]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Fix gcc c90 compliance warnings
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
34dc7c2f
BB
23 */
24
34dc7c2f
BB
25/*
26 * DVA-based Adjustable Replacement Cache
27 *
28 * While much of the theory of operation used here is
29 * based on the self-tuning, low overhead replacement cache
30 * presented by Megiddo and Modha at FAST 2003, there are some
31 * significant differences:
32 *
33 * 1. The Megiddo and Modha model assumes any page is evictable.
34 * Pages in its cache cannot be "locked" into memory. This makes
35 * the eviction algorithm simple: evict the last page in the list.
36 * This also make the performance characteristics easy to reason
37 * about. Our cache is not so simple. At any given moment, some
38 * subset of the blocks in the cache are un-evictable because we
39 * have handed out a reference to them. Blocks are only evictable
40 * when there are no external references active. This makes
41 * eviction far more problematic: we choose to evict the evictable
42 * blocks that are the "lowest" in the list.
43 *
44 * There are times when it is not possible to evict the requested
45 * space. In these circumstances we are unable to adjust the cache
46 * size. To prevent the cache growing unbounded at these times we
47 * implement a "cache throttle" that slows the flow of new data
48 * into the cache until we can make space available.
49 *
50 * 2. The Megiddo and Modha model assumes a fixed cache size.
51 * Pages are evicted when the cache is full and there is a cache
52 * miss. Our model has a variable sized cache. It grows with
53 * high use, but also tries to react to memory pressure from the
54 * operating system: decreasing its size when system memory is
55 * tight.
56 *
57 * 3. The Megiddo and Modha model assumes a fixed page size. All
58 * elements of the cache are therefor exactly the same size. So
59 * when adjusting the cache size following a cache miss, its simply
60 * a matter of choosing a single page to evict. In our model, we
61 * have variable sized cache blocks (rangeing from 512 bytes to
62 * 128K bytes). We therefor choose a set of blocks to evict to make
63 * space for a cache miss that approximates as closely as possible
64 * the space used by the new block.
65 *
66 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
67 * by N. Megiddo & D. Modha, FAST 2003
68 */
69
70/*
71 * The locking model:
72 *
73 * A new reference to a cache buffer can be obtained in two
74 * ways: 1) via a hash table lookup using the DVA as a key,
75 * or 2) via one of the ARC lists. The arc_read() interface
76 * uses method 1, while the internal arc algorithms for
77 * adjusting the cache use method 2. We therefor provide two
78 * types of locks: 1) the hash table lock array, and 2) the
79 * arc list locks.
80 *
81 * Buffers do not have their own mutexs, rather they rely on the
82 * hash table mutexs for the bulk of their protection (i.e. most
83 * fields in the arc_buf_hdr_t are protected by these mutexs).
84 *
85 * buf_hash_find() returns the appropriate mutex (held) when it
86 * locates the requested buffer in the hash table. It returns
87 * NULL for the mutex if the buffer was not in the table.
88 *
89 * buf_hash_remove() expects the appropriate hash mutex to be
90 * already held before it is invoked.
91 *
92 * Each arc state also has a mutex which is used to protect the
93 * buffer list associated with the state. When attempting to
94 * obtain a hash table lock while holding an arc list lock you
95 * must use: mutex_tryenter() to avoid deadlock. Also note that
96 * the active state mutex must be held before the ghost state mutex.
97 *
98 * Arc buffers may have an associated eviction callback function.
99 * This function will be invoked prior to removing the buffer (e.g.
100 * in arc_do_user_evicts()). Note however that the data associated
101 * with the buffer may be evicted prior to the callback. The callback
102 * must be made with *no locks held* (to prevent deadlock). Additionally,
103 * the users of callbacks must ensure that their private data is
104 * protected from simultaneous callbacks from arc_buf_evict()
105 * and arc_do_user_evicts().
106 *
107 * Note that the majority of the performance stats are manipulated
108 * with atomic operations.
109 *
110 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
111 *
112 * - L2ARC buflist creation
113 * - L2ARC buflist eviction
114 * - L2ARC write completion, which walks L2ARC buflists
115 * - ARC header destruction, as it removes from L2ARC buflists
116 * - ARC header release, as it removes from L2ARC buflists
117 */
118
119#include <sys/spa.h>
120#include <sys/zio.h>
34dc7c2f
BB
121#include <sys/zfs_context.h>
122#include <sys/arc.h>
123#include <sys/refcount.h>
b128c09f 124#include <sys/vdev.h>
9babb374 125#include <sys/vdev_impl.h>
34dc7c2f
BB
126#ifdef _KERNEL
127#include <sys/vmsystm.h>
128#include <vm/anon.h>
129#include <sys/fs/swapnode.h>
130#include <sys/dnlc.h>
131#endif
132#include <sys/callb.h>
133#include <sys/kstat.h>
428870ff 134#include <zfs_fletcher.h>
34dc7c2f
BB
135
136static kmutex_t arc_reclaim_thr_lock;
137static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
138static uint8_t arc_thread_exit;
139
140extern int zfs_write_limit_shift;
141extern uint64_t zfs_write_limit_max;
b128c09f 142extern kmutex_t zfs_write_limit_lock;
34dc7c2f
BB
143
144#define ARC_REDUCE_DNLC_PERCENT 3
145uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
146
147typedef enum arc_reclaim_strategy {
148 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
149 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
150} arc_reclaim_strategy_t;
151
152/* number of seconds before growing cache again */
153static int arc_grow_retry = 60;
154
d164b209
BB
155/* shift of arc_c for calculating both min and max arc_p */
156static int arc_p_min_shift = 4;
157
158/* log2(fraction of arc to reclaim) */
159static int arc_shrink_shift = 5;
160
34dc7c2f
BB
161/*
162 * minimum lifespan of a prefetch block in clock ticks
163 * (initialized in arc_init())
164 */
165static int arc_min_prefetch_lifespan;
166
167static int arc_dead;
168
b128c09f
BB
169/*
170 * The arc has filled available memory and has now warmed up.
171 */
172static boolean_t arc_warm;
173
34dc7c2f
BB
174/*
175 * These tunables are for performance analysis.
176 */
177uint64_t zfs_arc_max;
178uint64_t zfs_arc_min;
179uint64_t zfs_arc_meta_limit = 0;
d164b209
BB
180int zfs_arc_grow_retry = 0;
181int zfs_arc_shrink_shift = 0;
182int zfs_arc_p_min_shift = 0;
34dc7c2f
BB
183
184/*
185 * Note that buffers can be in one of 6 states:
186 * ARC_anon - anonymous (discussed below)
187 * ARC_mru - recently used, currently cached
188 * ARC_mru_ghost - recentely used, no longer in cache
189 * ARC_mfu - frequently used, currently cached
190 * ARC_mfu_ghost - frequently used, no longer in cache
191 * ARC_l2c_only - exists in L2ARC but not other states
192 * When there are no active references to the buffer, they are
193 * are linked onto a list in one of these arc states. These are
194 * the only buffers that can be evicted or deleted. Within each
195 * state there are multiple lists, one for meta-data and one for
196 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
197 * etc.) is tracked separately so that it can be managed more
198 * explicitly: favored over data, limited explicitly.
199 *
200 * Anonymous buffers are buffers that are not associated with
201 * a DVA. These are buffers that hold dirty block copies
202 * before they are written to stable storage. By definition,
203 * they are "ref'd" and are considered part of arc_mru
204 * that cannot be freed. Generally, they will aquire a DVA
205 * as they are written and migrate onto the arc_mru list.
206 *
207 * The ARC_l2c_only state is for buffers that are in the second
208 * level ARC but no longer in any of the ARC_m* lists. The second
209 * level ARC itself may also contain buffers that are in any of
210 * the ARC_m* states - meaning that a buffer can exist in two
211 * places. The reason for the ARC_l2c_only state is to keep the
212 * buffer header in the hash table, so that reads that hit the
213 * second level ARC benefit from these fast lookups.
214 */
215
216typedef struct arc_state {
217 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
218 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
219 uint64_t arcs_size; /* total amount of data in this state */
220 kmutex_t arcs_mtx;
221} arc_state_t;
222
223/* The 6 states: */
224static arc_state_t ARC_anon;
225static arc_state_t ARC_mru;
226static arc_state_t ARC_mru_ghost;
227static arc_state_t ARC_mfu;
228static arc_state_t ARC_mfu_ghost;
229static arc_state_t ARC_l2c_only;
230
231typedef struct arc_stats {
232 kstat_named_t arcstat_hits;
233 kstat_named_t arcstat_misses;
234 kstat_named_t arcstat_demand_data_hits;
235 kstat_named_t arcstat_demand_data_misses;
236 kstat_named_t arcstat_demand_metadata_hits;
237 kstat_named_t arcstat_demand_metadata_misses;
238 kstat_named_t arcstat_prefetch_data_hits;
239 kstat_named_t arcstat_prefetch_data_misses;
240 kstat_named_t arcstat_prefetch_metadata_hits;
241 kstat_named_t arcstat_prefetch_metadata_misses;
242 kstat_named_t arcstat_mru_hits;
243 kstat_named_t arcstat_mru_ghost_hits;
244 kstat_named_t arcstat_mfu_hits;
245 kstat_named_t arcstat_mfu_ghost_hits;
246 kstat_named_t arcstat_deleted;
247 kstat_named_t arcstat_recycle_miss;
248 kstat_named_t arcstat_mutex_miss;
249 kstat_named_t arcstat_evict_skip;
428870ff
BB
250 kstat_named_t arcstat_evict_l2_cached;
251 kstat_named_t arcstat_evict_l2_eligible;
252 kstat_named_t arcstat_evict_l2_ineligible;
34dc7c2f
BB
253 kstat_named_t arcstat_hash_elements;
254 kstat_named_t arcstat_hash_elements_max;
255 kstat_named_t arcstat_hash_collisions;
256 kstat_named_t arcstat_hash_chains;
257 kstat_named_t arcstat_hash_chain_max;
258 kstat_named_t arcstat_p;
259 kstat_named_t arcstat_c;
260 kstat_named_t arcstat_c_min;
261 kstat_named_t arcstat_c_max;
262 kstat_named_t arcstat_size;
263 kstat_named_t arcstat_hdr_size;
d164b209
BB
264 kstat_named_t arcstat_data_size;
265 kstat_named_t arcstat_other_size;
34dc7c2f
BB
266 kstat_named_t arcstat_l2_hits;
267 kstat_named_t arcstat_l2_misses;
268 kstat_named_t arcstat_l2_feeds;
269 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
270 kstat_named_t arcstat_l2_read_bytes;
271 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
272 kstat_named_t arcstat_l2_writes_sent;
273 kstat_named_t arcstat_l2_writes_done;
274 kstat_named_t arcstat_l2_writes_error;
275 kstat_named_t arcstat_l2_writes_hdr_miss;
276 kstat_named_t arcstat_l2_evict_lock_retry;
277 kstat_named_t arcstat_l2_evict_reading;
278 kstat_named_t arcstat_l2_free_on_write;
279 kstat_named_t arcstat_l2_abort_lowmem;
280 kstat_named_t arcstat_l2_cksum_bad;
281 kstat_named_t arcstat_l2_io_error;
282 kstat_named_t arcstat_l2_size;
283 kstat_named_t arcstat_l2_hdr_size;
284 kstat_named_t arcstat_memory_throttle_count;
285} arc_stats_t;
286
287static arc_stats_t arc_stats = {
288 { "hits", KSTAT_DATA_UINT64 },
289 { "misses", KSTAT_DATA_UINT64 },
290 { "demand_data_hits", KSTAT_DATA_UINT64 },
291 { "demand_data_misses", KSTAT_DATA_UINT64 },
292 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
293 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
294 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
295 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
296 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
297 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
298 { "mru_hits", KSTAT_DATA_UINT64 },
299 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
300 { "mfu_hits", KSTAT_DATA_UINT64 },
301 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
302 { "deleted", KSTAT_DATA_UINT64 },
303 { "recycle_miss", KSTAT_DATA_UINT64 },
304 { "mutex_miss", KSTAT_DATA_UINT64 },
305 { "evict_skip", KSTAT_DATA_UINT64 },
428870ff
BB
306 { "evict_l2_cached", KSTAT_DATA_UINT64 },
307 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
308 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
34dc7c2f
BB
309 { "hash_elements", KSTAT_DATA_UINT64 },
310 { "hash_elements_max", KSTAT_DATA_UINT64 },
311 { "hash_collisions", KSTAT_DATA_UINT64 },
312 { "hash_chains", KSTAT_DATA_UINT64 },
313 { "hash_chain_max", KSTAT_DATA_UINT64 },
314 { "p", KSTAT_DATA_UINT64 },
315 { "c", KSTAT_DATA_UINT64 },
316 { "c_min", KSTAT_DATA_UINT64 },
317 { "c_max", KSTAT_DATA_UINT64 },
318 { "size", KSTAT_DATA_UINT64 },
319 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209
BB
320 { "data_size", KSTAT_DATA_UINT64 },
321 { "other_size", KSTAT_DATA_UINT64 },
34dc7c2f
BB
322 { "l2_hits", KSTAT_DATA_UINT64 },
323 { "l2_misses", KSTAT_DATA_UINT64 },
324 { "l2_feeds", KSTAT_DATA_UINT64 },
325 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
326 { "l2_read_bytes", KSTAT_DATA_UINT64 },
327 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
328 { "l2_writes_sent", KSTAT_DATA_UINT64 },
329 { "l2_writes_done", KSTAT_DATA_UINT64 },
330 { "l2_writes_error", KSTAT_DATA_UINT64 },
331 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
332 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
333 { "l2_evict_reading", KSTAT_DATA_UINT64 },
334 { "l2_free_on_write", KSTAT_DATA_UINT64 },
335 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
336 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
337 { "l2_io_error", KSTAT_DATA_UINT64 },
338 { "l2_size", KSTAT_DATA_UINT64 },
339 { "l2_hdr_size", KSTAT_DATA_UINT64 },
340 { "memory_throttle_count", KSTAT_DATA_UINT64 }
341};
342
343#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
344
345#define ARCSTAT_INCR(stat, val) \
346 atomic_add_64(&arc_stats.stat.value.ui64, (val));
347
428870ff 348#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
349#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
350
351#define ARCSTAT_MAX(stat, val) { \
352 uint64_t m; \
353 while ((val) > (m = arc_stats.stat.value.ui64) && \
354 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
355 continue; \
356}
357
358#define ARCSTAT_MAXSTAT(stat) \
359 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
360
361/*
362 * We define a macro to allow ARC hits/misses to be easily broken down by
363 * two separate conditions, giving a total of four different subtypes for
364 * each of hits and misses (so eight statistics total).
365 */
366#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
367 if (cond1) { \
368 if (cond2) { \
369 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
370 } else { \
371 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
372 } \
373 } else { \
374 if (cond2) { \
375 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
376 } else { \
377 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
378 } \
379 }
380
381kstat_t *arc_ksp;
428870ff 382static arc_state_t *arc_anon;
34dc7c2f
BB
383static arc_state_t *arc_mru;
384static arc_state_t *arc_mru_ghost;
385static arc_state_t *arc_mfu;
386static arc_state_t *arc_mfu_ghost;
387static arc_state_t *arc_l2c_only;
388
389/*
390 * There are several ARC variables that are critical to export as kstats --
391 * but we don't want to have to grovel around in the kstat whenever we wish to
392 * manipulate them. For these variables, we therefore define them to be in
393 * terms of the statistic variable. This assures that we are not introducing
394 * the possibility of inconsistency by having shadow copies of the variables,
395 * while still allowing the code to be readable.
396 */
397#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
398#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
399#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
400#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
401#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
402
403static int arc_no_grow; /* Don't try to grow cache size */
404static uint64_t arc_tempreserve;
9babb374 405static uint64_t arc_loaned_bytes;
34dc7c2f
BB
406static uint64_t arc_meta_used;
407static uint64_t arc_meta_limit;
408static uint64_t arc_meta_max = 0;
409
410typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
411
412typedef struct arc_callback arc_callback_t;
413
414struct arc_callback {
415 void *acb_private;
416 arc_done_func_t *acb_done;
34dc7c2f
BB
417 arc_buf_t *acb_buf;
418 zio_t *acb_zio_dummy;
419 arc_callback_t *acb_next;
420};
421
422typedef struct arc_write_callback arc_write_callback_t;
423
424struct arc_write_callback {
425 void *awcb_private;
426 arc_done_func_t *awcb_ready;
427 arc_done_func_t *awcb_done;
428 arc_buf_t *awcb_buf;
429};
430
431struct arc_buf_hdr {
432 /* protected by hash lock */
433 dva_t b_dva;
434 uint64_t b_birth;
435 uint64_t b_cksum0;
436
437 kmutex_t b_freeze_lock;
438 zio_cksum_t *b_freeze_cksum;
428870ff 439 void *b_thawed;
34dc7c2f
BB
440
441 arc_buf_hdr_t *b_hash_next;
442 arc_buf_t *b_buf;
443 uint32_t b_flags;
444 uint32_t b_datacnt;
445
446 arc_callback_t *b_acb;
447 kcondvar_t b_cv;
448
449 /* immutable */
450 arc_buf_contents_t b_type;
451 uint64_t b_size;
d164b209 452 uint64_t b_spa;
34dc7c2f
BB
453
454 /* protected by arc state mutex */
455 arc_state_t *b_state;
456 list_node_t b_arc_node;
457
458 /* updated atomically */
459 clock_t b_arc_access;
460
461 /* self protecting */
462 refcount_t b_refcnt;
463
464 l2arc_buf_hdr_t *b_l2hdr;
465 list_node_t b_l2node;
466};
467
468static arc_buf_t *arc_eviction_list;
469static kmutex_t arc_eviction_mtx;
470static arc_buf_hdr_t arc_eviction_hdr;
471static void arc_get_data_buf(arc_buf_t *buf);
472static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
473static int arc_evict_needed(arc_buf_contents_t type);
d164b209 474static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
34dc7c2f 475
428870ff
BB
476static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
477
34dc7c2f
BB
478#define GHOST_STATE(state) \
479 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
480 (state) == arc_l2c_only)
481
482/*
483 * Private ARC flags. These flags are private ARC only flags that will show up
484 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
485 * be passed in as arc_flags in things like arc_read. However, these flags
486 * should never be passed and should only be set by ARC code. When adding new
487 * public flags, make sure not to smash the private ones.
488 */
489
490#define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
491#define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
492#define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
493#define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
494#define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
495#define ARC_INDIRECT (1 << 14) /* this is an indirect block */
496#define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
b128c09f
BB
497#define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
498#define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
499#define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
34dc7c2f
BB
500
501#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
502#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
503#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
d164b209 504#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
34dc7c2f
BB
505#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
506#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
507#define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
b128c09f
BB
508#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
509#define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
510 (hdr)->b_l2hdr != NULL)
34dc7c2f
BB
511#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
512#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
513#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
514
515/*
516 * Other sizes
517 */
518
519#define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
520#define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
521
522/*
523 * Hash table routines
524 */
525
526#define HT_LOCK_PAD 64
527
528struct ht_lock {
529 kmutex_t ht_lock;
530#ifdef _KERNEL
531 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
532#endif
533};
534
535#define BUF_LOCKS 256
536typedef struct buf_hash_table {
537 uint64_t ht_mask;
538 arc_buf_hdr_t **ht_table;
539 struct ht_lock ht_locks[BUF_LOCKS];
540} buf_hash_table_t;
541
542static buf_hash_table_t buf_hash_table;
543
544#define BUF_HASH_INDEX(spa, dva, birth) \
545 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
546#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
547#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
548#define HDR_LOCK(hdr) \
549 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
550
551uint64_t zfs_crc64_table[256];
552
553/*
554 * Level 2 ARC
555 */
556
557#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
d164b209
BB
558#define L2ARC_HEADROOM 2 /* num of writes */
559#define L2ARC_FEED_SECS 1 /* caching interval secs */
560#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f
BB
561
562#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
563#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
564
565/*
566 * L2ARC Performance Tunables
567 */
568uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
b128c09f 569uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
34dc7c2f
BB
570uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
571uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
d164b209 572uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
34dc7c2f 573boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
d164b209
BB
574boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
575boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
34dc7c2f
BB
576
577/*
578 * L2ARC Internals
579 */
580typedef struct l2arc_dev {
581 vdev_t *l2ad_vdev; /* vdev */
582 spa_t *l2ad_spa; /* spa */
583 uint64_t l2ad_hand; /* next write location */
584 uint64_t l2ad_write; /* desired write size, bytes */
b128c09f 585 uint64_t l2ad_boost; /* warmup write boost, bytes */
34dc7c2f
BB
586 uint64_t l2ad_start; /* first addr on device */
587 uint64_t l2ad_end; /* last addr on device */
588 uint64_t l2ad_evict; /* last addr eviction reached */
589 boolean_t l2ad_first; /* first sweep through */
d164b209 590 boolean_t l2ad_writing; /* currently writing */
34dc7c2f
BB
591 list_t *l2ad_buflist; /* buffer list */
592 list_node_t l2ad_node; /* device list node */
593} l2arc_dev_t;
594
595static list_t L2ARC_dev_list; /* device list */
596static list_t *l2arc_dev_list; /* device list pointer */
597static kmutex_t l2arc_dev_mtx; /* device list mutex */
598static l2arc_dev_t *l2arc_dev_last; /* last device used */
599static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
600static list_t L2ARC_free_on_write; /* free after write buf list */
601static list_t *l2arc_free_on_write; /* free after write list ptr */
602static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
603static uint64_t l2arc_ndev; /* number of devices */
604
605typedef struct l2arc_read_callback {
606 arc_buf_t *l2rcb_buf; /* read buffer */
607 spa_t *l2rcb_spa; /* spa */
608 blkptr_t l2rcb_bp; /* original blkptr */
609 zbookmark_t l2rcb_zb; /* original bookmark */
610 int l2rcb_flags; /* original flags */
611} l2arc_read_callback_t;
612
613typedef struct l2arc_write_callback {
614 l2arc_dev_t *l2wcb_dev; /* device info */
615 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
616} l2arc_write_callback_t;
617
618struct l2arc_buf_hdr {
619 /* protected by arc_buf_hdr mutex */
620 l2arc_dev_t *b_dev; /* L2ARC device */
9babb374 621 uint64_t b_daddr; /* disk address, offset byte */
34dc7c2f
BB
622};
623
624typedef struct l2arc_data_free {
625 /* protected by l2arc_free_on_write_mtx */
626 void *l2df_data;
627 size_t l2df_size;
628 void (*l2df_func)(void *, size_t);
629 list_node_t l2df_list_node;
630} l2arc_data_free_t;
631
632static kmutex_t l2arc_feed_thr_lock;
633static kcondvar_t l2arc_feed_thr_cv;
634static uint8_t l2arc_thread_exit;
635
636static void l2arc_read_done(zio_t *zio);
637static void l2arc_hdr_stat_add(void);
638static void l2arc_hdr_stat_remove(void);
639
640static uint64_t
d164b209 641buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 642{
34dc7c2f
BB
643 uint8_t *vdva = (uint8_t *)dva;
644 uint64_t crc = -1ULL;
645 int i;
646
647 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
648
649 for (i = 0; i < sizeof (dva_t); i++)
650 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
651
d164b209 652 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
653
654 return (crc);
655}
656
657#define BUF_EMPTY(buf) \
658 ((buf)->b_dva.dva_word[0] == 0 && \
659 (buf)->b_dva.dva_word[1] == 0 && \
660 (buf)->b_birth == 0)
661
662#define BUF_EQUAL(spa, dva, birth, buf) \
663 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
664 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
665 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
666
428870ff
BB
667static void
668buf_discard_identity(arc_buf_hdr_t *hdr)
669{
670 hdr->b_dva.dva_word[0] = 0;
671 hdr->b_dva.dva_word[1] = 0;
672 hdr->b_birth = 0;
673 hdr->b_cksum0 = 0;
674}
675
34dc7c2f 676static arc_buf_hdr_t *
d164b209 677buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
34dc7c2f
BB
678{
679 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
680 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
681 arc_buf_hdr_t *buf;
682
683 mutex_enter(hash_lock);
684 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
685 buf = buf->b_hash_next) {
686 if (BUF_EQUAL(spa, dva, birth, buf)) {
687 *lockp = hash_lock;
688 return (buf);
689 }
690 }
691 mutex_exit(hash_lock);
692 *lockp = NULL;
693 return (NULL);
694}
695
696/*
697 * Insert an entry into the hash table. If there is already an element
698 * equal to elem in the hash table, then the already existing element
699 * will be returned and the new element will not be inserted.
700 * Otherwise returns NULL.
701 */
702static arc_buf_hdr_t *
703buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
704{
705 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
706 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
707 arc_buf_hdr_t *fbuf;
708 uint32_t i;
709
710 ASSERT(!HDR_IN_HASH_TABLE(buf));
711 *lockp = hash_lock;
712 mutex_enter(hash_lock);
713 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
714 fbuf = fbuf->b_hash_next, i++) {
715 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
716 return (fbuf);
717 }
718
719 buf->b_hash_next = buf_hash_table.ht_table[idx];
720 buf_hash_table.ht_table[idx] = buf;
721 buf->b_flags |= ARC_IN_HASH_TABLE;
722
723 /* collect some hash table performance data */
724 if (i > 0) {
725 ARCSTAT_BUMP(arcstat_hash_collisions);
726 if (i == 1)
727 ARCSTAT_BUMP(arcstat_hash_chains);
728
729 ARCSTAT_MAX(arcstat_hash_chain_max, i);
730 }
731
732 ARCSTAT_BUMP(arcstat_hash_elements);
733 ARCSTAT_MAXSTAT(arcstat_hash_elements);
734
735 return (NULL);
736}
737
738static void
739buf_hash_remove(arc_buf_hdr_t *buf)
740{
741 arc_buf_hdr_t *fbuf, **bufp;
742 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
743
744 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
745 ASSERT(HDR_IN_HASH_TABLE(buf));
746
747 bufp = &buf_hash_table.ht_table[idx];
748 while ((fbuf = *bufp) != buf) {
749 ASSERT(fbuf != NULL);
750 bufp = &fbuf->b_hash_next;
751 }
752 *bufp = buf->b_hash_next;
753 buf->b_hash_next = NULL;
754 buf->b_flags &= ~ARC_IN_HASH_TABLE;
755
756 /* collect some hash table performance data */
757 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
758
759 if (buf_hash_table.ht_table[idx] &&
760 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
761 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
762}
763
764/*
765 * Global data structures and functions for the buf kmem cache.
766 */
767static kmem_cache_t *hdr_cache;
768static kmem_cache_t *buf_cache;
769
770static void
771buf_fini(void)
772{
773 int i;
774
775 kmem_free(buf_hash_table.ht_table,
776 (buf_hash_table.ht_mask + 1) * sizeof (void *));
777 for (i = 0; i < BUF_LOCKS; i++)
778 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
779 kmem_cache_destroy(hdr_cache);
780 kmem_cache_destroy(buf_cache);
781}
782
783/*
784 * Constructor callback - called when the cache is empty
785 * and a new buf is requested.
786 */
787/* ARGSUSED */
788static int
789hdr_cons(void *vbuf, void *unused, int kmflag)
790{
791 arc_buf_hdr_t *buf = vbuf;
792
793 bzero(buf, sizeof (arc_buf_hdr_t));
794 refcount_create(&buf->b_refcnt);
795 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
796 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209 797 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f 798
34dc7c2f
BB
799 return (0);
800}
801
b128c09f
BB
802/* ARGSUSED */
803static int
804buf_cons(void *vbuf, void *unused, int kmflag)
805{
806 arc_buf_t *buf = vbuf;
807
808 bzero(buf, sizeof (arc_buf_t));
428870ff
BB
809 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
810 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
d164b209
BB
811 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
812
b128c09f
BB
813 return (0);
814}
815
34dc7c2f
BB
816/*
817 * Destructor callback - called when a cached buf is
818 * no longer required.
819 */
820/* ARGSUSED */
821static void
822hdr_dest(void *vbuf, void *unused)
823{
824 arc_buf_hdr_t *buf = vbuf;
825
428870ff 826 ASSERT(BUF_EMPTY(buf));
34dc7c2f
BB
827 refcount_destroy(&buf->b_refcnt);
828 cv_destroy(&buf->b_cv);
829 mutex_destroy(&buf->b_freeze_lock);
d164b209 830 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f
BB
831}
832
b128c09f
BB
833/* ARGSUSED */
834static void
835buf_dest(void *vbuf, void *unused)
836{
837 arc_buf_t *buf = vbuf;
838
428870ff
BB
839 mutex_destroy(&buf->b_evict_lock);
840 rw_destroy(&buf->b_data_lock);
d164b209 841 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
842}
843
34dc7c2f
BB
844/*
845 * Reclaim callback -- invoked when memory is low.
846 */
847/* ARGSUSED */
848static void
849hdr_recl(void *unused)
850{
851 dprintf("hdr_recl called\n");
852 /*
853 * umem calls the reclaim func when we destroy the buf cache,
854 * which is after we do arc_fini().
855 */
856 if (!arc_dead)
857 cv_signal(&arc_reclaim_thr_cv);
858}
859
860static void
861buf_init(void)
862{
863 uint64_t *ct;
864 uint64_t hsize = 1ULL << 12;
865 int i, j;
866
867 /*
868 * The hash table is big enough to fill all of physical memory
869 * with an average 64K block size. The table will take up
870 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
871 */
872 while (hsize * 65536 < physmem * PAGESIZE)
873 hsize <<= 1;
874retry:
875 buf_hash_table.ht_mask = hsize - 1;
876 buf_hash_table.ht_table =
877 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
878 if (buf_hash_table.ht_table == NULL) {
879 ASSERT(hsize > (1ULL << 8));
880 hsize >>= 1;
881 goto retry;
882 }
883
884 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
885 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
886 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 887 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
888
889 for (i = 0; i < 256; i++)
890 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
891 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
892
893 for (i = 0; i < BUF_LOCKS; i++) {
894 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
895 NULL, MUTEX_DEFAULT, NULL);
896 }
897}
898
899#define ARC_MINTIME (hz>>4) /* 62 ms */
900
901static void
902arc_cksum_verify(arc_buf_t *buf)
903{
904 zio_cksum_t zc;
905
906 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
907 return;
908
909 mutex_enter(&buf->b_hdr->b_freeze_lock);
910 if (buf->b_hdr->b_freeze_cksum == NULL ||
911 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
912 mutex_exit(&buf->b_hdr->b_freeze_lock);
913 return;
914 }
915 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
916 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
917 panic("buffer modified while frozen!");
918 mutex_exit(&buf->b_hdr->b_freeze_lock);
919}
920
921static int
922arc_cksum_equal(arc_buf_t *buf)
923{
924 zio_cksum_t zc;
925 int equal;
926
927 mutex_enter(&buf->b_hdr->b_freeze_lock);
928 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
929 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
930 mutex_exit(&buf->b_hdr->b_freeze_lock);
931
932 return (equal);
933}
934
935static void
936arc_cksum_compute(arc_buf_t *buf, boolean_t force)
937{
938 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
939 return;
940
941 mutex_enter(&buf->b_hdr->b_freeze_lock);
942 if (buf->b_hdr->b_freeze_cksum != NULL) {
943 mutex_exit(&buf->b_hdr->b_freeze_lock);
944 return;
945 }
946 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
947 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
948 buf->b_hdr->b_freeze_cksum);
949 mutex_exit(&buf->b_hdr->b_freeze_lock);
950}
951
952void
953arc_buf_thaw(arc_buf_t *buf)
954{
955 if (zfs_flags & ZFS_DEBUG_MODIFY) {
956 if (buf->b_hdr->b_state != arc_anon)
957 panic("modifying non-anon buffer!");
958 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
959 panic("modifying buffer while i/o in progress!");
960 arc_cksum_verify(buf);
961 }
962
963 mutex_enter(&buf->b_hdr->b_freeze_lock);
964 if (buf->b_hdr->b_freeze_cksum != NULL) {
965 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
966 buf->b_hdr->b_freeze_cksum = NULL;
967 }
428870ff
BB
968
969 if (zfs_flags & ZFS_DEBUG_MODIFY) {
970 if (buf->b_hdr->b_thawed)
971 kmem_free(buf->b_hdr->b_thawed, 1);
972 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
973 }
974
34dc7c2f
BB
975 mutex_exit(&buf->b_hdr->b_freeze_lock);
976}
977
978void
979arc_buf_freeze(arc_buf_t *buf)
980{
428870ff
BB
981 kmutex_t *hash_lock;
982
34dc7c2f
BB
983 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
984 return;
985
428870ff
BB
986 hash_lock = HDR_LOCK(buf->b_hdr);
987 mutex_enter(hash_lock);
988
34dc7c2f
BB
989 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
990 buf->b_hdr->b_state == arc_anon);
991 arc_cksum_compute(buf, B_FALSE);
428870ff 992 mutex_exit(hash_lock);
34dc7c2f
BB
993}
994
995static void
996add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
997{
998 ASSERT(MUTEX_HELD(hash_lock));
999
1000 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1001 (ab->b_state != arc_anon)) {
1002 uint64_t delta = ab->b_size * ab->b_datacnt;
1003 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1004 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1005
1006 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1007 mutex_enter(&ab->b_state->arcs_mtx);
1008 ASSERT(list_link_active(&ab->b_arc_node));
1009 list_remove(list, ab);
1010 if (GHOST_STATE(ab->b_state)) {
1011 ASSERT3U(ab->b_datacnt, ==, 0);
1012 ASSERT3P(ab->b_buf, ==, NULL);
1013 delta = ab->b_size;
1014 }
1015 ASSERT(delta > 0);
1016 ASSERT3U(*size, >=, delta);
1017 atomic_add_64(size, -delta);
1018 mutex_exit(&ab->b_state->arcs_mtx);
b128c09f 1019 /* remove the prefetch flag if we get a reference */
34dc7c2f
BB
1020 if (ab->b_flags & ARC_PREFETCH)
1021 ab->b_flags &= ~ARC_PREFETCH;
1022 }
1023}
1024
1025static int
1026remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1027{
1028 int cnt;
1029 arc_state_t *state = ab->b_state;
1030
1031 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1032 ASSERT(!GHOST_STATE(state));
1033
1034 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1035 (state != arc_anon)) {
1036 uint64_t *size = &state->arcs_lsize[ab->b_type];
1037
1038 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1039 mutex_enter(&state->arcs_mtx);
1040 ASSERT(!list_link_active(&ab->b_arc_node));
1041 list_insert_head(&state->arcs_list[ab->b_type], ab);
1042 ASSERT(ab->b_datacnt > 0);
1043 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1044 mutex_exit(&state->arcs_mtx);
1045 }
1046 return (cnt);
1047}
1048
1049/*
1050 * Move the supplied buffer to the indicated state. The mutex
1051 * for the buffer must be held by the caller.
1052 */
1053static void
1054arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1055{
1056 arc_state_t *old_state = ab->b_state;
1057 int64_t refcnt = refcount_count(&ab->b_refcnt);
1058 uint64_t from_delta, to_delta;
1059
1060 ASSERT(MUTEX_HELD(hash_lock));
1061 ASSERT(new_state != old_state);
1062 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1063 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
428870ff 1064 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
34dc7c2f
BB
1065
1066 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1067
1068 /*
1069 * If this buffer is evictable, transfer it from the
1070 * old state list to the new state list.
1071 */
1072 if (refcnt == 0) {
1073 if (old_state != arc_anon) {
1074 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1075 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1076
1077 if (use_mutex)
1078 mutex_enter(&old_state->arcs_mtx);
1079
1080 ASSERT(list_link_active(&ab->b_arc_node));
1081 list_remove(&old_state->arcs_list[ab->b_type], ab);
1082
1083 /*
1084 * If prefetching out of the ghost cache,
428870ff 1085 * we will have a non-zero datacnt.
34dc7c2f
BB
1086 */
1087 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1088 /* ghost elements have a ghost size */
1089 ASSERT(ab->b_buf == NULL);
1090 from_delta = ab->b_size;
1091 }
1092 ASSERT3U(*size, >=, from_delta);
1093 atomic_add_64(size, -from_delta);
1094
1095 if (use_mutex)
1096 mutex_exit(&old_state->arcs_mtx);
1097 }
1098 if (new_state != arc_anon) {
1099 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1100 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1101
1102 if (use_mutex)
1103 mutex_enter(&new_state->arcs_mtx);
1104
1105 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1106
1107 /* ghost elements have a ghost size */
1108 if (GHOST_STATE(new_state)) {
1109 ASSERT(ab->b_datacnt == 0);
1110 ASSERT(ab->b_buf == NULL);
1111 to_delta = ab->b_size;
1112 }
1113 atomic_add_64(size, to_delta);
1114
1115 if (use_mutex)
1116 mutex_exit(&new_state->arcs_mtx);
1117 }
1118 }
1119
1120 ASSERT(!BUF_EMPTY(ab));
428870ff 1121 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
34dc7c2f 1122 buf_hash_remove(ab);
34dc7c2f
BB
1123
1124 /* adjust state sizes */
1125 if (to_delta)
1126 atomic_add_64(&new_state->arcs_size, to_delta);
1127 if (from_delta) {
1128 ASSERT3U(old_state->arcs_size, >=, from_delta);
1129 atomic_add_64(&old_state->arcs_size, -from_delta);
1130 }
1131 ab->b_state = new_state;
1132
1133 /* adjust l2arc hdr stats */
1134 if (new_state == arc_l2c_only)
1135 l2arc_hdr_stat_add();
1136 else if (old_state == arc_l2c_only)
1137 l2arc_hdr_stat_remove();
1138}
1139
1140void
d164b209 1141arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1142{
d164b209
BB
1143 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1144
1145 switch (type) {
1146 case ARC_SPACE_DATA:
1147 ARCSTAT_INCR(arcstat_data_size, space);
1148 break;
1149 case ARC_SPACE_OTHER:
1150 ARCSTAT_INCR(arcstat_other_size, space);
1151 break;
1152 case ARC_SPACE_HDRS:
1153 ARCSTAT_INCR(arcstat_hdr_size, space);
1154 break;
1155 case ARC_SPACE_L2HDRS:
1156 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1157 break;
1158 }
1159
34dc7c2f
BB
1160 atomic_add_64(&arc_meta_used, space);
1161 atomic_add_64(&arc_size, space);
1162}
1163
1164void
d164b209 1165arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1166{
d164b209
BB
1167 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1168
1169 switch (type) {
1170 case ARC_SPACE_DATA:
1171 ARCSTAT_INCR(arcstat_data_size, -space);
1172 break;
1173 case ARC_SPACE_OTHER:
1174 ARCSTAT_INCR(arcstat_other_size, -space);
1175 break;
1176 case ARC_SPACE_HDRS:
1177 ARCSTAT_INCR(arcstat_hdr_size, -space);
1178 break;
1179 case ARC_SPACE_L2HDRS:
1180 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1181 break;
1182 }
1183
34dc7c2f
BB
1184 ASSERT(arc_meta_used >= space);
1185 if (arc_meta_max < arc_meta_used)
1186 arc_meta_max = arc_meta_used;
1187 atomic_add_64(&arc_meta_used, -space);
1188 ASSERT(arc_size >= space);
1189 atomic_add_64(&arc_size, -space);
1190}
1191
1192void *
1193arc_data_buf_alloc(uint64_t size)
1194{
1195 if (arc_evict_needed(ARC_BUFC_DATA))
1196 cv_signal(&arc_reclaim_thr_cv);
1197 atomic_add_64(&arc_size, size);
1198 return (zio_data_buf_alloc(size));
1199}
1200
1201void
1202arc_data_buf_free(void *buf, uint64_t size)
1203{
1204 zio_data_buf_free(buf, size);
1205 ASSERT(arc_size >= size);
1206 atomic_add_64(&arc_size, -size);
1207}
1208
1209arc_buf_t *
1210arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1211{
1212 arc_buf_hdr_t *hdr;
1213 arc_buf_t *buf;
1214
1215 ASSERT3U(size, >, 0);
1216 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1217 ASSERT(BUF_EMPTY(hdr));
1218 hdr->b_size = size;
1219 hdr->b_type = type;
d164b209 1220 hdr->b_spa = spa_guid(spa);
34dc7c2f
BB
1221 hdr->b_state = arc_anon;
1222 hdr->b_arc_access = 0;
1223 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1224 buf->b_hdr = hdr;
1225 buf->b_data = NULL;
1226 buf->b_efunc = NULL;
1227 buf->b_private = NULL;
1228 buf->b_next = NULL;
1229 hdr->b_buf = buf;
1230 arc_get_data_buf(buf);
1231 hdr->b_datacnt = 1;
1232 hdr->b_flags = 0;
1233 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1234 (void) refcount_add(&hdr->b_refcnt, tag);
1235
1236 return (buf);
1237}
1238
9babb374
BB
1239static char *arc_onloan_tag = "onloan";
1240
1241/*
1242 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1243 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1244 * buffers must be returned to the arc before they can be used by the DMU or
1245 * freed.
1246 */
1247arc_buf_t *
1248arc_loan_buf(spa_t *spa, int size)
1249{
1250 arc_buf_t *buf;
1251
1252 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1253
1254 atomic_add_64(&arc_loaned_bytes, size);
1255 return (buf);
1256}
1257
1258/*
1259 * Return a loaned arc buffer to the arc.
1260 */
1261void
1262arc_return_buf(arc_buf_t *buf, void *tag)
1263{
1264 arc_buf_hdr_t *hdr = buf->b_hdr;
1265
9babb374 1266 ASSERT(buf->b_data != NULL);
428870ff
BB
1267 (void) refcount_add(&hdr->b_refcnt, tag);
1268 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
9babb374
BB
1269
1270 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1271}
1272
428870ff
BB
1273/* Detach an arc_buf from a dbuf (tag) */
1274void
1275arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1276{
1277 arc_buf_hdr_t *hdr;
1278
1279 ASSERT(buf->b_data != NULL);
1280 hdr = buf->b_hdr;
1281 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1282 (void) refcount_remove(&hdr->b_refcnt, tag);
1283 buf->b_efunc = NULL;
1284 buf->b_private = NULL;
1285
1286 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1287}
1288
34dc7c2f
BB
1289static arc_buf_t *
1290arc_buf_clone(arc_buf_t *from)
1291{
1292 arc_buf_t *buf;
1293 arc_buf_hdr_t *hdr = from->b_hdr;
1294 uint64_t size = hdr->b_size;
1295
428870ff
BB
1296 ASSERT(hdr->b_state != arc_anon);
1297
34dc7c2f
BB
1298 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1299 buf->b_hdr = hdr;
1300 buf->b_data = NULL;
1301 buf->b_efunc = NULL;
1302 buf->b_private = NULL;
1303 buf->b_next = hdr->b_buf;
1304 hdr->b_buf = buf;
1305 arc_get_data_buf(buf);
1306 bcopy(from->b_data, buf->b_data, size);
1307 hdr->b_datacnt += 1;
1308 return (buf);
1309}
1310
1311void
1312arc_buf_add_ref(arc_buf_t *buf, void* tag)
1313{
1314 arc_buf_hdr_t *hdr;
1315 kmutex_t *hash_lock;
1316
1317 /*
b128c09f
BB
1318 * Check to see if this buffer is evicted. Callers
1319 * must verify b_data != NULL to know if the add_ref
1320 * was successful.
34dc7c2f 1321 */
428870ff 1322 mutex_enter(&buf->b_evict_lock);
b128c09f 1323 if (buf->b_data == NULL) {
428870ff 1324 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1325 return;
1326 }
428870ff 1327 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1328 mutex_enter(hash_lock);
428870ff
BB
1329 hdr = buf->b_hdr;
1330 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1331 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1332
34dc7c2f
BB
1333 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1334 add_reference(hdr, hash_lock, tag);
d164b209 1335 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1336 arc_access(hdr, hash_lock);
1337 mutex_exit(hash_lock);
1338 ARCSTAT_BUMP(arcstat_hits);
1339 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1340 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1341 data, metadata, hits);
1342}
1343
1344/*
1345 * Free the arc data buffer. If it is an l2arc write in progress,
1346 * the buffer is placed on l2arc_free_on_write to be freed later.
1347 */
1348static void
1349arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1350 void *data, size_t size)
1351{
1352 if (HDR_L2_WRITING(hdr)) {
1353 l2arc_data_free_t *df;
1354 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1355 df->l2df_data = data;
1356 df->l2df_size = size;
1357 df->l2df_func = free_func;
1358 mutex_enter(&l2arc_free_on_write_mtx);
1359 list_insert_head(l2arc_free_on_write, df);
1360 mutex_exit(&l2arc_free_on_write_mtx);
1361 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1362 } else {
1363 free_func(data, size);
1364 }
1365}
1366
1367static void
1368arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1369{
1370 arc_buf_t **bufp;
1371
1372 /* free up data associated with the buf */
1373 if (buf->b_data) {
1374 arc_state_t *state = buf->b_hdr->b_state;
1375 uint64_t size = buf->b_hdr->b_size;
1376 arc_buf_contents_t type = buf->b_hdr->b_type;
1377
1378 arc_cksum_verify(buf);
428870ff 1379
34dc7c2f
BB
1380 if (!recycle) {
1381 if (type == ARC_BUFC_METADATA) {
1382 arc_buf_data_free(buf->b_hdr, zio_buf_free,
1383 buf->b_data, size);
d164b209 1384 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f
BB
1385 } else {
1386 ASSERT(type == ARC_BUFC_DATA);
1387 arc_buf_data_free(buf->b_hdr,
1388 zio_data_buf_free, buf->b_data, size);
d164b209 1389 ARCSTAT_INCR(arcstat_data_size, -size);
34dc7c2f
BB
1390 atomic_add_64(&arc_size, -size);
1391 }
1392 }
1393 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1394 uint64_t *cnt = &state->arcs_lsize[type];
1395
1396 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1397 ASSERT(state != arc_anon);
1398
1399 ASSERT3U(*cnt, >=, size);
1400 atomic_add_64(cnt, -size);
1401 }
1402 ASSERT3U(state->arcs_size, >=, size);
1403 atomic_add_64(&state->arcs_size, -size);
1404 buf->b_data = NULL;
1405 ASSERT(buf->b_hdr->b_datacnt > 0);
1406 buf->b_hdr->b_datacnt -= 1;
1407 }
1408
1409 /* only remove the buf if requested */
1410 if (!all)
1411 return;
1412
1413 /* remove the buf from the hdr list */
1414 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1415 continue;
1416 *bufp = buf->b_next;
428870ff 1417 buf->b_next = NULL;
34dc7c2f
BB
1418
1419 ASSERT(buf->b_efunc == NULL);
1420
1421 /* clean up the buf */
1422 buf->b_hdr = NULL;
1423 kmem_cache_free(buf_cache, buf);
1424}
1425
1426static void
1427arc_hdr_destroy(arc_buf_hdr_t *hdr)
1428{
d6320ddb
BB
1429 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1430
34dc7c2f
BB
1431 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1432 ASSERT3P(hdr->b_state, ==, arc_anon);
1433 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1434
428870ff
BB
1435 if (l2hdr != NULL) {
1436 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1437 /*
1438 * To prevent arc_free() and l2arc_evict() from
1439 * attempting to free the same buffer at the same time,
1440 * a FREE_IN_PROGRESS flag is given to arc_free() to
1441 * give it priority. l2arc_evict() can't destroy this
1442 * header while we are waiting on l2arc_buflist_mtx.
1443 *
1444 * The hdr may be removed from l2ad_buflist before we
1445 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1446 */
1447 if (!buflist_held) {
34dc7c2f 1448 mutex_enter(&l2arc_buflist_mtx);
428870ff 1449 l2hdr = hdr->b_l2hdr;
34dc7c2f 1450 }
428870ff
BB
1451
1452 if (l2hdr != NULL) {
1453 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1454 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1455 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1456 if (hdr->b_state == arc_l2c_only)
1457 l2arc_hdr_stat_remove();
1458 hdr->b_l2hdr = NULL;
1459 }
1460
1461 if (!buflist_held)
1462 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f
BB
1463 }
1464
1465 if (!BUF_EMPTY(hdr)) {
1466 ASSERT(!HDR_IN_HASH_TABLE(hdr));
428870ff 1467 buf_discard_identity(hdr);
34dc7c2f
BB
1468 }
1469 while (hdr->b_buf) {
1470 arc_buf_t *buf = hdr->b_buf;
1471
1472 if (buf->b_efunc) {
1473 mutex_enter(&arc_eviction_mtx);
428870ff 1474 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
1475 ASSERT(buf->b_hdr != NULL);
1476 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1477 hdr->b_buf = buf->b_next;
1478 buf->b_hdr = &arc_eviction_hdr;
1479 buf->b_next = arc_eviction_list;
1480 arc_eviction_list = buf;
428870ff 1481 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1482 mutex_exit(&arc_eviction_mtx);
1483 } else {
1484 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1485 }
1486 }
1487 if (hdr->b_freeze_cksum != NULL) {
1488 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1489 hdr->b_freeze_cksum = NULL;
1490 }
428870ff
BB
1491 if (hdr->b_thawed) {
1492 kmem_free(hdr->b_thawed, 1);
1493 hdr->b_thawed = NULL;
1494 }
34dc7c2f
BB
1495
1496 ASSERT(!list_link_active(&hdr->b_arc_node));
1497 ASSERT3P(hdr->b_hash_next, ==, NULL);
1498 ASSERT3P(hdr->b_acb, ==, NULL);
1499 kmem_cache_free(hdr_cache, hdr);
1500}
1501
1502void
1503arc_buf_free(arc_buf_t *buf, void *tag)
1504{
1505 arc_buf_hdr_t *hdr = buf->b_hdr;
1506 int hashed = hdr->b_state != arc_anon;
1507
1508 ASSERT(buf->b_efunc == NULL);
1509 ASSERT(buf->b_data != NULL);
1510
1511 if (hashed) {
1512 kmutex_t *hash_lock = HDR_LOCK(hdr);
1513
1514 mutex_enter(hash_lock);
428870ff
BB
1515 hdr = buf->b_hdr;
1516 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1517
34dc7c2f 1518 (void) remove_reference(hdr, hash_lock, tag);
428870ff 1519 if (hdr->b_datacnt > 1) {
34dc7c2f 1520 arc_buf_destroy(buf, FALSE, TRUE);
428870ff
BB
1521 } else {
1522 ASSERT(buf == hdr->b_buf);
1523 ASSERT(buf->b_efunc == NULL);
34dc7c2f 1524 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 1525 }
34dc7c2f
BB
1526 mutex_exit(hash_lock);
1527 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1528 int destroy_hdr;
1529 /*
1530 * We are in the middle of an async write. Don't destroy
1531 * this buffer unless the write completes before we finish
1532 * decrementing the reference count.
1533 */
1534 mutex_enter(&arc_eviction_mtx);
1535 (void) remove_reference(hdr, NULL, tag);
1536 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1537 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1538 mutex_exit(&arc_eviction_mtx);
1539 if (destroy_hdr)
1540 arc_hdr_destroy(hdr);
1541 } else {
428870ff 1542 if (remove_reference(hdr, NULL, tag) > 0)
34dc7c2f 1543 arc_buf_destroy(buf, FALSE, TRUE);
428870ff 1544 else
34dc7c2f 1545 arc_hdr_destroy(hdr);
34dc7c2f
BB
1546 }
1547}
1548
1549int
1550arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1551{
1552 arc_buf_hdr_t *hdr = buf->b_hdr;
1553 kmutex_t *hash_lock = HDR_LOCK(hdr);
1554 int no_callback = (buf->b_efunc == NULL);
1555
1556 if (hdr->b_state == arc_anon) {
428870ff 1557 ASSERT(hdr->b_datacnt == 1);
34dc7c2f
BB
1558 arc_buf_free(buf, tag);
1559 return (no_callback);
1560 }
1561
1562 mutex_enter(hash_lock);
428870ff
BB
1563 hdr = buf->b_hdr;
1564 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
1565 ASSERT(hdr->b_state != arc_anon);
1566 ASSERT(buf->b_data != NULL);
1567
1568 (void) remove_reference(hdr, hash_lock, tag);
1569 if (hdr->b_datacnt > 1) {
1570 if (no_callback)
1571 arc_buf_destroy(buf, FALSE, TRUE);
1572 } else if (no_callback) {
1573 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
428870ff 1574 ASSERT(buf->b_efunc == NULL);
34dc7c2f
BB
1575 hdr->b_flags |= ARC_BUF_AVAILABLE;
1576 }
1577 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1578 refcount_is_zero(&hdr->b_refcnt));
1579 mutex_exit(hash_lock);
1580 return (no_callback);
1581}
1582
1583int
1584arc_buf_size(arc_buf_t *buf)
1585{
1586 return (buf->b_hdr->b_size);
1587}
1588
1589/*
1590 * Evict buffers from list until we've removed the specified number of
1591 * bytes. Move the removed buffers to the appropriate evict state.
1592 * If the recycle flag is set, then attempt to "recycle" a buffer:
1593 * - look for a buffer to evict that is `bytes' long.
1594 * - return the data block from this buffer rather than freeing it.
1595 * This flag is used by callers that are trying to make space for a
1596 * new buffer in a full arc cache.
1597 *
1598 * This function makes a "best effort". It skips over any buffers
1599 * it can't get a hash_lock on, and so may not catch all candidates.
1600 * It may also return without evicting as much space as requested.
1601 */
1602static void *
d164b209 1603arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
34dc7c2f
BB
1604 arc_buf_contents_t type)
1605{
1606 arc_state_t *evicted_state;
1607 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1608 arc_buf_hdr_t *ab, *ab_prev = NULL;
1609 list_t *list = &state->arcs_list[type];
1610 kmutex_t *hash_lock;
1611 boolean_t have_lock;
1612 void *stolen = NULL;
1613
1614 ASSERT(state == arc_mru || state == arc_mfu);
1615
1616 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1617
1618 mutex_enter(&state->arcs_mtx);
1619 mutex_enter(&evicted_state->arcs_mtx);
1620
1621 for (ab = list_tail(list); ab; ab = ab_prev) {
1622 ab_prev = list_prev(list, ab);
1623 /* prefetch buffers have a minimum lifespan */
1624 if (HDR_IO_IN_PROGRESS(ab) ||
1625 (spa && ab->b_spa != spa) ||
1626 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
428870ff
BB
1627 ddi_get_lbolt() - ab->b_arc_access <
1628 arc_min_prefetch_lifespan)) {
34dc7c2f
BB
1629 skipped++;
1630 continue;
1631 }
1632 /* "lookahead" for better eviction candidate */
1633 if (recycle && ab->b_size != bytes &&
1634 ab_prev && ab_prev->b_size == bytes)
1635 continue;
1636 hash_lock = HDR_LOCK(ab);
1637 have_lock = MUTEX_HELD(hash_lock);
1638 if (have_lock || mutex_tryenter(hash_lock)) {
1639 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1640 ASSERT(ab->b_datacnt > 0);
1641 while (ab->b_buf) {
1642 arc_buf_t *buf = ab->b_buf;
428870ff 1643 if (!mutex_tryenter(&buf->b_evict_lock)) {
b128c09f
BB
1644 missed += 1;
1645 break;
1646 }
34dc7c2f
BB
1647 if (buf->b_data) {
1648 bytes_evicted += ab->b_size;
1649 if (recycle && ab->b_type == type &&
1650 ab->b_size == bytes &&
1651 !HDR_L2_WRITING(ab)) {
1652 stolen = buf->b_data;
1653 recycle = FALSE;
1654 }
1655 }
1656 if (buf->b_efunc) {
1657 mutex_enter(&arc_eviction_mtx);
1658 arc_buf_destroy(buf,
1659 buf->b_data == stolen, FALSE);
1660 ab->b_buf = buf->b_next;
1661 buf->b_hdr = &arc_eviction_hdr;
1662 buf->b_next = arc_eviction_list;
1663 arc_eviction_list = buf;
1664 mutex_exit(&arc_eviction_mtx);
428870ff 1665 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1666 } else {
428870ff 1667 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1668 arc_buf_destroy(buf,
1669 buf->b_data == stolen, TRUE);
1670 }
1671 }
428870ff
BB
1672
1673 if (ab->b_l2hdr) {
1674 ARCSTAT_INCR(arcstat_evict_l2_cached,
1675 ab->b_size);
1676 } else {
1677 if (l2arc_write_eligible(ab->b_spa, ab)) {
1678 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1679 ab->b_size);
1680 } else {
1681 ARCSTAT_INCR(
1682 arcstat_evict_l2_ineligible,
1683 ab->b_size);
1684 }
1685 }
1686
b128c09f
BB
1687 if (ab->b_datacnt == 0) {
1688 arc_change_state(evicted_state, ab, hash_lock);
1689 ASSERT(HDR_IN_HASH_TABLE(ab));
1690 ab->b_flags |= ARC_IN_HASH_TABLE;
1691 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1692 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1693 }
34dc7c2f
BB
1694 if (!have_lock)
1695 mutex_exit(hash_lock);
1696 if (bytes >= 0 && bytes_evicted >= bytes)
1697 break;
1698 } else {
1699 missed += 1;
1700 }
1701 }
1702
1703 mutex_exit(&evicted_state->arcs_mtx);
1704 mutex_exit(&state->arcs_mtx);
1705
1706 if (bytes_evicted < bytes)
1707 dprintf("only evicted %lld bytes from %x",
1708 (longlong_t)bytes_evicted, state);
1709
1710 if (skipped)
1711 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1712
1713 if (missed)
1714 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1715
1716 /*
1717 * We have just evicted some date into the ghost state, make
1718 * sure we also adjust the ghost state size if necessary.
1719 */
1720 if (arc_no_grow &&
1721 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1722 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1723 arc_mru_ghost->arcs_size - arc_c;
1724
1725 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1726 int64_t todelete =
1727 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1728 arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1729 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1730 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1731 arc_mru_ghost->arcs_size +
1732 arc_mfu_ghost->arcs_size - arc_c);
1733 arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1734 }
1735 }
1736
1737 return (stolen);
1738}
1739
1740/*
1741 * Remove buffers from list until we've removed the specified number of
1742 * bytes. Destroy the buffers that are removed.
1743 */
1744static void
d164b209 1745arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
34dc7c2f
BB
1746{
1747 arc_buf_hdr_t *ab, *ab_prev;
572e2857 1748 arc_buf_hdr_t marker = { 0 };
34dc7c2f
BB
1749 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1750 kmutex_t *hash_lock;
1751 uint64_t bytes_deleted = 0;
1752 uint64_t bufs_skipped = 0;
1753
1754 ASSERT(GHOST_STATE(state));
1755top:
1756 mutex_enter(&state->arcs_mtx);
1757 for (ab = list_tail(list); ab; ab = ab_prev) {
1758 ab_prev = list_prev(list, ab);
1759 if (spa && ab->b_spa != spa)
1760 continue;
572e2857
BB
1761
1762 /* ignore markers */
1763 if (ab->b_spa == 0)
1764 continue;
1765
34dc7c2f 1766 hash_lock = HDR_LOCK(ab);
428870ff
BB
1767 /* caller may be trying to modify this buffer, skip it */
1768 if (MUTEX_HELD(hash_lock))
1769 continue;
34dc7c2f
BB
1770 if (mutex_tryenter(hash_lock)) {
1771 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1772 ASSERT(ab->b_buf == NULL);
1773 ARCSTAT_BUMP(arcstat_deleted);
1774 bytes_deleted += ab->b_size;
1775
1776 if (ab->b_l2hdr != NULL) {
1777 /*
1778 * This buffer is cached on the 2nd Level ARC;
1779 * don't destroy the header.
1780 */
1781 arc_change_state(arc_l2c_only, ab, hash_lock);
1782 mutex_exit(hash_lock);
1783 } else {
1784 arc_change_state(arc_anon, ab, hash_lock);
1785 mutex_exit(hash_lock);
1786 arc_hdr_destroy(ab);
1787 }
1788
1789 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1790 if (bytes >= 0 && bytes_deleted >= bytes)
1791 break;
572e2857
BB
1792 } else if (bytes < 0) {
1793 /*
1794 * Insert a list marker and then wait for the
1795 * hash lock to become available. Once its
1796 * available, restart from where we left off.
1797 */
1798 list_insert_after(list, ab, &marker);
1799 mutex_exit(&state->arcs_mtx);
1800 mutex_enter(hash_lock);
1801 mutex_exit(hash_lock);
1802 mutex_enter(&state->arcs_mtx);
1803 ab_prev = list_prev(list, &marker);
1804 list_remove(list, &marker);
1805 } else
34dc7c2f 1806 bufs_skipped += 1;
34dc7c2f
BB
1807 }
1808 mutex_exit(&state->arcs_mtx);
1809
1810 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1811 (bytes < 0 || bytes_deleted < bytes)) {
1812 list = &state->arcs_list[ARC_BUFC_METADATA];
1813 goto top;
1814 }
1815
1816 if (bufs_skipped) {
1817 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1818 ASSERT(bytes >= 0);
1819 }
1820
1821 if (bytes_deleted < bytes)
1822 dprintf("only deleted %lld bytes from %p",
1823 (longlong_t)bytes_deleted, state);
1824}
1825
1826static void
1827arc_adjust(void)
1828{
d164b209
BB
1829 int64_t adjustment, delta;
1830
1831 /*
1832 * Adjust MRU size
1833 */
34dc7c2f 1834
572e2857
BB
1835 adjustment = MIN((int64_t)(arc_size - arc_c),
1836 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1837 arc_p));
34dc7c2f 1838
d164b209
BB
1839 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1840 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1841 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1842 adjustment -= delta;
34dc7c2f
BB
1843 }
1844
d164b209
BB
1845 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1846 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1847 (void) arc_evict(arc_mru, NULL, delta, FALSE,
34dc7c2f 1848 ARC_BUFC_METADATA);
34dc7c2f
BB
1849 }
1850
d164b209
BB
1851 /*
1852 * Adjust MFU size
1853 */
34dc7c2f 1854
d164b209
BB
1855 adjustment = arc_size - arc_c;
1856
1857 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1858 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1859 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1860 adjustment -= delta;
34dc7c2f
BB
1861 }
1862
d164b209
BB
1863 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1864 int64_t delta = MIN(adjustment,
1865 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1866 (void) arc_evict(arc_mfu, NULL, delta, FALSE,
1867 ARC_BUFC_METADATA);
1868 }
34dc7c2f 1869
d164b209
BB
1870 /*
1871 * Adjust ghost lists
1872 */
34dc7c2f 1873
d164b209
BB
1874 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1875
1876 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1877 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1878 arc_evict_ghost(arc_mru_ghost, NULL, delta);
1879 }
34dc7c2f 1880
d164b209
BB
1881 adjustment =
1882 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
34dc7c2f 1883
d164b209
BB
1884 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1885 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1886 arc_evict_ghost(arc_mfu_ghost, NULL, delta);
34dc7c2f
BB
1887 }
1888}
1889
1890static void
1891arc_do_user_evicts(void)
1892{
1893 mutex_enter(&arc_eviction_mtx);
1894 while (arc_eviction_list != NULL) {
1895 arc_buf_t *buf = arc_eviction_list;
1896 arc_eviction_list = buf->b_next;
428870ff 1897 mutex_enter(&buf->b_evict_lock);
34dc7c2f 1898 buf->b_hdr = NULL;
428870ff 1899 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1900 mutex_exit(&arc_eviction_mtx);
1901
1902 if (buf->b_efunc != NULL)
1903 VERIFY(buf->b_efunc(buf) == 0);
1904
1905 buf->b_efunc = NULL;
1906 buf->b_private = NULL;
1907 kmem_cache_free(buf_cache, buf);
1908 mutex_enter(&arc_eviction_mtx);
1909 }
1910 mutex_exit(&arc_eviction_mtx);
1911}
1912
1913/*
1914 * Flush all *evictable* data from the cache for the given spa.
1915 * NOTE: this will not touch "active" (i.e. referenced) data.
1916 */
1917void
1918arc_flush(spa_t *spa)
1919{
d164b209
BB
1920 uint64_t guid = 0;
1921
1922 if (spa)
1923 guid = spa_guid(spa);
1924
34dc7c2f 1925 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
d164b209 1926 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
1927 if (spa)
1928 break;
1929 }
1930 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
d164b209 1931 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
1932 if (spa)
1933 break;
1934 }
1935 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
d164b209 1936 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
1937 if (spa)
1938 break;
1939 }
1940 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
d164b209 1941 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
1942 if (spa)
1943 break;
1944 }
1945
d164b209
BB
1946 arc_evict_ghost(arc_mru_ghost, guid, -1);
1947 arc_evict_ghost(arc_mfu_ghost, guid, -1);
34dc7c2f
BB
1948
1949 mutex_enter(&arc_reclaim_thr_lock);
1950 arc_do_user_evicts();
1951 mutex_exit(&arc_reclaim_thr_lock);
1952 ASSERT(spa || arc_eviction_list == NULL);
1953}
1954
34dc7c2f
BB
1955void
1956arc_shrink(void)
1957{
1958 if (arc_c > arc_c_min) {
1959 uint64_t to_free;
1960
1961#ifdef _KERNEL
1962 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1963#else
1964 to_free = arc_c >> arc_shrink_shift;
1965#endif
1966 if (arc_c > arc_c_min + to_free)
1967 atomic_add_64(&arc_c, -to_free);
1968 else
1969 arc_c = arc_c_min;
1970
1971 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1972 if (arc_c > arc_size)
1973 arc_c = MAX(arc_size, arc_c_min);
1974 if (arc_p > arc_c)
1975 arc_p = (arc_c >> 1);
1976 ASSERT(arc_c >= arc_c_min);
1977 ASSERT((int64_t)arc_p >= 0);
1978 }
1979
1980 if (arc_size > arc_c)
1981 arc_adjust();
1982}
1983
1984static int
1985arc_reclaim_needed(void)
1986{
1987 uint64_t extra;
1988
1989#ifdef _KERNEL
1990
1991 if (needfree)
1992 return (1);
1993
1994 /*
1995 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1996 */
1997 extra = desfree;
1998
1999 /*
2000 * check that we're out of range of the pageout scanner. It starts to
2001 * schedule paging if freemem is less than lotsfree and needfree.
2002 * lotsfree is the high-water mark for pageout, and needfree is the
2003 * number of needed free pages. We add extra pages here to make sure
2004 * the scanner doesn't start up while we're freeing memory.
2005 */
2006 if (freemem < lotsfree + needfree + extra)
2007 return (1);
2008
2009 /*
2010 * check to make sure that swapfs has enough space so that anon
2011 * reservations can still succeed. anon_resvmem() checks that the
2012 * availrmem is greater than swapfs_minfree, and the number of reserved
2013 * swap pages. We also add a bit of extra here just to prevent
2014 * circumstances from getting really dire.
2015 */
2016 if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2017 return (1);
2018
2019#if defined(__i386)
2020 /*
2021 * If we're on an i386 platform, it's possible that we'll exhaust the
2022 * kernel heap space before we ever run out of available physical
2023 * memory. Most checks of the size of the heap_area compare against
2024 * tune.t_minarmem, which is the minimum available real memory that we
2025 * can have in the system. However, this is generally fixed at 25 pages
2026 * which is so low that it's useless. In this comparison, we seek to
2027 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2028 * heap is allocated. (Or, in the calculation, if less than 1/4th is
2029 * free)
2030 */
2031 if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2032 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2033 return (1);
2034#endif
2035
2036#else
2037 if (spa_get_random(100) == 0)
2038 return (1);
2039#endif
2040 return (0);
2041}
2042
2043static void
2044arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2045{
2046 size_t i;
2047 kmem_cache_t *prev_cache = NULL;
2048 kmem_cache_t *prev_data_cache = NULL;
2049 extern kmem_cache_t *zio_buf_cache[];
2050 extern kmem_cache_t *zio_data_buf_cache[];
2051
2052#ifdef _KERNEL
2053 if (arc_meta_used >= arc_meta_limit) {
2054 /*
2055 * We are exceeding our meta-data cache limit.
2056 * Purge some DNLC entries to release holds on meta-data.
2057 */
2058 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2059 }
2060#if defined(__i386)
2061 /*
2062 * Reclaim unused memory from all kmem caches.
2063 */
2064 kmem_reap();
2065#endif
2066#endif
2067
2068 /*
2069 * An aggressive reclamation will shrink the cache size as well as
2070 * reap free buffers from the arc kmem caches.
2071 */
2072 if (strat == ARC_RECLAIM_AGGR)
2073 arc_shrink();
2074
2075 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2076 if (zio_buf_cache[i] != prev_cache) {
2077 prev_cache = zio_buf_cache[i];
2078 kmem_cache_reap_now(zio_buf_cache[i]);
2079 }
2080 if (zio_data_buf_cache[i] != prev_data_cache) {
2081 prev_data_cache = zio_data_buf_cache[i];
2082 kmem_cache_reap_now(zio_data_buf_cache[i]);
2083 }
2084 }
2085 kmem_cache_reap_now(buf_cache);
2086 kmem_cache_reap_now(hdr_cache);
2087}
2088
2089static void
2090arc_reclaim_thread(void)
2091{
2092 clock_t growtime = 0;
2093 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2094 callb_cpr_t cpr;
2095
2096 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2097
2098 mutex_enter(&arc_reclaim_thr_lock);
2099 while (arc_thread_exit == 0) {
2100 if (arc_reclaim_needed()) {
2101
2102 if (arc_no_grow) {
2103 if (last_reclaim == ARC_RECLAIM_CONS) {
2104 last_reclaim = ARC_RECLAIM_AGGR;
2105 } else {
2106 last_reclaim = ARC_RECLAIM_CONS;
2107 }
2108 } else {
2109 arc_no_grow = TRUE;
2110 last_reclaim = ARC_RECLAIM_AGGR;
2111 membar_producer();
2112 }
2113
2114 /* reset the growth delay for every reclaim */
428870ff 2115 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
34dc7c2f
BB
2116
2117 arc_kmem_reap_now(last_reclaim);
b128c09f 2118 arc_warm = B_TRUE;
34dc7c2f 2119
428870ff 2120 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
34dc7c2f
BB
2121 arc_no_grow = FALSE;
2122 }
2123
572e2857 2124 arc_adjust();
34dc7c2f
BB
2125
2126 if (arc_eviction_list != NULL)
2127 arc_do_user_evicts();
2128
2129 /* block until needed, or one second, whichever is shorter */
2130 CALLB_CPR_SAFE_BEGIN(&cpr);
2131 (void) cv_timedwait(&arc_reclaim_thr_cv,
428870ff 2132 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
34dc7c2f
BB
2133 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2134 }
2135
2136 arc_thread_exit = 0;
2137 cv_broadcast(&arc_reclaim_thr_cv);
2138 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2139 thread_exit();
2140}
2141
2142/*
2143 * Adapt arc info given the number of bytes we are trying to add and
2144 * the state that we are comming from. This function is only called
2145 * when we are adding new content to the cache.
2146 */
2147static void
2148arc_adapt(int bytes, arc_state_t *state)
2149{
2150 int mult;
d164b209 2151 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
34dc7c2f
BB
2152
2153 if (state == arc_l2c_only)
2154 return;
2155
2156 ASSERT(bytes > 0);
2157 /*
2158 * Adapt the target size of the MRU list:
2159 * - if we just hit in the MRU ghost list, then increase
2160 * the target size of the MRU list.
2161 * - if we just hit in the MFU ghost list, then increase
2162 * the target size of the MFU list by decreasing the
2163 * target size of the MRU list.
2164 */
2165 if (state == arc_mru_ghost) {
2166 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2167 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
572e2857 2168 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 2169
d164b209 2170 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 2171 } else if (state == arc_mfu_ghost) {
d164b209
BB
2172 uint64_t delta;
2173
34dc7c2f
BB
2174 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2175 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
572e2857 2176 mult = MIN(mult, 10);
34dc7c2f 2177
d164b209
BB
2178 delta = MIN(bytes * mult, arc_p);
2179 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
2180 }
2181 ASSERT((int64_t)arc_p >= 0);
2182
2183 if (arc_reclaim_needed()) {
2184 cv_signal(&arc_reclaim_thr_cv);
2185 return;
2186 }
2187
2188 if (arc_no_grow)
2189 return;
2190
2191 if (arc_c >= arc_c_max)
2192 return;
2193
2194 /*
2195 * If we're within (2 * maxblocksize) bytes of the target
2196 * cache size, increment the target cache size
2197 */
2198 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2199 atomic_add_64(&arc_c, (int64_t)bytes);
2200 if (arc_c > arc_c_max)
2201 arc_c = arc_c_max;
2202 else if (state == arc_anon)
2203 atomic_add_64(&arc_p, (int64_t)bytes);
2204 if (arc_p > arc_c)
2205 arc_p = arc_c;
2206 }
2207 ASSERT((int64_t)arc_p >= 0);
2208}
2209
2210/*
2211 * Check if the cache has reached its limits and eviction is required
2212 * prior to insert.
2213 */
2214static int
2215arc_evict_needed(arc_buf_contents_t type)
2216{
2217 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2218 return (1);
2219
2220#ifdef _KERNEL
2221 /*
2222 * If zio data pages are being allocated out of a separate heap segment,
2223 * then enforce that the size of available vmem for this area remains
2224 * above about 1/32nd free.
2225 */
2226 if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2227 vmem_size(zio_arena, VMEM_FREE) <
2228 (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2229 return (1);
2230#endif
2231
2232 if (arc_reclaim_needed())
2233 return (1);
2234
2235 return (arc_size > arc_c);
2236}
2237
2238/*
2239 * The buffer, supplied as the first argument, needs a data block.
2240 * So, if we are at cache max, determine which cache should be victimized.
2241 * We have the following cases:
2242 *
2243 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2244 * In this situation if we're out of space, but the resident size of the MFU is
2245 * under the limit, victimize the MFU cache to satisfy this insertion request.
2246 *
2247 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2248 * Here, we've used up all of the available space for the MRU, so we need to
2249 * evict from our own cache instead. Evict from the set of resident MRU
2250 * entries.
2251 *
2252 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2253 * c minus p represents the MFU space in the cache, since p is the size of the
2254 * cache that is dedicated to the MRU. In this situation there's still space on
2255 * the MFU side, so the MRU side needs to be victimized.
2256 *
2257 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2258 * MFU's resident set is consuming more space than it has been allotted. In
2259 * this situation, we must victimize our own cache, the MFU, for this insertion.
2260 */
2261static void
2262arc_get_data_buf(arc_buf_t *buf)
2263{
2264 arc_state_t *state = buf->b_hdr->b_state;
2265 uint64_t size = buf->b_hdr->b_size;
2266 arc_buf_contents_t type = buf->b_hdr->b_type;
2267
2268 arc_adapt(size, state);
2269
2270 /*
2271 * We have not yet reached cache maximum size,
2272 * just allocate a new buffer.
2273 */
2274 if (!arc_evict_needed(type)) {
2275 if (type == ARC_BUFC_METADATA) {
2276 buf->b_data = zio_buf_alloc(size);
d164b209 2277 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f
BB
2278 } else {
2279 ASSERT(type == ARC_BUFC_DATA);
2280 buf->b_data = zio_data_buf_alloc(size);
d164b209 2281 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2282 atomic_add_64(&arc_size, size);
2283 }
2284 goto out;
2285 }
2286
2287 /*
2288 * If we are prefetching from the mfu ghost list, this buffer
2289 * will end up on the mru list; so steal space from there.
2290 */
2291 if (state == arc_mfu_ghost)
2292 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2293 else if (state == arc_mru_ghost)
2294 state = arc_mru;
2295
2296 if (state == arc_mru || state == arc_anon) {
2297 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
d164b209 2298 state = (arc_mfu->arcs_lsize[type] >= size &&
34dc7c2f
BB
2299 arc_p > mru_used) ? arc_mfu : arc_mru;
2300 } else {
2301 /* MFU cases */
2302 uint64_t mfu_space = arc_c - arc_p;
d164b209 2303 state = (arc_mru->arcs_lsize[type] >= size &&
34dc7c2f
BB
2304 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2305 }
2306 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2307 if (type == ARC_BUFC_METADATA) {
2308 buf->b_data = zio_buf_alloc(size);
d164b209 2309 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f
BB
2310 } else {
2311 ASSERT(type == ARC_BUFC_DATA);
2312 buf->b_data = zio_data_buf_alloc(size);
d164b209 2313 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2314 atomic_add_64(&arc_size, size);
2315 }
2316 ARCSTAT_BUMP(arcstat_recycle_miss);
2317 }
2318 ASSERT(buf->b_data != NULL);
2319out:
2320 /*
2321 * Update the state size. Note that ghost states have a
2322 * "ghost size" and so don't need to be updated.
2323 */
2324 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2325 arc_buf_hdr_t *hdr = buf->b_hdr;
2326
2327 atomic_add_64(&hdr->b_state->arcs_size, size);
2328 if (list_link_active(&hdr->b_arc_node)) {
2329 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2330 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2331 }
2332 /*
2333 * If we are growing the cache, and we are adding anonymous
2334 * data, and we have outgrown arc_p, update arc_p
2335 */
2336 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2337 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2338 arc_p = MIN(arc_c, arc_p + size);
2339 }
2340}
2341
2342/*
2343 * This routine is called whenever a buffer is accessed.
2344 * NOTE: the hash lock is dropped in this function.
2345 */
2346static void
2347arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2348{
428870ff
BB
2349 clock_t now;
2350
34dc7c2f
BB
2351 ASSERT(MUTEX_HELD(hash_lock));
2352
2353 if (buf->b_state == arc_anon) {
2354 /*
2355 * This buffer is not in the cache, and does not
2356 * appear in our "ghost" list. Add the new buffer
2357 * to the MRU state.
2358 */
2359
2360 ASSERT(buf->b_arc_access == 0);
428870ff 2361 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2362 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2363 arc_change_state(arc_mru, buf, hash_lock);
2364
2365 } else if (buf->b_state == arc_mru) {
428870ff
BB
2366 now = ddi_get_lbolt();
2367
34dc7c2f
BB
2368 /*
2369 * If this buffer is here because of a prefetch, then either:
2370 * - clear the flag if this is a "referencing" read
2371 * (any subsequent access will bump this into the MFU state).
2372 * or
2373 * - move the buffer to the head of the list if this is
2374 * another prefetch (to make it less likely to be evicted).
2375 */
2376 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2377 if (refcount_count(&buf->b_refcnt) == 0) {
2378 ASSERT(list_link_active(&buf->b_arc_node));
2379 } else {
2380 buf->b_flags &= ~ARC_PREFETCH;
2381 ARCSTAT_BUMP(arcstat_mru_hits);
2382 }
428870ff 2383 buf->b_arc_access = now;
34dc7c2f
BB
2384 return;
2385 }
2386
2387 /*
2388 * This buffer has been "accessed" only once so far,
2389 * but it is still in the cache. Move it to the MFU
2390 * state.
2391 */
428870ff 2392 if (now > buf->b_arc_access + ARC_MINTIME) {
34dc7c2f
BB
2393 /*
2394 * More than 125ms have passed since we
2395 * instantiated this buffer. Move it to the
2396 * most frequently used state.
2397 */
428870ff 2398 buf->b_arc_access = now;
34dc7c2f
BB
2399 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2400 arc_change_state(arc_mfu, buf, hash_lock);
2401 }
2402 ARCSTAT_BUMP(arcstat_mru_hits);
2403 } else if (buf->b_state == arc_mru_ghost) {
2404 arc_state_t *new_state;
2405 /*
2406 * This buffer has been "accessed" recently, but
2407 * was evicted from the cache. Move it to the
2408 * MFU state.
2409 */
2410
2411 if (buf->b_flags & ARC_PREFETCH) {
2412 new_state = arc_mru;
2413 if (refcount_count(&buf->b_refcnt) > 0)
2414 buf->b_flags &= ~ARC_PREFETCH;
2415 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2416 } else {
2417 new_state = arc_mfu;
2418 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2419 }
2420
428870ff 2421 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2422 arc_change_state(new_state, buf, hash_lock);
2423
2424 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2425 } else if (buf->b_state == arc_mfu) {
2426 /*
2427 * This buffer has been accessed more than once and is
2428 * still in the cache. Keep it in the MFU state.
2429 *
2430 * NOTE: an add_reference() that occurred when we did
2431 * the arc_read() will have kicked this off the list.
2432 * If it was a prefetch, we will explicitly move it to
2433 * the head of the list now.
2434 */
2435 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2436 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2437 ASSERT(list_link_active(&buf->b_arc_node));
2438 }
2439 ARCSTAT_BUMP(arcstat_mfu_hits);
428870ff 2440 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2441 } else if (buf->b_state == arc_mfu_ghost) {
2442 arc_state_t *new_state = arc_mfu;
2443 /*
2444 * This buffer has been accessed more than once but has
2445 * been evicted from the cache. Move it back to the
2446 * MFU state.
2447 */
2448
2449 if (buf->b_flags & ARC_PREFETCH) {
2450 /*
2451 * This is a prefetch access...
2452 * move this block back to the MRU state.
2453 */
2454 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2455 new_state = arc_mru;
2456 }
2457
428870ff 2458 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2459 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2460 arc_change_state(new_state, buf, hash_lock);
2461
2462 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2463 } else if (buf->b_state == arc_l2c_only) {
2464 /*
2465 * This buffer is on the 2nd Level ARC.
2466 */
2467
428870ff 2468 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2469 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2470 arc_change_state(arc_mfu, buf, hash_lock);
2471 } else {
2472 ASSERT(!"invalid arc state");
2473 }
2474}
2475
2476/* a generic arc_done_func_t which you can use */
2477/* ARGSUSED */
2478void
2479arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2480{
428870ff
BB
2481 if (zio == NULL || zio->io_error == 0)
2482 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
34dc7c2f
BB
2483 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2484}
2485
2486/* a generic arc_done_func_t */
2487void
2488arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2489{
2490 arc_buf_t **bufp = arg;
2491 if (zio && zio->io_error) {
2492 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2493 *bufp = NULL;
2494 } else {
2495 *bufp = buf;
428870ff 2496 ASSERT(buf->b_data);
34dc7c2f
BB
2497 }
2498}
2499
2500static void
2501arc_read_done(zio_t *zio)
2502{
2503 arc_buf_hdr_t *hdr, *found;
2504 arc_buf_t *buf;
2505 arc_buf_t *abuf; /* buffer we're assigning to callback */
2506 kmutex_t *hash_lock;
2507 arc_callback_t *callback_list, *acb;
2508 int freeable = FALSE;
2509
2510 buf = zio->io_private;
2511 hdr = buf->b_hdr;
2512
2513 /*
2514 * The hdr was inserted into hash-table and removed from lists
2515 * prior to starting I/O. We should find this header, since
2516 * it's in the hash table, and it should be legit since it's
2517 * not possible to evict it during the I/O. The only possible
2518 * reason for it not to be found is if we were freed during the
2519 * read.
2520 */
d164b209 2521 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
34dc7c2f
BB
2522 &hash_lock);
2523
2524 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2525 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2526 (found == hdr && HDR_L2_READING(hdr)));
2527
b128c09f 2528 hdr->b_flags &= ~ARC_L2_EVICTED;
34dc7c2f 2529 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
b128c09f 2530 hdr->b_flags &= ~ARC_L2CACHE;
34dc7c2f
BB
2531
2532 /* byteswap if necessary */
2533 callback_list = hdr->b_acb;
2534 ASSERT(callback_list != NULL);
428870ff 2535 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
b128c09f
BB
2536 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2537 byteswap_uint64_array :
2538 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2539 func(buf->b_data, hdr->b_size);
2540 }
34dc7c2f
BB
2541
2542 arc_cksum_compute(buf, B_FALSE);
2543
428870ff
BB
2544 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2545 /*
2546 * Only call arc_access on anonymous buffers. This is because
2547 * if we've issued an I/O for an evicted buffer, we've already
2548 * called arc_access (to prevent any simultaneous readers from
2549 * getting confused).
2550 */
2551 arc_access(hdr, hash_lock);
2552 }
2553
34dc7c2f
BB
2554 /* create copies of the data buffer for the callers */
2555 abuf = buf;
2556 for (acb = callback_list; acb; acb = acb->acb_next) {
2557 if (acb->acb_done) {
2558 if (abuf == NULL)
2559 abuf = arc_buf_clone(buf);
2560 acb->acb_buf = abuf;
2561 abuf = NULL;
2562 }
2563 }
2564 hdr->b_acb = NULL;
2565 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2566 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
2567 if (abuf == buf) {
2568 ASSERT(buf->b_efunc == NULL);
2569 ASSERT(hdr->b_datacnt == 1);
34dc7c2f 2570 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 2571 }
34dc7c2f
BB
2572
2573 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2574
2575 if (zio->io_error != 0) {
2576 hdr->b_flags |= ARC_IO_ERROR;
2577 if (hdr->b_state != arc_anon)
2578 arc_change_state(arc_anon, hdr, hash_lock);
2579 if (HDR_IN_HASH_TABLE(hdr))
2580 buf_hash_remove(hdr);
2581 freeable = refcount_is_zero(&hdr->b_refcnt);
34dc7c2f
BB
2582 }
2583
2584 /*
2585 * Broadcast before we drop the hash_lock to avoid the possibility
2586 * that the hdr (and hence the cv) might be freed before we get to
2587 * the cv_broadcast().
2588 */
2589 cv_broadcast(&hdr->b_cv);
2590
2591 if (hash_lock) {
34dc7c2f
BB
2592 mutex_exit(hash_lock);
2593 } else {
2594 /*
2595 * This block was freed while we waited for the read to
2596 * complete. It has been removed from the hash table and
2597 * moved to the anonymous state (so that it won't show up
2598 * in the cache).
2599 */
2600 ASSERT3P(hdr->b_state, ==, arc_anon);
2601 freeable = refcount_is_zero(&hdr->b_refcnt);
2602 }
2603
2604 /* execute each callback and free its structure */
2605 while ((acb = callback_list) != NULL) {
2606 if (acb->acb_done)
2607 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2608
2609 if (acb->acb_zio_dummy != NULL) {
2610 acb->acb_zio_dummy->io_error = zio->io_error;
2611 zio_nowait(acb->acb_zio_dummy);
2612 }
2613
2614 callback_list = acb->acb_next;
2615 kmem_free(acb, sizeof (arc_callback_t));
2616 }
2617
2618 if (freeable)
2619 arc_hdr_destroy(hdr);
2620}
2621
2622/*
2623 * "Read" the block block at the specified DVA (in bp) via the
2624 * cache. If the block is found in the cache, invoke the provided
2625 * callback immediately and return. Note that the `zio' parameter
2626 * in the callback will be NULL in this case, since no IO was
2627 * required. If the block is not in the cache pass the read request
2628 * on to the spa with a substitute callback function, so that the
2629 * requested block will be added to the cache.
2630 *
2631 * If a read request arrives for a block that has a read in-progress,
2632 * either wait for the in-progress read to complete (and return the
2633 * results); or, if this is a read with a "done" func, add a record
2634 * to the read to invoke the "done" func when the read completes,
2635 * and return; or just return.
2636 *
2637 * arc_read_done() will invoke all the requested "done" functions
2638 * for readers of this block.
b128c09f
BB
2639 *
2640 * Normal callers should use arc_read and pass the arc buffer and offset
2641 * for the bp. But if you know you don't need locking, you can use
2642 * arc_read_bp.
34dc7c2f
BB
2643 */
2644int
428870ff 2645arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
b128c09f
BB
2646 arc_done_func_t *done, void *private, int priority, int zio_flags,
2647 uint32_t *arc_flags, const zbookmark_t *zb)
2648{
2649 int err;
b128c09f 2650
428870ff
BB
2651 if (pbuf == NULL) {
2652 /*
2653 * XXX This happens from traverse callback funcs, for
2654 * the objset_phys_t block.
2655 */
2656 return (arc_read_nolock(pio, spa, bp, done, private, priority,
2657 zio_flags, arc_flags, zb));
2658 }
2659
b128c09f
BB
2660 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2661 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
428870ff 2662 rw_enter(&pbuf->b_data_lock, RW_READER);
b128c09f
BB
2663
2664 err = arc_read_nolock(pio, spa, bp, done, private, priority,
2665 zio_flags, arc_flags, zb);
428870ff 2666 rw_exit(&pbuf->b_data_lock);
9babb374 2667
b128c09f
BB
2668 return (err);
2669}
2670
2671int
428870ff 2672arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
b128c09f
BB
2673 arc_done_func_t *done, void *private, int priority, int zio_flags,
2674 uint32_t *arc_flags, const zbookmark_t *zb)
34dc7c2f
BB
2675{
2676 arc_buf_hdr_t *hdr;
2677 arc_buf_t *buf;
2678 kmutex_t *hash_lock;
2679 zio_t *rzio;
d164b209 2680 uint64_t guid = spa_guid(spa);
34dc7c2f
BB
2681
2682top:
428870ff
BB
2683 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2684 &hash_lock);
34dc7c2f
BB
2685 if (hdr && hdr->b_datacnt > 0) {
2686
2687 *arc_flags |= ARC_CACHED;
2688
2689 if (HDR_IO_IN_PROGRESS(hdr)) {
2690
2691 if (*arc_flags & ARC_WAIT) {
2692 cv_wait(&hdr->b_cv, hash_lock);
2693 mutex_exit(hash_lock);
2694 goto top;
2695 }
2696 ASSERT(*arc_flags & ARC_NOWAIT);
2697
2698 if (done) {
2699 arc_callback_t *acb = NULL;
2700
2701 acb = kmem_zalloc(sizeof (arc_callback_t),
2702 KM_SLEEP);
2703 acb->acb_done = done;
2704 acb->acb_private = private;
34dc7c2f
BB
2705 if (pio != NULL)
2706 acb->acb_zio_dummy = zio_null(pio,
d164b209 2707 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
2708
2709 ASSERT(acb->acb_done != NULL);
2710 acb->acb_next = hdr->b_acb;
2711 hdr->b_acb = acb;
2712 add_reference(hdr, hash_lock, private);
2713 mutex_exit(hash_lock);
2714 return (0);
2715 }
2716 mutex_exit(hash_lock);
2717 return (0);
2718 }
2719
2720 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2721
2722 if (done) {
2723 add_reference(hdr, hash_lock, private);
2724 /*
2725 * If this block is already in use, create a new
2726 * copy of the data so that we will be guaranteed
2727 * that arc_release() will always succeed.
2728 */
2729 buf = hdr->b_buf;
2730 ASSERT(buf);
2731 ASSERT(buf->b_data);
2732 if (HDR_BUF_AVAILABLE(hdr)) {
2733 ASSERT(buf->b_efunc == NULL);
2734 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2735 } else {
2736 buf = arc_buf_clone(buf);
2737 }
428870ff 2738
34dc7c2f
BB
2739 } else if (*arc_flags & ARC_PREFETCH &&
2740 refcount_count(&hdr->b_refcnt) == 0) {
2741 hdr->b_flags |= ARC_PREFETCH;
2742 }
2743 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2744 arc_access(hdr, hash_lock);
b128c09f
BB
2745 if (*arc_flags & ARC_L2CACHE)
2746 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
2747 mutex_exit(hash_lock);
2748 ARCSTAT_BUMP(arcstat_hits);
2749 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2750 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2751 data, metadata, hits);
2752
2753 if (done)
2754 done(NULL, buf, private);
2755 } else {
2756 uint64_t size = BP_GET_LSIZE(bp);
2757 arc_callback_t *acb;
b128c09f 2758 vdev_t *vd = NULL;
9babb374 2759 uint64_t addr;
d164b209 2760 boolean_t devw = B_FALSE;
34dc7c2f
BB
2761
2762 if (hdr == NULL) {
2763 /* this block is not in the cache */
2764 arc_buf_hdr_t *exists;
2765 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2766 buf = arc_buf_alloc(spa, size, private, type);
2767 hdr = buf->b_hdr;
2768 hdr->b_dva = *BP_IDENTITY(bp);
428870ff 2769 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
2770 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2771 exists = buf_hash_insert(hdr, &hash_lock);
2772 if (exists) {
2773 /* somebody beat us to the hash insert */
2774 mutex_exit(hash_lock);
428870ff 2775 buf_discard_identity(hdr);
34dc7c2f
BB
2776 (void) arc_buf_remove_ref(buf, private);
2777 goto top; /* restart the IO request */
2778 }
2779 /* if this is a prefetch, we don't have a reference */
2780 if (*arc_flags & ARC_PREFETCH) {
2781 (void) remove_reference(hdr, hash_lock,
2782 private);
2783 hdr->b_flags |= ARC_PREFETCH;
2784 }
b128c09f
BB
2785 if (*arc_flags & ARC_L2CACHE)
2786 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
2787 if (BP_GET_LEVEL(bp) > 0)
2788 hdr->b_flags |= ARC_INDIRECT;
2789 } else {
2790 /* this block is in the ghost cache */
2791 ASSERT(GHOST_STATE(hdr->b_state));
2792 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2793 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2794 ASSERT(hdr->b_buf == NULL);
2795
2796 /* if this is a prefetch, we don't have a reference */
2797 if (*arc_flags & ARC_PREFETCH)
2798 hdr->b_flags |= ARC_PREFETCH;
2799 else
2800 add_reference(hdr, hash_lock, private);
b128c09f
BB
2801 if (*arc_flags & ARC_L2CACHE)
2802 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
2803 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2804 buf->b_hdr = hdr;
2805 buf->b_data = NULL;
2806 buf->b_efunc = NULL;
2807 buf->b_private = NULL;
2808 buf->b_next = NULL;
2809 hdr->b_buf = buf;
34dc7c2f
BB
2810 ASSERT(hdr->b_datacnt == 0);
2811 hdr->b_datacnt = 1;
428870ff
BB
2812 arc_get_data_buf(buf);
2813 arc_access(hdr, hash_lock);
34dc7c2f
BB
2814 }
2815
428870ff
BB
2816 ASSERT(!GHOST_STATE(hdr->b_state));
2817
34dc7c2f
BB
2818 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2819 acb->acb_done = done;
2820 acb->acb_private = private;
34dc7c2f
BB
2821
2822 ASSERT(hdr->b_acb == NULL);
2823 hdr->b_acb = acb;
2824 hdr->b_flags |= ARC_IO_IN_PROGRESS;
2825
b128c09f
BB
2826 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2827 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
d164b209 2828 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
b128c09f
BB
2829 addr = hdr->b_l2hdr->b_daddr;
2830 /*
2831 * Lock out device removal.
2832 */
2833 if (vdev_is_dead(vd) ||
2834 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2835 vd = NULL;
2836 }
2837
2838 mutex_exit(hash_lock);
2839
34dc7c2f 2840 ASSERT3U(hdr->b_size, ==, size);
428870ff
BB
2841 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2842 uint64_t, size, zbookmark_t *, zb);
34dc7c2f
BB
2843 ARCSTAT_BUMP(arcstat_misses);
2844 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2845 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2846 data, metadata, misses);
2847
d164b209 2848 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
2849 /*
2850 * Read from the L2ARC if the following are true:
b128c09f
BB
2851 * 1. The L2ARC vdev was previously cached.
2852 * 2. This buffer still has L2ARC metadata.
2853 * 3. This buffer isn't currently writing to the L2ARC.
2854 * 4. The L2ARC entry wasn't evicted, which may
2855 * also have invalidated the vdev.
d164b209 2856 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 2857 */
b128c09f 2858 if (hdr->b_l2hdr != NULL &&
d164b209
BB
2859 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2860 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
2861 l2arc_read_callback_t *cb;
2862
2863 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2864 ARCSTAT_BUMP(arcstat_l2_hits);
2865
34dc7c2f
BB
2866 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2867 KM_SLEEP);
2868 cb->l2rcb_buf = buf;
2869 cb->l2rcb_spa = spa;
2870 cb->l2rcb_bp = *bp;
2871 cb->l2rcb_zb = *zb;
b128c09f 2872 cb->l2rcb_flags = zio_flags;
34dc7c2f
BB
2873
2874 /*
b128c09f
BB
2875 * l2arc read. The SCL_L2ARC lock will be
2876 * released by l2arc_read_done().
34dc7c2f
BB
2877 */
2878 rzio = zio_read_phys(pio, vd, addr, size,
2879 buf->b_data, ZIO_CHECKSUM_OFF,
b128c09f
BB
2880 l2arc_read_done, cb, priority, zio_flags |
2881 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2882 ZIO_FLAG_DONT_PROPAGATE |
2883 ZIO_FLAG_DONT_RETRY, B_FALSE);
34dc7c2f
BB
2884 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2885 zio_t *, rzio);
d164b209 2886 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
34dc7c2f 2887
b128c09f
BB
2888 if (*arc_flags & ARC_NOWAIT) {
2889 zio_nowait(rzio);
2890 return (0);
2891 }
34dc7c2f 2892
b128c09f
BB
2893 ASSERT(*arc_flags & ARC_WAIT);
2894 if (zio_wait(rzio) == 0)
2895 return (0);
2896
2897 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
2898 } else {
2899 DTRACE_PROBE1(l2arc__miss,
2900 arc_buf_hdr_t *, hdr);
2901 ARCSTAT_BUMP(arcstat_l2_misses);
2902 if (HDR_L2_WRITING(hdr))
2903 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 2904 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 2905 }
d164b209
BB
2906 } else {
2907 if (vd != NULL)
2908 spa_config_exit(spa, SCL_L2ARC, vd);
2909 if (l2arc_ndev != 0) {
2910 DTRACE_PROBE1(l2arc__miss,
2911 arc_buf_hdr_t *, hdr);
2912 ARCSTAT_BUMP(arcstat_l2_misses);
2913 }
34dc7c2f 2914 }
34dc7c2f
BB
2915
2916 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 2917 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f
BB
2918
2919 if (*arc_flags & ARC_WAIT)
2920 return (zio_wait(rzio));
2921
2922 ASSERT(*arc_flags & ARC_NOWAIT);
2923 zio_nowait(rzio);
2924 }
2925 return (0);
2926}
2927
34dc7c2f
BB
2928void
2929arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2930{
2931 ASSERT(buf->b_hdr != NULL);
2932 ASSERT(buf->b_hdr->b_state != arc_anon);
2933 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
428870ff
BB
2934 ASSERT(buf->b_efunc == NULL);
2935 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
2936
34dc7c2f
BB
2937 buf->b_efunc = func;
2938 buf->b_private = private;
2939}
2940
2941/*
2942 * This is used by the DMU to let the ARC know that a buffer is
2943 * being evicted, so the ARC should clean up. If this arc buf
2944 * is not yet in the evicted state, it will be put there.
2945 */
2946int
2947arc_buf_evict(arc_buf_t *buf)
2948{
2949 arc_buf_hdr_t *hdr;
2950 kmutex_t *hash_lock;
2951 arc_buf_t **bufp;
2952
428870ff 2953 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
2954 hdr = buf->b_hdr;
2955 if (hdr == NULL) {
2956 /*
2957 * We are in arc_do_user_evicts().
2958 */
2959 ASSERT(buf->b_data == NULL);
428870ff 2960 mutex_exit(&buf->b_evict_lock);
34dc7c2f 2961 return (0);
b128c09f
BB
2962 } else if (buf->b_data == NULL) {
2963 arc_buf_t copy = *buf; /* structure assignment */
34dc7c2f 2964 /*
b128c09f
BB
2965 * We are on the eviction list; process this buffer now
2966 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 2967 */
b128c09f 2968 buf->b_efunc = NULL;
428870ff 2969 mutex_exit(&buf->b_evict_lock);
b128c09f
BB
2970 VERIFY(copy.b_efunc(&copy) == 0);
2971 return (1);
34dc7c2f 2972 }
b128c09f
BB
2973 hash_lock = HDR_LOCK(hdr);
2974 mutex_enter(hash_lock);
428870ff
BB
2975 hdr = buf->b_hdr;
2976 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 2977
34dc7c2f
BB
2978 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2979 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2980
2981 /*
2982 * Pull this buffer off of the hdr
2983 */
2984 bufp = &hdr->b_buf;
2985 while (*bufp != buf)
2986 bufp = &(*bufp)->b_next;
2987 *bufp = buf->b_next;
2988
2989 ASSERT(buf->b_data != NULL);
2990 arc_buf_destroy(buf, FALSE, FALSE);
2991
2992 if (hdr->b_datacnt == 0) {
2993 arc_state_t *old_state = hdr->b_state;
2994 arc_state_t *evicted_state;
2995
428870ff 2996 ASSERT(hdr->b_buf == NULL);
34dc7c2f
BB
2997 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2998
2999 evicted_state =
3000 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3001
3002 mutex_enter(&old_state->arcs_mtx);
3003 mutex_enter(&evicted_state->arcs_mtx);
3004
3005 arc_change_state(evicted_state, hdr, hash_lock);
3006 ASSERT(HDR_IN_HASH_TABLE(hdr));
3007 hdr->b_flags |= ARC_IN_HASH_TABLE;
3008 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3009
3010 mutex_exit(&evicted_state->arcs_mtx);
3011 mutex_exit(&old_state->arcs_mtx);
3012 }
3013 mutex_exit(hash_lock);
428870ff 3014 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3015
3016 VERIFY(buf->b_efunc(buf) == 0);
3017 buf->b_efunc = NULL;
3018 buf->b_private = NULL;
3019 buf->b_hdr = NULL;
428870ff 3020 buf->b_next = NULL;
34dc7c2f
BB
3021 kmem_cache_free(buf_cache, buf);
3022 return (1);
3023}
3024
3025/*
3026 * Release this buffer from the cache. This must be done
3027 * after a read and prior to modifying the buffer contents.
3028 * If the buffer has more than one reference, we must make
b128c09f 3029 * a new hdr for the buffer.
34dc7c2f
BB
3030 */
3031void
3032arc_release(arc_buf_t *buf, void *tag)
3033{
b128c09f 3034 arc_buf_hdr_t *hdr;
428870ff 3035 kmutex_t *hash_lock = NULL;
b128c09f 3036 l2arc_buf_hdr_t *l2hdr;
34dc7c2f
BB
3037 uint64_t buf_size;
3038
428870ff
BB
3039 /*
3040 * It would be nice to assert that if it's DMU metadata (level >
3041 * 0 || it's the dnode file), then it must be syncing context.
3042 * But we don't know that information at this level.
3043 */
3044
3045 mutex_enter(&buf->b_evict_lock);
b128c09f
BB
3046 hdr = buf->b_hdr;
3047
34dc7c2f
BB
3048 /* this buffer is not on any list */
3049 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3050
3051 if (hdr->b_state == arc_anon) {
3052 /* this buffer is already released */
34dc7c2f 3053 ASSERT(buf->b_efunc == NULL);
9babb374
BB
3054 } else {
3055 hash_lock = HDR_LOCK(hdr);
3056 mutex_enter(hash_lock);
428870ff
BB
3057 hdr = buf->b_hdr;
3058 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
3059 }
3060
b128c09f
BB
3061 l2hdr = hdr->b_l2hdr;
3062 if (l2hdr) {
3063 mutex_enter(&l2arc_buflist_mtx);
3064 hdr->b_l2hdr = NULL;
3065 buf_size = hdr->b_size;
3066 }
3067
34dc7c2f
BB
3068 /*
3069 * Do we have more than one buf?
3070 */
b128c09f 3071 if (hdr->b_datacnt > 1) {
34dc7c2f
BB
3072 arc_buf_hdr_t *nhdr;
3073 arc_buf_t **bufp;
3074 uint64_t blksz = hdr->b_size;
d164b209 3075 uint64_t spa = hdr->b_spa;
34dc7c2f
BB
3076 arc_buf_contents_t type = hdr->b_type;
3077 uint32_t flags = hdr->b_flags;
3078
b128c09f 3079 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
34dc7c2f 3080 /*
428870ff
BB
3081 * Pull the data off of this hdr and attach it to
3082 * a new anonymous hdr.
34dc7c2f
BB
3083 */
3084 (void) remove_reference(hdr, hash_lock, tag);
3085 bufp = &hdr->b_buf;
3086 while (*bufp != buf)
3087 bufp = &(*bufp)->b_next;
428870ff 3088 *bufp = buf->b_next;
34dc7c2f
BB
3089 buf->b_next = NULL;
3090
3091 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3092 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3093 if (refcount_is_zero(&hdr->b_refcnt)) {
3094 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3095 ASSERT3U(*size, >=, hdr->b_size);
3096 atomic_add_64(size, -hdr->b_size);
3097 }
3098 hdr->b_datacnt -= 1;
34dc7c2f
BB
3099 arc_cksum_verify(buf);
3100
3101 mutex_exit(hash_lock);
3102
3103 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3104 nhdr->b_size = blksz;
3105 nhdr->b_spa = spa;
3106 nhdr->b_type = type;
3107 nhdr->b_buf = buf;
3108 nhdr->b_state = arc_anon;
3109 nhdr->b_arc_access = 0;
3110 nhdr->b_flags = flags & ARC_L2_WRITING;
3111 nhdr->b_l2hdr = NULL;
3112 nhdr->b_datacnt = 1;
3113 nhdr->b_freeze_cksum = NULL;
3114 (void) refcount_add(&nhdr->b_refcnt, tag);
3115 buf->b_hdr = nhdr;
428870ff 3116 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3117 atomic_add_64(&arc_anon->arcs_size, blksz);
3118 } else {
428870ff 3119 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3120 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3121 ASSERT(!list_link_active(&hdr->b_arc_node));
3122 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
428870ff
BB
3123 if (hdr->b_state != arc_anon)
3124 arc_change_state(arc_anon, hdr, hash_lock);
34dc7c2f 3125 hdr->b_arc_access = 0;
428870ff
BB
3126 if (hash_lock)
3127 mutex_exit(hash_lock);
34dc7c2f 3128
428870ff 3129 buf_discard_identity(hdr);
34dc7c2f
BB
3130 arc_buf_thaw(buf);
3131 }
3132 buf->b_efunc = NULL;
3133 buf->b_private = NULL;
3134
3135 if (l2hdr) {
3136 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3137 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3138 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
34dc7c2f 3139 mutex_exit(&l2arc_buflist_mtx);
b128c09f 3140 }
34dc7c2f
BB
3141}
3142
428870ff
BB
3143/*
3144 * Release this buffer. If it does not match the provided BP, fill it
3145 * with that block's contents.
3146 */
3147/* ARGSUSED */
3148int
3149arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3150 zbookmark_t *zb)
3151{
3152 arc_release(buf, tag);
3153 return (0);
3154}
3155
34dc7c2f
BB
3156int
3157arc_released(arc_buf_t *buf)
3158{
b128c09f
BB
3159 int released;
3160
428870ff 3161 mutex_enter(&buf->b_evict_lock);
b128c09f 3162 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
428870ff 3163 mutex_exit(&buf->b_evict_lock);
b128c09f 3164 return (released);
34dc7c2f
BB
3165}
3166
3167int
3168arc_has_callback(arc_buf_t *buf)
3169{
b128c09f
BB
3170 int callback;
3171
428870ff 3172 mutex_enter(&buf->b_evict_lock);
b128c09f 3173 callback = (buf->b_efunc != NULL);
428870ff 3174 mutex_exit(&buf->b_evict_lock);
b128c09f 3175 return (callback);
34dc7c2f
BB
3176}
3177
3178#ifdef ZFS_DEBUG
3179int
3180arc_referenced(arc_buf_t *buf)
3181{
b128c09f
BB
3182 int referenced;
3183
428870ff 3184 mutex_enter(&buf->b_evict_lock);
b128c09f 3185 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
428870ff 3186 mutex_exit(&buf->b_evict_lock);
b128c09f 3187 return (referenced);
34dc7c2f
BB
3188}
3189#endif
3190
3191static void
3192arc_write_ready(zio_t *zio)
3193{
3194 arc_write_callback_t *callback = zio->io_private;
3195 arc_buf_t *buf = callback->awcb_buf;
3196 arc_buf_hdr_t *hdr = buf->b_hdr;
3197
b128c09f
BB
3198 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3199 callback->awcb_ready(zio, buf, callback->awcb_private);
3200
34dc7c2f
BB
3201 /*
3202 * If the IO is already in progress, then this is a re-write
b128c09f
BB
3203 * attempt, so we need to thaw and re-compute the cksum.
3204 * It is the responsibility of the callback to handle the
3205 * accounting for any re-write attempt.
34dc7c2f
BB
3206 */
3207 if (HDR_IO_IN_PROGRESS(hdr)) {
34dc7c2f
BB
3208 mutex_enter(&hdr->b_freeze_lock);
3209 if (hdr->b_freeze_cksum != NULL) {
3210 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3211 hdr->b_freeze_cksum = NULL;
3212 }
3213 mutex_exit(&hdr->b_freeze_lock);
3214 }
3215 arc_cksum_compute(buf, B_FALSE);
3216 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3217}
3218
3219static void
3220arc_write_done(zio_t *zio)
3221{
3222 arc_write_callback_t *callback = zio->io_private;
3223 arc_buf_t *buf = callback->awcb_buf;
3224 arc_buf_hdr_t *hdr = buf->b_hdr;
3225
428870ff
BB
3226 ASSERT(hdr->b_acb == NULL);
3227
3228 if (zio->io_error == 0) {
3229 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3230 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3231 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3232 } else {
3233 ASSERT(BUF_EMPTY(hdr));
3234 }
34dc7c2f 3235
34dc7c2f
BB
3236 /*
3237 * If the block to be written was all-zero, we may have
3238 * compressed it away. In this case no write was performed
428870ff
BB
3239 * so there will be no dva/birth/checksum. The buffer must
3240 * therefore remain anonymous (and uncached).
34dc7c2f
BB
3241 */
3242 if (!BUF_EMPTY(hdr)) {
3243 arc_buf_hdr_t *exists;
3244 kmutex_t *hash_lock;
3245
428870ff
BB
3246 ASSERT(zio->io_error == 0);
3247
34dc7c2f
BB
3248 arc_cksum_verify(buf);
3249
3250 exists = buf_hash_insert(hdr, &hash_lock);
3251 if (exists) {
3252 /*
3253 * This can only happen if we overwrite for
3254 * sync-to-convergence, because we remove
3255 * buffers from the hash table when we arc_free().
3256 */
428870ff
BB
3257 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3258 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3259 panic("bad overwrite, hdr=%p exists=%p",
3260 (void *)hdr, (void *)exists);
3261 ASSERT(refcount_is_zero(&exists->b_refcnt));
3262 arc_change_state(arc_anon, exists, hash_lock);
3263 mutex_exit(hash_lock);
3264 arc_hdr_destroy(exists);
3265 exists = buf_hash_insert(hdr, &hash_lock);
3266 ASSERT3P(exists, ==, NULL);
3267 } else {
3268 /* Dedup */
3269 ASSERT(hdr->b_datacnt == 1);
3270 ASSERT(hdr->b_state == arc_anon);
3271 ASSERT(BP_GET_DEDUP(zio->io_bp));
3272 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3273 }
34dc7c2f
BB
3274 }
3275 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
b128c09f 3276 /* if it's not anon, we are doing a scrub */
428870ff 3277 if (!exists && hdr->b_state == arc_anon)
b128c09f 3278 arc_access(hdr, hash_lock);
34dc7c2f 3279 mutex_exit(hash_lock);
34dc7c2f
BB
3280 } else {
3281 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3282 }
3283
428870ff
BB
3284 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3285 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
3286
3287 kmem_free(callback, sizeof (arc_write_callback_t));
3288}
3289
3290zio_t *
428870ff
BB
3291arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3292 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3293 arc_done_func_t *ready, arc_done_func_t *done, void *private,
3294 int priority, int zio_flags, const zbookmark_t *zb)
34dc7c2f
BB
3295{
3296 arc_buf_hdr_t *hdr = buf->b_hdr;
3297 arc_write_callback_t *callback;
b128c09f 3298 zio_t *zio;
34dc7c2f 3299
b128c09f 3300 ASSERT(ready != NULL);
428870ff 3301 ASSERT(done != NULL);
34dc7c2f
BB
3302 ASSERT(!HDR_IO_ERROR(hdr));
3303 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
428870ff 3304 ASSERT(hdr->b_acb == NULL);
b128c09f
BB
3305 if (l2arc)
3306 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
3307 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3308 callback->awcb_ready = ready;
3309 callback->awcb_done = done;
3310 callback->awcb_private = private;
3311 callback->awcb_buf = buf;
b128c09f 3312
428870ff 3313 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
b128c09f 3314 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
34dc7c2f
BB
3315
3316 return (zio);
3317}
3318
34dc7c2f 3319static int
9babb374 3320arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
34dc7c2f
BB
3321{
3322#ifdef _KERNEL
34dc7c2f
BB
3323 uint64_t available_memory = ptob(freemem);
3324 static uint64_t page_load = 0;
3325 static uint64_t last_txg = 0;
3326
3327#if defined(__i386)
3328 available_memory =
3329 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3330#endif
3331 if (available_memory >= zfs_write_limit_max)
3332 return (0);
3333
3334 if (txg > last_txg) {
3335 last_txg = txg;
3336 page_load = 0;
3337 }
3338 /*
3339 * If we are in pageout, we know that memory is already tight,
3340 * the arc is already going to be evicting, so we just want to
3341 * continue to let page writes occur as quickly as possible.
3342 */
3343 if (curproc == proc_pageout) {
3344 if (page_load > MAX(ptob(minfree), available_memory) / 4)
3345 return (ERESTART);
3346 /* Note: reserve is inflated, so we deflate */
3347 page_load += reserve / 8;
3348 return (0);
3349 } else if (page_load > 0 && arc_reclaim_needed()) {
3350 /* memory is low, delay before restarting */
3351 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3352 return (EAGAIN);
3353 }
3354 page_load = 0;
3355
3356 if (arc_size > arc_c_min) {
3357 uint64_t evictable_memory =
3358 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3359 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3360 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3361 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3362 available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3363 }
3364
3365 if (inflight_data > available_memory / 4) {
3366 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3367 return (ERESTART);
3368 }
3369#endif
3370 return (0);
3371}
3372
3373void
3374arc_tempreserve_clear(uint64_t reserve)
3375{
3376 atomic_add_64(&arc_tempreserve, -reserve);
3377 ASSERT((int64_t)arc_tempreserve >= 0);
3378}
3379
3380int
3381arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3382{
3383 int error;
9babb374 3384 uint64_t anon_size;
34dc7c2f
BB
3385
3386#ifdef ZFS_DEBUG
3387 /*
3388 * Once in a while, fail for no reason. Everything should cope.
3389 */
3390 if (spa_get_random(10000) == 0) {
3391 dprintf("forcing random failure\n");
3392 return (ERESTART);
3393 }
3394#endif
3395 if (reserve > arc_c/4 && !arc_no_grow)
3396 arc_c = MIN(arc_c_max, reserve * 4);
3397 if (reserve > arc_c)
3398 return (ENOMEM);
3399
9babb374
BB
3400 /*
3401 * Don't count loaned bufs as in flight dirty data to prevent long
3402 * network delays from blocking transactions that are ready to be
3403 * assigned to a txg.
3404 */
3405 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3406
34dc7c2f
BB
3407 /*
3408 * Writes will, almost always, require additional memory allocations
3409 * in order to compress/encrypt/etc the data. We therefor need to
3410 * make sure that there is sufficient available memory for this.
3411 */
9babb374 3412 if (error = arc_memory_throttle(reserve, anon_size, txg))
34dc7c2f
BB
3413 return (error);
3414
3415 /*
3416 * Throttle writes when the amount of dirty data in the cache
3417 * gets too large. We try to keep the cache less than half full
3418 * of dirty blocks so that our sync times don't grow too large.
3419 * Note: if two requests come in concurrently, we might let them
3420 * both succeed, when one of them should fail. Not a huge deal.
3421 */
9babb374
BB
3422
3423 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3424 anon_size > arc_c / 4) {
34dc7c2f
BB
3425 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3426 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3427 arc_tempreserve>>10,
3428 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3429 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3430 reserve>>10, arc_c>>10);
3431 return (ERESTART);
3432 }
3433 atomic_add_64(&arc_tempreserve, reserve);
3434 return (0);
3435}
3436
3437void
3438arc_init(void)
3439{
3440 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3441 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3442
3443 /* Convert seconds to clock ticks */
3444 arc_min_prefetch_lifespan = 1 * hz;
3445
3446 /* Start out with 1/8 of all memory */
3447 arc_c = physmem * PAGESIZE / 8;
3448
3449#ifdef _KERNEL
3450 /*
3451 * On architectures where the physical memory can be larger
3452 * than the addressable space (intel in 32-bit mode), we may
3453 * need to limit the cache to 1/8 of VM size.
3454 */
3455 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3456#endif
3457
3458 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3459 arc_c_min = MAX(arc_c / 4, 64<<20);
3460 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3461 if (arc_c * 8 >= 1<<30)
3462 arc_c_max = (arc_c * 8) - (1<<30);
3463 else
3464 arc_c_max = arc_c_min;
3465 arc_c_max = MAX(arc_c * 6, arc_c_max);
3466
3467 /*
3468 * Allow the tunables to override our calculations if they are
3469 * reasonable (ie. over 64MB)
3470 */
3471 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3472 arc_c_max = zfs_arc_max;
3473 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3474 arc_c_min = zfs_arc_min;
3475
3476 arc_c = arc_c_max;
3477 arc_p = (arc_c >> 1);
3478
3479 /* limit meta-data to 1/4 of the arc capacity */
3480 arc_meta_limit = arc_c_max / 4;
3481
3482 /* Allow the tunable to override if it is reasonable */
3483 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3484 arc_meta_limit = zfs_arc_meta_limit;
3485
3486 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3487 arc_c_min = arc_meta_limit / 2;
3488
d164b209
BB
3489 if (zfs_arc_grow_retry > 0)
3490 arc_grow_retry = zfs_arc_grow_retry;
3491
3492 if (zfs_arc_shrink_shift > 0)
3493 arc_shrink_shift = zfs_arc_shrink_shift;
3494
3495 if (zfs_arc_p_min_shift > 0)
3496 arc_p_min_shift = zfs_arc_p_min_shift;
3497
34dc7c2f
BB
3498 /* if kmem_flags are set, lets try to use less memory */
3499 if (kmem_debugging())
3500 arc_c = arc_c / 2;
3501 if (arc_c < arc_c_min)
3502 arc_c = arc_c_min;
3503
3504 arc_anon = &ARC_anon;
3505 arc_mru = &ARC_mru;
3506 arc_mru_ghost = &ARC_mru_ghost;
3507 arc_mfu = &ARC_mfu;
3508 arc_mfu_ghost = &ARC_mfu_ghost;
3509 arc_l2c_only = &ARC_l2c_only;
3510 arc_size = 0;
3511
3512 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3513 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3514 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3515 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3516 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3517 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3518
3519 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3520 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3521 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3522 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3523 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3524 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3525 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3526 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3527 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3528 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3529 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3530 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3531 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3532 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3533 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3534 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3535 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3536 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3537 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3538 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3539
3540 buf_init();
3541
3542 arc_thread_exit = 0;
3543 arc_eviction_list = NULL;
3544 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3545 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3546
3547 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3548 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3549
3550 if (arc_ksp != NULL) {
3551 arc_ksp->ks_data = &arc_stats;
3552 kstat_install(arc_ksp);
3553 }
3554
3555 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3556 TS_RUN, minclsyspri);
3557
3558 arc_dead = FALSE;
b128c09f 3559 arc_warm = B_FALSE;
34dc7c2f
BB
3560
3561 if (zfs_write_limit_max == 0)
b128c09f 3562 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
34dc7c2f
BB
3563 else
3564 zfs_write_limit_shift = 0;
b128c09f 3565 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
3566}
3567
3568void
3569arc_fini(void)
3570{
3571 mutex_enter(&arc_reclaim_thr_lock);
3572 arc_thread_exit = 1;
3573 while (arc_thread_exit != 0)
3574 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3575 mutex_exit(&arc_reclaim_thr_lock);
3576
3577 arc_flush(NULL);
3578
3579 arc_dead = TRUE;
3580
3581 if (arc_ksp != NULL) {
3582 kstat_delete(arc_ksp);
3583 arc_ksp = NULL;
3584 }
3585
3586 mutex_destroy(&arc_eviction_mtx);
3587 mutex_destroy(&arc_reclaim_thr_lock);
3588 cv_destroy(&arc_reclaim_thr_cv);
3589
3590 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3591 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3592 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3593 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3594 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3595 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3596 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3597 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3598
3599 mutex_destroy(&arc_anon->arcs_mtx);
3600 mutex_destroy(&arc_mru->arcs_mtx);
3601 mutex_destroy(&arc_mru_ghost->arcs_mtx);
3602 mutex_destroy(&arc_mfu->arcs_mtx);
3603 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
fb5f0bc8 3604 mutex_destroy(&arc_l2c_only->arcs_mtx);
34dc7c2f 3605
b128c09f
BB
3606 mutex_destroy(&zfs_write_limit_lock);
3607
34dc7c2f 3608 buf_fini();
9babb374
BB
3609
3610 ASSERT(arc_loaned_bytes == 0);
34dc7c2f
BB
3611}
3612
3613/*
3614 * Level 2 ARC
3615 *
3616 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3617 * It uses dedicated storage devices to hold cached data, which are populated
3618 * using large infrequent writes. The main role of this cache is to boost
3619 * the performance of random read workloads. The intended L2ARC devices
3620 * include short-stroked disks, solid state disks, and other media with
3621 * substantially faster read latency than disk.
3622 *
3623 * +-----------------------+
3624 * | ARC |
3625 * +-----------------------+
3626 * | ^ ^
3627 * | | |
3628 * l2arc_feed_thread() arc_read()
3629 * | | |
3630 * | l2arc read |
3631 * V | |
3632 * +---------------+ |
3633 * | L2ARC | |
3634 * +---------------+ |
3635 * | ^ |
3636 * l2arc_write() | |
3637 * | | |
3638 * V | |
3639 * +-------+ +-------+
3640 * | vdev | | vdev |
3641 * | cache | | cache |
3642 * +-------+ +-------+
3643 * +=========+ .-----.
3644 * : L2ARC : |-_____-|
3645 * : devices : | Disks |
3646 * +=========+ `-_____-'
3647 *
3648 * Read requests are satisfied from the following sources, in order:
3649 *
3650 * 1) ARC
3651 * 2) vdev cache of L2ARC devices
3652 * 3) L2ARC devices
3653 * 4) vdev cache of disks
3654 * 5) disks
3655 *
3656 * Some L2ARC device types exhibit extremely slow write performance.
3657 * To accommodate for this there are some significant differences between
3658 * the L2ARC and traditional cache design:
3659 *
3660 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
3661 * the ARC behave as usual, freeing buffers and placing headers on ghost
3662 * lists. The ARC does not send buffers to the L2ARC during eviction as
3663 * this would add inflated write latencies for all ARC memory pressure.
3664 *
3665 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3666 * It does this by periodically scanning buffers from the eviction-end of
3667 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3668 * not already there. It scans until a headroom of buffers is satisfied,
3669 * which itself is a buffer for ARC eviction. The thread that does this is
3670 * l2arc_feed_thread(), illustrated below; example sizes are included to
3671 * provide a better sense of ratio than this diagram:
3672 *
3673 * head --> tail
3674 * +---------------------+----------+
3675 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
3676 * +---------------------+----------+ | o L2ARC eligible
3677 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
3678 * +---------------------+----------+ |
3679 * 15.9 Gbytes ^ 32 Mbytes |
3680 * headroom |
3681 * l2arc_feed_thread()
3682 * |
3683 * l2arc write hand <--[oooo]--'
3684 * | 8 Mbyte
3685 * | write max
3686 * V
3687 * +==============================+
3688 * L2ARC dev |####|#|###|###| |####| ... |
3689 * +==============================+
3690 * 32 Gbytes
3691 *
3692 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3693 * evicted, then the L2ARC has cached a buffer much sooner than it probably
3694 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
3695 * safe to say that this is an uncommon case, since buffers at the end of
3696 * the ARC lists have moved there due to inactivity.
3697 *
3698 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3699 * then the L2ARC simply misses copying some buffers. This serves as a
3700 * pressure valve to prevent heavy read workloads from both stalling the ARC
3701 * with waits and clogging the L2ARC with writes. This also helps prevent
3702 * the potential for the L2ARC to churn if it attempts to cache content too
3703 * quickly, such as during backups of the entire pool.
3704 *
b128c09f
BB
3705 * 5. After system boot and before the ARC has filled main memory, there are
3706 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3707 * lists can remain mostly static. Instead of searching from tail of these
3708 * lists as pictured, the l2arc_feed_thread() will search from the list heads
3709 * for eligible buffers, greatly increasing its chance of finding them.
3710 *
3711 * The L2ARC device write speed is also boosted during this time so that
3712 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
3713 * there are no L2ARC reads, and no fear of degrading read performance
3714 * through increased writes.
3715 *
3716 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
3717 * the vdev queue can aggregate them into larger and fewer writes. Each
3718 * device is written to in a rotor fashion, sweeping writes through
3719 * available space then repeating.
3720 *
b128c09f 3721 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
3722 * write buffers back to disk based storage.
3723 *
b128c09f 3724 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
3725 * L2ARC, the now stale L2ARC buffer is immediately dropped.
3726 *
3727 * The performance of the L2ARC can be tweaked by a number of tunables, which
3728 * may be necessary for different workloads:
3729 *
3730 * l2arc_write_max max write bytes per interval
b128c09f 3731 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f
BB
3732 * l2arc_noprefetch skip caching prefetched buffers
3733 * l2arc_headroom number of max device writes to precache
3734 * l2arc_feed_secs seconds between L2ARC writing
3735 *
3736 * Tunables may be removed or added as future performance improvements are
3737 * integrated, and also may become zpool properties.
d164b209
BB
3738 *
3739 * There are three key functions that control how the L2ARC warms up:
3740 *
3741 * l2arc_write_eligible() check if a buffer is eligible to cache
3742 * l2arc_write_size() calculate how much to write
3743 * l2arc_write_interval() calculate sleep delay between writes
3744 *
3745 * These three functions determine what to write, how much, and how quickly
3746 * to send writes.
34dc7c2f
BB
3747 */
3748
d164b209
BB
3749static boolean_t
3750l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3751{
3752 /*
3753 * A buffer is *not* eligible for the L2ARC if it:
3754 * 1. belongs to a different spa.
428870ff
BB
3755 * 2. is already cached on the L2ARC.
3756 * 3. has an I/O in progress (it may be an incomplete read).
3757 * 4. is flagged not eligible (zfs property).
d164b209 3758 */
428870ff 3759 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
d164b209
BB
3760 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3761 return (B_FALSE);
3762
3763 return (B_TRUE);
3764}
3765
3766static uint64_t
3767l2arc_write_size(l2arc_dev_t *dev)
3768{
3769 uint64_t size;
3770
3771 size = dev->l2ad_write;
3772
3773 if (arc_warm == B_FALSE)
3774 size += dev->l2ad_boost;
3775
3776 return (size);
3777
3778}
3779
3780static clock_t
3781l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3782{
428870ff 3783 clock_t interval, next, now;
d164b209
BB
3784
3785 /*
3786 * If the ARC lists are busy, increase our write rate; if the
3787 * lists are stale, idle back. This is achieved by checking
3788 * how much we previously wrote - if it was more than half of
3789 * what we wanted, schedule the next write much sooner.
3790 */
3791 if (l2arc_feed_again && wrote > (wanted / 2))
3792 interval = (hz * l2arc_feed_min_ms) / 1000;
3793 else
3794 interval = hz * l2arc_feed_secs;
3795
428870ff
BB
3796 now = ddi_get_lbolt();
3797 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
3798
3799 return (next);
3800}
3801
34dc7c2f
BB
3802static void
3803l2arc_hdr_stat_add(void)
3804{
3805 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3806 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3807}
3808
3809static void
3810l2arc_hdr_stat_remove(void)
3811{
3812 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3813 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3814}
3815
3816/*
3817 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 3818 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
3819 */
3820static l2arc_dev_t *
3821l2arc_dev_get_next(void)
3822{
b128c09f 3823 l2arc_dev_t *first, *next = NULL;
34dc7c2f 3824
b128c09f
BB
3825 /*
3826 * Lock out the removal of spas (spa_namespace_lock), then removal
3827 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
3828 * both locks will be dropped and a spa config lock held instead.
3829 */
3830 mutex_enter(&spa_namespace_lock);
3831 mutex_enter(&l2arc_dev_mtx);
3832
3833 /* if there are no vdevs, there is nothing to do */
3834 if (l2arc_ndev == 0)
3835 goto out;
3836
3837 first = NULL;
3838 next = l2arc_dev_last;
3839 do {
3840 /* loop around the list looking for a non-faulted vdev */
3841 if (next == NULL) {
34dc7c2f 3842 next = list_head(l2arc_dev_list);
b128c09f
BB
3843 } else {
3844 next = list_next(l2arc_dev_list, next);
3845 if (next == NULL)
3846 next = list_head(l2arc_dev_list);
3847 }
3848
3849 /* if we have come back to the start, bail out */
3850 if (first == NULL)
3851 first = next;
3852 else if (next == first)
3853 break;
3854
3855 } while (vdev_is_dead(next->l2ad_vdev));
3856
3857 /* if we were unable to find any usable vdevs, return NULL */
3858 if (vdev_is_dead(next->l2ad_vdev))
3859 next = NULL;
34dc7c2f
BB
3860
3861 l2arc_dev_last = next;
3862
b128c09f
BB
3863out:
3864 mutex_exit(&l2arc_dev_mtx);
3865
3866 /*
3867 * Grab the config lock to prevent the 'next' device from being
3868 * removed while we are writing to it.
3869 */
3870 if (next != NULL)
3871 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3872 mutex_exit(&spa_namespace_lock);
3873
34dc7c2f
BB
3874 return (next);
3875}
3876
b128c09f
BB
3877/*
3878 * Free buffers that were tagged for destruction.
3879 */
3880static void
3881l2arc_do_free_on_write()
3882{
3883 list_t *buflist;
3884 l2arc_data_free_t *df, *df_prev;
3885
3886 mutex_enter(&l2arc_free_on_write_mtx);
3887 buflist = l2arc_free_on_write;
3888
3889 for (df = list_tail(buflist); df; df = df_prev) {
3890 df_prev = list_prev(buflist, df);
3891 ASSERT(df->l2df_data != NULL);
3892 ASSERT(df->l2df_func != NULL);
3893 df->l2df_func(df->l2df_data, df->l2df_size);
3894 list_remove(buflist, df);
3895 kmem_free(df, sizeof (l2arc_data_free_t));
3896 }
3897
3898 mutex_exit(&l2arc_free_on_write_mtx);
3899}
3900
34dc7c2f
BB
3901/*
3902 * A write to a cache device has completed. Update all headers to allow
3903 * reads from these buffers to begin.
3904 */
3905static void
3906l2arc_write_done(zio_t *zio)
3907{
3908 l2arc_write_callback_t *cb;
3909 l2arc_dev_t *dev;
3910 list_t *buflist;
34dc7c2f 3911 arc_buf_hdr_t *head, *ab, *ab_prev;
b128c09f 3912 l2arc_buf_hdr_t *abl2;
34dc7c2f
BB
3913 kmutex_t *hash_lock;
3914
3915 cb = zio->io_private;
3916 ASSERT(cb != NULL);
3917 dev = cb->l2wcb_dev;
3918 ASSERT(dev != NULL);
3919 head = cb->l2wcb_head;
3920 ASSERT(head != NULL);
3921 buflist = dev->l2ad_buflist;
3922 ASSERT(buflist != NULL);
3923 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3924 l2arc_write_callback_t *, cb);
3925
3926 if (zio->io_error != 0)
3927 ARCSTAT_BUMP(arcstat_l2_writes_error);
3928
3929 mutex_enter(&l2arc_buflist_mtx);
3930
3931 /*
3932 * All writes completed, or an error was hit.
3933 */
3934 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3935 ab_prev = list_prev(buflist, ab);
3936
3937 hash_lock = HDR_LOCK(ab);
3938 if (!mutex_tryenter(hash_lock)) {
3939 /*
3940 * This buffer misses out. It may be in a stage
3941 * of eviction. Its ARC_L2_WRITING flag will be
3942 * left set, denying reads to this buffer.
3943 */
3944 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3945 continue;
3946 }
3947
3948 if (zio->io_error != 0) {
3949 /*
b128c09f 3950 * Error - drop L2ARC entry.
34dc7c2f 3951 */
b128c09f
BB
3952 list_remove(buflist, ab);
3953 abl2 = ab->b_l2hdr;
34dc7c2f 3954 ab->b_l2hdr = NULL;
b128c09f
BB
3955 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3956 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
34dc7c2f
BB
3957 }
3958
3959 /*
3960 * Allow ARC to begin reads to this L2ARC entry.
3961 */
3962 ab->b_flags &= ~ARC_L2_WRITING;
3963
3964 mutex_exit(hash_lock);
3965 }
3966
3967 atomic_inc_64(&l2arc_writes_done);
3968 list_remove(buflist, head);
3969 kmem_cache_free(hdr_cache, head);
3970 mutex_exit(&l2arc_buflist_mtx);
3971
b128c09f 3972 l2arc_do_free_on_write();
34dc7c2f
BB
3973
3974 kmem_free(cb, sizeof (l2arc_write_callback_t));
3975}
3976
3977/*
3978 * A read to a cache device completed. Validate buffer contents before
3979 * handing over to the regular ARC routines.
3980 */
3981static void
3982l2arc_read_done(zio_t *zio)
3983{
3984 l2arc_read_callback_t *cb;
3985 arc_buf_hdr_t *hdr;
3986 arc_buf_t *buf;
34dc7c2f 3987 kmutex_t *hash_lock;
b128c09f
BB
3988 int equal;
3989
3990 ASSERT(zio->io_vd != NULL);
3991 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
3992
3993 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
3994
3995 cb = zio->io_private;
3996 ASSERT(cb != NULL);
3997 buf = cb->l2rcb_buf;
3998 ASSERT(buf != NULL);
34dc7c2f 3999
428870ff 4000 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 4001 mutex_enter(hash_lock);
428870ff
BB
4002 hdr = buf->b_hdr;
4003 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
4004
4005 /*
4006 * Check this survived the L2ARC journey.
4007 */
4008 equal = arc_cksum_equal(buf);
4009 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4010 mutex_exit(hash_lock);
4011 zio->io_private = buf;
b128c09f
BB
4012 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4013 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
4014 arc_read_done(zio);
4015 } else {
4016 mutex_exit(hash_lock);
4017 /*
4018 * Buffer didn't survive caching. Increment stats and
4019 * reissue to the original storage device.
4020 */
b128c09f 4021 if (zio->io_error != 0) {
34dc7c2f 4022 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f
BB
4023 } else {
4024 zio->io_error = EIO;
4025 }
34dc7c2f
BB
4026 if (!equal)
4027 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4028
34dc7c2f 4029 /*
b128c09f
BB
4030 * If there's no waiter, issue an async i/o to the primary
4031 * storage now. If there *is* a waiter, the caller must
4032 * issue the i/o in a context where it's OK to block.
34dc7c2f 4033 */
d164b209
BB
4034 if (zio->io_waiter == NULL) {
4035 zio_t *pio = zio_unique_parent(zio);
4036
4037 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4038
4039 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
4040 buf->b_data, zio->io_size, arc_read_done, buf,
4041 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 4042 }
34dc7c2f
BB
4043 }
4044
4045 kmem_free(cb, sizeof (l2arc_read_callback_t));
4046}
4047
4048/*
4049 * This is the list priority from which the L2ARC will search for pages to
4050 * cache. This is used within loops (0..3) to cycle through lists in the
4051 * desired order. This order can have a significant effect on cache
4052 * performance.
4053 *
4054 * Currently the metadata lists are hit first, MFU then MRU, followed by
4055 * the data lists. This function returns a locked list, and also returns
4056 * the lock pointer.
4057 */
4058static list_t *
4059l2arc_list_locked(int list_num, kmutex_t **lock)
4060{
4061 list_t *list;
4062
4063 ASSERT(list_num >= 0 && list_num <= 3);
4064
4065 switch (list_num) {
4066 case 0:
4067 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4068 *lock = &arc_mfu->arcs_mtx;
4069 break;
4070 case 1:
4071 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4072 *lock = &arc_mru->arcs_mtx;
4073 break;
4074 case 2:
4075 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4076 *lock = &arc_mfu->arcs_mtx;
4077 break;
4078 case 3:
4079 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4080 *lock = &arc_mru->arcs_mtx;
4081 break;
4082 }
4083
4084 ASSERT(!(MUTEX_HELD(*lock)));
4085 mutex_enter(*lock);
4086 return (list);
4087}
4088
4089/*
4090 * Evict buffers from the device write hand to the distance specified in
4091 * bytes. This distance may span populated buffers, it may span nothing.
4092 * This is clearing a region on the L2ARC device ready for writing.
4093 * If the 'all' boolean is set, every buffer is evicted.
4094 */
4095static void
4096l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4097{
4098 list_t *buflist;
4099 l2arc_buf_hdr_t *abl2;
4100 arc_buf_hdr_t *ab, *ab_prev;
4101 kmutex_t *hash_lock;
4102 uint64_t taddr;
4103
34dc7c2f
BB
4104 buflist = dev->l2ad_buflist;
4105
4106 if (buflist == NULL)
4107 return;
4108
4109 if (!all && dev->l2ad_first) {
4110 /*
4111 * This is the first sweep through the device. There is
4112 * nothing to evict.
4113 */
4114 return;
4115 }
4116
b128c09f 4117 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
4118 /*
4119 * When nearing the end of the device, evict to the end
4120 * before the device write hand jumps to the start.
4121 */
4122 taddr = dev->l2ad_end;
4123 } else {
4124 taddr = dev->l2ad_hand + distance;
4125 }
4126 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4127 uint64_t, taddr, boolean_t, all);
4128
4129top:
4130 mutex_enter(&l2arc_buflist_mtx);
4131 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4132 ab_prev = list_prev(buflist, ab);
4133
4134 hash_lock = HDR_LOCK(ab);
4135 if (!mutex_tryenter(hash_lock)) {
4136 /*
4137 * Missed the hash lock. Retry.
4138 */
4139 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4140 mutex_exit(&l2arc_buflist_mtx);
4141 mutex_enter(hash_lock);
4142 mutex_exit(hash_lock);
4143 goto top;
4144 }
4145
4146 if (HDR_L2_WRITE_HEAD(ab)) {
4147 /*
4148 * We hit a write head node. Leave it for
4149 * l2arc_write_done().
4150 */
4151 list_remove(buflist, ab);
4152 mutex_exit(hash_lock);
4153 continue;
4154 }
4155
4156 if (!all && ab->b_l2hdr != NULL &&
4157 (ab->b_l2hdr->b_daddr > taddr ||
4158 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4159 /*
4160 * We've evicted to the target address,
4161 * or the end of the device.
4162 */
4163 mutex_exit(hash_lock);
4164 break;
4165 }
4166
4167 if (HDR_FREE_IN_PROGRESS(ab)) {
4168 /*
4169 * Already on the path to destruction.
4170 */
4171 mutex_exit(hash_lock);
4172 continue;
4173 }
4174
4175 if (ab->b_state == arc_l2c_only) {
4176 ASSERT(!HDR_L2_READING(ab));
4177 /*
4178 * This doesn't exist in the ARC. Destroy.
4179 * arc_hdr_destroy() will call list_remove()
4180 * and decrement arcstat_l2_size.
4181 */
4182 arc_change_state(arc_anon, ab, hash_lock);
4183 arc_hdr_destroy(ab);
4184 } else {
b128c09f
BB
4185 /*
4186 * Invalidate issued or about to be issued
4187 * reads, since we may be about to write
4188 * over this location.
4189 */
4190 if (HDR_L2_READING(ab)) {
4191 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4192 ab->b_flags |= ARC_L2_EVICTED;
4193 }
4194
34dc7c2f
BB
4195 /*
4196 * Tell ARC this no longer exists in L2ARC.
4197 */
4198 if (ab->b_l2hdr != NULL) {
4199 abl2 = ab->b_l2hdr;
4200 ab->b_l2hdr = NULL;
4201 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4202 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4203 }
4204 list_remove(buflist, ab);
4205
4206 /*
4207 * This may have been leftover after a
4208 * failed write.
4209 */
4210 ab->b_flags &= ~ARC_L2_WRITING;
34dc7c2f
BB
4211 }
4212 mutex_exit(hash_lock);
4213 }
4214 mutex_exit(&l2arc_buflist_mtx);
4215
428870ff 4216 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
34dc7c2f
BB
4217 dev->l2ad_evict = taddr;
4218}
4219
4220/*
4221 * Find and write ARC buffers to the L2ARC device.
4222 *
4223 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4224 * for reading until they have completed writing.
4225 */
d164b209 4226static uint64_t
b128c09f 4227l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
34dc7c2f
BB
4228{
4229 arc_buf_hdr_t *ab, *ab_prev, *head;
4230 l2arc_buf_hdr_t *hdrl2;
4231 list_t *list;
b128c09f 4232 uint64_t passed_sz, write_sz, buf_sz, headroom;
34dc7c2f
BB
4233 void *buf_data;
4234 kmutex_t *hash_lock, *list_lock;
4235 boolean_t have_lock, full;
4236 l2arc_write_callback_t *cb;
4237 zio_t *pio, *wzio;
d164b209 4238 uint64_t guid = spa_guid(spa);
d6320ddb 4239 int try;
34dc7c2f 4240
34dc7c2f
BB
4241 ASSERT(dev->l2ad_vdev != NULL);
4242
4243 pio = NULL;
4244 write_sz = 0;
4245 full = B_FALSE;
4246 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4247 head->b_flags |= ARC_L2_WRITE_HEAD;
4248
4249 /*
4250 * Copy buffers for L2ARC writing.
4251 */
4252 mutex_enter(&l2arc_buflist_mtx);
d6320ddb 4253 for (try = 0; try <= 3; try++) {
34dc7c2f
BB
4254 list = l2arc_list_locked(try, &list_lock);
4255 passed_sz = 0;
4256
b128c09f
BB
4257 /*
4258 * L2ARC fast warmup.
4259 *
4260 * Until the ARC is warm and starts to evict, read from the
4261 * head of the ARC lists rather than the tail.
4262 */
4263 headroom = target_sz * l2arc_headroom;
4264 if (arc_warm == B_FALSE)
4265 ab = list_head(list);
4266 else
4267 ab = list_tail(list);
4268
4269 for (; ab; ab = ab_prev) {
4270 if (arc_warm == B_FALSE)
4271 ab_prev = list_next(list, ab);
4272 else
4273 ab_prev = list_prev(list, ab);
34dc7c2f
BB
4274
4275 hash_lock = HDR_LOCK(ab);
4276 have_lock = MUTEX_HELD(hash_lock);
4277 if (!have_lock && !mutex_tryenter(hash_lock)) {
4278 /*
4279 * Skip this buffer rather than waiting.
4280 */
4281 continue;
4282 }
4283
4284 passed_sz += ab->b_size;
4285 if (passed_sz > headroom) {
4286 /*
4287 * Searched too far.
4288 */
4289 mutex_exit(hash_lock);
4290 break;
4291 }
4292
d164b209 4293 if (!l2arc_write_eligible(guid, ab)) {
34dc7c2f
BB
4294 mutex_exit(hash_lock);
4295 continue;
4296 }
4297
4298 if ((write_sz + ab->b_size) > target_sz) {
4299 full = B_TRUE;
4300 mutex_exit(hash_lock);
4301 break;
4302 }
4303
34dc7c2f
BB
4304 if (pio == NULL) {
4305 /*
4306 * Insert a dummy header on the buflist so
4307 * l2arc_write_done() can find where the
4308 * write buffers begin without searching.
4309 */
4310 list_insert_head(dev->l2ad_buflist, head);
4311
4312 cb = kmem_alloc(
4313 sizeof (l2arc_write_callback_t), KM_SLEEP);
4314 cb->l2wcb_dev = dev;
4315 cb->l2wcb_head = head;
4316 pio = zio_root(spa, l2arc_write_done, cb,
4317 ZIO_FLAG_CANFAIL);
4318 }
4319
4320 /*
4321 * Create and add a new L2ARC header.
4322 */
4323 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4324 hdrl2->b_dev = dev;
4325 hdrl2->b_daddr = dev->l2ad_hand;
4326
4327 ab->b_flags |= ARC_L2_WRITING;
4328 ab->b_l2hdr = hdrl2;
4329 list_insert_head(dev->l2ad_buflist, ab);
4330 buf_data = ab->b_buf->b_data;
4331 buf_sz = ab->b_size;
4332
4333 /*
4334 * Compute and store the buffer cksum before
4335 * writing. On debug the cksum is verified first.
4336 */
4337 arc_cksum_verify(ab->b_buf);
4338 arc_cksum_compute(ab->b_buf, B_TRUE);
4339
4340 mutex_exit(hash_lock);
4341
4342 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4343 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4344 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4345 ZIO_FLAG_CANFAIL, B_FALSE);
4346
4347 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4348 zio_t *, wzio);
4349 (void) zio_nowait(wzio);
4350
b128c09f
BB
4351 /*
4352 * Keep the clock hand suitably device-aligned.
4353 */
4354 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4355
34dc7c2f
BB
4356 write_sz += buf_sz;
4357 dev->l2ad_hand += buf_sz;
4358 }
4359
4360 mutex_exit(list_lock);
4361
4362 if (full == B_TRUE)
4363 break;
4364 }
4365 mutex_exit(&l2arc_buflist_mtx);
4366
4367 if (pio == NULL) {
4368 ASSERT3U(write_sz, ==, 0);
4369 kmem_cache_free(hdr_cache, head);
d164b209 4370 return (0);
34dc7c2f
BB
4371 }
4372
4373 ASSERT3U(write_sz, <=, target_sz);
4374 ARCSTAT_BUMP(arcstat_l2_writes_sent);
d164b209 4375 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
34dc7c2f 4376 ARCSTAT_INCR(arcstat_l2_size, write_sz);
428870ff 4377 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
34dc7c2f
BB
4378
4379 /*
4380 * Bump device hand to the device start if it is approaching the end.
4381 * l2arc_evict() will already have evicted ahead for this case.
4382 */
b128c09f 4383 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
428870ff
BB
4384 vdev_space_update(dev->l2ad_vdev,
4385 dev->l2ad_end - dev->l2ad_hand, 0, 0);
34dc7c2f
BB
4386 dev->l2ad_hand = dev->l2ad_start;
4387 dev->l2ad_evict = dev->l2ad_start;
4388 dev->l2ad_first = B_FALSE;
4389 }
4390
d164b209 4391 dev->l2ad_writing = B_TRUE;
34dc7c2f 4392 (void) zio_wait(pio);
d164b209
BB
4393 dev->l2ad_writing = B_FALSE;
4394
4395 return (write_sz);
34dc7c2f
BB
4396}
4397
4398/*
4399 * This thread feeds the L2ARC at regular intervals. This is the beating
4400 * heart of the L2ARC.
4401 */
4402static void
4403l2arc_feed_thread(void)
4404{
4405 callb_cpr_t cpr;
4406 l2arc_dev_t *dev;
4407 spa_t *spa;
d164b209 4408 uint64_t size, wrote;
428870ff 4409 clock_t begin, next = ddi_get_lbolt();
34dc7c2f
BB
4410
4411 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4412
4413 mutex_enter(&l2arc_feed_thr_lock);
4414
4415 while (l2arc_thread_exit == 0) {
34dc7c2f 4416 CALLB_CPR_SAFE_BEGIN(&cpr);
34dc7c2f 4417 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
d164b209 4418 next);
34dc7c2f 4419 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 4420 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
4421
4422 /*
b128c09f 4423 * Quick check for L2ARC devices.
34dc7c2f
BB
4424 */
4425 mutex_enter(&l2arc_dev_mtx);
4426 if (l2arc_ndev == 0) {
4427 mutex_exit(&l2arc_dev_mtx);
4428 continue;
4429 }
b128c09f 4430 mutex_exit(&l2arc_dev_mtx);
428870ff 4431 begin = ddi_get_lbolt();
34dc7c2f
BB
4432
4433 /*
b128c09f
BB
4434 * This selects the next l2arc device to write to, and in
4435 * doing so the next spa to feed from: dev->l2ad_spa. This
4436 * will return NULL if there are now no l2arc devices or if
4437 * they are all faulted.
4438 *
4439 * If a device is returned, its spa's config lock is also
4440 * held to prevent device removal. l2arc_dev_get_next()
4441 * will grab and release l2arc_dev_mtx.
34dc7c2f 4442 */
b128c09f 4443 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 4444 continue;
b128c09f
BB
4445
4446 spa = dev->l2ad_spa;
4447 ASSERT(spa != NULL);
34dc7c2f 4448
572e2857
BB
4449 /*
4450 * If the pool is read-only then force the feed thread to
4451 * sleep a little longer.
4452 */
4453 if (!spa_writeable(spa)) {
4454 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4455 spa_config_exit(spa, SCL_L2ARC, dev);
4456 continue;
4457 }
4458
34dc7c2f 4459 /*
b128c09f 4460 * Avoid contributing to memory pressure.
34dc7c2f 4461 */
b128c09f
BB
4462 if (arc_reclaim_needed()) {
4463 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4464 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
4465 continue;
4466 }
b128c09f 4467
34dc7c2f
BB
4468 ARCSTAT_BUMP(arcstat_l2_feeds);
4469
d164b209 4470 size = l2arc_write_size(dev);
b128c09f 4471
34dc7c2f
BB
4472 /*
4473 * Evict L2ARC buffers that will be overwritten.
4474 */
b128c09f 4475 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
4476
4477 /*
4478 * Write ARC buffers.
4479 */
d164b209
BB
4480 wrote = l2arc_write_buffers(spa, dev, size);
4481
4482 /*
4483 * Calculate interval between writes.
4484 */
4485 next = l2arc_write_interval(begin, size, wrote);
b128c09f 4486 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
4487 }
4488
4489 l2arc_thread_exit = 0;
4490 cv_broadcast(&l2arc_feed_thr_cv);
4491 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
4492 thread_exit();
4493}
4494
b128c09f
BB
4495boolean_t
4496l2arc_vdev_present(vdev_t *vd)
4497{
4498 l2arc_dev_t *dev;
4499
4500 mutex_enter(&l2arc_dev_mtx);
4501 for (dev = list_head(l2arc_dev_list); dev != NULL;
4502 dev = list_next(l2arc_dev_list, dev)) {
4503 if (dev->l2ad_vdev == vd)
4504 break;
4505 }
4506 mutex_exit(&l2arc_dev_mtx);
4507
4508 return (dev != NULL);
4509}
4510
34dc7c2f
BB
4511/*
4512 * Add a vdev for use by the L2ARC. By this point the spa has already
4513 * validated the vdev and opened it.
4514 */
4515void
9babb374 4516l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
4517{
4518 l2arc_dev_t *adddev;
4519
b128c09f
BB
4520 ASSERT(!l2arc_vdev_present(vd));
4521
34dc7c2f
BB
4522 /*
4523 * Create a new l2arc device entry.
4524 */
4525 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4526 adddev->l2ad_spa = spa;
4527 adddev->l2ad_vdev = vd;
4528 adddev->l2ad_write = l2arc_write_max;
b128c09f 4529 adddev->l2ad_boost = l2arc_write_boost;
9babb374
BB
4530 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4531 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f
BB
4532 adddev->l2ad_hand = adddev->l2ad_start;
4533 adddev->l2ad_evict = adddev->l2ad_start;
4534 adddev->l2ad_first = B_TRUE;
d164b209 4535 adddev->l2ad_writing = B_FALSE;
34dc7c2f
BB
4536 ASSERT3U(adddev->l2ad_write, >, 0);
4537
4538 /*
4539 * This is a list of all ARC buffers that are still valid on the
4540 * device.
4541 */
4542 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4543 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4544 offsetof(arc_buf_hdr_t, b_l2node));
4545
428870ff 4546 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
34dc7c2f
BB
4547
4548 /*
4549 * Add device to global list
4550 */
4551 mutex_enter(&l2arc_dev_mtx);
4552 list_insert_head(l2arc_dev_list, adddev);
4553 atomic_inc_64(&l2arc_ndev);
4554 mutex_exit(&l2arc_dev_mtx);
4555}
4556
4557/*
4558 * Remove a vdev from the L2ARC.
4559 */
4560void
4561l2arc_remove_vdev(vdev_t *vd)
4562{
4563 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4564
34dc7c2f
BB
4565 /*
4566 * Find the device by vdev
4567 */
4568 mutex_enter(&l2arc_dev_mtx);
4569 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4570 nextdev = list_next(l2arc_dev_list, dev);
4571 if (vd == dev->l2ad_vdev) {
4572 remdev = dev;
4573 break;
4574 }
4575 }
4576 ASSERT(remdev != NULL);
4577
4578 /*
4579 * Remove device from global list
4580 */
4581 list_remove(l2arc_dev_list, remdev);
4582 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
4583 atomic_dec_64(&l2arc_ndev);
4584 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
4585
4586 /*
4587 * Clear all buflists and ARC references. L2ARC device flush.
4588 */
4589 l2arc_evict(remdev, 0, B_TRUE);
4590 list_destroy(remdev->l2ad_buflist);
4591 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4592 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
4593}
4594
4595void
b128c09f 4596l2arc_init(void)
34dc7c2f
BB
4597{
4598 l2arc_thread_exit = 0;
4599 l2arc_ndev = 0;
4600 l2arc_writes_sent = 0;
4601 l2arc_writes_done = 0;
4602
4603 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4604 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4605 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4606 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4607 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4608
4609 l2arc_dev_list = &L2ARC_dev_list;
4610 l2arc_free_on_write = &L2ARC_free_on_write;
4611 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4612 offsetof(l2arc_dev_t, l2ad_node));
4613 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4614 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
4615}
4616
4617void
b128c09f 4618l2arc_fini(void)
34dc7c2f 4619{
b128c09f
BB
4620 /*
4621 * This is called from dmu_fini(), which is called from spa_fini();
4622 * Because of this, we can assume that all l2arc devices have
4623 * already been removed when the pools themselves were removed.
4624 */
4625
4626 l2arc_do_free_on_write();
34dc7c2f
BB
4627
4628 mutex_destroy(&l2arc_feed_thr_lock);
4629 cv_destroy(&l2arc_feed_thr_cv);
4630 mutex_destroy(&l2arc_dev_mtx);
4631 mutex_destroy(&l2arc_buflist_mtx);
4632 mutex_destroy(&l2arc_free_on_write_mtx);
4633
4634 list_destroy(l2arc_dev_list);
4635 list_destroy(l2arc_free_on_write);
4636}
b128c09f
BB
4637
4638void
4639l2arc_start(void)
4640{
fb5f0bc8 4641 if (!(spa_mode_global & FWRITE))
b128c09f
BB
4642 return;
4643
4644 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4645 TS_RUN, minclsyspri);
4646}
4647
4648void
4649l2arc_stop(void)
4650{
fb5f0bc8 4651 if (!(spa_mode_global & FWRITE))
b128c09f
BB
4652 return;
4653
4654 mutex_enter(&l2arc_feed_thr_lock);
4655 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
4656 l2arc_thread_exit = 1;
4657 while (l2arc_thread_exit != 0)
4658 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4659 mutex_exit(&l2arc_feed_thr_lock);
4660}