]> git.proxmox.com Git - mirror_spl.git/blob - module/spl/spl-kmem.c
Constify memory management functions
[mirror_spl.git] / module / spl / spl-kmem.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Kmem Implementation.
25 \*****************************************************************************/
26
27 #include <sys/kmem.h>
28 #include <spl-debug.h>
29
30 #ifdef SS_DEBUG_SUBSYS
31 #undef SS_DEBUG_SUBSYS
32 #endif
33
34 #define SS_DEBUG_SUBSYS SS_KMEM
35
36 /*
37 * The minimum amount of memory measured in pages to be free at all
38 * times on the system. This is similar to Linux's zone->pages_min
39 * multiplied by the number of zones and is sized based on that.
40 */
41 pgcnt_t minfree = 0;
42 EXPORT_SYMBOL(minfree);
43
44 /*
45 * The desired amount of memory measured in pages to be free at all
46 * times on the system. This is similar to Linux's zone->pages_low
47 * multiplied by the number of zones and is sized based on that.
48 * Assuming all zones are being used roughly equally, when we drop
49 * below this threshold asynchronous page reclamation is triggered.
50 */
51 pgcnt_t desfree = 0;
52 EXPORT_SYMBOL(desfree);
53
54 /*
55 * When above this amount of memory measures in pages the system is
56 * determined to have enough free memory. This is similar to Linux's
57 * zone->pages_high multiplied by the number of zones and is sized based
58 * on that. Assuming all zones are being used roughly equally, when
59 * asynchronous page reclamation reaches this threshold it stops.
60 */
61 pgcnt_t lotsfree = 0;
62 EXPORT_SYMBOL(lotsfree);
63
64 /* Unused always 0 in this implementation */
65 pgcnt_t needfree = 0;
66 EXPORT_SYMBOL(needfree);
67
68 pgcnt_t swapfs_minfree = 0;
69 EXPORT_SYMBOL(swapfs_minfree);
70
71 pgcnt_t swapfs_reserve = 0;
72 EXPORT_SYMBOL(swapfs_reserve);
73
74 vmem_t *heap_arena = NULL;
75 EXPORT_SYMBOL(heap_arena);
76
77 vmem_t *zio_alloc_arena = NULL;
78 EXPORT_SYMBOL(zio_alloc_arena);
79
80 vmem_t *zio_arena = NULL;
81 EXPORT_SYMBOL(zio_arena);
82
83 #ifndef HAVE_GET_VMALLOC_INFO
84 get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON;
85 EXPORT_SYMBOL(get_vmalloc_info_fn);
86 #endif /* HAVE_GET_VMALLOC_INFO */
87
88 #ifdef HAVE_PGDAT_HELPERS
89 # ifndef HAVE_FIRST_ONLINE_PGDAT
90 first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON;
91 EXPORT_SYMBOL(first_online_pgdat_fn);
92 # endif /* HAVE_FIRST_ONLINE_PGDAT */
93
94 # ifndef HAVE_NEXT_ONLINE_PGDAT
95 next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON;
96 EXPORT_SYMBOL(next_online_pgdat_fn);
97 # endif /* HAVE_NEXT_ONLINE_PGDAT */
98
99 # ifndef HAVE_NEXT_ZONE
100 next_zone_t next_zone_fn = SYMBOL_POISON;
101 EXPORT_SYMBOL(next_zone_fn);
102 # endif /* HAVE_NEXT_ZONE */
103
104 #else /* HAVE_PGDAT_HELPERS */
105
106 # ifndef HAVE_PGDAT_LIST
107 struct pglist_data *pgdat_list_addr = SYMBOL_POISON;
108 EXPORT_SYMBOL(pgdat_list_addr);
109 # endif /* HAVE_PGDAT_LIST */
110
111 #endif /* HAVE_PGDAT_HELPERS */
112
113 #ifdef NEED_GET_ZONE_COUNTS
114 # ifndef HAVE_GET_ZONE_COUNTS
115 get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON;
116 EXPORT_SYMBOL(get_zone_counts_fn);
117 # endif /* HAVE_GET_ZONE_COUNTS */
118
119 unsigned long
120 spl_global_page_state(spl_zone_stat_item_t item)
121 {
122 unsigned long active;
123 unsigned long inactive;
124 unsigned long free;
125
126 get_zone_counts(&active, &inactive, &free);
127 switch (item) {
128 case SPL_NR_FREE_PAGES: return free;
129 case SPL_NR_INACTIVE: return inactive;
130 case SPL_NR_ACTIVE: return active;
131 default: ASSERT(0); /* Unsupported */
132 }
133
134 return 0;
135 }
136 #else
137 # ifdef HAVE_GLOBAL_PAGE_STATE
138 unsigned long
139 spl_global_page_state(spl_zone_stat_item_t item)
140 {
141 unsigned long pages = 0;
142
143 switch (item) {
144 case SPL_NR_FREE_PAGES:
145 # ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES
146 pages += global_page_state(NR_FREE_PAGES);
147 # endif
148 break;
149 case SPL_NR_INACTIVE:
150 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE
151 pages += global_page_state(NR_INACTIVE);
152 # endif
153 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON
154 pages += global_page_state(NR_INACTIVE_ANON);
155 # endif
156 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE
157 pages += global_page_state(NR_INACTIVE_FILE);
158 # endif
159 break;
160 case SPL_NR_ACTIVE:
161 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE
162 pages += global_page_state(NR_ACTIVE);
163 # endif
164 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON
165 pages += global_page_state(NR_ACTIVE_ANON);
166 # endif
167 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE
168 pages += global_page_state(NR_ACTIVE_FILE);
169 # endif
170 break;
171 default:
172 ASSERT(0); /* Unsupported */
173 }
174
175 return pages;
176 }
177 # else
178 # error "Both global_page_state() and get_zone_counts() unavailable"
179 # endif /* HAVE_GLOBAL_PAGE_STATE */
180 #endif /* NEED_GET_ZONE_COUNTS */
181 EXPORT_SYMBOL(spl_global_page_state);
182
183 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
184 invalidate_inodes_t invalidate_inodes_fn = SYMBOL_POISON;
185 EXPORT_SYMBOL(invalidate_inodes_fn);
186 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
187
188 #ifndef HAVE_SHRINK_DCACHE_MEMORY
189 shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON;
190 EXPORT_SYMBOL(shrink_dcache_memory_fn);
191 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
192
193 #ifndef HAVE_SHRINK_ICACHE_MEMORY
194 shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON;
195 EXPORT_SYMBOL(shrink_icache_memory_fn);
196 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
197
198 pgcnt_t
199 spl_kmem_availrmem(void)
200 {
201 /* The amount of easily available memory */
202 return (spl_global_page_state(SPL_NR_FREE_PAGES) +
203 spl_global_page_state(SPL_NR_INACTIVE));
204 }
205 EXPORT_SYMBOL(spl_kmem_availrmem);
206
207 size_t
208 vmem_size(vmem_t *vmp, int typemask)
209 {
210 struct vmalloc_info vmi;
211 size_t size = 0;
212
213 ASSERT(vmp == NULL);
214 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
215
216 get_vmalloc_info(&vmi);
217 if (typemask & VMEM_ALLOC)
218 size += (size_t)vmi.used;
219
220 if (typemask & VMEM_FREE)
221 size += (size_t)(VMALLOC_TOTAL - vmi.used);
222
223 return size;
224 }
225 EXPORT_SYMBOL(vmem_size);
226
227 int
228 kmem_debugging(void)
229 {
230 return 0;
231 }
232 EXPORT_SYMBOL(kmem_debugging);
233
234 #ifndef HAVE_KVASPRINTF
235 /* Simplified asprintf. */
236 char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
237 {
238 unsigned int len;
239 char *p;
240 va_list aq;
241
242 va_copy(aq, ap);
243 len = vsnprintf(NULL, 0, fmt, aq);
244 va_end(aq);
245
246 p = kmalloc(len+1, gfp);
247 if (!p)
248 return NULL;
249
250 vsnprintf(p, len+1, fmt, ap);
251
252 return p;
253 }
254 EXPORT_SYMBOL(kvasprintf);
255 #endif /* HAVE_KVASPRINTF */
256
257 char *
258 kmem_vasprintf(const char *fmt, va_list ap)
259 {
260 va_list aq;
261 char *ptr;
262
263 do {
264 va_copy(aq, ap);
265 ptr = kvasprintf(GFP_KERNEL, fmt, aq);
266 va_end(aq);
267 } while (ptr == NULL);
268
269 return ptr;
270 }
271 EXPORT_SYMBOL(kmem_vasprintf);
272
273 char *
274 kmem_asprintf(const char *fmt, ...)
275 {
276 va_list ap;
277 char *ptr;
278
279 do {
280 va_start(ap, fmt);
281 ptr = kvasprintf(GFP_KERNEL, fmt, ap);
282 va_end(ap);
283 } while (ptr == NULL);
284
285 return ptr;
286 }
287 EXPORT_SYMBOL(kmem_asprintf);
288
289 static char *
290 __strdup(const char *str, int flags)
291 {
292 char *ptr;
293 int n;
294
295 n = strlen(str);
296 ptr = kmalloc_nofail(n + 1, flags);
297 if (ptr)
298 memcpy(ptr, str, n + 1);
299
300 return ptr;
301 }
302
303 char *
304 strdup(const char *str)
305 {
306 return __strdup(str, KM_SLEEP);
307 }
308 EXPORT_SYMBOL(strdup);
309
310 void
311 strfree(char *str)
312 {
313 kfree(str);
314 }
315 EXPORT_SYMBOL(strfree);
316
317 /*
318 * Memory allocation interfaces and debugging for basic kmem_*
319 * and vmem_* style memory allocation. When DEBUG_KMEM is enabled
320 * the SPL will keep track of the total memory allocated, and
321 * report any memory leaked when the module is unloaded.
322 */
323 #ifdef DEBUG_KMEM
324
325 /* Shim layer memory accounting */
326 # ifdef HAVE_ATOMIC64_T
327 atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
328 unsigned long long kmem_alloc_max = 0;
329 atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
330 unsigned long long vmem_alloc_max = 0;
331 # else /* HAVE_ATOMIC64_T */
332 atomic_t kmem_alloc_used = ATOMIC_INIT(0);
333 unsigned long long kmem_alloc_max = 0;
334 atomic_t vmem_alloc_used = ATOMIC_INIT(0);
335 unsigned long long vmem_alloc_max = 0;
336 # endif /* HAVE_ATOMIC64_T */
337
338 EXPORT_SYMBOL(kmem_alloc_used);
339 EXPORT_SYMBOL(kmem_alloc_max);
340 EXPORT_SYMBOL(vmem_alloc_used);
341 EXPORT_SYMBOL(vmem_alloc_max);
342
343 /* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
344 * but also the location of every alloc and free. When the SPL module is
345 * unloaded a list of all leaked addresses and where they were allocated
346 * will be dumped to the console. Enabling this feature has a significant
347 * impact on performance but it makes finding memory leaks straight forward.
348 *
349 * Not surprisingly with debugging enabled the xmem_locks are very highly
350 * contended particularly on xfree(). If we want to run with this detailed
351 * debugging enabled for anything other than debugging we need to minimize
352 * the contention by moving to a lock per xmem_table entry model.
353 */
354 # ifdef DEBUG_KMEM_TRACKING
355
356 # define KMEM_HASH_BITS 10
357 # define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
358
359 # define VMEM_HASH_BITS 10
360 # define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
361
362 typedef struct kmem_debug {
363 struct hlist_node kd_hlist; /* Hash node linkage */
364 struct list_head kd_list; /* List of all allocations */
365 void *kd_addr; /* Allocation pointer */
366 size_t kd_size; /* Allocation size */
367 const char *kd_func; /* Allocation function */
368 int kd_line; /* Allocation line */
369 } kmem_debug_t;
370
371 spinlock_t kmem_lock;
372 struct hlist_head kmem_table[KMEM_TABLE_SIZE];
373 struct list_head kmem_list;
374
375 spinlock_t vmem_lock;
376 struct hlist_head vmem_table[VMEM_TABLE_SIZE];
377 struct list_head vmem_list;
378
379 EXPORT_SYMBOL(kmem_lock);
380 EXPORT_SYMBOL(kmem_table);
381 EXPORT_SYMBOL(kmem_list);
382
383 EXPORT_SYMBOL(vmem_lock);
384 EXPORT_SYMBOL(vmem_table);
385 EXPORT_SYMBOL(vmem_list);
386
387 static kmem_debug_t *
388 kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, const void *addr)
389 {
390 struct hlist_head *head;
391 struct hlist_node *node;
392 struct kmem_debug *p;
393 unsigned long flags;
394 SENTRY;
395
396 spin_lock_irqsave(lock, flags);
397
398 head = &table[hash_ptr(addr, bits)];
399 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
400 if (p->kd_addr == addr) {
401 hlist_del_init(&p->kd_hlist);
402 list_del_init(&p->kd_list);
403 spin_unlock_irqrestore(lock, flags);
404 return p;
405 }
406 }
407
408 spin_unlock_irqrestore(lock, flags);
409
410 SRETURN(NULL);
411 }
412
413 void *
414 kmem_alloc_track(size_t size, int flags, const char *func, int line,
415 int node_alloc, int node)
416 {
417 void *ptr = NULL;
418 kmem_debug_t *dptr;
419 unsigned long irq_flags;
420 SENTRY;
421
422 /* Function may be called with KM_NOSLEEP so failure is possible */
423 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
424 flags & ~__GFP_ZERO);
425
426 if (unlikely(dptr == NULL)) {
427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
428 "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
429 sizeof(kmem_debug_t), flags, func, line,
430 kmem_alloc_used_read(), kmem_alloc_max);
431 } else {
432 /*
433 * Marked unlikely because we should never be doing this,
434 * we tolerate to up 2 pages but a single page is best.
435 */
436 if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
437 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large "
438 "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
439 (unsigned long long) size, flags, func, line,
440 kmem_alloc_used_read(), kmem_alloc_max);
441 spl_debug_dumpstack(NULL);
442 }
443
444 /*
445 * We use __strdup() below because the string pointed to by
446 * __FUNCTION__ might not be available by the time we want
447 * to print it since the module might have been unloaded.
448 * This can only fail in the KM_NOSLEEP case.
449 */
450 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
451 if (unlikely(dptr->kd_func == NULL)) {
452 kfree(dptr);
453 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
454 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
455 func, line, kmem_alloc_used_read(), kmem_alloc_max);
456 goto out;
457 }
458
459 /* Use the correct allocator */
460 if (node_alloc) {
461 ASSERT(!(flags & __GFP_ZERO));
462 ptr = kmalloc_node_nofail(size, flags, node);
463 } else if (flags & __GFP_ZERO) {
464 ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
465 } else {
466 ptr = kmalloc_nofail(size, flags);
467 }
468
469 if (unlikely(ptr == NULL)) {
470 kfree(dptr->kd_func);
471 kfree(dptr);
472 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc"
473 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
474 (unsigned long long) size, flags, func, line,
475 kmem_alloc_used_read(), kmem_alloc_max);
476 goto out;
477 }
478
479 kmem_alloc_used_add(size);
480 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
481 kmem_alloc_max = kmem_alloc_used_read();
482
483 INIT_HLIST_NODE(&dptr->kd_hlist);
484 INIT_LIST_HEAD(&dptr->kd_list);
485
486 dptr->kd_addr = ptr;
487 dptr->kd_size = size;
488 dptr->kd_line = line;
489
490 spin_lock_irqsave(&kmem_lock, irq_flags);
491 hlist_add_head_rcu(&dptr->kd_hlist,
492 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
493 list_add_tail(&dptr->kd_list, &kmem_list);
494 spin_unlock_irqrestore(&kmem_lock, irq_flags);
495
496 SDEBUG_LIMIT(SD_INFO,
497 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
498 (unsigned long long) size, flags, func, line, ptr,
499 kmem_alloc_used_read(), kmem_alloc_max);
500 }
501 out:
502 SRETURN(ptr);
503 }
504 EXPORT_SYMBOL(kmem_alloc_track);
505
506 void
507 kmem_free_track(const void *ptr, size_t size)
508 {
509 kmem_debug_t *dptr;
510 SENTRY;
511
512 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
513 (unsigned long long) size);
514
515 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
516
517 /* Must exist in hash due to kmem_alloc() */
518 ASSERT(dptr);
519
520 /* Size must match */
521 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
522 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
523 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
524
525 kmem_alloc_used_sub(size);
526 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
527 (unsigned long long) size, kmem_alloc_used_read(),
528 kmem_alloc_max);
529
530 kfree(dptr->kd_func);
531
532 memset(dptr, 0x5a, sizeof(kmem_debug_t));
533 kfree(dptr);
534
535 memset(ptr, 0x5a, size);
536 kfree(ptr);
537
538 SEXIT;
539 }
540 EXPORT_SYMBOL(kmem_free_track);
541
542 void *
543 vmem_alloc_track(size_t size, int flags, const char *func, int line)
544 {
545 void *ptr = NULL;
546 kmem_debug_t *dptr;
547 unsigned long irq_flags;
548 SENTRY;
549
550 ASSERT(flags & KM_SLEEP);
551
552 /* Function may be called with KM_NOSLEEP so failure is possible */
553 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
554 flags & ~__GFP_ZERO);
555 if (unlikely(dptr == NULL)) {
556 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
557 "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
558 sizeof(kmem_debug_t), flags, func, line,
559 vmem_alloc_used_read(), vmem_alloc_max);
560 } else {
561 /*
562 * We use __strdup() below because the string pointed to by
563 * __FUNCTION__ might not be available by the time we want
564 * to print it, since the module might have been unloaded.
565 * This can never fail because we have already asserted
566 * that flags is KM_SLEEP.
567 */
568 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
569 if (unlikely(dptr->kd_func == NULL)) {
570 kfree(dptr);
571 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
572 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
573 func, line, vmem_alloc_used_read(), vmem_alloc_max);
574 goto out;
575 }
576
577 /* Use the correct allocator */
578 if (flags & __GFP_ZERO) {
579 ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
580 } else {
581 ptr = vmalloc_nofail(size, flags);
582 }
583
584 if (unlikely(ptr == NULL)) {
585 kfree(dptr->kd_func);
586 kfree(dptr);
587 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc"
588 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
589 (unsigned long long) size, flags, func, line,
590 vmem_alloc_used_read(), vmem_alloc_max);
591 goto out;
592 }
593
594 vmem_alloc_used_add(size);
595 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
596 vmem_alloc_max = vmem_alloc_used_read();
597
598 INIT_HLIST_NODE(&dptr->kd_hlist);
599 INIT_LIST_HEAD(&dptr->kd_list);
600
601 dptr->kd_addr = ptr;
602 dptr->kd_size = size;
603 dptr->kd_line = line;
604
605 spin_lock_irqsave(&vmem_lock, irq_flags);
606 hlist_add_head_rcu(&dptr->kd_hlist,
607 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
608 list_add_tail(&dptr->kd_list, &vmem_list);
609 spin_unlock_irqrestore(&vmem_lock, irq_flags);
610
611 SDEBUG_LIMIT(SD_INFO,
612 "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
613 (unsigned long long) size, flags, func, line,
614 ptr, vmem_alloc_used_read(), vmem_alloc_max);
615 }
616 out:
617 SRETURN(ptr);
618 }
619 EXPORT_SYMBOL(vmem_alloc_track);
620
621 void
622 vmem_free_track(const void *ptr, size_t size)
623 {
624 kmem_debug_t *dptr;
625 SENTRY;
626
627 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
628 (unsigned long long) size);
629
630 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
631
632 /* Must exist in hash due to vmem_alloc() */
633 ASSERT(dptr);
634
635 /* Size must match */
636 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
637 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
638 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
639
640 vmem_alloc_used_sub(size);
641 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
642 (unsigned long long) size, vmem_alloc_used_read(),
643 vmem_alloc_max);
644
645 kfree(dptr->kd_func);
646
647 memset(dptr, 0x5a, sizeof(kmem_debug_t));
648 kfree(dptr);
649
650 memset(ptr, 0x5a, size);
651 vfree(ptr);
652
653 SEXIT;
654 }
655 EXPORT_SYMBOL(vmem_free_track);
656
657 # else /* DEBUG_KMEM_TRACKING */
658
659 void *
660 kmem_alloc_debug(size_t size, int flags, const char *func, int line,
661 int node_alloc, int node)
662 {
663 void *ptr;
664 SENTRY;
665
666 /*
667 * Marked unlikely because we should never be doing this,
668 * we tolerate to up 2 pages but a single page is best.
669 */
670 if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
671 SDEBUG(SD_CONSOLE | SD_WARNING,
672 "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
673 (unsigned long long) size, flags, func, line,
674 kmem_alloc_used_read(), kmem_alloc_max);
675 dump_stack();
676 }
677
678 /* Use the correct allocator */
679 if (node_alloc) {
680 ASSERT(!(flags & __GFP_ZERO));
681 ptr = kmalloc_node_nofail(size, flags, node);
682 } else if (flags & __GFP_ZERO) {
683 ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
684 } else {
685 ptr = kmalloc_nofail(size, flags);
686 }
687
688 if (unlikely(ptr == NULL)) {
689 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
690 "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
691 (unsigned long long) size, flags, func, line,
692 kmem_alloc_used_read(), kmem_alloc_max);
693 } else {
694 kmem_alloc_used_add(size);
695 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
696 kmem_alloc_max = kmem_alloc_used_read();
697
698 SDEBUG_LIMIT(SD_INFO,
699 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
700 (unsigned long long) size, flags, func, line, ptr,
701 kmem_alloc_used_read(), kmem_alloc_max);
702 }
703
704 SRETURN(ptr);
705 }
706 EXPORT_SYMBOL(kmem_alloc_debug);
707
708 void
709 kmem_free_debug(const void *ptr, size_t size)
710 {
711 SENTRY;
712
713 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
714 (unsigned long long) size);
715
716 kmem_alloc_used_sub(size);
717 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
718 (unsigned long long) size, kmem_alloc_used_read(),
719 kmem_alloc_max);
720 kfree(ptr);
721
722 SEXIT;
723 }
724 EXPORT_SYMBOL(kmem_free_debug);
725
726 void *
727 vmem_alloc_debug(size_t size, int flags, const char *func, int line)
728 {
729 void *ptr;
730 SENTRY;
731
732 ASSERT(flags & KM_SLEEP);
733
734 /* Use the correct allocator */
735 if (flags & __GFP_ZERO) {
736 ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
737 } else {
738 ptr = vmalloc_nofail(size, flags);
739 }
740
741 if (unlikely(ptr == NULL)) {
742 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
743 "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
744 (unsigned long long) size, flags, func, line,
745 vmem_alloc_used_read(), vmem_alloc_max);
746 } else {
747 vmem_alloc_used_add(size);
748 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
749 vmem_alloc_max = vmem_alloc_used_read();
750
751 SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p "
752 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
753 vmem_alloc_used_read(), vmem_alloc_max);
754 }
755
756 SRETURN(ptr);
757 }
758 EXPORT_SYMBOL(vmem_alloc_debug);
759
760 void
761 vmem_free_debug(const void *ptr, size_t size)
762 {
763 SENTRY;
764
765 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
766 (unsigned long long) size);
767
768 vmem_alloc_used_sub(size);
769 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
770 (unsigned long long) size, vmem_alloc_used_read(),
771 vmem_alloc_max);
772 vfree(ptr);
773
774 SEXIT;
775 }
776 EXPORT_SYMBOL(vmem_free_debug);
777
778 # endif /* DEBUG_KMEM_TRACKING */
779 #endif /* DEBUG_KMEM */
780
781 /*
782 * Slab allocation interfaces
783 *
784 * While the Linux slab implementation was inspired by the Solaris
785 * implementation I cannot use it to emulate the Solaris APIs. I
786 * require two features which are not provided by the Linux slab.
787 *
788 * 1) Constructors AND destructors. Recent versions of the Linux
789 * kernel have removed support for destructors. This is a deal
790 * breaker for the SPL which contains particularly expensive
791 * initializers for mutex's, condition variables, etc. We also
792 * require a minimal level of cleanup for these data types unlike
793 * many Linux data type which do need to be explicitly destroyed.
794 *
795 * 2) Virtual address space backed slab. Callers of the Solaris slab
796 * expect it to work well for both small are very large allocations.
797 * Because of memory fragmentation the Linux slab which is backed
798 * by kmalloc'ed memory performs very badly when confronted with
799 * large numbers of large allocations. Basing the slab on the
800 * virtual address space removes the need for contiguous pages
801 * and greatly improve performance for large allocations.
802 *
803 * For these reasons, the SPL has its own slab implementation with
804 * the needed features. It is not as highly optimized as either the
805 * Solaris or Linux slabs, but it should get me most of what is
806 * needed until it can be optimized or obsoleted by another approach.
807 *
808 * One serious concern I do have about this method is the relatively
809 * small virtual address space on 32bit arches. This will seriously
810 * constrain the size of the slab caches and their performance.
811 *
812 * XXX: Improve the partial slab list by carefully maintaining a
813 * strict ordering of fullest to emptiest slabs based on
814 * the slab reference count. This guarantees the when freeing
815 * slabs back to the system we need only linearly traverse the
816 * last N slabs in the list to discover all the freeable slabs.
817 *
818 * XXX: NUMA awareness for optionally allocating memory close to a
819 * particular core. This can be advantageous if you know the slab
820 * object will be short lived and primarily accessed from one core.
821 *
822 * XXX: Slab coloring may also yield performance improvements and would
823 * be desirable to implement.
824 */
825
826 struct list_head spl_kmem_cache_list; /* List of caches */
827 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
828
829 static int spl_cache_flush(spl_kmem_cache_t *skc,
830 spl_kmem_magazine_t *skm, int flush);
831
832 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
833 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
834 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
835
836 static void *
837 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
838 {
839 void *ptr;
840
841 ASSERT(ISP2(size));
842
843 if (skc->skc_flags & KMC_KMEM) {
844 ptr = (void *)__get_free_pages(flags, get_order(size));
845 } else {
846 /*
847 * As part of vmalloc() an __pte_alloc_kernel() allocation
848 * may occur. This internal allocation does not honor the
849 * gfp flags passed to vmalloc(). This means even when
850 * vmalloc(GFP_NOFS) is called it is possible synchronous
851 * reclaim will occur. This reclaim can trigger file IO
852 * which can result in a deadlock. This issue can be avoided
853 * by explicitly setting PF_MEMALLOC on the process to
854 * subvert synchronous reclaim. The following bug has
855 * been filed at kernel.org to track the issue.
856 *
857 * https://bugzilla.kernel.org/show_bug.cgi?id=30702
858 *
859 * NOTE: Only set PF_MEMALLOC if it's not already set, and
860 * then only clear it when we were the one who set it.
861 */
862 if (!(flags & __GFP_FS) && !(current->flags & PF_MEMALLOC)) {
863 current->flags |= PF_MEMALLOC;
864 ptr = __vmalloc(size, flags|__GFP_HIGHMEM, PAGE_KERNEL);
865 current->flags &= ~PF_MEMALLOC;
866 } else {
867 ptr = __vmalloc(size, flags|__GFP_HIGHMEM, PAGE_KERNEL);
868 }
869 }
870
871 /* Resulting allocated memory will be page aligned */
872 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
873
874 return ptr;
875 }
876
877 static void
878 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
879 {
880 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
881 ASSERT(ISP2(size));
882
883 /*
884 * The Linux direct reclaim path uses this out of band value to
885 * determine if forward progress is being made. Normally this is
886 * incremented by kmem_freepages() which is part of the various
887 * Linux slab implementations. However, since we are using none
888 * of that infrastructure we are responsible for incrementing it.
889 */
890 if (current->reclaim_state)
891 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
892
893 if (skc->skc_flags & KMC_KMEM)
894 free_pages((unsigned long)ptr, get_order(size));
895 else
896 vfree(ptr);
897 }
898
899 /*
900 * Required space for each aligned sks.
901 */
902 static inline uint32_t
903 spl_sks_size(spl_kmem_cache_t *skc)
904 {
905 return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
906 skc->skc_obj_align, uint32_t);
907 }
908
909 /*
910 * Required space for each aligned object.
911 */
912 static inline uint32_t
913 spl_obj_size(spl_kmem_cache_t *skc)
914 {
915 uint32_t align = skc->skc_obj_align;
916
917 return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
918 P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
919 }
920
921 /*
922 * Lookup the spl_kmem_object_t for an object given that object.
923 */
924 static inline spl_kmem_obj_t *
925 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
926 {
927 return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
928 skc->skc_obj_align, uint32_t);
929 }
930
931 /*
932 * Required space for each offslab object taking in to account alignment
933 * restrictions and the power-of-two requirement of kv_alloc().
934 */
935 static inline uint32_t
936 spl_offslab_size(spl_kmem_cache_t *skc)
937 {
938 return 1UL << (highbit(spl_obj_size(skc)) + 1);
939 }
940
941 /*
942 * It's important that we pack the spl_kmem_obj_t structure and the
943 * actual objects in to one large address space to minimize the number
944 * of calls to the allocator. It is far better to do a few large
945 * allocations and then subdivide it ourselves. Now which allocator
946 * we use requires balancing a few trade offs.
947 *
948 * For small objects we use kmem_alloc() because as long as you are
949 * only requesting a small number of pages (ideally just one) its cheap.
950 * However, when you start requesting multiple pages with kmem_alloc()
951 * it gets increasingly expensive since it requires contiguous pages.
952 * For this reason we shift to vmem_alloc() for slabs of large objects
953 * which removes the need for contiguous pages. We do not use
954 * vmem_alloc() in all cases because there is significant locking
955 * overhead in __get_vm_area_node(). This function takes a single
956 * global lock when acquiring an available virtual address range which
957 * serializes all vmem_alloc()'s for all slab caches. Using slightly
958 * different allocation functions for small and large objects should
959 * give us the best of both worlds.
960 *
961 * KMC_ONSLAB KMC_OFFSLAB
962 *
963 * +------------------------+ +-----------------+
964 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
965 * | skc_obj_size <-+ | | +-----------------+ | |
966 * | spl_kmem_obj_t | | | |
967 * | skc_obj_size <---+ | +-----------------+ | |
968 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
969 * | ... v | | spl_kmem_obj_t | |
970 * +------------------------+ +-----------------+ v
971 */
972 static spl_kmem_slab_t *
973 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
974 {
975 spl_kmem_slab_t *sks;
976 spl_kmem_obj_t *sko, *n;
977 void *base, *obj;
978 uint32_t obj_size, offslab_size = 0;
979 int i, rc = 0;
980
981 base = kv_alloc(skc, skc->skc_slab_size, flags);
982 if (base == NULL)
983 SRETURN(NULL);
984
985 sks = (spl_kmem_slab_t *)base;
986 sks->sks_magic = SKS_MAGIC;
987 sks->sks_objs = skc->skc_slab_objs;
988 sks->sks_age = jiffies;
989 sks->sks_cache = skc;
990 INIT_LIST_HEAD(&sks->sks_list);
991 INIT_LIST_HEAD(&sks->sks_free_list);
992 sks->sks_ref = 0;
993 obj_size = spl_obj_size(skc);
994
995 if (skc->skc_flags & KMC_OFFSLAB)
996 offslab_size = spl_offslab_size(skc);
997
998 for (i = 0; i < sks->sks_objs; i++) {
999 if (skc->skc_flags & KMC_OFFSLAB) {
1000 obj = kv_alloc(skc, offslab_size, flags);
1001 if (!obj)
1002 SGOTO(out, rc = -ENOMEM);
1003 } else {
1004 obj = base + spl_sks_size(skc) + (i * obj_size);
1005 }
1006
1007 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1008 sko = spl_sko_from_obj(skc, obj);
1009 sko->sko_addr = obj;
1010 sko->sko_magic = SKO_MAGIC;
1011 sko->sko_slab = sks;
1012 INIT_LIST_HEAD(&sko->sko_list);
1013 list_add_tail(&sko->sko_list, &sks->sks_free_list);
1014 }
1015
1016 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
1017 if (skc->skc_ctor)
1018 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
1019 out:
1020 if (rc) {
1021 if (skc->skc_flags & KMC_OFFSLAB)
1022 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
1023 sko_list)
1024 kv_free(skc, sko->sko_addr, offslab_size);
1025
1026 kv_free(skc, base, skc->skc_slab_size);
1027 sks = NULL;
1028 }
1029
1030 SRETURN(sks);
1031 }
1032
1033 /*
1034 * Remove a slab from complete or partial list, it must be called with
1035 * the 'skc->skc_lock' held but the actual free must be performed
1036 * outside the lock to prevent deadlocking on vmem addresses.
1037 */
1038 static void
1039 spl_slab_free(spl_kmem_slab_t *sks,
1040 struct list_head *sks_list, struct list_head *sko_list)
1041 {
1042 spl_kmem_cache_t *skc;
1043 SENTRY;
1044
1045 ASSERT(sks->sks_magic == SKS_MAGIC);
1046 ASSERT(sks->sks_ref == 0);
1047
1048 skc = sks->sks_cache;
1049 ASSERT(skc->skc_magic == SKC_MAGIC);
1050 ASSERT(spin_is_locked(&skc->skc_lock));
1051
1052 /*
1053 * Update slab/objects counters in the cache, then remove the
1054 * slab from the skc->skc_partial_list. Finally add the slab
1055 * and all its objects in to the private work lists where the
1056 * destructors will be called and the memory freed to the system.
1057 */
1058 skc->skc_obj_total -= sks->sks_objs;
1059 skc->skc_slab_total--;
1060 list_del(&sks->sks_list);
1061 list_add(&sks->sks_list, sks_list);
1062 list_splice_init(&sks->sks_free_list, sko_list);
1063
1064 SEXIT;
1065 }
1066
1067 /*
1068 * Traverses all the partial slabs attached to a cache and free those
1069 * which which are currently empty, and have not been touched for
1070 * skc_delay seconds to avoid thrashing. The count argument is
1071 * passed to optionally cap the number of slabs reclaimed, a count
1072 * of zero means try and reclaim everything. When flag is set we
1073 * always free an available slab regardless of age.
1074 */
1075 static void
1076 spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
1077 {
1078 spl_kmem_slab_t *sks, *m;
1079 spl_kmem_obj_t *sko, *n;
1080 LIST_HEAD(sks_list);
1081 LIST_HEAD(sko_list);
1082 uint32_t size = 0;
1083 int i = 0;
1084 SENTRY;
1085
1086 /*
1087 * Move empty slabs and objects which have not been touched in
1088 * skc_delay seconds on to private lists to be freed outside
1089 * the spin lock. This delay time is important to avoid thrashing
1090 * however when flag is set the delay will not be used.
1091 */
1092 spin_lock(&skc->skc_lock);
1093 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
1094 /*
1095 * All empty slabs are at the end of skc->skc_partial_list,
1096 * therefore once a non-empty slab is found we can stop
1097 * scanning. Additionally, stop when reaching the target
1098 * reclaim 'count' if a non-zero threshold is given.
1099 */
1100 if ((sks->sks_ref > 0) || (count && i >= count))
1101 break;
1102
1103 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
1104 spl_slab_free(sks, &sks_list, &sko_list);
1105 i++;
1106 }
1107 }
1108 spin_unlock(&skc->skc_lock);
1109
1110 /*
1111 * The following two loops ensure all the object destructors are
1112 * run, any offslab objects are freed, and the slabs themselves
1113 * are freed. This is all done outside the skc->skc_lock since
1114 * this allows the destructor to sleep, and allows us to perform
1115 * a conditional reschedule when a freeing a large number of
1116 * objects and slabs back to the system.
1117 */
1118 if (skc->skc_flags & KMC_OFFSLAB)
1119 size = spl_offslab_size(skc);
1120
1121 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
1122 ASSERT(sko->sko_magic == SKO_MAGIC);
1123
1124 if (skc->skc_dtor)
1125 skc->skc_dtor(sko->sko_addr, skc->skc_private);
1126
1127 if (skc->skc_flags & KMC_OFFSLAB)
1128 kv_free(skc, sko->sko_addr, size);
1129
1130 cond_resched();
1131 }
1132
1133 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1134 ASSERT(sks->sks_magic == SKS_MAGIC);
1135 kv_free(skc, sks, skc->skc_slab_size);
1136 cond_resched();
1137 }
1138
1139 SEXIT;
1140 }
1141
1142 /*
1143 * Called regularly on all caches to age objects out of the magazines
1144 * which have not been access in skc->skc_delay seconds. This prevents
1145 * idle magazines from holding memory which might be better used by
1146 * other caches or parts of the system. The delay is present to
1147 * prevent thrashing the magazine.
1148 */
1149 static void
1150 spl_magazine_age(void *data)
1151 {
1152 spl_kmem_magazine_t *skm =
1153 spl_get_work_data(data, spl_kmem_magazine_t, skm_work.work);
1154 spl_kmem_cache_t *skc = skm->skm_cache;
1155 int i = smp_processor_id();
1156
1157 ASSERT(skm->skm_magic == SKM_MAGIC);
1158 ASSERT(skc->skc_magic == SKC_MAGIC);
1159 ASSERT(skc->skc_mag[i] == skm);
1160
1161 if (skm->skm_avail > 0 &&
1162 time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
1163 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1164
1165 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1166 schedule_delayed_work_on(i, &skm->skm_work,
1167 skc->skc_delay / 3 * HZ);
1168 }
1169
1170 /*
1171 * Called regularly to keep a downward pressure on the size of idle
1172 * magazines and to release free slabs from the cache. This function
1173 * never calls the registered reclaim function, that only occurs
1174 * under memory pressure or with a direct call to spl_kmem_reap().
1175 */
1176 static void
1177 spl_cache_age(void *data)
1178 {
1179 spl_kmem_cache_t *skc =
1180 spl_get_work_data(data, spl_kmem_cache_t, skc_work.work);
1181
1182 ASSERT(skc->skc_magic == SKC_MAGIC);
1183 spl_slab_reclaim(skc, skc->skc_reap, 0);
1184
1185 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1186 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
1187 }
1188
1189 /*
1190 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
1191 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
1192 * for very small objects we may end up with more than this so as not
1193 * to waste space in the minimal allocation of a single page. Also for
1194 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
1195 * lower than this and we will fail.
1196 */
1197 static int
1198 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
1199 {
1200 uint32_t sks_size, obj_size, max_size;
1201
1202 if (skc->skc_flags & KMC_OFFSLAB) {
1203 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
1204 *size = sizeof(spl_kmem_slab_t);
1205 } else {
1206 sks_size = spl_sks_size(skc);
1207 obj_size = spl_obj_size(skc);
1208
1209 if (skc->skc_flags & KMC_KMEM)
1210 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
1211 else
1212 max_size = (32 * 1024 * 1024);
1213
1214 /* Power of two sized slab */
1215 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
1216 *objs = (*size - sks_size) / obj_size;
1217 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
1218 SRETURN(0);
1219 }
1220
1221 /*
1222 * Unable to satisfy target objects per slab, fall back to
1223 * allocating a maximally sized slab and assuming it can
1224 * contain the minimum objects count use it. If not fail.
1225 */
1226 *size = max_size;
1227 *objs = (*size - sks_size) / obj_size;
1228 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
1229 SRETURN(0);
1230 }
1231
1232 SRETURN(-ENOSPC);
1233 }
1234
1235 /*
1236 * Make a guess at reasonable per-cpu magazine size based on the size of
1237 * each object and the cost of caching N of them in each magazine. Long
1238 * term this should really adapt based on an observed usage heuristic.
1239 */
1240 static int
1241 spl_magazine_size(spl_kmem_cache_t *skc)
1242 {
1243 uint32_t obj_size = spl_obj_size(skc);
1244 int size;
1245 SENTRY;
1246
1247 /* Per-magazine sizes below assume a 4Kib page size */
1248 if (obj_size > (PAGE_SIZE * 256))
1249 size = 4; /* Minimum 4Mib per-magazine */
1250 else if (obj_size > (PAGE_SIZE * 32))
1251 size = 16; /* Minimum 2Mib per-magazine */
1252 else if (obj_size > (PAGE_SIZE))
1253 size = 64; /* Minimum 256Kib per-magazine */
1254 else if (obj_size > (PAGE_SIZE / 4))
1255 size = 128; /* Minimum 128Kib per-magazine */
1256 else
1257 size = 256;
1258
1259 SRETURN(size);
1260 }
1261
1262 /*
1263 * Allocate a per-cpu magazine to associate with a specific core.
1264 */
1265 static spl_kmem_magazine_t *
1266 spl_magazine_alloc(spl_kmem_cache_t *skc, int node)
1267 {
1268 spl_kmem_magazine_t *skm;
1269 int size = sizeof(spl_kmem_magazine_t) +
1270 sizeof(void *) * skc->skc_mag_size;
1271 SENTRY;
1272
1273 skm = kmem_alloc_node(size, KM_SLEEP, node);
1274 if (skm) {
1275 skm->skm_magic = SKM_MAGIC;
1276 skm->skm_avail = 0;
1277 skm->skm_size = skc->skc_mag_size;
1278 skm->skm_refill = skc->skc_mag_refill;
1279 skm->skm_cache = skc;
1280 spl_init_delayed_work(&skm->skm_work, spl_magazine_age, skm);
1281 skm->skm_age = jiffies;
1282 }
1283
1284 SRETURN(skm);
1285 }
1286
1287 /*
1288 * Free a per-cpu magazine associated with a specific core.
1289 */
1290 static void
1291 spl_magazine_free(spl_kmem_magazine_t *skm)
1292 {
1293 int size = sizeof(spl_kmem_magazine_t) +
1294 sizeof(void *) * skm->skm_size;
1295
1296 SENTRY;
1297 ASSERT(skm->skm_magic == SKM_MAGIC);
1298 ASSERT(skm->skm_avail == 0);
1299
1300 kmem_free(skm, size);
1301 SEXIT;
1302 }
1303
1304 /*
1305 * Create all pre-cpu magazines of reasonable sizes.
1306 */
1307 static int
1308 spl_magazine_create(spl_kmem_cache_t *skc)
1309 {
1310 int i;
1311 SENTRY;
1312
1313 skc->skc_mag_size = spl_magazine_size(skc);
1314 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
1315
1316 for_each_online_cpu(i) {
1317 skc->skc_mag[i] = spl_magazine_alloc(skc, cpu_to_node(i));
1318 if (!skc->skc_mag[i]) {
1319 for (i--; i >= 0; i--)
1320 spl_magazine_free(skc->skc_mag[i]);
1321
1322 SRETURN(-ENOMEM);
1323 }
1324 }
1325
1326 /* Only after everything is allocated schedule magazine work */
1327 for_each_online_cpu(i)
1328 schedule_delayed_work_on(i, &skc->skc_mag[i]->skm_work,
1329 skc->skc_delay / 3 * HZ);
1330
1331 SRETURN(0);
1332 }
1333
1334 /*
1335 * Destroy all pre-cpu magazines.
1336 */
1337 static void
1338 spl_magazine_destroy(spl_kmem_cache_t *skc)
1339 {
1340 spl_kmem_magazine_t *skm;
1341 int i;
1342 SENTRY;
1343
1344 for_each_online_cpu(i) {
1345 skm = skc->skc_mag[i];
1346 (void)spl_cache_flush(skc, skm, skm->skm_avail);
1347 spl_magazine_free(skm);
1348 }
1349
1350 SEXIT;
1351 }
1352
1353 /*
1354 * Create a object cache based on the following arguments:
1355 * name cache name
1356 * size cache object size
1357 * align cache object alignment
1358 * ctor cache object constructor
1359 * dtor cache object destructor
1360 * reclaim cache object reclaim
1361 * priv cache private data for ctor/dtor/reclaim
1362 * vmp unused must be NULL
1363 * flags
1364 * KMC_NOTOUCH Disable cache object aging (unsupported)
1365 * KMC_NODEBUG Disable debugging (unsupported)
1366 * KMC_NOMAGAZINE Disable magazine (unsupported)
1367 * KMC_NOHASH Disable hashing (unsupported)
1368 * KMC_QCACHE Disable qcache (unsupported)
1369 * KMC_KMEM Force kmem backed cache
1370 * KMC_VMEM Force vmem backed cache
1371 * KMC_OFFSLAB Locate objects off the slab
1372 */
1373 spl_kmem_cache_t *
1374 spl_kmem_cache_create(char *name, size_t size, size_t align,
1375 spl_kmem_ctor_t ctor,
1376 spl_kmem_dtor_t dtor,
1377 spl_kmem_reclaim_t reclaim,
1378 void *priv, void *vmp, int flags)
1379 {
1380 spl_kmem_cache_t *skc;
1381 int rc, kmem_flags = KM_SLEEP;
1382 SENTRY;
1383
1384 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1385 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1386 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
1387 ASSERT(vmp == NULL);
1388
1389 /* We may be called when there is a non-zero preempt_count or
1390 * interrupts are disabled is which case we must not sleep.
1391 */
1392 if (current_thread_info()->preempt_count || irqs_disabled())
1393 kmem_flags = KM_NOSLEEP;
1394
1395 /* Allocate memory for a new cache an initialize it. Unfortunately,
1396 * this usually ends up being a large allocation of ~32k because
1397 * we need to allocate enough memory for the worst case number of
1398 * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
1399 * explicitly pass KM_NODEBUG to suppress the kmem warning */
1400 skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc),
1401 kmem_flags | KM_NODEBUG);
1402 if (skc == NULL)
1403 SRETURN(NULL);
1404
1405 skc->skc_magic = SKC_MAGIC;
1406 skc->skc_name_size = strlen(name) + 1;
1407 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
1408 if (skc->skc_name == NULL) {
1409 kmem_free(skc, sizeof(*skc));
1410 SRETURN(NULL);
1411 }
1412 strncpy(skc->skc_name, name, skc->skc_name_size);
1413
1414 skc->skc_ctor = ctor;
1415 skc->skc_dtor = dtor;
1416 skc->skc_reclaim = reclaim;
1417 skc->skc_private = priv;
1418 skc->skc_vmp = vmp;
1419 skc->skc_flags = flags;
1420 skc->skc_obj_size = size;
1421 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
1422 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
1423 skc->skc_reap = SPL_KMEM_CACHE_REAP;
1424 atomic_set(&skc->skc_ref, 0);
1425
1426 INIT_LIST_HEAD(&skc->skc_list);
1427 INIT_LIST_HEAD(&skc->skc_complete_list);
1428 INIT_LIST_HEAD(&skc->skc_partial_list);
1429 spin_lock_init(&skc->skc_lock);
1430 skc->skc_slab_fail = 0;
1431 skc->skc_slab_create = 0;
1432 skc->skc_slab_destroy = 0;
1433 skc->skc_slab_total = 0;
1434 skc->skc_slab_alloc = 0;
1435 skc->skc_slab_max = 0;
1436 skc->skc_obj_total = 0;
1437 skc->skc_obj_alloc = 0;
1438 skc->skc_obj_max = 0;
1439
1440 if (align) {
1441 VERIFY(ISP2(align));
1442 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */
1443 VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */
1444 skc->skc_obj_align = align;
1445 }
1446
1447 /* If none passed select a cache type based on object size */
1448 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
1449 if (spl_obj_size(skc) < (PAGE_SIZE / 8))
1450 skc->skc_flags |= KMC_KMEM;
1451 else
1452 skc->skc_flags |= KMC_VMEM;
1453 }
1454
1455 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1456 if (rc)
1457 SGOTO(out, rc);
1458
1459 rc = spl_magazine_create(skc);
1460 if (rc)
1461 SGOTO(out, rc);
1462
1463 spl_init_delayed_work(&skc->skc_work, spl_cache_age, skc);
1464 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
1465
1466 down_write(&spl_kmem_cache_sem);
1467 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1468 up_write(&spl_kmem_cache_sem);
1469
1470 SRETURN(skc);
1471 out:
1472 kmem_free(skc->skc_name, skc->skc_name_size);
1473 kmem_free(skc, sizeof(*skc));
1474 SRETURN(NULL);
1475 }
1476 EXPORT_SYMBOL(spl_kmem_cache_create);
1477
1478 /*
1479 * Register a move callback to for cache defragmentation.
1480 * XXX: Unimplemented but harmless to stub out for now.
1481 */
1482 void
1483 spl_kmem_cache_set_move(kmem_cache_t *skc,
1484 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1485 {
1486 ASSERT(move != NULL);
1487 }
1488 EXPORT_SYMBOL(spl_kmem_cache_set_move);
1489
1490 /*
1491 * Destroy a cache and all objects associated with the cache.
1492 */
1493 void
1494 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1495 {
1496 DECLARE_WAIT_QUEUE_HEAD(wq);
1497 int i;
1498 SENTRY;
1499
1500 ASSERT(skc->skc_magic == SKC_MAGIC);
1501
1502 down_write(&spl_kmem_cache_sem);
1503 list_del_init(&skc->skc_list);
1504 up_write(&spl_kmem_cache_sem);
1505
1506 /* Cancel any and wait for any pending delayed work */
1507 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1508 cancel_delayed_work_sync(&skc->skc_work);
1509 for_each_online_cpu(i)
1510 cancel_delayed_work_sync(&skc->skc_mag[i]->skm_work);
1511
1512 flush_scheduled_work();
1513
1514 /* Wait until all current callers complete, this is mainly
1515 * to catch the case where a low memory situation triggers a
1516 * cache reaping action which races with this destroy. */
1517 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1518
1519 spl_magazine_destroy(skc);
1520 spl_slab_reclaim(skc, 0, 1);
1521 spin_lock(&skc->skc_lock);
1522
1523 /* Validate there are no objects in use and free all the
1524 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
1525 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1526 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1527 ASSERT3U(skc->skc_slab_total, ==, 0);
1528 ASSERT3U(skc->skc_obj_total, ==, 0);
1529 ASSERT(list_empty(&skc->skc_complete_list));
1530
1531 kmem_free(skc->skc_name, skc->skc_name_size);
1532 spin_unlock(&skc->skc_lock);
1533
1534 kmem_free(skc, sizeof(*skc));
1535
1536 SEXIT;
1537 }
1538 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1539
1540 /*
1541 * Allocate an object from a slab attached to the cache. This is used to
1542 * repopulate the per-cpu magazine caches in batches when they run low.
1543 */
1544 static void *
1545 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1546 {
1547 spl_kmem_obj_t *sko;
1548
1549 ASSERT(skc->skc_magic == SKC_MAGIC);
1550 ASSERT(sks->sks_magic == SKS_MAGIC);
1551 ASSERT(spin_is_locked(&skc->skc_lock));
1552
1553 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1554 ASSERT(sko->sko_magic == SKO_MAGIC);
1555 ASSERT(sko->sko_addr != NULL);
1556
1557 /* Remove from sks_free_list */
1558 list_del_init(&sko->sko_list);
1559
1560 sks->sks_age = jiffies;
1561 sks->sks_ref++;
1562 skc->skc_obj_alloc++;
1563
1564 /* Track max obj usage statistics */
1565 if (skc->skc_obj_alloc > skc->skc_obj_max)
1566 skc->skc_obj_max = skc->skc_obj_alloc;
1567
1568 /* Track max slab usage statistics */
1569 if (sks->sks_ref == 1) {
1570 skc->skc_slab_alloc++;
1571
1572 if (skc->skc_slab_alloc > skc->skc_slab_max)
1573 skc->skc_slab_max = skc->skc_slab_alloc;
1574 }
1575
1576 return sko->sko_addr;
1577 }
1578
1579 /*
1580 * No available objects on any slabs, create a new slab. Since this
1581 * is an expensive operation we do it without holding the spin lock and
1582 * only briefly acquire it when we link in the fully allocated and
1583 * constructed slab.
1584 */
1585 static spl_kmem_slab_t *
1586 spl_cache_grow(spl_kmem_cache_t *skc, int flags)
1587 {
1588 spl_kmem_slab_t *sks;
1589 SENTRY;
1590
1591 ASSERT(skc->skc_magic == SKC_MAGIC);
1592 local_irq_enable();
1593 might_sleep();
1594
1595 /*
1596 * Before allocating a new slab check if the slab is being reaped.
1597 * If it is there is a good chance we can wait until it finishes
1598 * and then use one of the newly freed but not aged-out slabs.
1599 */
1600 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1601 schedule();
1602 SGOTO(out, sks= NULL);
1603 }
1604
1605 /* Allocate a new slab for the cache */
1606 sks = spl_slab_alloc(skc, flags | __GFP_NORETRY | KM_NODEBUG);
1607 if (sks == NULL)
1608 SGOTO(out, sks = NULL);
1609
1610 /* Link the new empty slab in to the end of skc_partial_list. */
1611 spin_lock(&skc->skc_lock);
1612 skc->skc_slab_total++;
1613 skc->skc_obj_total += sks->sks_objs;
1614 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1615 spin_unlock(&skc->skc_lock);
1616 out:
1617 local_irq_disable();
1618
1619 SRETURN(sks);
1620 }
1621
1622 /*
1623 * Refill a per-cpu magazine with objects from the slabs for this
1624 * cache. Ideally the magazine can be repopulated using existing
1625 * objects which have been released, however if we are unable to
1626 * locate enough free objects new slabs of objects will be created.
1627 */
1628 static int
1629 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1630 {
1631 spl_kmem_slab_t *sks;
1632 int rc = 0, refill;
1633 SENTRY;
1634
1635 ASSERT(skc->skc_magic == SKC_MAGIC);
1636 ASSERT(skm->skm_magic == SKM_MAGIC);
1637
1638 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1639 spin_lock(&skc->skc_lock);
1640
1641 while (refill > 0) {
1642 /* No slabs available we may need to grow the cache */
1643 if (list_empty(&skc->skc_partial_list)) {
1644 spin_unlock(&skc->skc_lock);
1645
1646 sks = spl_cache_grow(skc, flags);
1647 if (!sks)
1648 SGOTO(out, rc);
1649
1650 /* Rescheduled to different CPU skm is not local */
1651 if (skm != skc->skc_mag[smp_processor_id()])
1652 SGOTO(out, rc);
1653
1654 /* Potentially rescheduled to the same CPU but
1655 * allocations may have occurred from this CPU while
1656 * we were sleeping so recalculate max refill. */
1657 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1658
1659 spin_lock(&skc->skc_lock);
1660 continue;
1661 }
1662
1663 /* Grab the next available slab */
1664 sks = list_entry((&skc->skc_partial_list)->next,
1665 spl_kmem_slab_t, sks_list);
1666 ASSERT(sks->sks_magic == SKS_MAGIC);
1667 ASSERT(sks->sks_ref < sks->sks_objs);
1668 ASSERT(!list_empty(&sks->sks_free_list));
1669
1670 /* Consume as many objects as needed to refill the requested
1671 * cache. We must also be careful not to overfill it. */
1672 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++rc) {
1673 ASSERT(skm->skm_avail < skm->skm_size);
1674 ASSERT(rc < skm->skm_size);
1675 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
1676 }
1677
1678 /* Move slab to skc_complete_list when full */
1679 if (sks->sks_ref == sks->sks_objs) {
1680 list_del(&sks->sks_list);
1681 list_add(&sks->sks_list, &skc->skc_complete_list);
1682 }
1683 }
1684
1685 spin_unlock(&skc->skc_lock);
1686 out:
1687 /* Returns the number of entries added to cache */
1688 SRETURN(rc);
1689 }
1690
1691 /*
1692 * Release an object back to the slab from which it came.
1693 */
1694 static void
1695 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1696 {
1697 spl_kmem_slab_t *sks = NULL;
1698 spl_kmem_obj_t *sko = NULL;
1699 SENTRY;
1700
1701 ASSERT(skc->skc_magic == SKC_MAGIC);
1702 ASSERT(spin_is_locked(&skc->skc_lock));
1703
1704 sko = spl_sko_from_obj(skc, obj);
1705 ASSERT(sko->sko_magic == SKO_MAGIC);
1706 sks = sko->sko_slab;
1707 ASSERT(sks->sks_magic == SKS_MAGIC);
1708 ASSERT(sks->sks_cache == skc);
1709 list_add(&sko->sko_list, &sks->sks_free_list);
1710
1711 sks->sks_age = jiffies;
1712 sks->sks_ref--;
1713 skc->skc_obj_alloc--;
1714
1715 /* Move slab to skc_partial_list when no longer full. Slabs
1716 * are added to the head to keep the partial list is quasi-full
1717 * sorted order. Fuller at the head, emptier at the tail. */
1718 if (sks->sks_ref == (sks->sks_objs - 1)) {
1719 list_del(&sks->sks_list);
1720 list_add(&sks->sks_list, &skc->skc_partial_list);
1721 }
1722
1723 /* Move empty slabs to the end of the partial list so
1724 * they can be easily found and freed during reclamation. */
1725 if (sks->sks_ref == 0) {
1726 list_del(&sks->sks_list);
1727 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1728 skc->skc_slab_alloc--;
1729 }
1730
1731 SEXIT;
1732 }
1733
1734 /*
1735 * Release a batch of objects from a per-cpu magazine back to their
1736 * respective slabs. This occurs when we exceed the magazine size,
1737 * are under memory pressure, when the cache is idle, or during
1738 * cache cleanup. The flush argument contains the number of entries
1739 * to remove from the magazine.
1740 */
1741 static int
1742 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1743 {
1744 int i, count = MIN(flush, skm->skm_avail);
1745 SENTRY;
1746
1747 ASSERT(skc->skc_magic == SKC_MAGIC);
1748 ASSERT(skm->skm_magic == SKM_MAGIC);
1749
1750 /*
1751 * XXX: Currently we simply return objects from the magazine to
1752 * the slabs in fifo order. The ideal thing to do from a memory
1753 * fragmentation standpoint is to cheaply determine the set of
1754 * objects in the magazine which will result in the largest
1755 * number of free slabs if released from the magazine.
1756 */
1757 spin_lock(&skc->skc_lock);
1758 for (i = 0; i < count; i++)
1759 spl_cache_shrink(skc, skm->skm_objs[i]);
1760
1761 skm->skm_avail -= count;
1762 memmove(skm->skm_objs, &(skm->skm_objs[count]),
1763 sizeof(void *) * skm->skm_avail);
1764
1765 spin_unlock(&skc->skc_lock);
1766
1767 SRETURN(count);
1768 }
1769
1770 /*
1771 * Allocate an object from the per-cpu magazine, or if the magazine
1772 * is empty directly allocate from a slab and repopulate the magazine.
1773 */
1774 void *
1775 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1776 {
1777 spl_kmem_magazine_t *skm;
1778 unsigned long irq_flags;
1779 void *obj = NULL;
1780 SENTRY;
1781
1782 ASSERT(skc->skc_magic == SKC_MAGIC);
1783 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1784 ASSERT(flags & KM_SLEEP);
1785 atomic_inc(&skc->skc_ref);
1786 local_irq_save(irq_flags);
1787
1788 restart:
1789 /* Safe to update per-cpu structure without lock, but
1790 * in the restart case we must be careful to reacquire
1791 * the local magazine since this may have changed
1792 * when we need to grow the cache. */
1793 skm = skc->skc_mag[smp_processor_id()];
1794 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
1795 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
1796 skm->skm_size, skm->skm_refill, skm->skm_avail);
1797
1798 if (likely(skm->skm_avail)) {
1799 /* Object available in CPU cache, use it */
1800 obj = skm->skm_objs[--skm->skm_avail];
1801 skm->skm_age = jiffies;
1802 } else {
1803 /* Per-CPU cache empty, directly allocate from
1804 * the slab and refill the per-CPU cache. */
1805 (void)spl_cache_refill(skc, skm, flags);
1806 SGOTO(restart, obj = NULL);
1807 }
1808
1809 local_irq_restore(irq_flags);
1810 ASSERT(obj);
1811 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1812
1813 /* Pre-emptively migrate object to CPU L1 cache */
1814 prefetchw(obj);
1815 atomic_dec(&skc->skc_ref);
1816
1817 SRETURN(obj);
1818 }
1819 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1820
1821 /*
1822 * Free an object back to the local per-cpu magazine, there is no
1823 * guarantee that this is the same magazine the object was originally
1824 * allocated from. We may need to flush entire from the magazine
1825 * back to the slabs to make space.
1826 */
1827 void
1828 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1829 {
1830 spl_kmem_magazine_t *skm;
1831 unsigned long flags;
1832 SENTRY;
1833
1834 ASSERT(skc->skc_magic == SKC_MAGIC);
1835 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1836 atomic_inc(&skc->skc_ref);
1837 local_irq_save(flags);
1838
1839 /* Safe to update per-cpu structure without lock, but
1840 * no remote memory allocation tracking is being performed
1841 * it is entirely possible to allocate an object from one
1842 * CPU cache and return it to another. */
1843 skm = skc->skc_mag[smp_processor_id()];
1844 ASSERT(skm->skm_magic == SKM_MAGIC);
1845
1846 /* Per-CPU cache full, flush it to make space */
1847 if (unlikely(skm->skm_avail >= skm->skm_size))
1848 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1849
1850 /* Available space in cache, use it */
1851 skm->skm_objs[skm->skm_avail++] = obj;
1852
1853 local_irq_restore(flags);
1854 atomic_dec(&skc->skc_ref);
1855
1856 SEXIT;
1857 }
1858 EXPORT_SYMBOL(spl_kmem_cache_free);
1859
1860 /*
1861 * The generic shrinker function for all caches. Under Linux a shrinker
1862 * may not be tightly coupled with a slab cache. In fact Linux always
1863 * systematically tries calling all registered shrinker callbacks which
1864 * report that they contain unused objects. Because of this we only
1865 * register one shrinker function in the shim layer for all slab caches.
1866 * We always attempt to shrink all caches when this generic shrinker
1867 * is called. The shrinker should return the number of free objects
1868 * in the cache when called with nr_to_scan == 0 but not attempt to
1869 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
1870 * objects should be freed, which differs from Solaris semantics.
1871 * Solaris semantics are to free all available objects which may (and
1872 * probably will) be more objects than the requested nr_to_scan.
1873 */
1874 static int
1875 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
1876 struct shrink_control *sc)
1877 {
1878 spl_kmem_cache_t *skc;
1879 int unused = 0;
1880
1881 down_read(&spl_kmem_cache_sem);
1882 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1883 if (sc->nr_to_scan)
1884 spl_kmem_cache_reap_now(skc,
1885 MAX(sc->nr_to_scan >> fls64(skc->skc_slab_objs), 1));
1886
1887 /*
1888 * Presume everything alloc'ed in reclaimable, this ensures
1889 * we are called again with nr_to_scan > 0 so can try and
1890 * reclaim. The exact number is not important either so
1891 * we forgo taking this already highly contented lock.
1892 */
1893 unused += skc->skc_obj_alloc;
1894 }
1895 up_read(&spl_kmem_cache_sem);
1896
1897 return (unused * sysctl_vfs_cache_pressure) / 100;
1898 }
1899
1900 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
1901
1902 /*
1903 * Call the registered reclaim function for a cache. Depending on how
1904 * many and which objects are released it may simply repopulate the
1905 * local magazine which will then need to age-out. Objects which cannot
1906 * fit in the magazine we will be released back to their slabs which will
1907 * also need to age out before being release. This is all just best
1908 * effort and we do not want to thrash creating and destroying slabs.
1909 */
1910 void
1911 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
1912 {
1913 SENTRY;
1914
1915 ASSERT(skc->skc_magic == SKC_MAGIC);
1916 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1917
1918 /* Prevent concurrent cache reaping when contended */
1919 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1920 SEXIT;
1921 return;
1922 }
1923
1924 atomic_inc(&skc->skc_ref);
1925
1926 /*
1927 * When a reclaim function is available it may be invoked repeatedly
1928 * until at least a single slab can be freed. This ensures that we
1929 * do free memory back to the system. This helps minimize the chance
1930 * of an OOM event when the bulk of memory is used by the slab.
1931 *
1932 * When free slabs are already available the reclaim callback will be
1933 * skipped. Additionally, if no forward progress is detected despite
1934 * a reclaim function the cache will be skipped to avoid deadlock.
1935 *
1936 * Longer term this would be the correct place to add the code which
1937 * repacks the slabs in order minimize fragmentation.
1938 */
1939 if (skc->skc_reclaim) {
1940 uint64_t objects = UINT64_MAX;
1941 int do_reclaim;
1942
1943 do {
1944 spin_lock(&skc->skc_lock);
1945 do_reclaim =
1946 (skc->skc_slab_total > 0) &&
1947 ((skc->skc_slab_total - skc->skc_slab_alloc) == 0) &&
1948 (skc->skc_obj_alloc < objects);
1949
1950 objects = skc->skc_obj_alloc;
1951 spin_unlock(&skc->skc_lock);
1952
1953 if (do_reclaim)
1954 skc->skc_reclaim(skc->skc_private);
1955
1956 } while (do_reclaim);
1957 }
1958
1959 /* Reclaim from the cache, ignoring it's age and delay. */
1960 spl_slab_reclaim(skc, count, 1);
1961 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
1962 atomic_dec(&skc->skc_ref);
1963
1964 SEXIT;
1965 }
1966 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1967
1968 /*
1969 * Reap all free slabs from all registered caches.
1970 */
1971 void
1972 spl_kmem_reap(void)
1973 {
1974 struct shrink_control sc;
1975
1976 sc.nr_to_scan = KMC_REAP_CHUNK;
1977 sc.gfp_mask = GFP_KERNEL;
1978
1979 __spl_kmem_cache_generic_shrinker(NULL, &sc);
1980 }
1981 EXPORT_SYMBOL(spl_kmem_reap);
1982
1983 #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
1984 static char *
1985 spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
1986 {
1987 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
1988 int i, flag = 1;
1989
1990 ASSERT(str != NULL && len >= 17);
1991 memset(str, 0, len);
1992
1993 /* Check for a fully printable string, and while we are at
1994 * it place the printable characters in the passed buffer. */
1995 for (i = 0; i < size; i++) {
1996 str[i] = ((char *)(kd->kd_addr))[i];
1997 if (isprint(str[i])) {
1998 continue;
1999 } else {
2000 /* Minimum number of printable characters found
2001 * to make it worthwhile to print this as ascii. */
2002 if (i > min)
2003 break;
2004
2005 flag = 0;
2006 break;
2007 }
2008 }
2009
2010 if (!flag) {
2011 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
2012 *((uint8_t *)kd->kd_addr),
2013 *((uint8_t *)kd->kd_addr + 2),
2014 *((uint8_t *)kd->kd_addr + 4),
2015 *((uint8_t *)kd->kd_addr + 6),
2016 *((uint8_t *)kd->kd_addr + 8),
2017 *((uint8_t *)kd->kd_addr + 10),
2018 *((uint8_t *)kd->kd_addr + 12),
2019 *((uint8_t *)kd->kd_addr + 14));
2020 }
2021
2022 return str;
2023 }
2024
2025 static int
2026 spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
2027 {
2028 int i;
2029 SENTRY;
2030
2031 spin_lock_init(lock);
2032 INIT_LIST_HEAD(list);
2033
2034 for (i = 0; i < size; i++)
2035 INIT_HLIST_HEAD(&kmem_table[i]);
2036
2037 SRETURN(0);
2038 }
2039
2040 static void
2041 spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
2042 {
2043 unsigned long flags;
2044 kmem_debug_t *kd;
2045 char str[17];
2046 SENTRY;
2047
2048 spin_lock_irqsave(lock, flags);
2049 if (!list_empty(list))
2050 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
2051 "size", "data", "func", "line");
2052
2053 list_for_each_entry(kd, list, kd_list)
2054 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
2055 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2056 kd->kd_func, kd->kd_line);
2057
2058 spin_unlock_irqrestore(lock, flags);
2059 SEXIT;
2060 }
2061 #else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2062 #define spl_kmem_init_tracking(list, lock, size)
2063 #define spl_kmem_fini_tracking(list, lock)
2064 #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2065
2066 static void
2067 spl_kmem_init_globals(void)
2068 {
2069 struct zone *zone;
2070
2071 /* For now all zones are includes, it may be wise to restrict
2072 * this to normal and highmem zones if we see problems. */
2073 for_each_zone(zone) {
2074
2075 if (!populated_zone(zone))
2076 continue;
2077
2078 minfree += min_wmark_pages(zone);
2079 desfree += low_wmark_pages(zone);
2080 lotsfree += high_wmark_pages(zone);
2081 }
2082
2083 /* Solaris default values */
2084 swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3);
2085 swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4);
2086 }
2087
2088 /*
2089 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
2090 */
2091 int
2092 spl_kmem_init_kallsyms_lookup(void)
2093 {
2094 #ifndef HAVE_GET_VMALLOC_INFO
2095 get_vmalloc_info_fn = (get_vmalloc_info_t)
2096 spl_kallsyms_lookup_name("get_vmalloc_info");
2097 if (!get_vmalloc_info_fn) {
2098 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
2099 return -EFAULT;
2100 }
2101 #endif /* HAVE_GET_VMALLOC_INFO */
2102
2103 #ifdef HAVE_PGDAT_HELPERS
2104 # ifndef HAVE_FIRST_ONLINE_PGDAT
2105 first_online_pgdat_fn = (first_online_pgdat_t)
2106 spl_kallsyms_lookup_name("first_online_pgdat");
2107 if (!first_online_pgdat_fn) {
2108 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
2109 return -EFAULT;
2110 }
2111 # endif /* HAVE_FIRST_ONLINE_PGDAT */
2112
2113 # ifndef HAVE_NEXT_ONLINE_PGDAT
2114 next_online_pgdat_fn = (next_online_pgdat_t)
2115 spl_kallsyms_lookup_name("next_online_pgdat");
2116 if (!next_online_pgdat_fn) {
2117 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
2118 return -EFAULT;
2119 }
2120 # endif /* HAVE_NEXT_ONLINE_PGDAT */
2121
2122 # ifndef HAVE_NEXT_ZONE
2123 next_zone_fn = (next_zone_t)
2124 spl_kallsyms_lookup_name("next_zone");
2125 if (!next_zone_fn) {
2126 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
2127 return -EFAULT;
2128 }
2129 # endif /* HAVE_NEXT_ZONE */
2130
2131 #else /* HAVE_PGDAT_HELPERS */
2132
2133 # ifndef HAVE_PGDAT_LIST
2134 pgdat_list_addr = *(struct pglist_data **)
2135 spl_kallsyms_lookup_name("pgdat_list");
2136 if (!pgdat_list_addr) {
2137 printk(KERN_ERR "Error: Unknown symbol pgdat_list\n");
2138 return -EFAULT;
2139 }
2140 # endif /* HAVE_PGDAT_LIST */
2141 #endif /* HAVE_PGDAT_HELPERS */
2142
2143 #if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS)
2144 get_zone_counts_fn = (get_zone_counts_t)
2145 spl_kallsyms_lookup_name("get_zone_counts");
2146 if (!get_zone_counts_fn) {
2147 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
2148 return -EFAULT;
2149 }
2150 #endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */
2151
2152 /*
2153 * It is now safe to initialize the global tunings which rely on
2154 * the use of the for_each_zone() macro. This macro in turns
2155 * depends on the *_pgdat symbols which are now available.
2156 */
2157 spl_kmem_init_globals();
2158
2159 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
2160 invalidate_inodes_fn = (invalidate_inodes_t)
2161 spl_kallsyms_lookup_name("invalidate_inodes");
2162 if (!invalidate_inodes_fn) {
2163 printk(KERN_ERR "Error: Unknown symbol invalidate_inodes\n");
2164 return -EFAULT;
2165 }
2166 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
2167
2168 #ifndef HAVE_SHRINK_DCACHE_MEMORY
2169 /* When shrink_dcache_memory_fn == NULL support is disabled */
2170 shrink_dcache_memory_fn = (shrink_dcache_memory_t)
2171 spl_kallsyms_lookup_name("shrink_dcache_memory");
2172 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
2173
2174 #ifndef HAVE_SHRINK_ICACHE_MEMORY
2175 /* When shrink_icache_memory_fn == NULL support is disabled */
2176 shrink_icache_memory_fn = (shrink_icache_memory_t)
2177 spl_kallsyms_lookup_name("shrink_icache_memory");
2178 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
2179
2180 return 0;
2181 }
2182
2183 int
2184 spl_kmem_init(void)
2185 {
2186 int rc = 0;
2187 SENTRY;
2188
2189 init_rwsem(&spl_kmem_cache_sem);
2190 INIT_LIST_HEAD(&spl_kmem_cache_list);
2191
2192 spl_register_shrinker(&spl_kmem_cache_shrinker);
2193
2194 #ifdef DEBUG_KMEM
2195 kmem_alloc_used_set(0);
2196 vmem_alloc_used_set(0);
2197
2198 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
2199 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
2200 #endif
2201 SRETURN(rc);
2202 }
2203
2204 void
2205 spl_kmem_fini(void)
2206 {
2207 #ifdef DEBUG_KMEM
2208 /* Display all unreclaimed memory addresses, including the
2209 * allocation size and the first few bytes of what's located
2210 * at that address to aid in debugging. Performance is not
2211 * a serious concern here since it is module unload time. */
2212 if (kmem_alloc_used_read() != 0)
2213 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2214 "kmem leaked %ld/%ld bytes\n",
2215 kmem_alloc_used_read(), kmem_alloc_max);
2216
2217
2218 if (vmem_alloc_used_read() != 0)
2219 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2220 "vmem leaked %ld/%ld bytes\n",
2221 vmem_alloc_used_read(), vmem_alloc_max);
2222
2223 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
2224 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
2225 #endif /* DEBUG_KMEM */
2226 SENTRY;
2227
2228 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
2229
2230 SEXIT;
2231 }