]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dbuf.c
OpenZFS 9337 - zfs get all is slow due to uncached metadata
[mirror_zfs.git] / module / zfs / dbuf.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
ef3c1dea 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
64fc7762 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
3a17a7a9 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
0c66c32d 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f 29#include <sys/zfs_context.h>
c28b2279 30#include <sys/arc.h>
34dc7c2f 31#include <sys/dmu.h>
ea97f8ce 32#include <sys/dmu_send.h>
34dc7c2f
BB
33#include <sys/dmu_impl.h>
34#include <sys/dbuf.h>
35#include <sys/dmu_objset.h>
36#include <sys/dsl_dataset.h>
37#include <sys/dsl_dir.h>
38#include <sys/dmu_tx.h>
39#include <sys/spa.h>
40#include <sys/zio.h>
41#include <sys/dmu_zfetch.h>
428870ff
BB
42#include <sys/sa.h>
43#include <sys/sa_impl.h>
9b67f605
MA
44#include <sys/zfeature.h>
45#include <sys/blkptr.h>
9bd274dd 46#include <sys/range_tree.h>
49ee64e5 47#include <sys/trace_dbuf.h>
d3c2ae1c 48#include <sys/callb.h>
a6255b7f 49#include <sys/abd.h>
a1d477c2 50#include <sys/vdev.h>
37fb3e43 51#include <sys/cityhash.h>
2e5dc449 52#include <sys/spa_impl.h>
34dc7c2f 53
5e021f56
GDN
54kstat_t *dbuf_ksp;
55
56typedef struct dbuf_stats {
57 /*
58 * Various statistics about the size of the dbuf cache.
59 */
60 kstat_named_t cache_count;
61 kstat_named_t cache_size_bytes;
62 kstat_named_t cache_size_bytes_max;
63 /*
64 * Statistics regarding the bounds on the dbuf cache size.
65 */
66 kstat_named_t cache_target_bytes;
67 kstat_named_t cache_lowater_bytes;
68 kstat_named_t cache_hiwater_bytes;
69 /*
70 * Total number of dbuf cache evictions that have occurred.
71 */
72 kstat_named_t cache_total_evicts;
73 /*
74 * The distribution of dbuf levels in the dbuf cache and
75 * the total size of all dbufs at each level.
76 */
77 kstat_named_t cache_levels[DN_MAX_LEVELS];
78 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
79 /*
80 * Statistics about the dbuf hash table.
81 */
82 kstat_named_t hash_hits;
83 kstat_named_t hash_misses;
84 kstat_named_t hash_collisions;
85 kstat_named_t hash_elements;
86 kstat_named_t hash_elements_max;
87 /*
88 * Number of sublists containing more than one dbuf in the dbuf
89 * hash table. Keep track of the longest hash chain.
90 */
91 kstat_named_t hash_chains;
92 kstat_named_t hash_chain_max;
93 /*
94 * Number of times a dbuf_create() discovers that a dbuf was
95 * already created and in the dbuf hash table.
96 */
97 kstat_named_t hash_insert_race;
2e5dc449
MA
98 /*
99 * Statistics about the size of the metadata dbuf cache.
100 */
101 kstat_named_t metadata_cache_count;
102 kstat_named_t metadata_cache_size_bytes;
103 kstat_named_t metadata_cache_size_bytes_max;
104 /*
105 * For diagnostic purposes, this is incremented whenever we can't add
106 * something to the metadata cache because it's full, and instead put
107 * the data in the regular dbuf cache.
108 */
109 kstat_named_t metadata_cache_overflow;
5e021f56
GDN
110} dbuf_stats_t;
111
112dbuf_stats_t dbuf_stats = {
113 { "cache_count", KSTAT_DATA_UINT64 },
114 { "cache_size_bytes", KSTAT_DATA_UINT64 },
115 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
116 { "cache_target_bytes", KSTAT_DATA_UINT64 },
117 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
118 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
119 { "cache_total_evicts", KSTAT_DATA_UINT64 },
120 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
121 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
122 { "hash_hits", KSTAT_DATA_UINT64 },
123 { "hash_misses", KSTAT_DATA_UINT64 },
124 { "hash_collisions", KSTAT_DATA_UINT64 },
125 { "hash_elements", KSTAT_DATA_UINT64 },
126 { "hash_elements_max", KSTAT_DATA_UINT64 },
127 { "hash_chains", KSTAT_DATA_UINT64 },
128 { "hash_chain_max", KSTAT_DATA_UINT64 },
2e5dc449
MA
129 { "hash_insert_race", KSTAT_DATA_UINT64 },
130 { "metadata_cache_count", KSTAT_DATA_UINT64 },
131 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
132 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
133 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
5e021f56
GDN
134};
135
136#define DBUF_STAT_INCR(stat, val) \
137 atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
138#define DBUF_STAT_DECR(stat, val) \
139 DBUF_STAT_INCR(stat, -(val));
140#define DBUF_STAT_BUMP(stat) \
141 DBUF_STAT_INCR(stat, 1);
142#define DBUF_STAT_BUMPDOWN(stat) \
143 DBUF_STAT_INCR(stat, -1);
144#define DBUF_STAT_MAX(stat, v) { \
145 uint64_t _m; \
146 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
147 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
148 continue; \
149}
150
fc5bb51f
BB
151struct dbuf_hold_impl_data {
152 /* Function arguments */
153 dnode_t *dh_dn;
154 uint8_t dh_level;
155 uint64_t dh_blkid;
fcff0f35
PD
156 boolean_t dh_fail_sparse;
157 boolean_t dh_fail_uncached;
fc5bb51f
BB
158 void *dh_tag;
159 dmu_buf_impl_t **dh_dbp;
160 /* Local variables */
161 dmu_buf_impl_t *dh_db;
162 dmu_buf_impl_t *dh_parent;
163 blkptr_t *dh_bp;
164 int dh_err;
165 dbuf_dirty_record_t *dh_dr;
fc5bb51f
BB
166 int dh_depth;
167};
168
169static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
fcff0f35
PD
170 dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
171 boolean_t fail_uncached,
172 void *tag, dmu_buf_impl_t **dbp, int depth);
fc5bb51f
BB
173static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
174
13fe0198 175static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
b128c09f 176static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
34dc7c2f 177
0c66c32d 178extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
39efbde7
GM
179 dmu_buf_evict_func_t *evict_func_sync,
180 dmu_buf_evict_func_t *evict_func_async,
181 dmu_buf_t **clear_on_evict_dbufp);
0c66c32d 182
34dc7c2f
BB
183/*
184 * Global data structures and functions for the dbuf cache.
185 */
d3c2ae1c 186static kmem_cache_t *dbuf_kmem_cache;
0c66c32d 187static taskq_t *dbu_evict_taskq;
34dc7c2f 188
d3c2ae1c
GW
189static kthread_t *dbuf_cache_evict_thread;
190static kmutex_t dbuf_evict_lock;
191static kcondvar_t dbuf_evict_cv;
192static boolean_t dbuf_evict_thread_exit;
193
194/*
2e5dc449
MA
195 * There are two dbuf caches; each dbuf can only be in one of them at a time.
196 *
197 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
198 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
199 * that represent the metadata that describes filesystems/snapshots/
200 * bookmarks/properties/etc. We only evict from this cache when we export a
201 * pool, to short-circuit as much I/O as possible for all administrative
202 * commands that need the metadata. There is no eviction policy for this
203 * cache, because we try to only include types in it which would occupy a
204 * very small amount of space per object but create a large impact on the
205 * performance of these commands. Instead, after it reaches a maximum size
206 * (which should only happen on very small memory systems with a very large
207 * number of filesystem objects), we stop taking new dbufs into the
208 * metadata cache, instead putting them in the normal dbuf cache.
209 *
210 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
211 * are not currently held but have been recently released. These dbufs
212 * are not eligible for arc eviction until they are aged out of the cache.
213 * Dbufs that are aged out of the cache will be immediately destroyed and
214 * become eligible for arc eviction.
215 *
216 * Dbufs are added to these caches once the last hold is released. If a dbuf is
217 * later accessed and still exists in the dbuf cache, then it will be removed
218 * from the cache and later re-added to the head of the cache.
219 *
220 * If a given dbuf meets the requirements for the metadata cache, it will go
221 * there, otherwise it will be considered for the generic LRU dbuf cache. The
222 * caches and the refcounts tracking their sizes are stored in an array indexed
223 * by those caches' matching enum values (from dbuf_cached_state_t).
d3c2ae1c 224 */
2e5dc449
MA
225typedef struct dbuf_cache {
226 multilist_t *cache;
227 refcount_t size;
228} dbuf_cache_t;
229dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
d3c2ae1c 230
2e5dc449
MA
231/* Size limits for the caches */
232unsigned long dbuf_cache_max_bytes = 0;
233unsigned long dbuf_metadata_cache_max_bytes = 0;
234/* Set the default sizes of the caches to log2 fraction of arc size */
de4f8d5d 235int dbuf_cache_shift = 5;
2e5dc449 236int dbuf_metadata_cache_shift = 6;
d3c2ae1c
GW
237
238/*
2e5dc449 239 * The LRU dbuf cache uses a three-stage eviction policy:
d3c2ae1c
GW
240 * - A low water marker designates when the dbuf eviction thread
241 * should stop evicting from the dbuf cache.
242 * - When we reach the maximum size (aka mid water mark), we
243 * signal the eviction thread to run.
244 * - The high water mark indicates when the eviction thread
245 * is unable to keep up with the incoming load and eviction must
246 * happen in the context of the calling thread.
247 *
248 * The dbuf cache:
249 * (max size)
250 * low water mid water hi water
251 * +----------------------------------------+----------+----------+
252 * | | | |
253 * | | | |
254 * | | | |
255 * | | | |
256 * +----------------------------------------+----------+----------+
257 * stop signal evict
258 * evicting eviction directly
259 * thread
260 *
261 * The high and low water marks indicate the operating range for the eviction
262 * thread. The low water mark is, by default, 90% of the total size of the
263 * cache and the high water mark is at 110% (both of these percentages can be
264 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
265 * respectively). The eviction thread will try to ensure that the cache remains
266 * within this range by waking up every second and checking if the cache is
267 * above the low water mark. The thread can also be woken up by callers adding
268 * elements into the cache if the cache is larger than the mid water (i.e max
269 * cache size). Once the eviction thread is woken up and eviction is required,
270 * it will continue evicting buffers until it's able to reduce the cache size
271 * to the low water mark. If the cache size continues to grow and hits the high
4e33ba4c 272 * water mark, then callers adding elements to the cache will begin to evict
d3c2ae1c
GW
273 * directly from the cache until the cache is no longer above the high water
274 * mark.
275 */
276
277/*
278 * The percentage above and below the maximum cache size.
279 */
280uint_t dbuf_cache_hiwater_pct = 10;
281uint_t dbuf_cache_lowater_pct = 10;
282
34dc7c2f
BB
283/* ARGSUSED */
284static int
285dbuf_cons(void *vdb, void *unused, int kmflag)
286{
287 dmu_buf_impl_t *db = vdb;
288 bzero(db, sizeof (dmu_buf_impl_t));
289
290 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
291 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
d3c2ae1c 292 multilist_link_init(&db->db_cache_link);
34dc7c2f 293 refcount_create(&db->db_holds);
8951cb8d 294
34dc7c2f
BB
295 return (0);
296}
297
298/* ARGSUSED */
299static void
300dbuf_dest(void *vdb, void *unused)
301{
302 dmu_buf_impl_t *db = vdb;
303 mutex_destroy(&db->db_mtx);
304 cv_destroy(&db->db_changed);
d3c2ae1c 305 ASSERT(!multilist_link_active(&db->db_cache_link));
34dc7c2f
BB
306 refcount_destroy(&db->db_holds);
307}
308
309/*
310 * dbuf hash table routines
311 */
312static dbuf_hash_table_t dbuf_hash_table;
313
314static uint64_t dbuf_hash_count;
315
37fb3e43
PD
316/*
317 * We use Cityhash for this. It's fast, and has good hash properties without
318 * requiring any large static buffers.
319 */
34dc7c2f
BB
320static uint64_t
321dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
322{
37fb3e43 323 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
34dc7c2f
BB
324}
325
34dc7c2f
BB
326#define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
327 ((dbuf)->db.db_object == (obj) && \
328 (dbuf)->db_objset == (os) && \
329 (dbuf)->db_level == (level) && \
330 (dbuf)->db_blkid == (blkid))
331
332dmu_buf_impl_t *
6ebebace 333dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
34dc7c2f
BB
334{
335 dbuf_hash_table_t *h = &dbuf_hash_table;
d6320ddb
BB
336 uint64_t hv;
337 uint64_t idx;
34dc7c2f
BB
338 dmu_buf_impl_t *db;
339
d3c2ae1c 340 hv = dbuf_hash(os, obj, level, blkid);
d6320ddb
BB
341 idx = hv & h->hash_table_mask;
342
34dc7c2f
BB
343 mutex_enter(DBUF_HASH_MUTEX(h, idx));
344 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
345 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
346 mutex_enter(&db->db_mtx);
347 if (db->db_state != DB_EVICTING) {
348 mutex_exit(DBUF_HASH_MUTEX(h, idx));
349 return (db);
350 }
351 mutex_exit(&db->db_mtx);
352 }
353 }
354 mutex_exit(DBUF_HASH_MUTEX(h, idx));
355 return (NULL);
356}
357
6ebebace
JG
358static dmu_buf_impl_t *
359dbuf_find_bonus(objset_t *os, uint64_t object)
360{
361 dnode_t *dn;
362 dmu_buf_impl_t *db = NULL;
363
364 if (dnode_hold(os, object, FTAG, &dn) == 0) {
365 rw_enter(&dn->dn_struct_rwlock, RW_READER);
366 if (dn->dn_bonus != NULL) {
367 db = dn->dn_bonus;
368 mutex_enter(&db->db_mtx);
369 }
370 rw_exit(&dn->dn_struct_rwlock);
371 dnode_rele(dn, FTAG);
372 }
373 return (db);
374}
375
34dc7c2f
BB
376/*
377 * Insert an entry into the hash table. If there is already an element
378 * equal to elem in the hash table, then the already existing element
379 * will be returned and the new element will not be inserted.
380 * Otherwise returns NULL.
381 */
382static dmu_buf_impl_t *
383dbuf_hash_insert(dmu_buf_impl_t *db)
384{
385 dbuf_hash_table_t *h = &dbuf_hash_table;
428870ff 386 objset_t *os = db->db_objset;
34dc7c2f
BB
387 uint64_t obj = db->db.db_object;
388 int level = db->db_level;
d6320ddb 389 uint64_t blkid, hv, idx;
34dc7c2f 390 dmu_buf_impl_t *dbf;
5e021f56 391 uint32_t i;
34dc7c2f 392
d6320ddb 393 blkid = db->db_blkid;
d3c2ae1c 394 hv = dbuf_hash(os, obj, level, blkid);
d6320ddb
BB
395 idx = hv & h->hash_table_mask;
396
34dc7c2f 397 mutex_enter(DBUF_HASH_MUTEX(h, idx));
5e021f56
GDN
398 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
399 dbf = dbf->db_hash_next, i++) {
34dc7c2f
BB
400 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
401 mutex_enter(&dbf->db_mtx);
402 if (dbf->db_state != DB_EVICTING) {
403 mutex_exit(DBUF_HASH_MUTEX(h, idx));
404 return (dbf);
405 }
406 mutex_exit(&dbf->db_mtx);
407 }
408 }
409
5e021f56
GDN
410 if (i > 0) {
411 DBUF_STAT_BUMP(hash_collisions);
412 if (i == 1)
413 DBUF_STAT_BUMP(hash_chains);
414
415 DBUF_STAT_MAX(hash_chain_max, i);
416 }
417
34dc7c2f
BB
418 mutex_enter(&db->db_mtx);
419 db->db_hash_next = h->hash_table[idx];
420 h->hash_table[idx] = db;
421 mutex_exit(DBUF_HASH_MUTEX(h, idx));
bc89ac84 422 atomic_inc_64(&dbuf_hash_count);
5e021f56 423 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
34dc7c2f
BB
424
425 return (NULL);
426}
427
2e5dc449
MA
428/*
429 * This returns whether this dbuf should be stored in the metadata cache, which
430 * is based on whether it's from one of the dnode types that store data related
431 * to traversing dataset hierarchies.
432 */
433static boolean_t
434dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
435{
436 DB_DNODE_ENTER(db);
437 dmu_object_type_t type = DB_DNODE(db)->dn_type;
438 DB_DNODE_EXIT(db);
439
440 /* Check if this dbuf is one of the types we care about */
441 if (DMU_OT_IS_METADATA_CACHED(type)) {
442 /* If we hit this, then we set something up wrong in dmu_ot */
443 ASSERT(DMU_OT_IS_METADATA(type));
444
445 /*
446 * Sanity check for small-memory systems: don't allocate too
447 * much memory for this purpose.
448 */
449 if (refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
450 dbuf_metadata_cache_max_bytes) {
451 DBUF_STAT_BUMP(metadata_cache_overflow);
452 return (B_FALSE);
453 }
454
455 return (B_TRUE);
456 }
457
458 return (B_FALSE);
459}
460
34dc7c2f 461/*
bd089c54 462 * Remove an entry from the hash table. It must be in the EVICTING state.
34dc7c2f
BB
463 */
464static void
465dbuf_hash_remove(dmu_buf_impl_t *db)
466{
467 dbuf_hash_table_t *h = &dbuf_hash_table;
d6320ddb 468 uint64_t hv, idx;
34dc7c2f
BB
469 dmu_buf_impl_t *dbf, **dbp;
470
d3c2ae1c 471 hv = dbuf_hash(db->db_objset, db->db.db_object,
d6320ddb
BB
472 db->db_level, db->db_blkid);
473 idx = hv & h->hash_table_mask;
474
34dc7c2f 475 /*
4e33ba4c 476 * We mustn't hold db_mtx to maintain lock ordering:
34dc7c2f
BB
477 * DBUF_HASH_MUTEX > db_mtx.
478 */
479 ASSERT(refcount_is_zero(&db->db_holds));
480 ASSERT(db->db_state == DB_EVICTING);
481 ASSERT(!MUTEX_HELD(&db->db_mtx));
482
483 mutex_enter(DBUF_HASH_MUTEX(h, idx));
484 dbp = &h->hash_table[idx];
485 while ((dbf = *dbp) != db) {
486 dbp = &dbf->db_hash_next;
487 ASSERT(dbf != NULL);
488 }
489 *dbp = db->db_hash_next;
490 db->db_hash_next = NULL;
5e021f56
GDN
491 if (h->hash_table[idx] &&
492 h->hash_table[idx]->db_hash_next == NULL)
493 DBUF_STAT_BUMPDOWN(hash_chains);
34dc7c2f 494 mutex_exit(DBUF_HASH_MUTEX(h, idx));
bc89ac84 495 atomic_dec_64(&dbuf_hash_count);
34dc7c2f
BB
496}
497
0c66c32d
JG
498typedef enum {
499 DBVU_EVICTING,
500 DBVU_NOT_EVICTING
501} dbvu_verify_type_t;
502
503static void
504dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
505{
506#ifdef ZFS_DEBUG
507 int64_t holds;
508
509 if (db->db_user == NULL)
510 return;
511
512 /* Only data blocks support the attachment of user data. */
513 ASSERT(db->db_level == 0);
514
515 /* Clients must resolve a dbuf before attaching user data. */
516 ASSERT(db->db.db_data != NULL);
517 ASSERT3U(db->db_state, ==, DB_CACHED);
518
519 holds = refcount_count(&db->db_holds);
520 if (verify_type == DBVU_EVICTING) {
521 /*
522 * Immediate eviction occurs when holds == dirtycnt.
523 * For normal eviction buffers, holds is zero on
524 * eviction, except when dbuf_fix_old_data() calls
525 * dbuf_clear_data(). However, the hold count can grow
526 * during eviction even though db_mtx is held (see
527 * dmu_bonus_hold() for an example), so we can only
528 * test the generic invariant that holds >= dirtycnt.
529 */
530 ASSERT3U(holds, >=, db->db_dirtycnt);
531 } else {
bc4501f7 532 if (db->db_user_immediate_evict == TRUE)
0c66c32d
JG
533 ASSERT3U(holds, >=, db->db_dirtycnt);
534 else
535 ASSERT3U(holds, >, 0);
536 }
537#endif
538}
539
34dc7c2f
BB
540static void
541dbuf_evict_user(dmu_buf_impl_t *db)
542{
0c66c32d
JG
543 dmu_buf_user_t *dbu = db->db_user;
544
34dc7c2f
BB
545 ASSERT(MUTEX_HELD(&db->db_mtx));
546
0c66c32d 547 if (dbu == NULL)
34dc7c2f
BB
548 return;
549
0c66c32d
JG
550 dbuf_verify_user(db, DBVU_EVICTING);
551 db->db_user = NULL;
552
553#ifdef ZFS_DEBUG
554 if (dbu->dbu_clear_on_evict_dbufp != NULL)
555 *dbu->dbu_clear_on_evict_dbufp = NULL;
556#endif
557
558 /*
39efbde7
GM
559 * There are two eviction callbacks - one that we call synchronously
560 * and one that we invoke via a taskq. The async one is useful for
561 * avoiding lock order reversals and limiting stack depth.
562 *
563 * Note that if we have a sync callback but no async callback,
564 * it's likely that the sync callback will free the structure
565 * containing the dbu. In that case we need to take care to not
566 * dereference dbu after calling the sync evict func.
0c66c32d 567 */
a7004725 568 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
39efbde7
GM
569
570 if (dbu->dbu_evict_func_sync != NULL)
571 dbu->dbu_evict_func_sync(dbu);
572
573 if (has_async) {
574 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
575 dbu, 0, &dbu->dbu_tqent);
576 }
34dc7c2f
BB
577}
578
572e2857
BB
579boolean_t
580dbuf_is_metadata(dmu_buf_impl_t *db)
581{
cc79a5c2
BB
582 /*
583 * Consider indirect blocks and spill blocks to be meta data.
584 */
585 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
572e2857
BB
586 return (B_TRUE);
587 } else {
588 boolean_t is_metadata;
589
590 DB_DNODE_ENTER(db);
9ae529ec 591 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
572e2857
BB
592 DB_DNODE_EXIT(db);
593
594 return (is_metadata);
595 }
596}
597
d3c2ae1c
GW
598
599/*
600 * This function *must* return indices evenly distributed between all
601 * sublists of the multilist. This is needed due to how the dbuf eviction
602 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
603 * distributed between all sublists and uses this assumption when
604 * deciding which sublist to evict from and how much to evict from it.
605 */
606unsigned int
607dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
34dc7c2f 608{
d3c2ae1c
GW
609 dmu_buf_impl_t *db = obj;
610
611 /*
612 * The assumption here, is the hash value for a given
613 * dmu_buf_impl_t will remain constant throughout it's lifetime
614 * (i.e. it's objset, object, level and blkid fields don't change).
615 * Thus, we don't need to store the dbuf's sublist index
616 * on insertion, as this index can be recalculated on removal.
617 *
618 * Also, the low order bits of the hash value are thought to be
619 * distributed evenly. Otherwise, in the case that the multilist
620 * has a power of two number of sublists, each sublists' usage
621 * would not be evenly distributed.
622 */
623 return (dbuf_hash(db->db_objset, db->db.db_object,
624 db->db_level, db->db_blkid) %
625 multilist_get_num_sublists(ml));
626}
627
e71cade6 628static inline unsigned long
629dbuf_cache_target_bytes(void)
630{
631 return MIN(dbuf_cache_max_bytes,
de4f8d5d 632 arc_target_bytes() >> dbuf_cache_shift);
e71cade6 633}
634
5e021f56
GDN
635static inline uint64_t
636dbuf_cache_hiwater_bytes(void)
d3c2ae1c 637{
e71cade6 638 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
5e021f56
GDN
639 return (dbuf_cache_target +
640 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
641}
e71cade6 642
5e021f56
GDN
643static inline uint64_t
644dbuf_cache_lowater_bytes(void)
645{
646 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
647 return (dbuf_cache_target -
648 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
649}
d3c2ae1c 650
5e021f56
GDN
651static inline boolean_t
652dbuf_cache_above_hiwater(void)
653{
2e5dc449
MA
654 return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
655 dbuf_cache_hiwater_bytes());
d3c2ae1c
GW
656}
657
658static inline boolean_t
659dbuf_cache_above_lowater(void)
660{
2e5dc449
MA
661 return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
662 dbuf_cache_lowater_bytes());
d3c2ae1c
GW
663}
664
665/*
666 * Evict the oldest eligible dbuf from the dbuf cache.
667 */
668static void
669dbuf_evict_one(void)
670{
2e5dc449
MA
671 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
672 multilist_sublist_t *mls = multilist_sublist_lock(
673 dbuf_caches[DB_DBUF_CACHE].cache, idx);
1c27024e 674
d3c2ae1c
GW
675 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
676
1c27024e 677 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
d3c2ae1c
GW
678 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
679 db = multilist_sublist_prev(mls, db);
680 }
681
682 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
683 multilist_sublist_t *, mls);
684
685 if (db != NULL) {
686 multilist_sublist_remove(mls, db);
687 multilist_sublist_unlock(mls);
2e5dc449 688 (void) refcount_remove_many(&dbuf_caches[DB_DBUF_CACHE].size,
d3c2ae1c 689 db->db.db_size, db);
5e021f56
GDN
690 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
691 DBUF_STAT_BUMPDOWN(cache_count);
692 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
693 db->db.db_size);
2e5dc449
MA
694 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
695 db->db_caching_status = DB_NO_CACHE;
d3c2ae1c 696 dbuf_destroy(db);
5e021f56 697 DBUF_STAT_MAX(cache_size_bytes_max,
2e5dc449 698 refcount_count(&dbuf_caches[DB_DBUF_CACHE].size));
5e021f56 699 DBUF_STAT_BUMP(cache_total_evicts);
d3c2ae1c
GW
700 } else {
701 multilist_sublist_unlock(mls);
702 }
d3c2ae1c
GW
703}
704
705/*
706 * The dbuf evict thread is responsible for aging out dbufs from the
707 * cache. Once the cache has reached it's maximum size, dbufs are removed
708 * and destroyed. The eviction thread will continue running until the size
709 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
710 * out of the cache it is destroyed and becomes eligible for arc eviction.
711 */
867959b5 712/* ARGSUSED */
d3c2ae1c 713static void
c25b8f99 714dbuf_evict_thread(void *unused)
d3c2ae1c
GW
715{
716 callb_cpr_t cpr;
717
718 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
719
720 mutex_enter(&dbuf_evict_lock);
721 while (!dbuf_evict_thread_exit) {
722 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
723 CALLB_CPR_SAFE_BEGIN(&cpr);
724 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
725 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
726 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
727 }
728 mutex_exit(&dbuf_evict_lock);
729
730 /*
731 * Keep evicting as long as we're above the low water mark
732 * for the cache. We do this without holding the locks to
733 * minimize lock contention.
734 */
735 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
736 dbuf_evict_one();
737 }
738
739 mutex_enter(&dbuf_evict_lock);
740 }
741
742 dbuf_evict_thread_exit = B_FALSE;
743 cv_broadcast(&dbuf_evict_cv);
744 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
745 thread_exit();
746}
747
748/*
749 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
750 * If the dbuf cache is at its high water mark, then evict a dbuf from the
751 * dbuf cache using the callers context.
752 */
753static void
754dbuf_evict_notify(void)
755{
38240ebd
MA
756 /*
757 * We check if we should evict without holding the dbuf_evict_lock,
758 * because it's OK to occasionally make the wrong decision here,
759 * and grabbing the lock results in massive lock contention.
760 */
2e5dc449
MA
761 if (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
762 dbuf_cache_target_bytes()) {
38240ebd 763 if (dbuf_cache_above_hiwater())
d3c2ae1c 764 dbuf_evict_one();
38240ebd 765 cv_signal(&dbuf_evict_cv);
d3c2ae1c 766 }
34dc7c2f
BB
767}
768
5e021f56
GDN
769static int
770dbuf_kstat_update(kstat_t *ksp, int rw)
771{
772 dbuf_stats_t *ds = ksp->ks_data;
d3c2ae1c 773
5e021f56
GDN
774 if (rw == KSTAT_WRITE) {
775 return (SET_ERROR(EACCES));
776 } else {
2e5dc449
MA
777 ds->metadata_cache_size_bytes.value.ui64 =
778 refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size);
5e021f56 779 ds->cache_size_bytes.value.ui64 =
2e5dc449 780 refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
5e021f56
GDN
781 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
782 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
783 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
784 ds->hash_elements.value.ui64 = dbuf_hash_count;
785 }
786
787 return (0);
788}
d3c2ae1c 789
34dc7c2f
BB
790void
791dbuf_init(void)
792{
793 uint64_t hsize = 1ULL << 16;
794 dbuf_hash_table_t *h = &dbuf_hash_table;
795 int i;
796
797 /*
798 * The hash table is big enough to fill all of physical memory
69de3421
TC
799 * with an average block size of zfs_arc_average_blocksize (default 8K).
800 * By default, the table will take up
801 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 802 */
69de3421 803 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
34dc7c2f
BB
804 hsize <<= 1;
805
806retry:
807 h->hash_table_mask = hsize - 1;
93ce2b4c 808#if defined(_KERNEL)
d1d7e268
MK
809 /*
810 * Large allocations which do not require contiguous pages
811 * should be using vmem_alloc() in the linux kernel
812 */
79c76d5b 813 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
00b46022 814#else
34dc7c2f 815 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
00b46022 816#endif
34dc7c2f
BB
817 if (h->hash_table == NULL) {
818 /* XXX - we should really return an error instead of assert */
819 ASSERT(hsize > (1ULL << 10));
820 hsize >>= 1;
821 goto retry;
822 }
823
d3c2ae1c 824 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
34dc7c2f
BB
825 sizeof (dmu_buf_impl_t),
826 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
827
828 for (i = 0; i < DBUF_MUTEXES; i++)
40d06e3c 829 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
e0b0ca98
BB
830
831 dbuf_stats_init(h);
0c66c32d 832
d3c2ae1c 833 /*
2e5dc449
MA
834 * Setup the parameters for the dbuf caches. We set the sizes of the
835 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
836 * of the target size of the ARC. If the values has been specified as
837 * a module option and they're not greater than the target size of the
838 * ARC, then we honor that value.
d3c2ae1c 839 */
de4f8d5d
BB
840 if (dbuf_cache_max_bytes == 0 ||
841 dbuf_cache_max_bytes >= arc_target_bytes()) {
842 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
843 }
2e5dc449
MA
844 if (dbuf_metadata_cache_max_bytes == 0 ||
845 dbuf_metadata_cache_max_bytes >= arc_target_bytes()) {
846 dbuf_metadata_cache_max_bytes =
847 arc_target_bytes() >> dbuf_metadata_cache_shift;
848 }
d3c2ae1c 849
0c66c32d
JG
850 /*
851 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
852 * configuration is not required.
853 */
1229323d 854 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
d3c2ae1c 855
2e5dc449
MA
856 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
857 dbuf_caches[dcs].cache =
858 multilist_create(sizeof (dmu_buf_impl_t),
859 offsetof(dmu_buf_impl_t, db_cache_link),
860 dbuf_cache_multilist_index_func);
861 refcount_create(&dbuf_caches[dcs].size);
862 }
d3c2ae1c 863
d3c2ae1c
GW
864 dbuf_evict_thread_exit = B_FALSE;
865 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
866 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
867 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
868 NULL, 0, &p0, TS_RUN, minclsyspri);
5e021f56
GDN
869
870 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
871 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
872 KSTAT_FLAG_VIRTUAL);
873 if (dbuf_ksp != NULL) {
874 dbuf_ksp->ks_data = &dbuf_stats;
875 dbuf_ksp->ks_update = dbuf_kstat_update;
876 kstat_install(dbuf_ksp);
877
878 for (i = 0; i < DN_MAX_LEVELS; i++) {
879 snprintf(dbuf_stats.cache_levels[i].name,
880 KSTAT_STRLEN, "cache_level_%d", i);
881 dbuf_stats.cache_levels[i].data_type =
882 KSTAT_DATA_UINT64;
883 snprintf(dbuf_stats.cache_levels_bytes[i].name,
884 KSTAT_STRLEN, "cache_level_%d_bytes", i);
885 dbuf_stats.cache_levels_bytes[i].data_type =
886 KSTAT_DATA_UINT64;
887 }
888 }
34dc7c2f
BB
889}
890
891void
892dbuf_fini(void)
893{
894 dbuf_hash_table_t *h = &dbuf_hash_table;
895 int i;
896
e0b0ca98
BB
897 dbuf_stats_destroy();
898
34dc7c2f
BB
899 for (i = 0; i < DBUF_MUTEXES; i++)
900 mutex_destroy(&h->hash_mutexes[i]);
93ce2b4c 901#if defined(_KERNEL)
d1d7e268
MK
902 /*
903 * Large allocations which do not require contiguous pages
904 * should be using vmem_free() in the linux kernel
905 */
00b46022
BB
906 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
907#else
34dc7c2f 908 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
00b46022 909#endif
d3c2ae1c 910 kmem_cache_destroy(dbuf_kmem_cache);
0c66c32d 911 taskq_destroy(dbu_evict_taskq);
d3c2ae1c
GW
912
913 mutex_enter(&dbuf_evict_lock);
914 dbuf_evict_thread_exit = B_TRUE;
915 while (dbuf_evict_thread_exit) {
916 cv_signal(&dbuf_evict_cv);
917 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
918 }
919 mutex_exit(&dbuf_evict_lock);
d3c2ae1c
GW
920
921 mutex_destroy(&dbuf_evict_lock);
922 cv_destroy(&dbuf_evict_cv);
923
2e5dc449
MA
924 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
925 refcount_destroy(&dbuf_caches[dcs].size);
926 multilist_destroy(dbuf_caches[dcs].cache);
927 }
5e021f56
GDN
928
929 if (dbuf_ksp != NULL) {
930 kstat_delete(dbuf_ksp);
931 dbuf_ksp = NULL;
932 }
34dc7c2f
BB
933}
934
935/*
936 * Other stuff.
937 */
938
939#ifdef ZFS_DEBUG
940static void
941dbuf_verify(dmu_buf_impl_t *db)
942{
572e2857 943 dnode_t *dn;
428870ff 944 dbuf_dirty_record_t *dr;
34dc7c2f
BB
945
946 ASSERT(MUTEX_HELD(&db->db_mtx));
947
948 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
949 return;
950
951 ASSERT(db->db_objset != NULL);
572e2857
BB
952 DB_DNODE_ENTER(db);
953 dn = DB_DNODE(db);
34dc7c2f
BB
954 if (dn == NULL) {
955 ASSERT(db->db_parent == NULL);
956 ASSERT(db->db_blkptr == NULL);
957 } else {
958 ASSERT3U(db->db.db_object, ==, dn->dn_object);
959 ASSERT3P(db->db_objset, ==, dn->dn_objset);
960 ASSERT3U(db->db_level, <, dn->dn_nlevels);
572e2857
BB
961 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
962 db->db_blkid == DMU_SPILL_BLKID ||
8951cb8d 963 !avl_is_empty(&dn->dn_dbufs));
34dc7c2f 964 }
428870ff
BB
965 if (db->db_blkid == DMU_BONUS_BLKID) {
966 ASSERT(dn != NULL);
967 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
968 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
969 } else if (db->db_blkid == DMU_SPILL_BLKID) {
34dc7c2f 970 ASSERT(dn != NULL);
c99c9001 971 ASSERT0(db->db.db_offset);
34dc7c2f
BB
972 } else {
973 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
974 }
975
428870ff
BB
976 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
977 ASSERT(dr->dr_dbuf == db);
978
979 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
980 ASSERT(dr->dr_dbuf == db);
981
b128c09f
BB
982 /*
983 * We can't assert that db_size matches dn_datablksz because it
984 * can be momentarily different when another thread is doing
985 * dnode_set_blksz().
986 */
987 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
428870ff 988 dr = db->db_data_pending;
b128c09f
BB
989 /*
990 * It should only be modified in syncing context, so
991 * make sure we only have one copy of the data.
992 */
993 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
34dc7c2f
BB
994 }
995
996 /* verify db->db_blkptr */
997 if (db->db_blkptr) {
998 if (db->db_parent == dn->dn_dbuf) {
999 /* db is pointed to by the dnode */
1000 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
9babb374 1001 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
34dc7c2f
BB
1002 ASSERT(db->db_parent == NULL);
1003 else
1004 ASSERT(db->db_parent != NULL);
428870ff
BB
1005 if (db->db_blkid != DMU_SPILL_BLKID)
1006 ASSERT3P(db->db_blkptr, ==,
1007 &dn->dn_phys->dn_blkptr[db->db_blkid]);
34dc7c2f
BB
1008 } else {
1009 /* db is pointed to by an indirect block */
1fde1e37 1010 ASSERTV(int epb = db->db_parent->db.db_size >>
02730c33 1011 SPA_BLKPTRSHIFT);
34dc7c2f
BB
1012 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1013 ASSERT3U(db->db_parent->db.db_object, ==,
1014 db->db.db_object);
1015 /*
1016 * dnode_grow_indblksz() can make this fail if we don't
1017 * have the struct_rwlock. XXX indblksz no longer
1018 * grows. safe to do this now?
1019 */
572e2857 1020 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
34dc7c2f
BB
1021 ASSERT3P(db->db_blkptr, ==,
1022 ((blkptr_t *)db->db_parent->db.db_data +
1023 db->db_blkid % epb));
1024 }
1025 }
1026 }
1027 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
428870ff
BB
1028 (db->db_buf == NULL || db->db_buf->b_data) &&
1029 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
34dc7c2f
BB
1030 db->db_state != DB_FILL && !dn->dn_free_txg) {
1031 /*
1032 * If the blkptr isn't set but they have nonzero data,
1033 * it had better be dirty, otherwise we'll lose that
1034 * data when we evict this buffer.
bc77ba73
PD
1035 *
1036 * There is an exception to this rule for indirect blocks; in
1037 * this case, if the indirect block is a hole, we fill in a few
1038 * fields on each of the child blocks (importantly, birth time)
1039 * to prevent hole birth times from being lost when you
1040 * partially fill in a hole.
34dc7c2f
BB
1041 */
1042 if (db->db_dirtycnt == 0) {
bc77ba73
PD
1043 if (db->db_level == 0) {
1044 uint64_t *buf = db->db.db_data;
1045 int i;
34dc7c2f 1046
bc77ba73
PD
1047 for (i = 0; i < db->db.db_size >> 3; i++) {
1048 ASSERT(buf[i] == 0);
1049 }
1050 } else {
bc77ba73
PD
1051 blkptr_t *bps = db->db.db_data;
1052 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1053 db->db.db_size);
1054 /*
1055 * We want to verify that all the blkptrs in the
1056 * indirect block are holes, but we may have
1057 * automatically set up a few fields for them.
1058 * We iterate through each blkptr and verify
1059 * they only have those fields set.
1060 */
1c27024e 1061 for (int i = 0;
bc77ba73
PD
1062 i < db->db.db_size / sizeof (blkptr_t);
1063 i++) {
1064 blkptr_t *bp = &bps[i];
1065 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1066 &bp->blk_cksum));
1067 ASSERT(
1068 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1069 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1070 DVA_IS_EMPTY(&bp->blk_dva[2]));
1071 ASSERT0(bp->blk_fill);
1072 ASSERT0(bp->blk_pad[0]);
1073 ASSERT0(bp->blk_pad[1]);
1074 ASSERT(!BP_IS_EMBEDDED(bp));
1075 ASSERT(BP_IS_HOLE(bp));
1076 ASSERT0(bp->blk_phys_birth);
1077 }
34dc7c2f
BB
1078 }
1079 }
1080 }
572e2857 1081 DB_DNODE_EXIT(db);
34dc7c2f
BB
1082}
1083#endif
1084
0c66c32d
JG
1085static void
1086dbuf_clear_data(dmu_buf_impl_t *db)
1087{
1088 ASSERT(MUTEX_HELD(&db->db_mtx));
1089 dbuf_evict_user(db);
d3c2ae1c 1090 ASSERT3P(db->db_buf, ==, NULL);
0c66c32d
JG
1091 db->db.db_data = NULL;
1092 if (db->db_state != DB_NOFILL)
1093 db->db_state = DB_UNCACHED;
1094}
1095
34dc7c2f
BB
1096static void
1097dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1098{
1099 ASSERT(MUTEX_HELD(&db->db_mtx));
0c66c32d
JG
1100 ASSERT(buf != NULL);
1101
34dc7c2f 1102 db->db_buf = buf;
0c66c32d
JG
1103 ASSERT(buf->b_data != NULL);
1104 db->db.db_data = buf->b_data;
34dc7c2f
BB
1105}
1106
428870ff
BB
1107/*
1108 * Loan out an arc_buf for read. Return the loaned arc_buf.
1109 */
1110arc_buf_t *
1111dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1112{
1113 arc_buf_t *abuf;
1114
d3c2ae1c 1115 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
428870ff
BB
1116 mutex_enter(&db->db_mtx);
1117 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
1118 int blksz = db->db.db_size;
b0bc7a84 1119 spa_t *spa = db->db_objset->os_spa;
572e2857 1120
428870ff 1121 mutex_exit(&db->db_mtx);
2aa34383 1122 abuf = arc_loan_buf(spa, B_FALSE, blksz);
428870ff
BB
1123 bcopy(db->db.db_data, abuf->b_data, blksz);
1124 } else {
1125 abuf = db->db_buf;
1126 arc_loan_inuse_buf(abuf, db);
d3c2ae1c 1127 db->db_buf = NULL;
0c66c32d 1128 dbuf_clear_data(db);
428870ff
BB
1129 mutex_exit(&db->db_mtx);
1130 }
1131 return (abuf);
1132}
1133
fcff0f35
PD
1134/*
1135 * Calculate which level n block references the data at the level 0 offset
1136 * provided.
1137 */
34dc7c2f 1138uint64_t
031d7c2f 1139dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
34dc7c2f 1140{
fcff0f35
PD
1141 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1142 /*
1143 * The level n blkid is equal to the level 0 blkid divided by
1144 * the number of level 0s in a level n block.
1145 *
1146 * The level 0 blkid is offset >> datablkshift =
1147 * offset / 2^datablkshift.
1148 *
1149 * The number of level 0s in a level n is the number of block
1150 * pointers in an indirect block, raised to the power of level.
1151 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1152 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1153 *
1154 * Thus, the level n blkid is: offset /
1155 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
1156 * = offset / 2^(datablkshift + level *
1157 * (indblkshift - SPA_BLKPTRSHIFT))
1158 * = offset >> (datablkshift + level *
1159 * (indblkshift - SPA_BLKPTRSHIFT))
1160 */
031d7c2f
GN
1161
1162 const unsigned exp = dn->dn_datablkshift +
1163 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1164
1165 if (exp >= 8 * sizeof (offset)) {
1166 /* This only happens on the highest indirection level */
1167 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1168 return (0);
1169 }
1170
1171 ASSERT3U(exp, <, 8 * sizeof (offset));
1172
1173 return (offset >> exp);
34dc7c2f
BB
1174 } else {
1175 ASSERT3U(offset, <, dn->dn_datablksz);
1176 return (0);
1177 }
1178}
1179
1180static void
d4a72f23
TC
1181dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1182 arc_buf_t *buf, void *vdb)
34dc7c2f
BB
1183{
1184 dmu_buf_impl_t *db = vdb;
1185
1186 mutex_enter(&db->db_mtx);
1187 ASSERT3U(db->db_state, ==, DB_READ);
1188 /*
1189 * All reads are synchronous, so we must have a hold on the dbuf
1190 */
1191 ASSERT(refcount_count(&db->db_holds) > 0);
1192 ASSERT(db->db_buf == NULL);
1193 ASSERT(db->db.db_data == NULL);
1194 if (db->db_level == 0 && db->db_freed_in_flight) {
1195 /* we were freed in flight; disregard any error */
d4a72f23
TC
1196 if (buf == NULL) {
1197 buf = arc_alloc_buf(db->db_objset->os_spa,
1198 db, DBUF_GET_BUFC_TYPE(db), db->db.db_size);
1199 }
34dc7c2f
BB
1200 arc_release(buf, db);
1201 bzero(buf->b_data, db->db.db_size);
1202 arc_buf_freeze(buf);
1203 db->db_freed_in_flight = FALSE;
1204 dbuf_set_data(db, buf);
1205 db->db_state = DB_CACHED;
d4a72f23 1206 } else if (buf != NULL) {
34dc7c2f
BB
1207 dbuf_set_data(db, buf);
1208 db->db_state = DB_CACHED;
1209 } else {
428870ff 1210 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f 1211 ASSERT3P(db->db_buf, ==, NULL);
34dc7c2f
BB
1212 db->db_state = DB_UNCACHED;
1213 }
1214 cv_broadcast(&db->db_changed);
2e5dc449 1215 dbuf_rele_and_unlock(db, NULL);
34dc7c2f
BB
1216}
1217
69830602
TC
1218
1219/*
1220 * This function ensures that, when doing a decrypting read of a block,
1221 * we make sure we have decrypted the dnode associated with it. We must do
1222 * this so that we ensure we are fully authenticating the checksum-of-MACs
1223 * tree from the root of the objset down to this block. Indirect blocks are
1224 * always verified against their secure checksum-of-MACs assuming that the
1225 * dnode containing them is correct. Now that we are doing a decrypting read,
1226 * we can be sure that the key is loaded and verify that assumption. This is
1227 * especially important considering that we always read encrypted dnode
1228 * blocks as raw data (without verifying their MACs) to start, and
1229 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1230 */
1231static int
1232dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1233{
1234 int err = 0;
1235 objset_t *os = db->db_objset;
1236 arc_buf_t *dnode_abuf;
1237 dnode_t *dn;
1238 zbookmark_phys_t zb;
1239
1240 ASSERT(MUTEX_HELD(&db->db_mtx));
1241
1242 if (!os->os_encrypted || os->os_raw_receive ||
1243 (flags & DB_RF_NO_DECRYPT) != 0)
1244 return (0);
1245
1246 DB_DNODE_ENTER(db);
1247 dn = DB_DNODE(db);
1248 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1249
1250 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1251 DB_DNODE_EXIT(db);
1252 return (0);
1253 }
1254
1255 SET_BOOKMARK(&zb, dmu_objset_id(os),
1256 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1257 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1258
1259 /*
1260 * An error code of EACCES tells us that the key is still not
1261 * available. This is ok if we are only reading authenticated
1262 * (and therefore non-encrypted) blocks.
1263 */
1264 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1265 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1266 (db->db_blkid == DMU_BONUS_BLKID &&
1267 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1268 err = 0;
1269
1270
1271 DB_DNODE_EXIT(db);
1272
1273 return (err);
1274}
1275
5f6d0b6f 1276static int
7f60329a 1277dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
34dc7c2f 1278{
572e2857 1279 dnode_t *dn;
5dbd68a3 1280 zbookmark_phys_t zb;
2a432414 1281 uint32_t aflags = ARC_FLAG_NOWAIT;
b5256303 1282 int err, zio_flags = 0;
34dc7c2f 1283
572e2857
BB
1284 DB_DNODE_ENTER(db);
1285 dn = DB_DNODE(db);
34dc7c2f
BB
1286 ASSERT(!refcount_is_zero(&db->db_holds));
1287 /* We need the struct_rwlock to prevent db_blkptr from changing. */
b128c09f 1288 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
34dc7c2f
BB
1289 ASSERT(MUTEX_HELD(&db->db_mtx));
1290 ASSERT(db->db_state == DB_UNCACHED);
1291 ASSERT(db->db_buf == NULL);
1292
428870ff 1293 if (db->db_blkid == DMU_BONUS_BLKID) {
50c957f7
NB
1294 /*
1295 * The bonus length stored in the dnode may be less than
1296 * the maximum available space in the bonus buffer.
1297 */
9babb374 1298 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
50c957f7 1299 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
b5256303
TC
1300
1301 /* if the underlying dnode block is encrypted, decrypt it */
69830602
TC
1302 err = dbuf_read_verify_dnode_crypt(db, flags);
1303 if (err != 0) {
1304 DB_DNODE_EXIT(db);
1305 mutex_exit(&db->db_mtx);
1306 return (err);
b5256303 1307 }
34dc7c2f
BB
1308
1309 ASSERT3U(bonuslen, <=, db->db.db_size);
a3fd9d9e 1310 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
25458cbe 1311 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
50c957f7
NB
1312 if (bonuslen < max_bonuslen)
1313 bzero(db->db.db_data, max_bonuslen);
9babb374
BB
1314 if (bonuslen)
1315 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
572e2857 1316 DB_DNODE_EXIT(db);
34dc7c2f
BB
1317 db->db_state = DB_CACHED;
1318 mutex_exit(&db->db_mtx);
5f6d0b6f 1319 return (0);
34dc7c2f
BB
1320 }
1321
b128c09f
BB
1322 /*
1323 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1324 * processes the delete record and clears the bp while we are waiting
1325 * for the dn_mtx (resulting in a "no" from block_freed).
1326 */
1327 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1328 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1329 BP_IS_HOLE(db->db_blkptr)))) {
34dc7c2f
BB
1330 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1331
2aa34383
DK
1332 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1333 db->db.db_size));
34dc7c2f 1334 bzero(db->db.db_data, db->db.db_size);
bc77ba73
PD
1335
1336 if (db->db_blkptr != NULL && db->db_level > 0 &&
1337 BP_IS_HOLE(db->db_blkptr) &&
1338 db->db_blkptr->blk_birth != 0) {
1339 blkptr_t *bps = db->db.db_data;
1c27024e 1340 for (int i = 0; i < ((1 <<
bc77ba73
PD
1341 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1342 i++) {
1343 blkptr_t *bp = &bps[i];
1344 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1345 1 << dn->dn_indblkshift);
1346 BP_SET_LSIZE(bp,
1347 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1348 dn->dn_datablksz :
1349 BP_GET_LSIZE(db->db_blkptr));
1350 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1351 BP_SET_LEVEL(bp,
1352 BP_GET_LEVEL(db->db_blkptr) - 1);
1353 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1354 }
1355 }
1356 DB_DNODE_EXIT(db);
34dc7c2f 1357 db->db_state = DB_CACHED;
34dc7c2f 1358 mutex_exit(&db->db_mtx);
5f6d0b6f 1359 return (0);
34dc7c2f
BB
1360 }
1361
370bbf66
TC
1362
1363 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1364 db->db.db_object, db->db_level, db->db_blkid);
1365
b5256303
TC
1366 /*
1367 * All bps of an encrypted os should have the encryption bit set.
1368 * If this is not true it indicates tampering and we report an error.
1369 */
1370 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1371 spa_log_error(db->db_objset->os_spa, &zb);
1372 zfs_panic_recover("unencrypted block in encrypted "
1373 "object set %llu", dmu_objset_id(db->db_objset));
69830602
TC
1374 DB_DNODE_EXIT(db);
1375 mutex_exit(&db->db_mtx);
b5256303
TC
1376 return (SET_ERROR(EIO));
1377 }
1378
69830602
TC
1379 err = dbuf_read_verify_dnode_crypt(db, flags);
1380 if (err != 0) {
1381 DB_DNODE_EXIT(db);
1382 mutex_exit(&db->db_mtx);
1383 return (err);
1384 }
1385
1386 DB_DNODE_EXIT(db);
1387
1388 db->db_state = DB_READ;
1389 mutex_exit(&db->db_mtx);
1390
1391 if (DBUF_IS_L2CACHEABLE(db))
1392 aflags |= ARC_FLAG_L2CACHE;
1393
34dc7c2f 1394 dbuf_add_ref(db, NULL);
b128c09f 1395
b5256303
TC
1396 zio_flags = (flags & DB_RF_CANFAIL) ?
1397 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1398
1399 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1400 zio_flags |= ZIO_FLAG_RAW;
1401
5f6d0b6f 1402 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
b5256303 1403 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
34dc7c2f 1404 &aflags, &zb);
5f6d0b6f 1405
da8d5748 1406 return (err);
34dc7c2f
BB
1407}
1408
2aa34383
DK
1409/*
1410 * This is our just-in-time copy function. It makes a copy of buffers that
1411 * have been modified in a previous transaction group before we access them in
1412 * the current active group.
1413 *
1414 * This function is used in three places: when we are dirtying a buffer for the
1415 * first time in a txg, when we are freeing a range in a dnode that includes
1416 * this buffer, and when we are accessing a buffer which was received compressed
1417 * and later referenced in a WRITE_BYREF record.
1418 *
1419 * Note that when we are called from dbuf_free_range() we do not put a hold on
1420 * the buffer, we just traverse the active dbuf list for the dnode.
1421 */
1422static void
1423dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1424{
1425 dbuf_dirty_record_t *dr = db->db_last_dirty;
1426
1427 ASSERT(MUTEX_HELD(&db->db_mtx));
1428 ASSERT(db->db.db_data != NULL);
1429 ASSERT(db->db_level == 0);
1430 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1431
1432 if (dr == NULL ||
1433 (dr->dt.dl.dr_data !=
1434 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1435 return;
1436
1437 /*
1438 * If the last dirty record for this dbuf has not yet synced
1439 * and its referencing the dbuf data, either:
1440 * reset the reference to point to a new copy,
1441 * or (if there a no active holders)
1442 * just null out the current db_data pointer.
1443 */
4807c0ba 1444 ASSERT3U(dr->dr_txg, >=, txg - 2);
2aa34383 1445 if (db->db_blkid == DMU_BONUS_BLKID) {
2aa34383
DK
1446 dnode_t *dn = DB_DNODE(db);
1447 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
a3fd9d9e 1448 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
2aa34383
DK
1449 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1450 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1451 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
b5256303 1452 dnode_t *dn = DB_DNODE(db);
2aa34383
DK
1453 int size = arc_buf_size(db->db_buf);
1454 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1455 spa_t *spa = db->db_objset->os_spa;
1456 enum zio_compress compress_type =
1457 arc_get_compression(db->db_buf);
1458
b5256303
TC
1459 if (arc_is_encrypted(db->db_buf)) {
1460 boolean_t byteorder;
1461 uint8_t salt[ZIO_DATA_SALT_LEN];
1462 uint8_t iv[ZIO_DATA_IV_LEN];
1463 uint8_t mac[ZIO_DATA_MAC_LEN];
1464
1465 arc_get_raw_params(db->db_buf, &byteorder, salt,
1466 iv, mac);
1467 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1468 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1469 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1470 compress_type);
1471 } else if (compress_type != ZIO_COMPRESS_OFF) {
2aa34383
DK
1472 ASSERT3U(type, ==, ARC_BUFC_DATA);
1473 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1474 size, arc_buf_lsize(db->db_buf), compress_type);
b5256303
TC
1475 } else {
1476 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
2aa34383
DK
1477 }
1478 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1479 } else {
1480 db->db_buf = NULL;
1481 dbuf_clear_data(db);
1482 }
1483}
1484
34dc7c2f
BB
1485int
1486dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1487{
1488 int err = 0;
b0bc7a84 1489 boolean_t prefetch;
572e2857 1490 dnode_t *dn;
34dc7c2f
BB
1491
1492 /*
1493 * We don't have to hold the mutex to check db_state because it
1494 * can't be freed while we have a hold on the buffer.
1495 */
1496 ASSERT(!refcount_is_zero(&db->db_holds));
1497
b128c09f 1498 if (db->db_state == DB_NOFILL)
2e528b49 1499 return (SET_ERROR(EIO));
b128c09f 1500
572e2857
BB
1501 DB_DNODE_ENTER(db);
1502 dn = DB_DNODE(db);
34dc7c2f 1503 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857 1504 rw_enter(&dn->dn_struct_rwlock, RW_READER);
34dc7c2f 1505
428870ff 1506 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
572e2857 1507 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
b128c09f 1508 DBUF_IS_CACHEABLE(db);
34dc7c2f
BB
1509
1510 mutex_enter(&db->db_mtx);
1511 if (db->db_state == DB_CACHED) {
b5256303
TC
1512 spa_t *spa = dn->dn_objset->os_spa;
1513
2aa34383 1514 /*
69830602
TC
1515 * Ensure that this block's dnode has been decrypted if
1516 * the caller has requested decrypted data.
2aa34383 1517 */
69830602
TC
1518 err = dbuf_read_verify_dnode_crypt(db, flags);
1519
1520 /*
1521 * If the arc buf is compressed or encrypted and the caller
1522 * requested uncompressed data, we need to untransform it
1523 * before returning. We also call arc_untransform() on any
1524 * unauthenticated blocks, which will verify their MAC if
1525 * the key is now available.
1526 */
1527 if (err == 0 && db->db_buf != NULL &&
1528 (flags & DB_RF_NO_DECRYPT) == 0 &&
b5256303 1529 (arc_is_encrypted(db->db_buf) ||
69830602 1530 arc_is_unauthenticated(db->db_buf) ||
b5256303 1531 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
a2c2ed1b
TC
1532 zbookmark_phys_t zb;
1533
1534 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1535 db->db.db_object, db->db_level, db->db_blkid);
b5256303 1536 dbuf_fix_old_data(db, spa_syncing_txg(spa));
a2c2ed1b 1537 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
2aa34383
DK
1538 dbuf_set_data(db, db->db_buf);
1539 }
34dc7c2f 1540 mutex_exit(&db->db_mtx);
69830602 1541 if (err == 0 && prefetch)
755065f3 1542 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
34dc7c2f 1543 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857
BB
1544 rw_exit(&dn->dn_struct_rwlock);
1545 DB_DNODE_EXIT(db);
5e021f56 1546 DBUF_STAT_BUMP(hash_hits);
34dc7c2f 1547 } else if (db->db_state == DB_UNCACHED) {
572e2857 1548 spa_t *spa = dn->dn_objset->os_spa;
a0043383 1549 boolean_t need_wait = B_FALSE;
572e2857 1550
b0319c1f 1551 if (zio == NULL &&
a0043383 1552 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
572e2857 1553 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
a0043383
MA
1554 need_wait = B_TRUE;
1555 }
7f60329a 1556 err = dbuf_read_impl(db, zio, flags);
34dc7c2f
BB
1557
1558 /* dbuf_read_impl has dropped db_mtx for us */
1559
5f6d0b6f 1560 if (!err && prefetch)
755065f3 1561 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
34dc7c2f
BB
1562
1563 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857
BB
1564 rw_exit(&dn->dn_struct_rwlock);
1565 DB_DNODE_EXIT(db);
5e021f56 1566 DBUF_STAT_BUMP(hash_misses);
34dc7c2f 1567
a0043383 1568 if (!err && need_wait)
34dc7c2f
BB
1569 err = zio_wait(zio);
1570 } else {
e49f1e20
WA
1571 /*
1572 * Another reader came in while the dbuf was in flight
1573 * between UNCACHED and CACHED. Either a writer will finish
1574 * writing the buffer (sending the dbuf to CACHED) or the
1575 * first reader's request will reach the read_done callback
1576 * and send the dbuf to CACHED. Otherwise, a failure
1577 * occurred and the dbuf went to UNCACHED.
1578 */
34dc7c2f
BB
1579 mutex_exit(&db->db_mtx);
1580 if (prefetch)
755065f3 1581 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
34dc7c2f 1582 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857
BB
1583 rw_exit(&dn->dn_struct_rwlock);
1584 DB_DNODE_EXIT(db);
5e021f56 1585 DBUF_STAT_BUMP(hash_misses);
34dc7c2f 1586
e49f1e20 1587 /* Skip the wait per the caller's request. */
34dc7c2f
BB
1588 mutex_enter(&db->db_mtx);
1589 if ((flags & DB_RF_NEVERWAIT) == 0) {
1590 while (db->db_state == DB_READ ||
1591 db->db_state == DB_FILL) {
1592 ASSERT(db->db_state == DB_READ ||
1593 (flags & DB_RF_HAVESTRUCT) == 0);
64dbba36
AL
1594 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1595 db, zio_t *, zio);
34dc7c2f
BB
1596 cv_wait(&db->db_changed, &db->db_mtx);
1597 }
1598 if (db->db_state == DB_UNCACHED)
2e528b49 1599 err = SET_ERROR(EIO);
34dc7c2f
BB
1600 }
1601 mutex_exit(&db->db_mtx);
1602 }
1603
34dc7c2f
BB
1604 return (err);
1605}
1606
1607static void
1608dbuf_noread(dmu_buf_impl_t *db)
1609{
1610 ASSERT(!refcount_is_zero(&db->db_holds));
428870ff 1611 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
1612 mutex_enter(&db->db_mtx);
1613 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1614 cv_wait(&db->db_changed, &db->db_mtx);
1615 if (db->db_state == DB_UNCACHED) {
1616 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
b0bc7a84 1617 spa_t *spa = db->db_objset->os_spa;
34dc7c2f
BB
1618
1619 ASSERT(db->db_buf == NULL);
1620 ASSERT(db->db.db_data == NULL);
2aa34383 1621 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
34dc7c2f 1622 db->db_state = DB_FILL;
b128c09f 1623 } else if (db->db_state == DB_NOFILL) {
0c66c32d 1624 dbuf_clear_data(db);
34dc7c2f
BB
1625 } else {
1626 ASSERT3U(db->db_state, ==, DB_CACHED);
1627 }
1628 mutex_exit(&db->db_mtx);
1629}
1630
34dc7c2f
BB
1631void
1632dbuf_unoverride(dbuf_dirty_record_t *dr)
1633{
1634 dmu_buf_impl_t *db = dr->dr_dbuf;
428870ff 1635 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
34dc7c2f
BB
1636 uint64_t txg = dr->dr_txg;
1637
1638 ASSERT(MUTEX_HELD(&db->db_mtx));
00710365
AS
1639 /*
1640 * This assert is valid because dmu_sync() expects to be called by
1641 * a zilog's get_data while holding a range lock. This call only
1642 * comes from dbuf_dirty() callers who must also hold a range lock.
1643 */
34dc7c2f
BB
1644 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1645 ASSERT(db->db_level == 0);
1646
428870ff 1647 if (db->db_blkid == DMU_BONUS_BLKID ||
34dc7c2f
BB
1648 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1649 return;
1650
428870ff
BB
1651 ASSERT(db->db_data_pending != dr);
1652
34dc7c2f 1653 /* free this block */
b0bc7a84
MG
1654 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1655 zio_free(db->db_objset->os_spa, txg, bp);
428870ff 1656
34dc7c2f 1657 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
03c6040b 1658 dr->dt.dl.dr_nopwrite = B_FALSE;
0c03d21a 1659 dr->dt.dl.dr_has_raw_params = B_FALSE;
03c6040b 1660
34dc7c2f
BB
1661 /*
1662 * Release the already-written buffer, so we leave it in
1663 * a consistent dirty state. Note that all callers are
1664 * modifying the buffer, so they will immediately do
1665 * another (redundant) arc_release(). Therefore, leave
1666 * the buf thawed to save the effort of freezing &
1667 * immediately re-thawing it.
1668 */
1669 arc_release(dr->dt.dl.dr_data, db);
1670}
1671
b128c09f
BB
1672/*
1673 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1674 * data blocks in the free range, so that any future readers will find
b0bc7a84 1675 * empty blocks.
b128c09f 1676 */
34dc7c2f 1677void
8951cb8d
AR
1678dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1679 dmu_tx_t *tx)
34dc7c2f 1680{
0c66c32d
JG
1681 dmu_buf_impl_t *db_search;
1682 dmu_buf_impl_t *db, *db_next;
34dc7c2f 1683 uint64_t txg = tx->tx_txg;
8951cb8d 1684 avl_index_t where;
8951cb8d 1685
9c9531cb
GM
1686 if (end_blkid > dn->dn_maxblkid &&
1687 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
8951cb8d
AR
1688 end_blkid = dn->dn_maxblkid;
1689 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
34dc7c2f 1690
0c66c32d 1691 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
8951cb8d
AR
1692 db_search->db_level = 0;
1693 db_search->db_blkid = start_blkid;
9925c28c 1694 db_search->db_state = DB_SEARCH;
ea97f8ce 1695
b663a23d 1696 mutex_enter(&dn->dn_dbufs_mtx);
8951cb8d
AR
1697 db = avl_find(&dn->dn_dbufs, db_search, &where);
1698 ASSERT3P(db, ==, NULL);
9c9531cb 1699
8951cb8d
AR
1700 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1701
1702 for (; db != NULL; db = db_next) {
1703 db_next = AVL_NEXT(&dn->dn_dbufs, db);
428870ff 1704 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
b128c09f 1705
8951cb8d
AR
1706 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1707 break;
1708 }
1709 ASSERT3U(db->db_blkid, >=, start_blkid);
34dc7c2f
BB
1710
1711 /* found a level 0 buffer in the range */
13fe0198
MA
1712 mutex_enter(&db->db_mtx);
1713 if (dbuf_undirty(db, tx)) {
1714 /* mutex has been dropped and dbuf destroyed */
34dc7c2f 1715 continue;
13fe0198 1716 }
34dc7c2f 1717
34dc7c2f 1718 if (db->db_state == DB_UNCACHED ||
b128c09f 1719 db->db_state == DB_NOFILL ||
34dc7c2f
BB
1720 db->db_state == DB_EVICTING) {
1721 ASSERT(db->db.db_data == NULL);
1722 mutex_exit(&db->db_mtx);
1723 continue;
1724 }
1725 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1726 /* will be handled in dbuf_read_done or dbuf_rele */
1727 db->db_freed_in_flight = TRUE;
1728 mutex_exit(&db->db_mtx);
1729 continue;
1730 }
1731 if (refcount_count(&db->db_holds) == 0) {
1732 ASSERT(db->db_buf);
d3c2ae1c 1733 dbuf_destroy(db);
34dc7c2f
BB
1734 continue;
1735 }
1736 /* The dbuf is referenced */
1737
1738 if (db->db_last_dirty != NULL) {
1739 dbuf_dirty_record_t *dr = db->db_last_dirty;
1740
1741 if (dr->dr_txg == txg) {
1742 /*
1743 * This buffer is "in-use", re-adjust the file
1744 * size to reflect that this buffer may
1745 * contain new data when we sync.
1746 */
428870ff
BB
1747 if (db->db_blkid != DMU_SPILL_BLKID &&
1748 db->db_blkid > dn->dn_maxblkid)
34dc7c2f
BB
1749 dn->dn_maxblkid = db->db_blkid;
1750 dbuf_unoverride(dr);
1751 } else {
1752 /*
1753 * This dbuf is not dirty in the open context.
1754 * Either uncache it (if its not referenced in
1755 * the open context) or reset its contents to
1756 * empty.
1757 */
1758 dbuf_fix_old_data(db, txg);
1759 }
1760 }
1761 /* clear the contents if its cached */
1762 if (db->db_state == DB_CACHED) {
1763 ASSERT(db->db.db_data != NULL);
1764 arc_release(db->db_buf, db);
1765 bzero(db->db.db_data, db->db.db_size);
1766 arc_buf_freeze(db->db_buf);
1767 }
1768
1769 mutex_exit(&db->db_mtx);
1770 }
8951cb8d 1771
8951cb8d 1772 kmem_free(db_search, sizeof (dmu_buf_impl_t));
34dc7c2f
BB
1773 mutex_exit(&dn->dn_dbufs_mtx);
1774}
1775
34dc7c2f
BB
1776void
1777dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1778{
1779 arc_buf_t *buf, *obuf;
1780 int osize = db->db.db_size;
1781 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
572e2857 1782 dnode_t *dn;
34dc7c2f 1783
428870ff 1784 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f 1785
572e2857
BB
1786 DB_DNODE_ENTER(db);
1787 dn = DB_DNODE(db);
1788
34dc7c2f 1789 /* XXX does *this* func really need the lock? */
572e2857 1790 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
34dc7c2f
BB
1791
1792 /*
b0bc7a84 1793 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
34dc7c2f
BB
1794 * is OK, because there can be no other references to the db
1795 * when we are changing its size, so no concurrent DB_FILL can
1796 * be happening.
1797 */
1798 /*
1799 * XXX we should be doing a dbuf_read, checking the return
1800 * value and returning that up to our callers
1801 */
b0bc7a84 1802 dmu_buf_will_dirty(&db->db, tx);
34dc7c2f
BB
1803
1804 /* create the data buffer for the new block */
2aa34383 1805 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
34dc7c2f
BB
1806
1807 /* copy old block data to the new block */
1808 obuf = db->db_buf;
1809 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1810 /* zero the remainder */
1811 if (size > osize)
1812 bzero((uint8_t *)buf->b_data + osize, size - osize);
1813
1814 mutex_enter(&db->db_mtx);
1815 dbuf_set_data(db, buf);
d3c2ae1c 1816 arc_buf_destroy(obuf, db);
34dc7c2f
BB
1817 db->db.db_size = size;
1818
1819 if (db->db_level == 0) {
1820 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1821 db->db_last_dirty->dt.dl.dr_data = buf;
1822 }
1823 mutex_exit(&db->db_mtx);
1824
3ec3bc21 1825 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
572e2857 1826 DB_DNODE_EXIT(db);
34dc7c2f
BB
1827}
1828
428870ff
BB
1829void
1830dbuf_release_bp(dmu_buf_impl_t *db)
1831{
b0bc7a84 1832 ASSERTV(objset_t *os = db->db_objset);
428870ff
BB
1833
1834 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1835 ASSERT(arc_released(os->os_phys_buf) ||
1836 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1837 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1838
294f6806 1839 (void) arc_release(db->db_buf, db);
428870ff
BB
1840}
1841
5a28a973
MA
1842/*
1843 * We already have a dirty record for this TXG, and we are being
1844 * dirtied again.
1845 */
1846static void
1847dbuf_redirty(dbuf_dirty_record_t *dr)
1848{
1849 dmu_buf_impl_t *db = dr->dr_dbuf;
1850
1851 ASSERT(MUTEX_HELD(&db->db_mtx));
1852
1853 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1854 /*
1855 * If this buffer has already been written out,
1856 * we now need to reset its state.
1857 */
1858 dbuf_unoverride(dr);
1859 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1860 db->db_state != DB_NOFILL) {
1861 /* Already released on initial dirty, so just thaw. */
1862 ASSERT(arc_released(db->db_buf));
1863 arc_buf_thaw(db->db_buf);
1864 }
1865 }
1866}
1867
34dc7c2f
BB
1868dbuf_dirty_record_t *
1869dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1870{
572e2857
BB
1871 dnode_t *dn;
1872 objset_t *os;
34dc7c2f
BB
1873 dbuf_dirty_record_t **drp, *dr;
1874 int drop_struct_lock = FALSE;
1875 int txgoff = tx->tx_txg & TXG_MASK;
1876
1877 ASSERT(tx->tx_txg != 0);
1878 ASSERT(!refcount_is_zero(&db->db_holds));
1879 DMU_TX_DIRTY_BUF(tx, db);
1880
572e2857
BB
1881 DB_DNODE_ENTER(db);
1882 dn = DB_DNODE(db);
34dc7c2f
BB
1883 /*
1884 * Shouldn't dirty a regular buffer in syncing context. Private
1885 * objects may be dirtied in syncing context, but only if they
1886 * were already pre-dirtied in open context.
34dc7c2f 1887 */
cc9bb3e5
GM
1888#ifdef DEBUG
1889 if (dn->dn_objset->os_dsl_dataset != NULL) {
1890 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1891 RW_READER, FTAG);
1892 }
34dc7c2f
BB
1893 ASSERT(!dmu_tx_is_syncing(tx) ||
1894 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
9babb374
BB
1895 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1896 dn->dn_objset->os_dsl_dataset == NULL);
cc9bb3e5
GM
1897 if (dn->dn_objset->os_dsl_dataset != NULL)
1898 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1899#endif
34dc7c2f
BB
1900 /*
1901 * We make this assert for private objects as well, but after we
1902 * check if we're already dirty. They are allowed to re-dirty
1903 * in syncing context.
1904 */
1905 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1906 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1907 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1908
1909 mutex_enter(&db->db_mtx);
1910 /*
1911 * XXX make this true for indirects too? The problem is that
1912 * transactions created with dmu_tx_create_assigned() from
1913 * syncing context don't bother holding ahead.
1914 */
1915 ASSERT(db->db_level != 0 ||
b128c09f
BB
1916 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1917 db->db_state == DB_NOFILL);
34dc7c2f
BB
1918
1919 mutex_enter(&dn->dn_mtx);
1920 /*
1921 * Don't set dirtyctx to SYNC if we're just modifying this as we
1922 * initialize the objset.
1923 */
cc9bb3e5
GM
1924 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1925 if (dn->dn_objset->os_dsl_dataset != NULL) {
1926 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1927 RW_READER, FTAG);
1928 }
1929 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1930 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1931 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1932 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1933 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1934 }
1935 if (dn->dn_objset->os_dsl_dataset != NULL) {
1936 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1937 FTAG);
1938 }
34dc7c2f 1939 }
edc1e713
TC
1940
1941 if (tx->tx_txg > dn->dn_dirty_txg)
1942 dn->dn_dirty_txg = tx->tx_txg;
34dc7c2f
BB
1943 mutex_exit(&dn->dn_mtx);
1944
428870ff
BB
1945 if (db->db_blkid == DMU_SPILL_BLKID)
1946 dn->dn_have_spill = B_TRUE;
1947
34dc7c2f
BB
1948 /*
1949 * If this buffer is already dirty, we're done.
1950 */
1951 drp = &db->db_last_dirty;
1952 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1953 db->db.db_object == DMU_META_DNODE_OBJECT);
1954 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1955 drp = &dr->dr_next;
1956 if (dr && dr->dr_txg == tx->tx_txg) {
572e2857
BB
1957 DB_DNODE_EXIT(db);
1958
5a28a973 1959 dbuf_redirty(dr);
34dc7c2f
BB
1960 mutex_exit(&db->db_mtx);
1961 return (dr);
1962 }
1963
1964 /*
1965 * Only valid if not already dirty.
1966 */
9babb374
BB
1967 ASSERT(dn->dn_object == 0 ||
1968 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
34dc7c2f
BB
1969 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1970
1971 ASSERT3U(dn->dn_nlevels, >, db->db_level);
34dc7c2f
BB
1972
1973 /*
1974 * We should only be dirtying in syncing context if it's the
9babb374
BB
1975 * mos or we're initializing the os or it's a special object.
1976 * However, we are allowed to dirty in syncing context provided
1977 * we already dirtied it in open context. Hence we must make
1978 * this assertion only if we're not already dirty.
34dc7c2f 1979 */
572e2857 1980 os = dn->dn_objset;
3b7f360c 1981 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
cc9bb3e5
GM
1982#ifdef DEBUG
1983 if (dn->dn_objset->os_dsl_dataset != NULL)
1984 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
9babb374
BB
1985 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1986 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
cc9bb3e5
GM
1987 if (dn->dn_objset->os_dsl_dataset != NULL)
1988 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1989#endif
34dc7c2f
BB
1990 ASSERT(db->db.db_size != 0);
1991
1992 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1993
428870ff 1994 if (db->db_blkid != DMU_BONUS_BLKID) {
3ec3bc21 1995 dmu_objset_willuse_space(os, db->db.db_size, tx);
34dc7c2f
BB
1996 }
1997
1998 /*
1999 * If this buffer is dirty in an old transaction group we need
2000 * to make a copy of it so that the changes we make in this
2001 * transaction group won't leak out when we sync the older txg.
2002 */
79c76d5b 2003 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
98f72a53 2004 list_link_init(&dr->dr_dirty_node);
34dc7c2f
BB
2005 if (db->db_level == 0) {
2006 void *data_old = db->db_buf;
2007
b128c09f 2008 if (db->db_state != DB_NOFILL) {
428870ff 2009 if (db->db_blkid == DMU_BONUS_BLKID) {
b128c09f
BB
2010 dbuf_fix_old_data(db, tx->tx_txg);
2011 data_old = db->db.db_data;
2012 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2013 /*
2014 * Release the data buffer from the cache so
2015 * that we can modify it without impacting
2016 * possible other users of this cached data
2017 * block. Note that indirect blocks and
2018 * private objects are not released until the
2019 * syncing state (since they are only modified
2020 * then).
2021 */
2022 arc_release(db->db_buf, db);
2023 dbuf_fix_old_data(db, tx->tx_txg);
2024 data_old = db->db_buf;
2025 }
2026 ASSERT(data_old != NULL);
34dc7c2f 2027 }
34dc7c2f
BB
2028 dr->dt.dl.dr_data = data_old;
2029 } else {
448d7aaa 2030 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
34dc7c2f
BB
2031 list_create(&dr->dt.di.dr_children,
2032 sizeof (dbuf_dirty_record_t),
2033 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2034 }
e8b96c60
MA
2035 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
2036 dr->dr_accounted = db->db.db_size;
34dc7c2f
BB
2037 dr->dr_dbuf = db;
2038 dr->dr_txg = tx->tx_txg;
2039 dr->dr_next = *drp;
2040 *drp = dr;
2041
2042 /*
2043 * We could have been freed_in_flight between the dbuf_noread
2044 * and dbuf_dirty. We win, as though the dbuf_noread() had
2045 * happened after the free.
2046 */
428870ff
BB
2047 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2048 db->db_blkid != DMU_SPILL_BLKID) {
34dc7c2f 2049 mutex_enter(&dn->dn_mtx);
9bd274dd
MA
2050 if (dn->dn_free_ranges[txgoff] != NULL) {
2051 range_tree_clear(dn->dn_free_ranges[txgoff],
2052 db->db_blkid, 1);
2053 }
34dc7c2f
BB
2054 mutex_exit(&dn->dn_mtx);
2055 db->db_freed_in_flight = FALSE;
2056 }
2057
2058 /*
2059 * This buffer is now part of this txg
2060 */
2061 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2062 db->db_dirtycnt += 1;
2063 ASSERT3U(db->db_dirtycnt, <=, 3);
2064
2065 mutex_exit(&db->db_mtx);
2066
428870ff
BB
2067 if (db->db_blkid == DMU_BONUS_BLKID ||
2068 db->db_blkid == DMU_SPILL_BLKID) {
34dc7c2f
BB
2069 mutex_enter(&dn->dn_mtx);
2070 ASSERT(!list_link_active(&dr->dr_dirty_node));
2071 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2072 mutex_exit(&dn->dn_mtx);
2073 dnode_setdirty(dn, tx);
572e2857 2074 DB_DNODE_EXIT(db);
34dc7c2f 2075 return (dr);
98ace739
MA
2076 }
2077
2078 /*
2079 * The dn_struct_rwlock prevents db_blkptr from changing
2080 * due to a write from syncing context completing
2081 * while we are running, so we want to acquire it before
2082 * looking at db_blkptr.
2083 */
2084 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2085 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2086 drop_struct_lock = TRUE;
2087 }
2088
2ade4a99
MA
2089 /*
2090 * We need to hold the dn_struct_rwlock to make this assertion,
2091 * because it protects dn_phys / dn_next_nlevels from changing.
2092 */
2093 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2094 dn->dn_phys->dn_nlevels > db->db_level ||
2095 dn->dn_next_nlevels[txgoff] > db->db_level ||
2096 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2097 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2098
3ec3bc21
BB
2099 /*
2100 * If we are overwriting a dedup BP, then unless it is snapshotted,
2101 * when we get to syncing context we will need to decrement its
2102 * refcount in the DDT. Prefetch the relevant DDT block so that
2103 * syncing context won't have to wait for the i/o.
2104 */
2105 ddt_prefetch(os->os_spa, db->db_blkptr);
34dc7c2f 2106
b128c09f 2107 if (db->db_level == 0) {
69830602
TC
2108 ASSERT(!db->db_objset->os_raw_receive ||
2109 dn->dn_maxblkid >= db->db_blkid);
b128c09f
BB
2110 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
2111 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2112 }
2113
34dc7c2f
BB
2114 if (db->db_level+1 < dn->dn_nlevels) {
2115 dmu_buf_impl_t *parent = db->db_parent;
2116 dbuf_dirty_record_t *di;
2117 int parent_held = FALSE;
2118
2119 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2120 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2121
2122 parent = dbuf_hold_level(dn, db->db_level+1,
2123 db->db_blkid >> epbs, FTAG);
428870ff 2124 ASSERT(parent != NULL);
34dc7c2f
BB
2125 parent_held = TRUE;
2126 }
2127 if (drop_struct_lock)
2128 rw_exit(&dn->dn_struct_rwlock);
2129 ASSERT3U(db->db_level+1, ==, parent->db_level);
2130 di = dbuf_dirty(parent, tx);
2131 if (parent_held)
2132 dbuf_rele(parent, FTAG);
2133
2134 mutex_enter(&db->db_mtx);
e8b96c60
MA
2135 /*
2136 * Since we've dropped the mutex, it's possible that
2137 * dbuf_undirty() might have changed this out from under us.
2138 */
34dc7c2f
BB
2139 if (db->db_last_dirty == dr ||
2140 dn->dn_object == DMU_META_DNODE_OBJECT) {
2141 mutex_enter(&di->dt.di.dr_mtx);
2142 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2143 ASSERT(!list_link_active(&dr->dr_dirty_node));
2144 list_insert_tail(&di->dt.di.dr_children, dr);
2145 mutex_exit(&di->dt.di.dr_mtx);
2146 dr->dr_parent = di;
2147 }
2148 mutex_exit(&db->db_mtx);
2149 } else {
2150 ASSERT(db->db_level+1 == dn->dn_nlevels);
2151 ASSERT(db->db_blkid < dn->dn_nblkptr);
572e2857 2152 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
34dc7c2f
BB
2153 mutex_enter(&dn->dn_mtx);
2154 ASSERT(!list_link_active(&dr->dr_dirty_node));
2155 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2156 mutex_exit(&dn->dn_mtx);
2157 if (drop_struct_lock)
2158 rw_exit(&dn->dn_struct_rwlock);
2159 }
2160
2161 dnode_setdirty(dn, tx);
572e2857 2162 DB_DNODE_EXIT(db);
34dc7c2f
BB
2163 return (dr);
2164}
2165
13fe0198 2166/*
e49f1e20
WA
2167 * Undirty a buffer in the transaction group referenced by the given
2168 * transaction. Return whether this evicted the dbuf.
13fe0198
MA
2169 */
2170static boolean_t
34dc7c2f
BB
2171dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2172{
572e2857 2173 dnode_t *dn;
34dc7c2f
BB
2174 uint64_t txg = tx->tx_txg;
2175 dbuf_dirty_record_t *dr, **drp;
2176
2177 ASSERT(txg != 0);
4bda3bd0
MA
2178
2179 /*
2180 * Due to our use of dn_nlevels below, this can only be called
2181 * in open context, unless we are operating on the MOS.
2182 * From syncing context, dn_nlevels may be different from the
2183 * dn_nlevels used when dbuf was dirtied.
2184 */
2185 ASSERT(db->db_objset ==
2186 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2187 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
428870ff 2188 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
13fe0198
MA
2189 ASSERT0(db->db_level);
2190 ASSERT(MUTEX_HELD(&db->db_mtx));
34dc7c2f 2191
34dc7c2f
BB
2192 /*
2193 * If this buffer is not dirty, we're done.
2194 */
2195 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2196 if (dr->dr_txg <= txg)
2197 break;
13fe0198
MA
2198 if (dr == NULL || dr->dr_txg < txg)
2199 return (B_FALSE);
34dc7c2f 2200 ASSERT(dr->dr_txg == txg);
428870ff 2201 ASSERT(dr->dr_dbuf == db);
34dc7c2f 2202
572e2857
BB
2203 DB_DNODE_ENTER(db);
2204 dn = DB_DNODE(db);
2205
34dc7c2f
BB
2206 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2207
2208 ASSERT(db->db.db_size != 0);
2209
4bda3bd0
MA
2210 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2211 dr->dr_accounted, txg);
34dc7c2f
BB
2212
2213 *drp = dr->dr_next;
2214
ef3c1dea
GR
2215 /*
2216 * Note that there are three places in dbuf_dirty()
2217 * where this dirty record may be put on a list.
2218 * Make sure to do a list_remove corresponding to
2219 * every one of those list_insert calls.
2220 */
34dc7c2f
BB
2221 if (dr->dr_parent) {
2222 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2223 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2224 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
ef3c1dea 2225 } else if (db->db_blkid == DMU_SPILL_BLKID ||
4bda3bd0 2226 db->db_level + 1 == dn->dn_nlevels) {
b128c09f 2227 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
34dc7c2f
BB
2228 mutex_enter(&dn->dn_mtx);
2229 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2230 mutex_exit(&dn->dn_mtx);
2231 }
572e2857 2232 DB_DNODE_EXIT(db);
34dc7c2f 2233
13fe0198
MA
2234 if (db->db_state != DB_NOFILL) {
2235 dbuf_unoverride(dr);
34dc7c2f 2236
34dc7c2f 2237 ASSERT(db->db_buf != NULL);
13fe0198
MA
2238 ASSERT(dr->dt.dl.dr_data != NULL);
2239 if (dr->dt.dl.dr_data != db->db_buf)
d3c2ae1c 2240 arc_buf_destroy(dr->dt.dl.dr_data, db);
34dc7c2f 2241 }
58c4aa00 2242
34dc7c2f
BB
2243 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2244
2245 ASSERT(db->db_dirtycnt > 0);
2246 db->db_dirtycnt -= 1;
2247
2248 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
d3c2ae1c
GW
2249 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2250 dbuf_destroy(db);
13fe0198 2251 return (B_TRUE);
34dc7c2f
BB
2252 }
2253
13fe0198 2254 return (B_FALSE);
34dc7c2f
BB
2255}
2256
b5256303
TC
2257static void
2258dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
34dc7c2f 2259{
b0bc7a84 2260 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f
BB
2261
2262 ASSERT(tx->tx_txg != 0);
2263 ASSERT(!refcount_is_zero(&db->db_holds));
2264
5a28a973
MA
2265 /*
2266 * Quick check for dirtyness. For already dirty blocks, this
2267 * reduces runtime of this function by >90%, and overall performance
2268 * by 50% for some workloads (e.g. file deletion with indirect blocks
2269 * cached).
2270 */
2271 mutex_enter(&db->db_mtx);
2272
1c27024e 2273 dbuf_dirty_record_t *dr;
5a28a973
MA
2274 for (dr = db->db_last_dirty;
2275 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2276 /*
2277 * It's possible that it is already dirty but not cached,
2278 * because there are some calls to dbuf_dirty() that don't
2279 * go through dmu_buf_will_dirty().
2280 */
2281 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2282 /* This dbuf is already dirty and cached. */
2283 dbuf_redirty(dr);
2284 mutex_exit(&db->db_mtx);
2285 return;
2286 }
2287 }
2288 mutex_exit(&db->db_mtx);
2289
572e2857
BB
2290 DB_DNODE_ENTER(db);
2291 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
b5256303 2292 flags |= DB_RF_HAVESTRUCT;
572e2857 2293 DB_DNODE_EXIT(db);
b5256303 2294 (void) dbuf_read(db, NULL, flags);
34dc7c2f
BB
2295 (void) dbuf_dirty(db, tx);
2296}
2297
b5256303
TC
2298void
2299dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2300{
2301 dmu_buf_will_dirty_impl(db_fake,
2302 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2303}
2304
b128c09f
BB
2305void
2306dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2307{
2308 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2309
2310 db->db_state = DB_NOFILL;
2311
2312 dmu_buf_will_fill(db_fake, tx);
2313}
2314
34dc7c2f
BB
2315void
2316dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2317{
2318 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2319
428870ff 2320 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
2321 ASSERT(tx->tx_txg != 0);
2322 ASSERT(db->db_level == 0);
2323 ASSERT(!refcount_is_zero(&db->db_holds));
2324
2325 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2326 dmu_tx_private_ok(tx));
2327
2328 dbuf_noread(db);
2329 (void) dbuf_dirty(db, tx);
2330}
2331
b5256303
TC
2332/*
2333 * This function is effectively the same as dmu_buf_will_dirty(), but
0c03d21a
MA
2334 * indicates the caller expects raw encrypted data in the db, and provides
2335 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2336 * blkptr_t when this dbuf is written. This is only used for blocks of
2337 * dnodes, during raw receive.
b5256303
TC
2338 */
2339void
0c03d21a
MA
2340dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2341 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
b5256303
TC
2342{
2343 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2344 dbuf_dirty_record_t *dr;
2345
0c03d21a
MA
2346 /*
2347 * dr_has_raw_params is only processed for blocks of dnodes
2348 * (see dbuf_sync_dnode_leaf_crypt()).
2349 */
2350 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2351 ASSERT3U(db->db_level, ==, 0);
2352 ASSERT(db->db_objset->os_raw_receive);
2353
b5256303
TC
2354 dmu_buf_will_dirty_impl(db_fake,
2355 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2356
2357 dr = db->db_last_dirty;
2358 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2359 dr = dr->dr_next;
2360
2361 ASSERT3P(dr, !=, NULL);
2362 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
0c03d21a
MA
2363
2364 dr->dt.dl.dr_has_raw_params = B_TRUE;
2365 dr->dt.dl.dr_byteorder = byteorder;
2366 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2367 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2368 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
b5256303
TC
2369}
2370
34dc7c2f
BB
2371#pragma weak dmu_buf_fill_done = dbuf_fill_done
2372/* ARGSUSED */
2373void
2374dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2375{
2376 mutex_enter(&db->db_mtx);
2377 DBUF_VERIFY(db);
2378
2379 if (db->db_state == DB_FILL) {
2380 if (db->db_level == 0 && db->db_freed_in_flight) {
428870ff 2381 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
2382 /* we were freed while filling */
2383 /* XXX dbuf_undirty? */
2384 bzero(db->db.db_data, db->db.db_size);
2385 db->db_freed_in_flight = FALSE;
2386 }
2387 db->db_state = DB_CACHED;
2388 cv_broadcast(&db->db_changed);
2389 }
2390 mutex_exit(&db->db_mtx);
2391}
2392
9b67f605
MA
2393void
2394dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2395 bp_embedded_type_t etype, enum zio_compress comp,
2396 int uncompressed_size, int compressed_size, int byteorder,
2397 dmu_tx_t *tx)
2398{
2399 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2400 struct dirty_leaf *dl;
2401 dmu_object_type_t type;
2402
241b5415
MA
2403 if (etype == BP_EMBEDDED_TYPE_DATA) {
2404 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2405 SPA_FEATURE_EMBEDDED_DATA));
2406 }
2407
9b67f605
MA
2408 DB_DNODE_ENTER(db);
2409 type = DB_DNODE(db)->dn_type;
2410 DB_DNODE_EXIT(db);
2411
2412 ASSERT0(db->db_level);
2413 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2414
2415 dmu_buf_will_not_fill(dbuf, tx);
2416
2417 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2418 dl = &db->db_last_dirty->dt.dl;
2419 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2420 data, comp, uncompressed_size, compressed_size);
2421 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2422 BP_SET_TYPE(&dl->dr_overridden_by, type);
2423 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2424 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2425
2426 dl->dr_override_state = DR_OVERRIDDEN;
2427 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2428}
2429
9babb374
BB
2430/*
2431 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2432 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2433 */
2434void
2435dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2436{
2437 ASSERT(!refcount_is_zero(&db->db_holds));
428870ff 2438 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
9babb374 2439 ASSERT(db->db_level == 0);
2aa34383 2440 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
9babb374 2441 ASSERT(buf != NULL);
2aa34383 2442 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
9babb374
BB
2443 ASSERT(tx->tx_txg != 0);
2444
2445 arc_return_buf(buf, db);
2446 ASSERT(arc_released(buf));
2447
2448 mutex_enter(&db->db_mtx);
2449
2450 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2451 cv_wait(&db->db_changed, &db->db_mtx);
2452
2453 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2454
2455 if (db->db_state == DB_CACHED &&
2456 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
440a3eb9
TC
2457 /*
2458 * In practice, we will never have a case where we have an
2459 * encrypted arc buffer while additional holds exist on the
2460 * dbuf. We don't handle this here so we simply assert that
2461 * fact instead.
2462 */
2463 ASSERT(!arc_is_encrypted(buf));
9babb374
BB
2464 mutex_exit(&db->db_mtx);
2465 (void) dbuf_dirty(db, tx);
2466 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
d3c2ae1c 2467 arc_buf_destroy(buf, db);
428870ff 2468 xuio_stat_wbuf_copied();
9babb374
BB
2469 return;
2470 }
2471
428870ff 2472 xuio_stat_wbuf_nocopy();
9babb374
BB
2473 if (db->db_state == DB_CACHED) {
2474 dbuf_dirty_record_t *dr = db->db_last_dirty;
2475
2476 ASSERT(db->db_buf != NULL);
2477 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2478 ASSERT(dr->dt.dl.dr_data == db->db_buf);
440a3eb9 2479
9babb374
BB
2480 if (!arc_released(db->db_buf)) {
2481 ASSERT(dr->dt.dl.dr_override_state ==
2482 DR_OVERRIDDEN);
2483 arc_release(db->db_buf, db);
2484 }
2485 dr->dt.dl.dr_data = buf;
d3c2ae1c 2486 arc_buf_destroy(db->db_buf, db);
9babb374
BB
2487 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2488 arc_release(db->db_buf, db);
d3c2ae1c 2489 arc_buf_destroy(db->db_buf, db);
9babb374
BB
2490 }
2491 db->db_buf = NULL;
2492 }
2493 ASSERT(db->db_buf == NULL);
2494 dbuf_set_data(db, buf);
2495 db->db_state = DB_FILL;
2496 mutex_exit(&db->db_mtx);
2497 (void) dbuf_dirty(db, tx);
b0bc7a84 2498 dmu_buf_fill_done(&db->db, tx);
9babb374
BB
2499}
2500
34dc7c2f 2501void
d3c2ae1c 2502dbuf_destroy(dmu_buf_impl_t *db)
34dc7c2f 2503{
572e2857 2504 dnode_t *dn;
34dc7c2f 2505 dmu_buf_impl_t *parent = db->db_parent;
572e2857 2506 dmu_buf_impl_t *dndb;
34dc7c2f
BB
2507
2508 ASSERT(MUTEX_HELD(&db->db_mtx));
2509 ASSERT(refcount_is_zero(&db->db_holds));
2510
d3c2ae1c
GW
2511 if (db->db_buf != NULL) {
2512 arc_buf_destroy(db->db_buf, db);
2513 db->db_buf = NULL;
2514 }
34dc7c2f 2515
d3c2ae1c
GW
2516 if (db->db_blkid == DMU_BONUS_BLKID) {
2517 int slots = DB_DNODE(db)->dn_num_slots;
2518 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
b5256303
TC
2519 if (db->db.db_data != NULL) {
2520 kmem_free(db->db.db_data, bonuslen);
2521 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2522 db->db_state = DB_UNCACHED;
2523 }
34dc7c2f
BB
2524 }
2525
d3c2ae1c
GW
2526 dbuf_clear_data(db);
2527
2528 if (multilist_link_active(&db->db_cache_link)) {
2e5dc449
MA
2529 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2530 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2531
2532 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2533 (void) refcount_remove_many(
2534 &dbuf_caches[db->db_caching_status].size,
d3c2ae1c 2535 db->db.db_size, db);
2e5dc449
MA
2536
2537 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2538 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2539 } else {
2540 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2541 DBUF_STAT_BUMPDOWN(cache_count);
2542 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2543 db->db.db_size);
2544 }
2545 db->db_caching_status = DB_NO_CACHE;
d3c2ae1c
GW
2546 }
2547
b128c09f 2548 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
34dc7c2f
BB
2549 ASSERT(db->db_data_pending == NULL);
2550
2551 db->db_state = DB_EVICTING;
2552 db->db_blkptr = NULL;
2553
d3c2ae1c
GW
2554 /*
2555 * Now that db_state is DB_EVICTING, nobody else can find this via
2556 * the hash table. We can now drop db_mtx, which allows us to
2557 * acquire the dn_dbufs_mtx.
2558 */
2559 mutex_exit(&db->db_mtx);
2560
572e2857
BB
2561 DB_DNODE_ENTER(db);
2562 dn = DB_DNODE(db);
2563 dndb = dn->dn_dbuf;
d3c2ae1c
GW
2564 if (db->db_blkid != DMU_BONUS_BLKID) {
2565 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2566 if (needlock)
2567 mutex_enter(&dn->dn_dbufs_mtx);
8951cb8d 2568 avl_remove(&dn->dn_dbufs, db);
73ad4a9f 2569 atomic_dec_32(&dn->dn_dbufs_count);
572e2857
BB
2570 membar_producer();
2571 DB_DNODE_EXIT(db);
d3c2ae1c
GW
2572 if (needlock)
2573 mutex_exit(&dn->dn_dbufs_mtx);
572e2857
BB
2574 /*
2575 * Decrementing the dbuf count means that the hold corresponding
2576 * to the removed dbuf is no longer discounted in dnode_move(),
2577 * so the dnode cannot be moved until after we release the hold.
2578 * The membar_producer() ensures visibility of the decremented
2579 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2580 * release any lock.
2581 */
1fac63e5 2582 mutex_enter(&dn->dn_mtx);
2e5dc449 2583 dnode_rele_and_unlock(dn, db);
572e2857 2584 db->db_dnode_handle = NULL;
d3c2ae1c
GW
2585
2586 dbuf_hash_remove(db);
572e2857
BB
2587 } else {
2588 DB_DNODE_EXIT(db);
34dc7c2f
BB
2589 }
2590
d3c2ae1c 2591 ASSERT(refcount_is_zero(&db->db_holds));
34dc7c2f 2592
d3c2ae1c
GW
2593 db->db_parent = NULL;
2594
2595 ASSERT(db->db_buf == NULL);
2596 ASSERT(db->db.db_data == NULL);
2597 ASSERT(db->db_hash_next == NULL);
2598 ASSERT(db->db_blkptr == NULL);
2599 ASSERT(db->db_data_pending == NULL);
2e5dc449 2600 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
d3c2ae1c
GW
2601 ASSERT(!multilist_link_active(&db->db_cache_link));
2602
2603 kmem_cache_free(dbuf_kmem_cache, db);
2604 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f
BB
2605
2606 /*
572e2857 2607 * If this dbuf is referenced from an indirect dbuf,
34dc7c2f
BB
2608 * decrement the ref count on the indirect dbuf.
2609 */
1fac63e5
MA
2610 if (parent && parent != dndb) {
2611 mutex_enter(&parent->db_mtx);
2e5dc449 2612 dbuf_rele_and_unlock(parent, db);
1fac63e5 2613 }
34dc7c2f
BB
2614}
2615
fcff0f35
PD
2616/*
2617 * Note: While bpp will always be updated if the function returns success,
2618 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
9c5167d1 2619 * this happens when the dnode is the meta-dnode, or {user|group|project}used
fcff0f35
PD
2620 * object.
2621 */
bf701a83
BB
2622__attribute__((always_inline))
2623static inline int
34dc7c2f 2624dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
fc5bb51f 2625 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
34dc7c2f 2626{
34dc7c2f
BB
2627 *parentp = NULL;
2628 *bpp = NULL;
2629
428870ff
BB
2630 ASSERT(blkid != DMU_BONUS_BLKID);
2631
2632 if (blkid == DMU_SPILL_BLKID) {
2633 mutex_enter(&dn->dn_mtx);
2634 if (dn->dn_have_spill &&
2635 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
50c957f7 2636 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
428870ff
BB
2637 else
2638 *bpp = NULL;
2639 dbuf_add_ref(dn->dn_dbuf, NULL);
2640 *parentp = dn->dn_dbuf;
2641 mutex_exit(&dn->dn_mtx);
2642 return (0);
2643 }
34dc7c2f 2644
1c27024e 2645 int nlevels =
32d41fb7 2646 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
1c27024e 2647 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
34dc7c2f
BB
2648
2649 ASSERT3U(level * epbs, <, 64);
2650 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
32d41fb7
PD
2651 /*
2652 * This assertion shouldn't trip as long as the max indirect block size
2653 * is less than 1M. The reason for this is that up to that point,
2654 * the number of levels required to address an entire object with blocks
2655 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2656 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2657 * (i.e. we can address the entire object), objects will all use at most
2658 * N-1 levels and the assertion won't overflow. However, once epbs is
2659 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2660 * enough to address an entire object, so objects will have 5 levels,
2661 * but then this assertion will overflow.
2662 *
2663 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2664 * need to redo this logic to handle overflows.
2665 */
2666 ASSERT(level >= nlevels ||
2667 ((nlevels - level - 1) * epbs) +
2668 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
34dc7c2f 2669 if (level >= nlevels ||
32d41fb7
PD
2670 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2671 ((nlevels - level - 1) * epbs)) ||
2672 (fail_sparse &&
2673 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
34dc7c2f 2674 /* the buffer has no parent yet */
2e528b49 2675 return (SET_ERROR(ENOENT));
34dc7c2f
BB
2676 } else if (level < nlevels-1) {
2677 /* this block is referenced from an indirect block */
fc5bb51f
BB
2678 int err;
2679 if (dh == NULL) {
fcff0f35
PD
2680 err = dbuf_hold_impl(dn, level+1,
2681 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
d1d7e268 2682 } else {
fc5bb51f 2683 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
fcff0f35
PD
2684 blkid >> epbs, fail_sparse, FALSE, NULL,
2685 parentp, dh->dh_depth + 1);
fc5bb51f
BB
2686 err = __dbuf_hold_impl(dh + 1);
2687 }
34dc7c2f
BB
2688 if (err)
2689 return (err);
2690 err = dbuf_read(*parentp, NULL,
2691 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2692 if (err) {
2693 dbuf_rele(*parentp, NULL);
2694 *parentp = NULL;
2695 return (err);
2696 }
2697 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2698 (blkid & ((1ULL << epbs) - 1));
32d41fb7
PD
2699 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2700 ASSERT(BP_IS_HOLE(*bpp));
34dc7c2f
BB
2701 return (0);
2702 } else {
2703 /* the block is referenced from the dnode */
2704 ASSERT3U(level, ==, nlevels-1);
2705 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2706 blkid < dn->dn_phys->dn_nblkptr);
2707 if (dn->dn_dbuf) {
2708 dbuf_add_ref(dn->dn_dbuf, NULL);
2709 *parentp = dn->dn_dbuf;
2710 }
2711 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2712 return (0);
2713 }
2714}
2715
2716static dmu_buf_impl_t *
2717dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2718 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2719{
428870ff 2720 objset_t *os = dn->dn_objset;
34dc7c2f
BB
2721 dmu_buf_impl_t *db, *odb;
2722
2723 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2724 ASSERT(dn->dn_type != DMU_OT_NONE);
2725
d3c2ae1c 2726 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
34dc7c2f
BB
2727
2728 db->db_objset = os;
2729 db->db.db_object = dn->dn_object;
2730 db->db_level = level;
2731 db->db_blkid = blkid;
2732 db->db_last_dirty = NULL;
2733 db->db_dirtycnt = 0;
572e2857 2734 db->db_dnode_handle = dn->dn_handle;
34dc7c2f
BB
2735 db->db_parent = parent;
2736 db->db_blkptr = blkptr;
2737
0c66c32d 2738 db->db_user = NULL;
bc4501f7
JG
2739 db->db_user_immediate_evict = FALSE;
2740 db->db_freed_in_flight = FALSE;
2741 db->db_pending_evict = FALSE;
34dc7c2f 2742
428870ff 2743 if (blkid == DMU_BONUS_BLKID) {
34dc7c2f 2744 ASSERT3P(parent, ==, dn->dn_dbuf);
50c957f7 2745 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
34dc7c2f
BB
2746 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2747 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
428870ff 2748 db->db.db_offset = DMU_BONUS_BLKID;
34dc7c2f 2749 db->db_state = DB_UNCACHED;
2e5dc449 2750 db->db_caching_status = DB_NO_CACHE;
34dc7c2f 2751 /* the bonus dbuf is not placed in the hash table */
25458cbe 2752 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f 2753 return (db);
428870ff
BB
2754 } else if (blkid == DMU_SPILL_BLKID) {
2755 db->db.db_size = (blkptr != NULL) ?
2756 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2757 db->db.db_offset = 0;
34dc7c2f
BB
2758 } else {
2759 int blocksize =
e8b96c60 2760 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
34dc7c2f
BB
2761 db->db.db_size = blocksize;
2762 db->db.db_offset = db->db_blkid * blocksize;
2763 }
2764
2765 /*
2766 * Hold the dn_dbufs_mtx while we get the new dbuf
2767 * in the hash table *and* added to the dbufs list.
2768 * This prevents a possible deadlock with someone
2769 * trying to look up this dbuf before its added to the
2770 * dn_dbufs list.
2771 */
2772 mutex_enter(&dn->dn_dbufs_mtx);
2773 db->db_state = DB_EVICTING;
2774 if ((odb = dbuf_hash_insert(db)) != NULL) {
2775 /* someone else inserted it first */
d3c2ae1c 2776 kmem_cache_free(dbuf_kmem_cache, db);
34dc7c2f 2777 mutex_exit(&dn->dn_dbufs_mtx);
5e021f56 2778 DBUF_STAT_BUMP(hash_insert_race);
34dc7c2f
BB
2779 return (odb);
2780 }
8951cb8d 2781 avl_add(&dn->dn_dbufs, db);
9c9531cb 2782
34dc7c2f 2783 db->db_state = DB_UNCACHED;
2e5dc449 2784 db->db_caching_status = DB_NO_CACHE;
34dc7c2f 2785 mutex_exit(&dn->dn_dbufs_mtx);
25458cbe 2786 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f
BB
2787
2788 if (parent && parent != dn->dn_dbuf)
2789 dbuf_add_ref(parent, db);
2790
2791 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2792 refcount_count(&dn->dn_holds) > 0);
2793 (void) refcount_add(&dn->dn_holds, db);
73ad4a9f 2794 atomic_inc_32(&dn->dn_dbufs_count);
34dc7c2f
BB
2795
2796 dprintf_dbuf(db, "db=%p\n", db);
2797
2798 return (db);
2799}
2800
fcff0f35
PD
2801typedef struct dbuf_prefetch_arg {
2802 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2803 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2804 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2805 int dpa_curlevel; /* The current level that we're reading */
d3c2ae1c 2806 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
fcff0f35
PD
2807 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2808 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2809 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2810} dbuf_prefetch_arg_t;
2811
2812/*
2813 * Actually issue the prefetch read for the block given.
2814 */
2815static void
2816dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2817{
fcff0f35
PD
2818 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2819 return;
2820
4515b1d0 2821 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
1c27024e
DB
2822 arc_flags_t aflags =
2823 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
fcff0f35 2824
4515b1d0
TC
2825 /* dnodes are always read as raw and then converted later */
2826 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2827 dpa->dpa_curlevel == 0)
2828 zio_flags |= ZIO_FLAG_RAW;
2829
fcff0f35
PD
2830 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2831 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2832 ASSERT(dpa->dpa_zio != NULL);
2833 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
4515b1d0 2834 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
fcff0f35
PD
2835}
2836
2837/*
2838 * Called when an indirect block above our prefetch target is read in. This
2839 * will either read in the next indirect block down the tree or issue the actual
2840 * prefetch if the next block down is our target.
2841 */
2842static void
d4a72f23
TC
2843dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2844 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
fcff0f35
PD
2845{
2846 dbuf_prefetch_arg_t *dpa = private;
fcff0f35
PD
2847
2848 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2849 ASSERT3S(dpa->dpa_curlevel, >, 0);
d3c2ae1c
GW
2850
2851 /*
2852 * The dpa_dnode is only valid if we are called with a NULL
2853 * zio. This indicates that the arc_read() returned without
2854 * first calling zio_read() to issue a physical read. Once
2855 * a physical read is made the dpa_dnode must be invalidated
2856 * as the locks guarding it may have been dropped. If the
2857 * dpa_dnode is still valid, then we want to add it to the dbuf
2858 * cache. To do so, we must hold the dbuf associated with the block
2859 * we just prefetched, read its contents so that we associate it
2860 * with an arc_buf_t, and then release it.
2861 */
fcff0f35
PD
2862 if (zio != NULL) {
2863 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
b5256303 2864 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
d3c2ae1c
GW
2865 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2866 } else {
2867 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2868 }
fcff0f35 2869 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
d3c2ae1c
GW
2870
2871 dpa->dpa_dnode = NULL;
2872 } else if (dpa->dpa_dnode != NULL) {
2873 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2874 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2875 dpa->dpa_zb.zb_level));
2876 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2877 dpa->dpa_curlevel, curblkid, FTAG);
2878 (void) dbuf_read(db, NULL,
2879 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2880 dbuf_rele(db, FTAG);
fcff0f35
PD
2881 }
2882
d4a72f23
TC
2883 if (abuf == NULL) {
2884 kmem_free(dpa, sizeof (*dpa));
2885 return;
2886 }
fcff0f35 2887
d4a72f23 2888 dpa->dpa_curlevel--;
1c27024e 2889 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
fcff0f35 2890 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
1c27024e 2891 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
fcff0f35 2892 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
d4a72f23
TC
2893
2894 if (BP_IS_HOLE(bp)) {
fcff0f35
PD
2895 kmem_free(dpa, sizeof (*dpa));
2896 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2897 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2898 dbuf_issue_final_prefetch(dpa, bp);
2899 kmem_free(dpa, sizeof (*dpa));
2900 } else {
2901 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2902 zbookmark_phys_t zb;
2903
7c351e31 2904 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2905 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2906 iter_aflags |= ARC_FLAG_L2CACHE;
2907
fcff0f35
PD
2908 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2909
2910 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2911 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2912
2913 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2914 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2915 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2916 &iter_aflags, &zb);
2917 }
d3c2ae1c
GW
2918
2919 arc_buf_destroy(abuf, private);
fcff0f35
PD
2920}
2921
2922/*
2923 * Issue prefetch reads for the given block on the given level. If the indirect
2924 * blocks above that block are not in memory, we will read them in
2925 * asynchronously. As a result, this call never blocks waiting for a read to
b5256303
TC
2926 * complete. Note that the prefetch might fail if the dataset is encrypted and
2927 * the encryption key is unmapped before the IO completes.
fcff0f35 2928 */
34dc7c2f 2929void
fcff0f35
PD
2930dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2931 arc_flags_t aflags)
34dc7c2f 2932{
fcff0f35
PD
2933 blkptr_t bp;
2934 int epbs, nlevels, curlevel;
2935 uint64_t curblkid;
34dc7c2f 2936
428870ff 2937 ASSERT(blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
2938 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2939
7f60329a
MA
2940 if (blkid > dn->dn_maxblkid)
2941 return;
2942
34dc7c2f
BB
2943 if (dnode_block_freed(dn, blkid))
2944 return;
2945
fcff0f35
PD
2946 /*
2947 * This dnode hasn't been written to disk yet, so there's nothing to
2948 * prefetch.
2949 */
2950 nlevels = dn->dn_phys->dn_nlevels;
2951 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2952 return;
2953
2954 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2955 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2956 return;
2957
1c27024e 2958 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
fcff0f35
PD
2959 level, blkid);
2960 if (db != NULL) {
2961 mutex_exit(&db->db_mtx);
572e2857 2962 /*
fcff0f35
PD
2963 * This dbuf already exists. It is either CACHED, or
2964 * (we assume) about to be read or filled.
572e2857 2965 */
572e2857 2966 return;
34dc7c2f
BB
2967 }
2968
fcff0f35
PD
2969 /*
2970 * Find the closest ancestor (indirect block) of the target block
2971 * that is present in the cache. In this indirect block, we will
2972 * find the bp that is at curlevel, curblkid.
2973 */
2974 curlevel = level;
2975 curblkid = blkid;
2976 while (curlevel < nlevels - 1) {
2977 int parent_level = curlevel + 1;
2978 uint64_t parent_blkid = curblkid >> epbs;
2979 dmu_buf_impl_t *db;
2980
2981 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2982 FALSE, TRUE, FTAG, &db) == 0) {
2983 blkptr_t *bpp = db->db_buf->b_data;
2984 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2985 dbuf_rele(db, FTAG);
2986 break;
2987 }
428870ff 2988
fcff0f35
PD
2989 curlevel = parent_level;
2990 curblkid = parent_blkid;
2991 }
34dc7c2f 2992
fcff0f35
PD
2993 if (curlevel == nlevels - 1) {
2994 /* No cached indirect blocks found. */
2995 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2996 bp = dn->dn_phys->dn_blkptr[curblkid];
34dc7c2f 2997 }
fcff0f35
PD
2998 if (BP_IS_HOLE(&bp))
2999 return;
3000
3001 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3002
1c27024e 3003 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
fcff0f35
PD
3004 ZIO_FLAG_CANFAIL);
3005
1c27024e
DB
3006 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3007 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
fcff0f35
PD
3008 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3009 dn->dn_object, level, blkid);
3010 dpa->dpa_curlevel = curlevel;
3011 dpa->dpa_prio = prio;
3012 dpa->dpa_aflags = aflags;
3013 dpa->dpa_spa = dn->dn_objset->os_spa;
d3c2ae1c 3014 dpa->dpa_dnode = dn;
fcff0f35
PD
3015 dpa->dpa_epbs = epbs;
3016 dpa->dpa_zio = pio;
3017
7c351e31 3018 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3019 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3020 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3021
fcff0f35
PD
3022 /*
3023 * If we have the indirect just above us, no need to do the asynchronous
3024 * prefetch chain; we'll just run the last step ourselves. If we're at
3025 * a higher level, though, we want to issue the prefetches for all the
3026 * indirect blocks asynchronously, so we can go on with whatever we were
3027 * doing.
3028 */
3029 if (curlevel == level) {
3030 ASSERT3U(curblkid, ==, blkid);
3031 dbuf_issue_final_prefetch(dpa, &bp);
3032 kmem_free(dpa, sizeof (*dpa));
3033 } else {
3034 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3035 zbookmark_phys_t zb;
3036
7c351e31 3037 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3038 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3039 iter_aflags |= ARC_FLAG_L2CACHE;
3040
fcff0f35
PD
3041 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3042 dn->dn_object, curlevel, curblkid);
3043 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3044 &bp, dbuf_prefetch_indirect_done, dpa, prio,
3045 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3046 &iter_aflags, &zb);
3047 }
3048 /*
3049 * We use pio here instead of dpa_zio since it's possible that
3050 * dpa may have already been freed.
3051 */
3052 zio_nowait(pio);
34dc7c2f
BB
3053}
3054
d1d7e268 3055#define DBUF_HOLD_IMPL_MAX_DEPTH 20
fc5bb51f 3056
71a24c3c
TC
3057/*
3058 * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
3059 * the case of encrypted, compressed and uncompressed buffers by
3060 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3061 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3062 *
3063 * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
3064 */
3065noinline static void
3066dbuf_hold_copy(struct dbuf_hold_impl_data *dh)
3067{
3068 dnode_t *dn = dh->dh_dn;
3069 dmu_buf_impl_t *db = dh->dh_db;
3070 dbuf_dirty_record_t *dr = dh->dh_dr;
3071 arc_buf_t *data = dr->dt.dl.dr_data;
3072
3073 enum zio_compress compress_type = arc_get_compression(data);
3074
3075 if (arc_is_encrypted(data)) {
3076 boolean_t byteorder;
3077 uint8_t salt[ZIO_DATA_SALT_LEN];
3078 uint8_t iv[ZIO_DATA_IV_LEN];
3079 uint8_t mac[ZIO_DATA_MAC_LEN];
3080
3081 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3082 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3083 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3084 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3085 compress_type));
3086 } else if (compress_type != ZIO_COMPRESS_OFF) {
3087 dbuf_set_data(db, arc_alloc_compressed_buf(
3088 dn->dn_objset->os_spa, db, arc_buf_size(data),
3089 arc_buf_lsize(data), compress_type));
3090 } else {
3091 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3092 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3093 }
3094
3095 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
3096}
3097
34dc7c2f
BB
3098/*
3099 * Returns with db_holds incremented, and db_mtx not held.
3100 * Note: dn_struct_rwlock must be held.
3101 */
fc5bb51f
BB
3102static int
3103__dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
34dc7c2f 3104{
fc5bb51f
BB
3105 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
3106 dh->dh_parent = NULL;
34dc7c2f 3107
fc5bb51f
BB
3108 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
3109 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
3110 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
34dc7c2f 3111
fc5bb51f 3112 *(dh->dh_dbp) = NULL;
d3c2ae1c 3113
34dc7c2f 3114 /* dbuf_find() returns with db_mtx held */
6ebebace
JG
3115 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
3116 dh->dh_level, dh->dh_blkid);
fc5bb51f
BB
3117
3118 if (dh->dh_db == NULL) {
3119 dh->dh_bp = NULL;
3120
fcff0f35
PD
3121 if (dh->dh_fail_uncached)
3122 return (SET_ERROR(ENOENT));
3123
fc5bb51f
BB
3124 ASSERT3P(dh->dh_parent, ==, NULL);
3125 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
02730c33 3126 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
fc5bb51f 3127 if (dh->dh_fail_sparse) {
d1d7e268
MK
3128 if (dh->dh_err == 0 &&
3129 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2e528b49 3130 dh->dh_err = SET_ERROR(ENOENT);
fc5bb51f
BB
3131 if (dh->dh_err) {
3132 if (dh->dh_parent)
3133 dbuf_rele(dh->dh_parent, NULL);
3134 return (dh->dh_err);
34dc7c2f
BB
3135 }
3136 }
fc5bb51f
BB
3137 if (dh->dh_err && dh->dh_err != ENOENT)
3138 return (dh->dh_err);
3139 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
02730c33 3140 dh->dh_parent, dh->dh_bp);
34dc7c2f
BB
3141 }
3142
fcff0f35
PD
3143 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
3144 mutex_exit(&dh->dh_db->db_mtx);
3145 return (SET_ERROR(ENOENT));
3146 }
3147
0873bb63
BB
3148 if (dh->dh_db->db_buf != NULL) {
3149 arc_buf_access(dh->dh_db->db_buf);
fc5bb51f 3150 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
0873bb63 3151 }
34dc7c2f 3152
fc5bb51f 3153 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
34dc7c2f
BB
3154
3155 /*
3156 * If this buffer is currently syncing out, and we are are
3157 * still referencing it from db_data, we need to make a copy
3158 * of it in case we decide we want to dirty it again in this txg.
3159 */
fc5bb51f
BB
3160 if (dh->dh_db->db_level == 0 &&
3161 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
3162 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
3163 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
3164 dh->dh_dr = dh->dh_db->db_data_pending;
71a24c3c
TC
3165 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
3166 dbuf_hold_copy(dh);
34dc7c2f
BB
3167 }
3168
d3c2ae1c
GW
3169 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
3170 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
2e5dc449
MA
3171 ASSERT(dh->dh_db->db_caching_status == DB_DBUF_CACHE ||
3172 dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE);
3173
3174 multilist_remove(
3175 dbuf_caches[dh->dh_db->db_caching_status].cache,
3176 dh->dh_db);
3177 (void) refcount_remove_many(
3178 &dbuf_caches[dh->dh_db->db_caching_status].size,
d3c2ae1c 3179 dh->dh_db->db.db_size, dh->dh_db);
2e5dc449
MA
3180
3181 if (dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3182 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3183 } else {
3184 DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
3185 DBUF_STAT_BUMPDOWN(cache_count);
3186 DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
3187 dh->dh_db->db.db_size);
3188 }
3189 dh->dh_db->db_caching_status = DB_NO_CACHE;
d3c2ae1c 3190 }
fc5bb51f 3191 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
fc5bb51f
BB
3192 DBUF_VERIFY(dh->dh_db);
3193 mutex_exit(&dh->dh_db->db_mtx);
34dc7c2f
BB
3194
3195 /* NOTE: we can't rele the parent until after we drop the db_mtx */
fc5bb51f
BB
3196 if (dh->dh_parent)
3197 dbuf_rele(dh->dh_parent, NULL);
34dc7c2f 3198
fc5bb51f
BB
3199 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3200 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3201 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3202 *(dh->dh_dbp) = dh->dh_db;
34dc7c2f
BB
3203
3204 return (0);
3205}
3206
fc5bb51f
BB
3207/*
3208 * The following code preserves the recursive function dbuf_hold_impl()
3209 * but moves the local variables AND function arguments to the heap to
3210 * minimize the stack frame size. Enough space is initially allocated
3211 * on the stack for 20 levels of recursion.
3212 */
3213int
fcff0f35
PD
3214dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3215 boolean_t fail_sparse, boolean_t fail_uncached,
fc5bb51f
BB
3216 void *tag, dmu_buf_impl_t **dbp)
3217{
3218 struct dbuf_hold_impl_data *dh;
3219 int error;
3220
d9eea113 3221 dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
79c76d5b 3222 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
fcff0f35 3223 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
02730c33 3224 fail_uncached, tag, dbp, 0);
fc5bb51f
BB
3225
3226 error = __dbuf_hold_impl(dh);
3227
d1d7e268 3228 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
fc5bb51f
BB
3229 DBUF_HOLD_IMPL_MAX_DEPTH);
3230
3231 return (error);
3232}
3233
3234static void
3235__dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
fcff0f35 3236 dnode_t *dn, uint8_t level, uint64_t blkid,
4ea3f864
GM
3237 boolean_t fail_sparse, boolean_t fail_uncached,
3238 void *tag, dmu_buf_impl_t **dbp, int depth)
fc5bb51f
BB
3239{
3240 dh->dh_dn = dn;
3241 dh->dh_level = level;
3242 dh->dh_blkid = blkid;
fcff0f35 3243
fc5bb51f 3244 dh->dh_fail_sparse = fail_sparse;
fcff0f35
PD
3245 dh->dh_fail_uncached = fail_uncached;
3246
fc5bb51f
BB
3247 dh->dh_tag = tag;
3248 dh->dh_dbp = dbp;
d9eea113
MA
3249
3250 dh->dh_db = NULL;
3251 dh->dh_parent = NULL;
3252 dh->dh_bp = NULL;
3253 dh->dh_err = 0;
3254 dh->dh_dr = NULL;
d9eea113 3255
fc5bb51f
BB
3256 dh->dh_depth = depth;
3257}
3258
34dc7c2f
BB
3259dmu_buf_impl_t *
3260dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3261{
fcff0f35 3262 return (dbuf_hold_level(dn, 0, blkid, tag));
34dc7c2f
BB
3263}
3264
3265dmu_buf_impl_t *
3266dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3267{
3268 dmu_buf_impl_t *db;
fcff0f35 3269 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
34dc7c2f
BB
3270 return (err ? NULL : db);
3271}
3272
3273void
3274dbuf_create_bonus(dnode_t *dn)
3275{
3276 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3277
3278 ASSERT(dn->dn_bonus == NULL);
428870ff
BB
3279 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3280}
3281
3282int
3283dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3284{
3285 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
572e2857
BB
3286 dnode_t *dn;
3287
428870ff 3288 if (db->db_blkid != DMU_SPILL_BLKID)
2e528b49 3289 return (SET_ERROR(ENOTSUP));
428870ff
BB
3290 if (blksz == 0)
3291 blksz = SPA_MINBLOCKSIZE;
f1512ee6
MA
3292 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3293 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
428870ff 3294
572e2857
BB
3295 DB_DNODE_ENTER(db);
3296 dn = DB_DNODE(db);
3297 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
428870ff 3298 dbuf_new_size(db, blksz, tx);
572e2857
BB
3299 rw_exit(&dn->dn_struct_rwlock);
3300 DB_DNODE_EXIT(db);
428870ff
BB
3301
3302 return (0);
3303}
3304
3305void
3306dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3307{
3308 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
34dc7c2f
BB
3309}
3310
3311#pragma weak dmu_buf_add_ref = dbuf_add_ref
3312void
3313dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3314{
d3c2ae1c
GW
3315 int64_t holds = refcount_add(&db->db_holds, tag);
3316 VERIFY3S(holds, >, 1);
34dc7c2f
BB
3317}
3318
6ebebace
JG
3319#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3320boolean_t
3321dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3322 void *tag)
3323{
3324 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3325 dmu_buf_impl_t *found_db;
3326 boolean_t result = B_FALSE;
3327
d617648c 3328 if (blkid == DMU_BONUS_BLKID)
6ebebace
JG
3329 found_db = dbuf_find_bonus(os, obj);
3330 else
3331 found_db = dbuf_find(os, obj, 0, blkid);
3332
3333 if (found_db != NULL) {
3334 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3335 (void) refcount_add(&db->db_holds, tag);
3336 result = B_TRUE;
3337 }
d617648c 3338 mutex_exit(&found_db->db_mtx);
6ebebace
JG
3339 }
3340 return (result);
3341}
3342
572e2857
BB
3343/*
3344 * If you call dbuf_rele() you had better not be referencing the dnode handle
3345 * unless you have some other direct or indirect hold on the dnode. (An indirect
3346 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3347 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3348 * dnode's parent dbuf evicting its dnode handles.
3349 */
34dc7c2f
BB
3350void
3351dbuf_rele(dmu_buf_impl_t *db, void *tag)
428870ff
BB
3352{
3353 mutex_enter(&db->db_mtx);
2e5dc449 3354 dbuf_rele_and_unlock(db, tag);
428870ff
BB
3355}
3356
b0bc7a84
MG
3357void
3358dmu_buf_rele(dmu_buf_t *db, void *tag)
3359{
3360 dbuf_rele((dmu_buf_impl_t *)db, tag);
3361}
3362
428870ff
BB
3363/*
3364 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
1fac63e5
MA
3365 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3366 * argument should be set if we are already in the dbuf-evicting code
3367 * path, in which case we don't want to recursively evict. This allows us to
3368 * avoid deeply nested stacks that would have a call flow similar to this:
3369 *
3370 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3371 * ^ |
3372 * | |
3373 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3374 *
428870ff
BB
3375 */
3376void
2e5dc449 3377dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
34dc7c2f
BB
3378{
3379 int64_t holds;
3380
428870ff 3381 ASSERT(MUTEX_HELD(&db->db_mtx));
34dc7c2f
BB
3382 DBUF_VERIFY(db);
3383
572e2857
BB
3384 /*
3385 * Remove the reference to the dbuf before removing its hold on the
3386 * dnode so we can guarantee in dnode_move() that a referenced bonus
3387 * buffer has a corresponding dnode hold.
3388 */
34dc7c2f
BB
3389 holds = refcount_remove(&db->db_holds, tag);
3390 ASSERT(holds >= 0);
3391
3392 /*
3393 * We can't freeze indirects if there is a possibility that they
3394 * may be modified in the current syncing context.
3395 */
d3c2ae1c
GW
3396 if (db->db_buf != NULL &&
3397 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
34dc7c2f 3398 arc_buf_freeze(db->db_buf);
d3c2ae1c 3399 }
34dc7c2f
BB
3400
3401 if (holds == db->db_dirtycnt &&
bc4501f7 3402 db->db_level == 0 && db->db_user_immediate_evict)
34dc7c2f
BB
3403 dbuf_evict_user(db);
3404
3405 if (holds == 0) {
428870ff 3406 if (db->db_blkid == DMU_BONUS_BLKID) {
4c7b7eed 3407 dnode_t *dn;
bc4501f7 3408 boolean_t evict_dbuf = db->db_pending_evict;
572e2857
BB
3409
3410 /*
4c7b7eed
JG
3411 * If the dnode moves here, we cannot cross this
3412 * barrier until the move completes.
572e2857
BB
3413 */
3414 DB_DNODE_ENTER(db);
4c7b7eed
JG
3415
3416 dn = DB_DNODE(db);
3417 atomic_dec_32(&dn->dn_dbufs_count);
3418
3419 /*
3420 * Decrementing the dbuf count means that the bonus
3421 * buffer's dnode hold is no longer discounted in
3422 * dnode_move(). The dnode cannot move until after
bc4501f7 3423 * the dnode_rele() below.
4c7b7eed 3424 */
572e2857 3425 DB_DNODE_EXIT(db);
4c7b7eed
JG
3426
3427 /*
3428 * Do not reference db after its lock is dropped.
3429 * Another thread may evict it.
3430 */
3431 mutex_exit(&db->db_mtx);
3432
bc4501f7 3433 if (evict_dbuf)
4c7b7eed 3434 dnode_evict_bonus(dn);
bc4501f7
JG
3435
3436 dnode_rele(dn, db);
34dc7c2f
BB
3437 } else if (db->db_buf == NULL) {
3438 /*
3439 * This is a special case: we never associated this
3440 * dbuf with any data allocated from the ARC.
3441 */
b128c09f
BB
3442 ASSERT(db->db_state == DB_UNCACHED ||
3443 db->db_state == DB_NOFILL);
d3c2ae1c 3444 dbuf_destroy(db);
34dc7c2f 3445 } else if (arc_released(db->db_buf)) {
34dc7c2f
BB
3446 /*
3447 * This dbuf has anonymous data associated with it.
3448 */
d3c2ae1c 3449 dbuf_destroy(db);
34dc7c2f 3450 } else {
d3c2ae1c
GW
3451 boolean_t do_arc_evict = B_FALSE;
3452 blkptr_t bp;
3453 spa_t *spa = dmu_objset_spa(db->db_objset);
3454
3455 if (!DBUF_IS_CACHEABLE(db) &&
3456 db->db_blkptr != NULL &&
3457 !BP_IS_HOLE(db->db_blkptr) &&
3458 !BP_IS_EMBEDDED(db->db_blkptr)) {
3459 do_arc_evict = B_TRUE;
3460 bp = *db->db_blkptr;
3461 }
1eb5bfa3 3462
d3c2ae1c
GW
3463 if (!DBUF_IS_CACHEABLE(db) ||
3464 db->db_pending_evict) {
3465 dbuf_destroy(db);
3466 } else if (!multilist_link_active(&db->db_cache_link)) {
2e5dc449
MA
3467 ASSERT3U(db->db_caching_status, ==,
3468 DB_NO_CACHE);
3469
3470 dbuf_cached_state_t dcs =
3471 dbuf_include_in_metadata_cache(db) ?
3472 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3473 db->db_caching_status = dcs;
3474
3475 multilist_insert(dbuf_caches[dcs].cache, db);
3476 (void) refcount_add_many(&dbuf_caches[dcs].size,
d3c2ae1c 3477 db->db.db_size, db);
2e5dc449
MA
3478
3479 if (dcs == DB_DBUF_METADATA_CACHE) {
3480 DBUF_STAT_BUMP(metadata_cache_count);
3481 DBUF_STAT_MAX(
3482 metadata_cache_size_bytes_max,
3483 refcount_count(
3484 &dbuf_caches[dcs].size));
3485 } else {
3486 DBUF_STAT_BUMP(
3487 cache_levels[db->db_level]);
3488 DBUF_STAT_BUMP(cache_count);
3489 DBUF_STAT_INCR(
3490 cache_levels_bytes[db->db_level],
3491 db->db.db_size);
3492 DBUF_STAT_MAX(cache_size_bytes_max,
3493 refcount_count(
3494 &dbuf_caches[dcs].size));
3495 }
b128c09f 3496 mutex_exit(&db->db_mtx);
d3c2ae1c 3497
2e5dc449 3498 if (db->db_caching_status == DB_DBUF_CACHE) {
1fac63e5 3499 dbuf_evict_notify();
2e5dc449 3500 }
bd089c54 3501 }
d3c2ae1c
GW
3502
3503 if (do_arc_evict)
3504 arc_freed(spa, &bp);
34dc7c2f
BB
3505 }
3506 } else {
3507 mutex_exit(&db->db_mtx);
3508 }
d3c2ae1c 3509
34dc7c2f
BB
3510}
3511
3512#pragma weak dmu_buf_refcount = dbuf_refcount
3513uint64_t
3514dbuf_refcount(dmu_buf_impl_t *db)
3515{
3516 return (refcount_count(&db->db_holds));
3517}
3518
cd32e5db
TC
3519uint64_t
3520dmu_buf_user_refcount(dmu_buf_t *db_fake)
3521{
3522 uint64_t holds;
3523 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3524
3525 mutex_enter(&db->db_mtx);
3526 ASSERT3U(refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3527 holds = refcount_count(&db->db_holds) - db->db_dirtycnt;
3528 mutex_exit(&db->db_mtx);
3529
3530 return (holds);
3531}
3532
34dc7c2f 3533void *
0c66c32d
JG
3534dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3535 dmu_buf_user_t *new_user)
34dc7c2f 3536{
0c66c32d
JG
3537 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3538
3539 mutex_enter(&db->db_mtx);
3540 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3541 if (db->db_user == old_user)
3542 db->db_user = new_user;
3543 else
3544 old_user = db->db_user;
3545 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3546 mutex_exit(&db->db_mtx);
3547
3548 return (old_user);
34dc7c2f
BB
3549}
3550
3551void *
0c66c32d 3552dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
34dc7c2f 3553{
0c66c32d 3554 return (dmu_buf_replace_user(db_fake, NULL, user));
34dc7c2f
BB
3555}
3556
3557void *
0c66c32d 3558dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
34dc7c2f
BB
3559{
3560 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f 3561
bc4501f7 3562 db->db_user_immediate_evict = TRUE;
0c66c32d
JG
3563 return (dmu_buf_set_user(db_fake, user));
3564}
34dc7c2f 3565
0c66c32d
JG
3566void *
3567dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3568{
3569 return (dmu_buf_replace_user(db_fake, user, NULL));
34dc7c2f
BB
3570}
3571
3572void *
3573dmu_buf_get_user(dmu_buf_t *db_fake)
3574{
3575 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f 3576
0c66c32d
JG
3577 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3578 return (db->db_user);
3579}
3580
3581void
3582dmu_buf_user_evict_wait()
3583{
3584 taskq_wait(dbu_evict_taskq);
34dc7c2f
BB
3585}
3586
03c6040b
GW
3587blkptr_t *
3588dmu_buf_get_blkptr(dmu_buf_t *db)
3589{
3590 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3591 return (dbi->db_blkptr);
3592}
3593
8bea9815
MA
3594objset_t *
3595dmu_buf_get_objset(dmu_buf_t *db)
3596{
3597 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3598 return (dbi->db_objset);
3599}
3600
2bce8049
MA
3601dnode_t *
3602dmu_buf_dnode_enter(dmu_buf_t *db)
3603{
3604 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3605 DB_DNODE_ENTER(dbi);
3606 return (DB_DNODE(dbi));
3607}
3608
3609void
3610dmu_buf_dnode_exit(dmu_buf_t *db)
3611{
3612 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3613 DB_DNODE_EXIT(dbi);
3614}
3615
34dc7c2f
BB
3616static void
3617dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3618{
3619 /* ASSERT(dmu_tx_is_syncing(tx) */
3620 ASSERT(MUTEX_HELD(&db->db_mtx));
3621
3622 if (db->db_blkptr != NULL)
3623 return;
3624
428870ff 3625 if (db->db_blkid == DMU_SPILL_BLKID) {
50c957f7 3626 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
428870ff
BB
3627 BP_ZERO(db->db_blkptr);
3628 return;
3629 }
34dc7c2f
BB
3630 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3631 /*
3632 * This buffer was allocated at a time when there was
3633 * no available blkptrs from the dnode, or it was
3634 * inappropriate to hook it in (i.e., nlevels mis-match).
3635 */
3636 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3637 ASSERT(db->db_parent == NULL);
3638 db->db_parent = dn->dn_dbuf;
3639 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3640 DBUF_VERIFY(db);
3641 } else {
3642 dmu_buf_impl_t *parent = db->db_parent;
3643 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3644
3645 ASSERT(dn->dn_phys->dn_nlevels > 1);
3646 if (parent == NULL) {
3647 mutex_exit(&db->db_mtx);
3648 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
3649 parent = dbuf_hold_level(dn, db->db_level + 1,
3650 db->db_blkid >> epbs, db);
34dc7c2f
BB
3651 rw_exit(&dn->dn_struct_rwlock);
3652 mutex_enter(&db->db_mtx);
3653 db->db_parent = parent;
3654 }
3655 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3656 (db->db_blkid & ((1ULL << epbs) - 1));
3657 DBUF_VERIFY(db);
3658 }
3659}
3660
b5256303 3661/*
0c03d21a
MA
3662 * When syncing out a blocks of dnodes, adjust the block to deal with
3663 * encryption. Normally, we make sure the block is decrypted before writing
3664 * it. If we have crypt params, then we are writing a raw (encrypted) block,
3665 * from a raw receive. In this case, set the ARC buf's crypt params so
3666 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
b5256303
TC
3667 */
3668static void
0c03d21a 3669dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
b5256303
TC
3670{
3671 int err;
3672 dmu_buf_impl_t *db = dr->dr_dbuf;
3673
3674 ASSERT(MUTEX_HELD(&db->db_mtx));
0c03d21a
MA
3675 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3676 ASSERT3U(db->db_level, ==, 0);
b5256303 3677
0c03d21a 3678 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
a2c2ed1b
TC
3679 zbookmark_phys_t zb;
3680
b5256303
TC
3681 /*
3682 * Unfortunately, there is currently no mechanism for
3683 * syncing context to handle decryption errors. An error
3684 * here is only possible if an attacker maliciously
3685 * changed a dnode block and updated the associated
3686 * checksums going up the block tree.
3687 */
a2c2ed1b
TC
3688 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3689 db->db.db_object, db->db_level, db->db_blkid);
b5256303 3690 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
a2c2ed1b 3691 &zb, B_TRUE);
b5256303
TC
3692 if (err)
3693 panic("Invalid dnode block MAC");
0c03d21a
MA
3694 } else if (dr->dt.dl.dr_has_raw_params) {
3695 (void) arc_release(dr->dt.dl.dr_data, db);
3696 arc_convert_to_raw(dr->dt.dl.dr_data,
3697 dmu_objset_id(db->db_objset),
3698 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3699 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
b5256303
TC
3700 }
3701}
3702
d1d7e268
MK
3703/*
3704 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
60948de1
BB
3705 * is critical the we not allow the compiler to inline this function in to
3706 * dbuf_sync_list() thereby drastically bloating the stack usage.
3707 */
3708noinline static void
34dc7c2f
BB
3709dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3710{
3711 dmu_buf_impl_t *db = dr->dr_dbuf;
572e2857 3712 dnode_t *dn;
34dc7c2f
BB
3713 zio_t *zio;
3714
3715 ASSERT(dmu_tx_is_syncing(tx));
3716
3717 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3718
3719 mutex_enter(&db->db_mtx);
3720
3721 ASSERT(db->db_level > 0);
3722 DBUF_VERIFY(db);
3723
e49f1e20 3724 /* Read the block if it hasn't been read yet. */
34dc7c2f
BB
3725 if (db->db_buf == NULL) {
3726 mutex_exit(&db->db_mtx);
3727 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3728 mutex_enter(&db->db_mtx);
3729 }
3730 ASSERT3U(db->db_state, ==, DB_CACHED);
34dc7c2f
BB
3731 ASSERT(db->db_buf != NULL);
3732
572e2857
BB
3733 DB_DNODE_ENTER(db);
3734 dn = DB_DNODE(db);
e49f1e20 3735 /* Indirect block size must match what the dnode thinks it is. */
572e2857 3736 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
34dc7c2f 3737 dbuf_check_blkptr(dn, db);
572e2857 3738 DB_DNODE_EXIT(db);
34dc7c2f 3739
e49f1e20 3740 /* Provide the pending dirty record to child dbufs */
34dc7c2f
BB
3741 db->db_data_pending = dr;
3742
34dc7c2f 3743 mutex_exit(&db->db_mtx);
a1d477c2 3744
b128c09f 3745 dbuf_write(dr, db->db_buf, tx);
34dc7c2f
BB
3746
3747 zio = dr->dr_zio;
3748 mutex_enter(&dr->dt.di.dr_mtx);
4bda3bd0 3749 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
34dc7c2f
BB
3750 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3751 mutex_exit(&dr->dt.di.dr_mtx);
3752 zio_nowait(zio);
3753}
3754
d1d7e268
MK
3755/*
3756 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
60948de1
BB
3757 * critical the we not allow the compiler to inline this function in to
3758 * dbuf_sync_list() thereby drastically bloating the stack usage.
3759 */
3760noinline static void
34dc7c2f
BB
3761dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3762{
3763 arc_buf_t **datap = &dr->dt.dl.dr_data;
3764 dmu_buf_impl_t *db = dr->dr_dbuf;
572e2857
BB
3765 dnode_t *dn;
3766 objset_t *os;
34dc7c2f 3767 uint64_t txg = tx->tx_txg;
34dc7c2f
BB
3768
3769 ASSERT(dmu_tx_is_syncing(tx));
3770
3771 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3772
3773 mutex_enter(&db->db_mtx);
3774 /*
3775 * To be synced, we must be dirtied. But we
3776 * might have been freed after the dirty.
3777 */
3778 if (db->db_state == DB_UNCACHED) {
3779 /* This buffer has been freed since it was dirtied */
3780 ASSERT(db->db.db_data == NULL);
3781 } else if (db->db_state == DB_FILL) {
3782 /* This buffer was freed and is now being re-filled */
3783 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3784 } else {
b128c09f 3785 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
34dc7c2f
BB
3786 }
3787 DBUF_VERIFY(db);
3788
572e2857
BB
3789 DB_DNODE_ENTER(db);
3790 dn = DB_DNODE(db);
3791
428870ff
BB
3792 if (db->db_blkid == DMU_SPILL_BLKID) {
3793 mutex_enter(&dn->dn_mtx);
81edd3e8
P
3794 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3795 /*
3796 * In the previous transaction group, the bonus buffer
3797 * was entirely used to store the attributes for the
3798 * dnode which overrode the dn_spill field. However,
3799 * when adding more attributes to the file a spill
3800 * block was required to hold the extra attributes.
3801 *
3802 * Make sure to clear the garbage left in the dn_spill
3803 * field from the previous attributes in the bonus
3804 * buffer. Otherwise, after writing out the spill
3805 * block to the new allocated dva, it will free
3806 * the old block pointed to by the invalid dn_spill.
3807 */
3808 db->db_blkptr = NULL;
3809 }
428870ff
BB
3810 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3811 mutex_exit(&dn->dn_mtx);
3812 }
3813
34dc7c2f
BB
3814 /*
3815 * If this is a bonus buffer, simply copy the bonus data into the
3816 * dnode. It will be written out when the dnode is synced (and it
3817 * will be synced, since it must have been dirty for dbuf_sync to
3818 * be called).
3819 */
428870ff 3820 if (db->db_blkid == DMU_BONUS_BLKID) {
34dc7c2f
BB
3821 dbuf_dirty_record_t **drp;
3822
3823 ASSERT(*datap != NULL);
c99c9001 3824 ASSERT0(db->db_level);
b5256303 3825 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
50c957f7 3826 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
b5256303
TC
3827 bcopy(*datap, DN_BONUS(dn->dn_phys),
3828 DN_MAX_BONUS_LEN(dn->dn_phys));
572e2857
BB
3829 DB_DNODE_EXIT(db);
3830
34dc7c2f 3831 if (*datap != db->db.db_data) {
50c957f7
NB
3832 int slots = DB_DNODE(db)->dn_num_slots;
3833 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
a3fd9d9e 3834 kmem_free(*datap, bonuslen);
25458cbe 3835 arc_space_return(bonuslen, ARC_SPACE_BONUS);
34dc7c2f
BB
3836 }
3837 db->db_data_pending = NULL;
3838 drp = &db->db_last_dirty;
3839 while (*drp != dr)
3840 drp = &(*drp)->dr_next;
3841 ASSERT(dr->dr_next == NULL);
428870ff 3842 ASSERT(dr->dr_dbuf == db);
34dc7c2f 3843 *drp = dr->dr_next;
753972fc
BB
3844 if (dr->dr_dbuf->db_level != 0) {
3845 mutex_destroy(&dr->dt.di.dr_mtx);
3846 list_destroy(&dr->dt.di.dr_children);
3847 }
34dc7c2f
BB
3848 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3849 ASSERT(db->db_dirtycnt > 0);
3850 db->db_dirtycnt -= 1;
2e5dc449 3851 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
34dc7c2f
BB
3852 return;
3853 }
3854
572e2857
BB
3855 os = dn->dn_objset;
3856
34dc7c2f
BB
3857 /*
3858 * This function may have dropped the db_mtx lock allowing a dmu_sync
3859 * operation to sneak in. As a result, we need to ensure that we
3860 * don't check the dr_override_state until we have returned from
3861 * dbuf_check_blkptr.
3862 */
3863 dbuf_check_blkptr(dn, db);
3864
3865 /*
572e2857 3866 * If this buffer is in the middle of an immediate write,
34dc7c2f
BB
3867 * wait for the synchronous IO to complete.
3868 */
3869 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3870 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3871 cv_wait(&db->db_changed, &db->db_mtx);
3872 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3873 }
3874
b5256303
TC
3875 /*
3876 * If this is a dnode block, ensure it is appropriately encrypted
3877 * or decrypted, depending on what we are writing to it this txg.
3878 */
3879 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
0c03d21a 3880 dbuf_prepare_encrypted_dnode_leaf(dr);
b5256303 3881
9babb374
BB
3882 if (db->db_state != DB_NOFILL &&
3883 dn->dn_object != DMU_META_DNODE_OBJECT &&
3884 refcount_count(&db->db_holds) > 1 &&
428870ff 3885 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
9babb374
BB
3886 *datap == db->db_buf) {
3887 /*
3888 * If this buffer is currently "in use" (i.e., there
3889 * are active holds and db_data still references it),
3890 * then make a copy before we start the write so that
3891 * any modifications from the open txg will not leak
3892 * into this write.
3893 *
3894 * NOTE: this copy does not need to be made for
3895 * objects only modified in the syncing context (e.g.
3896 * DNONE_DNODE blocks).
3897 */
2aa34383 3898 int psize = arc_buf_size(*datap);
b5256303 3899 int lsize = arc_buf_lsize(*datap);
9babb374 3900 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2aa34383
DK
3901 enum zio_compress compress_type = arc_get_compression(*datap);
3902
b5256303
TC
3903 if (arc_is_encrypted(*datap)) {
3904 boolean_t byteorder;
3905 uint8_t salt[ZIO_DATA_SALT_LEN];
3906 uint8_t iv[ZIO_DATA_IV_LEN];
3907 uint8_t mac[ZIO_DATA_MAC_LEN];
3908
3909 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3910 *datap = arc_alloc_raw_buf(os->os_spa, db,
3911 dmu_objset_id(os), byteorder, salt, iv, mac,
3912 dn->dn_type, psize, lsize, compress_type);
3913 } else if (compress_type != ZIO_COMPRESS_OFF) {
2aa34383
DK
3914 ASSERT3U(type, ==, ARC_BUFC_DATA);
3915 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3916 psize, lsize, compress_type);
b5256303
TC
3917 } else {
3918 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
2aa34383
DK
3919 }
3920 bcopy(db->db.db_data, (*datap)->b_data, psize);
b128c09f 3921 }
34dc7c2f
BB
3922 db->db_data_pending = dr;
3923
3924 mutex_exit(&db->db_mtx);
3925
b128c09f 3926 dbuf_write(dr, *datap, tx);
34dc7c2f
BB
3927
3928 ASSERT(!list_link_active(&dr->dr_dirty_node));
572e2857 3929 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
34dc7c2f 3930 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
572e2857
BB
3931 DB_DNODE_EXIT(db);
3932 } else {
3933 /*
3934 * Although zio_nowait() does not "wait for an IO", it does
3935 * initiate the IO. If this is an empty write it seems plausible
3936 * that the IO could actually be completed before the nowait
3937 * returns. We need to DB_DNODE_EXIT() first in case
3938 * zio_nowait() invalidates the dbuf.
3939 */
3940 DB_DNODE_EXIT(db);
34dc7c2f 3941 zio_nowait(dr->dr_zio);
572e2857 3942 }
34dc7c2f
BB
3943}
3944
3945void
4bda3bd0 3946dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
34dc7c2f
BB
3947{
3948 dbuf_dirty_record_t *dr;
3949
c65aa5b2 3950 while ((dr = list_head(list))) {
34dc7c2f
BB
3951 if (dr->dr_zio != NULL) {
3952 /*
3953 * If we find an already initialized zio then we
3954 * are processing the meta-dnode, and we have finished.
3955 * The dbufs for all dnodes are put back on the list
3956 * during processing, so that we can zio_wait()
3957 * these IOs after initiating all child IOs.
3958 */
3959 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3960 DMU_META_DNODE_OBJECT);
3961 break;
3962 }
4bda3bd0
MA
3963 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3964 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3965 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3966 }
34dc7c2f
BB
3967 list_remove(list, dr);
3968 if (dr->dr_dbuf->db_level > 0)
3969 dbuf_sync_indirect(dr, tx);
3970 else
3971 dbuf_sync_leaf(dr, tx);
3972 }
3973}
3974
34dc7c2f
BB
3975/* ARGSUSED */
3976static void
3977dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3978{
3979 dmu_buf_impl_t *db = vdb;
572e2857 3980 dnode_t *dn;
b128c09f 3981 blkptr_t *bp = zio->io_bp;
34dc7c2f 3982 blkptr_t *bp_orig = &zio->io_bp_orig;
428870ff
BB
3983 spa_t *spa = zio->io_spa;
3984 int64_t delta;
34dc7c2f 3985 uint64_t fill = 0;
428870ff 3986 int i;
34dc7c2f 3987
463a8cfe
AR
3988 ASSERT3P(db->db_blkptr, !=, NULL);
3989 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
b128c09f 3990
572e2857
BB
3991 DB_DNODE_ENTER(db);
3992 dn = DB_DNODE(db);
428870ff
BB
3993 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3994 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3995 zio->io_prev_space_delta = delta;
34dc7c2f 3996
b0bc7a84
MG
3997 if (bp->blk_birth != 0) {
3998 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3999 BP_GET_TYPE(bp) == dn->dn_type) ||
4000 (db->db_blkid == DMU_SPILL_BLKID &&
9b67f605
MA
4001 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4002 BP_IS_EMBEDDED(bp));
b0bc7a84 4003 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
34dc7c2f
BB
4004 }
4005
4006 mutex_enter(&db->db_mtx);
4007
428870ff
BB
4008#ifdef ZFS_DEBUG
4009 if (db->db_blkid == DMU_SPILL_BLKID) {
428870ff 4010 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
463a8cfe 4011 ASSERT(!(BP_IS_HOLE(bp)) &&
50c957f7 4012 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
428870ff
BB
4013 }
4014#endif
4015
34dc7c2f
BB
4016 if (db->db_level == 0) {
4017 mutex_enter(&dn->dn_mtx);
428870ff 4018 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
69830602
TC
4019 db->db_blkid != DMU_SPILL_BLKID) {
4020 ASSERT0(db->db_objset->os_raw_receive);
34dc7c2f 4021 dn->dn_phys->dn_maxblkid = db->db_blkid;
69830602 4022 }
34dc7c2f
BB
4023 mutex_exit(&dn->dn_mtx);
4024
4025 if (dn->dn_type == DMU_OT_DNODE) {
50c957f7
NB
4026 i = 0;
4027 while (i < db->db.db_size) {
817b1b6e
MA
4028 dnode_phys_t *dnp =
4029 (void *)(((char *)db->db.db_data) + i);
50c957f7
NB
4030
4031 i += DNODE_MIN_SIZE;
4032 if (dnp->dn_type != DMU_OT_NONE) {
34dc7c2f 4033 fill++;
50c957f7
NB
4034 i += dnp->dn_extra_slots *
4035 DNODE_MIN_SIZE;
4036 }
34dc7c2f
BB
4037 }
4038 } else {
b0bc7a84
MG
4039 if (BP_IS_HOLE(bp)) {
4040 fill = 0;
4041 } else {
4042 fill = 1;
4043 }
34dc7c2f
BB
4044 }
4045 } else {
b128c09f 4046 blkptr_t *ibp = db->db.db_data;
34dc7c2f 4047 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
b128c09f
BB
4048 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4049 if (BP_IS_HOLE(ibp))
34dc7c2f 4050 continue;
9b67f605 4051 fill += BP_GET_FILL(ibp);
34dc7c2f
BB
4052 }
4053 }
572e2857 4054 DB_DNODE_EXIT(db);
34dc7c2f 4055
9b67f605 4056 if (!BP_IS_EMBEDDED(bp))
b5256303 4057 BP_SET_FILL(bp, fill);
34dc7c2f
BB
4058
4059 mutex_exit(&db->db_mtx);
463a8cfe
AR
4060
4061 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4062 *db->db_blkptr = *bp;
4063 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f
BB
4064}
4065
bc77ba73
PD
4066/* ARGSUSED */
4067/*
4068 * This function gets called just prior to running through the compression
4069 * stage of the zio pipeline. If we're an indirect block comprised of only
4070 * holes, then we want this indirect to be compressed away to a hole. In
4071 * order to do that we must zero out any information about the holes that
4072 * this indirect points to prior to before we try to compress it.
4073 */
4074static void
4075dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4076{
4077 dmu_buf_impl_t *db = vdb;
4078 dnode_t *dn;
4079 blkptr_t *bp;
721ed0ee 4080 unsigned int epbs, i;
bc77ba73
PD
4081
4082 ASSERT3U(db->db_level, >, 0);
4083 DB_DNODE_ENTER(db);
4084 dn = DB_DNODE(db);
4085 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
721ed0ee 4086 ASSERT3U(epbs, <, 31);
bc77ba73
PD
4087
4088 /* Determine if all our children are holes */
3f93077b 4089 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
bc77ba73
PD
4090 if (!BP_IS_HOLE(bp))
4091 break;
4092 }
4093
4094 /*
4095 * If all the children are holes, then zero them all out so that
4096 * we may get compressed away.
4097 */
3f93077b 4098 if (i == 1ULL << epbs) {
721ed0ee
GM
4099 /*
4100 * We only found holes. Grab the rwlock to prevent
4101 * anybody from reading the blocks we're about to
4102 * zero out.
4103 */
4104 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
bc77ba73 4105 bzero(db->db.db_data, db->db.db_size);
721ed0ee 4106 rw_exit(&dn->dn_struct_rwlock);
bc77ba73
PD
4107 }
4108 DB_DNODE_EXIT(db);
4109}
4110
e8b96c60
MA
4111/*
4112 * The SPA will call this callback several times for each zio - once
4113 * for every physical child i/o (zio->io_phys_children times). This
4114 * allows the DMU to monitor the progress of each logical i/o. For example,
4115 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4116 * block. There may be a long delay before all copies/fragments are completed,
4117 * so this callback allows us to retire dirty space gradually, as the physical
4118 * i/os complete.
4119 */
4120/* ARGSUSED */
4121static void
4122dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4123{
4124 dmu_buf_impl_t *db = arg;
4125 objset_t *os = db->db_objset;
4126 dsl_pool_t *dp = dmu_objset_pool(os);
4127 dbuf_dirty_record_t *dr;
4128 int delta = 0;
4129
4130 dr = db->db_data_pending;
4131 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4132
4133 /*
4134 * The callback will be called io_phys_children times. Retire one
4135 * portion of our dirty space each time we are called. Any rounding
4136 * error will be cleaned up by dsl_pool_sync()'s call to
4137 * dsl_pool_undirty_space().
4138 */
4139 delta = dr->dr_accounted / zio->io_phys_children;
4140 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4141}
4142
34dc7c2f
BB
4143/* ARGSUSED */
4144static void
4145dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4146{
4147 dmu_buf_impl_t *db = vdb;
428870ff 4148 blkptr_t *bp_orig = &zio->io_bp_orig;
b0bc7a84
MG
4149 blkptr_t *bp = db->db_blkptr;
4150 objset_t *os = db->db_objset;
4151 dmu_tx_t *tx = os->os_synctx;
34dc7c2f
BB
4152 dbuf_dirty_record_t **drp, *dr;
4153
c99c9001 4154 ASSERT0(zio->io_error);
428870ff
BB
4155 ASSERT(db->db_blkptr == bp);
4156
03c6040b
GW
4157 /*
4158 * For nopwrites and rewrites we ensure that the bp matches our
4159 * original and bypass all the accounting.
4160 */
4161 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
428870ff
BB
4162 ASSERT(BP_EQUAL(bp, bp_orig));
4163 } else {
b0bc7a84 4164 dsl_dataset_t *ds = os->os_dsl_dataset;
428870ff
BB
4165 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4166 dsl_dataset_block_born(ds, bp, tx);
4167 }
34dc7c2f
BB
4168
4169 mutex_enter(&db->db_mtx);
4170
428870ff
BB
4171 DBUF_VERIFY(db);
4172
34dc7c2f
BB
4173 drp = &db->db_last_dirty;
4174 while ((dr = *drp) != db->db_data_pending)
4175 drp = &dr->dr_next;
4176 ASSERT(!list_link_active(&dr->dr_dirty_node));
428870ff 4177 ASSERT(dr->dr_dbuf == db);
34dc7c2f
BB
4178 ASSERT(dr->dr_next == NULL);
4179 *drp = dr->dr_next;
4180
428870ff
BB
4181#ifdef ZFS_DEBUG
4182 if (db->db_blkid == DMU_SPILL_BLKID) {
572e2857
BB
4183 dnode_t *dn;
4184
4185 DB_DNODE_ENTER(db);
4186 dn = DB_DNODE(db);
428870ff
BB
4187 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4188 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
50c957f7 4189 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
572e2857 4190 DB_DNODE_EXIT(db);
428870ff
BB
4191 }
4192#endif
4193
34dc7c2f 4194 if (db->db_level == 0) {
428870ff 4195 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f 4196 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
b128c09f
BB
4197 if (db->db_state != DB_NOFILL) {
4198 if (dr->dt.dl.dr_data != db->db_buf)
d3c2ae1c 4199 arc_buf_destroy(dr->dt.dl.dr_data, db);
b128c09f 4200 }
34dc7c2f 4201 } else {
572e2857
BB
4202 dnode_t *dn;
4203
4204 DB_DNODE_ENTER(db);
4205 dn = DB_DNODE(db);
34dc7c2f 4206 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
b0bc7a84 4207 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
34dc7c2f 4208 if (!BP_IS_HOLE(db->db_blkptr)) {
1fde1e37
BB
4209 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
4210 SPA_BLKPTRSHIFT);
b0bc7a84
MG
4211 ASSERT3U(db->db_blkid, <=,
4212 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
34dc7c2f
BB
4213 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4214 db->db.db_size);
34dc7c2f 4215 }
572e2857 4216 DB_DNODE_EXIT(db);
34dc7c2f
BB
4217 mutex_destroy(&dr->dt.di.dr_mtx);
4218 list_destroy(&dr->dt.di.dr_children);
4219 }
4220 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4221
4222 cv_broadcast(&db->db_changed);
4223 ASSERT(db->db_dirtycnt > 0);
4224 db->db_dirtycnt -= 1;
4225 db->db_data_pending = NULL;
2e5dc449 4226 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
428870ff
BB
4227}
4228
4229static void
4230dbuf_write_nofill_ready(zio_t *zio)
4231{
4232 dbuf_write_ready(zio, NULL, zio->io_private);
4233}
4234
4235static void
4236dbuf_write_nofill_done(zio_t *zio)
4237{
4238 dbuf_write_done(zio, NULL, zio->io_private);
4239}
4240
4241static void
4242dbuf_write_override_ready(zio_t *zio)
4243{
4244 dbuf_dirty_record_t *dr = zio->io_private;
4245 dmu_buf_impl_t *db = dr->dr_dbuf;
4246
4247 dbuf_write_ready(zio, NULL, db);
4248}
4249
4250static void
4251dbuf_write_override_done(zio_t *zio)
4252{
4253 dbuf_dirty_record_t *dr = zio->io_private;
4254 dmu_buf_impl_t *db = dr->dr_dbuf;
4255 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4256
4257 mutex_enter(&db->db_mtx);
4258 if (!BP_EQUAL(zio->io_bp, obp)) {
4259 if (!BP_IS_HOLE(obp))
4260 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4261 arc_release(dr->dt.dl.dr_data, db);
4262 }
34dc7c2f
BB
4263 mutex_exit(&db->db_mtx);
4264
428870ff 4265 dbuf_write_done(zio, NULL, db);
a6255b7f
DQ
4266
4267 if (zio->io_abd != NULL)
4268 abd_put(zio->io_abd);
428870ff
BB
4269}
4270
a1d477c2
MA
4271typedef struct dbuf_remap_impl_callback_arg {
4272 objset_t *drica_os;
4273 uint64_t drica_blk_birth;
4274 dmu_tx_t *drica_tx;
4275} dbuf_remap_impl_callback_arg_t;
4276
4277static void
4278dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4279 void *arg)
4280{
4281 dbuf_remap_impl_callback_arg_t *drica = arg;
4282 objset_t *os = drica->drica_os;
4283 spa_t *spa = dmu_objset_spa(os);
4284 dmu_tx_t *tx = drica->drica_tx;
4285
4286 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4287
4288 if (os == spa_meta_objset(spa)) {
4289 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4290 } else {
4291 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4292 size, drica->drica_blk_birth, tx);
4293 }
4294}
4295
4296static void
4297dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
4298{
4299 blkptr_t bp_copy = *bp;
4300 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4301 dbuf_remap_impl_callback_arg_t drica;
4302
4303 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4304
4305 drica.drica_os = dn->dn_objset;
4306 drica.drica_blk_birth = bp->blk_birth;
4307 drica.drica_tx = tx;
4308 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4309 &drica)) {
4310 /*
4311 * The struct_rwlock prevents dbuf_read_impl() from
4312 * dereferencing the BP while we are changing it. To
4313 * avoid lock contention, only grab it when we are actually
4314 * changing the BP.
4315 */
4316 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4317 *bp = bp_copy;
4318 rw_exit(&dn->dn_struct_rwlock);
4319 }
4320}
4321
4322/*
4323 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4324 * to remap a copy of every bp in the dbuf.
4325 */
4326boolean_t
4327dbuf_can_remap(const dmu_buf_impl_t *db)
4328{
4329 spa_t *spa = dmu_objset_spa(db->db_objset);
4330 blkptr_t *bp = db->db.db_data;
4331 boolean_t ret = B_FALSE;
4332
4333 ASSERT3U(db->db_level, >, 0);
4334 ASSERT3S(db->db_state, ==, DB_CACHED);
4335
4336 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4337
4338 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4339 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4340 blkptr_t bp_copy = bp[i];
4341 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4342 ret = B_TRUE;
4343 break;
4344 }
4345 }
4346 spa_config_exit(spa, SCL_VDEV, FTAG);
4347
4348 return (ret);
4349}
4350
4351boolean_t
4352dnode_needs_remap(const dnode_t *dn)
4353{
4354 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4355 boolean_t ret = B_FALSE;
4356
4357 if (dn->dn_phys->dn_nlevels == 0) {
4358 return (B_FALSE);
4359 }
4360
4361 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4362
4363 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4364 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4365 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4366 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4367 ret = B_TRUE;
4368 break;
4369 }
4370 }
4371 spa_config_exit(spa, SCL_VDEV, FTAG);
4372
4373 return (ret);
4374}
4375
4376/*
4377 * Remap any existing BP's to concrete vdevs, if possible.
4378 */
4379static void
4380dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4381{
4382 spa_t *spa = dmu_objset_spa(db->db_objset);
4383 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4384
4385 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4386 return;
4387
4388 if (db->db_level > 0) {
4389 blkptr_t *bp = db->db.db_data;
4390 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4391 dbuf_remap_impl(dn, &bp[i], tx);
4392 }
4393 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4394 dnode_phys_t *dnp = db->db.db_data;
4395 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4396 DMU_OT_DNODE);
4397 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4398 i += dnp[i].dn_extra_slots + 1) {
4399 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4400 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
4401 }
4402 }
4403 }
4404}
4405
4406
e49f1e20 4407/* Issue I/O to commit a dirty buffer to disk. */
428870ff
BB
4408static void
4409dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4410{
4411 dmu_buf_impl_t *db = dr->dr_dbuf;
572e2857
BB
4412 dnode_t *dn;
4413 objset_t *os;
428870ff
BB
4414 dmu_buf_impl_t *parent = db->db_parent;
4415 uint64_t txg = tx->tx_txg;
5dbd68a3 4416 zbookmark_phys_t zb;
428870ff
BB
4417 zio_prop_t zp;
4418 zio_t *zio;
4419 int wp_flag = 0;
34dc7c2f 4420
463a8cfe
AR
4421 ASSERT(dmu_tx_is_syncing(tx));
4422
572e2857
BB
4423 DB_DNODE_ENTER(db);
4424 dn = DB_DNODE(db);
4425 os = dn->dn_objset;
4426
428870ff
BB
4427 if (db->db_state != DB_NOFILL) {
4428 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4429 /*
4430 * Private object buffers are released here rather
4431 * than in dbuf_dirty() since they are only modified
4432 * in the syncing context and we don't want the
4433 * overhead of making multiple copies of the data.
4434 */
4435 if (BP_IS_HOLE(db->db_blkptr)) {
4436 arc_buf_thaw(data);
4437 } else {
4438 dbuf_release_bp(db);
4439 }
a1d477c2 4440 dbuf_remap(dn, db, tx);
428870ff
BB
4441 }
4442 }
4443
4444 if (parent != dn->dn_dbuf) {
e49f1e20
WA
4445 /* Our parent is an indirect block. */
4446 /* We have a dirty parent that has been scheduled for write. */
428870ff 4447 ASSERT(parent && parent->db_data_pending);
e49f1e20 4448 /* Our parent's buffer is one level closer to the dnode. */
428870ff 4449 ASSERT(db->db_level == parent->db_level-1);
e49f1e20
WA
4450 /*
4451 * We're about to modify our parent's db_data by modifying
4452 * our block pointer, so the parent must be released.
4453 */
428870ff
BB
4454 ASSERT(arc_released(parent->db_buf));
4455 zio = parent->db_data_pending->dr_zio;
4456 } else {
e49f1e20 4457 /* Our parent is the dnode itself. */
428870ff
BB
4458 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4459 db->db_blkid != DMU_SPILL_BLKID) ||
4460 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4461 if (db->db_blkid != DMU_SPILL_BLKID)
4462 ASSERT3P(db->db_blkptr, ==,
4463 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4464 zio = dn->dn_zio;
4465 }
4466
4467 ASSERT(db->db_level == 0 || data == db->db_buf);
4468 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4469 ASSERT(zio);
4470
4471 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4472 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4473 db->db.db_object, db->db_level, db->db_blkid);
4474
4475 if (db->db_blkid == DMU_SPILL_BLKID)
4476 wp_flag = WP_SPILL;
4477 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4478
82644107 4479 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
572e2857 4480 DB_DNODE_EXIT(db);
428870ff 4481
463a8cfe
AR
4482 /*
4483 * We copy the blkptr now (rather than when we instantiate the dirty
4484 * record), because its value can change between open context and
4485 * syncing context. We do not need to hold dn_struct_rwlock to read
4486 * db_blkptr because we are in syncing context.
4487 */
4488 dr->dr_bp_copy = *db->db_blkptr;
4489
9b67f605
MA
4490 if (db->db_level == 0 &&
4491 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4492 /*
4493 * The BP for this block has been provided by open context
4494 * (by dmu_sync() or dmu_buf_write_embedded()).
4495 */
a6255b7f
DQ
4496 abd_t *contents = (data != NULL) ?
4497 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
9b67f605 4498
428870ff 4499 dr->dr_zio = zio_write(zio, os->os_spa, txg,
2aa34383
DK
4500 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4501 &zp, dbuf_write_override_ready, NULL, NULL,
bc77ba73 4502 dbuf_write_override_done,
e8b96c60 4503 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
428870ff
BB
4504 mutex_enter(&db->db_mtx);
4505 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4506 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
03c6040b 4507 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
428870ff
BB
4508 mutex_exit(&db->db_mtx);
4509 } else if (db->db_state == DB_NOFILL) {
3c67d83a
TH
4510 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4511 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
428870ff 4512 dr->dr_zio = zio_write(zio, os->os_spa, txg,
2aa34383 4513 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
bc77ba73
PD
4514 dbuf_write_nofill_ready, NULL, NULL,
4515 dbuf_write_nofill_done, db,
428870ff
BB
4516 ZIO_PRIORITY_ASYNC_WRITE,
4517 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4518 } else {
4519 ASSERT(arc_released(data));
bc77ba73
PD
4520
4521 /*
4522 * For indirect blocks, we want to setup the children
4523 * ready callback so that we can properly handle an indirect
4524 * block that only contains holes.
4525 */
1c27024e 4526 arc_write_done_func_t *children_ready_cb = NULL;
bc77ba73
PD
4527 if (db->db_level != 0)
4528 children_ready_cb = dbuf_write_children_ready;
4529
428870ff 4530 dr->dr_zio = arc_write(zio, os->os_spa, txg,
463a8cfe 4531 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
d3c2ae1c
GW
4532 &zp, dbuf_write_ready,
4533 children_ready_cb, dbuf_write_physdone,
4534 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4535 ZIO_FLAG_MUSTSUCCEED, &zb);
428870ff 4536 }
34dc7c2f 4537}
c28b2279 4538
93ce2b4c 4539#if defined(_KERNEL)
8f576c23
BB
4540EXPORT_SYMBOL(dbuf_find);
4541EXPORT_SYMBOL(dbuf_is_metadata);
d3c2ae1c 4542EXPORT_SYMBOL(dbuf_destroy);
8f576c23
BB
4543EXPORT_SYMBOL(dbuf_loan_arcbuf);
4544EXPORT_SYMBOL(dbuf_whichblock);
4545EXPORT_SYMBOL(dbuf_read);
4546EXPORT_SYMBOL(dbuf_unoverride);
4547EXPORT_SYMBOL(dbuf_free_range);
4548EXPORT_SYMBOL(dbuf_new_size);
4549EXPORT_SYMBOL(dbuf_release_bp);
4550EXPORT_SYMBOL(dbuf_dirty);
0c03d21a 4551EXPORT_SYMBOL(dmu_buf_set_crypt_params);
c28b2279 4552EXPORT_SYMBOL(dmu_buf_will_dirty);
8f576c23
BB
4553EXPORT_SYMBOL(dmu_buf_will_not_fill);
4554EXPORT_SYMBOL(dmu_buf_will_fill);
4555EXPORT_SYMBOL(dmu_buf_fill_done);
4047414a 4556EXPORT_SYMBOL(dmu_buf_rele);
8f576c23 4557EXPORT_SYMBOL(dbuf_assign_arcbuf);
8f576c23
BB
4558EXPORT_SYMBOL(dbuf_prefetch);
4559EXPORT_SYMBOL(dbuf_hold_impl);
4560EXPORT_SYMBOL(dbuf_hold);
4561EXPORT_SYMBOL(dbuf_hold_level);
4562EXPORT_SYMBOL(dbuf_create_bonus);
4563EXPORT_SYMBOL(dbuf_spill_set_blksz);
4564EXPORT_SYMBOL(dbuf_rm_spill);
4565EXPORT_SYMBOL(dbuf_add_ref);
4566EXPORT_SYMBOL(dbuf_rele);
4567EXPORT_SYMBOL(dbuf_rele_and_unlock);
4568EXPORT_SYMBOL(dbuf_refcount);
4569EXPORT_SYMBOL(dbuf_sync_list);
4570EXPORT_SYMBOL(dmu_buf_set_user);
4571EXPORT_SYMBOL(dmu_buf_set_user_ie);
8f576c23 4572EXPORT_SYMBOL(dmu_buf_get_user);
0f699108 4573EXPORT_SYMBOL(dmu_buf_get_blkptr);
d3c2ae1c 4574
02730c33 4575/* BEGIN CSTYLED */
d3c2ae1c
GW
4576module_param(dbuf_cache_max_bytes, ulong, 0644);
4577MODULE_PARM_DESC(dbuf_cache_max_bytes,
02730c33 4578 "Maximum size in bytes of the dbuf cache.");
d3c2ae1c
GW
4579
4580module_param(dbuf_cache_hiwater_pct, uint, 0644);
4581MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
f974e25d 4582 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4583 "directly.");
d3c2ae1c
GW
4584
4585module_param(dbuf_cache_lowater_pct, uint, 0644);
4586MODULE_PARM_DESC(dbuf_cache_lowater_pct,
f974e25d 4587 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4588 "evicting dbufs.");
d3c2ae1c 4589
2e5dc449
MA
4590module_param(dbuf_metadata_cache_max_bytes, ulong, 0644);
4591MODULE_PARM_DESC(dbuf_metadata_cache_max_bytes,
4592 "Maximum size in bytes of the dbuf metadata cache.");
4593
de4f8d5d
BB
4594module_param(dbuf_cache_shift, int, 0644);
4595MODULE_PARM_DESC(dbuf_cache_shift,
4596 "Set the size of the dbuf cache to a log2 fraction of arc size.");
2e5dc449
MA
4597
4598module_param(dbuf_metadata_cache_shift, int, 0644);
4599MODULE_PARM_DESC(dbuf_cache_shift,
4600 "Set the size of the dbuf metadata cache to a log2 fraction of "
4601 "arc size.");
02730c33 4602/* END CSTYLED */
c28b2279 4603#endif