]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Use KM_PUSHPAGE in l2arc_write_buffers
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
34dc7c2f
BB
23 */
24
34dc7c2f
BB
25/*
26 * DVA-based Adjustable Replacement Cache
27 *
28 * While much of the theory of operation used here is
29 * based on the self-tuning, low overhead replacement cache
30 * presented by Megiddo and Modha at FAST 2003, there are some
31 * significant differences:
32 *
33 * 1. The Megiddo and Modha model assumes any page is evictable.
34 * Pages in its cache cannot be "locked" into memory. This makes
35 * the eviction algorithm simple: evict the last page in the list.
36 * This also make the performance characteristics easy to reason
37 * about. Our cache is not so simple. At any given moment, some
38 * subset of the blocks in the cache are un-evictable because we
39 * have handed out a reference to them. Blocks are only evictable
40 * when there are no external references active. This makes
41 * eviction far more problematic: we choose to evict the evictable
42 * blocks that are the "lowest" in the list.
43 *
44 * There are times when it is not possible to evict the requested
45 * space. In these circumstances we are unable to adjust the cache
46 * size. To prevent the cache growing unbounded at these times we
47 * implement a "cache throttle" that slows the flow of new data
48 * into the cache until we can make space available.
49 *
50 * 2. The Megiddo and Modha model assumes a fixed cache size.
51 * Pages are evicted when the cache is full and there is a cache
52 * miss. Our model has a variable sized cache. It grows with
53 * high use, but also tries to react to memory pressure from the
54 * operating system: decreasing its size when system memory is
55 * tight.
56 *
57 * 3. The Megiddo and Modha model assumes a fixed page size. All
58 * elements of the cache are therefor exactly the same size. So
59 * when adjusting the cache size following a cache miss, its simply
60 * a matter of choosing a single page to evict. In our model, we
61 * have variable sized cache blocks (rangeing from 512 bytes to
62 * 128K bytes). We therefor choose a set of blocks to evict to make
63 * space for a cache miss that approximates as closely as possible
64 * the space used by the new block.
65 *
66 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
67 * by N. Megiddo & D. Modha, FAST 2003
68 */
69
70/*
71 * The locking model:
72 *
73 * A new reference to a cache buffer can be obtained in two
74 * ways: 1) via a hash table lookup using the DVA as a key,
75 * or 2) via one of the ARC lists. The arc_read() interface
76 * uses method 1, while the internal arc algorithms for
77 * adjusting the cache use method 2. We therefor provide two
78 * types of locks: 1) the hash table lock array, and 2) the
79 * arc list locks.
80 *
81 * Buffers do not have their own mutexs, rather they rely on the
82 * hash table mutexs for the bulk of their protection (i.e. most
83 * fields in the arc_buf_hdr_t are protected by these mutexs).
84 *
85 * buf_hash_find() returns the appropriate mutex (held) when it
86 * locates the requested buffer in the hash table. It returns
87 * NULL for the mutex if the buffer was not in the table.
88 *
89 * buf_hash_remove() expects the appropriate hash mutex to be
90 * already held before it is invoked.
91 *
92 * Each arc state also has a mutex which is used to protect the
93 * buffer list associated with the state. When attempting to
94 * obtain a hash table lock while holding an arc list lock you
95 * must use: mutex_tryenter() to avoid deadlock. Also note that
96 * the active state mutex must be held before the ghost state mutex.
97 *
98 * Arc buffers may have an associated eviction callback function.
99 * This function will be invoked prior to removing the buffer (e.g.
100 * in arc_do_user_evicts()). Note however that the data associated
101 * with the buffer may be evicted prior to the callback. The callback
102 * must be made with *no locks held* (to prevent deadlock). Additionally,
103 * the users of callbacks must ensure that their private data is
104 * protected from simultaneous callbacks from arc_buf_evict()
105 * and arc_do_user_evicts().
106 *
ab26409d
BB
107 * It as also possible to register a callback which is run when the
108 * arc_meta_limit is reached and no buffers can be safely evicted. In
109 * this case the arc user should drop a reference on some arc buffers so
110 * they can be reclaimed and the arc_meta_limit honored. For example,
111 * when using the ZPL each dentry holds a references on a znode. These
112 * dentries must be pruned before the arc buffer holding the znode can
113 * be safely evicted.
114 *
34dc7c2f
BB
115 * Note that the majority of the performance stats are manipulated
116 * with atomic operations.
117 *
118 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
119 *
120 * - L2ARC buflist creation
121 * - L2ARC buflist eviction
122 * - L2ARC write completion, which walks L2ARC buflists
123 * - ARC header destruction, as it removes from L2ARC buflists
124 * - ARC header release, as it removes from L2ARC buflists
125 */
126
127#include <sys/spa.h>
128#include <sys/zio.h>
34dc7c2f
BB
129#include <sys/zfs_context.h>
130#include <sys/arc.h>
b128c09f 131#include <sys/vdev.h>
9babb374 132#include <sys/vdev_impl.h>
34dc7c2f
BB
133#ifdef _KERNEL
134#include <sys/vmsystm.h>
135#include <vm/anon.h>
136#include <sys/fs/swapnode.h>
ab26409d 137#include <sys/zpl.h>
34dc7c2f
BB
138#endif
139#include <sys/callb.h>
140#include <sys/kstat.h>
570827e1 141#include <sys/dmu_tx.h>
428870ff 142#include <zfs_fletcher.h>
34dc7c2f
BB
143
144static kmutex_t arc_reclaim_thr_lock;
145static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
146static uint8_t arc_thread_exit;
147
148extern int zfs_write_limit_shift;
149extern uint64_t zfs_write_limit_max;
b128c09f 150extern kmutex_t zfs_write_limit_lock;
34dc7c2f 151
ab26409d
BB
152/* number of bytes to prune from caches when at arc_meta_limit is reached */
153uint_t arc_meta_prune = 1048576;
34dc7c2f
BB
154
155typedef enum arc_reclaim_strategy {
156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
158} arc_reclaim_strategy_t;
159
160/* number of seconds before growing cache again */
161static int arc_grow_retry = 60;
162
d164b209
BB
163/* shift of arc_c for calculating both min and max arc_p */
164static int arc_p_min_shift = 4;
165
166/* log2(fraction of arc to reclaim) */
167static int arc_shrink_shift = 5;
168
34dc7c2f
BB
169/*
170 * minimum lifespan of a prefetch block in clock ticks
171 * (initialized in arc_init())
172 */
173static int arc_min_prefetch_lifespan;
174
175static int arc_dead;
176
b128c09f
BB
177/*
178 * The arc has filled available memory and has now warmed up.
179 */
180static boolean_t arc_warm;
181
34dc7c2f
BB
182/*
183 * These tunables are for performance analysis.
184 */
c28b2279
BB
185unsigned long zfs_arc_max = 0;
186unsigned long zfs_arc_min = 0;
187unsigned long zfs_arc_meta_limit = 0;
d164b209
BB
188int zfs_arc_grow_retry = 0;
189int zfs_arc_shrink_shift = 0;
190int zfs_arc_p_min_shift = 0;
ab26409d 191int zfs_arc_meta_prune = 0;
34dc7c2f
BB
192
193/*
194 * Note that buffers can be in one of 6 states:
195 * ARC_anon - anonymous (discussed below)
196 * ARC_mru - recently used, currently cached
197 * ARC_mru_ghost - recentely used, no longer in cache
198 * ARC_mfu - frequently used, currently cached
199 * ARC_mfu_ghost - frequently used, no longer in cache
200 * ARC_l2c_only - exists in L2ARC but not other states
201 * When there are no active references to the buffer, they are
202 * are linked onto a list in one of these arc states. These are
203 * the only buffers that can be evicted or deleted. Within each
204 * state there are multiple lists, one for meta-data and one for
205 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
206 * etc.) is tracked separately so that it can be managed more
207 * explicitly: favored over data, limited explicitly.
208 *
209 * Anonymous buffers are buffers that are not associated with
210 * a DVA. These are buffers that hold dirty block copies
211 * before they are written to stable storage. By definition,
212 * they are "ref'd" and are considered part of arc_mru
213 * that cannot be freed. Generally, they will aquire a DVA
214 * as they are written and migrate onto the arc_mru list.
215 *
216 * The ARC_l2c_only state is for buffers that are in the second
217 * level ARC but no longer in any of the ARC_m* lists. The second
218 * level ARC itself may also contain buffers that are in any of
219 * the ARC_m* states - meaning that a buffer can exist in two
220 * places. The reason for the ARC_l2c_only state is to keep the
221 * buffer header in the hash table, so that reads that hit the
222 * second level ARC benefit from these fast lookups.
223 */
224
225typedef struct arc_state {
226 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
227 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
228 uint64_t arcs_size; /* total amount of data in this state */
229 kmutex_t arcs_mtx;
230} arc_state_t;
231
232/* The 6 states: */
233static arc_state_t ARC_anon;
234static arc_state_t ARC_mru;
235static arc_state_t ARC_mru_ghost;
236static arc_state_t ARC_mfu;
237static arc_state_t ARC_mfu_ghost;
238static arc_state_t ARC_l2c_only;
239
240typedef struct arc_stats {
241 kstat_named_t arcstat_hits;
242 kstat_named_t arcstat_misses;
243 kstat_named_t arcstat_demand_data_hits;
244 kstat_named_t arcstat_demand_data_misses;
245 kstat_named_t arcstat_demand_metadata_hits;
246 kstat_named_t arcstat_demand_metadata_misses;
247 kstat_named_t arcstat_prefetch_data_hits;
248 kstat_named_t arcstat_prefetch_data_misses;
249 kstat_named_t arcstat_prefetch_metadata_hits;
250 kstat_named_t arcstat_prefetch_metadata_misses;
251 kstat_named_t arcstat_mru_hits;
252 kstat_named_t arcstat_mru_ghost_hits;
253 kstat_named_t arcstat_mfu_hits;
254 kstat_named_t arcstat_mfu_ghost_hits;
255 kstat_named_t arcstat_deleted;
256 kstat_named_t arcstat_recycle_miss;
257 kstat_named_t arcstat_mutex_miss;
258 kstat_named_t arcstat_evict_skip;
428870ff
BB
259 kstat_named_t arcstat_evict_l2_cached;
260 kstat_named_t arcstat_evict_l2_eligible;
261 kstat_named_t arcstat_evict_l2_ineligible;
34dc7c2f
BB
262 kstat_named_t arcstat_hash_elements;
263 kstat_named_t arcstat_hash_elements_max;
264 kstat_named_t arcstat_hash_collisions;
265 kstat_named_t arcstat_hash_chains;
266 kstat_named_t arcstat_hash_chain_max;
267 kstat_named_t arcstat_p;
268 kstat_named_t arcstat_c;
269 kstat_named_t arcstat_c_min;
270 kstat_named_t arcstat_c_max;
271 kstat_named_t arcstat_size;
272 kstat_named_t arcstat_hdr_size;
d164b209
BB
273 kstat_named_t arcstat_data_size;
274 kstat_named_t arcstat_other_size;
13be560d
BB
275 kstat_named_t arcstat_anon_size;
276 kstat_named_t arcstat_anon_evict_data;
277 kstat_named_t arcstat_anon_evict_metadata;
278 kstat_named_t arcstat_mru_size;
279 kstat_named_t arcstat_mru_evict_data;
280 kstat_named_t arcstat_mru_evict_metadata;
281 kstat_named_t arcstat_mru_ghost_size;
282 kstat_named_t arcstat_mru_ghost_evict_data;
283 kstat_named_t arcstat_mru_ghost_evict_metadata;
284 kstat_named_t arcstat_mfu_size;
285 kstat_named_t arcstat_mfu_evict_data;
286 kstat_named_t arcstat_mfu_evict_metadata;
287 kstat_named_t arcstat_mfu_ghost_size;
288 kstat_named_t arcstat_mfu_ghost_evict_data;
289 kstat_named_t arcstat_mfu_ghost_evict_metadata;
34dc7c2f
BB
290 kstat_named_t arcstat_l2_hits;
291 kstat_named_t arcstat_l2_misses;
292 kstat_named_t arcstat_l2_feeds;
293 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
294 kstat_named_t arcstat_l2_read_bytes;
295 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
296 kstat_named_t arcstat_l2_writes_sent;
297 kstat_named_t arcstat_l2_writes_done;
298 kstat_named_t arcstat_l2_writes_error;
299 kstat_named_t arcstat_l2_writes_hdr_miss;
300 kstat_named_t arcstat_l2_evict_lock_retry;
301 kstat_named_t arcstat_l2_evict_reading;
302 kstat_named_t arcstat_l2_free_on_write;
303 kstat_named_t arcstat_l2_abort_lowmem;
304 kstat_named_t arcstat_l2_cksum_bad;
305 kstat_named_t arcstat_l2_io_error;
306 kstat_named_t arcstat_l2_size;
307 kstat_named_t arcstat_l2_hdr_size;
308 kstat_named_t arcstat_memory_throttle_count;
7cb67b45
BB
309 kstat_named_t arcstat_memory_direct_count;
310 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
311 kstat_named_t arcstat_no_grow;
312 kstat_named_t arcstat_tempreserve;
313 kstat_named_t arcstat_loaned_bytes;
ab26409d 314 kstat_named_t arcstat_prune;
1834f2d8
BB
315 kstat_named_t arcstat_meta_used;
316 kstat_named_t arcstat_meta_limit;
317 kstat_named_t arcstat_meta_max;
34dc7c2f
BB
318} arc_stats_t;
319
320static arc_stats_t arc_stats = {
321 { "hits", KSTAT_DATA_UINT64 },
322 { "misses", KSTAT_DATA_UINT64 },
323 { "demand_data_hits", KSTAT_DATA_UINT64 },
324 { "demand_data_misses", KSTAT_DATA_UINT64 },
325 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
326 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
327 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
328 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
329 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
330 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
331 { "mru_hits", KSTAT_DATA_UINT64 },
332 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
333 { "mfu_hits", KSTAT_DATA_UINT64 },
334 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
335 { "deleted", KSTAT_DATA_UINT64 },
336 { "recycle_miss", KSTAT_DATA_UINT64 },
337 { "mutex_miss", KSTAT_DATA_UINT64 },
338 { "evict_skip", KSTAT_DATA_UINT64 },
428870ff
BB
339 { "evict_l2_cached", KSTAT_DATA_UINT64 },
340 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
341 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
34dc7c2f
BB
342 { "hash_elements", KSTAT_DATA_UINT64 },
343 { "hash_elements_max", KSTAT_DATA_UINT64 },
344 { "hash_collisions", KSTAT_DATA_UINT64 },
345 { "hash_chains", KSTAT_DATA_UINT64 },
346 { "hash_chain_max", KSTAT_DATA_UINT64 },
347 { "p", KSTAT_DATA_UINT64 },
348 { "c", KSTAT_DATA_UINT64 },
349 { "c_min", KSTAT_DATA_UINT64 },
350 { "c_max", KSTAT_DATA_UINT64 },
351 { "size", KSTAT_DATA_UINT64 },
352 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209
BB
353 { "data_size", KSTAT_DATA_UINT64 },
354 { "other_size", KSTAT_DATA_UINT64 },
13be560d
BB
355 { "anon_size", KSTAT_DATA_UINT64 },
356 { "anon_evict_data", KSTAT_DATA_UINT64 },
357 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
358 { "mru_size", KSTAT_DATA_UINT64 },
359 { "mru_evict_data", KSTAT_DATA_UINT64 },
360 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
361 { "mru_ghost_size", KSTAT_DATA_UINT64 },
362 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
363 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
364 { "mfu_size", KSTAT_DATA_UINT64 },
365 { "mfu_evict_data", KSTAT_DATA_UINT64 },
366 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
367 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
368 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
369 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
370 { "l2_hits", KSTAT_DATA_UINT64 },
371 { "l2_misses", KSTAT_DATA_UINT64 },
372 { "l2_feeds", KSTAT_DATA_UINT64 },
373 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
374 { "l2_read_bytes", KSTAT_DATA_UINT64 },
375 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
376 { "l2_writes_sent", KSTAT_DATA_UINT64 },
377 { "l2_writes_done", KSTAT_DATA_UINT64 },
378 { "l2_writes_error", KSTAT_DATA_UINT64 },
379 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
380 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
381 { "l2_evict_reading", KSTAT_DATA_UINT64 },
382 { "l2_free_on_write", KSTAT_DATA_UINT64 },
383 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
384 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
385 { "l2_io_error", KSTAT_DATA_UINT64 },
386 { "l2_size", KSTAT_DATA_UINT64 },
387 { "l2_hdr_size", KSTAT_DATA_UINT64 },
1834f2d8 388 { "memory_throttle_count", KSTAT_DATA_UINT64 },
7cb67b45
BB
389 { "memory_direct_count", KSTAT_DATA_UINT64 },
390 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
391 { "arc_no_grow", KSTAT_DATA_UINT64 },
392 { "arc_tempreserve", KSTAT_DATA_UINT64 },
393 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 394 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
395 { "arc_meta_used", KSTAT_DATA_UINT64 },
396 { "arc_meta_limit", KSTAT_DATA_UINT64 },
397 { "arc_meta_max", KSTAT_DATA_UINT64 },
34dc7c2f
BB
398};
399
400#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
401
402#define ARCSTAT_INCR(stat, val) \
403 atomic_add_64(&arc_stats.stat.value.ui64, (val));
404
428870ff 405#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
406#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
407
408#define ARCSTAT_MAX(stat, val) { \
409 uint64_t m; \
410 while ((val) > (m = arc_stats.stat.value.ui64) && \
411 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
412 continue; \
413}
414
415#define ARCSTAT_MAXSTAT(stat) \
416 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
417
418/*
419 * We define a macro to allow ARC hits/misses to be easily broken down by
420 * two separate conditions, giving a total of four different subtypes for
421 * each of hits and misses (so eight statistics total).
422 */
423#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
424 if (cond1) { \
425 if (cond2) { \
426 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
427 } else { \
428 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
429 } \
430 } else { \
431 if (cond2) { \
432 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
433 } else { \
434 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
435 } \
436 }
437
438kstat_t *arc_ksp;
428870ff 439static arc_state_t *arc_anon;
34dc7c2f
BB
440static arc_state_t *arc_mru;
441static arc_state_t *arc_mru_ghost;
442static arc_state_t *arc_mfu;
443static arc_state_t *arc_mfu_ghost;
444static arc_state_t *arc_l2c_only;
445
446/*
447 * There are several ARC variables that are critical to export as kstats --
448 * but we don't want to have to grovel around in the kstat whenever we wish to
449 * manipulate them. For these variables, we therefore define them to be in
450 * terms of the statistic variable. This assures that we are not introducing
451 * the possibility of inconsistency by having shadow copies of the variables,
452 * while still allowing the code to be readable.
453 */
454#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
455#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
456#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
457#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
458#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
459#define arc_no_grow ARCSTAT(arcstat_no_grow)
460#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
461#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
462#define arc_meta_used ARCSTAT(arcstat_meta_used)
463#define arc_meta_limit ARCSTAT(arcstat_meta_limit)
464#define arc_meta_max ARCSTAT(arcstat_meta_max)
34dc7c2f
BB
465
466typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
467
468typedef struct arc_callback arc_callback_t;
469
470struct arc_callback {
471 void *acb_private;
472 arc_done_func_t *acb_done;
34dc7c2f
BB
473 arc_buf_t *acb_buf;
474 zio_t *acb_zio_dummy;
475 arc_callback_t *acb_next;
476};
477
478typedef struct arc_write_callback arc_write_callback_t;
479
480struct arc_write_callback {
481 void *awcb_private;
482 arc_done_func_t *awcb_ready;
483 arc_done_func_t *awcb_done;
484 arc_buf_t *awcb_buf;
485};
486
487struct arc_buf_hdr {
488 /* protected by hash lock */
489 dva_t b_dva;
490 uint64_t b_birth;
491 uint64_t b_cksum0;
492
493 kmutex_t b_freeze_lock;
494 zio_cksum_t *b_freeze_cksum;
428870ff 495 void *b_thawed;
34dc7c2f
BB
496
497 arc_buf_hdr_t *b_hash_next;
498 arc_buf_t *b_buf;
499 uint32_t b_flags;
500 uint32_t b_datacnt;
501
502 arc_callback_t *b_acb;
503 kcondvar_t b_cv;
504
505 /* immutable */
506 arc_buf_contents_t b_type;
507 uint64_t b_size;
d164b209 508 uint64_t b_spa;
34dc7c2f
BB
509
510 /* protected by arc state mutex */
511 arc_state_t *b_state;
512 list_node_t b_arc_node;
513
514 /* updated atomically */
515 clock_t b_arc_access;
516
517 /* self protecting */
518 refcount_t b_refcnt;
519
520 l2arc_buf_hdr_t *b_l2hdr;
521 list_node_t b_l2node;
522};
523
ab26409d
BB
524static list_t arc_prune_list;
525static kmutex_t arc_prune_mtx;
34dc7c2f
BB
526static arc_buf_t *arc_eviction_list;
527static kmutex_t arc_eviction_mtx;
528static arc_buf_hdr_t arc_eviction_hdr;
529static void arc_get_data_buf(arc_buf_t *buf);
530static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
531static int arc_evict_needed(arc_buf_contents_t type);
d164b209 532static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
34dc7c2f 533
428870ff
BB
534static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
535
34dc7c2f
BB
536#define GHOST_STATE(state) \
537 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
538 (state) == arc_l2c_only)
539
540/*
541 * Private ARC flags. These flags are private ARC only flags that will show up
542 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
543 * be passed in as arc_flags in things like arc_read. However, these flags
544 * should never be passed and should only be set by ARC code. When adding new
545 * public flags, make sure not to smash the private ones.
546 */
547
548#define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
549#define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
550#define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
551#define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
552#define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
553#define ARC_INDIRECT (1 << 14) /* this is an indirect block */
554#define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
b128c09f
BB
555#define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
556#define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
557#define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
34dc7c2f
BB
558
559#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
560#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
561#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
d164b209 562#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
34dc7c2f
BB
563#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
564#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
565#define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
b128c09f
BB
566#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
567#define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
568 (hdr)->b_l2hdr != NULL)
34dc7c2f
BB
569#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
570#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
571#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
572
573/*
574 * Other sizes
575 */
576
577#define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
578#define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
579
580/*
581 * Hash table routines
582 */
583
00b46022
BB
584#define HT_LOCK_ALIGN 64
585#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
586
587struct ht_lock {
588 kmutex_t ht_lock;
589#ifdef _KERNEL
00b46022 590 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
591#endif
592};
593
594#define BUF_LOCKS 256
595typedef struct buf_hash_table {
596 uint64_t ht_mask;
597 arc_buf_hdr_t **ht_table;
598 struct ht_lock ht_locks[BUF_LOCKS];
599} buf_hash_table_t;
600
601static buf_hash_table_t buf_hash_table;
602
603#define BUF_HASH_INDEX(spa, dva, birth) \
604 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
605#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
606#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
607#define HDR_LOCK(hdr) \
608 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
609
610uint64_t zfs_crc64_table[256];
611
612/*
613 * Level 2 ARC
614 */
615
616#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
d164b209
BB
617#define L2ARC_HEADROOM 2 /* num of writes */
618#define L2ARC_FEED_SECS 1 /* caching interval secs */
619#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f
BB
620
621#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
622#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
623
624/*
625 * L2ARC Performance Tunables
626 */
abd8610c
BB
627unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
628unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
629unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
630unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
631unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
632int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
633int l2arc_feed_again = B_TRUE; /* turbo warmup */
634int l2arc_norw = B_TRUE; /* no reads during writes */
34dc7c2f
BB
635
636/*
637 * L2ARC Internals
638 */
639typedef struct l2arc_dev {
640 vdev_t *l2ad_vdev; /* vdev */
641 spa_t *l2ad_spa; /* spa */
642 uint64_t l2ad_hand; /* next write location */
643 uint64_t l2ad_write; /* desired write size, bytes */
b128c09f 644 uint64_t l2ad_boost; /* warmup write boost, bytes */
34dc7c2f
BB
645 uint64_t l2ad_start; /* first addr on device */
646 uint64_t l2ad_end; /* last addr on device */
647 uint64_t l2ad_evict; /* last addr eviction reached */
648 boolean_t l2ad_first; /* first sweep through */
d164b209 649 boolean_t l2ad_writing; /* currently writing */
34dc7c2f
BB
650 list_t *l2ad_buflist; /* buffer list */
651 list_node_t l2ad_node; /* device list node */
652} l2arc_dev_t;
653
654static list_t L2ARC_dev_list; /* device list */
655static list_t *l2arc_dev_list; /* device list pointer */
656static kmutex_t l2arc_dev_mtx; /* device list mutex */
657static l2arc_dev_t *l2arc_dev_last; /* last device used */
658static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
659static list_t L2ARC_free_on_write; /* free after write buf list */
660static list_t *l2arc_free_on_write; /* free after write list ptr */
661static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
662static uint64_t l2arc_ndev; /* number of devices */
663
664typedef struct l2arc_read_callback {
665 arc_buf_t *l2rcb_buf; /* read buffer */
666 spa_t *l2rcb_spa; /* spa */
667 blkptr_t l2rcb_bp; /* original blkptr */
668 zbookmark_t l2rcb_zb; /* original bookmark */
669 int l2rcb_flags; /* original flags */
670} l2arc_read_callback_t;
671
672typedef struct l2arc_write_callback {
673 l2arc_dev_t *l2wcb_dev; /* device info */
674 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
675} l2arc_write_callback_t;
676
677struct l2arc_buf_hdr {
678 /* protected by arc_buf_hdr mutex */
679 l2arc_dev_t *b_dev; /* L2ARC device */
9babb374 680 uint64_t b_daddr; /* disk address, offset byte */
34dc7c2f
BB
681};
682
683typedef struct l2arc_data_free {
684 /* protected by l2arc_free_on_write_mtx */
685 void *l2df_data;
686 size_t l2df_size;
687 void (*l2df_func)(void *, size_t);
688 list_node_t l2df_list_node;
689} l2arc_data_free_t;
690
691static kmutex_t l2arc_feed_thr_lock;
692static kcondvar_t l2arc_feed_thr_cv;
693static uint8_t l2arc_thread_exit;
694
695static void l2arc_read_done(zio_t *zio);
696static void l2arc_hdr_stat_add(void);
697static void l2arc_hdr_stat_remove(void);
698
699static uint64_t
d164b209 700buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 701{
34dc7c2f
BB
702 uint8_t *vdva = (uint8_t *)dva;
703 uint64_t crc = -1ULL;
704 int i;
705
706 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
707
708 for (i = 0; i < sizeof (dva_t); i++)
709 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
710
d164b209 711 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
712
713 return (crc);
714}
715
716#define BUF_EMPTY(buf) \
717 ((buf)->b_dva.dva_word[0] == 0 && \
718 (buf)->b_dva.dva_word[1] == 0 && \
719 (buf)->b_birth == 0)
720
721#define BUF_EQUAL(spa, dva, birth, buf) \
722 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
723 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
724 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
725
428870ff
BB
726static void
727buf_discard_identity(arc_buf_hdr_t *hdr)
728{
729 hdr->b_dva.dva_word[0] = 0;
730 hdr->b_dva.dva_word[1] = 0;
731 hdr->b_birth = 0;
732 hdr->b_cksum0 = 0;
733}
734
34dc7c2f 735static arc_buf_hdr_t *
d164b209 736buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
34dc7c2f
BB
737{
738 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
739 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
740 arc_buf_hdr_t *buf;
741
742 mutex_enter(hash_lock);
743 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
744 buf = buf->b_hash_next) {
745 if (BUF_EQUAL(spa, dva, birth, buf)) {
746 *lockp = hash_lock;
747 return (buf);
748 }
749 }
750 mutex_exit(hash_lock);
751 *lockp = NULL;
752 return (NULL);
753}
754
755/*
756 * Insert an entry into the hash table. If there is already an element
757 * equal to elem in the hash table, then the already existing element
758 * will be returned and the new element will not be inserted.
759 * Otherwise returns NULL.
760 */
761static arc_buf_hdr_t *
762buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
763{
764 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
765 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
766 arc_buf_hdr_t *fbuf;
767 uint32_t i;
768
769 ASSERT(!HDR_IN_HASH_TABLE(buf));
770 *lockp = hash_lock;
771 mutex_enter(hash_lock);
772 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
773 fbuf = fbuf->b_hash_next, i++) {
774 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
775 return (fbuf);
776 }
777
778 buf->b_hash_next = buf_hash_table.ht_table[idx];
779 buf_hash_table.ht_table[idx] = buf;
780 buf->b_flags |= ARC_IN_HASH_TABLE;
781
782 /* collect some hash table performance data */
783 if (i > 0) {
784 ARCSTAT_BUMP(arcstat_hash_collisions);
785 if (i == 1)
786 ARCSTAT_BUMP(arcstat_hash_chains);
787
788 ARCSTAT_MAX(arcstat_hash_chain_max, i);
789 }
790
791 ARCSTAT_BUMP(arcstat_hash_elements);
792 ARCSTAT_MAXSTAT(arcstat_hash_elements);
793
794 return (NULL);
795}
796
797static void
798buf_hash_remove(arc_buf_hdr_t *buf)
799{
800 arc_buf_hdr_t *fbuf, **bufp;
801 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
802
803 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
804 ASSERT(HDR_IN_HASH_TABLE(buf));
805
806 bufp = &buf_hash_table.ht_table[idx];
807 while ((fbuf = *bufp) != buf) {
808 ASSERT(fbuf != NULL);
809 bufp = &fbuf->b_hash_next;
810 }
811 *bufp = buf->b_hash_next;
812 buf->b_hash_next = NULL;
813 buf->b_flags &= ~ARC_IN_HASH_TABLE;
814
815 /* collect some hash table performance data */
816 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
817
818 if (buf_hash_table.ht_table[idx] &&
819 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
820 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
821}
822
823/*
824 * Global data structures and functions for the buf kmem cache.
825 */
826static kmem_cache_t *hdr_cache;
827static kmem_cache_t *buf_cache;
828
829static void
830buf_fini(void)
831{
832 int i;
833
00b46022
BB
834#if defined(_KERNEL) && defined(HAVE_SPL)
835 /* Large allocations which do not require contiguous pages
836 * should be using vmem_free() in the linux kernel */
837 vmem_free(buf_hash_table.ht_table,
838 (buf_hash_table.ht_mask + 1) * sizeof (void *));
839#else
34dc7c2f
BB
840 kmem_free(buf_hash_table.ht_table,
841 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 842#endif
34dc7c2f
BB
843 for (i = 0; i < BUF_LOCKS; i++)
844 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
845 kmem_cache_destroy(hdr_cache);
846 kmem_cache_destroy(buf_cache);
847}
848
849/*
850 * Constructor callback - called when the cache is empty
851 * and a new buf is requested.
852 */
853/* ARGSUSED */
854static int
855hdr_cons(void *vbuf, void *unused, int kmflag)
856{
857 arc_buf_hdr_t *buf = vbuf;
858
859 bzero(buf, sizeof (arc_buf_hdr_t));
860 refcount_create(&buf->b_refcnt);
861 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
862 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
98f72a53
BB
863 list_link_init(&buf->b_arc_node);
864 list_link_init(&buf->b_l2node);
d164b209 865 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f 866
34dc7c2f
BB
867 return (0);
868}
869
b128c09f
BB
870/* ARGSUSED */
871static int
872buf_cons(void *vbuf, void *unused, int kmflag)
873{
874 arc_buf_t *buf = vbuf;
875
876 bzero(buf, sizeof (arc_buf_t));
428870ff
BB
877 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
878 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
d164b209
BB
879 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
880
b128c09f
BB
881 return (0);
882}
883
34dc7c2f
BB
884/*
885 * Destructor callback - called when a cached buf is
886 * no longer required.
887 */
888/* ARGSUSED */
889static void
890hdr_dest(void *vbuf, void *unused)
891{
892 arc_buf_hdr_t *buf = vbuf;
893
428870ff 894 ASSERT(BUF_EMPTY(buf));
34dc7c2f
BB
895 refcount_destroy(&buf->b_refcnt);
896 cv_destroy(&buf->b_cv);
897 mutex_destroy(&buf->b_freeze_lock);
d164b209 898 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f
BB
899}
900
b128c09f
BB
901/* ARGSUSED */
902static void
903buf_dest(void *vbuf, void *unused)
904{
905 arc_buf_t *buf = vbuf;
906
428870ff
BB
907 mutex_destroy(&buf->b_evict_lock);
908 rw_destroy(&buf->b_data_lock);
d164b209 909 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
910}
911
34dc7c2f
BB
912/*
913 * Reclaim callback -- invoked when memory is low.
914 */
915/* ARGSUSED */
916static void
917hdr_recl(void *unused)
918{
34dc7c2f
BB
919 /*
920 * umem calls the reclaim func when we destroy the buf cache,
921 * which is after we do arc_fini().
922 */
923 if (!arc_dead)
924 cv_signal(&arc_reclaim_thr_cv);
925}
926
927static void
928buf_init(void)
929{
930 uint64_t *ct;
931 uint64_t hsize = 1ULL << 12;
932 int i, j;
933
934 /*
935 * The hash table is big enough to fill all of physical memory
936 * with an average 64K block size. The table will take up
937 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
938 */
939 while (hsize * 65536 < physmem * PAGESIZE)
940 hsize <<= 1;
941retry:
942 buf_hash_table.ht_mask = hsize - 1;
00b46022
BB
943#if defined(_KERNEL) && defined(HAVE_SPL)
944 /* Large allocations which do not require contiguous pages
945 * should be using vmem_alloc() in the linux kernel */
946 buf_hash_table.ht_table =
947 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
948#else
34dc7c2f
BB
949 buf_hash_table.ht_table =
950 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 951#endif
34dc7c2f
BB
952 if (buf_hash_table.ht_table == NULL) {
953 ASSERT(hsize > (1ULL << 8));
954 hsize >>= 1;
955 goto retry;
956 }
957
958 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
959 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
960 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 961 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
962
963 for (i = 0; i < 256; i++)
964 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
965 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
966
967 for (i = 0; i < BUF_LOCKS; i++) {
968 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
969 NULL, MUTEX_DEFAULT, NULL);
970 }
971}
972
973#define ARC_MINTIME (hz>>4) /* 62 ms */
974
975static void
976arc_cksum_verify(arc_buf_t *buf)
977{
978 zio_cksum_t zc;
979
980 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
981 return;
982
983 mutex_enter(&buf->b_hdr->b_freeze_lock);
984 if (buf->b_hdr->b_freeze_cksum == NULL ||
985 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
986 mutex_exit(&buf->b_hdr->b_freeze_lock);
987 return;
988 }
989 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
990 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
991 panic("buffer modified while frozen!");
992 mutex_exit(&buf->b_hdr->b_freeze_lock);
993}
994
995static int
996arc_cksum_equal(arc_buf_t *buf)
997{
998 zio_cksum_t zc;
999 int equal;
1000
1001 mutex_enter(&buf->b_hdr->b_freeze_lock);
1002 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1003 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1004 mutex_exit(&buf->b_hdr->b_freeze_lock);
1005
1006 return (equal);
1007}
1008
1009static void
1010arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1011{
1012 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1013 return;
1014
1015 mutex_enter(&buf->b_hdr->b_freeze_lock);
1016 if (buf->b_hdr->b_freeze_cksum != NULL) {
1017 mutex_exit(&buf->b_hdr->b_freeze_lock);
1018 return;
1019 }
409dc1a5
PS
1020 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1021 KM_PUSHPAGE);
34dc7c2f
BB
1022 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1023 buf->b_hdr->b_freeze_cksum);
1024 mutex_exit(&buf->b_hdr->b_freeze_lock);
1025}
1026
1027void
1028arc_buf_thaw(arc_buf_t *buf)
1029{
1030 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1031 if (buf->b_hdr->b_state != arc_anon)
1032 panic("modifying non-anon buffer!");
1033 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1034 panic("modifying buffer while i/o in progress!");
1035 arc_cksum_verify(buf);
1036 }
1037
1038 mutex_enter(&buf->b_hdr->b_freeze_lock);
1039 if (buf->b_hdr->b_freeze_cksum != NULL) {
1040 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1041 buf->b_hdr->b_freeze_cksum = NULL;
1042 }
428870ff
BB
1043
1044 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1045 if (buf->b_hdr->b_thawed)
1046 kmem_free(buf->b_hdr->b_thawed, 1);
1047 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1048 }
1049
34dc7c2f
BB
1050 mutex_exit(&buf->b_hdr->b_freeze_lock);
1051}
1052
1053void
1054arc_buf_freeze(arc_buf_t *buf)
1055{
428870ff
BB
1056 kmutex_t *hash_lock;
1057
34dc7c2f
BB
1058 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1059 return;
1060
428870ff
BB
1061 hash_lock = HDR_LOCK(buf->b_hdr);
1062 mutex_enter(hash_lock);
1063
34dc7c2f
BB
1064 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1065 buf->b_hdr->b_state == arc_anon);
1066 arc_cksum_compute(buf, B_FALSE);
428870ff 1067 mutex_exit(hash_lock);
34dc7c2f
BB
1068}
1069
1070static void
1071add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1072{
1073 ASSERT(MUTEX_HELD(hash_lock));
1074
1075 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1076 (ab->b_state != arc_anon)) {
1077 uint64_t delta = ab->b_size * ab->b_datacnt;
1078 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1079 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1080
1081 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1082 mutex_enter(&ab->b_state->arcs_mtx);
1083 ASSERT(list_link_active(&ab->b_arc_node));
1084 list_remove(list, ab);
1085 if (GHOST_STATE(ab->b_state)) {
1086 ASSERT3U(ab->b_datacnt, ==, 0);
1087 ASSERT3P(ab->b_buf, ==, NULL);
1088 delta = ab->b_size;
1089 }
1090 ASSERT(delta > 0);
1091 ASSERT3U(*size, >=, delta);
1092 atomic_add_64(size, -delta);
1093 mutex_exit(&ab->b_state->arcs_mtx);
b128c09f 1094 /* remove the prefetch flag if we get a reference */
34dc7c2f
BB
1095 if (ab->b_flags & ARC_PREFETCH)
1096 ab->b_flags &= ~ARC_PREFETCH;
1097 }
1098}
1099
1100static int
1101remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1102{
1103 int cnt;
1104 arc_state_t *state = ab->b_state;
1105
1106 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1107 ASSERT(!GHOST_STATE(state));
1108
1109 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1110 (state != arc_anon)) {
1111 uint64_t *size = &state->arcs_lsize[ab->b_type];
1112
1113 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1114 mutex_enter(&state->arcs_mtx);
1115 ASSERT(!list_link_active(&ab->b_arc_node));
1116 list_insert_head(&state->arcs_list[ab->b_type], ab);
1117 ASSERT(ab->b_datacnt > 0);
1118 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1119 mutex_exit(&state->arcs_mtx);
1120 }
1121 return (cnt);
1122}
1123
1124/*
1125 * Move the supplied buffer to the indicated state. The mutex
1126 * for the buffer must be held by the caller.
1127 */
1128static void
1129arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1130{
1131 arc_state_t *old_state = ab->b_state;
1132 int64_t refcnt = refcount_count(&ab->b_refcnt);
1133 uint64_t from_delta, to_delta;
1134
1135 ASSERT(MUTEX_HELD(hash_lock));
1136 ASSERT(new_state != old_state);
1137 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1138 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
428870ff 1139 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
34dc7c2f
BB
1140
1141 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1142
1143 /*
1144 * If this buffer is evictable, transfer it from the
1145 * old state list to the new state list.
1146 */
1147 if (refcnt == 0) {
1148 if (old_state != arc_anon) {
1149 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1150 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1151
1152 if (use_mutex)
1153 mutex_enter(&old_state->arcs_mtx);
1154
1155 ASSERT(list_link_active(&ab->b_arc_node));
1156 list_remove(&old_state->arcs_list[ab->b_type], ab);
1157
1158 /*
1159 * If prefetching out of the ghost cache,
428870ff 1160 * we will have a non-zero datacnt.
34dc7c2f
BB
1161 */
1162 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1163 /* ghost elements have a ghost size */
1164 ASSERT(ab->b_buf == NULL);
1165 from_delta = ab->b_size;
1166 }
1167 ASSERT3U(*size, >=, from_delta);
1168 atomic_add_64(size, -from_delta);
1169
1170 if (use_mutex)
1171 mutex_exit(&old_state->arcs_mtx);
1172 }
1173 if (new_state != arc_anon) {
1174 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1175 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1176
1177 if (use_mutex)
1178 mutex_enter(&new_state->arcs_mtx);
1179
1180 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1181
1182 /* ghost elements have a ghost size */
1183 if (GHOST_STATE(new_state)) {
1184 ASSERT(ab->b_datacnt == 0);
1185 ASSERT(ab->b_buf == NULL);
1186 to_delta = ab->b_size;
1187 }
1188 atomic_add_64(size, to_delta);
1189
1190 if (use_mutex)
1191 mutex_exit(&new_state->arcs_mtx);
1192 }
1193 }
1194
1195 ASSERT(!BUF_EMPTY(ab));
428870ff 1196 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
34dc7c2f 1197 buf_hash_remove(ab);
34dc7c2f
BB
1198
1199 /* adjust state sizes */
1200 if (to_delta)
1201 atomic_add_64(&new_state->arcs_size, to_delta);
1202 if (from_delta) {
1203 ASSERT3U(old_state->arcs_size, >=, from_delta);
1204 atomic_add_64(&old_state->arcs_size, -from_delta);
1205 }
1206 ab->b_state = new_state;
1207
1208 /* adjust l2arc hdr stats */
1209 if (new_state == arc_l2c_only)
1210 l2arc_hdr_stat_add();
1211 else if (old_state == arc_l2c_only)
1212 l2arc_hdr_stat_remove();
1213}
1214
1215void
d164b209 1216arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1217{
d164b209
BB
1218 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1219
1220 switch (type) {
e75c13c3
BB
1221 default:
1222 break;
d164b209
BB
1223 case ARC_SPACE_DATA:
1224 ARCSTAT_INCR(arcstat_data_size, space);
1225 break;
1226 case ARC_SPACE_OTHER:
1227 ARCSTAT_INCR(arcstat_other_size, space);
1228 break;
1229 case ARC_SPACE_HDRS:
1230 ARCSTAT_INCR(arcstat_hdr_size, space);
1231 break;
1232 case ARC_SPACE_L2HDRS:
1233 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1234 break;
1235 }
1236
34dc7c2f
BB
1237 atomic_add_64(&arc_meta_used, space);
1238 atomic_add_64(&arc_size, space);
1239}
1240
1241void
d164b209 1242arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1243{
d164b209
BB
1244 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1245
1246 switch (type) {
e75c13c3
BB
1247 default:
1248 break;
d164b209
BB
1249 case ARC_SPACE_DATA:
1250 ARCSTAT_INCR(arcstat_data_size, -space);
1251 break;
1252 case ARC_SPACE_OTHER:
1253 ARCSTAT_INCR(arcstat_other_size, -space);
1254 break;
1255 case ARC_SPACE_HDRS:
1256 ARCSTAT_INCR(arcstat_hdr_size, -space);
1257 break;
1258 case ARC_SPACE_L2HDRS:
1259 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1260 break;
1261 }
1262
34dc7c2f
BB
1263 ASSERT(arc_meta_used >= space);
1264 if (arc_meta_max < arc_meta_used)
1265 arc_meta_max = arc_meta_used;
1266 atomic_add_64(&arc_meta_used, -space);
1267 ASSERT(arc_size >= space);
1268 atomic_add_64(&arc_size, -space);
1269}
1270
1271void *
1272arc_data_buf_alloc(uint64_t size)
1273{
1274 if (arc_evict_needed(ARC_BUFC_DATA))
1275 cv_signal(&arc_reclaim_thr_cv);
1276 atomic_add_64(&arc_size, size);
1277 return (zio_data_buf_alloc(size));
1278}
1279
1280void
1281arc_data_buf_free(void *buf, uint64_t size)
1282{
1283 zio_data_buf_free(buf, size);
1284 ASSERT(arc_size >= size);
1285 atomic_add_64(&arc_size, -size);
1286}
1287
1288arc_buf_t *
1289arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1290{
1291 arc_buf_hdr_t *hdr;
1292 arc_buf_t *buf;
1293
1294 ASSERT3U(size, >, 0);
1295 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1296 ASSERT(BUF_EMPTY(hdr));
1297 hdr->b_size = size;
1298 hdr->b_type = type;
d164b209 1299 hdr->b_spa = spa_guid(spa);
34dc7c2f
BB
1300 hdr->b_state = arc_anon;
1301 hdr->b_arc_access = 0;
1302 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1303 buf->b_hdr = hdr;
1304 buf->b_data = NULL;
1305 buf->b_efunc = NULL;
1306 buf->b_private = NULL;
1307 buf->b_next = NULL;
1308 hdr->b_buf = buf;
1309 arc_get_data_buf(buf);
1310 hdr->b_datacnt = 1;
1311 hdr->b_flags = 0;
1312 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1313 (void) refcount_add(&hdr->b_refcnt, tag);
1314
1315 return (buf);
1316}
1317
9babb374
BB
1318static char *arc_onloan_tag = "onloan";
1319
1320/*
1321 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1322 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1323 * buffers must be returned to the arc before they can be used by the DMU or
1324 * freed.
1325 */
1326arc_buf_t *
1327arc_loan_buf(spa_t *spa, int size)
1328{
1329 arc_buf_t *buf;
1330
1331 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1332
1333 atomic_add_64(&arc_loaned_bytes, size);
1334 return (buf);
1335}
1336
1337/*
1338 * Return a loaned arc buffer to the arc.
1339 */
1340void
1341arc_return_buf(arc_buf_t *buf, void *tag)
1342{
1343 arc_buf_hdr_t *hdr = buf->b_hdr;
1344
9babb374 1345 ASSERT(buf->b_data != NULL);
428870ff
BB
1346 (void) refcount_add(&hdr->b_refcnt, tag);
1347 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
9babb374
BB
1348
1349 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1350}
1351
428870ff
BB
1352/* Detach an arc_buf from a dbuf (tag) */
1353void
1354arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1355{
1356 arc_buf_hdr_t *hdr;
1357
1358 ASSERT(buf->b_data != NULL);
1359 hdr = buf->b_hdr;
1360 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1361 (void) refcount_remove(&hdr->b_refcnt, tag);
1362 buf->b_efunc = NULL;
1363 buf->b_private = NULL;
1364
1365 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1366}
1367
34dc7c2f
BB
1368static arc_buf_t *
1369arc_buf_clone(arc_buf_t *from)
1370{
1371 arc_buf_t *buf;
1372 arc_buf_hdr_t *hdr = from->b_hdr;
1373 uint64_t size = hdr->b_size;
1374
428870ff
BB
1375 ASSERT(hdr->b_state != arc_anon);
1376
34dc7c2f
BB
1377 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1378 buf->b_hdr = hdr;
1379 buf->b_data = NULL;
1380 buf->b_efunc = NULL;
1381 buf->b_private = NULL;
1382 buf->b_next = hdr->b_buf;
1383 hdr->b_buf = buf;
1384 arc_get_data_buf(buf);
1385 bcopy(from->b_data, buf->b_data, size);
1386 hdr->b_datacnt += 1;
1387 return (buf);
1388}
1389
1390void
1391arc_buf_add_ref(arc_buf_t *buf, void* tag)
1392{
1393 arc_buf_hdr_t *hdr;
1394 kmutex_t *hash_lock;
1395
1396 /*
b128c09f
BB
1397 * Check to see if this buffer is evicted. Callers
1398 * must verify b_data != NULL to know if the add_ref
1399 * was successful.
34dc7c2f 1400 */
428870ff 1401 mutex_enter(&buf->b_evict_lock);
b128c09f 1402 if (buf->b_data == NULL) {
428870ff 1403 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1404 return;
1405 }
428870ff 1406 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1407 mutex_enter(hash_lock);
428870ff
BB
1408 hdr = buf->b_hdr;
1409 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1410 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1411
34dc7c2f
BB
1412 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1413 add_reference(hdr, hash_lock, tag);
d164b209 1414 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1415 arc_access(hdr, hash_lock);
1416 mutex_exit(hash_lock);
1417 ARCSTAT_BUMP(arcstat_hits);
1418 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1419 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1420 data, metadata, hits);
1421}
1422
1423/*
1424 * Free the arc data buffer. If it is an l2arc write in progress,
1425 * the buffer is placed on l2arc_free_on_write to be freed later.
1426 */
1427static void
1428arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1429 void *data, size_t size)
1430{
1431 if (HDR_L2_WRITING(hdr)) {
1432 l2arc_data_free_t *df;
1433 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1434 df->l2df_data = data;
1435 df->l2df_size = size;
1436 df->l2df_func = free_func;
1437 mutex_enter(&l2arc_free_on_write_mtx);
1438 list_insert_head(l2arc_free_on_write, df);
1439 mutex_exit(&l2arc_free_on_write_mtx);
1440 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1441 } else {
1442 free_func(data, size);
1443 }
1444}
1445
1446static void
1447arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1448{
1449 arc_buf_t **bufp;
1450
1451 /* free up data associated with the buf */
1452 if (buf->b_data) {
1453 arc_state_t *state = buf->b_hdr->b_state;
1454 uint64_t size = buf->b_hdr->b_size;
1455 arc_buf_contents_t type = buf->b_hdr->b_type;
1456
1457 arc_cksum_verify(buf);
428870ff 1458
34dc7c2f
BB
1459 if (!recycle) {
1460 if (type == ARC_BUFC_METADATA) {
1461 arc_buf_data_free(buf->b_hdr, zio_buf_free,
1462 buf->b_data, size);
d164b209 1463 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f
BB
1464 } else {
1465 ASSERT(type == ARC_BUFC_DATA);
1466 arc_buf_data_free(buf->b_hdr,
1467 zio_data_buf_free, buf->b_data, size);
d164b209 1468 ARCSTAT_INCR(arcstat_data_size, -size);
34dc7c2f
BB
1469 atomic_add_64(&arc_size, -size);
1470 }
1471 }
1472 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1473 uint64_t *cnt = &state->arcs_lsize[type];
1474
1475 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1476 ASSERT(state != arc_anon);
1477
1478 ASSERT3U(*cnt, >=, size);
1479 atomic_add_64(cnt, -size);
1480 }
1481 ASSERT3U(state->arcs_size, >=, size);
1482 atomic_add_64(&state->arcs_size, -size);
1483 buf->b_data = NULL;
1484 ASSERT(buf->b_hdr->b_datacnt > 0);
1485 buf->b_hdr->b_datacnt -= 1;
1486 }
1487
1488 /* only remove the buf if requested */
1489 if (!all)
1490 return;
1491
1492 /* remove the buf from the hdr list */
1493 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1494 continue;
1495 *bufp = buf->b_next;
428870ff 1496 buf->b_next = NULL;
34dc7c2f
BB
1497
1498 ASSERT(buf->b_efunc == NULL);
1499
1500 /* clean up the buf */
1501 buf->b_hdr = NULL;
1502 kmem_cache_free(buf_cache, buf);
1503}
1504
1505static void
1506arc_hdr_destroy(arc_buf_hdr_t *hdr)
1507{
d6320ddb
BB
1508 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1509
34dc7c2f
BB
1510 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1511 ASSERT3P(hdr->b_state, ==, arc_anon);
1512 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1513
428870ff
BB
1514 if (l2hdr != NULL) {
1515 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1516 /*
1517 * To prevent arc_free() and l2arc_evict() from
1518 * attempting to free the same buffer at the same time,
1519 * a FREE_IN_PROGRESS flag is given to arc_free() to
1520 * give it priority. l2arc_evict() can't destroy this
1521 * header while we are waiting on l2arc_buflist_mtx.
1522 *
1523 * The hdr may be removed from l2ad_buflist before we
1524 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1525 */
1526 if (!buflist_held) {
34dc7c2f 1527 mutex_enter(&l2arc_buflist_mtx);
428870ff 1528 l2hdr = hdr->b_l2hdr;
34dc7c2f 1529 }
428870ff
BB
1530
1531 if (l2hdr != NULL) {
1532 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1533 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1534 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1535 if (hdr->b_state == arc_l2c_only)
1536 l2arc_hdr_stat_remove();
1537 hdr->b_l2hdr = NULL;
1538 }
1539
1540 if (!buflist_held)
1541 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f
BB
1542 }
1543
1544 if (!BUF_EMPTY(hdr)) {
1545 ASSERT(!HDR_IN_HASH_TABLE(hdr));
428870ff 1546 buf_discard_identity(hdr);
34dc7c2f
BB
1547 }
1548 while (hdr->b_buf) {
1549 arc_buf_t *buf = hdr->b_buf;
1550
1551 if (buf->b_efunc) {
1552 mutex_enter(&arc_eviction_mtx);
428870ff 1553 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
1554 ASSERT(buf->b_hdr != NULL);
1555 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1556 hdr->b_buf = buf->b_next;
1557 buf->b_hdr = &arc_eviction_hdr;
1558 buf->b_next = arc_eviction_list;
1559 arc_eviction_list = buf;
428870ff 1560 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1561 mutex_exit(&arc_eviction_mtx);
1562 } else {
1563 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1564 }
1565 }
1566 if (hdr->b_freeze_cksum != NULL) {
1567 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1568 hdr->b_freeze_cksum = NULL;
1569 }
428870ff
BB
1570 if (hdr->b_thawed) {
1571 kmem_free(hdr->b_thawed, 1);
1572 hdr->b_thawed = NULL;
1573 }
34dc7c2f
BB
1574
1575 ASSERT(!list_link_active(&hdr->b_arc_node));
1576 ASSERT3P(hdr->b_hash_next, ==, NULL);
1577 ASSERT3P(hdr->b_acb, ==, NULL);
1578 kmem_cache_free(hdr_cache, hdr);
1579}
1580
1581void
1582arc_buf_free(arc_buf_t *buf, void *tag)
1583{
1584 arc_buf_hdr_t *hdr = buf->b_hdr;
1585 int hashed = hdr->b_state != arc_anon;
1586
1587 ASSERT(buf->b_efunc == NULL);
1588 ASSERT(buf->b_data != NULL);
1589
1590 if (hashed) {
1591 kmutex_t *hash_lock = HDR_LOCK(hdr);
1592
1593 mutex_enter(hash_lock);
428870ff
BB
1594 hdr = buf->b_hdr;
1595 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1596
34dc7c2f 1597 (void) remove_reference(hdr, hash_lock, tag);
428870ff 1598 if (hdr->b_datacnt > 1) {
34dc7c2f 1599 arc_buf_destroy(buf, FALSE, TRUE);
428870ff
BB
1600 } else {
1601 ASSERT(buf == hdr->b_buf);
1602 ASSERT(buf->b_efunc == NULL);
34dc7c2f 1603 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 1604 }
34dc7c2f
BB
1605 mutex_exit(hash_lock);
1606 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1607 int destroy_hdr;
1608 /*
1609 * We are in the middle of an async write. Don't destroy
1610 * this buffer unless the write completes before we finish
1611 * decrementing the reference count.
1612 */
1613 mutex_enter(&arc_eviction_mtx);
1614 (void) remove_reference(hdr, NULL, tag);
1615 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1616 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1617 mutex_exit(&arc_eviction_mtx);
1618 if (destroy_hdr)
1619 arc_hdr_destroy(hdr);
1620 } else {
428870ff 1621 if (remove_reference(hdr, NULL, tag) > 0)
34dc7c2f 1622 arc_buf_destroy(buf, FALSE, TRUE);
428870ff 1623 else
34dc7c2f 1624 arc_hdr_destroy(hdr);
34dc7c2f
BB
1625 }
1626}
1627
1628int
1629arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1630{
1631 arc_buf_hdr_t *hdr = buf->b_hdr;
1632 kmutex_t *hash_lock = HDR_LOCK(hdr);
1633 int no_callback = (buf->b_efunc == NULL);
1634
1635 if (hdr->b_state == arc_anon) {
428870ff 1636 ASSERT(hdr->b_datacnt == 1);
34dc7c2f
BB
1637 arc_buf_free(buf, tag);
1638 return (no_callback);
1639 }
1640
1641 mutex_enter(hash_lock);
428870ff
BB
1642 hdr = buf->b_hdr;
1643 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
1644 ASSERT(hdr->b_state != arc_anon);
1645 ASSERT(buf->b_data != NULL);
1646
1647 (void) remove_reference(hdr, hash_lock, tag);
1648 if (hdr->b_datacnt > 1) {
1649 if (no_callback)
1650 arc_buf_destroy(buf, FALSE, TRUE);
1651 } else if (no_callback) {
1652 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
428870ff 1653 ASSERT(buf->b_efunc == NULL);
34dc7c2f
BB
1654 hdr->b_flags |= ARC_BUF_AVAILABLE;
1655 }
1656 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1657 refcount_is_zero(&hdr->b_refcnt));
1658 mutex_exit(hash_lock);
1659 return (no_callback);
1660}
1661
1662int
1663arc_buf_size(arc_buf_t *buf)
1664{
1665 return (buf->b_hdr->b_size);
1666}
1667
1668/*
1669 * Evict buffers from list until we've removed the specified number of
1670 * bytes. Move the removed buffers to the appropriate evict state.
1671 * If the recycle flag is set, then attempt to "recycle" a buffer:
1672 * - look for a buffer to evict that is `bytes' long.
1673 * - return the data block from this buffer rather than freeing it.
1674 * This flag is used by callers that are trying to make space for a
1675 * new buffer in a full arc cache.
1676 *
1677 * This function makes a "best effort". It skips over any buffers
1678 * it can't get a hash_lock on, and so may not catch all candidates.
1679 * It may also return without evicting as much space as requested.
1680 */
1681static void *
d164b209 1682arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
34dc7c2f
BB
1683 arc_buf_contents_t type)
1684{
1685 arc_state_t *evicted_state;
1686 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1687 arc_buf_hdr_t *ab, *ab_prev = NULL;
1688 list_t *list = &state->arcs_list[type];
1689 kmutex_t *hash_lock;
1690 boolean_t have_lock;
1691 void *stolen = NULL;
1692
1693 ASSERT(state == arc_mru || state == arc_mfu);
1694
1695 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1696
1697 mutex_enter(&state->arcs_mtx);
1698 mutex_enter(&evicted_state->arcs_mtx);
1699
1700 for (ab = list_tail(list); ab; ab = ab_prev) {
1701 ab_prev = list_prev(list, ab);
1702 /* prefetch buffers have a minimum lifespan */
1703 if (HDR_IO_IN_PROGRESS(ab) ||
1704 (spa && ab->b_spa != spa) ||
1705 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
428870ff
BB
1706 ddi_get_lbolt() - ab->b_arc_access <
1707 arc_min_prefetch_lifespan)) {
34dc7c2f
BB
1708 skipped++;
1709 continue;
1710 }
1711 /* "lookahead" for better eviction candidate */
1712 if (recycle && ab->b_size != bytes &&
1713 ab_prev && ab_prev->b_size == bytes)
1714 continue;
1715 hash_lock = HDR_LOCK(ab);
1716 have_lock = MUTEX_HELD(hash_lock);
1717 if (have_lock || mutex_tryenter(hash_lock)) {
1718 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1719 ASSERT(ab->b_datacnt > 0);
1720 while (ab->b_buf) {
1721 arc_buf_t *buf = ab->b_buf;
428870ff 1722 if (!mutex_tryenter(&buf->b_evict_lock)) {
b128c09f
BB
1723 missed += 1;
1724 break;
1725 }
34dc7c2f
BB
1726 if (buf->b_data) {
1727 bytes_evicted += ab->b_size;
1728 if (recycle && ab->b_type == type &&
1729 ab->b_size == bytes &&
1730 !HDR_L2_WRITING(ab)) {
1731 stolen = buf->b_data;
1732 recycle = FALSE;
1733 }
1734 }
1735 if (buf->b_efunc) {
1736 mutex_enter(&arc_eviction_mtx);
1737 arc_buf_destroy(buf,
1738 buf->b_data == stolen, FALSE);
1739 ab->b_buf = buf->b_next;
1740 buf->b_hdr = &arc_eviction_hdr;
1741 buf->b_next = arc_eviction_list;
1742 arc_eviction_list = buf;
1743 mutex_exit(&arc_eviction_mtx);
428870ff 1744 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1745 } else {
428870ff 1746 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1747 arc_buf_destroy(buf,
1748 buf->b_data == stolen, TRUE);
1749 }
1750 }
428870ff
BB
1751
1752 if (ab->b_l2hdr) {
1753 ARCSTAT_INCR(arcstat_evict_l2_cached,
1754 ab->b_size);
1755 } else {
1756 if (l2arc_write_eligible(ab->b_spa, ab)) {
1757 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1758 ab->b_size);
1759 } else {
1760 ARCSTAT_INCR(
1761 arcstat_evict_l2_ineligible,
1762 ab->b_size);
1763 }
1764 }
1765
b128c09f
BB
1766 if (ab->b_datacnt == 0) {
1767 arc_change_state(evicted_state, ab, hash_lock);
1768 ASSERT(HDR_IN_HASH_TABLE(ab));
1769 ab->b_flags |= ARC_IN_HASH_TABLE;
1770 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1771 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1772 }
34dc7c2f
BB
1773 if (!have_lock)
1774 mutex_exit(hash_lock);
1775 if (bytes >= 0 && bytes_evicted >= bytes)
1776 break;
1777 } else {
1778 missed += 1;
1779 }
1780 }
1781
1782 mutex_exit(&evicted_state->arcs_mtx);
1783 mutex_exit(&state->arcs_mtx);
1784
1785 if (bytes_evicted < bytes)
3f504482 1786 dprintf("only evicted %lld bytes from %x\n",
34dc7c2f
BB
1787 (longlong_t)bytes_evicted, state);
1788
1789 if (skipped)
1790 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1791
1792 if (missed)
1793 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1794
1795 /*
1796 * We have just evicted some date into the ghost state, make
1797 * sure we also adjust the ghost state size if necessary.
1798 */
1799 if (arc_no_grow &&
1800 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1801 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1802 arc_mru_ghost->arcs_size - arc_c;
1803
1804 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1805 int64_t todelete =
1806 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
b8864a23 1807 arc_evict_ghost(arc_mru_ghost, 0, todelete);
34dc7c2f
BB
1808 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1809 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1810 arc_mru_ghost->arcs_size +
1811 arc_mfu_ghost->arcs_size - arc_c);
b8864a23 1812 arc_evict_ghost(arc_mfu_ghost, 0, todelete);
34dc7c2f
BB
1813 }
1814 }
1815
1816 return (stolen);
1817}
1818
1819/*
1820 * Remove buffers from list until we've removed the specified number of
1821 * bytes. Destroy the buffers that are removed.
1822 */
1823static void
d164b209 1824arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
34dc7c2f
BB
1825{
1826 arc_buf_hdr_t *ab, *ab_prev;
2598c001 1827 arc_buf_hdr_t marker;
34dc7c2f
BB
1828 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1829 kmutex_t *hash_lock;
1830 uint64_t bytes_deleted = 0;
1831 uint64_t bufs_skipped = 0;
1832
1833 ASSERT(GHOST_STATE(state));
2598c001 1834 bzero(&marker, sizeof(marker));
34dc7c2f
BB
1835top:
1836 mutex_enter(&state->arcs_mtx);
1837 for (ab = list_tail(list); ab; ab = ab_prev) {
1838 ab_prev = list_prev(list, ab);
1839 if (spa && ab->b_spa != spa)
1840 continue;
572e2857
BB
1841
1842 /* ignore markers */
1843 if (ab->b_spa == 0)
1844 continue;
1845
34dc7c2f 1846 hash_lock = HDR_LOCK(ab);
428870ff
BB
1847 /* caller may be trying to modify this buffer, skip it */
1848 if (MUTEX_HELD(hash_lock))
1849 continue;
34dc7c2f
BB
1850 if (mutex_tryenter(hash_lock)) {
1851 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1852 ASSERT(ab->b_buf == NULL);
1853 ARCSTAT_BUMP(arcstat_deleted);
1854 bytes_deleted += ab->b_size;
1855
1856 if (ab->b_l2hdr != NULL) {
1857 /*
1858 * This buffer is cached on the 2nd Level ARC;
1859 * don't destroy the header.
1860 */
1861 arc_change_state(arc_l2c_only, ab, hash_lock);
1862 mutex_exit(hash_lock);
1863 } else {
1864 arc_change_state(arc_anon, ab, hash_lock);
1865 mutex_exit(hash_lock);
1866 arc_hdr_destroy(ab);
1867 }
1868
1869 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1870 if (bytes >= 0 && bytes_deleted >= bytes)
1871 break;
572e2857
BB
1872 } else if (bytes < 0) {
1873 /*
1874 * Insert a list marker and then wait for the
1875 * hash lock to become available. Once its
1876 * available, restart from where we left off.
1877 */
1878 list_insert_after(list, ab, &marker);
1879 mutex_exit(&state->arcs_mtx);
1880 mutex_enter(hash_lock);
1881 mutex_exit(hash_lock);
1882 mutex_enter(&state->arcs_mtx);
1883 ab_prev = list_prev(list, &marker);
1884 list_remove(list, &marker);
1885 } else
34dc7c2f 1886 bufs_skipped += 1;
34dc7c2f
BB
1887 }
1888 mutex_exit(&state->arcs_mtx);
1889
1890 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1891 (bytes < 0 || bytes_deleted < bytes)) {
1892 list = &state->arcs_list[ARC_BUFC_METADATA];
1893 goto top;
1894 }
1895
1896 if (bufs_skipped) {
1897 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1898 ASSERT(bytes >= 0);
1899 }
1900
1901 if (bytes_deleted < bytes)
3f504482 1902 dprintf("only deleted %lld bytes from %p\n",
34dc7c2f
BB
1903 (longlong_t)bytes_deleted, state);
1904}
1905
1906static void
1907arc_adjust(void)
1908{
d164b209
BB
1909 int64_t adjustment, delta;
1910
1911 /*
1912 * Adjust MRU size
1913 */
34dc7c2f 1914
572e2857
BB
1915 adjustment = MIN((int64_t)(arc_size - arc_c),
1916 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1917 arc_p));
34dc7c2f 1918
d164b209
BB
1919 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1920 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
b8864a23 1921 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 1922 adjustment -= delta;
34dc7c2f
BB
1923 }
1924
d164b209
BB
1925 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1926 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
b8864a23 1927 (void) arc_evict(arc_mru, 0, delta, FALSE,
34dc7c2f 1928 ARC_BUFC_METADATA);
34dc7c2f
BB
1929 }
1930
d164b209
BB
1931 /*
1932 * Adjust MFU size
1933 */
34dc7c2f 1934
d164b209
BB
1935 adjustment = arc_size - arc_c;
1936
1937 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1938 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
b8864a23 1939 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 1940 adjustment -= delta;
34dc7c2f
BB
1941 }
1942
d164b209
BB
1943 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1944 int64_t delta = MIN(adjustment,
1945 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
b8864a23 1946 (void) arc_evict(arc_mfu, 0, delta, FALSE,
d164b209
BB
1947 ARC_BUFC_METADATA);
1948 }
34dc7c2f 1949
d164b209
BB
1950 /*
1951 * Adjust ghost lists
1952 */
34dc7c2f 1953
d164b209
BB
1954 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1955
1956 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1957 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
b8864a23 1958 arc_evict_ghost(arc_mru_ghost, 0, delta);
d164b209 1959 }
34dc7c2f 1960
d164b209
BB
1961 adjustment =
1962 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
34dc7c2f 1963
d164b209
BB
1964 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1965 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
b8864a23 1966 arc_evict_ghost(arc_mfu_ghost, 0, delta);
34dc7c2f
BB
1967 }
1968}
1969
ab26409d
BB
1970/*
1971 * Request that arc user drop references so that N bytes can be released
1972 * from the cache. This provides a mechanism to ensure the arc can honor
1973 * the arc_meta_limit and reclaim buffers which are pinned in the cache
1974 * by higher layers. (i.e. the zpl)
1975 */
1976static void
1977arc_do_user_prune(int64_t adjustment)
1978{
1979 arc_prune_func_t *func;
1980 void *private;
1981 arc_prune_t *cp, *np;
1982
1983 mutex_enter(&arc_prune_mtx);
1984
1985 cp = list_head(&arc_prune_list);
1986 while (cp != NULL) {
1987 func = cp->p_pfunc;
1988 private = cp->p_private;
1989 np = list_next(&arc_prune_list, cp);
1990 refcount_add(&cp->p_refcnt, func);
1991 mutex_exit(&arc_prune_mtx);
1992
1993 if (func != NULL)
1994 func(adjustment, private);
1995
1996 mutex_enter(&arc_prune_mtx);
1997
1998 /* User removed prune callback concurrently with execution */
1999 if (refcount_remove(&cp->p_refcnt, func) == 0) {
2000 ASSERT(!list_link_active(&cp->p_node));
2001 refcount_destroy(&cp->p_refcnt);
2002 kmem_free(cp, sizeof (*cp));
2003 }
2004
2005 cp = np;
2006 }
2007
2008 ARCSTAT_BUMP(arcstat_prune);
2009 mutex_exit(&arc_prune_mtx);
2010}
2011
34dc7c2f
BB
2012static void
2013arc_do_user_evicts(void)
2014{
2015 mutex_enter(&arc_eviction_mtx);
2016 while (arc_eviction_list != NULL) {
2017 arc_buf_t *buf = arc_eviction_list;
2018 arc_eviction_list = buf->b_next;
428870ff 2019 mutex_enter(&buf->b_evict_lock);
34dc7c2f 2020 buf->b_hdr = NULL;
428870ff 2021 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
2022 mutex_exit(&arc_eviction_mtx);
2023
2024 if (buf->b_efunc != NULL)
2025 VERIFY(buf->b_efunc(buf) == 0);
2026
2027 buf->b_efunc = NULL;
2028 buf->b_private = NULL;
2029 kmem_cache_free(buf_cache, buf);
2030 mutex_enter(&arc_eviction_mtx);
2031 }
2032 mutex_exit(&arc_eviction_mtx);
2033}
2034
ab26409d
BB
2035/*
2036 * Evict only meta data objects from the cache leaving the data objects.
2037 * This is only used to enforce the tunable arc_meta_limit, if we are
2038 * unable to evict enough buffers notify the user via the prune callback.
2039 */
2040void
2041arc_adjust_meta(int64_t adjustment, boolean_t may_prune)
2042{
2043 int64_t delta;
2044
2045 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2046 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2047 arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_METADATA);
2048 adjustment -= delta;
2049 }
2050
2051 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2052 delta = MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2053 arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_METADATA);
2054 adjustment -= delta;
2055 }
2056
2057 if (may_prune && (adjustment > 0) && (arc_meta_used > arc_meta_limit))
2058 arc_do_user_prune(arc_meta_prune);
2059}
2060
34dc7c2f
BB
2061/*
2062 * Flush all *evictable* data from the cache for the given spa.
2063 * NOTE: this will not touch "active" (i.e. referenced) data.
2064 */
2065void
2066arc_flush(spa_t *spa)
2067{
d164b209
BB
2068 uint64_t guid = 0;
2069
2070 if (spa)
2071 guid = spa_guid(spa);
2072
34dc7c2f 2073 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
d164b209 2074 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2075 if (spa)
2076 break;
2077 }
2078 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2079 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2080 if (spa)
2081 break;
2082 }
2083 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
d164b209 2084 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2085 if (spa)
2086 break;
2087 }
2088 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2089 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2090 if (spa)
2091 break;
2092 }
2093
d164b209
BB
2094 arc_evict_ghost(arc_mru_ghost, guid, -1);
2095 arc_evict_ghost(arc_mfu_ghost, guid, -1);
34dc7c2f
BB
2096
2097 mutex_enter(&arc_reclaim_thr_lock);
2098 arc_do_user_evicts();
2099 mutex_exit(&arc_reclaim_thr_lock);
2100 ASSERT(spa || arc_eviction_list == NULL);
2101}
2102
34dc7c2f
BB
2103void
2104arc_shrink(void)
2105{
2106 if (arc_c > arc_c_min) {
2107 uint64_t to_free;
2108
2109#ifdef _KERNEL
2110 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2111#else
2112 to_free = arc_c >> arc_shrink_shift;
2113#endif
2114 if (arc_c > arc_c_min + to_free)
2115 atomic_add_64(&arc_c, -to_free);
2116 else
2117 arc_c = arc_c_min;
2118
2119 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2120 if (arc_c > arc_size)
2121 arc_c = MAX(arc_size, arc_c_min);
2122 if (arc_p > arc_c)
2123 arc_p = (arc_c >> 1);
2124 ASSERT(arc_c >= arc_c_min);
2125 ASSERT((int64_t)arc_p >= 0);
2126 }
2127
2128 if (arc_size > arc_c)
2129 arc_adjust();
2130}
2131
2132static int
2133arc_reclaim_needed(void)
2134{
34dc7c2f 2135#ifdef _KERNEL
1fde1e37 2136 uint64_t extra;
34dc7c2f
BB
2137
2138 if (needfree)
2139 return (1);
2140
2141 /*
2142 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2143 */
2144 extra = desfree;
2145
2146 /*
2147 * check that we're out of range of the pageout scanner. It starts to
2148 * schedule paging if freemem is less than lotsfree and needfree.
2149 * lotsfree is the high-water mark for pageout, and needfree is the
2150 * number of needed free pages. We add extra pages here to make sure
2151 * the scanner doesn't start up while we're freeing memory.
2152 */
2153 if (freemem < lotsfree + needfree + extra)
2154 return (1);
2155
2156 /*
2157 * check to make sure that swapfs has enough space so that anon
2158 * reservations can still succeed. anon_resvmem() checks that the
2159 * availrmem is greater than swapfs_minfree, and the number of reserved
2160 * swap pages. We also add a bit of extra here just to prevent
2161 * circumstances from getting really dire.
2162 */
2163 if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2164 return (1);
2165
2166#if defined(__i386)
2167 /*
2168 * If we're on an i386 platform, it's possible that we'll exhaust the
2169 * kernel heap space before we ever run out of available physical
2170 * memory. Most checks of the size of the heap_area compare against
2171 * tune.t_minarmem, which is the minimum available real memory that we
2172 * can have in the system. However, this is generally fixed at 25 pages
2173 * which is so low that it's useless. In this comparison, we seek to
2174 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2175 * heap is allocated. (Or, in the calculation, if less than 1/4th is
2176 * free)
2177 */
2178 if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2179 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2180 return (1);
2181#endif
2182
2183#else
2184 if (spa_get_random(100) == 0)
2185 return (1);
2186#endif
2187 return (0);
2188}
2189
2190static void
2191arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2192{
2193 size_t i;
2194 kmem_cache_t *prev_cache = NULL;
2195 kmem_cache_t *prev_data_cache = NULL;
2196 extern kmem_cache_t *zio_buf_cache[];
2197 extern kmem_cache_t *zio_data_buf_cache[];
34dc7c2f
BB
2198
2199 /*
2200 * An aggressive reclamation will shrink the cache size as well as
2201 * reap free buffers from the arc kmem caches.
2202 */
2203 if (strat == ARC_RECLAIM_AGGR)
2204 arc_shrink();
2205
2206 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2207 if (zio_buf_cache[i] != prev_cache) {
2208 prev_cache = zio_buf_cache[i];
2209 kmem_cache_reap_now(zio_buf_cache[i]);
2210 }
2211 if (zio_data_buf_cache[i] != prev_data_cache) {
2212 prev_data_cache = zio_data_buf_cache[i];
2213 kmem_cache_reap_now(zio_data_buf_cache[i]);
2214 }
2215 }
ab26409d 2216
34dc7c2f
BB
2217 kmem_cache_reap_now(buf_cache);
2218 kmem_cache_reap_now(hdr_cache);
2219}
2220
2221static void
2222arc_reclaim_thread(void)
2223{
2224 clock_t growtime = 0;
2225 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2226 callb_cpr_t cpr;
ab26409d 2227 int64_t prune;
34dc7c2f
BB
2228
2229 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2230
2231 mutex_enter(&arc_reclaim_thr_lock);
2232 while (arc_thread_exit == 0) {
2233 if (arc_reclaim_needed()) {
2234
2235 if (arc_no_grow) {
2236 if (last_reclaim == ARC_RECLAIM_CONS) {
2237 last_reclaim = ARC_RECLAIM_AGGR;
2238 } else {
2239 last_reclaim = ARC_RECLAIM_CONS;
2240 }
2241 } else {
2242 arc_no_grow = TRUE;
2243 last_reclaim = ARC_RECLAIM_AGGR;
2244 membar_producer();
2245 }
2246
2247 /* reset the growth delay for every reclaim */
428870ff 2248 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
34dc7c2f
BB
2249
2250 arc_kmem_reap_now(last_reclaim);
b128c09f 2251 arc_warm = B_TRUE;
34dc7c2f 2252
428870ff 2253 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
34dc7c2f
BB
2254 arc_no_grow = FALSE;
2255 }
2256
ab26409d
BB
2257 /*
2258 * Keep meta data usage within limits, arc_shrink() is not
2259 * used to avoid collapsing the arc_c value when only the
2260 * arc_meta_limit is being exceeded.
2261 */
2262 prune = (int64_t)arc_meta_used - (int64_t)arc_meta_limit;
2263 if (prune > 0)
2264 arc_adjust_meta(prune, B_TRUE);
6a8f9b6b 2265
572e2857 2266 arc_adjust();
34dc7c2f
BB
2267
2268 if (arc_eviction_list != NULL)
2269 arc_do_user_evicts();
2270
2271 /* block until needed, or one second, whichever is shorter */
2272 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb 2273 (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
428870ff 2274 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
34dc7c2f
BB
2275 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2276 }
2277
2278 arc_thread_exit = 0;
2279 cv_broadcast(&arc_reclaim_thr_cv);
2280 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2281 thread_exit();
2282}
2283
7cb67b45
BB
2284#ifdef _KERNEL
2285/*
2286 * Under Linux the arc shrinker may be called for synchronous (direct)
2287 * reclaim, or asynchronous (indirect) reclaim. When called by kswapd
2288 * for indirect reclaim we take a conservative approach and just reap
2289 * free slabs from the ARC caches. If this proves to be insufficient
2290 * direct reclaim will be trigger. In direct reclaim a more aggressive
2291 * strategy is used, data is evicted from the ARC and free slabs reaped.
2292 */
7e7baeca
BB
2293static int
2294__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45
BB
2295{
2296 arc_reclaim_strategy_t strategy;
2297 int arc_reclaim;
2298
7cb67b45 2299 /* Return number of reclaimable pages based on arc_shrink_shift */
3fd70ee6
BB
2300 arc_reclaim = MAX(btop(((int64_t)arc_size - (int64_t)arc_c_min))
2301 >> arc_shrink_shift, 0);
7e7baeca 2302 if (sc->nr_to_scan == 0)
7cb67b45
BB
2303 return (arc_reclaim);
2304
3fd70ee6
BB
2305 /* Prevent reclaim below arc_c_min */
2306 if (arc_reclaim <= 0)
2307 return (-1);
2308
2309 /* Not allowed to perform filesystem reclaim */
7e7baeca 2310 if (!(sc->gfp_mask & __GFP_FS))
3fd70ee6
BB
2311 return (-1);
2312
7cb67b45
BB
2313 /* Reclaim in progress */
2314 if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
2315 return (-1);
2316
2317 if (current_is_kswapd()) {
2318 strategy = ARC_RECLAIM_CONS;
2319 ARCSTAT_INCR(arcstat_memory_indirect_count, 1);
2320 } else {
2321 strategy = ARC_RECLAIM_AGGR;
2322 ARCSTAT_INCR(arcstat_memory_direct_count, 1);
2323 }
2324
2325 arc_kmem_reap_now(strategy);
3fd70ee6
BB
2326 arc_reclaim = MAX(btop(((int64_t)arc_size - (int64_t)arc_c_min))
2327 >> arc_shrink_shift, 0);
7cb67b45
BB
2328 mutex_exit(&arc_reclaim_thr_lock);
2329
2330 return (arc_reclaim);
2331}
7e7baeca 2332SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
2333
2334SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
2335#endif /* _KERNEL */
2336
34dc7c2f
BB
2337/*
2338 * Adapt arc info given the number of bytes we are trying to add and
2339 * the state that we are comming from. This function is only called
2340 * when we are adding new content to the cache.
2341 */
2342static void
2343arc_adapt(int bytes, arc_state_t *state)
2344{
2345 int mult;
d164b209 2346 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
34dc7c2f
BB
2347
2348 if (state == arc_l2c_only)
2349 return;
2350
2351 ASSERT(bytes > 0);
2352 /*
2353 * Adapt the target size of the MRU list:
2354 * - if we just hit in the MRU ghost list, then increase
2355 * the target size of the MRU list.
2356 * - if we just hit in the MFU ghost list, then increase
2357 * the target size of the MFU list by decreasing the
2358 * target size of the MRU list.
2359 */
2360 if (state == arc_mru_ghost) {
2361 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2362 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
572e2857 2363 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 2364
d164b209 2365 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 2366 } else if (state == arc_mfu_ghost) {
d164b209
BB
2367 uint64_t delta;
2368
34dc7c2f
BB
2369 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2370 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
572e2857 2371 mult = MIN(mult, 10);
34dc7c2f 2372
d164b209
BB
2373 delta = MIN(bytes * mult, arc_p);
2374 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
2375 }
2376 ASSERT((int64_t)arc_p >= 0);
2377
2378 if (arc_reclaim_needed()) {
2379 cv_signal(&arc_reclaim_thr_cv);
2380 return;
2381 }
2382
2383 if (arc_no_grow)
2384 return;
2385
2386 if (arc_c >= arc_c_max)
2387 return;
2388
2389 /*
2390 * If we're within (2 * maxblocksize) bytes of the target
2391 * cache size, increment the target cache size
2392 */
2393 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2394 atomic_add_64(&arc_c, (int64_t)bytes);
2395 if (arc_c > arc_c_max)
2396 arc_c = arc_c_max;
2397 else if (state == arc_anon)
2398 atomic_add_64(&arc_p, (int64_t)bytes);
2399 if (arc_p > arc_c)
2400 arc_p = arc_c;
2401 }
2402 ASSERT((int64_t)arc_p >= 0);
2403}
2404
2405/*
2406 * Check if the cache has reached its limits and eviction is required
2407 * prior to insert.
2408 */
2409static int
2410arc_evict_needed(arc_buf_contents_t type)
2411{
2412 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2413 return (1);
2414
2415#ifdef _KERNEL
2416 /*
2417 * If zio data pages are being allocated out of a separate heap segment,
2418 * then enforce that the size of available vmem for this area remains
2419 * above about 1/32nd free.
2420 */
2421 if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2422 vmem_size(zio_arena, VMEM_FREE) <
2423 (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2424 return (1);
2425#endif
2426
2427 if (arc_reclaim_needed())
2428 return (1);
2429
2430 return (arc_size > arc_c);
2431}
2432
2433/*
2434 * The buffer, supplied as the first argument, needs a data block.
2435 * So, if we are at cache max, determine which cache should be victimized.
2436 * We have the following cases:
2437 *
2438 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2439 * In this situation if we're out of space, but the resident size of the MFU is
2440 * under the limit, victimize the MFU cache to satisfy this insertion request.
2441 *
2442 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2443 * Here, we've used up all of the available space for the MRU, so we need to
2444 * evict from our own cache instead. Evict from the set of resident MRU
2445 * entries.
2446 *
2447 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2448 * c minus p represents the MFU space in the cache, since p is the size of the
2449 * cache that is dedicated to the MRU. In this situation there's still space on
2450 * the MFU side, so the MRU side needs to be victimized.
2451 *
2452 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2453 * MFU's resident set is consuming more space than it has been allotted. In
2454 * this situation, we must victimize our own cache, the MFU, for this insertion.
2455 */
2456static void
2457arc_get_data_buf(arc_buf_t *buf)
2458{
2459 arc_state_t *state = buf->b_hdr->b_state;
2460 uint64_t size = buf->b_hdr->b_size;
2461 arc_buf_contents_t type = buf->b_hdr->b_type;
2462
2463 arc_adapt(size, state);
2464
2465 /*
2466 * We have not yet reached cache maximum size,
2467 * just allocate a new buffer.
2468 */
2469 if (!arc_evict_needed(type)) {
2470 if (type == ARC_BUFC_METADATA) {
2471 buf->b_data = zio_buf_alloc(size);
d164b209 2472 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f
BB
2473 } else {
2474 ASSERT(type == ARC_BUFC_DATA);
2475 buf->b_data = zio_data_buf_alloc(size);
d164b209 2476 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2477 atomic_add_64(&arc_size, size);
2478 }
2479 goto out;
2480 }
2481
2482 /*
2483 * If we are prefetching from the mfu ghost list, this buffer
2484 * will end up on the mru list; so steal space from there.
2485 */
2486 if (state == arc_mfu_ghost)
2487 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2488 else if (state == arc_mru_ghost)
2489 state = arc_mru;
2490
2491 if (state == arc_mru || state == arc_anon) {
2492 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
d164b209 2493 state = (arc_mfu->arcs_lsize[type] >= size &&
34dc7c2f
BB
2494 arc_p > mru_used) ? arc_mfu : arc_mru;
2495 } else {
2496 /* MFU cases */
2497 uint64_t mfu_space = arc_c - arc_p;
d164b209 2498 state = (arc_mru->arcs_lsize[type] >= size &&
34dc7c2f
BB
2499 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2500 }
ab26409d 2501
b8864a23 2502 if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
34dc7c2f
BB
2503 if (type == ARC_BUFC_METADATA) {
2504 buf->b_data = zio_buf_alloc(size);
d164b209 2505 arc_space_consume(size, ARC_SPACE_DATA);
ab26409d
BB
2506
2507 /*
2508 * If we are unable to recycle an existing meta buffer
2509 * signal the reclaim thread. It will notify users
2510 * via the prune callback to drop references. The
2511 * prune callback in run in the context of the reclaim
2512 * thread to avoid deadlocking on the hash_lock.
2513 */
2514 cv_signal(&arc_reclaim_thr_cv);
34dc7c2f
BB
2515 } else {
2516 ASSERT(type == ARC_BUFC_DATA);
2517 buf->b_data = zio_data_buf_alloc(size);
d164b209 2518 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2519 atomic_add_64(&arc_size, size);
2520 }
ab26409d 2521
34dc7c2f
BB
2522 ARCSTAT_BUMP(arcstat_recycle_miss);
2523 }
2524 ASSERT(buf->b_data != NULL);
2525out:
2526 /*
2527 * Update the state size. Note that ghost states have a
2528 * "ghost size" and so don't need to be updated.
2529 */
2530 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2531 arc_buf_hdr_t *hdr = buf->b_hdr;
2532
2533 atomic_add_64(&hdr->b_state->arcs_size, size);
2534 if (list_link_active(&hdr->b_arc_node)) {
2535 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2536 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2537 }
2538 /*
2539 * If we are growing the cache, and we are adding anonymous
2540 * data, and we have outgrown arc_p, update arc_p
2541 */
2542 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2543 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2544 arc_p = MIN(arc_c, arc_p + size);
2545 }
2546}
2547
2548/*
2549 * This routine is called whenever a buffer is accessed.
2550 * NOTE: the hash lock is dropped in this function.
2551 */
2552static void
2553arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2554{
428870ff
BB
2555 clock_t now;
2556
34dc7c2f
BB
2557 ASSERT(MUTEX_HELD(hash_lock));
2558
2559 if (buf->b_state == arc_anon) {
2560 /*
2561 * This buffer is not in the cache, and does not
2562 * appear in our "ghost" list. Add the new buffer
2563 * to the MRU state.
2564 */
2565
2566 ASSERT(buf->b_arc_access == 0);
428870ff 2567 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2568 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2569 arc_change_state(arc_mru, buf, hash_lock);
2570
2571 } else if (buf->b_state == arc_mru) {
428870ff
BB
2572 now = ddi_get_lbolt();
2573
34dc7c2f
BB
2574 /*
2575 * If this buffer is here because of a prefetch, then either:
2576 * - clear the flag if this is a "referencing" read
2577 * (any subsequent access will bump this into the MFU state).
2578 * or
2579 * - move the buffer to the head of the list if this is
2580 * another prefetch (to make it less likely to be evicted).
2581 */
2582 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2583 if (refcount_count(&buf->b_refcnt) == 0) {
2584 ASSERT(list_link_active(&buf->b_arc_node));
2585 } else {
2586 buf->b_flags &= ~ARC_PREFETCH;
2587 ARCSTAT_BUMP(arcstat_mru_hits);
2588 }
428870ff 2589 buf->b_arc_access = now;
34dc7c2f
BB
2590 return;
2591 }
2592
2593 /*
2594 * This buffer has been "accessed" only once so far,
2595 * but it is still in the cache. Move it to the MFU
2596 * state.
2597 */
428870ff 2598 if (now > buf->b_arc_access + ARC_MINTIME) {
34dc7c2f
BB
2599 /*
2600 * More than 125ms have passed since we
2601 * instantiated this buffer. Move it to the
2602 * most frequently used state.
2603 */
428870ff 2604 buf->b_arc_access = now;
34dc7c2f
BB
2605 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2606 arc_change_state(arc_mfu, buf, hash_lock);
2607 }
2608 ARCSTAT_BUMP(arcstat_mru_hits);
2609 } else if (buf->b_state == arc_mru_ghost) {
2610 arc_state_t *new_state;
2611 /*
2612 * This buffer has been "accessed" recently, but
2613 * was evicted from the cache. Move it to the
2614 * MFU state.
2615 */
2616
2617 if (buf->b_flags & ARC_PREFETCH) {
2618 new_state = arc_mru;
2619 if (refcount_count(&buf->b_refcnt) > 0)
2620 buf->b_flags &= ~ARC_PREFETCH;
2621 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2622 } else {
2623 new_state = arc_mfu;
2624 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2625 }
2626
428870ff 2627 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2628 arc_change_state(new_state, buf, hash_lock);
2629
2630 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2631 } else if (buf->b_state == arc_mfu) {
2632 /*
2633 * This buffer has been accessed more than once and is
2634 * still in the cache. Keep it in the MFU state.
2635 *
2636 * NOTE: an add_reference() that occurred when we did
2637 * the arc_read() will have kicked this off the list.
2638 * If it was a prefetch, we will explicitly move it to
2639 * the head of the list now.
2640 */
2641 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2642 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2643 ASSERT(list_link_active(&buf->b_arc_node));
2644 }
2645 ARCSTAT_BUMP(arcstat_mfu_hits);
428870ff 2646 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2647 } else if (buf->b_state == arc_mfu_ghost) {
2648 arc_state_t *new_state = arc_mfu;
2649 /*
2650 * This buffer has been accessed more than once but has
2651 * been evicted from the cache. Move it back to the
2652 * MFU state.
2653 */
2654
2655 if (buf->b_flags & ARC_PREFETCH) {
2656 /*
2657 * This is a prefetch access...
2658 * move this block back to the MRU state.
2659 */
2660 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2661 new_state = arc_mru;
2662 }
2663
428870ff 2664 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2665 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2666 arc_change_state(new_state, buf, hash_lock);
2667
2668 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2669 } else if (buf->b_state == arc_l2c_only) {
2670 /*
2671 * This buffer is on the 2nd Level ARC.
2672 */
2673
428870ff 2674 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2675 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2676 arc_change_state(arc_mfu, buf, hash_lock);
2677 } else {
2678 ASSERT(!"invalid arc state");
2679 }
2680}
2681
2682/* a generic arc_done_func_t which you can use */
2683/* ARGSUSED */
2684void
2685arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2686{
428870ff
BB
2687 if (zio == NULL || zio->io_error == 0)
2688 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
34dc7c2f
BB
2689 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2690}
2691
2692/* a generic arc_done_func_t */
2693void
2694arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2695{
2696 arc_buf_t **bufp = arg;
2697 if (zio && zio->io_error) {
2698 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2699 *bufp = NULL;
2700 } else {
2701 *bufp = buf;
428870ff 2702 ASSERT(buf->b_data);
34dc7c2f
BB
2703 }
2704}
2705
2706static void
2707arc_read_done(zio_t *zio)
2708{
2709 arc_buf_hdr_t *hdr, *found;
2710 arc_buf_t *buf;
2711 arc_buf_t *abuf; /* buffer we're assigning to callback */
2712 kmutex_t *hash_lock;
2713 arc_callback_t *callback_list, *acb;
2714 int freeable = FALSE;
2715
2716 buf = zio->io_private;
2717 hdr = buf->b_hdr;
2718
2719 /*
2720 * The hdr was inserted into hash-table and removed from lists
2721 * prior to starting I/O. We should find this header, since
2722 * it's in the hash table, and it should be legit since it's
2723 * not possible to evict it during the I/O. The only possible
2724 * reason for it not to be found is if we were freed during the
2725 * read.
2726 */
d164b209 2727 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
34dc7c2f
BB
2728 &hash_lock);
2729
2730 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2731 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2732 (found == hdr && HDR_L2_READING(hdr)));
2733
b128c09f 2734 hdr->b_flags &= ~ARC_L2_EVICTED;
34dc7c2f 2735 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
b128c09f 2736 hdr->b_flags &= ~ARC_L2CACHE;
34dc7c2f
BB
2737
2738 /* byteswap if necessary */
2739 callback_list = hdr->b_acb;
2740 ASSERT(callback_list != NULL);
428870ff 2741 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
b128c09f
BB
2742 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2743 byteswap_uint64_array :
2744 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2745 func(buf->b_data, hdr->b_size);
2746 }
34dc7c2f
BB
2747
2748 arc_cksum_compute(buf, B_FALSE);
2749
428870ff
BB
2750 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2751 /*
2752 * Only call arc_access on anonymous buffers. This is because
2753 * if we've issued an I/O for an evicted buffer, we've already
2754 * called arc_access (to prevent any simultaneous readers from
2755 * getting confused).
2756 */
2757 arc_access(hdr, hash_lock);
2758 }
2759
34dc7c2f
BB
2760 /* create copies of the data buffer for the callers */
2761 abuf = buf;
2762 for (acb = callback_list; acb; acb = acb->acb_next) {
2763 if (acb->acb_done) {
2764 if (abuf == NULL)
2765 abuf = arc_buf_clone(buf);
2766 acb->acb_buf = abuf;
2767 abuf = NULL;
2768 }
2769 }
2770 hdr->b_acb = NULL;
2771 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2772 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
2773 if (abuf == buf) {
2774 ASSERT(buf->b_efunc == NULL);
2775 ASSERT(hdr->b_datacnt == 1);
34dc7c2f 2776 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 2777 }
34dc7c2f
BB
2778
2779 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2780
2781 if (zio->io_error != 0) {
2782 hdr->b_flags |= ARC_IO_ERROR;
2783 if (hdr->b_state != arc_anon)
2784 arc_change_state(arc_anon, hdr, hash_lock);
2785 if (HDR_IN_HASH_TABLE(hdr))
2786 buf_hash_remove(hdr);
2787 freeable = refcount_is_zero(&hdr->b_refcnt);
34dc7c2f
BB
2788 }
2789
2790 /*
2791 * Broadcast before we drop the hash_lock to avoid the possibility
2792 * that the hdr (and hence the cv) might be freed before we get to
2793 * the cv_broadcast().
2794 */
2795 cv_broadcast(&hdr->b_cv);
2796
2797 if (hash_lock) {
34dc7c2f
BB
2798 mutex_exit(hash_lock);
2799 } else {
2800 /*
2801 * This block was freed while we waited for the read to
2802 * complete. It has been removed from the hash table and
2803 * moved to the anonymous state (so that it won't show up
2804 * in the cache).
2805 */
2806 ASSERT3P(hdr->b_state, ==, arc_anon);
2807 freeable = refcount_is_zero(&hdr->b_refcnt);
2808 }
2809
2810 /* execute each callback and free its structure */
2811 while ((acb = callback_list) != NULL) {
2812 if (acb->acb_done)
2813 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2814
2815 if (acb->acb_zio_dummy != NULL) {
2816 acb->acb_zio_dummy->io_error = zio->io_error;
2817 zio_nowait(acb->acb_zio_dummy);
2818 }
2819
2820 callback_list = acb->acb_next;
2821 kmem_free(acb, sizeof (arc_callback_t));
2822 }
2823
2824 if (freeable)
2825 arc_hdr_destroy(hdr);
2826}
2827
2828/*
2829 * "Read" the block block at the specified DVA (in bp) via the
2830 * cache. If the block is found in the cache, invoke the provided
2831 * callback immediately and return. Note that the `zio' parameter
2832 * in the callback will be NULL in this case, since no IO was
2833 * required. If the block is not in the cache pass the read request
2834 * on to the spa with a substitute callback function, so that the
2835 * requested block will be added to the cache.
2836 *
2837 * If a read request arrives for a block that has a read in-progress,
2838 * either wait for the in-progress read to complete (and return the
2839 * results); or, if this is a read with a "done" func, add a record
2840 * to the read to invoke the "done" func when the read completes,
2841 * and return; or just return.
2842 *
2843 * arc_read_done() will invoke all the requested "done" functions
2844 * for readers of this block.
b128c09f
BB
2845 *
2846 * Normal callers should use arc_read and pass the arc buffer and offset
2847 * for the bp. But if you know you don't need locking, you can use
2848 * arc_read_bp.
34dc7c2f
BB
2849 */
2850int
428870ff 2851arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
b128c09f
BB
2852 arc_done_func_t *done, void *private, int priority, int zio_flags,
2853 uint32_t *arc_flags, const zbookmark_t *zb)
2854{
2855 int err;
b128c09f 2856
428870ff
BB
2857 if (pbuf == NULL) {
2858 /*
2859 * XXX This happens from traverse callback funcs, for
2860 * the objset_phys_t block.
2861 */
2862 return (arc_read_nolock(pio, spa, bp, done, private, priority,
2863 zio_flags, arc_flags, zb));
2864 }
2865
b128c09f
BB
2866 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2867 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
428870ff 2868 rw_enter(&pbuf->b_data_lock, RW_READER);
b128c09f
BB
2869
2870 err = arc_read_nolock(pio, spa, bp, done, private, priority,
2871 zio_flags, arc_flags, zb);
428870ff 2872 rw_exit(&pbuf->b_data_lock);
9babb374 2873
b128c09f
BB
2874 return (err);
2875}
2876
2877int
428870ff 2878arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
b128c09f
BB
2879 arc_done_func_t *done, void *private, int priority, int zio_flags,
2880 uint32_t *arc_flags, const zbookmark_t *zb)
34dc7c2f
BB
2881{
2882 arc_buf_hdr_t *hdr;
d4ed6673 2883 arc_buf_t *buf = NULL;
34dc7c2f
BB
2884 kmutex_t *hash_lock;
2885 zio_t *rzio;
d164b209 2886 uint64_t guid = spa_guid(spa);
34dc7c2f
BB
2887
2888top:
428870ff
BB
2889 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2890 &hash_lock);
34dc7c2f
BB
2891 if (hdr && hdr->b_datacnt > 0) {
2892
2893 *arc_flags |= ARC_CACHED;
2894
2895 if (HDR_IO_IN_PROGRESS(hdr)) {
2896
2897 if (*arc_flags & ARC_WAIT) {
2898 cv_wait(&hdr->b_cv, hash_lock);
2899 mutex_exit(hash_lock);
2900 goto top;
2901 }
2902 ASSERT(*arc_flags & ARC_NOWAIT);
2903
2904 if (done) {
2905 arc_callback_t *acb = NULL;
2906
2907 acb = kmem_zalloc(sizeof (arc_callback_t),
691f6ac4 2908 KM_PUSHPAGE);
34dc7c2f
BB
2909 acb->acb_done = done;
2910 acb->acb_private = private;
34dc7c2f
BB
2911 if (pio != NULL)
2912 acb->acb_zio_dummy = zio_null(pio,
d164b209 2913 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
2914
2915 ASSERT(acb->acb_done != NULL);
2916 acb->acb_next = hdr->b_acb;
2917 hdr->b_acb = acb;
2918 add_reference(hdr, hash_lock, private);
2919 mutex_exit(hash_lock);
2920 return (0);
2921 }
2922 mutex_exit(hash_lock);
2923 return (0);
2924 }
2925
2926 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2927
2928 if (done) {
2929 add_reference(hdr, hash_lock, private);
2930 /*
2931 * If this block is already in use, create a new
2932 * copy of the data so that we will be guaranteed
2933 * that arc_release() will always succeed.
2934 */
2935 buf = hdr->b_buf;
2936 ASSERT(buf);
2937 ASSERT(buf->b_data);
2938 if (HDR_BUF_AVAILABLE(hdr)) {
2939 ASSERT(buf->b_efunc == NULL);
2940 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2941 } else {
2942 buf = arc_buf_clone(buf);
2943 }
428870ff 2944
34dc7c2f
BB
2945 } else if (*arc_flags & ARC_PREFETCH &&
2946 refcount_count(&hdr->b_refcnt) == 0) {
2947 hdr->b_flags |= ARC_PREFETCH;
2948 }
2949 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2950 arc_access(hdr, hash_lock);
b128c09f
BB
2951 if (*arc_flags & ARC_L2CACHE)
2952 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
2953 mutex_exit(hash_lock);
2954 ARCSTAT_BUMP(arcstat_hits);
2955 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2956 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2957 data, metadata, hits);
2958
2959 if (done)
2960 done(NULL, buf, private);
2961 } else {
2962 uint64_t size = BP_GET_LSIZE(bp);
2963 arc_callback_t *acb;
b128c09f 2964 vdev_t *vd = NULL;
e06be586 2965 uint64_t addr = -1;
d164b209 2966 boolean_t devw = B_FALSE;
34dc7c2f
BB
2967
2968 if (hdr == NULL) {
2969 /* this block is not in the cache */
2970 arc_buf_hdr_t *exists;
2971 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2972 buf = arc_buf_alloc(spa, size, private, type);
2973 hdr = buf->b_hdr;
2974 hdr->b_dva = *BP_IDENTITY(bp);
428870ff 2975 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
2976 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2977 exists = buf_hash_insert(hdr, &hash_lock);
2978 if (exists) {
2979 /* somebody beat us to the hash insert */
2980 mutex_exit(hash_lock);
428870ff 2981 buf_discard_identity(hdr);
34dc7c2f
BB
2982 (void) arc_buf_remove_ref(buf, private);
2983 goto top; /* restart the IO request */
2984 }
2985 /* if this is a prefetch, we don't have a reference */
2986 if (*arc_flags & ARC_PREFETCH) {
2987 (void) remove_reference(hdr, hash_lock,
2988 private);
2989 hdr->b_flags |= ARC_PREFETCH;
2990 }
b128c09f
BB
2991 if (*arc_flags & ARC_L2CACHE)
2992 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
2993 if (BP_GET_LEVEL(bp) > 0)
2994 hdr->b_flags |= ARC_INDIRECT;
2995 } else {
2996 /* this block is in the ghost cache */
2997 ASSERT(GHOST_STATE(hdr->b_state));
2998 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2999 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
3000 ASSERT(hdr->b_buf == NULL);
3001
3002 /* if this is a prefetch, we don't have a reference */
3003 if (*arc_flags & ARC_PREFETCH)
3004 hdr->b_flags |= ARC_PREFETCH;
3005 else
3006 add_reference(hdr, hash_lock, private);
b128c09f
BB
3007 if (*arc_flags & ARC_L2CACHE)
3008 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
3009 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3010 buf->b_hdr = hdr;
3011 buf->b_data = NULL;
3012 buf->b_efunc = NULL;
3013 buf->b_private = NULL;
3014 buf->b_next = NULL;
3015 hdr->b_buf = buf;
34dc7c2f
BB
3016 ASSERT(hdr->b_datacnt == 0);
3017 hdr->b_datacnt = 1;
428870ff
BB
3018 arc_get_data_buf(buf);
3019 arc_access(hdr, hash_lock);
34dc7c2f
BB
3020 }
3021
428870ff
BB
3022 ASSERT(!GHOST_STATE(hdr->b_state));
3023
691f6ac4 3024 acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE);
34dc7c2f
BB
3025 acb->acb_done = done;
3026 acb->acb_private = private;
34dc7c2f
BB
3027
3028 ASSERT(hdr->b_acb == NULL);
3029 hdr->b_acb = acb;
3030 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3031
b128c09f
BB
3032 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3033 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
d164b209 3034 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
b128c09f
BB
3035 addr = hdr->b_l2hdr->b_daddr;
3036 /*
3037 * Lock out device removal.
3038 */
3039 if (vdev_is_dead(vd) ||
3040 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3041 vd = NULL;
3042 }
3043
3044 mutex_exit(hash_lock);
3045
34dc7c2f 3046 ASSERT3U(hdr->b_size, ==, size);
428870ff
BB
3047 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3048 uint64_t, size, zbookmark_t *, zb);
34dc7c2f
BB
3049 ARCSTAT_BUMP(arcstat_misses);
3050 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3051 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3052 data, metadata, misses);
3053
d164b209 3054 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
3055 /*
3056 * Read from the L2ARC if the following are true:
b128c09f
BB
3057 * 1. The L2ARC vdev was previously cached.
3058 * 2. This buffer still has L2ARC metadata.
3059 * 3. This buffer isn't currently writing to the L2ARC.
3060 * 4. The L2ARC entry wasn't evicted, which may
3061 * also have invalidated the vdev.
d164b209 3062 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 3063 */
b128c09f 3064 if (hdr->b_l2hdr != NULL &&
d164b209
BB
3065 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3066 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
3067 l2arc_read_callback_t *cb;
3068
3069 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3070 ARCSTAT_BUMP(arcstat_l2_hits);
3071
34dc7c2f 3072 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
691f6ac4 3073 KM_PUSHPAGE);
34dc7c2f
BB
3074 cb->l2rcb_buf = buf;
3075 cb->l2rcb_spa = spa;
3076 cb->l2rcb_bp = *bp;
3077 cb->l2rcb_zb = *zb;
b128c09f 3078 cb->l2rcb_flags = zio_flags;
34dc7c2f
BB
3079
3080 /*
b128c09f
BB
3081 * l2arc read. The SCL_L2ARC lock will be
3082 * released by l2arc_read_done().
34dc7c2f
BB
3083 */
3084 rzio = zio_read_phys(pio, vd, addr, size,
3085 buf->b_data, ZIO_CHECKSUM_OFF,
b128c09f
BB
3086 l2arc_read_done, cb, priority, zio_flags |
3087 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3088 ZIO_FLAG_DONT_PROPAGATE |
3089 ZIO_FLAG_DONT_RETRY, B_FALSE);
34dc7c2f
BB
3090 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3091 zio_t *, rzio);
d164b209 3092 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
34dc7c2f 3093
b128c09f
BB
3094 if (*arc_flags & ARC_NOWAIT) {
3095 zio_nowait(rzio);
3096 return (0);
3097 }
34dc7c2f 3098
b128c09f
BB
3099 ASSERT(*arc_flags & ARC_WAIT);
3100 if (zio_wait(rzio) == 0)
3101 return (0);
3102
3103 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
3104 } else {
3105 DTRACE_PROBE1(l2arc__miss,
3106 arc_buf_hdr_t *, hdr);
3107 ARCSTAT_BUMP(arcstat_l2_misses);
3108 if (HDR_L2_WRITING(hdr))
3109 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 3110 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 3111 }
d164b209
BB
3112 } else {
3113 if (vd != NULL)
3114 spa_config_exit(spa, SCL_L2ARC, vd);
3115 if (l2arc_ndev != 0) {
3116 DTRACE_PROBE1(l2arc__miss,
3117 arc_buf_hdr_t *, hdr);
3118 ARCSTAT_BUMP(arcstat_l2_misses);
3119 }
34dc7c2f 3120 }
34dc7c2f
BB
3121
3122 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 3123 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f
BB
3124
3125 if (*arc_flags & ARC_WAIT)
3126 return (zio_wait(rzio));
3127
3128 ASSERT(*arc_flags & ARC_NOWAIT);
3129 zio_nowait(rzio);
3130 }
3131 return (0);
3132}
3133
ab26409d
BB
3134arc_prune_t *
3135arc_add_prune_callback(arc_prune_func_t *func, void *private)
3136{
3137 arc_prune_t *p;
3138
3139 p = kmem_alloc(sizeof(*p), KM_SLEEP);
3140 p->p_pfunc = func;
3141 p->p_private = private;
3142 list_link_init(&p->p_node);
3143 refcount_create(&p->p_refcnt);
3144
3145 mutex_enter(&arc_prune_mtx);
3146 refcount_add(&p->p_refcnt, &arc_prune_list);
3147 list_insert_head(&arc_prune_list, p);
3148 mutex_exit(&arc_prune_mtx);
3149
3150 return (p);
3151}
3152
3153void
3154arc_remove_prune_callback(arc_prune_t *p)
3155{
3156 mutex_enter(&arc_prune_mtx);
3157 list_remove(&arc_prune_list, p);
3158 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
3159 refcount_destroy(&p->p_refcnt);
3160 kmem_free(p, sizeof (*p));
3161 }
3162 mutex_exit(&arc_prune_mtx);
3163}
3164
34dc7c2f
BB
3165void
3166arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3167{
3168 ASSERT(buf->b_hdr != NULL);
3169 ASSERT(buf->b_hdr->b_state != arc_anon);
3170 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
428870ff
BB
3171 ASSERT(buf->b_efunc == NULL);
3172 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3173
34dc7c2f
BB
3174 buf->b_efunc = func;
3175 buf->b_private = private;
3176}
3177
3178/*
3179 * This is used by the DMU to let the ARC know that a buffer is
3180 * being evicted, so the ARC should clean up. If this arc buf
3181 * is not yet in the evicted state, it will be put there.
3182 */
3183int
3184arc_buf_evict(arc_buf_t *buf)
3185{
3186 arc_buf_hdr_t *hdr;
3187 kmutex_t *hash_lock;
3188 arc_buf_t **bufp;
3189
428870ff 3190 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
3191 hdr = buf->b_hdr;
3192 if (hdr == NULL) {
3193 /*
3194 * We are in arc_do_user_evicts().
3195 */
3196 ASSERT(buf->b_data == NULL);
428870ff 3197 mutex_exit(&buf->b_evict_lock);
34dc7c2f 3198 return (0);
b128c09f
BB
3199 } else if (buf->b_data == NULL) {
3200 arc_buf_t copy = *buf; /* structure assignment */
34dc7c2f 3201 /*
b128c09f
BB
3202 * We are on the eviction list; process this buffer now
3203 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 3204 */
b128c09f 3205 buf->b_efunc = NULL;
428870ff 3206 mutex_exit(&buf->b_evict_lock);
b128c09f
BB
3207 VERIFY(copy.b_efunc(&copy) == 0);
3208 return (1);
34dc7c2f 3209 }
b128c09f
BB
3210 hash_lock = HDR_LOCK(hdr);
3211 mutex_enter(hash_lock);
428870ff
BB
3212 hdr = buf->b_hdr;
3213 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 3214
34dc7c2f
BB
3215 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3216 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3217
3218 /*
3219 * Pull this buffer off of the hdr
3220 */
3221 bufp = &hdr->b_buf;
3222 while (*bufp != buf)
3223 bufp = &(*bufp)->b_next;
3224 *bufp = buf->b_next;
3225
3226 ASSERT(buf->b_data != NULL);
3227 arc_buf_destroy(buf, FALSE, FALSE);
3228
3229 if (hdr->b_datacnt == 0) {
3230 arc_state_t *old_state = hdr->b_state;
3231 arc_state_t *evicted_state;
3232
428870ff 3233 ASSERT(hdr->b_buf == NULL);
34dc7c2f
BB
3234 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3235
3236 evicted_state =
3237 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3238
3239 mutex_enter(&old_state->arcs_mtx);
3240 mutex_enter(&evicted_state->arcs_mtx);
3241
3242 arc_change_state(evicted_state, hdr, hash_lock);
3243 ASSERT(HDR_IN_HASH_TABLE(hdr));
3244 hdr->b_flags |= ARC_IN_HASH_TABLE;
3245 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3246
3247 mutex_exit(&evicted_state->arcs_mtx);
3248 mutex_exit(&old_state->arcs_mtx);
3249 }
3250 mutex_exit(hash_lock);
428870ff 3251 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3252
3253 VERIFY(buf->b_efunc(buf) == 0);
3254 buf->b_efunc = NULL;
3255 buf->b_private = NULL;
3256 buf->b_hdr = NULL;
428870ff 3257 buf->b_next = NULL;
34dc7c2f
BB
3258 kmem_cache_free(buf_cache, buf);
3259 return (1);
3260}
3261
3262/*
3263 * Release this buffer from the cache. This must be done
3264 * after a read and prior to modifying the buffer contents.
3265 * If the buffer has more than one reference, we must make
b128c09f 3266 * a new hdr for the buffer.
34dc7c2f
BB
3267 */
3268void
3269arc_release(arc_buf_t *buf, void *tag)
3270{
b128c09f 3271 arc_buf_hdr_t *hdr;
428870ff 3272 kmutex_t *hash_lock = NULL;
b128c09f 3273 l2arc_buf_hdr_t *l2hdr;
d4ed6673 3274 uint64_t buf_size = 0;
34dc7c2f 3275
428870ff
BB
3276 /*
3277 * It would be nice to assert that if it's DMU metadata (level >
3278 * 0 || it's the dnode file), then it must be syncing context.
3279 * But we don't know that information at this level.
3280 */
3281
3282 mutex_enter(&buf->b_evict_lock);
b128c09f
BB
3283 hdr = buf->b_hdr;
3284
34dc7c2f
BB
3285 /* this buffer is not on any list */
3286 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3287
3288 if (hdr->b_state == arc_anon) {
3289 /* this buffer is already released */
34dc7c2f 3290 ASSERT(buf->b_efunc == NULL);
9babb374
BB
3291 } else {
3292 hash_lock = HDR_LOCK(hdr);
3293 mutex_enter(hash_lock);
428870ff
BB
3294 hdr = buf->b_hdr;
3295 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
3296 }
3297
b128c09f
BB
3298 l2hdr = hdr->b_l2hdr;
3299 if (l2hdr) {
3300 mutex_enter(&l2arc_buflist_mtx);
3301 hdr->b_l2hdr = NULL;
3302 buf_size = hdr->b_size;
3303 }
3304
34dc7c2f
BB
3305 /*
3306 * Do we have more than one buf?
3307 */
b128c09f 3308 if (hdr->b_datacnt > 1) {
34dc7c2f
BB
3309 arc_buf_hdr_t *nhdr;
3310 arc_buf_t **bufp;
3311 uint64_t blksz = hdr->b_size;
d164b209 3312 uint64_t spa = hdr->b_spa;
34dc7c2f
BB
3313 arc_buf_contents_t type = hdr->b_type;
3314 uint32_t flags = hdr->b_flags;
3315
b128c09f 3316 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
34dc7c2f 3317 /*
428870ff
BB
3318 * Pull the data off of this hdr and attach it to
3319 * a new anonymous hdr.
34dc7c2f
BB
3320 */
3321 (void) remove_reference(hdr, hash_lock, tag);
3322 bufp = &hdr->b_buf;
3323 while (*bufp != buf)
3324 bufp = &(*bufp)->b_next;
428870ff 3325 *bufp = buf->b_next;
34dc7c2f
BB
3326 buf->b_next = NULL;
3327
3328 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3329 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3330 if (refcount_is_zero(&hdr->b_refcnt)) {
3331 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3332 ASSERT3U(*size, >=, hdr->b_size);
3333 atomic_add_64(size, -hdr->b_size);
3334 }
3335 hdr->b_datacnt -= 1;
34dc7c2f
BB
3336 arc_cksum_verify(buf);
3337
3338 mutex_exit(hash_lock);
3339
3340 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3341 nhdr->b_size = blksz;
3342 nhdr->b_spa = spa;
3343 nhdr->b_type = type;
3344 nhdr->b_buf = buf;
3345 nhdr->b_state = arc_anon;
3346 nhdr->b_arc_access = 0;
3347 nhdr->b_flags = flags & ARC_L2_WRITING;
3348 nhdr->b_l2hdr = NULL;
3349 nhdr->b_datacnt = 1;
3350 nhdr->b_freeze_cksum = NULL;
3351 (void) refcount_add(&nhdr->b_refcnt, tag);
3352 buf->b_hdr = nhdr;
428870ff 3353 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3354 atomic_add_64(&arc_anon->arcs_size, blksz);
3355 } else {
428870ff 3356 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3357 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3358 ASSERT(!list_link_active(&hdr->b_arc_node));
3359 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
428870ff
BB
3360 if (hdr->b_state != arc_anon)
3361 arc_change_state(arc_anon, hdr, hash_lock);
34dc7c2f 3362 hdr->b_arc_access = 0;
428870ff
BB
3363 if (hash_lock)
3364 mutex_exit(hash_lock);
34dc7c2f 3365
428870ff 3366 buf_discard_identity(hdr);
34dc7c2f
BB
3367 arc_buf_thaw(buf);
3368 }
3369 buf->b_efunc = NULL;
3370 buf->b_private = NULL;
3371
3372 if (l2hdr) {
3373 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3374 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3375 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
34dc7c2f 3376 mutex_exit(&l2arc_buflist_mtx);
b128c09f 3377 }
34dc7c2f
BB
3378}
3379
428870ff
BB
3380/*
3381 * Release this buffer. If it does not match the provided BP, fill it
3382 * with that block's contents.
3383 */
3384/* ARGSUSED */
3385int
3386arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3387 zbookmark_t *zb)
3388{
3389 arc_release(buf, tag);
3390 return (0);
3391}
3392
34dc7c2f
BB
3393int
3394arc_released(arc_buf_t *buf)
3395{
b128c09f
BB
3396 int released;
3397
428870ff 3398 mutex_enter(&buf->b_evict_lock);
b128c09f 3399 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
428870ff 3400 mutex_exit(&buf->b_evict_lock);
b128c09f 3401 return (released);
34dc7c2f
BB
3402}
3403
3404int
3405arc_has_callback(arc_buf_t *buf)
3406{
b128c09f
BB
3407 int callback;
3408
428870ff 3409 mutex_enter(&buf->b_evict_lock);
b128c09f 3410 callback = (buf->b_efunc != NULL);
428870ff 3411 mutex_exit(&buf->b_evict_lock);
b128c09f 3412 return (callback);
34dc7c2f
BB
3413}
3414
3415#ifdef ZFS_DEBUG
3416int
3417arc_referenced(arc_buf_t *buf)
3418{
b128c09f
BB
3419 int referenced;
3420
428870ff 3421 mutex_enter(&buf->b_evict_lock);
b128c09f 3422 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
428870ff 3423 mutex_exit(&buf->b_evict_lock);
b128c09f 3424 return (referenced);
34dc7c2f
BB
3425}
3426#endif
3427
3428static void
3429arc_write_ready(zio_t *zio)
3430{
3431 arc_write_callback_t *callback = zio->io_private;
3432 arc_buf_t *buf = callback->awcb_buf;
3433 arc_buf_hdr_t *hdr = buf->b_hdr;
3434
b128c09f
BB
3435 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3436 callback->awcb_ready(zio, buf, callback->awcb_private);
3437
34dc7c2f
BB
3438 /*
3439 * If the IO is already in progress, then this is a re-write
b128c09f
BB
3440 * attempt, so we need to thaw and re-compute the cksum.
3441 * It is the responsibility of the callback to handle the
3442 * accounting for any re-write attempt.
34dc7c2f
BB
3443 */
3444 if (HDR_IO_IN_PROGRESS(hdr)) {
34dc7c2f
BB
3445 mutex_enter(&hdr->b_freeze_lock);
3446 if (hdr->b_freeze_cksum != NULL) {
3447 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3448 hdr->b_freeze_cksum = NULL;
3449 }
3450 mutex_exit(&hdr->b_freeze_lock);
3451 }
3452 arc_cksum_compute(buf, B_FALSE);
3453 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3454}
3455
3456static void
3457arc_write_done(zio_t *zio)
3458{
3459 arc_write_callback_t *callback = zio->io_private;
3460 arc_buf_t *buf = callback->awcb_buf;
3461 arc_buf_hdr_t *hdr = buf->b_hdr;
3462
428870ff
BB
3463 ASSERT(hdr->b_acb == NULL);
3464
3465 if (zio->io_error == 0) {
3466 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3467 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3468 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3469 } else {
3470 ASSERT(BUF_EMPTY(hdr));
3471 }
34dc7c2f 3472
34dc7c2f
BB
3473 /*
3474 * If the block to be written was all-zero, we may have
3475 * compressed it away. In this case no write was performed
428870ff
BB
3476 * so there will be no dva/birth/checksum. The buffer must
3477 * therefore remain anonymous (and uncached).
34dc7c2f
BB
3478 */
3479 if (!BUF_EMPTY(hdr)) {
3480 arc_buf_hdr_t *exists;
3481 kmutex_t *hash_lock;
3482
428870ff
BB
3483 ASSERT(zio->io_error == 0);
3484
34dc7c2f
BB
3485 arc_cksum_verify(buf);
3486
3487 exists = buf_hash_insert(hdr, &hash_lock);
3488 if (exists) {
3489 /*
3490 * This can only happen if we overwrite for
3491 * sync-to-convergence, because we remove
3492 * buffers from the hash table when we arc_free().
3493 */
428870ff
BB
3494 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3495 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3496 panic("bad overwrite, hdr=%p exists=%p",
3497 (void *)hdr, (void *)exists);
3498 ASSERT(refcount_is_zero(&exists->b_refcnt));
3499 arc_change_state(arc_anon, exists, hash_lock);
3500 mutex_exit(hash_lock);
3501 arc_hdr_destroy(exists);
3502 exists = buf_hash_insert(hdr, &hash_lock);
3503 ASSERT3P(exists, ==, NULL);
3504 } else {
3505 /* Dedup */
3506 ASSERT(hdr->b_datacnt == 1);
3507 ASSERT(hdr->b_state == arc_anon);
3508 ASSERT(BP_GET_DEDUP(zio->io_bp));
3509 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3510 }
34dc7c2f
BB
3511 }
3512 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
b128c09f 3513 /* if it's not anon, we are doing a scrub */
428870ff 3514 if (!exists && hdr->b_state == arc_anon)
b128c09f 3515 arc_access(hdr, hash_lock);
34dc7c2f 3516 mutex_exit(hash_lock);
34dc7c2f
BB
3517 } else {
3518 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3519 }
3520
428870ff
BB
3521 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3522 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
3523
3524 kmem_free(callback, sizeof (arc_write_callback_t));
3525}
3526
3527zio_t *
428870ff
BB
3528arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3529 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3530 arc_done_func_t *ready, arc_done_func_t *done, void *private,
3531 int priority, int zio_flags, const zbookmark_t *zb)
34dc7c2f
BB
3532{
3533 arc_buf_hdr_t *hdr = buf->b_hdr;
3534 arc_write_callback_t *callback;
b128c09f 3535 zio_t *zio;
34dc7c2f 3536
b128c09f 3537 ASSERT(ready != NULL);
428870ff 3538 ASSERT(done != NULL);
34dc7c2f
BB
3539 ASSERT(!HDR_IO_ERROR(hdr));
3540 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
428870ff 3541 ASSERT(hdr->b_acb == NULL);
b128c09f
BB
3542 if (l2arc)
3543 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
3544 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3545 callback->awcb_ready = ready;
3546 callback->awcb_done = done;
3547 callback->awcb_private = private;
3548 callback->awcb_buf = buf;
b128c09f 3549
428870ff 3550 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
b128c09f 3551 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
34dc7c2f
BB
3552
3553 return (zio);
3554}
3555
34dc7c2f 3556static int
9babb374 3557arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
34dc7c2f
BB
3558{
3559#ifdef _KERNEL
34dc7c2f
BB
3560 uint64_t available_memory = ptob(freemem);
3561 static uint64_t page_load = 0;
3562 static uint64_t last_txg = 0;
3563
3564#if defined(__i386)
3565 available_memory =
3566 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3567#endif
3568 if (available_memory >= zfs_write_limit_max)
3569 return (0);
3570
3571 if (txg > last_txg) {
3572 last_txg = txg;
3573 page_load = 0;
3574 }
3575 /*
3576 * If we are in pageout, we know that memory is already tight,
3577 * the arc is already going to be evicting, so we just want to
3578 * continue to let page writes occur as quickly as possible.
3579 */
3580 if (curproc == proc_pageout) {
3581 if (page_load > MAX(ptob(minfree), available_memory) / 4)
3582 return (ERESTART);
3583 /* Note: reserve is inflated, so we deflate */
3584 page_load += reserve / 8;
3585 return (0);
3586 } else if (page_load > 0 && arc_reclaim_needed()) {
3587 /* memory is low, delay before restarting */
3588 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 3589 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
34dc7c2f
BB
3590 return (EAGAIN);
3591 }
3592 page_load = 0;
3593
3594 if (arc_size > arc_c_min) {
3595 uint64_t evictable_memory =
3596 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3597 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3598 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3599 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3600 available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3601 }
3602
3603 if (inflight_data > available_memory / 4) {
3604 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 3605 DMU_TX_STAT_BUMP(dmu_tx_memory_inflight);
34dc7c2f
BB
3606 return (ERESTART);
3607 }
3608#endif
3609 return (0);
3610}
3611
3612void
3613arc_tempreserve_clear(uint64_t reserve)
3614{
3615 atomic_add_64(&arc_tempreserve, -reserve);
3616 ASSERT((int64_t)arc_tempreserve >= 0);
3617}
3618
3619int
3620arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3621{
3622 int error;
9babb374 3623 uint64_t anon_size;
34dc7c2f
BB
3624
3625#ifdef ZFS_DEBUG
3626 /*
3627 * Once in a while, fail for no reason. Everything should cope.
3628 */
3629 if (spa_get_random(10000) == 0) {
3630 dprintf("forcing random failure\n");
3631 return (ERESTART);
3632 }
3633#endif
3634 if (reserve > arc_c/4 && !arc_no_grow)
3635 arc_c = MIN(arc_c_max, reserve * 4);
570827e1
BB
3636 if (reserve > arc_c) {
3637 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
34dc7c2f 3638 return (ENOMEM);
570827e1 3639 }
34dc7c2f 3640
9babb374
BB
3641 /*
3642 * Don't count loaned bufs as in flight dirty data to prevent long
3643 * network delays from blocking transactions that are ready to be
3644 * assigned to a txg.
3645 */
3646 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3647
34dc7c2f
BB
3648 /*
3649 * Writes will, almost always, require additional memory allocations
3650 * in order to compress/encrypt/etc the data. We therefor need to
3651 * make sure that there is sufficient available memory for this.
3652 */
c65aa5b2 3653 if ((error = arc_memory_throttle(reserve, anon_size, txg)))
34dc7c2f
BB
3654 return (error);
3655
3656 /*
3657 * Throttle writes when the amount of dirty data in the cache
3658 * gets too large. We try to keep the cache less than half full
3659 * of dirty blocks so that our sync times don't grow too large.
3660 * Note: if two requests come in concurrently, we might let them
3661 * both succeed, when one of them should fail. Not a huge deal.
3662 */
9babb374
BB
3663
3664 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3665 anon_size > arc_c / 4) {
34dc7c2f
BB
3666 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3667 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3668 arc_tempreserve>>10,
3669 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3670 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3671 reserve>>10, arc_c>>10);
570827e1 3672 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
34dc7c2f
BB
3673 return (ERESTART);
3674 }
3675 atomic_add_64(&arc_tempreserve, reserve);
3676 return (0);
3677}
3678
13be560d
BB
3679static void
3680arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
3681 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
3682{
3683 size->value.ui64 = state->arcs_size;
3684 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
3685 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
3686}
3687
3688static int
3689arc_kstat_update(kstat_t *ksp, int rw)
3690{
3691 arc_stats_t *as = ksp->ks_data;
3692
3693 if (rw == KSTAT_WRITE) {
3694 return (EACCES);
3695 } else {
3696 arc_kstat_update_state(arc_anon,
3697 &as->arcstat_anon_size,
3698 &as->arcstat_anon_evict_data,
3699 &as->arcstat_anon_evict_metadata);
3700 arc_kstat_update_state(arc_mru,
3701 &as->arcstat_mru_size,
3702 &as->arcstat_mru_evict_data,
3703 &as->arcstat_mru_evict_metadata);
3704 arc_kstat_update_state(arc_mru_ghost,
3705 &as->arcstat_mru_ghost_size,
3706 &as->arcstat_mru_ghost_evict_data,
3707 &as->arcstat_mru_ghost_evict_metadata);
3708 arc_kstat_update_state(arc_mfu,
3709 &as->arcstat_mfu_size,
3710 &as->arcstat_mfu_evict_data,
3711 &as->arcstat_mfu_evict_metadata);
fc41c640 3712 arc_kstat_update_state(arc_mfu_ghost,
13be560d
BB
3713 &as->arcstat_mfu_ghost_size,
3714 &as->arcstat_mfu_ghost_evict_data,
3715 &as->arcstat_mfu_ghost_evict_metadata);
3716 }
3717
3718 return (0);
3719}
3720
34dc7c2f
BB
3721void
3722arc_init(void)
3723{
3724 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3725 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3726
3727 /* Convert seconds to clock ticks */
3728 arc_min_prefetch_lifespan = 1 * hz;
3729
3730 /* Start out with 1/8 of all memory */
3731 arc_c = physmem * PAGESIZE / 8;
3732
3733#ifdef _KERNEL
3734 /*
3735 * On architectures where the physical memory can be larger
3736 * than the addressable space (intel in 32-bit mode), we may
3737 * need to limit the cache to 1/8 of VM size.
3738 */
3739 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
7cb67b45
BB
3740 /*
3741 * Register a shrinker to support synchronous (direct) memory
3742 * reclaim from the arc. This is done to prevent kswapd from
3743 * swapping out pages when it is preferable to shrink the arc.
3744 */
3745 spl_register_shrinker(&arc_shrinker);
34dc7c2f
BB
3746#endif
3747
3748 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3749 arc_c_min = MAX(arc_c / 4, 64<<20);
23bdb07d
BB
3750 /* set max to 1/2 of all memory, or all but 4GB, whichever is more */
3751 if (arc_c * 8 >= ((uint64_t)4<<30))
3752 arc_c_max = (arc_c * 8) - ((uint64_t)4<<30);
34dc7c2f
BB
3753 else
3754 arc_c_max = arc_c_min;
23bdb07d 3755 arc_c_max = MAX(arc_c * 4, arc_c_max);
34dc7c2f
BB
3756
3757 /*
3758 * Allow the tunables to override our calculations if they are
3759 * reasonable (ie. over 64MB)
3760 */
3761 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3762 arc_c_max = zfs_arc_max;
3763 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3764 arc_c_min = zfs_arc_min;
3765
3766 arc_c = arc_c_max;
3767 arc_p = (arc_c >> 1);
3768
3769 /* limit meta-data to 1/4 of the arc capacity */
3770 arc_meta_limit = arc_c_max / 4;
1834f2d8 3771 arc_meta_max = 0;
34dc7c2f
BB
3772
3773 /* Allow the tunable to override if it is reasonable */
3774 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3775 arc_meta_limit = zfs_arc_meta_limit;
3776
3777 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3778 arc_c_min = arc_meta_limit / 2;
3779
d164b209
BB
3780 if (zfs_arc_grow_retry > 0)
3781 arc_grow_retry = zfs_arc_grow_retry;
3782
3783 if (zfs_arc_shrink_shift > 0)
3784 arc_shrink_shift = zfs_arc_shrink_shift;
3785
3786 if (zfs_arc_p_min_shift > 0)
3787 arc_p_min_shift = zfs_arc_p_min_shift;
3788
ab26409d
BB
3789 if (zfs_arc_meta_prune > 0)
3790 arc_meta_prune = zfs_arc_meta_prune;
6a8f9b6b 3791
34dc7c2f
BB
3792 /* if kmem_flags are set, lets try to use less memory */
3793 if (kmem_debugging())
3794 arc_c = arc_c / 2;
3795 if (arc_c < arc_c_min)
3796 arc_c = arc_c_min;
3797
3798 arc_anon = &ARC_anon;
3799 arc_mru = &ARC_mru;
3800 arc_mru_ghost = &ARC_mru_ghost;
3801 arc_mfu = &ARC_mfu;
3802 arc_mfu_ghost = &ARC_mfu_ghost;
3803 arc_l2c_only = &ARC_l2c_only;
3804 arc_size = 0;
3805
3806 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3807 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3808 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3809 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3810 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3811 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3812
3813 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3814 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3815 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3816 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3817 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3818 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3819 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3820 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3821 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3822 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3823 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3824 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3825 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3826 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3827 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3828 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3829 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3830 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3831 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3832 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3833
3834 buf_init();
3835
3836 arc_thread_exit = 0;
ab26409d
BB
3837 list_create(&arc_prune_list, sizeof (arc_prune_t),
3838 offsetof(arc_prune_t, p_node));
34dc7c2f 3839 arc_eviction_list = NULL;
ab26409d 3840 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
3841 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3842 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3843
3844 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3845 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3846
3847 if (arc_ksp != NULL) {
3848 arc_ksp->ks_data = &arc_stats;
13be560d 3849 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
3850 kstat_install(arc_ksp);
3851 }
3852
3853 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3854 TS_RUN, minclsyspri);
3855
3856 arc_dead = FALSE;
b128c09f 3857 arc_warm = B_FALSE;
34dc7c2f
BB
3858
3859 if (zfs_write_limit_max == 0)
b128c09f 3860 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
34dc7c2f
BB
3861 else
3862 zfs_write_limit_shift = 0;
b128c09f 3863 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
3864}
3865
3866void
3867arc_fini(void)
3868{
ab26409d
BB
3869 arc_prune_t *p;
3870
34dc7c2f 3871 mutex_enter(&arc_reclaim_thr_lock);
7cb67b45
BB
3872#ifdef _KERNEL
3873 spl_unregister_shrinker(&arc_shrinker);
3874#endif /* _KERNEL */
3875
34dc7c2f
BB
3876 arc_thread_exit = 1;
3877 while (arc_thread_exit != 0)
3878 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3879 mutex_exit(&arc_reclaim_thr_lock);
3880
3881 arc_flush(NULL);
3882
3883 arc_dead = TRUE;
3884
3885 if (arc_ksp != NULL) {
3886 kstat_delete(arc_ksp);
3887 arc_ksp = NULL;
3888 }
3889
ab26409d
BB
3890 mutex_enter(&arc_prune_mtx);
3891 while ((p = list_head(&arc_prune_list)) != NULL) {
3892 list_remove(&arc_prune_list, p);
3893 refcount_remove(&p->p_refcnt, &arc_prune_list);
3894 refcount_destroy(&p->p_refcnt);
3895 kmem_free(p, sizeof (*p));
3896 }
3897 mutex_exit(&arc_prune_mtx);
3898
3899 list_destroy(&arc_prune_list);
3900 mutex_destroy(&arc_prune_mtx);
34dc7c2f
BB
3901 mutex_destroy(&arc_eviction_mtx);
3902 mutex_destroy(&arc_reclaim_thr_lock);
3903 cv_destroy(&arc_reclaim_thr_cv);
3904
3905 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3906 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3907 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3908 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3909 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3910 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3911 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3912 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3913
3914 mutex_destroy(&arc_anon->arcs_mtx);
3915 mutex_destroy(&arc_mru->arcs_mtx);
3916 mutex_destroy(&arc_mru_ghost->arcs_mtx);
3917 mutex_destroy(&arc_mfu->arcs_mtx);
3918 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
fb5f0bc8 3919 mutex_destroy(&arc_l2c_only->arcs_mtx);
34dc7c2f 3920
b128c09f
BB
3921 mutex_destroy(&zfs_write_limit_lock);
3922
34dc7c2f 3923 buf_fini();
9babb374
BB
3924
3925 ASSERT(arc_loaned_bytes == 0);
34dc7c2f
BB
3926}
3927
3928/*
3929 * Level 2 ARC
3930 *
3931 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3932 * It uses dedicated storage devices to hold cached data, which are populated
3933 * using large infrequent writes. The main role of this cache is to boost
3934 * the performance of random read workloads. The intended L2ARC devices
3935 * include short-stroked disks, solid state disks, and other media with
3936 * substantially faster read latency than disk.
3937 *
3938 * +-----------------------+
3939 * | ARC |
3940 * +-----------------------+
3941 * | ^ ^
3942 * | | |
3943 * l2arc_feed_thread() arc_read()
3944 * | | |
3945 * | l2arc read |
3946 * V | |
3947 * +---------------+ |
3948 * | L2ARC | |
3949 * +---------------+ |
3950 * | ^ |
3951 * l2arc_write() | |
3952 * | | |
3953 * V | |
3954 * +-------+ +-------+
3955 * | vdev | | vdev |
3956 * | cache | | cache |
3957 * +-------+ +-------+
3958 * +=========+ .-----.
3959 * : L2ARC : |-_____-|
3960 * : devices : | Disks |
3961 * +=========+ `-_____-'
3962 *
3963 * Read requests are satisfied from the following sources, in order:
3964 *
3965 * 1) ARC
3966 * 2) vdev cache of L2ARC devices
3967 * 3) L2ARC devices
3968 * 4) vdev cache of disks
3969 * 5) disks
3970 *
3971 * Some L2ARC device types exhibit extremely slow write performance.
3972 * To accommodate for this there are some significant differences between
3973 * the L2ARC and traditional cache design:
3974 *
3975 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
3976 * the ARC behave as usual, freeing buffers and placing headers on ghost
3977 * lists. The ARC does not send buffers to the L2ARC during eviction as
3978 * this would add inflated write latencies for all ARC memory pressure.
3979 *
3980 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3981 * It does this by periodically scanning buffers from the eviction-end of
3982 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3983 * not already there. It scans until a headroom of buffers is satisfied,
3984 * which itself is a buffer for ARC eviction. The thread that does this is
3985 * l2arc_feed_thread(), illustrated below; example sizes are included to
3986 * provide a better sense of ratio than this diagram:
3987 *
3988 * head --> tail
3989 * +---------------------+----------+
3990 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
3991 * +---------------------+----------+ | o L2ARC eligible
3992 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
3993 * +---------------------+----------+ |
3994 * 15.9 Gbytes ^ 32 Mbytes |
3995 * headroom |
3996 * l2arc_feed_thread()
3997 * |
3998 * l2arc write hand <--[oooo]--'
3999 * | 8 Mbyte
4000 * | write max
4001 * V
4002 * +==============================+
4003 * L2ARC dev |####|#|###|###| |####| ... |
4004 * +==============================+
4005 * 32 Gbytes
4006 *
4007 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4008 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4009 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
4010 * safe to say that this is an uncommon case, since buffers at the end of
4011 * the ARC lists have moved there due to inactivity.
4012 *
4013 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4014 * then the L2ARC simply misses copying some buffers. This serves as a
4015 * pressure valve to prevent heavy read workloads from both stalling the ARC
4016 * with waits and clogging the L2ARC with writes. This also helps prevent
4017 * the potential for the L2ARC to churn if it attempts to cache content too
4018 * quickly, such as during backups of the entire pool.
4019 *
b128c09f
BB
4020 * 5. After system boot and before the ARC has filled main memory, there are
4021 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4022 * lists can remain mostly static. Instead of searching from tail of these
4023 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4024 * for eligible buffers, greatly increasing its chance of finding them.
4025 *
4026 * The L2ARC device write speed is also boosted during this time so that
4027 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
4028 * there are no L2ARC reads, and no fear of degrading read performance
4029 * through increased writes.
4030 *
4031 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
4032 * the vdev queue can aggregate them into larger and fewer writes. Each
4033 * device is written to in a rotor fashion, sweeping writes through
4034 * available space then repeating.
4035 *
b128c09f 4036 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
4037 * write buffers back to disk based storage.
4038 *
b128c09f 4039 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
4040 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4041 *
4042 * The performance of the L2ARC can be tweaked by a number of tunables, which
4043 * may be necessary for different workloads:
4044 *
4045 * l2arc_write_max max write bytes per interval
b128c09f 4046 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f
BB
4047 * l2arc_noprefetch skip caching prefetched buffers
4048 * l2arc_headroom number of max device writes to precache
4049 * l2arc_feed_secs seconds between L2ARC writing
4050 *
4051 * Tunables may be removed or added as future performance improvements are
4052 * integrated, and also may become zpool properties.
d164b209
BB
4053 *
4054 * There are three key functions that control how the L2ARC warms up:
4055 *
4056 * l2arc_write_eligible() check if a buffer is eligible to cache
4057 * l2arc_write_size() calculate how much to write
4058 * l2arc_write_interval() calculate sleep delay between writes
4059 *
4060 * These three functions determine what to write, how much, and how quickly
4061 * to send writes.
34dc7c2f
BB
4062 */
4063
d164b209
BB
4064static boolean_t
4065l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4066{
4067 /*
4068 * A buffer is *not* eligible for the L2ARC if it:
4069 * 1. belongs to a different spa.
428870ff
BB
4070 * 2. is already cached on the L2ARC.
4071 * 3. has an I/O in progress (it may be an incomplete read).
4072 * 4. is flagged not eligible (zfs property).
d164b209 4073 */
428870ff 4074 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
d164b209
BB
4075 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4076 return (B_FALSE);
4077
4078 return (B_TRUE);
4079}
4080
4081static uint64_t
4082l2arc_write_size(l2arc_dev_t *dev)
4083{
4084 uint64_t size;
4085
4086 size = dev->l2ad_write;
4087
4088 if (arc_warm == B_FALSE)
4089 size += dev->l2ad_boost;
4090
4091 return (size);
4092
4093}
4094
4095static clock_t
4096l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4097{
428870ff 4098 clock_t interval, next, now;
d164b209
BB
4099
4100 /*
4101 * If the ARC lists are busy, increase our write rate; if the
4102 * lists are stale, idle back. This is achieved by checking
4103 * how much we previously wrote - if it was more than half of
4104 * what we wanted, schedule the next write much sooner.
4105 */
4106 if (l2arc_feed_again && wrote > (wanted / 2))
4107 interval = (hz * l2arc_feed_min_ms) / 1000;
4108 else
4109 interval = hz * l2arc_feed_secs;
4110
428870ff
BB
4111 now = ddi_get_lbolt();
4112 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
4113
4114 return (next);
4115}
4116
34dc7c2f
BB
4117static void
4118l2arc_hdr_stat_add(void)
4119{
4120 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4121 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4122}
4123
4124static void
4125l2arc_hdr_stat_remove(void)
4126{
4127 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4128 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4129}
4130
4131/*
4132 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 4133 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
4134 */
4135static l2arc_dev_t *
4136l2arc_dev_get_next(void)
4137{
b128c09f 4138 l2arc_dev_t *first, *next = NULL;
34dc7c2f 4139
b128c09f
BB
4140 /*
4141 * Lock out the removal of spas (spa_namespace_lock), then removal
4142 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
4143 * both locks will be dropped and a spa config lock held instead.
4144 */
4145 mutex_enter(&spa_namespace_lock);
4146 mutex_enter(&l2arc_dev_mtx);
4147
4148 /* if there are no vdevs, there is nothing to do */
4149 if (l2arc_ndev == 0)
4150 goto out;
4151
4152 first = NULL;
4153 next = l2arc_dev_last;
4154 do {
4155 /* loop around the list looking for a non-faulted vdev */
4156 if (next == NULL) {
34dc7c2f 4157 next = list_head(l2arc_dev_list);
b128c09f
BB
4158 } else {
4159 next = list_next(l2arc_dev_list, next);
4160 if (next == NULL)
4161 next = list_head(l2arc_dev_list);
4162 }
4163
4164 /* if we have come back to the start, bail out */
4165 if (first == NULL)
4166 first = next;
4167 else if (next == first)
4168 break;
4169
4170 } while (vdev_is_dead(next->l2ad_vdev));
4171
4172 /* if we were unable to find any usable vdevs, return NULL */
4173 if (vdev_is_dead(next->l2ad_vdev))
4174 next = NULL;
34dc7c2f
BB
4175
4176 l2arc_dev_last = next;
4177
b128c09f
BB
4178out:
4179 mutex_exit(&l2arc_dev_mtx);
4180
4181 /*
4182 * Grab the config lock to prevent the 'next' device from being
4183 * removed while we are writing to it.
4184 */
4185 if (next != NULL)
4186 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4187 mutex_exit(&spa_namespace_lock);
4188
34dc7c2f
BB
4189 return (next);
4190}
4191
b128c09f
BB
4192/*
4193 * Free buffers that were tagged for destruction.
4194 */
4195static void
0bc8fd78 4196l2arc_do_free_on_write(void)
b128c09f
BB
4197{
4198 list_t *buflist;
4199 l2arc_data_free_t *df, *df_prev;
4200
4201 mutex_enter(&l2arc_free_on_write_mtx);
4202 buflist = l2arc_free_on_write;
4203
4204 for (df = list_tail(buflist); df; df = df_prev) {
4205 df_prev = list_prev(buflist, df);
4206 ASSERT(df->l2df_data != NULL);
4207 ASSERT(df->l2df_func != NULL);
4208 df->l2df_func(df->l2df_data, df->l2df_size);
4209 list_remove(buflist, df);
4210 kmem_free(df, sizeof (l2arc_data_free_t));
4211 }
4212
4213 mutex_exit(&l2arc_free_on_write_mtx);
4214}
4215
34dc7c2f
BB
4216/*
4217 * A write to a cache device has completed. Update all headers to allow
4218 * reads from these buffers to begin.
4219 */
4220static void
4221l2arc_write_done(zio_t *zio)
4222{
4223 l2arc_write_callback_t *cb;
4224 l2arc_dev_t *dev;
4225 list_t *buflist;
34dc7c2f 4226 arc_buf_hdr_t *head, *ab, *ab_prev;
b128c09f 4227 l2arc_buf_hdr_t *abl2;
34dc7c2f
BB
4228 kmutex_t *hash_lock;
4229
4230 cb = zio->io_private;
4231 ASSERT(cb != NULL);
4232 dev = cb->l2wcb_dev;
4233 ASSERT(dev != NULL);
4234 head = cb->l2wcb_head;
4235 ASSERT(head != NULL);
4236 buflist = dev->l2ad_buflist;
4237 ASSERT(buflist != NULL);
4238 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4239 l2arc_write_callback_t *, cb);
4240
4241 if (zio->io_error != 0)
4242 ARCSTAT_BUMP(arcstat_l2_writes_error);
4243
4244 mutex_enter(&l2arc_buflist_mtx);
4245
4246 /*
4247 * All writes completed, or an error was hit.
4248 */
4249 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4250 ab_prev = list_prev(buflist, ab);
4251
4252 hash_lock = HDR_LOCK(ab);
4253 if (!mutex_tryenter(hash_lock)) {
4254 /*
4255 * This buffer misses out. It may be in a stage
4256 * of eviction. Its ARC_L2_WRITING flag will be
4257 * left set, denying reads to this buffer.
4258 */
4259 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4260 continue;
4261 }
4262
4263 if (zio->io_error != 0) {
4264 /*
b128c09f 4265 * Error - drop L2ARC entry.
34dc7c2f 4266 */
b128c09f
BB
4267 list_remove(buflist, ab);
4268 abl2 = ab->b_l2hdr;
34dc7c2f 4269 ab->b_l2hdr = NULL;
b128c09f
BB
4270 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4271 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
34dc7c2f
BB
4272 }
4273
4274 /*
4275 * Allow ARC to begin reads to this L2ARC entry.
4276 */
4277 ab->b_flags &= ~ARC_L2_WRITING;
4278
4279 mutex_exit(hash_lock);
4280 }
4281
4282 atomic_inc_64(&l2arc_writes_done);
4283 list_remove(buflist, head);
4284 kmem_cache_free(hdr_cache, head);
4285 mutex_exit(&l2arc_buflist_mtx);
4286
b128c09f 4287 l2arc_do_free_on_write();
34dc7c2f
BB
4288
4289 kmem_free(cb, sizeof (l2arc_write_callback_t));
4290}
4291
4292/*
4293 * A read to a cache device completed. Validate buffer contents before
4294 * handing over to the regular ARC routines.
4295 */
4296static void
4297l2arc_read_done(zio_t *zio)
4298{
4299 l2arc_read_callback_t *cb;
4300 arc_buf_hdr_t *hdr;
4301 arc_buf_t *buf;
34dc7c2f 4302 kmutex_t *hash_lock;
b128c09f
BB
4303 int equal;
4304
4305 ASSERT(zio->io_vd != NULL);
4306 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4307
4308 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
4309
4310 cb = zio->io_private;
4311 ASSERT(cb != NULL);
4312 buf = cb->l2rcb_buf;
4313 ASSERT(buf != NULL);
34dc7c2f 4314
428870ff 4315 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 4316 mutex_enter(hash_lock);
428870ff
BB
4317 hdr = buf->b_hdr;
4318 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
4319
4320 /*
4321 * Check this survived the L2ARC journey.
4322 */
4323 equal = arc_cksum_equal(buf);
4324 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4325 mutex_exit(hash_lock);
4326 zio->io_private = buf;
b128c09f
BB
4327 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4328 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
4329 arc_read_done(zio);
4330 } else {
4331 mutex_exit(hash_lock);
4332 /*
4333 * Buffer didn't survive caching. Increment stats and
4334 * reissue to the original storage device.
4335 */
b128c09f 4336 if (zio->io_error != 0) {
34dc7c2f 4337 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f
BB
4338 } else {
4339 zio->io_error = EIO;
4340 }
34dc7c2f
BB
4341 if (!equal)
4342 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4343
34dc7c2f 4344 /*
b128c09f
BB
4345 * If there's no waiter, issue an async i/o to the primary
4346 * storage now. If there *is* a waiter, the caller must
4347 * issue the i/o in a context where it's OK to block.
34dc7c2f 4348 */
d164b209
BB
4349 if (zio->io_waiter == NULL) {
4350 zio_t *pio = zio_unique_parent(zio);
4351
4352 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4353
4354 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
4355 buf->b_data, zio->io_size, arc_read_done, buf,
4356 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 4357 }
34dc7c2f
BB
4358 }
4359
4360 kmem_free(cb, sizeof (l2arc_read_callback_t));
4361}
4362
4363/*
4364 * This is the list priority from which the L2ARC will search for pages to
4365 * cache. This is used within loops (0..3) to cycle through lists in the
4366 * desired order. This order can have a significant effect on cache
4367 * performance.
4368 *
4369 * Currently the metadata lists are hit first, MFU then MRU, followed by
4370 * the data lists. This function returns a locked list, and also returns
4371 * the lock pointer.
4372 */
4373static list_t *
4374l2arc_list_locked(int list_num, kmutex_t **lock)
4375{
d4ed6673 4376 list_t *list = NULL;
34dc7c2f
BB
4377
4378 ASSERT(list_num >= 0 && list_num <= 3);
4379
4380 switch (list_num) {
4381 case 0:
4382 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4383 *lock = &arc_mfu->arcs_mtx;
4384 break;
4385 case 1:
4386 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4387 *lock = &arc_mru->arcs_mtx;
4388 break;
4389 case 2:
4390 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4391 *lock = &arc_mfu->arcs_mtx;
4392 break;
4393 case 3:
4394 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4395 *lock = &arc_mru->arcs_mtx;
4396 break;
4397 }
4398
4399 ASSERT(!(MUTEX_HELD(*lock)));
4400 mutex_enter(*lock);
4401 return (list);
4402}
4403
4404/*
4405 * Evict buffers from the device write hand to the distance specified in
4406 * bytes. This distance may span populated buffers, it may span nothing.
4407 * This is clearing a region on the L2ARC device ready for writing.
4408 * If the 'all' boolean is set, every buffer is evicted.
4409 */
4410static void
4411l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4412{
4413 list_t *buflist;
4414 l2arc_buf_hdr_t *abl2;
4415 arc_buf_hdr_t *ab, *ab_prev;
4416 kmutex_t *hash_lock;
4417 uint64_t taddr;
4418
34dc7c2f
BB
4419 buflist = dev->l2ad_buflist;
4420
4421 if (buflist == NULL)
4422 return;
4423
4424 if (!all && dev->l2ad_first) {
4425 /*
4426 * This is the first sweep through the device. There is
4427 * nothing to evict.
4428 */
4429 return;
4430 }
4431
b128c09f 4432 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
4433 /*
4434 * When nearing the end of the device, evict to the end
4435 * before the device write hand jumps to the start.
4436 */
4437 taddr = dev->l2ad_end;
4438 } else {
4439 taddr = dev->l2ad_hand + distance;
4440 }
4441 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4442 uint64_t, taddr, boolean_t, all);
4443
4444top:
4445 mutex_enter(&l2arc_buflist_mtx);
4446 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4447 ab_prev = list_prev(buflist, ab);
4448
4449 hash_lock = HDR_LOCK(ab);
4450 if (!mutex_tryenter(hash_lock)) {
4451 /*
4452 * Missed the hash lock. Retry.
4453 */
4454 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4455 mutex_exit(&l2arc_buflist_mtx);
4456 mutex_enter(hash_lock);
4457 mutex_exit(hash_lock);
4458 goto top;
4459 }
4460
4461 if (HDR_L2_WRITE_HEAD(ab)) {
4462 /*
4463 * We hit a write head node. Leave it for
4464 * l2arc_write_done().
4465 */
4466 list_remove(buflist, ab);
4467 mutex_exit(hash_lock);
4468 continue;
4469 }
4470
4471 if (!all && ab->b_l2hdr != NULL &&
4472 (ab->b_l2hdr->b_daddr > taddr ||
4473 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4474 /*
4475 * We've evicted to the target address,
4476 * or the end of the device.
4477 */
4478 mutex_exit(hash_lock);
4479 break;
4480 }
4481
4482 if (HDR_FREE_IN_PROGRESS(ab)) {
4483 /*
4484 * Already on the path to destruction.
4485 */
4486 mutex_exit(hash_lock);
4487 continue;
4488 }
4489
4490 if (ab->b_state == arc_l2c_only) {
4491 ASSERT(!HDR_L2_READING(ab));
4492 /*
4493 * This doesn't exist in the ARC. Destroy.
4494 * arc_hdr_destroy() will call list_remove()
4495 * and decrement arcstat_l2_size.
4496 */
4497 arc_change_state(arc_anon, ab, hash_lock);
4498 arc_hdr_destroy(ab);
4499 } else {
b128c09f
BB
4500 /*
4501 * Invalidate issued or about to be issued
4502 * reads, since we may be about to write
4503 * over this location.
4504 */
4505 if (HDR_L2_READING(ab)) {
4506 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4507 ab->b_flags |= ARC_L2_EVICTED;
4508 }
4509
34dc7c2f
BB
4510 /*
4511 * Tell ARC this no longer exists in L2ARC.
4512 */
4513 if (ab->b_l2hdr != NULL) {
4514 abl2 = ab->b_l2hdr;
4515 ab->b_l2hdr = NULL;
4516 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4517 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4518 }
4519 list_remove(buflist, ab);
4520
4521 /*
4522 * This may have been leftover after a
4523 * failed write.
4524 */
4525 ab->b_flags &= ~ARC_L2_WRITING;
34dc7c2f
BB
4526 }
4527 mutex_exit(hash_lock);
4528 }
4529 mutex_exit(&l2arc_buflist_mtx);
4530
428870ff 4531 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
34dc7c2f
BB
4532 dev->l2ad_evict = taddr;
4533}
4534
4535/*
4536 * Find and write ARC buffers to the L2ARC device.
4537 *
4538 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4539 * for reading until they have completed writing.
4540 */
d164b209 4541static uint64_t
b128c09f 4542l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
34dc7c2f
BB
4543{
4544 arc_buf_hdr_t *ab, *ab_prev, *head;
4545 l2arc_buf_hdr_t *hdrl2;
4546 list_t *list;
b128c09f 4547 uint64_t passed_sz, write_sz, buf_sz, headroom;
34dc7c2f 4548 void *buf_data;
d4ed6673 4549 kmutex_t *hash_lock, *list_lock = NULL;
34dc7c2f
BB
4550 boolean_t have_lock, full;
4551 l2arc_write_callback_t *cb;
4552 zio_t *pio, *wzio;
d164b209 4553 uint64_t guid = spa_guid(spa);
d6320ddb 4554 int try;
34dc7c2f 4555
34dc7c2f
BB
4556 ASSERT(dev->l2ad_vdev != NULL);
4557
4558 pio = NULL;
4559 write_sz = 0;
4560 full = B_FALSE;
4561 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4562 head->b_flags |= ARC_L2_WRITE_HEAD;
4563
4564 /*
4565 * Copy buffers for L2ARC writing.
4566 */
4567 mutex_enter(&l2arc_buflist_mtx);
d6320ddb 4568 for (try = 0; try <= 3; try++) {
34dc7c2f
BB
4569 list = l2arc_list_locked(try, &list_lock);
4570 passed_sz = 0;
4571
b128c09f
BB
4572 /*
4573 * L2ARC fast warmup.
4574 *
4575 * Until the ARC is warm and starts to evict, read from the
4576 * head of the ARC lists rather than the tail.
4577 */
4578 headroom = target_sz * l2arc_headroom;
4579 if (arc_warm == B_FALSE)
4580 ab = list_head(list);
4581 else
4582 ab = list_tail(list);
4583
4584 for (; ab; ab = ab_prev) {
4585 if (arc_warm == B_FALSE)
4586 ab_prev = list_next(list, ab);
4587 else
4588 ab_prev = list_prev(list, ab);
34dc7c2f
BB
4589
4590 hash_lock = HDR_LOCK(ab);
4591 have_lock = MUTEX_HELD(hash_lock);
4592 if (!have_lock && !mutex_tryenter(hash_lock)) {
4593 /*
4594 * Skip this buffer rather than waiting.
4595 */
4596 continue;
4597 }
4598
4599 passed_sz += ab->b_size;
4600 if (passed_sz > headroom) {
4601 /*
4602 * Searched too far.
4603 */
4604 mutex_exit(hash_lock);
4605 break;
4606 }
4607
d164b209 4608 if (!l2arc_write_eligible(guid, ab)) {
34dc7c2f
BB
4609 mutex_exit(hash_lock);
4610 continue;
4611 }
4612
4613 if ((write_sz + ab->b_size) > target_sz) {
4614 full = B_TRUE;
4615 mutex_exit(hash_lock);
4616 break;
4617 }
4618
34dc7c2f
BB
4619 if (pio == NULL) {
4620 /*
4621 * Insert a dummy header on the buflist so
4622 * l2arc_write_done() can find where the
4623 * write buffers begin without searching.
4624 */
4625 list_insert_head(dev->l2ad_buflist, head);
4626
409dc1a5
PS
4627 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
4628 KM_PUSHPAGE);
34dc7c2f
BB
4629 cb->l2wcb_dev = dev;
4630 cb->l2wcb_head = head;
4631 pio = zio_root(spa, l2arc_write_done, cb,
4632 ZIO_FLAG_CANFAIL);
4633 }
4634
4635 /*
4636 * Create and add a new L2ARC header.
4637 */
409dc1a5
PS
4638 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t),
4639 KM_PUSHPAGE);
34dc7c2f
BB
4640 hdrl2->b_dev = dev;
4641 hdrl2->b_daddr = dev->l2ad_hand;
4642
4643 ab->b_flags |= ARC_L2_WRITING;
4644 ab->b_l2hdr = hdrl2;
4645 list_insert_head(dev->l2ad_buflist, ab);
4646 buf_data = ab->b_buf->b_data;
4647 buf_sz = ab->b_size;
4648
4649 /*
4650 * Compute and store the buffer cksum before
4651 * writing. On debug the cksum is verified first.
4652 */
4653 arc_cksum_verify(ab->b_buf);
4654 arc_cksum_compute(ab->b_buf, B_TRUE);
4655
4656 mutex_exit(hash_lock);
4657
4658 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4659 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4660 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4661 ZIO_FLAG_CANFAIL, B_FALSE);
4662
4663 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4664 zio_t *, wzio);
4665 (void) zio_nowait(wzio);
4666
b128c09f
BB
4667 /*
4668 * Keep the clock hand suitably device-aligned.
4669 */
4670 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4671
34dc7c2f
BB
4672 write_sz += buf_sz;
4673 dev->l2ad_hand += buf_sz;
4674 }
4675
4676 mutex_exit(list_lock);
4677
4678 if (full == B_TRUE)
4679 break;
4680 }
4681 mutex_exit(&l2arc_buflist_mtx);
4682
4683 if (pio == NULL) {
4684 ASSERT3U(write_sz, ==, 0);
4685 kmem_cache_free(hdr_cache, head);
d164b209 4686 return (0);
34dc7c2f
BB
4687 }
4688
4689 ASSERT3U(write_sz, <=, target_sz);
4690 ARCSTAT_BUMP(arcstat_l2_writes_sent);
d164b209 4691 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
34dc7c2f 4692 ARCSTAT_INCR(arcstat_l2_size, write_sz);
428870ff 4693 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
34dc7c2f
BB
4694
4695 /*
4696 * Bump device hand to the device start if it is approaching the end.
4697 * l2arc_evict() will already have evicted ahead for this case.
4698 */
b128c09f 4699 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
428870ff
BB
4700 vdev_space_update(dev->l2ad_vdev,
4701 dev->l2ad_end - dev->l2ad_hand, 0, 0);
34dc7c2f
BB
4702 dev->l2ad_hand = dev->l2ad_start;
4703 dev->l2ad_evict = dev->l2ad_start;
4704 dev->l2ad_first = B_FALSE;
4705 }
4706
d164b209 4707 dev->l2ad_writing = B_TRUE;
34dc7c2f 4708 (void) zio_wait(pio);
d164b209
BB
4709 dev->l2ad_writing = B_FALSE;
4710
4711 return (write_sz);
34dc7c2f
BB
4712}
4713
4714/*
4715 * This thread feeds the L2ARC at regular intervals. This is the beating
4716 * heart of the L2ARC.
4717 */
4718static void
4719l2arc_feed_thread(void)
4720{
4721 callb_cpr_t cpr;
4722 l2arc_dev_t *dev;
4723 spa_t *spa;
d164b209 4724 uint64_t size, wrote;
428870ff 4725 clock_t begin, next = ddi_get_lbolt();
34dc7c2f
BB
4726
4727 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4728
4729 mutex_enter(&l2arc_feed_thr_lock);
4730
4731 while (l2arc_thread_exit == 0) {
34dc7c2f 4732 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb
BB
4733 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
4734 &l2arc_feed_thr_lock, next);
34dc7c2f 4735 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 4736 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
4737
4738 /*
b128c09f 4739 * Quick check for L2ARC devices.
34dc7c2f
BB
4740 */
4741 mutex_enter(&l2arc_dev_mtx);
4742 if (l2arc_ndev == 0) {
4743 mutex_exit(&l2arc_dev_mtx);
4744 continue;
4745 }
b128c09f 4746 mutex_exit(&l2arc_dev_mtx);
428870ff 4747 begin = ddi_get_lbolt();
34dc7c2f
BB
4748
4749 /*
b128c09f
BB
4750 * This selects the next l2arc device to write to, and in
4751 * doing so the next spa to feed from: dev->l2ad_spa. This
4752 * will return NULL if there are now no l2arc devices or if
4753 * they are all faulted.
4754 *
4755 * If a device is returned, its spa's config lock is also
4756 * held to prevent device removal. l2arc_dev_get_next()
4757 * will grab and release l2arc_dev_mtx.
34dc7c2f 4758 */
b128c09f 4759 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 4760 continue;
b128c09f
BB
4761
4762 spa = dev->l2ad_spa;
4763 ASSERT(spa != NULL);
34dc7c2f 4764
572e2857
BB
4765 /*
4766 * If the pool is read-only then force the feed thread to
4767 * sleep a little longer.
4768 */
4769 if (!spa_writeable(spa)) {
4770 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4771 spa_config_exit(spa, SCL_L2ARC, dev);
4772 continue;
4773 }
4774
34dc7c2f 4775 /*
b128c09f 4776 * Avoid contributing to memory pressure.
34dc7c2f 4777 */
b128c09f
BB
4778 if (arc_reclaim_needed()) {
4779 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4780 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
4781 continue;
4782 }
b128c09f 4783
34dc7c2f
BB
4784 ARCSTAT_BUMP(arcstat_l2_feeds);
4785
d164b209 4786 size = l2arc_write_size(dev);
b128c09f 4787
34dc7c2f
BB
4788 /*
4789 * Evict L2ARC buffers that will be overwritten.
4790 */
b128c09f 4791 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
4792
4793 /*
4794 * Write ARC buffers.
4795 */
d164b209
BB
4796 wrote = l2arc_write_buffers(spa, dev, size);
4797
4798 /*
4799 * Calculate interval between writes.
4800 */
4801 next = l2arc_write_interval(begin, size, wrote);
b128c09f 4802 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
4803 }
4804
4805 l2arc_thread_exit = 0;
4806 cv_broadcast(&l2arc_feed_thr_cv);
4807 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
4808 thread_exit();
4809}
4810
b128c09f
BB
4811boolean_t
4812l2arc_vdev_present(vdev_t *vd)
4813{
4814 l2arc_dev_t *dev;
4815
4816 mutex_enter(&l2arc_dev_mtx);
4817 for (dev = list_head(l2arc_dev_list); dev != NULL;
4818 dev = list_next(l2arc_dev_list, dev)) {
4819 if (dev->l2ad_vdev == vd)
4820 break;
4821 }
4822 mutex_exit(&l2arc_dev_mtx);
4823
4824 return (dev != NULL);
4825}
4826
34dc7c2f
BB
4827/*
4828 * Add a vdev for use by the L2ARC. By this point the spa has already
4829 * validated the vdev and opened it.
4830 */
4831void
9babb374 4832l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
4833{
4834 l2arc_dev_t *adddev;
4835
b128c09f
BB
4836 ASSERT(!l2arc_vdev_present(vd));
4837
34dc7c2f
BB
4838 /*
4839 * Create a new l2arc device entry.
4840 */
4841 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4842 adddev->l2ad_spa = spa;
4843 adddev->l2ad_vdev = vd;
4844 adddev->l2ad_write = l2arc_write_max;
b128c09f 4845 adddev->l2ad_boost = l2arc_write_boost;
9babb374
BB
4846 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4847 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f
BB
4848 adddev->l2ad_hand = adddev->l2ad_start;
4849 adddev->l2ad_evict = adddev->l2ad_start;
4850 adddev->l2ad_first = B_TRUE;
d164b209 4851 adddev->l2ad_writing = B_FALSE;
98f72a53 4852 list_link_init(&adddev->l2ad_node);
34dc7c2f
BB
4853 ASSERT3U(adddev->l2ad_write, >, 0);
4854
4855 /*
4856 * This is a list of all ARC buffers that are still valid on the
4857 * device.
4858 */
4859 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4860 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4861 offsetof(arc_buf_hdr_t, b_l2node));
4862
428870ff 4863 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
34dc7c2f
BB
4864
4865 /*
4866 * Add device to global list
4867 */
4868 mutex_enter(&l2arc_dev_mtx);
4869 list_insert_head(l2arc_dev_list, adddev);
4870 atomic_inc_64(&l2arc_ndev);
4871 mutex_exit(&l2arc_dev_mtx);
4872}
4873
4874/*
4875 * Remove a vdev from the L2ARC.
4876 */
4877void
4878l2arc_remove_vdev(vdev_t *vd)
4879{
4880 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4881
34dc7c2f
BB
4882 /*
4883 * Find the device by vdev
4884 */
4885 mutex_enter(&l2arc_dev_mtx);
4886 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4887 nextdev = list_next(l2arc_dev_list, dev);
4888 if (vd == dev->l2ad_vdev) {
4889 remdev = dev;
4890 break;
4891 }
4892 }
4893 ASSERT(remdev != NULL);
4894
4895 /*
4896 * Remove device from global list
4897 */
4898 list_remove(l2arc_dev_list, remdev);
4899 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
4900 atomic_dec_64(&l2arc_ndev);
4901 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
4902
4903 /*
4904 * Clear all buflists and ARC references. L2ARC device flush.
4905 */
4906 l2arc_evict(remdev, 0, B_TRUE);
4907 list_destroy(remdev->l2ad_buflist);
4908 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4909 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
4910}
4911
4912void
b128c09f 4913l2arc_init(void)
34dc7c2f
BB
4914{
4915 l2arc_thread_exit = 0;
4916 l2arc_ndev = 0;
4917 l2arc_writes_sent = 0;
4918 l2arc_writes_done = 0;
4919
4920 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4921 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4922 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4923 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4924 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4925
4926 l2arc_dev_list = &L2ARC_dev_list;
4927 l2arc_free_on_write = &L2ARC_free_on_write;
4928 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4929 offsetof(l2arc_dev_t, l2ad_node));
4930 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4931 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
4932}
4933
4934void
b128c09f 4935l2arc_fini(void)
34dc7c2f 4936{
b128c09f
BB
4937 /*
4938 * This is called from dmu_fini(), which is called from spa_fini();
4939 * Because of this, we can assume that all l2arc devices have
4940 * already been removed when the pools themselves were removed.
4941 */
4942
4943 l2arc_do_free_on_write();
34dc7c2f
BB
4944
4945 mutex_destroy(&l2arc_feed_thr_lock);
4946 cv_destroy(&l2arc_feed_thr_cv);
4947 mutex_destroy(&l2arc_dev_mtx);
4948 mutex_destroy(&l2arc_buflist_mtx);
4949 mutex_destroy(&l2arc_free_on_write_mtx);
4950
4951 list_destroy(l2arc_dev_list);
4952 list_destroy(l2arc_free_on_write);
4953}
b128c09f
BB
4954
4955void
4956l2arc_start(void)
4957{
fb5f0bc8 4958 if (!(spa_mode_global & FWRITE))
b128c09f
BB
4959 return;
4960
4961 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4962 TS_RUN, minclsyspri);
4963}
4964
4965void
4966l2arc_stop(void)
4967{
fb5f0bc8 4968 if (!(spa_mode_global & FWRITE))
b128c09f
BB
4969 return;
4970
4971 mutex_enter(&l2arc_feed_thr_lock);
4972 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
4973 l2arc_thread_exit = 1;
4974 while (l2arc_thread_exit != 0)
4975 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4976 mutex_exit(&l2arc_feed_thr_lock);
4977}
c28b2279
BB
4978
4979#if defined(_KERNEL) && defined(HAVE_SPL)
4980EXPORT_SYMBOL(arc_read);
4981EXPORT_SYMBOL(arc_buf_remove_ref);
4982EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
4983EXPORT_SYMBOL(arc_add_prune_callback);
4984EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 4985
c409e464
BB
4986module_param(zfs_arc_min, ulong, 0444);
4987MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 4988
c409e464
BB
4989module_param(zfs_arc_max, ulong, 0444);
4990MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 4991
c409e464 4992module_param(zfs_arc_meta_limit, ulong, 0444);
c28b2279 4993MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 4994
ab26409d
BB
4995module_param(zfs_arc_meta_prune, int, 0444);
4996MODULE_PARM_DESC(zfs_arc_meta_prune, "Bytes of meta data to prune");
c409e464
BB
4997
4998module_param(zfs_arc_grow_retry, int, 0444);
4999MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
5000
5001module_param(zfs_arc_shrink_shift, int, 0444);
5002MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
5003
5004module_param(zfs_arc_p_min_shift, int, 0444);
5005MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
5006
abd8610c
BB
5007module_param(l2arc_write_max, ulong, 0444);
5008MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
5009
5010module_param(l2arc_write_boost, ulong, 0444);
5011MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
5012
5013module_param(l2arc_headroom, ulong, 0444);
5014MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
5015
5016module_param(l2arc_feed_secs, ulong, 0444);
5017MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
5018
5019module_param(l2arc_feed_min_ms, ulong, 0444);
5020MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
5021
5022module_param(l2arc_noprefetch, int, 0444);
5023MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
5024
5025module_param(l2arc_feed_again, int, 0444);
5026MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
5027
5028module_param(l2arc_norw, int, 0444);
5029MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
5030
c28b2279 5031#endif