]> git.proxmox.com Git - mirror_zfs.git/blame - module/zcommon/zfs_fletcher.c
Build user-space with different gcc optimization levels
[mirror_zfs.git] / module / zcommon / zfs_fletcher.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
9babb374 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
23 * Use is subject to license terms.
24 */
25
9babb374
BB
26/*
27 * Fletcher Checksums
28 * ------------------
29 *
30 * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
31 * recurrence relations:
32 *
33 * a = a + f
34 * i i-1 i-1
35 *
36 * b = b + a
37 * i i-1 i
38 *
39 * c = c + b (fletcher-4 only)
40 * i i-1 i
41 *
42 * d = d + c (fletcher-4 only)
43 * i i-1 i
44 *
45 * Where
46 * a_0 = b_0 = c_0 = d_0 = 0
47 * and
48 * f_0 .. f_(n-1) are the input data.
49 *
50 * Using standard techniques, these translate into the following series:
51 *
52 * __n_ __n_
53 * \ | \ |
54 * a = > f b = > i * f
55 * n /___| n - i n /___| n - i
56 * i = 1 i = 1
57 *
58 *
59 * __n_ __n_
60 * \ | i*(i+1) \ | i*(i+1)*(i+2)
61 * c = > ------- f d = > ------------- f
62 * n /___| 2 n - i n /___| 6 n - i
63 * i = 1 i = 1
64 *
65 * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
66 * Since the additions are done mod (2^64), errors in the high bits may not
67 * be noticed. For this reason, fletcher-2 is deprecated.
68 *
69 * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
70 * A conservative estimate of how big the buffer can get before we overflow
71 * can be estimated using f_i = 0xffffffff for all i:
72 *
73 * % bc
74 * f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
75 * 2264
76 * quit
77 * %
78 *
79 * So blocks of up to 2k will not overflow. Our largest block size is
80 * 128k, which has 32k 4-byte words, so we can compute the largest possible
81 * accumulators, then divide by 2^64 to figure the max amount of overflow:
82 *
83 * % bc
84 * a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
85 * a/2^64;b/2^64;c/2^64;d/2^64
86 * 0
87 * 0
88 * 1365
89 * 11186858
90 * quit
91 * %
92 *
93 * So a and b cannot overflow. To make sure each bit of input has some
94 * effect on the contents of c and d, we can look at what the factors of
95 * the coefficients in the equations for c_n and d_n are. The number of 2s
96 * in the factors determines the lowest set bit in the multiplier. Running
97 * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
98 * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
99 * the 64-bit accumulators, every bit of every f_i effects every accumulator,
100 * even for 128k blocks.
101 *
102 * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
103 * we could do our calculations mod (2^32 - 1) by adding in the carries
104 * periodically, and store the number of carries in the top 32-bits.
105 *
106 * --------------------
107 * Checksum Performance
108 * --------------------
109 *
110 * There are two interesting components to checksum performance: cached and
111 * uncached performance. With cached data, fletcher-2 is about four times
112 * faster than fletcher-4. With uncached data, the performance difference is
113 * negligible, since the cost of a cache fill dominates the processing time.
114 * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
115 * efficient pass over the data.
116 *
117 * In normal operation, the data which is being checksummed is in a buffer
118 * which has been filled either by:
119 *
120 * 1. a compression step, which will be mostly cached, or
121 * 2. a bcopy() or copyin(), which will be uncached (because the
122 * copy is cache-bypassing).
123 *
124 * For both cached and uncached data, both fletcher checksums are much faster
125 * than sha-256, and slower than 'off', which doesn't touch the data at all.
126 */
34dc7c2f
BB
127
128#include <sys/types.h>
129#include <sys/sysmacros.h>
130#include <sys/byteorder.h>
131#include <sys/spa.h>
1eeb4562
JX
132#include <sys/zfs_context.h>
133#include <zfs_fletcher.h>
134
135static void fletcher_4_scalar_init(zio_cksum_t *zcp);
136static void fletcher_4_scalar(const void *buf, uint64_t size,
137 zio_cksum_t *zcp);
138static void fletcher_4_scalar_byteswap(const void *buf, uint64_t size,
139 zio_cksum_t *zcp);
140static boolean_t fletcher_4_scalar_valid(void);
141
142static const fletcher_4_ops_t fletcher_4_scalar_ops = {
143 .init = fletcher_4_scalar_init,
144 .compute = fletcher_4_scalar,
145 .compute_byteswap = fletcher_4_scalar_byteswap,
146 .valid = fletcher_4_scalar_valid,
147 .name = "scalar"
148};
149
150static const fletcher_4_ops_t *fletcher_4_algos[] = {
151 &fletcher_4_scalar_ops,
35a76a03
TS
152#if defined(HAVE_SSE2)
153 &fletcher_4_sse2_ops,
154#endif
155#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
156 &fletcher_4_ssse3_ops,
157#endif
1eeb4562
JX
158#if defined(HAVE_AVX) && defined(HAVE_AVX2)
159 &fletcher_4_avx2_ops,
160#endif
161};
162
163static enum fletcher_selector {
164 FLETCHER_FASTEST = 0,
165 FLETCHER_SCALAR,
35a76a03
TS
166#if defined(HAVE_SSE2)
167 FLETCHER_SSE2,
168#endif
169#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
170 FLETCHER_SSSE3,
171#endif
1eeb4562
JX
172#if defined(HAVE_AVX) && defined(HAVE_AVX2)
173 FLETCHER_AVX2,
174#endif
175 FLETCHER_CYCLE
176} fletcher_4_impl_chosen = FLETCHER_SCALAR;
177
178static struct fletcher_4_impl_selector {
179 const char *fis_name;
180 const fletcher_4_ops_t *fis_ops;
181} fletcher_4_impl_selectors[] = {
182 [ FLETCHER_FASTEST ] = { "fastest", NULL },
183 [ FLETCHER_SCALAR ] = { "scalar", &fletcher_4_scalar_ops },
35a76a03
TS
184#if defined(HAVE_SSE2)
185 [ FLETCHER_SSE2 ] = { "sse2", &fletcher_4_sse2_ops },
186#endif
187#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
188 [ FLETCHER_SSSE3 ] = { "ssse3", &fletcher_4_ssse3_ops },
189#endif
1eeb4562
JX
190#if defined(HAVE_AVX) && defined(HAVE_AVX2)
191 [ FLETCHER_AVX2 ] = { "avx2", &fletcher_4_avx2_ops },
192#endif
193#if !defined(_KERNEL)
194 [ FLETCHER_CYCLE ] = { "cycle", &fletcher_4_scalar_ops }
195#endif
196};
197
198static kmutex_t fletcher_4_impl_lock;
199
200static kstat_t *fletcher_4_kstat;
201
202static kstat_named_t fletcher_4_kstat_data[ARRAY_SIZE(fletcher_4_algos)];
34dc7c2f
BB
203
204void
205fletcher_2_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
206{
207 const uint64_t *ip = buf;
208 const uint64_t *ipend = ip + (size / sizeof (uint64_t));
209 uint64_t a0, b0, a1, b1;
210
211 for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
212 a0 += ip[0];
213 a1 += ip[1];
214 b0 += a0;
215 b1 += a1;
216 }
217
218 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
219}
220
221void
222fletcher_2_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
223{
224 const uint64_t *ip = buf;
225 const uint64_t *ipend = ip + (size / sizeof (uint64_t));
226 uint64_t a0, b0, a1, b1;
227
228 for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
229 a0 += BSWAP_64(ip[0]);
230 a1 += BSWAP_64(ip[1]);
231 b0 += a0;
232 b1 += a1;
233 }
234
235 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
236}
237
1eeb4562 238static void fletcher_4_scalar_init(zio_cksum_t *zcp)
34dc7c2f 239{
1eeb4562 240 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
34dc7c2f
BB
241}
242
1eeb4562
JX
243static void
244fletcher_4_scalar(const void *buf, uint64_t size, zio_cksum_t *zcp)
34dc7c2f
BB
245{
246 const uint32_t *ip = buf;
247 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
248 uint64_t a, b, c, d;
249
1eeb4562
JX
250 a = zcp->zc_word[0];
251 b = zcp->zc_word[1];
252 c = zcp->zc_word[2];
253 d = zcp->zc_word[3];
254
255 for (; ip < ipend; ip++) {
256 a += ip[0];
34dc7c2f
BB
257 b += a;
258 c += b;
259 d += c;
260 }
261
262 ZIO_SET_CHECKSUM(zcp, a, b, c, d);
263}
264
1eeb4562
JX
265static void
266fletcher_4_scalar_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
34dc7c2f
BB
267{
268 const uint32_t *ip = buf;
269 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
270 uint64_t a, b, c, d;
271
272 a = zcp->zc_word[0];
273 b = zcp->zc_word[1];
274 c = zcp->zc_word[2];
275 d = zcp->zc_word[3];
276
277 for (; ip < ipend; ip++) {
1eeb4562 278 a += BSWAP_32(ip[0]);
34dc7c2f
BB
279 b += a;
280 c += b;
281 d += c;
282 }
283
284 ZIO_SET_CHECKSUM(zcp, a, b, c, d);
285}
286
1eeb4562
JX
287static boolean_t
288fletcher_4_scalar_valid(void)
289{
290 return (B_TRUE);
291}
292
293int
294fletcher_4_impl_set(const char *val)
295{
296 const fletcher_4_ops_t *ops;
689f093e 297 enum fletcher_selector idx = FLETCHER_FASTEST;
1eeb4562
JX
298 size_t val_len;
299 unsigned i;
300
301 val_len = strlen(val);
302 while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
303 val_len--;
304
305 for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
306 const char *name = fletcher_4_impl_selectors[i].fis_name;
307
308 if (val_len == strlen(name) &&
309 strncmp(val, name, val_len) == 0) {
310 idx = i;
311 break;
312 }
313 }
314 if (i >= ARRAY_SIZE(fletcher_4_impl_selectors))
315 return (-EINVAL);
316
317 ops = fletcher_4_impl_selectors[idx].fis_ops;
318 if (ops == NULL || !ops->valid())
319 return (-ENOTSUP);
320
321 mutex_enter(&fletcher_4_impl_lock);
322 if (fletcher_4_impl_chosen != idx)
323 fletcher_4_impl_chosen = idx;
324 mutex_exit(&fletcher_4_impl_lock);
325
326 return (0);
327}
328
329static inline const fletcher_4_ops_t *
330fletcher_4_impl_get(void)
331{
332#if !defined(_KERNEL)
333 if (fletcher_4_impl_chosen == FLETCHER_CYCLE) {
334 static volatile unsigned int cycle_count = 0;
335 const fletcher_4_ops_t *ops = NULL;
336 unsigned int index;
337
338 while (1) {
339 index = atomic_inc_uint_nv(&cycle_count);
340 ops = fletcher_4_algos[
341 index % ARRAY_SIZE(fletcher_4_algos)];
342 if (ops->valid())
343 break;
344 }
345 return (ops);
346 }
347#endif
348 membar_producer();
349 return (fletcher_4_impl_selectors[fletcher_4_impl_chosen].fis_ops);
350}
351
352void
353fletcher_4_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
354{
0dab2e84
BB
355 const fletcher_4_ops_t *ops;
356
357 if (IS_P2ALIGNED(size, 4 * sizeof (uint32_t)))
358 ops = fletcher_4_impl_get();
359 else
360 ops = &fletcher_4_scalar_ops;
1eeb4562
JX
361
362 ops->init(zcp);
363 ops->compute(buf, size, zcp);
364 if (ops->fini != NULL)
365 ops->fini(zcp);
366}
367
368void
369fletcher_4_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
370{
0dab2e84
BB
371 const fletcher_4_ops_t *ops;
372
373 if (IS_P2ALIGNED(size, 4 * sizeof (uint32_t)))
374 ops = fletcher_4_impl_get();
375 else
376 ops = &fletcher_4_scalar_ops;
1eeb4562
JX
377
378 ops->init(zcp);
379 ops->compute_byteswap(buf, size, zcp);
380 if (ops->fini != NULL)
381 ops->fini(zcp);
382}
383
384void
385fletcher_4_incremental_native(const void *buf, uint64_t size,
386 zio_cksum_t *zcp)
387{
388 fletcher_4_scalar(buf, size, zcp);
389}
390
34dc7c2f
BB
391void
392fletcher_4_incremental_byteswap(const void *buf, uint64_t size,
393 zio_cksum_t *zcp)
394{
1eeb4562
JX
395 fletcher_4_scalar_byteswap(buf, size, zcp);
396}
34dc7c2f 397
1eeb4562
JX
398void
399fletcher_4_init(void)
400{
401 const uint64_t const bench_ns = (50 * MICROSEC); /* 50ms */
402 unsigned long best_run_count = 0;
403 unsigned long best_run_index = 0;
404 const unsigned data_size = 4096;
405 char *databuf;
406 int i;
34dc7c2f 407
1eeb4562
JX
408 databuf = kmem_alloc(data_size, KM_SLEEP);
409 for (i = 0; i < ARRAY_SIZE(fletcher_4_algos); i++) {
410 const fletcher_4_ops_t *ops = fletcher_4_algos[i];
411 kstat_named_t *stat = &fletcher_4_kstat_data[i];
412 unsigned long run_count = 0;
413 hrtime_t start;
414 zio_cksum_t zc;
415
416 strncpy(stat->name, ops->name, sizeof (stat->name) - 1);
417 stat->data_type = KSTAT_DATA_UINT64;
418 stat->value.ui64 = 0;
419
420 if (!ops->valid())
421 continue;
422
423 kpreempt_disable();
424 start = gethrtime();
425 ops->init(&zc);
426 do {
427 ops->compute(databuf, data_size, &zc);
35a76a03 428 ops->compute_byteswap(databuf, data_size, &zc);
1eeb4562
JX
429 run_count++;
430 } while (gethrtime() < start + bench_ns);
431 if (ops->fini != NULL)
432 ops->fini(&zc);
433 kpreempt_enable();
434
435 if (run_count > best_run_count) {
436 best_run_count = run_count;
437 best_run_index = i;
438 }
439
440 /*
441 * Due to high overhead of gethrtime(), the performance data
442 * here is inaccurate and much slower than it could be.
443 * It's fine for our use though because only relative speed
444 * is important.
445 */
446 stat->value.ui64 = data_size * run_count *
447 (NANOSEC / bench_ns) >> 20; /* by MB/s */
34dc7c2f 448 }
1eeb4562 449 kmem_free(databuf, data_size);
34dc7c2f 450
1eeb4562
JX
451 fletcher_4_impl_selectors[FLETCHER_FASTEST].fis_ops =
452 fletcher_4_algos[best_run_index];
453
454 mutex_init(&fletcher_4_impl_lock, NULL, MUTEX_DEFAULT, NULL);
455 fletcher_4_impl_set("fastest");
456
457 fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench",
458 "misc", KSTAT_TYPE_NAMED, ARRAY_SIZE(fletcher_4_algos),
459 KSTAT_FLAG_VIRTUAL);
460 if (fletcher_4_kstat != NULL) {
461 fletcher_4_kstat->ks_data = fletcher_4_kstat_data;
462 kstat_install(fletcher_4_kstat);
463 }
464}
465
466void
467fletcher_4_fini(void)
468{
469 mutex_destroy(&fletcher_4_impl_lock);
470 if (fletcher_4_kstat != NULL) {
471 kstat_delete(fletcher_4_kstat);
472 fletcher_4_kstat = NULL;
473 }
34dc7c2f 474}
c28b2279
BB
475
476#if defined(_KERNEL) && defined(HAVE_SPL)
1eeb4562
JX
477
478static int
479fletcher_4_param_get(char *buffer, struct kernel_param *unused)
480{
481 int i, cnt = 0;
482
483 for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
484 const fletcher_4_ops_t *ops;
485
486 ops = fletcher_4_impl_selectors[i].fis_ops;
487 if (!ops->valid())
488 continue;
489
490 cnt += sprintf(buffer + cnt,
491 fletcher_4_impl_chosen == i ? "[%s] " : "%s ",
492 fletcher_4_impl_selectors[i].fis_name);
493 }
494
495 return (cnt);
496}
497
498static int
499fletcher_4_param_set(const char *val, struct kernel_param *unused)
500{
501 return (fletcher_4_impl_set(val));
502}
503
504/*
505 * Choose a fletcher 4 implementation in ZFS.
506 * Users can choose the "fastest" algorithm, or "scalar" and "avx2" which means
507 * to compute fletcher 4 by CPU or vector instructions respectively.
508 * Users can also choose "cycle" to exercise all implementions, but this is
509 * for testing purpose therefore it can only be set in user space.
510 */
511module_param_call(zfs_fletcher_4_impl,
512 fletcher_4_param_set, fletcher_4_param_get, NULL, 0644);
513MODULE_PARM_DESC(zfs_fletcher_4_impl, "Select fletcher 4 algorithm");
514
515EXPORT_SYMBOL(fletcher_4_init);
516EXPORT_SYMBOL(fletcher_4_fini);
c28b2279
BB
517EXPORT_SYMBOL(fletcher_2_native);
518EXPORT_SYMBOL(fletcher_2_byteswap);
519EXPORT_SYMBOL(fletcher_4_native);
520EXPORT_SYMBOL(fletcher_4_byteswap);
521EXPORT_SYMBOL(fletcher_4_incremental_native);
522EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
523#endif