]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/abd.c
Upstream: add missing thread_exit()
[mirror_zfs.git] / module / zfs / abd.c
CommitLineData
9f0a21e6 1/*
fc551d7e 2 * CDDL HEADER START
9f0a21e6 3 *
fc551d7e
BA
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
9f0a21e6 20 */
9f0a21e6
MM
21/*
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
fc551d7e 23 * Copyright (c) 2019 by Delphix. All rights reserved.
9f0a21e6
MM
24 */
25
26/*
27 * ARC buffer data (ABD).
28 *
29 * ABDs are an abstract data structure for the ARC which can use two
30 * different ways of storing the underlying data:
31 *
32 * (a) Linear buffer. In this case, all the data in the ABD is stored in one
33 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
34 *
35 * +-------------------+
36 * | ABD (linear) |
37 * | abd_flags = ... |
38 * | abd_size = ... | +--------------------------------+
39 * | abd_buf ------------->| raw buffer of size abd_size |
40 * +-------------------+ +--------------------------------+
41 * no abd_chunks
42 *
43 * (b) Scattered buffer. In this case, the data in the ABD is split into
44 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
45 * to the chunks recorded in an array at the end of the ABD structure.
46 *
47 * +-------------------+
48 * | ABD (scattered) |
49 * | abd_flags = ... |
50 * | abd_size = ... |
51 * | abd_offset = 0 | +-----------+
52 * | abd_chunks[0] ----------------------------->| chunk 0 |
53 * | abd_chunks[1] ---------------------+ +-----------+
54 * | ... | | +-----------+
55 * | abd_chunks[N-1] ---------+ +------->| chunk 1 |
56 * +-------------------+ | +-----------+
57 * | ...
58 * | +-----------+
59 * +----------------->| chunk N-1 |
60 * +-----------+
61 *
9f0a21e6
MM
62 * In addition to directly allocating a linear or scattered ABD, it is also
63 * possible to create an ABD by requesting the "sub-ABD" starting at an offset
64 * within an existing ABD. In linear buffers this is simple (set abd_buf of
65 * the new ABD to the starting point within the original raw buffer), but
66 * scattered ABDs are a little more complex. The new ABD makes a copy of the
67 * relevant abd_chunks pointers (but not the underlying data). However, to
68 * provide arbitrary rather than only chunk-aligned starting offsets, it also
69 * tracks an abd_offset field which represents the starting point of the data
70 * within the first chunk in abd_chunks. For both linear and scattered ABDs,
71 * creating an offset ABD marks the original ABD as the offset's parent, and the
72 * original ABD's abd_children refcount is incremented. This data allows us to
73 * ensure the root ABD isn't deleted before its children.
74 *
75 * Most consumers should never need to know what type of ABD they're using --
76 * the ABD public API ensures that it's possible to transparently switch from
77 * using a linear ABD to a scattered one when doing so would be beneficial.
78 *
79 * If you need to use the data within an ABD directly, if you know it's linear
80 * (because you allocated it) you can use abd_to_buf() to access the underlying
81 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
82 * which will allocate a raw buffer if necessary. Use the abd_return_buf*
83 * functions to return any raw buffers that are no longer necessary when you're
84 * done using them.
85 *
86 * There are a variety of ABD APIs that implement basic buffer operations:
87 * compare, copy, read, write, and fill with zeroes. If you need a custom
88 * function which progressively accesses the whole ABD, use the abd_iterate_*
89 * functions.
fc551d7e
BA
90 *
91 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
92 * B_FALSE.
9f0a21e6
MM
93 */
94
fc551d7e 95#include <sys/abd_impl.h>
9f0a21e6
MM
96#include <sys/param.h>
97#include <sys/zio.h>
98#include <sys/zfs_context.h>
99#include <sys/zfs_znode.h>
100
fc551d7e
BA
101/* see block comment above for description */
102int zfs_abd_scatter_enabled = B_TRUE;
9f0a21e6 103
fc551d7e
BA
104boolean_t
105abd_is_linear(abd_t *abd)
9f0a21e6 106{
fc551d7e 107 return ((abd->abd_flags & ABD_FLAG_LINEAR) != 0 ? B_TRUE : B_FALSE);
9f0a21e6
MM
108}
109
fc551d7e
BA
110boolean_t
111abd_is_linear_page(abd_t *abd)
9f0a21e6 112{
fc551d7e
BA
113 return ((abd->abd_flags & ABD_FLAG_LINEAR_PAGE) != 0 ?
114 B_TRUE : B_FALSE);
9f0a21e6
MM
115}
116
117void
9f0a21e6
MM
118abd_verify(abd_t *abd)
119{
120 ASSERT3U(abd->abd_size, >, 0);
121 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
122 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
fc551d7e
BA
123 ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
124 ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE));
9f0a21e6
MM
125 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
126 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
127 if (abd_is_linear(abd)) {
fc551d7e 128 ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL);
9f0a21e6 129 } else {
fc551d7e 130 abd_verify_scatter(abd);
9f0a21e6
MM
131 }
132}
133
fc551d7e
BA
134uint_t
135abd_get_size(abd_t *abd)
9f0a21e6 136{
fc551d7e
BA
137 abd_verify(abd);
138 return (abd->abd_size);
9f0a21e6
MM
139}
140
141/*
142 * Allocate an ABD, along with its own underlying data buffers. Use this if you
143 * don't care whether the ABD is linear or not.
144 */
145abd_t *
146abd_alloc(size_t size, boolean_t is_metadata)
147{
fc551d7e 148 if (!zfs_abd_scatter_enabled || abd_size_alloc_linear(size))
9f0a21e6
MM
149 return (abd_alloc_linear(size, is_metadata));
150
151 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
152
fc551d7e 153 abd_t *abd = abd_alloc_struct(size);
9f0a21e6 154 abd->abd_flags = ABD_FLAG_OWNER;
fc551d7e
BA
155 abd->abd_u.abd_scatter.abd_offset = 0;
156 abd_alloc_chunks(abd, size);
157
9f0a21e6
MM
158 if (is_metadata) {
159 abd->abd_flags |= ABD_FLAG_META;
160 }
161 abd->abd_size = size;
162 abd->abd_parent = NULL;
163 zfs_refcount_create(&abd->abd_children);
164
fc551d7e 165 abd_update_scatter_stats(abd, ABDSTAT_INCR);
9f0a21e6
MM
166
167 return (abd);
168}
169
170static void
171abd_free_scatter(abd_t *abd)
172{
fc551d7e 173 abd_free_chunks(abd);
9f0a21e6
MM
174
175 zfs_refcount_destroy(&abd->abd_children);
fc551d7e
BA
176 abd_update_scatter_stats(abd, ABDSTAT_DECR);
177 abd_free_struct(abd);
178}
9f0a21e6 179
fc551d7e
BA
180/*
181 * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not
182 * free the underlying scatterlist or buffer.
183 */
184void
185abd_put(abd_t *abd)
186{
187 if (abd == NULL)
188 return;
189
190 abd_verify(abd);
191 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
192
193 if (abd->abd_parent != NULL) {
194 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
195 abd->abd_size, abd);
196 }
197
198 zfs_refcount_destroy(&abd->abd_children);
9f0a21e6
MM
199 abd_free_struct(abd);
200}
201
202/*
203 * Allocate an ABD that must be linear, along with its own underlying data
204 * buffer. Only use this when it would be very annoying to write your ABD
205 * consumer with a scattered ABD.
206 */
207abd_t *
208abd_alloc_linear(size_t size, boolean_t is_metadata)
209{
210 abd_t *abd = abd_alloc_struct(0);
211
212 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
213
214 abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
215 if (is_metadata) {
216 abd->abd_flags |= ABD_FLAG_META;
217 }
218 abd->abd_size = size;
219 abd->abd_parent = NULL;
220 zfs_refcount_create(&abd->abd_children);
221
222 if (is_metadata) {
fc551d7e 223 ABD_LINEAR_BUF(abd) = zio_buf_alloc(size);
9f0a21e6 224 } else {
fc551d7e 225 ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size);
9f0a21e6
MM
226 }
227
fc551d7e 228 abd_update_linear_stats(abd, ABDSTAT_INCR);
9f0a21e6
MM
229
230 return (abd);
231}
232
233static void
234abd_free_linear(abd_t *abd)
235{
fc551d7e
BA
236 if (abd_is_linear_page(abd)) {
237 abd_free_linear_page(abd);
238 return;
239 }
9f0a21e6 240 if (abd->abd_flags & ABD_FLAG_META) {
fc551d7e 241 zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
9f0a21e6 242 } else {
fc551d7e 243 zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
9f0a21e6
MM
244 }
245
246 zfs_refcount_destroy(&abd->abd_children);
fc551d7e 247 abd_update_linear_stats(abd, ABDSTAT_DECR);
9f0a21e6
MM
248
249 abd_free_struct(abd);
250}
251
252/*
253 * Free an ABD. Only use this on ABDs allocated with abd_alloc() or
254 * abd_alloc_linear().
255 */
256void
257abd_free(abd_t *abd)
258{
259 if (abd == NULL)
260 return;
261
262 abd_verify(abd);
263 ASSERT3P(abd->abd_parent, ==, NULL);
264 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
265 if (abd_is_linear(abd))
266 abd_free_linear(abd);
267 else
268 abd_free_scatter(abd);
269}
270
271/*
272 * Allocate an ABD of the same format (same metadata flag, same scatterize
273 * setting) as another ABD.
274 */
275abd_t *
276abd_alloc_sametype(abd_t *sabd, size_t size)
277{
278 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
fc551d7e
BA
279 if (abd_is_linear(sabd) &&
280 !abd_is_linear_page(sabd)) {
9f0a21e6
MM
281 return (abd_alloc_linear(size, is_metadata));
282 } else {
283 return (abd_alloc(size, is_metadata));
284 }
285}
286
9f0a21e6
MM
287/*
288 * Allocate a new ABD to point to offset off of sabd. It shares the underlying
289 * buffer data with sabd. Use abd_put() to free. sabd must not be freed while
290 * any derived ABDs exist.
291 */
fc551d7e 292static abd_t *
9f0a21e6
MM
293abd_get_offset_impl(abd_t *sabd, size_t off, size_t size)
294{
fc551d7e 295 abd_t *abd = NULL;
9f0a21e6
MM
296
297 abd_verify(sabd);
298 ASSERT3U(off, <=, sabd->abd_size);
299
300 if (abd_is_linear(sabd)) {
301 abd = abd_alloc_struct(0);
302
303 /*
304 * Even if this buf is filesystem metadata, we only track that
305 * if we own the underlying data buffer, which is not true in
306 * this case. Therefore, we don't ever use ABD_FLAG_META here.
307 */
308 abd->abd_flags = ABD_FLAG_LINEAR;
309
fc551d7e 310 ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off;
9f0a21e6 311 } else {
fc551d7e 312 abd = abd_get_offset_scatter(sabd, off);
9f0a21e6
MM
313 }
314
fc551d7e 315 abd->abd_size = size;
9f0a21e6
MM
316 abd->abd_parent = sabd;
317 zfs_refcount_create(&abd->abd_children);
318 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
9f0a21e6
MM
319 return (abd);
320}
321
322abd_t *
323abd_get_offset(abd_t *sabd, size_t off)
324{
fc551d7e
BA
325 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
326 VERIFY3U(size, >, 0);
327 return (abd_get_offset_impl(sabd, off, size));
9f0a21e6
MM
328}
329
330abd_t *
331abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
332{
333 ASSERT3U(off + size, <=, sabd->abd_size);
9f0a21e6
MM
334 return (abd_get_offset_impl(sabd, off, size));
335}
336
9f0a21e6
MM
337/*
338 * Allocate a linear ABD structure for buf. You must free this with abd_put()
339 * since the resulting ABD doesn't own its own buffer.
340 */
341abd_t *
342abd_get_from_buf(void *buf, size_t size)
343{
344 abd_t *abd = abd_alloc_struct(0);
345
346 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
347
348 /*
349 * Even if this buf is filesystem metadata, we only track that if we
350 * own the underlying data buffer, which is not true in this case.
351 * Therefore, we don't ever use ABD_FLAG_META here.
352 */
353 abd->abd_flags = ABD_FLAG_LINEAR;
354 abd->abd_size = size;
355 abd->abd_parent = NULL;
356 zfs_refcount_create(&abd->abd_children);
357
fc551d7e 358 ABD_LINEAR_BUF(abd) = buf;
9f0a21e6
MM
359
360 return (abd);
361}
362
9f0a21e6
MM
363/*
364 * Get the raw buffer associated with a linear ABD.
365 */
366void *
367abd_to_buf(abd_t *abd)
368{
369 ASSERT(abd_is_linear(abd));
370 abd_verify(abd);
fc551d7e 371 return (ABD_LINEAR_BUF(abd));
9f0a21e6
MM
372}
373
374/*
375 * Borrow a raw buffer from an ABD without copying the contents of the ABD
376 * into the buffer. If the ABD is scattered, this will allocate a raw buffer
377 * whose contents are undefined. To copy over the existing data in the ABD, use
378 * abd_borrow_buf_copy() instead.
379 */
380void *
381abd_borrow_buf(abd_t *abd, size_t n)
382{
383 void *buf;
384 abd_verify(abd);
385 ASSERT3U(abd->abd_size, >=, n);
386 if (abd_is_linear(abd)) {
387 buf = abd_to_buf(abd);
388 } else {
389 buf = zio_buf_alloc(n);
390 }
391 (void) zfs_refcount_add_many(&abd->abd_children, n, buf);
9f0a21e6
MM
392 return (buf);
393}
394
395void *
396abd_borrow_buf_copy(abd_t *abd, size_t n)
397{
398 void *buf = abd_borrow_buf(abd, n);
399 if (!abd_is_linear(abd)) {
400 abd_copy_to_buf(buf, abd, n);
401 }
402 return (buf);
403}
404
405/*
406 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
407 * not change the contents of the ABD and will ASSERT that you didn't modify
408 * the buffer since it was borrowed. If you want any changes you made to buf to
409 * be copied back to abd, use abd_return_buf_copy() instead.
410 */
411void
412abd_return_buf(abd_t *abd, void *buf, size_t n)
413{
414 abd_verify(abd);
415 ASSERT3U(abd->abd_size, >=, n);
416 if (abd_is_linear(abd)) {
417 ASSERT3P(buf, ==, abd_to_buf(abd));
418 } else {
419 ASSERT0(abd_cmp_buf(abd, buf, n));
420 zio_buf_free(buf, n);
421 }
422 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
423}
424
425void
426abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
427{
428 if (!abd_is_linear(abd)) {
429 abd_copy_from_buf(abd, buf, n);
430 }
431 abd_return_buf(abd, buf, n);
432}
433
9f0a21e6
MM
434void
435abd_release_ownership_of_buf(abd_t *abd)
436{
437 ASSERT(abd_is_linear(abd));
438 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
fc551d7e
BA
439
440 /*
441 * abd_free() needs to handle LINEAR_PAGE ABD's specially.
442 * Since that flag does not survive the
443 * abd_release_ownership_of_buf() -> abd_get_from_buf() ->
444 * abd_take_ownership_of_buf() sequence, we don't allow releasing
445 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
446 */
447 ASSERT(!abd_is_linear_page(abd));
448
9f0a21e6
MM
449 abd_verify(abd);
450
451 abd->abd_flags &= ~ABD_FLAG_OWNER;
452 /* Disable this flag since we no longer own the data buffer */
453 abd->abd_flags &= ~ABD_FLAG_META;
454
fc551d7e 455 abd_update_linear_stats(abd, ABDSTAT_DECR);
9f0a21e6
MM
456}
457
9f0a21e6
MM
458
459/*
fc551d7e
BA
460 * Give this ABD ownership of the buffer that it's storing. Can only be used on
461 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
462 * with abd_alloc_linear() which subsequently released ownership of their buf
463 * with abd_release_ownership_of_buf().
9f0a21e6 464 */
fc551d7e
BA
465void
466abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
9f0a21e6 467{
fc551d7e
BA
468 ASSERT(abd_is_linear(abd));
469 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
9f0a21e6 470 abd_verify(abd);
9f0a21e6 471
fc551d7e
BA
472 abd->abd_flags |= ABD_FLAG_OWNER;
473 if (is_metadata) {
474 abd->abd_flags |= ABD_FLAG_META;
9f0a21e6 475 }
9f0a21e6 476
fc551d7e 477 abd_update_linear_stats(abd, ABDSTAT_INCR);
9f0a21e6
MM
478}
479
480int
481abd_iterate_func(abd_t *abd, size_t off, size_t size,
482 abd_iter_func_t *func, void *private)
483{
484 int ret = 0;
485 struct abd_iter aiter;
486
487 abd_verify(abd);
488 ASSERT3U(off + size, <=, abd->abd_size);
489
490 abd_iter_init(&aiter, abd);
491 abd_iter_advance(&aiter, off);
492
493 while (size > 0) {
494 abd_iter_map(&aiter);
495
496 size_t len = MIN(aiter.iter_mapsize, size);
497 ASSERT3U(len, >, 0);
498
499 ret = func(aiter.iter_mapaddr, len, private);
500
501 abd_iter_unmap(&aiter);
502
503 if (ret != 0)
504 break;
505
506 size -= len;
507 abd_iter_advance(&aiter, len);
508 }
509
510 return (ret);
511}
512
513struct buf_arg {
514 void *arg_buf;
515};
516
517static int
518abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
519{
520 struct buf_arg *ba_ptr = private;
521
522 (void) memcpy(ba_ptr->arg_buf, buf, size);
523 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
524
525 return (0);
526}
527
528/*
529 * Copy abd to buf. (off is the offset in abd.)
530 */
531void
532abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
533{
534 struct buf_arg ba_ptr = { buf };
535
536 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
537 &ba_ptr);
538}
539
540static int
541abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
542{
543 int ret;
544 struct buf_arg *ba_ptr = private;
545
546 ret = memcmp(buf, ba_ptr->arg_buf, size);
547 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
548
549 return (ret);
550}
551
552/*
553 * Compare the contents of abd to buf. (off is the offset in abd.)
554 */
555int
556abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
557{
558 struct buf_arg ba_ptr = { (void *) buf };
559
560 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
561}
562
563static int
564abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
565{
566 struct buf_arg *ba_ptr = private;
567
568 (void) memcpy(buf, ba_ptr->arg_buf, size);
569 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
570
571 return (0);
572}
573
574/*
575 * Copy from buf to abd. (off is the offset in abd.)
576 */
577void
578abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
579{
580 struct buf_arg ba_ptr = { (void *) buf };
581
582 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
583 &ba_ptr);
584}
585
586/*ARGSUSED*/
587static int
588abd_zero_off_cb(void *buf, size_t size, void *private)
589{
590 (void) memset(buf, 0, size);
591 return (0);
592}
593
594/*
595 * Zero out the abd from a particular offset to the end.
596 */
597void
598abd_zero_off(abd_t *abd, size_t off, size_t size)
599{
600 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
601}
602
603/*
604 * Iterate over two ABDs and call func incrementally on the two ABDs' data in
605 * equal-sized chunks (passed to func as raw buffers). func could be called many
606 * times during this iteration.
607 */
608int
609abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
610 size_t size, abd_iter_func2_t *func, void *private)
611{
612 int ret = 0;
613 struct abd_iter daiter, saiter;
614
615 abd_verify(dabd);
616 abd_verify(sabd);
617
618 ASSERT3U(doff + size, <=, dabd->abd_size);
619 ASSERT3U(soff + size, <=, sabd->abd_size);
620
621 abd_iter_init(&daiter, dabd);
622 abd_iter_init(&saiter, sabd);
623 abd_iter_advance(&daiter, doff);
624 abd_iter_advance(&saiter, soff);
625
626 while (size > 0) {
627 abd_iter_map(&daiter);
628 abd_iter_map(&saiter);
629
630 size_t dlen = MIN(daiter.iter_mapsize, size);
631 size_t slen = MIN(saiter.iter_mapsize, size);
632 size_t len = MIN(dlen, slen);
633 ASSERT(dlen > 0 || slen > 0);
634
635 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
636 private);
637
638 abd_iter_unmap(&saiter);
639 abd_iter_unmap(&daiter);
640
641 if (ret != 0)
642 break;
643
644 size -= len;
645 abd_iter_advance(&daiter, len);
646 abd_iter_advance(&saiter, len);
647 }
648
649 return (ret);
650}
651
652/*ARGSUSED*/
653static int
654abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
655{
656 (void) memcpy(dbuf, sbuf, size);
657 return (0);
658}
659
660/*
661 * Copy from sabd to dabd starting from soff and doff.
662 */
663void
664abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
665{
666 (void) abd_iterate_func2(dabd, sabd, doff, soff, size,
667 abd_copy_off_cb, NULL);
668}
669
670/*ARGSUSED*/
671static int
672abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
673{
674 return (memcmp(bufa, bufb, size));
675}
676
677/*
678 * Compares the contents of two ABDs.
679 */
680int
681abd_cmp(abd_t *dabd, abd_t *sabd)
682{
683 ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
684 return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
685 abd_cmp_cb, NULL));
686}
687
688/*
689 * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
690 *
691 * @cabds parity ABDs, must have equal size
692 * @dabd data ABD. Can be NULL (in this case @dsize = 0)
693 * @func_raidz_gen should be implemented so that its behaviour
694 * is the same when taking linear and when taking scatter
695 */
696void
697abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd,
698 ssize_t csize, ssize_t dsize, const unsigned parity,
699 void (*func_raidz_gen)(void **, const void *, size_t, size_t))
700{
701 int i;
702 ssize_t len, dlen;
703 struct abd_iter caiters[3];
704 struct abd_iter daiter = {0};
705 void *caddrs[3];
fc551d7e 706 unsigned long flags = 0;
9f0a21e6
MM
707
708 ASSERT3U(parity, <=, 3);
709
710 for (i = 0; i < parity; i++)
711 abd_iter_init(&caiters[i], cabds[i]);
712
713 if (dabd)
714 abd_iter_init(&daiter, dabd);
715
716 ASSERT3S(dsize, >=, 0);
717
fc551d7e 718 abd_enter_critical(flags);
9f0a21e6
MM
719 while (csize > 0) {
720 len = csize;
721
722 if (dabd && dsize > 0)
723 abd_iter_map(&daiter);
724
725 for (i = 0; i < parity; i++) {
726 abd_iter_map(&caiters[i]);
727 caddrs[i] = caiters[i].iter_mapaddr;
728 }
729
fc551d7e 730
9f0a21e6
MM
731 switch (parity) {
732 case 3:
733 len = MIN(caiters[2].iter_mapsize, len);
fc551d7e 734 /* falls through */
9f0a21e6
MM
735 case 2:
736 len = MIN(caiters[1].iter_mapsize, len);
fc551d7e 737 /* falls through */
9f0a21e6
MM
738 case 1:
739 len = MIN(caiters[0].iter_mapsize, len);
740 }
741
742 /* must be progressive */
743 ASSERT3S(len, >, 0);
744
745 if (dabd && dsize > 0) {
746 /* this needs precise iter.length */
747 len = MIN(daiter.iter_mapsize, len);
748 dlen = len;
749 } else
750 dlen = 0;
751
752 /* must be progressive */
753 ASSERT3S(len, >, 0);
754 /*
755 * The iterated function likely will not do well if each
756 * segment except the last one is not multiple of 512 (raidz).
757 */
758 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
759
760 func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen);
761
762 for (i = parity-1; i >= 0; i--) {
763 abd_iter_unmap(&caiters[i]);
764 abd_iter_advance(&caiters[i], len);
765 }
766
767 if (dabd && dsize > 0) {
768 abd_iter_unmap(&daiter);
769 abd_iter_advance(&daiter, dlen);
770 dsize -= dlen;
771 }
772
773 csize -= len;
774
775 ASSERT3S(dsize, >=, 0);
776 ASSERT3S(csize, >=, 0);
777 }
fc551d7e 778 abd_exit_critical(flags);
9f0a21e6
MM
779}
780
781/*
782 * Iterate over code ABDs and data reconstruction target ABDs and call
783 * @func_raidz_rec. Function maps at most 6 pages atomically.
784 *
785 * @cabds parity ABDs, must have equal size
786 * @tabds rec target ABDs, at most 3
787 * @tsize size of data target columns
788 * @func_raidz_rec expects syndrome data in target columns. Function
789 * reconstructs data and overwrites target columns.
790 */
791void
792abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
793 ssize_t tsize, const unsigned parity,
794 void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
795 const unsigned *mul),
796 const unsigned *mul)
797{
798 int i;
799 ssize_t len;
800 struct abd_iter citers[3];
801 struct abd_iter xiters[3];
802 void *caddrs[3], *xaddrs[3];
fc551d7e 803 unsigned long flags = 0;
9f0a21e6
MM
804
805 ASSERT3U(parity, <=, 3);
806
807 for (i = 0; i < parity; i++) {
808 abd_iter_init(&citers[i], cabds[i]);
809 abd_iter_init(&xiters[i], tabds[i]);
810 }
811
fc551d7e 812 abd_enter_critical(flags);
9f0a21e6
MM
813 while (tsize > 0) {
814
815 for (i = 0; i < parity; i++) {
816 abd_iter_map(&citers[i]);
817 abd_iter_map(&xiters[i]);
818 caddrs[i] = citers[i].iter_mapaddr;
819 xaddrs[i] = xiters[i].iter_mapaddr;
820 }
821
822 len = tsize;
823 switch (parity) {
824 case 3:
825 len = MIN(xiters[2].iter_mapsize, len);
826 len = MIN(citers[2].iter_mapsize, len);
fc551d7e 827 /* falls through */
9f0a21e6
MM
828 case 2:
829 len = MIN(xiters[1].iter_mapsize, len);
830 len = MIN(citers[1].iter_mapsize, len);
fc551d7e 831 /* falls through */
9f0a21e6
MM
832 case 1:
833 len = MIN(xiters[0].iter_mapsize, len);
834 len = MIN(citers[0].iter_mapsize, len);
835 }
836 /* must be progressive */
837 ASSERT3S(len, >, 0);
838 /*
839 * The iterated function likely will not do well if each
840 * segment except the last one is not multiple of 512 (raidz).
841 */
842 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
843
844 func_raidz_rec(xaddrs, len, caddrs, mul);
845
846 for (i = parity-1; i >= 0; i--) {
847 abd_iter_unmap(&xiters[i]);
848 abd_iter_unmap(&citers[i]);
849 abd_iter_advance(&xiters[i], len);
850 abd_iter_advance(&citers[i], len);
851 }
852
853 tsize -= len;
854 ASSERT3S(tsize, >=, 0);
855 }
fc551d7e 856 abd_exit_critical(flags);
9f0a21e6 857}