512 if (replayed_zil)
1513 zil_close(zv->zv_zilog);
93e36580 1514 zv->zv_zilog = NULL;
5df7e9d8
MM
1515
1516 /*
1517 * When udev detects the addition of the device it will immediately
1518 * invoke blkid(8) to determine the type of content on the device.
1519 * Prefetching the blocks commonly scanned by blkid(8) will speed
1520 * up this process.
1521 */
8ef15f93 1522 len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
5df7e9d8
MM
1523 if (len > 0) {
1524 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1525 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1526 ZIO_PRIORITY_SYNC_READ);
1527 }
1528
1529 zv->zv_objset = NULL;
1530out_dmu_objset_disown:
1531 dmu_objset_disown(os, B_TRUE, FTAG);
1532out_doi:
1533 kmem_free(doi, sizeof (dmu_object_info_t));
1534
1535 /*
1536 * Keep in mind that once add_disk() is called, the zvol is
1537 * announced to the world, and zvol_open()/zvol_release() can
1538 * be called at any time. Incidentally, add_disk() itself calls
1539 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1540 * directly as well.
1541 */
1542 if (error == 0) {
1543 rw_enter(&zvol_state_lock, RW_WRITER);
1544 zvol_insert(zv);
1545 rw_exit(&zvol_state_lock);
12fa250d
RE
1546#ifdef HAVE_ADD_DISK_RET
1547 error = add_disk(zv->zv_zso->zvo_disk);
1548#else
5df7e9d8 1549 add_disk(zv->zv_zso->zvo_disk);
12fa250d 1550#endif
5df7e9d8
MM
1551 } else {
1552 ida_simple_remove(&zvol_ida, idx);
1553 }
1554
ec213971 1555 return (error);
5df7e9d8
MM
1556}
1557
1dccfd7a
CS
1558void
1559zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
5df7e9d8
MM
1560{
1561 int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1562
1563 ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1564 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1565
1566 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1567
1568 /* move to new hashtable entry */
1569 zv->zv_hash = zvol_name_hash(zv->zv_name);
1570 hlist_del(&zv->zv_hlink);
1571 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1572
1573 /*
1574 * The block device's read-only state is briefly changed causing
1575 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1576 * the name change and fixes the symlinks. This does not change
1577 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1578 * changes. This would normally be done using kobject_uevent() but
1579 * that is a GPL-only symbol which is why we need this workaround.
1580 */
1581 set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1582 set_disk_ro(zv->zv_zso->zvo_disk, readonly);
e36ff84c
AS
1583
1584 dataset_kstats_rename(&zv->zv_kstat, newname);
5df7e9d8
MM
1585}
1586
1dccfd7a
CS
1587void
1588zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
5df7e9d8
MM
1589{
1590
1591 set_disk_ro(zv->zv_zso->zvo_disk, flags);
1592}
1593
1dccfd7a
CS
1594void
1595zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
5df7e9d8
MM
1596{
1597
1598 set_capacity(zv->zv_zso->zvo_disk, capacity);
1599}
1600
5df7e9d8
MM
1601int
1602zvol_init(void)
1603{
1604 int error;
6f73d021
TH
1605
1606 /*
1607 * zvol_threads is the module param the user passes in.
1608 *
1609 * zvol_actual_threads is what we use internally, since the user can
1610 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
1611 */
1612 static unsigned int zvol_actual_threads;
1613
1614 if (zvol_threads == 0) {
1615 /*
1616 * See dde9380a1 for why 32 was chosen here. This should
1617 * probably be refined to be some multiple of the number
1618 * of CPUs.
1619 */
1620 zvol_actual_threads = MAX(num_online_cpus(), 32);
1621 } else {
1622 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
1623 }
5df7e9d8 1624
99741bde
AH
1625 /*
1626 * Use atleast 32 zvol_threads but for many core system,
1627 * prefer 6 threads per taskq, but no more taskqs
1628 * than threads in them on large systems.
1629 *
1630 * taskq total
1631 * cpus taskqs threads threads
1632 * ------- ------- ------- -------
1633 * 1 1 32 32
1634 * 2 1 32 32
1635 * 4 1 32 32
1636 * 8 2 16 32
1637 * 16 3 11 33
1638 * 32 5 7 35
1639 * 64 8 8 64
1640 * 128 11 12 132
1641 * 256 16 16 256
1642 */
1643 zv_taskq_t *ztqs = &zvol_taskqs;
1644 uint_t num_tqs = MIN(num_online_cpus(), zvol_num_taskqs);
1645 if (num_tqs == 0) {
1646 num_tqs = 1 + num_online_cpus() / 6;
1647 while (num_tqs * num_tqs > zvol_actual_threads)
1648 num_tqs--;
1649 }
1650 uint_t per_tq_thread = zvol_actual_threads / num_tqs;
1651 if (per_tq_thread * num_tqs < zvol_actual_threads)
1652 per_tq_thread++;
1653 ztqs->tqs_cnt = num_tqs;
1654 ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
5df7e9d8
MM
1655 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1656 if (error) {
99741bde
AH
1657 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *));
1658 ztqs->tqs_taskq = NULL;
5df7e9d8
MM
1659 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1660 return (error);
1661 }
6f73d021
TH
1662
1663#ifdef HAVE_BLK_MQ
1664 if (zvol_blk_mq_queue_depth == 0) {
1665 zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
1666 } else {
1667 zvol_actual_blk_mq_queue_depth =
1668 MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
1669 }
1670
1671 if (zvol_blk_mq_threads == 0) {
1672 zvol_blk_mq_actual_threads = num_online_cpus();
1673 } else {
1674 zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1675 1024);
1676 }
1677#endif
99741bde
AH
1678 for (uint_t i = 0; i < num_tqs; i++) {
1679 char name[32];
1680 (void) snprintf(name, sizeof (name), "%s_tq-%u",
1681 ZVOL_DRIVER, i);
1682 ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
1683 maxclsyspri, per_tq_thread, INT_MAX,
1684 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1685 if (ztqs->tqs_taskq[i] == NULL) {
1686 for (int j = i - 1; j >= 0; j--)
1687 taskq_destroy(ztqs->tqs_taskq[j]);
1688 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1689 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
1690 sizeof (taskq_t *));
1691 ztqs->tqs_taskq = NULL;
1692 return (-ENOMEM);
1693 }
5df7e9d8 1694 }
6f73d021 1695
5df7e9d8 1696 zvol_init_impl();
5df7e9d8 1697 ida_init(&zvol_ida);
5df7e9d8
MM
1698 return (0);
1699}
1700
1701void
1702zvol_fini(void)
1703{
99741bde 1704 zv_taskq_t *ztqs = &zvol_taskqs;
5df7e9d8 1705 zvol_fini_impl();
5df7e9d8 1706 unregister_blkdev(zvol_major, ZVOL_DRIVER);
99741bde
AH
1707
1708 if (ztqs->tqs_taskq == NULL) {
1709 ASSERT3U(ztqs->tqs_cnt, ==, 0);
1710 } else {
1711 for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
1712 ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
1713 taskq_destroy(ztqs->tqs_taskq[i]);
1714 }
1715 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
1716 sizeof (taskq_t *));
1717 ztqs->tqs_taskq = NULL;
1718 }
1719
5df7e9d8
MM
1720 ida_destroy(&zvol_ida);
1721}
1722
1723/* BEGIN CSTYLED */
1724module_param(zvol_inhibit_dev, uint, 0644);
1725MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1726
1727module_param(zvol_major, uint, 0444);
1728MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1729
1730module_param(zvol_threads, uint, 0444);
6f73d021
TH
1731MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
1732 "to 0 to use all active CPUs");
5df7e9d8
MM
1733
1734module_param(zvol_request_sync, uint, 0644);
1735MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
1736
1737module_param(zvol_max_discard_blocks, ulong, 0444);
1738MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1739
99741bde
AH
1740module_param(zvol_num_taskqs, uint, 0444);
1741MODULE_PARM_DESC(zvol_num_taskqs, "Number of zvol taskqs");
1742
5df7e9d8
MM
1743module_param(zvol_prefetch_bytes, uint, 0644);
1744MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
1745
1746module_param(zvol_volmode, uint, 0644);
1747MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
6f73d021 1748
05c4710e
TH
1749#ifdef HAVE_BLK_MQ
1750module_param(zvol_blk_mq_queue_depth, uint, 0644);
1751MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
1752
1753module_param(zvol_use_blk_mq, uint, 0644);
1754MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
1755
1756module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
1757MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
1758 "Process volblocksize blocks per thread");
1759#endif
1760
945e39fc
PS
1761#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
1762module_param(zvol_open_timeout_ms, uint, 0644);
1763MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
1764#endif
1765
5df7e9d8 1766/* END CSTYLED */