]> git.proxmox.com Git - mirror_spl.git/blame - module/spl/spl-kmem.c
Constify memory management functions
[mirror_spl.git] / module / spl / spl-kmem.c
CommitLineData
716154c5
BB
1/*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
715f6251 6 * UCRL-CODE-235197
7 *
716154c5
BB
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
715f6251 10 *
716154c5
BB
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
715f6251 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
716154c5
BB
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Kmem Implementation.
25\*****************************************************************************/
715f6251 26
f4b37741 27#include <sys/kmem.h>
55abb092 28#include <spl-debug.h>
f1ca4da6 29
b17edc10
BB
30#ifdef SS_DEBUG_SUBSYS
31#undef SS_DEBUG_SUBSYS
937879f1 32#endif
33
b17edc10 34#define SS_DEBUG_SUBSYS SS_KMEM
937879f1 35
36b313da
BB
36/*
37 * The minimum amount of memory measured in pages to be free at all
38 * times on the system. This is similar to Linux's zone->pages_min
ecc39810 39 * multiplied by the number of zones and is sized based on that.
36b313da
BB
40 */
41pgcnt_t minfree = 0;
42EXPORT_SYMBOL(minfree);
43
44/*
45 * The desired amount of memory measured in pages to be free at all
46 * times on the system. This is similar to Linux's zone->pages_low
ecc39810 47 * multiplied by the number of zones and is sized based on that.
36b313da 48 * Assuming all zones are being used roughly equally, when we drop
ecc39810 49 * below this threshold asynchronous page reclamation is triggered.
36b313da
BB
50 */
51pgcnt_t desfree = 0;
52EXPORT_SYMBOL(desfree);
53
54/*
55 * When above this amount of memory measures in pages the system is
56 * determined to have enough free memory. This is similar to Linux's
ecc39810 57 * zone->pages_high multiplied by the number of zones and is sized based
36b313da 58 * on that. Assuming all zones are being used roughly equally, when
ecc39810 59 * asynchronous page reclamation reaches this threshold it stops.
36b313da
BB
60 */
61pgcnt_t lotsfree = 0;
62EXPORT_SYMBOL(lotsfree);
63
64/* Unused always 0 in this implementation */
65pgcnt_t needfree = 0;
66EXPORT_SYMBOL(needfree);
67
36b313da
BB
68pgcnt_t swapfs_minfree = 0;
69EXPORT_SYMBOL(swapfs_minfree);
70
71pgcnt_t swapfs_reserve = 0;
72EXPORT_SYMBOL(swapfs_reserve);
73
36b313da
BB
74vmem_t *heap_arena = NULL;
75EXPORT_SYMBOL(heap_arena);
76
77vmem_t *zio_alloc_arena = NULL;
78EXPORT_SYMBOL(zio_alloc_arena);
79
80vmem_t *zio_arena = NULL;
81EXPORT_SYMBOL(zio_arena);
82
d1ff2312 83#ifndef HAVE_GET_VMALLOC_INFO
96dded38 84get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON;
d1ff2312
BB
85EXPORT_SYMBOL(get_vmalloc_info_fn);
86#endif /* HAVE_GET_VMALLOC_INFO */
87
5232d256
BB
88#ifdef HAVE_PGDAT_HELPERS
89# ifndef HAVE_FIRST_ONLINE_PGDAT
96dded38 90first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON;
d1ff2312 91EXPORT_SYMBOL(first_online_pgdat_fn);
5232d256 92# endif /* HAVE_FIRST_ONLINE_PGDAT */
36b313da 93
5232d256 94# ifndef HAVE_NEXT_ONLINE_PGDAT
96dded38 95next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON;
d1ff2312 96EXPORT_SYMBOL(next_online_pgdat_fn);
5232d256 97# endif /* HAVE_NEXT_ONLINE_PGDAT */
36b313da 98
5232d256 99# ifndef HAVE_NEXT_ZONE
96dded38 100next_zone_t next_zone_fn = SYMBOL_POISON;
d1ff2312 101EXPORT_SYMBOL(next_zone_fn);
5232d256
BB
102# endif /* HAVE_NEXT_ZONE */
103
104#else /* HAVE_PGDAT_HELPERS */
105
106# ifndef HAVE_PGDAT_LIST
107struct pglist_data *pgdat_list_addr = SYMBOL_POISON;
108EXPORT_SYMBOL(pgdat_list_addr);
109# endif /* HAVE_PGDAT_LIST */
110
111#endif /* HAVE_PGDAT_HELPERS */
36b313da 112
6ae7fef5 113#ifdef NEED_GET_ZONE_COUNTS
e11d6c5f 114# ifndef HAVE_GET_ZONE_COUNTS
96dded38 115get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON;
d1ff2312 116EXPORT_SYMBOL(get_zone_counts_fn);
96dded38 117# endif /* HAVE_GET_ZONE_COUNTS */
4ab13d3b 118
e11d6c5f 119unsigned long
6ae7fef5 120spl_global_page_state(spl_zone_stat_item_t item)
4ab13d3b
BB
121{
122 unsigned long active;
123 unsigned long inactive;
124 unsigned long free;
125
6ae7fef5
BB
126 get_zone_counts(&active, &inactive, &free);
127 switch (item) {
128 case SPL_NR_FREE_PAGES: return free;
129 case SPL_NR_INACTIVE: return inactive;
130 case SPL_NR_ACTIVE: return active;
131 default: ASSERT(0); /* Unsupported */
e11d6c5f
BB
132 }
133
6ae7fef5
BB
134 return 0;
135}
136#else
137# ifdef HAVE_GLOBAL_PAGE_STATE
138unsigned long
139spl_global_page_state(spl_zone_stat_item_t item)
140{
141 unsigned long pages = 0;
142
143 switch (item) {
144 case SPL_NR_FREE_PAGES:
145# ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES
146 pages += global_page_state(NR_FREE_PAGES);
147# endif
148 break;
149 case SPL_NR_INACTIVE:
150# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE
151 pages += global_page_state(NR_INACTIVE);
152# endif
153# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON
154 pages += global_page_state(NR_INACTIVE_ANON);
155# endif
156# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE
157 pages += global_page_state(NR_INACTIVE_FILE);
158# endif
159 break;
160 case SPL_NR_ACTIVE:
161# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE
162 pages += global_page_state(NR_ACTIVE);
163# endif
164# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON
165 pages += global_page_state(NR_ACTIVE_ANON);
166# endif
167# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE
168 pages += global_page_state(NR_ACTIVE_FILE);
169# endif
170 break;
171 default:
172 ASSERT(0); /* Unsupported */
e11d6c5f
BB
173 }
174
6ae7fef5
BB
175 return pages;
176}
96dded38 177# else
6ae7fef5 178# error "Both global_page_state() and get_zone_counts() unavailable"
96dded38 179# endif /* HAVE_GLOBAL_PAGE_STATE */
6ae7fef5 180#endif /* NEED_GET_ZONE_COUNTS */
e11d6c5f 181EXPORT_SYMBOL(spl_global_page_state);
4ab13d3b 182
5f6c14b1 183#if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
914b0631
BB
184invalidate_inodes_t invalidate_inodes_fn = SYMBOL_POISON;
185EXPORT_SYMBOL(invalidate_inodes_fn);
5f6c14b1 186#endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
914b0631 187
e76f4bf1
BB
188#ifndef HAVE_SHRINK_DCACHE_MEMORY
189shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON;
190EXPORT_SYMBOL(shrink_dcache_memory_fn);
191#endif /* HAVE_SHRINK_DCACHE_MEMORY */
192
193#ifndef HAVE_SHRINK_ICACHE_MEMORY
194shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON;
195EXPORT_SYMBOL(shrink_icache_memory_fn);
196#endif /* HAVE_SHRINK_ICACHE_MEMORY */
197
e11d6c5f
BB
198pgcnt_t
199spl_kmem_availrmem(void)
200{
4ab13d3b 201 /* The amount of easily available memory */
6ae7fef5
BB
202 return (spl_global_page_state(SPL_NR_FREE_PAGES) +
203 spl_global_page_state(SPL_NR_INACTIVE));
4ab13d3b
BB
204}
205EXPORT_SYMBOL(spl_kmem_availrmem);
206
207size_t
208vmem_size(vmem_t *vmp, int typemask)
209{
d1ff2312
BB
210 struct vmalloc_info vmi;
211 size_t size = 0;
212
4ab13d3b
BB
213 ASSERT(vmp == NULL);
214 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
215
d1ff2312
BB
216 get_vmalloc_info(&vmi);
217 if (typemask & VMEM_ALLOC)
218 size += (size_t)vmi.used;
219
220 if (typemask & VMEM_FREE)
221 size += (size_t)(VMALLOC_TOTAL - vmi.used);
222
223 return size;
4ab13d3b
BB
224}
225EXPORT_SYMBOL(vmem_size);
4ab13d3b 226
b868e22f
BB
227int
228kmem_debugging(void)
229{
230 return 0;
231}
232EXPORT_SYMBOL(kmem_debugging);
233
234#ifndef HAVE_KVASPRINTF
235/* Simplified asprintf. */
236char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
237{
238 unsigned int len;
239 char *p;
240 va_list aq;
241
242 va_copy(aq, ap);
243 len = vsnprintf(NULL, 0, fmt, aq);
244 va_end(aq);
245
246 p = kmalloc(len+1, gfp);
247 if (!p)
248 return NULL;
249
250 vsnprintf(p, len+1, fmt, ap);
251
252 return p;
253}
254EXPORT_SYMBOL(kvasprintf);
255#endif /* HAVE_KVASPRINTF */
256
e6de04b7
BB
257char *
258kmem_vasprintf(const char *fmt, va_list ap)
259{
260 va_list aq;
261 char *ptr;
262
e6de04b7 263 do {
2c762de8 264 va_copy(aq, ap);
e6de04b7 265 ptr = kvasprintf(GFP_KERNEL, fmt, aq);
2c762de8 266 va_end(aq);
e6de04b7 267 } while (ptr == NULL);
e6de04b7
BB
268
269 return ptr;
270}
271EXPORT_SYMBOL(kmem_vasprintf);
272
b868e22f
BB
273char *
274kmem_asprintf(const char *fmt, ...)
275{
e6de04b7 276 va_list ap;
b868e22f
BB
277 char *ptr;
278
b868e22f 279 do {
2c762de8 280 va_start(ap, fmt);
e6de04b7 281 ptr = kvasprintf(GFP_KERNEL, fmt, ap);
2c762de8 282 va_end(ap);
b868e22f 283 } while (ptr == NULL);
b868e22f
BB
284
285 return ptr;
286}
287EXPORT_SYMBOL(kmem_asprintf);
288
10129680
BB
289static char *
290__strdup(const char *str, int flags)
291{
292 char *ptr;
293 int n;
294
295 n = strlen(str);
296 ptr = kmalloc_nofail(n + 1, flags);
297 if (ptr)
298 memcpy(ptr, str, n + 1);
299
300 return ptr;
301}
302
303char *
304strdup(const char *str)
305{
306 return __strdup(str, KM_SLEEP);
307}
308EXPORT_SYMBOL(strdup);
309
310void
311strfree(char *str)
312{
41f84a8d 313 kfree(str);
10129680
BB
314}
315EXPORT_SYMBOL(strfree);
316
f1ca4da6 317/*
2fb9b26a 318 * Memory allocation interfaces and debugging for basic kmem_*
055ffd98
BB
319 * and vmem_* style memory allocation. When DEBUG_KMEM is enabled
320 * the SPL will keep track of the total memory allocated, and
321 * report any memory leaked when the module is unloaded.
f1ca4da6 322 */
323#ifdef DEBUG_KMEM
d04c8a56 324
f1ca4da6 325/* Shim layer memory accounting */
d04c8a56 326# ifdef HAVE_ATOMIC64_T
550f1705 327atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
a0f6da3d 328unsigned long long kmem_alloc_max = 0;
550f1705 329atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
a0f6da3d 330unsigned long long vmem_alloc_max = 0;
10129680 331# else /* HAVE_ATOMIC64_T */
d04c8a56
BB
332atomic_t kmem_alloc_used = ATOMIC_INIT(0);
333unsigned long long kmem_alloc_max = 0;
334atomic_t vmem_alloc_used = ATOMIC_INIT(0);
335unsigned long long vmem_alloc_max = 0;
10129680 336# endif /* HAVE_ATOMIC64_T */
79b31f36 337
ff449ac4 338EXPORT_SYMBOL(kmem_alloc_used);
339EXPORT_SYMBOL(kmem_alloc_max);
340EXPORT_SYMBOL(vmem_alloc_used);
341EXPORT_SYMBOL(vmem_alloc_max);
ff449ac4 342
055ffd98
BB
343/* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
344 * but also the location of every alloc and free. When the SPL module is
345 * unloaded a list of all leaked addresses and where they were allocated
346 * will be dumped to the console. Enabling this feature has a significant
347 * impact on performance but it makes finding memory leaks straight forward.
348 *
349 * Not surprisingly with debugging enabled the xmem_locks are very highly
350 * contended particularly on xfree(). If we want to run with this detailed
351 * debugging enabled for anything other than debugging we need to minimize
352 * the contention by moving to a lock per xmem_table entry model.
a0f6da3d 353 */
055ffd98 354# ifdef DEBUG_KMEM_TRACKING
a0f6da3d 355
356# define KMEM_HASH_BITS 10
357# define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
358
359# define VMEM_HASH_BITS 10
360# define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
361
362typedef struct kmem_debug {
363 struct hlist_node kd_hlist; /* Hash node linkage */
364 struct list_head kd_list; /* List of all allocations */
365 void *kd_addr; /* Allocation pointer */
366 size_t kd_size; /* Allocation size */
367 const char *kd_func; /* Allocation function */
368 int kd_line; /* Allocation line */
369} kmem_debug_t;
370
d6a26c6a 371spinlock_t kmem_lock;
372struct hlist_head kmem_table[KMEM_TABLE_SIZE];
373struct list_head kmem_list;
374
13cdca65 375spinlock_t vmem_lock;
376struct hlist_head vmem_table[VMEM_TABLE_SIZE];
377struct list_head vmem_list;
378
d6a26c6a 379EXPORT_SYMBOL(kmem_lock);
380EXPORT_SYMBOL(kmem_table);
381EXPORT_SYMBOL(kmem_list);
382
13cdca65 383EXPORT_SYMBOL(vmem_lock);
384EXPORT_SYMBOL(vmem_table);
385EXPORT_SYMBOL(vmem_list);
a0f6da3d 386
387static kmem_debug_t *
973e8269 388kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, const void *addr)
a0f6da3d 389{
390 struct hlist_head *head;
391 struct hlist_node *node;
392 struct kmem_debug *p;
393 unsigned long flags;
b17edc10 394 SENTRY;
a0f6da3d 395
396 spin_lock_irqsave(lock, flags);
397
398 head = &table[hash_ptr(addr, bits)];
399 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
400 if (p->kd_addr == addr) {
401 hlist_del_init(&p->kd_hlist);
402 list_del_init(&p->kd_list);
403 spin_unlock_irqrestore(lock, flags);
404 return p;
405 }
406 }
407
408 spin_unlock_irqrestore(lock, flags);
409
b17edc10 410 SRETURN(NULL);
a0f6da3d 411}
412
413void *
414kmem_alloc_track(size_t size, int flags, const char *func, int line,
415 int node_alloc, int node)
416{
417 void *ptr = NULL;
418 kmem_debug_t *dptr;
419 unsigned long irq_flags;
b17edc10 420 SENTRY;
a0f6da3d 421
10129680 422 /* Function may be called with KM_NOSLEEP so failure is possible */
c89fdee4 423 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
a0f6da3d 424 flags & ~__GFP_ZERO);
425
10129680 426 if (unlikely(dptr == NULL)) {
b17edc10 427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
3cb77549
BB
428 "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
429 sizeof(kmem_debug_t), flags, func, line,
430 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 431 } else {
10129680
BB
432 /*
433 * Marked unlikely because we should never be doing this,
434 * we tolerate to up 2 pages but a single page is best.
435 */
23d91792 436 if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
b17edc10 437 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large "
3cb77549
BB
438 "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
439 (unsigned long long) size, flags, func, line,
d04c8a56 440 kmem_alloc_used_read(), kmem_alloc_max);
5198ea0e
BB
441 spl_debug_dumpstack(NULL);
442 }
a0f6da3d 443
10129680
BB
444 /*
445 * We use __strdup() below because the string pointed to by
c8e60837 446 * __FUNCTION__ might not be available by the time we want
10129680
BB
447 * to print it since the module might have been unloaded.
448 * This can only fail in the KM_NOSLEEP case.
449 */
450 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
c8e60837 451 if (unlikely(dptr->kd_func == NULL)) {
452 kfree(dptr);
b17edc10 453 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
10129680 454 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
3cb77549 455 func, line, kmem_alloc_used_read(), kmem_alloc_max);
c8e60837 456 goto out;
457 }
458
a0f6da3d 459 /* Use the correct allocator */
460 if (node_alloc) {
461 ASSERT(!(flags & __GFP_ZERO));
c89fdee4 462 ptr = kmalloc_node_nofail(size, flags, node);
a0f6da3d 463 } else if (flags & __GFP_ZERO) {
c89fdee4 464 ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
a0f6da3d 465 } else {
c89fdee4 466 ptr = kmalloc_nofail(size, flags);
a0f6da3d 467 }
468
469 if (unlikely(ptr == NULL)) {
c8e60837 470 kfree(dptr->kd_func);
a0f6da3d 471 kfree(dptr);
b17edc10 472 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc"
3cb77549
BB
473 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
474 (unsigned long long) size, flags, func, line,
d04c8a56 475 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 476 goto out;
477 }
478
d04c8a56
BB
479 kmem_alloc_used_add(size);
480 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
481 kmem_alloc_max = kmem_alloc_used_read();
a0f6da3d 482
483 INIT_HLIST_NODE(&dptr->kd_hlist);
484 INIT_LIST_HEAD(&dptr->kd_list);
485
486 dptr->kd_addr = ptr;
487 dptr->kd_size = size;
a0f6da3d 488 dptr->kd_line = line;
489
490 spin_lock_irqsave(&kmem_lock, irq_flags);
491 hlist_add_head_rcu(&dptr->kd_hlist,
492 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
493 list_add_tail(&dptr->kd_list, &kmem_list);
494 spin_unlock_irqrestore(&kmem_lock, irq_flags);
495
b17edc10 496 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
497 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
498 (unsigned long long) size, flags, func, line, ptr,
499 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 500 }
501out:
b17edc10 502 SRETURN(ptr);
a0f6da3d 503}
504EXPORT_SYMBOL(kmem_alloc_track);
505
506void
973e8269 507kmem_free_track(const void *ptr, size_t size)
a0f6da3d 508{
509 kmem_debug_t *dptr;
b17edc10 510 SENTRY;
a0f6da3d 511
512 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
513 (unsigned long long) size);
514
515 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
516
10129680
BB
517 /* Must exist in hash due to kmem_alloc() */
518 ASSERT(dptr);
a0f6da3d 519
520 /* Size must match */
521 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
522 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
523 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
524
d04c8a56 525 kmem_alloc_used_sub(size);
b17edc10 526 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 527 (unsigned long long) size, kmem_alloc_used_read(),
a0f6da3d 528 kmem_alloc_max);
529
c8e60837 530 kfree(dptr->kd_func);
531
a0f6da3d 532 memset(dptr, 0x5a, sizeof(kmem_debug_t));
533 kfree(dptr);
534
535 memset(ptr, 0x5a, size);
536 kfree(ptr);
537
b17edc10 538 SEXIT;
a0f6da3d 539}
540EXPORT_SYMBOL(kmem_free_track);
541
542void *
543vmem_alloc_track(size_t size, int flags, const char *func, int line)
544{
545 void *ptr = NULL;
546 kmem_debug_t *dptr;
547 unsigned long irq_flags;
b17edc10 548 SENTRY;
a0f6da3d 549
550 ASSERT(flags & KM_SLEEP);
551
10129680 552 /* Function may be called with KM_NOSLEEP so failure is possible */
ef1c7a06
BB
553 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
554 flags & ~__GFP_ZERO);
10129680 555 if (unlikely(dptr == NULL)) {
b17edc10 556 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
3cb77549
BB
557 "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
558 sizeof(kmem_debug_t), flags, func, line,
559 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 560 } else {
10129680
BB
561 /*
562 * We use __strdup() below because the string pointed to by
c8e60837 563 * __FUNCTION__ might not be available by the time we want
10129680
BB
564 * to print it, since the module might have been unloaded.
565 * This can never fail because we have already asserted
566 * that flags is KM_SLEEP.
567 */
568 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
c8e60837 569 if (unlikely(dptr->kd_func == NULL)) {
570 kfree(dptr);
b17edc10 571 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
10129680 572 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
3cb77549 573 func, line, vmem_alloc_used_read(), vmem_alloc_max);
c8e60837 574 goto out;
575 }
576
10129680
BB
577 /* Use the correct allocator */
578 if (flags & __GFP_ZERO) {
579 ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
580 } else {
581 ptr = vmalloc_nofail(size, flags);
582 }
a0f6da3d 583
584 if (unlikely(ptr == NULL)) {
c8e60837 585 kfree(dptr->kd_func);
a0f6da3d 586 kfree(dptr);
b17edc10 587 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc"
3cb77549
BB
588 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
589 (unsigned long long) size, flags, func, line,
d04c8a56 590 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 591 goto out;
592 }
593
d04c8a56
BB
594 vmem_alloc_used_add(size);
595 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
596 vmem_alloc_max = vmem_alloc_used_read();
a0f6da3d 597
598 INIT_HLIST_NODE(&dptr->kd_hlist);
599 INIT_LIST_HEAD(&dptr->kd_list);
600
601 dptr->kd_addr = ptr;
602 dptr->kd_size = size;
a0f6da3d 603 dptr->kd_line = line;
604
605 spin_lock_irqsave(&vmem_lock, irq_flags);
606 hlist_add_head_rcu(&dptr->kd_hlist,
607 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
608 list_add_tail(&dptr->kd_list, &vmem_list);
609 spin_unlock_irqrestore(&vmem_lock, irq_flags);
610
b17edc10 611 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
612 "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
613 (unsigned long long) size, flags, func, line,
614 ptr, vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 615 }
616out:
b17edc10 617 SRETURN(ptr);
a0f6da3d 618}
619EXPORT_SYMBOL(vmem_alloc_track);
620
621void
973e8269 622vmem_free_track(const void *ptr, size_t size)
a0f6da3d 623{
624 kmem_debug_t *dptr;
b17edc10 625 SENTRY;
a0f6da3d 626
627 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
628 (unsigned long long) size);
629
630 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
10129680
BB
631
632 /* Must exist in hash due to vmem_alloc() */
633 ASSERT(dptr);
a0f6da3d 634
635 /* Size must match */
636 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
637 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
638 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
639
d04c8a56 640 vmem_alloc_used_sub(size);
b17edc10 641 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 642 (unsigned long long) size, vmem_alloc_used_read(),
a0f6da3d 643 vmem_alloc_max);
644
c8e60837 645 kfree(dptr->kd_func);
646
a0f6da3d 647 memset(dptr, 0x5a, sizeof(kmem_debug_t));
648 kfree(dptr);
649
650 memset(ptr, 0x5a, size);
651 vfree(ptr);
652
b17edc10 653 SEXIT;
a0f6da3d 654}
655EXPORT_SYMBOL(vmem_free_track);
656
657# else /* DEBUG_KMEM_TRACKING */
658
659void *
660kmem_alloc_debug(size_t size, int flags, const char *func, int line,
661 int node_alloc, int node)
662{
663 void *ptr;
b17edc10 664 SENTRY;
a0f6da3d 665
10129680
BB
666 /*
667 * Marked unlikely because we should never be doing this,
668 * we tolerate to up 2 pages but a single page is best.
669 */
23d91792 670 if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
b17edc10 671 SDEBUG(SD_CONSOLE | SD_WARNING,
10129680 672 "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
3cb77549 673 (unsigned long long) size, flags, func, line,
d04c8a56 674 kmem_alloc_used_read(), kmem_alloc_max);
4b2220f0 675 dump_stack();
5198ea0e 676 }
a0f6da3d 677
678 /* Use the correct allocator */
679 if (node_alloc) {
680 ASSERT(!(flags & __GFP_ZERO));
c89fdee4 681 ptr = kmalloc_node_nofail(size, flags, node);
a0f6da3d 682 } else if (flags & __GFP_ZERO) {
c89fdee4 683 ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
a0f6da3d 684 } else {
c89fdee4 685 ptr = kmalloc_nofail(size, flags);
a0f6da3d 686 }
687
10129680 688 if (unlikely(ptr == NULL)) {
b17edc10 689 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
690 "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
691 (unsigned long long) size, flags, func, line,
d04c8a56 692 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 693 } else {
d04c8a56
BB
694 kmem_alloc_used_add(size);
695 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
696 kmem_alloc_max = kmem_alloc_used_read();
a0f6da3d 697
b17edc10 698 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
699 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
700 (unsigned long long) size, flags, func, line, ptr,
10129680 701 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 702 }
10129680 703
b17edc10 704 SRETURN(ptr);
a0f6da3d 705}
706EXPORT_SYMBOL(kmem_alloc_debug);
707
708void
973e8269 709kmem_free_debug(const void *ptr, size_t size)
a0f6da3d 710{
b17edc10 711 SENTRY;
a0f6da3d 712
713 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
714 (unsigned long long) size);
715
d04c8a56 716 kmem_alloc_used_sub(size);
b17edc10 717 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 718 (unsigned long long) size, kmem_alloc_used_read(),
a0f6da3d 719 kmem_alloc_max);
a0f6da3d 720 kfree(ptr);
721
b17edc10 722 SEXIT;
a0f6da3d 723}
724EXPORT_SYMBOL(kmem_free_debug);
725
726void *
727vmem_alloc_debug(size_t size, int flags, const char *func, int line)
728{
729 void *ptr;
b17edc10 730 SENTRY;
a0f6da3d 731
732 ASSERT(flags & KM_SLEEP);
733
10129680
BB
734 /* Use the correct allocator */
735 if (flags & __GFP_ZERO) {
736 ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
737 } else {
738 ptr = vmalloc_nofail(size, flags);
739 }
740
741 if (unlikely(ptr == NULL)) {
b17edc10 742 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
743 "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
744 (unsigned long long) size, flags, func, line,
d04c8a56 745 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 746 } else {
d04c8a56
BB
747 vmem_alloc_used_add(size);
748 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
749 vmem_alloc_max = vmem_alloc_used_read();
a0f6da3d 750
b17edc10 751 SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p "
a0f6da3d 752 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
d04c8a56 753 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 754 }
755
b17edc10 756 SRETURN(ptr);
a0f6da3d 757}
758EXPORT_SYMBOL(vmem_alloc_debug);
759
760void
973e8269 761vmem_free_debug(const void *ptr, size_t size)
a0f6da3d 762{
b17edc10 763 SENTRY;
a0f6da3d 764
765 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
766 (unsigned long long) size);
767
d04c8a56 768 vmem_alloc_used_sub(size);
b17edc10 769 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 770 (unsigned long long) size, vmem_alloc_used_read(),
a0f6da3d 771 vmem_alloc_max);
a0f6da3d 772 vfree(ptr);
773
b17edc10 774 SEXIT;
a0f6da3d 775}
776EXPORT_SYMBOL(vmem_free_debug);
777
778# endif /* DEBUG_KMEM_TRACKING */
779#endif /* DEBUG_KMEM */
780
10129680
BB
781/*
782 * Slab allocation interfaces
783 *
784 * While the Linux slab implementation was inspired by the Solaris
ecc39810 785 * implementation I cannot use it to emulate the Solaris APIs. I
10129680
BB
786 * require two features which are not provided by the Linux slab.
787 *
788 * 1) Constructors AND destructors. Recent versions of the Linux
789 * kernel have removed support for destructors. This is a deal
790 * breaker for the SPL which contains particularly expensive
791 * initializers for mutex's, condition variables, etc. We also
792 * require a minimal level of cleanup for these data types unlike
793 * many Linux data type which do need to be explicitly destroyed.
794 *
795 * 2) Virtual address space backed slab. Callers of the Solaris slab
796 * expect it to work well for both small are very large allocations.
797 * Because of memory fragmentation the Linux slab which is backed
798 * by kmalloc'ed memory performs very badly when confronted with
799 * large numbers of large allocations. Basing the slab on the
ecc39810 800 * virtual address space removes the need for contiguous pages
10129680
BB
801 * and greatly improve performance for large allocations.
802 *
803 * For these reasons, the SPL has its own slab implementation with
804 * the needed features. It is not as highly optimized as either the
805 * Solaris or Linux slabs, but it should get me most of what is
806 * needed until it can be optimized or obsoleted by another approach.
807 *
808 * One serious concern I do have about this method is the relatively
809 * small virtual address space on 32bit arches. This will seriously
810 * constrain the size of the slab caches and their performance.
811 *
812 * XXX: Improve the partial slab list by carefully maintaining a
813 * strict ordering of fullest to emptiest slabs based on
ecc39810 814 * the slab reference count. This guarantees the when freeing
10129680
BB
815 * slabs back to the system we need only linearly traverse the
816 * last N slabs in the list to discover all the freeable slabs.
817 *
818 * XXX: NUMA awareness for optionally allocating memory close to a
ecc39810 819 * particular core. This can be advantageous if you know the slab
10129680
BB
820 * object will be short lived and primarily accessed from one core.
821 *
822 * XXX: Slab coloring may also yield performance improvements and would
823 * be desirable to implement.
824 */
825
826struct list_head spl_kmem_cache_list; /* List of caches */
827struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
828
829static int spl_cache_flush(spl_kmem_cache_t *skc,
830 spl_kmem_magazine_t *skm, int flush);
831
a55bcaad 832SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
495bd532
BB
833SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
834 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
10129680 835
a1502d76 836static void *
837kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
fece7c99 838{
a1502d76 839 void *ptr;
f1ca4da6 840
8b45dda2
BB
841 ASSERT(ISP2(size));
842
2092cf68 843 if (skc->skc_flags & KMC_KMEM) {
8b45dda2 844 ptr = (void *)__get_free_pages(flags, get_order(size));
2092cf68
BB
845 } else {
846 /*
847 * As part of vmalloc() an __pte_alloc_kernel() allocation
848 * may occur. This internal allocation does not honor the
849 * gfp flags passed to vmalloc(). This means even when
850 * vmalloc(GFP_NOFS) is called it is possible synchronous
851 * reclaim will occur. This reclaim can trigger file IO
852 * which can result in a deadlock. This issue can be avoided
853 * by explicitly setting PF_MEMALLOC on the process to
854 * subvert synchronous reclaim. The following bug has
855 * been filed at kernel.org to track the issue.
856 *
857 * https://bugzilla.kernel.org/show_bug.cgi?id=30702
b8b6e4c4
BB
858 *
859 * NOTE: Only set PF_MEMALLOC if it's not already set, and
860 * then only clear it when we were the one who set it.
2092cf68 861 */
b8b6e4c4 862 if (!(flags & __GFP_FS) && !(current->flags & PF_MEMALLOC)) {
2092cf68 863 current->flags |= PF_MEMALLOC;
b8b6e4c4 864 ptr = __vmalloc(size, flags|__GFP_HIGHMEM, PAGE_KERNEL);
2092cf68 865 current->flags &= ~PF_MEMALLOC;
b8b6e4c4
BB
866 } else {
867 ptr = __vmalloc(size, flags|__GFP_HIGHMEM, PAGE_KERNEL);
868 }
2092cf68
BB
869 }
870
8b45dda2
BB
871 /* Resulting allocated memory will be page aligned */
872 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
fece7c99 873
a1502d76 874 return ptr;
875}
fece7c99 876
a1502d76 877static void
878kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
879{
8b45dda2
BB
880 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
881 ASSERT(ISP2(size));
882
06089b9e
BB
883 /*
884 * The Linux direct reclaim path uses this out of band value to
885 * determine if forward progress is being made. Normally this is
886 * incremented by kmem_freepages() which is part of the various
887 * Linux slab implementations. However, since we are using none
888 * of that infrastructure we are responsible for incrementing it.
889 */
890 if (current->reclaim_state)
891 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
892
8b45dda2
BB
893 if (skc->skc_flags & KMC_KMEM)
894 free_pages((unsigned long)ptr, get_order(size));
895 else
896 vfree(ptr);
897}
898
899/*
900 * Required space for each aligned sks.
901 */
902static inline uint32_t
903spl_sks_size(spl_kmem_cache_t *skc)
904{
905 return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
906 skc->skc_obj_align, uint32_t);
907}
908
909/*
910 * Required space for each aligned object.
911 */
912static inline uint32_t
913spl_obj_size(spl_kmem_cache_t *skc)
914{
915 uint32_t align = skc->skc_obj_align;
916
917 return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
918 P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
919}
920
921/*
922 * Lookup the spl_kmem_object_t for an object given that object.
923 */
924static inline spl_kmem_obj_t *
925spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
926{
927 return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
928 skc->skc_obj_align, uint32_t);
929}
930
931/*
932 * Required space for each offslab object taking in to account alignment
933 * restrictions and the power-of-two requirement of kv_alloc().
934 */
935static inline uint32_t
936spl_offslab_size(spl_kmem_cache_t *skc)
937{
938 return 1UL << (highbit(spl_obj_size(skc)) + 1);
fece7c99 939}
940
ea3e6ca9
BB
941/*
942 * It's important that we pack the spl_kmem_obj_t structure and the
48e0606a
BB
943 * actual objects in to one large address space to minimize the number
944 * of calls to the allocator. It is far better to do a few large
945 * allocations and then subdivide it ourselves. Now which allocator
946 * we use requires balancing a few trade offs.
947 *
948 * For small objects we use kmem_alloc() because as long as you are
949 * only requesting a small number of pages (ideally just one) its cheap.
950 * However, when you start requesting multiple pages with kmem_alloc()
ecc39810 951 * it gets increasingly expensive since it requires contiguous pages.
48e0606a 952 * For this reason we shift to vmem_alloc() for slabs of large objects
ecc39810 953 * which removes the need for contiguous pages. We do not use
48e0606a
BB
954 * vmem_alloc() in all cases because there is significant locking
955 * overhead in __get_vm_area_node(). This function takes a single
ecc39810 956 * global lock when acquiring an available virtual address range which
48e0606a
BB
957 * serializes all vmem_alloc()'s for all slab caches. Using slightly
958 * different allocation functions for small and large objects should
959 * give us the best of both worlds.
960 *
961 * KMC_ONSLAB KMC_OFFSLAB
962 *
963 * +------------------------+ +-----------------+
964 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
965 * | skc_obj_size <-+ | | +-----------------+ | |
966 * | spl_kmem_obj_t | | | |
967 * | skc_obj_size <---+ | +-----------------+ | |
968 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
969 * | ... v | | spl_kmem_obj_t | |
970 * +------------------------+ +-----------------+ v
971 */
fece7c99 972static spl_kmem_slab_t *
a1502d76 973spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
fece7c99 974{
975 spl_kmem_slab_t *sks;
a1502d76 976 spl_kmem_obj_t *sko, *n;
977 void *base, *obj;
8b45dda2
BB
978 uint32_t obj_size, offslab_size = 0;
979 int i, rc = 0;
48e0606a 980
a1502d76 981 base = kv_alloc(skc, skc->skc_slab_size, flags);
982 if (base == NULL)
b17edc10 983 SRETURN(NULL);
fece7c99 984
a1502d76 985 sks = (spl_kmem_slab_t *)base;
986 sks->sks_magic = SKS_MAGIC;
987 sks->sks_objs = skc->skc_slab_objs;
988 sks->sks_age = jiffies;
989 sks->sks_cache = skc;
990 INIT_LIST_HEAD(&sks->sks_list);
991 INIT_LIST_HEAD(&sks->sks_free_list);
992 sks->sks_ref = 0;
8b45dda2 993 obj_size = spl_obj_size(skc);
48e0606a 994
8d177c18 995 if (skc->skc_flags & KMC_OFFSLAB)
8b45dda2 996 offslab_size = spl_offslab_size(skc);
fece7c99 997
998 for (i = 0; i < sks->sks_objs; i++) {
a1502d76 999 if (skc->skc_flags & KMC_OFFSLAB) {
8b45dda2 1000 obj = kv_alloc(skc, offslab_size, flags);
a1502d76 1001 if (!obj)
b17edc10 1002 SGOTO(out, rc = -ENOMEM);
a1502d76 1003 } else {
8b45dda2 1004 obj = base + spl_sks_size(skc) + (i * obj_size);
a1502d76 1005 }
1006
8b45dda2
BB
1007 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1008 sko = spl_sko_from_obj(skc, obj);
fece7c99 1009 sko->sko_addr = obj;
1010 sko->sko_magic = SKO_MAGIC;
1011 sko->sko_slab = sks;
1012 INIT_LIST_HEAD(&sko->sko_list);
fece7c99 1013 list_add_tail(&sko->sko_list, &sks->sks_free_list);
1014 }
1015
fece7c99 1016 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
1017 if (skc->skc_ctor)
1018 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
2fb9b26a 1019out:
a1502d76 1020 if (rc) {
1021 if (skc->skc_flags & KMC_OFFSLAB)
48e0606a
BB
1022 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
1023 sko_list)
8b45dda2 1024 kv_free(skc, sko->sko_addr, offslab_size);
fece7c99 1025
a1502d76 1026 kv_free(skc, base, skc->skc_slab_size);
1027 sks = NULL;
fece7c99 1028 }
1029
b17edc10 1030 SRETURN(sks);
fece7c99 1031}
1032
ea3e6ca9
BB
1033/*
1034 * Remove a slab from complete or partial list, it must be called with
1035 * the 'skc->skc_lock' held but the actual free must be performed
1036 * outside the lock to prevent deadlocking on vmem addresses.
fece7c99 1037 */
f1ca4da6 1038static void
ea3e6ca9
BB
1039spl_slab_free(spl_kmem_slab_t *sks,
1040 struct list_head *sks_list, struct list_head *sko_list)
1041{
2fb9b26a 1042 spl_kmem_cache_t *skc;
b17edc10 1043 SENTRY;
57d86234 1044
2fb9b26a 1045 ASSERT(sks->sks_magic == SKS_MAGIC);
4afaaefa 1046 ASSERT(sks->sks_ref == 0);
d6a26c6a 1047
fece7c99 1048 skc = sks->sks_cache;
1049 ASSERT(skc->skc_magic == SKC_MAGIC);
d46630e0 1050 ASSERT(spin_is_locked(&skc->skc_lock));
f1ca4da6 1051
1a944a7d
BB
1052 /*
1053 * Update slab/objects counters in the cache, then remove the
1054 * slab from the skc->skc_partial_list. Finally add the slab
1055 * and all its objects in to the private work lists where the
1056 * destructors will be called and the memory freed to the system.
1057 */
fece7c99 1058 skc->skc_obj_total -= sks->sks_objs;
1059 skc->skc_slab_total--;
1060 list_del(&sks->sks_list);
ea3e6ca9 1061 list_add(&sks->sks_list, sks_list);
1a944a7d
BB
1062 list_splice_init(&sks->sks_free_list, sko_list);
1063
b17edc10 1064 SEXIT;
2fb9b26a 1065}
d6a26c6a 1066
ea3e6ca9
BB
1067/*
1068 * Traverses all the partial slabs attached to a cache and free those
1069 * which which are currently empty, and have not been touched for
37db7d8c
BB
1070 * skc_delay seconds to avoid thrashing. The count argument is
1071 * passed to optionally cap the number of slabs reclaimed, a count
1072 * of zero means try and reclaim everything. When flag is set we
1073 * always free an available slab regardless of age.
ea3e6ca9
BB
1074 */
1075static void
37db7d8c 1076spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
2fb9b26a 1077{
1078 spl_kmem_slab_t *sks, *m;
ea3e6ca9
BB
1079 spl_kmem_obj_t *sko, *n;
1080 LIST_HEAD(sks_list);
1081 LIST_HEAD(sko_list);
8b45dda2
BB
1082 uint32_t size = 0;
1083 int i = 0;
b17edc10 1084 SENTRY;
2fb9b26a 1085
2fb9b26a 1086 /*
ea3e6ca9
BB
1087 * Move empty slabs and objects which have not been touched in
1088 * skc_delay seconds on to private lists to be freed outside
1a944a7d
BB
1089 * the spin lock. This delay time is important to avoid thrashing
1090 * however when flag is set the delay will not be used.
2fb9b26a 1091 */
ea3e6ca9 1092 spin_lock(&skc->skc_lock);
1a944a7d
BB
1093 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
1094 /*
1095 * All empty slabs are at the end of skc->skc_partial_list,
1096 * therefore once a non-empty slab is found we can stop
1097 * scanning. Additionally, stop when reaching the target
ecc39810 1098 * reclaim 'count' if a non-zero threshold is given.
1a944a7d 1099 */
cef7605c 1100 if ((sks->sks_ref > 0) || (count && i >= count))
37db7d8c
BB
1101 break;
1102
37db7d8c 1103 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
ea3e6ca9 1104 spl_slab_free(sks, &sks_list, &sko_list);
37db7d8c
BB
1105 i++;
1106 }
ea3e6ca9
BB
1107 }
1108 spin_unlock(&skc->skc_lock);
1109
1110 /*
1a944a7d
BB
1111 * The following two loops ensure all the object destructors are
1112 * run, any offslab objects are freed, and the slabs themselves
1113 * are freed. This is all done outside the skc->skc_lock since
1114 * this allows the destructor to sleep, and allows us to perform
1115 * a conditional reschedule when a freeing a large number of
1116 * objects and slabs back to the system.
ea3e6ca9 1117 */
1a944a7d 1118 if (skc->skc_flags & KMC_OFFSLAB)
8b45dda2 1119 size = spl_offslab_size(skc);
ea3e6ca9 1120
1a944a7d
BB
1121 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
1122 ASSERT(sko->sko_magic == SKO_MAGIC);
1123
1124 if (skc->skc_dtor)
1125 skc->skc_dtor(sko->sko_addr, skc->skc_private);
1126
1127 if (skc->skc_flags & KMC_OFFSLAB)
ea3e6ca9 1128 kv_free(skc, sko->sko_addr, size);
1a944a7d
BB
1129
1130 cond_resched();
2fb9b26a 1131 }
1132
37db7d8c 1133 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1a944a7d 1134 ASSERT(sks->sks_magic == SKS_MAGIC);
ea3e6ca9 1135 kv_free(skc, sks, skc->skc_slab_size);
37db7d8c
BB
1136 cond_resched();
1137 }
ea3e6ca9 1138
b17edc10 1139 SEXIT;
f1ca4da6 1140}
1141
ea3e6ca9
BB
1142/*
1143 * Called regularly on all caches to age objects out of the magazines
1144 * which have not been access in skc->skc_delay seconds. This prevents
1145 * idle magazines from holding memory which might be better used by
1146 * other caches or parts of the system. The delay is present to
1147 * prevent thrashing the magazine.
1148 */
1149static void
1150spl_magazine_age(void *data)
f1ca4da6 1151{
9b1b8e4c
BB
1152 spl_kmem_magazine_t *skm =
1153 spl_get_work_data(data, spl_kmem_magazine_t, skm_work.work);
1154 spl_kmem_cache_t *skc = skm->skm_cache;
1155 int i = smp_processor_id();
1156
1157 ASSERT(skm->skm_magic == SKM_MAGIC);
1158 ASSERT(skc->skc_magic == SKC_MAGIC);
1159 ASSERT(skc->skc_mag[i] == skm);
f1ca4da6 1160
ea3e6ca9
BB
1161 if (skm->skm_avail > 0 &&
1162 time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
1163 (void)spl_cache_flush(skc, skm, skm->skm_refill);
9b1b8e4c
BB
1164
1165 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1166 schedule_delayed_work_on(i, &skm->skm_work,
1167 skc->skc_delay / 3 * HZ);
ea3e6ca9 1168}
4efd4118 1169
ea3e6ca9
BB
1170/*
1171 * Called regularly to keep a downward pressure on the size of idle
1172 * magazines and to release free slabs from the cache. This function
ecc39810 1173 * never calls the registered reclaim function, that only occurs
ea3e6ca9
BB
1174 * under memory pressure or with a direct call to spl_kmem_reap().
1175 */
1176static void
1177spl_cache_age(void *data)
1178{
9b1b8e4c 1179 spl_kmem_cache_t *skc =
ea3e6ca9
BB
1180 spl_get_work_data(data, spl_kmem_cache_t, skc_work.work);
1181
1182 ASSERT(skc->skc_magic == SKC_MAGIC);
37db7d8c 1183 spl_slab_reclaim(skc, skc->skc_reap, 0);
ea3e6ca9
BB
1184
1185 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
37db7d8c 1186 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
2fb9b26a 1187}
f1ca4da6 1188
ea3e6ca9 1189/*
8b45dda2 1190 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
ea3e6ca9
BB
1191 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
1192 * for very small objects we may end up with more than this so as not
1193 * to waste space in the minimal allocation of a single page. Also for
1194 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
1195 * lower than this and we will fail.
1196 */
48e0606a
BB
1197static int
1198spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
1199{
8b45dda2 1200 uint32_t sks_size, obj_size, max_size;
48e0606a
BB
1201
1202 if (skc->skc_flags & KMC_OFFSLAB) {
ea3e6ca9 1203 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
48e0606a
BB
1204 *size = sizeof(spl_kmem_slab_t);
1205 } else {
8b45dda2
BB
1206 sks_size = spl_sks_size(skc);
1207 obj_size = spl_obj_size(skc);
ea3e6ca9
BB
1208
1209 if (skc->skc_flags & KMC_KMEM)
aa600d8a 1210 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
ea3e6ca9
BB
1211 else
1212 max_size = (32 * 1024 * 1024);
48e0606a 1213
8b45dda2
BB
1214 /* Power of two sized slab */
1215 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
ea3e6ca9
BB
1216 *objs = (*size - sks_size) / obj_size;
1217 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
b17edc10 1218 SRETURN(0);
ea3e6ca9 1219 }
48e0606a 1220
ea3e6ca9 1221 /*
8b45dda2 1222 * Unable to satisfy target objects per slab, fall back to
ea3e6ca9
BB
1223 * allocating a maximally sized slab and assuming it can
1224 * contain the minimum objects count use it. If not fail.
1225 */
1226 *size = max_size;
1227 *objs = (*size - sks_size) / obj_size;
1228 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
b17edc10 1229 SRETURN(0);
48e0606a
BB
1230 }
1231
b17edc10 1232 SRETURN(-ENOSPC);
48e0606a
BB
1233}
1234
ea3e6ca9
BB
1235/*
1236 * Make a guess at reasonable per-cpu magazine size based on the size of
1237 * each object and the cost of caching N of them in each magazine. Long
1238 * term this should really adapt based on an observed usage heuristic.
1239 */
4afaaefa 1240static int
1241spl_magazine_size(spl_kmem_cache_t *skc)
1242{
8b45dda2
BB
1243 uint32_t obj_size = spl_obj_size(skc);
1244 int size;
b17edc10 1245 SENTRY;
4afaaefa 1246
ea3e6ca9 1247 /* Per-magazine sizes below assume a 4Kib page size */
8b45dda2 1248 if (obj_size > (PAGE_SIZE * 256))
ea3e6ca9 1249 size = 4; /* Minimum 4Mib per-magazine */
8b45dda2 1250 else if (obj_size > (PAGE_SIZE * 32))
ea3e6ca9 1251 size = 16; /* Minimum 2Mib per-magazine */
8b45dda2 1252 else if (obj_size > (PAGE_SIZE))
ea3e6ca9 1253 size = 64; /* Minimum 256Kib per-magazine */
8b45dda2 1254 else if (obj_size > (PAGE_SIZE / 4))
ea3e6ca9 1255 size = 128; /* Minimum 128Kib per-magazine */
4afaaefa 1256 else
ea3e6ca9 1257 size = 256;
4afaaefa 1258
b17edc10 1259 SRETURN(size);
4afaaefa 1260}
1261
ea3e6ca9 1262/*
ecc39810 1263 * Allocate a per-cpu magazine to associate with a specific core.
ea3e6ca9 1264 */
4afaaefa 1265static spl_kmem_magazine_t *
1266spl_magazine_alloc(spl_kmem_cache_t *skc, int node)
1267{
1268 spl_kmem_magazine_t *skm;
1269 int size = sizeof(spl_kmem_magazine_t) +
1270 sizeof(void *) * skc->skc_mag_size;
b17edc10 1271 SENTRY;
4afaaefa 1272
c89fdee4 1273 skm = kmem_alloc_node(size, KM_SLEEP, node);
4afaaefa 1274 if (skm) {
1275 skm->skm_magic = SKM_MAGIC;
1276 skm->skm_avail = 0;
1277 skm->skm_size = skc->skc_mag_size;
1278 skm->skm_refill = skc->skc_mag_refill;
9b1b8e4c
BB
1279 skm->skm_cache = skc;
1280 spl_init_delayed_work(&skm->skm_work, spl_magazine_age, skm);
ea3e6ca9 1281 skm->skm_age = jiffies;
4afaaefa 1282 }
1283
b17edc10 1284 SRETURN(skm);
4afaaefa 1285}
1286
ea3e6ca9 1287/*
ecc39810 1288 * Free a per-cpu magazine associated with a specific core.
ea3e6ca9 1289 */
4afaaefa 1290static void
1291spl_magazine_free(spl_kmem_magazine_t *skm)
1292{
a0f6da3d 1293 int size = sizeof(spl_kmem_magazine_t) +
1294 sizeof(void *) * skm->skm_size;
1295
b17edc10 1296 SENTRY;
4afaaefa 1297 ASSERT(skm->skm_magic == SKM_MAGIC);
1298 ASSERT(skm->skm_avail == 0);
a0f6da3d 1299
1300 kmem_free(skm, size);
b17edc10 1301 SEXIT;
4afaaefa 1302}
1303
ea3e6ca9
BB
1304/*
1305 * Create all pre-cpu magazines of reasonable sizes.
1306 */
4afaaefa 1307static int
1308spl_magazine_create(spl_kmem_cache_t *skc)
1309{
37db7d8c 1310 int i;
b17edc10 1311 SENTRY;
4afaaefa 1312
1313 skc->skc_mag_size = spl_magazine_size(skc);
ea3e6ca9 1314 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
4afaaefa 1315
37db7d8c
BB
1316 for_each_online_cpu(i) {
1317 skc->skc_mag[i] = spl_magazine_alloc(skc, cpu_to_node(i));
1318 if (!skc->skc_mag[i]) {
1319 for (i--; i >= 0; i--)
1320 spl_magazine_free(skc->skc_mag[i]);
4afaaefa 1321
b17edc10 1322 SRETURN(-ENOMEM);
37db7d8c
BB
1323 }
1324 }
4afaaefa 1325
9b1b8e4c
BB
1326 /* Only after everything is allocated schedule magazine work */
1327 for_each_online_cpu(i)
1328 schedule_delayed_work_on(i, &skc->skc_mag[i]->skm_work,
1329 skc->skc_delay / 3 * HZ);
1330
b17edc10 1331 SRETURN(0);
4afaaefa 1332}
1333
ea3e6ca9
BB
1334/*
1335 * Destroy all pre-cpu magazines.
1336 */
4afaaefa 1337static void
1338spl_magazine_destroy(spl_kmem_cache_t *skc)
1339{
37db7d8c
BB
1340 spl_kmem_magazine_t *skm;
1341 int i;
b17edc10 1342 SENTRY;
37db7d8c
BB
1343
1344 for_each_online_cpu(i) {
1345 skm = skc->skc_mag[i];
1346 (void)spl_cache_flush(skc, skm, skm->skm_avail);
1347 spl_magazine_free(skm);
1348 }
1349
b17edc10 1350 SEXIT;
4afaaefa 1351}
1352
ea3e6ca9
BB
1353/*
1354 * Create a object cache based on the following arguments:
1355 * name cache name
1356 * size cache object size
1357 * align cache object alignment
1358 * ctor cache object constructor
1359 * dtor cache object destructor
1360 * reclaim cache object reclaim
1361 * priv cache private data for ctor/dtor/reclaim
1362 * vmp unused must be NULL
1363 * flags
1364 * KMC_NOTOUCH Disable cache object aging (unsupported)
1365 * KMC_NODEBUG Disable debugging (unsupported)
1366 * KMC_NOMAGAZINE Disable magazine (unsupported)
1367 * KMC_NOHASH Disable hashing (unsupported)
1368 * KMC_QCACHE Disable qcache (unsupported)
1369 * KMC_KMEM Force kmem backed cache
1370 * KMC_VMEM Force vmem backed cache
1371 * KMC_OFFSLAB Locate objects off the slab
1372 */
2fb9b26a 1373spl_kmem_cache_t *
1374spl_kmem_cache_create(char *name, size_t size, size_t align,
1375 spl_kmem_ctor_t ctor,
1376 spl_kmem_dtor_t dtor,
1377 spl_kmem_reclaim_t reclaim,
1378 void *priv, void *vmp, int flags)
1379{
1380 spl_kmem_cache_t *skc;
a1502d76 1381 int rc, kmem_flags = KM_SLEEP;
b17edc10 1382 SENTRY;
937879f1 1383
a1502d76 1384 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1385 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1386 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
48e0606a 1387 ASSERT(vmp == NULL);
a1502d76 1388
2fb9b26a 1389 /* We may be called when there is a non-zero preempt_count or
1390 * interrupts are disabled is which case we must not sleep.
1391 */
e9d7a2be 1392 if (current_thread_info()->preempt_count || irqs_disabled())
2fb9b26a 1393 kmem_flags = KM_NOSLEEP;
0a6fd143 1394
ecc39810 1395 /* Allocate memory for a new cache an initialize it. Unfortunately,
5198ea0e
BB
1396 * this usually ends up being a large allocation of ~32k because
1397 * we need to allocate enough memory for the worst case number of
1398 * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
23d91792 1399 * explicitly pass KM_NODEBUG to suppress the kmem warning */
5198ea0e 1400 skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc),
23d91792 1401 kmem_flags | KM_NODEBUG);
e9d7a2be 1402 if (skc == NULL)
b17edc10 1403 SRETURN(NULL);
d61e12af 1404
2fb9b26a 1405 skc->skc_magic = SKC_MAGIC;
2fb9b26a 1406 skc->skc_name_size = strlen(name) + 1;
1407 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
1408 if (skc->skc_name == NULL) {
1409 kmem_free(skc, sizeof(*skc));
b17edc10 1410 SRETURN(NULL);
2fb9b26a 1411 }
1412 strncpy(skc->skc_name, name, skc->skc_name_size);
1413
e9d7a2be 1414 skc->skc_ctor = ctor;
1415 skc->skc_dtor = dtor;
1416 skc->skc_reclaim = reclaim;
2fb9b26a 1417 skc->skc_private = priv;
1418 skc->skc_vmp = vmp;
1419 skc->skc_flags = flags;
1420 skc->skc_obj_size = size;
48e0606a 1421 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
2fb9b26a 1422 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
37db7d8c 1423 skc->skc_reap = SPL_KMEM_CACHE_REAP;
ea3e6ca9 1424 atomic_set(&skc->skc_ref, 0);
2fb9b26a 1425
2fb9b26a 1426 INIT_LIST_HEAD(&skc->skc_list);
1427 INIT_LIST_HEAD(&skc->skc_complete_list);
1428 INIT_LIST_HEAD(&skc->skc_partial_list);
d46630e0 1429 spin_lock_init(&skc->skc_lock);
e9d7a2be 1430 skc->skc_slab_fail = 0;
1431 skc->skc_slab_create = 0;
1432 skc->skc_slab_destroy = 0;
2fb9b26a 1433 skc->skc_slab_total = 0;
1434 skc->skc_slab_alloc = 0;
1435 skc->skc_slab_max = 0;
1436 skc->skc_obj_total = 0;
1437 skc->skc_obj_alloc = 0;
1438 skc->skc_obj_max = 0;
a1502d76 1439
48e0606a 1440 if (align) {
8b45dda2
BB
1441 VERIFY(ISP2(align));
1442 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */
1443 VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */
48e0606a
BB
1444 skc->skc_obj_align = align;
1445 }
1446
a1502d76 1447 /* If none passed select a cache type based on object size */
1448 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
8b45dda2 1449 if (spl_obj_size(skc) < (PAGE_SIZE / 8))
a1502d76 1450 skc->skc_flags |= KMC_KMEM;
8b45dda2 1451 else
a1502d76 1452 skc->skc_flags |= KMC_VMEM;
a1502d76 1453 }
1454
48e0606a
BB
1455 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1456 if (rc)
b17edc10 1457 SGOTO(out, rc);
4afaaefa 1458
1459 rc = spl_magazine_create(skc);
48e0606a 1460 if (rc)
b17edc10 1461 SGOTO(out, rc);
2fb9b26a 1462
ea3e6ca9 1463 spl_init_delayed_work(&skc->skc_work, spl_cache_age, skc);
37db7d8c 1464 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
ea3e6ca9 1465
2fb9b26a 1466 down_write(&spl_kmem_cache_sem);
e9d7a2be 1467 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
2fb9b26a 1468 up_write(&spl_kmem_cache_sem);
1469
b17edc10 1470 SRETURN(skc);
48e0606a
BB
1471out:
1472 kmem_free(skc->skc_name, skc->skc_name_size);
1473 kmem_free(skc, sizeof(*skc));
b17edc10 1474 SRETURN(NULL);
f1ca4da6 1475}
2fb9b26a 1476EXPORT_SYMBOL(spl_kmem_cache_create);
f1ca4da6 1477
2b354302
BB
1478/*
1479 * Register a move callback to for cache defragmentation.
1480 * XXX: Unimplemented but harmless to stub out for now.
1481 */
1482void
1483spl_kmem_cache_set_move(kmem_cache_t *skc,
1484 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1485{
1486 ASSERT(move != NULL);
1487}
1488EXPORT_SYMBOL(spl_kmem_cache_set_move);
1489
ea3e6ca9 1490/*
ecc39810 1491 * Destroy a cache and all objects associated with the cache.
ea3e6ca9 1492 */
2fb9b26a 1493void
1494spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
f1ca4da6 1495{
ea3e6ca9 1496 DECLARE_WAIT_QUEUE_HEAD(wq);
9b1b8e4c 1497 int i;
b17edc10 1498 SENTRY;
f1ca4da6 1499
e9d7a2be 1500 ASSERT(skc->skc_magic == SKC_MAGIC);
1501
1502 down_write(&spl_kmem_cache_sem);
1503 list_del_init(&skc->skc_list);
1504 up_write(&spl_kmem_cache_sem);
2fb9b26a 1505
ea3e6ca9 1506 /* Cancel any and wait for any pending delayed work */
64c075c3
GB
1507 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1508 cancel_delayed_work_sync(&skc->skc_work);
9b1b8e4c 1509 for_each_online_cpu(i)
64c075c3 1510 cancel_delayed_work_sync(&skc->skc_mag[i]->skm_work);
9b1b8e4c 1511
ea3e6ca9
BB
1512 flush_scheduled_work();
1513
1514 /* Wait until all current callers complete, this is mainly
1515 * to catch the case where a low memory situation triggers a
1516 * cache reaping action which races with this destroy. */
1517 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1518
4afaaefa 1519 spl_magazine_destroy(skc);
37db7d8c 1520 spl_slab_reclaim(skc, 0, 1);
d46630e0 1521 spin_lock(&skc->skc_lock);
d6a26c6a 1522
2fb9b26a 1523 /* Validate there are no objects in use and free all the
4afaaefa 1524 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
ea3e6ca9
BB
1525 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1526 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1527 ASSERT3U(skc->skc_slab_total, ==, 0);
1528 ASSERT3U(skc->skc_obj_total, ==, 0);
2fb9b26a 1529 ASSERT(list_empty(&skc->skc_complete_list));
a1502d76 1530
2fb9b26a 1531 kmem_free(skc->skc_name, skc->skc_name_size);
d46630e0 1532 spin_unlock(&skc->skc_lock);
ff449ac4 1533
4afaaefa 1534 kmem_free(skc, sizeof(*skc));
2fb9b26a 1535
b17edc10 1536 SEXIT;
f1ca4da6 1537}
2fb9b26a 1538EXPORT_SYMBOL(spl_kmem_cache_destroy);
f1ca4da6 1539
ea3e6ca9
BB
1540/*
1541 * Allocate an object from a slab attached to the cache. This is used to
1542 * repopulate the per-cpu magazine caches in batches when they run low.
1543 */
4afaaefa 1544static void *
1545spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
f1ca4da6 1546{
2fb9b26a 1547 spl_kmem_obj_t *sko;
f1ca4da6 1548
e9d7a2be 1549 ASSERT(skc->skc_magic == SKC_MAGIC);
1550 ASSERT(sks->sks_magic == SKS_MAGIC);
4afaaefa 1551 ASSERT(spin_is_locked(&skc->skc_lock));
2fb9b26a 1552
a1502d76 1553 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
4afaaefa 1554 ASSERT(sko->sko_magic == SKO_MAGIC);
1555 ASSERT(sko->sko_addr != NULL);
2fb9b26a 1556
a1502d76 1557 /* Remove from sks_free_list */
4afaaefa 1558 list_del_init(&sko->sko_list);
2fb9b26a 1559
4afaaefa 1560 sks->sks_age = jiffies;
1561 sks->sks_ref++;
1562 skc->skc_obj_alloc++;
2fb9b26a 1563
4afaaefa 1564 /* Track max obj usage statistics */
1565 if (skc->skc_obj_alloc > skc->skc_obj_max)
1566 skc->skc_obj_max = skc->skc_obj_alloc;
2fb9b26a 1567
4afaaefa 1568 /* Track max slab usage statistics */
1569 if (sks->sks_ref == 1) {
1570 skc->skc_slab_alloc++;
f1ca4da6 1571
4afaaefa 1572 if (skc->skc_slab_alloc > skc->skc_slab_max)
1573 skc->skc_slab_max = skc->skc_slab_alloc;
2fb9b26a 1574 }
1575
4afaaefa 1576 return sko->sko_addr;
1577}
c30df9c8 1578
ea3e6ca9 1579/*
ecc39810
BB
1580 * No available objects on any slabs, create a new slab. Since this
1581 * is an expensive operation we do it without holding the spin lock and
1582 * only briefly acquire it when we link in the fully allocated and
ea3e6ca9 1583 * constructed slab.
4afaaefa 1584 */
1585static spl_kmem_slab_t *
1586spl_cache_grow(spl_kmem_cache_t *skc, int flags)
1587{
e9d7a2be 1588 spl_kmem_slab_t *sks;
b17edc10 1589 SENTRY;
f1ca4da6 1590
e9d7a2be 1591 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
1592 local_irq_enable();
1593 might_sleep();
e9d7a2be 1594
ea3e6ca9
BB
1595 /*
1596 * Before allocating a new slab check if the slab is being reaped.
1597 * If it is there is a good chance we can wait until it finishes
1598 * and then use one of the newly freed but not aged-out slabs.
1599 */
1600 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1601 schedule();
b17edc10 1602 SGOTO(out, sks= NULL);
4afaaefa 1603 }
2fb9b26a 1604
ea3e6ca9 1605 /* Allocate a new slab for the cache */
23d91792 1606 sks = spl_slab_alloc(skc, flags | __GFP_NORETRY | KM_NODEBUG);
ea3e6ca9 1607 if (sks == NULL)
b17edc10 1608 SGOTO(out, sks = NULL);
4afaaefa 1609
ea3e6ca9 1610 /* Link the new empty slab in to the end of skc_partial_list. */
d46630e0 1611 spin_lock(&skc->skc_lock);
2fb9b26a 1612 skc->skc_slab_total++;
1613 skc->skc_obj_total += sks->sks_objs;
1614 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
d46630e0 1615 spin_unlock(&skc->skc_lock);
ea3e6ca9
BB
1616out:
1617 local_irq_disable();
4afaaefa 1618
b17edc10 1619 SRETURN(sks);
f1ca4da6 1620}
1621
ea3e6ca9
BB
1622/*
1623 * Refill a per-cpu magazine with objects from the slabs for this
1624 * cache. Ideally the magazine can be repopulated using existing
1625 * objects which have been released, however if we are unable to
1626 * locate enough free objects new slabs of objects will be created.
1627 */
4afaaefa 1628static int
1629spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
f1ca4da6 1630{
e9d7a2be 1631 spl_kmem_slab_t *sks;
1632 int rc = 0, refill;
b17edc10 1633 SENTRY;
f1ca4da6 1634
e9d7a2be 1635 ASSERT(skc->skc_magic == SKC_MAGIC);
1636 ASSERT(skm->skm_magic == SKM_MAGIC);
1637
e9d7a2be 1638 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
d46630e0 1639 spin_lock(&skc->skc_lock);
ff449ac4 1640
4afaaefa 1641 while (refill > 0) {
ea3e6ca9 1642 /* No slabs available we may need to grow the cache */
4afaaefa 1643 if (list_empty(&skc->skc_partial_list)) {
1644 spin_unlock(&skc->skc_lock);
ff449ac4 1645
4afaaefa 1646 sks = spl_cache_grow(skc, flags);
1647 if (!sks)
b17edc10 1648 SGOTO(out, rc);
4afaaefa 1649
1650 /* Rescheduled to different CPU skm is not local */
1651 if (skm != skc->skc_mag[smp_processor_id()])
b17edc10 1652 SGOTO(out, rc);
e9d7a2be 1653
1654 /* Potentially rescheduled to the same CPU but
ecc39810 1655 * allocations may have occurred from this CPU while
e9d7a2be 1656 * we were sleeping so recalculate max refill. */
1657 refill = MIN(refill, skm->skm_size - skm->skm_avail);
4afaaefa 1658
1659 spin_lock(&skc->skc_lock);
1660 continue;
1661 }
d46630e0 1662
4afaaefa 1663 /* Grab the next available slab */
1664 sks = list_entry((&skc->skc_partial_list)->next,
1665 spl_kmem_slab_t, sks_list);
1666 ASSERT(sks->sks_magic == SKS_MAGIC);
1667 ASSERT(sks->sks_ref < sks->sks_objs);
1668 ASSERT(!list_empty(&sks->sks_free_list));
d46630e0 1669
4afaaefa 1670 /* Consume as many objects as needed to refill the requested
e9d7a2be 1671 * cache. We must also be careful not to overfill it. */
1672 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++rc) {
1673 ASSERT(skm->skm_avail < skm->skm_size);
1674 ASSERT(rc < skm->skm_size);
4afaaefa 1675 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
e9d7a2be 1676 }
f1ca4da6 1677
4afaaefa 1678 /* Move slab to skc_complete_list when full */
1679 if (sks->sks_ref == sks->sks_objs) {
1680 list_del(&sks->sks_list);
1681 list_add(&sks->sks_list, &skc->skc_complete_list);
2fb9b26a 1682 }
1683 }
57d86234 1684
4afaaefa 1685 spin_unlock(&skc->skc_lock);
1686out:
1687 /* Returns the number of entries added to cache */
b17edc10 1688 SRETURN(rc);
4afaaefa 1689}
1690
ea3e6ca9
BB
1691/*
1692 * Release an object back to the slab from which it came.
1693 */
4afaaefa 1694static void
1695spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1696{
e9d7a2be 1697 spl_kmem_slab_t *sks = NULL;
4afaaefa 1698 spl_kmem_obj_t *sko = NULL;
b17edc10 1699 SENTRY;
4afaaefa 1700
e9d7a2be 1701 ASSERT(skc->skc_magic == SKC_MAGIC);
4afaaefa 1702 ASSERT(spin_is_locked(&skc->skc_lock));
1703
8b45dda2 1704 sko = spl_sko_from_obj(skc, obj);
a1502d76 1705 ASSERT(sko->sko_magic == SKO_MAGIC);
4afaaefa 1706 sks = sko->sko_slab;
a1502d76 1707 ASSERT(sks->sks_magic == SKS_MAGIC);
2fb9b26a 1708 ASSERT(sks->sks_cache == skc);
2fb9b26a 1709 list_add(&sko->sko_list, &sks->sks_free_list);
d6a26c6a 1710
2fb9b26a 1711 sks->sks_age = jiffies;
4afaaefa 1712 sks->sks_ref--;
2fb9b26a 1713 skc->skc_obj_alloc--;
f1ca4da6 1714
2fb9b26a 1715 /* Move slab to skc_partial_list when no longer full. Slabs
4afaaefa 1716 * are added to the head to keep the partial list is quasi-full
1717 * sorted order. Fuller at the head, emptier at the tail. */
1718 if (sks->sks_ref == (sks->sks_objs - 1)) {
2fb9b26a 1719 list_del(&sks->sks_list);
1720 list_add(&sks->sks_list, &skc->skc_partial_list);
1721 }
f1ca4da6 1722
ecc39810 1723 /* Move empty slabs to the end of the partial list so
4afaaefa 1724 * they can be easily found and freed during reclamation. */
1725 if (sks->sks_ref == 0) {
2fb9b26a 1726 list_del(&sks->sks_list);
1727 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1728 skc->skc_slab_alloc--;
1729 }
1730
b17edc10 1731 SEXIT;
4afaaefa 1732}
1733
ea3e6ca9
BB
1734/*
1735 * Release a batch of objects from a per-cpu magazine back to their
1736 * respective slabs. This occurs when we exceed the magazine size,
1737 * are under memory pressure, when the cache is idle, or during
1738 * cache cleanup. The flush argument contains the number of entries
1739 * to remove from the magazine.
1740 */
4afaaefa 1741static int
1742spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1743{
1744 int i, count = MIN(flush, skm->skm_avail);
b17edc10 1745 SENTRY;
4afaaefa 1746
e9d7a2be 1747 ASSERT(skc->skc_magic == SKC_MAGIC);
1748 ASSERT(skm->skm_magic == SKM_MAGIC);
4afaaefa 1749
ea3e6ca9
BB
1750 /*
1751 * XXX: Currently we simply return objects from the magazine to
1752 * the slabs in fifo order. The ideal thing to do from a memory
1753 * fragmentation standpoint is to cheaply determine the set of
1754 * objects in the magazine which will result in the largest
1755 * number of free slabs if released from the magazine.
1756 */
4afaaefa 1757 spin_lock(&skc->skc_lock);
1758 for (i = 0; i < count; i++)
1759 spl_cache_shrink(skc, skm->skm_objs[i]);
1760
e9d7a2be 1761 skm->skm_avail -= count;
1762 memmove(skm->skm_objs, &(skm->skm_objs[count]),
4afaaefa 1763 sizeof(void *) * skm->skm_avail);
1764
d46630e0 1765 spin_unlock(&skc->skc_lock);
4afaaefa 1766
b17edc10 1767 SRETURN(count);
4afaaefa 1768}
1769
ea3e6ca9
BB
1770/*
1771 * Allocate an object from the per-cpu magazine, or if the magazine
1772 * is empty directly allocate from a slab and repopulate the magazine.
1773 */
4afaaefa 1774void *
1775spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1776{
1777 spl_kmem_magazine_t *skm;
1778 unsigned long irq_flags;
1779 void *obj = NULL;
b17edc10 1780 SENTRY;
4afaaefa 1781
e9d7a2be 1782 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
1783 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1784 ASSERT(flags & KM_SLEEP);
1785 atomic_inc(&skc->skc_ref);
4afaaefa 1786 local_irq_save(irq_flags);
1787
1788restart:
1789 /* Safe to update per-cpu structure without lock, but
ecc39810 1790 * in the restart case we must be careful to reacquire
4afaaefa 1791 * the local magazine since this may have changed
1792 * when we need to grow the cache. */
1793 skm = skc->skc_mag[smp_processor_id()];
e9d7a2be 1794 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
1795 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
1796 skm->skm_size, skm->skm_refill, skm->skm_avail);
4afaaefa 1797
1798 if (likely(skm->skm_avail)) {
1799 /* Object available in CPU cache, use it */
1800 obj = skm->skm_objs[--skm->skm_avail];
ea3e6ca9 1801 skm->skm_age = jiffies;
4afaaefa 1802 } else {
1803 /* Per-CPU cache empty, directly allocate from
1804 * the slab and refill the per-CPU cache. */
1805 (void)spl_cache_refill(skc, skm, flags);
b17edc10 1806 SGOTO(restart, obj = NULL);
4afaaefa 1807 }
1808
1809 local_irq_restore(irq_flags);
fece7c99 1810 ASSERT(obj);
8b45dda2 1811 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
4afaaefa 1812
1813 /* Pre-emptively migrate object to CPU L1 cache */
1814 prefetchw(obj);
ea3e6ca9 1815 atomic_dec(&skc->skc_ref);
4afaaefa 1816
b17edc10 1817 SRETURN(obj);
4afaaefa 1818}
1819EXPORT_SYMBOL(spl_kmem_cache_alloc);
1820
ea3e6ca9
BB
1821/*
1822 * Free an object back to the local per-cpu magazine, there is no
1823 * guarantee that this is the same magazine the object was originally
1824 * allocated from. We may need to flush entire from the magazine
1825 * back to the slabs to make space.
1826 */
4afaaefa 1827void
1828spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1829{
1830 spl_kmem_magazine_t *skm;
1831 unsigned long flags;
b17edc10 1832 SENTRY;
4afaaefa 1833
e9d7a2be 1834 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
1835 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1836 atomic_inc(&skc->skc_ref);
4afaaefa 1837 local_irq_save(flags);
1838
1839 /* Safe to update per-cpu structure without lock, but
1840 * no remote memory allocation tracking is being performed
1841 * it is entirely possible to allocate an object from one
1842 * CPU cache and return it to another. */
1843 skm = skc->skc_mag[smp_processor_id()];
e9d7a2be 1844 ASSERT(skm->skm_magic == SKM_MAGIC);
4afaaefa 1845
1846 /* Per-CPU cache full, flush it to make space */
1847 if (unlikely(skm->skm_avail >= skm->skm_size))
1848 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1849
1850 /* Available space in cache, use it */
1851 skm->skm_objs[skm->skm_avail++] = obj;
1852
1853 local_irq_restore(flags);
ea3e6ca9 1854 atomic_dec(&skc->skc_ref);
4afaaefa 1855
b17edc10 1856 SEXIT;
f1ca4da6 1857}
2fb9b26a 1858EXPORT_SYMBOL(spl_kmem_cache_free);
5c2bb9b2 1859
ea3e6ca9 1860/*
ecc39810
BB
1861 * The generic shrinker function for all caches. Under Linux a shrinker
1862 * may not be tightly coupled with a slab cache. In fact Linux always
1863 * systematically tries calling all registered shrinker callbacks which
ea3e6ca9
BB
1864 * report that they contain unused objects. Because of this we only
1865 * register one shrinker function in the shim layer for all slab caches.
1866 * We always attempt to shrink all caches when this generic shrinker
1867 * is called. The shrinker should return the number of free objects
1868 * in the cache when called with nr_to_scan == 0 but not attempt to
1869 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
cef7605c
PS
1870 * objects should be freed, which differs from Solaris semantics.
1871 * Solaris semantics are to free all available objects which may (and
1872 * probably will) be more objects than the requested nr_to_scan.
ea3e6ca9 1873 */
a55bcaad
BB
1874static int
1875__spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
1876 struct shrink_control *sc)
2fb9b26a 1877{
e9d7a2be 1878 spl_kmem_cache_t *skc;
ea3e6ca9 1879 int unused = 0;
5c2bb9b2 1880
e9d7a2be 1881 down_read(&spl_kmem_cache_sem);
ea3e6ca9 1882 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
a55bcaad 1883 if (sc->nr_to_scan)
cef7605c
PS
1884 spl_kmem_cache_reap_now(skc,
1885 MAX(sc->nr_to_scan >> fls64(skc->skc_slab_objs), 1));
ea3e6ca9
BB
1886
1887 /*
1888 * Presume everything alloc'ed in reclaimable, this ensures
1889 * we are called again with nr_to_scan > 0 so can try and
1890 * reclaim. The exact number is not important either so
1891 * we forgo taking this already highly contented lock.
1892 */
1893 unused += skc->skc_obj_alloc;
1894 }
e9d7a2be 1895 up_read(&spl_kmem_cache_sem);
2fb9b26a 1896
ea3e6ca9 1897 return (unused * sysctl_vfs_cache_pressure) / 100;
5c2bb9b2 1898}
5c2bb9b2 1899
a55bcaad
BB
1900SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
1901
ea3e6ca9
BB
1902/*
1903 * Call the registered reclaim function for a cache. Depending on how
1904 * many and which objects are released it may simply repopulate the
1905 * local magazine which will then need to age-out. Objects which cannot
1906 * fit in the magazine we will be released back to their slabs which will
1907 * also need to age out before being release. This is all just best
1908 * effort and we do not want to thrash creating and destroying slabs.
1909 */
57d86234 1910void
cef7605c 1911spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
57d86234 1912{
b17edc10 1913 SENTRY;
e9d7a2be 1914
1915 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9 1916 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2fb9b26a 1917
ea3e6ca9
BB
1918 /* Prevent concurrent cache reaping when contended */
1919 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
b17edc10 1920 SEXIT;
ea3e6ca9
BB
1921 return;
1922 }
2fb9b26a 1923
ea3e6ca9 1924 atomic_inc(&skc->skc_ref);
4afaaefa 1925
b78d4b9d
BB
1926 /*
1927 * When a reclaim function is available it may be invoked repeatedly
1928 * until at least a single slab can be freed. This ensures that we
1929 * do free memory back to the system. This helps minimize the chance
1930 * of an OOM event when the bulk of memory is used by the slab.
1931 *
1932 * When free slabs are already available the reclaim callback will be
1933 * skipped. Additionally, if no forward progress is detected despite
1934 * a reclaim function the cache will be skipped to avoid deadlock.
1935 *
1936 * Longer term this would be the correct place to add the code which
1937 * repacks the slabs in order minimize fragmentation.
1938 */
1939 if (skc->skc_reclaim) {
1940 uint64_t objects = UINT64_MAX;
1941 int do_reclaim;
1942
1943 do {
1944 spin_lock(&skc->skc_lock);
1945 do_reclaim =
1946 (skc->skc_slab_total > 0) &&
1947 ((skc->skc_slab_total - skc->skc_slab_alloc) == 0) &&
1948 (skc->skc_obj_alloc < objects);
1949
1950 objects = skc->skc_obj_alloc;
1951 spin_unlock(&skc->skc_lock);
1952
1953 if (do_reclaim)
1954 skc->skc_reclaim(skc->skc_private);
1955
1956 } while (do_reclaim);
1957 }
4afaaefa 1958
c0e0fc14
PS
1959 /* Reclaim from the cache, ignoring it's age and delay. */
1960 spl_slab_reclaim(skc, count, 1);
ea3e6ca9
BB
1961 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
1962 atomic_dec(&skc->skc_ref);
4afaaefa 1963
b17edc10 1964 SEXIT;
57d86234 1965}
2fb9b26a 1966EXPORT_SYMBOL(spl_kmem_cache_reap_now);
57d86234 1967
ea3e6ca9
BB
1968/*
1969 * Reap all free slabs from all registered caches.
1970 */
f1b59d26 1971void
2fb9b26a 1972spl_kmem_reap(void)
937879f1 1973{
a55bcaad
BB
1974 struct shrink_control sc;
1975
1976 sc.nr_to_scan = KMC_REAP_CHUNK;
1977 sc.gfp_mask = GFP_KERNEL;
1978
1979 __spl_kmem_cache_generic_shrinker(NULL, &sc);
f1ca4da6 1980}
2fb9b26a 1981EXPORT_SYMBOL(spl_kmem_reap);
5d86345d 1982
ff449ac4 1983#if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
c6dc93d6 1984static char *
4afaaefa 1985spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
d6a26c6a 1986{
e9d7a2be 1987 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
d6a26c6a 1988 int i, flag = 1;
1989
1990 ASSERT(str != NULL && len >= 17);
e9d7a2be 1991 memset(str, 0, len);
d6a26c6a 1992
1993 /* Check for a fully printable string, and while we are at
1994 * it place the printable characters in the passed buffer. */
1995 for (i = 0; i < size; i++) {
e9d7a2be 1996 str[i] = ((char *)(kd->kd_addr))[i];
1997 if (isprint(str[i])) {
1998 continue;
1999 } else {
2000 /* Minimum number of printable characters found
2001 * to make it worthwhile to print this as ascii. */
2002 if (i > min)
2003 break;
2004
2005 flag = 0;
2006 break;
2007 }
d6a26c6a 2008 }
2009
2010 if (!flag) {
2011 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
2012 *((uint8_t *)kd->kd_addr),
2013 *((uint8_t *)kd->kd_addr + 2),
2014 *((uint8_t *)kd->kd_addr + 4),
2015 *((uint8_t *)kd->kd_addr + 6),
2016 *((uint8_t *)kd->kd_addr + 8),
2017 *((uint8_t *)kd->kd_addr + 10),
2018 *((uint8_t *)kd->kd_addr + 12),
2019 *((uint8_t *)kd->kd_addr + 14));
2020 }
2021
2022 return str;
2023}
2024
a1502d76 2025static int
2026spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
2027{
2028 int i;
b17edc10 2029 SENTRY;
a1502d76 2030
2031 spin_lock_init(lock);
2032 INIT_LIST_HEAD(list);
2033
2034 for (i = 0; i < size; i++)
2035 INIT_HLIST_HEAD(&kmem_table[i]);
2036
b17edc10 2037 SRETURN(0);
a1502d76 2038}
2039
ff449ac4 2040static void
2041spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
5d86345d 2042{
2fb9b26a 2043 unsigned long flags;
2044 kmem_debug_t *kd;
2045 char str[17];
b17edc10 2046 SENTRY;
2fb9b26a 2047
ff449ac4 2048 spin_lock_irqsave(lock, flags);
2049 if (!list_empty(list))
a0f6da3d 2050 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
2051 "size", "data", "func", "line");
2fb9b26a 2052
ff449ac4 2053 list_for_each_entry(kd, list, kd_list)
a0f6da3d 2054 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
b6b2acc6 2055 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2fb9b26a 2056 kd->kd_func, kd->kd_line);
2057
ff449ac4 2058 spin_unlock_irqrestore(lock, flags);
b17edc10 2059 SEXIT;
ff449ac4 2060}
2061#else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
a1502d76 2062#define spl_kmem_init_tracking(list, lock, size)
ff449ac4 2063#define spl_kmem_fini_tracking(list, lock)
2064#endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2065
36b313da
BB
2066static void
2067spl_kmem_init_globals(void)
2068{
2069 struct zone *zone;
2070
2071 /* For now all zones are includes, it may be wise to restrict
2072 * this to normal and highmem zones if we see problems. */
2073 for_each_zone(zone) {
2074
2075 if (!populated_zone(zone))
2076 continue;
2077
baf2979e
BB
2078 minfree += min_wmark_pages(zone);
2079 desfree += low_wmark_pages(zone);
2080 lotsfree += high_wmark_pages(zone);
36b313da 2081 }
4ab13d3b
BB
2082
2083 /* Solaris default values */
96dded38
BB
2084 swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3);
2085 swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4);
36b313da
BB
2086}
2087
d1ff2312
BB
2088/*
2089 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
2090 */
2091int
2092spl_kmem_init_kallsyms_lookup(void)
2093{
2094#ifndef HAVE_GET_VMALLOC_INFO
2095 get_vmalloc_info_fn = (get_vmalloc_info_t)
2096 spl_kallsyms_lookup_name("get_vmalloc_info");
e11d6c5f
BB
2097 if (!get_vmalloc_info_fn) {
2098 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
d1ff2312 2099 return -EFAULT;
e11d6c5f 2100 }
d1ff2312
BB
2101#endif /* HAVE_GET_VMALLOC_INFO */
2102
5232d256
BB
2103#ifdef HAVE_PGDAT_HELPERS
2104# ifndef HAVE_FIRST_ONLINE_PGDAT
d1ff2312
BB
2105 first_online_pgdat_fn = (first_online_pgdat_t)
2106 spl_kallsyms_lookup_name("first_online_pgdat");
e11d6c5f
BB
2107 if (!first_online_pgdat_fn) {
2108 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
d1ff2312 2109 return -EFAULT;
e11d6c5f 2110 }
5232d256 2111# endif /* HAVE_FIRST_ONLINE_PGDAT */
d1ff2312 2112
5232d256 2113# ifndef HAVE_NEXT_ONLINE_PGDAT
d1ff2312
BB
2114 next_online_pgdat_fn = (next_online_pgdat_t)
2115 spl_kallsyms_lookup_name("next_online_pgdat");
e11d6c5f
BB
2116 if (!next_online_pgdat_fn) {
2117 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
d1ff2312 2118 return -EFAULT;
e11d6c5f 2119 }
5232d256 2120# endif /* HAVE_NEXT_ONLINE_PGDAT */
d1ff2312 2121
5232d256 2122# ifndef HAVE_NEXT_ZONE
d1ff2312
BB
2123 next_zone_fn = (next_zone_t)
2124 spl_kallsyms_lookup_name("next_zone");
e11d6c5f
BB
2125 if (!next_zone_fn) {
2126 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
d1ff2312 2127 return -EFAULT;
e11d6c5f 2128 }
5232d256
BB
2129# endif /* HAVE_NEXT_ZONE */
2130
2131#else /* HAVE_PGDAT_HELPERS */
2132
2133# ifndef HAVE_PGDAT_LIST
124ca8a5 2134 pgdat_list_addr = *(struct pglist_data **)
5232d256
BB
2135 spl_kallsyms_lookup_name("pgdat_list");
2136 if (!pgdat_list_addr) {
2137 printk(KERN_ERR "Error: Unknown symbol pgdat_list\n");
2138 return -EFAULT;
2139 }
2140# endif /* HAVE_PGDAT_LIST */
2141#endif /* HAVE_PGDAT_HELPERS */
d1ff2312 2142
6ae7fef5 2143#if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS)
d1ff2312
BB
2144 get_zone_counts_fn = (get_zone_counts_t)
2145 spl_kallsyms_lookup_name("get_zone_counts");
e11d6c5f
BB
2146 if (!get_zone_counts_fn) {
2147 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
d1ff2312 2148 return -EFAULT;
e11d6c5f 2149 }
6ae7fef5 2150#endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */
d1ff2312
BB
2151
2152 /*
2153 * It is now safe to initialize the global tunings which rely on
2154 * the use of the for_each_zone() macro. This macro in turns
2155 * depends on the *_pgdat symbols which are now available.
2156 */
2157 spl_kmem_init_globals();
2158
5f6c14b1 2159#if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
914b0631 2160 invalidate_inodes_fn = (invalidate_inodes_t)
9b0f9079 2161 spl_kallsyms_lookup_name("invalidate_inodes");
914b0631
BB
2162 if (!invalidate_inodes_fn) {
2163 printk(KERN_ERR "Error: Unknown symbol invalidate_inodes\n");
2164 return -EFAULT;
2165 }
5f6c14b1 2166#endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
914b0631 2167
e76f4bf1 2168#ifndef HAVE_SHRINK_DCACHE_MEMORY
fe71c0e5 2169 /* When shrink_dcache_memory_fn == NULL support is disabled */
e76f4bf1 2170 shrink_dcache_memory_fn = (shrink_dcache_memory_t)
fe71c0e5 2171 spl_kallsyms_lookup_name("shrink_dcache_memory");
e76f4bf1
BB
2172#endif /* HAVE_SHRINK_DCACHE_MEMORY */
2173
2174#ifndef HAVE_SHRINK_ICACHE_MEMORY
fe71c0e5 2175 /* When shrink_icache_memory_fn == NULL support is disabled */
e76f4bf1 2176 shrink_icache_memory_fn = (shrink_icache_memory_t)
fe71c0e5 2177 spl_kallsyms_lookup_name("shrink_icache_memory");
e76f4bf1
BB
2178#endif /* HAVE_SHRINK_ICACHE_MEMORY */
2179
d1ff2312
BB
2180 return 0;
2181}
2182
a1502d76 2183int
2184spl_kmem_init(void)
2185{
2186 int rc = 0;
b17edc10 2187 SENTRY;
a1502d76 2188
2189 init_rwsem(&spl_kmem_cache_sem);
2190 INIT_LIST_HEAD(&spl_kmem_cache_list);
2191
495bd532 2192 spl_register_shrinker(&spl_kmem_cache_shrinker);
a1502d76 2193
2194#ifdef DEBUG_KMEM
d04c8a56
BB
2195 kmem_alloc_used_set(0);
2196 vmem_alloc_used_set(0);
a1502d76 2197
2198 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
2199 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
2200#endif
b17edc10 2201 SRETURN(rc);
a1502d76 2202}
2203
ff449ac4 2204void
2205spl_kmem_fini(void)
2206{
2207#ifdef DEBUG_KMEM
2208 /* Display all unreclaimed memory addresses, including the
2209 * allocation size and the first few bytes of what's located
2210 * at that address to aid in debugging. Performance is not
2211 * a serious concern here since it is module unload time. */
d04c8a56 2212 if (kmem_alloc_used_read() != 0)
b17edc10 2213 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
2214 "kmem leaked %ld/%ld bytes\n",
2215 kmem_alloc_used_read(), kmem_alloc_max);
ff449ac4 2216
2fb9b26a 2217
d04c8a56 2218 if (vmem_alloc_used_read() != 0)
b17edc10 2219 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
2220 "vmem leaked %ld/%ld bytes\n",
2221 vmem_alloc_used_read(), vmem_alloc_max);
2fb9b26a 2222
ff449ac4 2223 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
2224 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
2225#endif /* DEBUG_KMEM */
b17edc10 2226 SENTRY;
2fb9b26a 2227
495bd532 2228 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
2fb9b26a 2229
b17edc10 2230 SEXIT;
5d86345d 2231}