]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dbuf.c
zstreamdump needs to initialize fletcher 4 support
[mirror_zfs.git] / module / zfs / dbuf.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
ef3c1dea 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
2bce8049 24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
3a17a7a9 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
0c66c32d 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f 29#include <sys/zfs_context.h>
c28b2279 30#include <sys/arc.h>
34dc7c2f 31#include <sys/dmu.h>
ea97f8ce 32#include <sys/dmu_send.h>
34dc7c2f
BB
33#include <sys/dmu_impl.h>
34#include <sys/dbuf.h>
35#include <sys/dmu_objset.h>
36#include <sys/dsl_dataset.h>
37#include <sys/dsl_dir.h>
38#include <sys/dmu_tx.h>
39#include <sys/spa.h>
40#include <sys/zio.h>
41#include <sys/dmu_zfetch.h>
428870ff
BB
42#include <sys/sa.h>
43#include <sys/sa_impl.h>
9b67f605
MA
44#include <sys/zfeature.h>
45#include <sys/blkptr.h>
9bd274dd 46#include <sys/range_tree.h>
49ee64e5 47#include <sys/trace_dbuf.h>
d3c2ae1c 48#include <sys/callb.h>
34dc7c2f 49
fc5bb51f
BB
50struct dbuf_hold_impl_data {
51 /* Function arguments */
52 dnode_t *dh_dn;
53 uint8_t dh_level;
54 uint64_t dh_blkid;
fcff0f35
PD
55 boolean_t dh_fail_sparse;
56 boolean_t dh_fail_uncached;
fc5bb51f
BB
57 void *dh_tag;
58 dmu_buf_impl_t **dh_dbp;
59 /* Local variables */
60 dmu_buf_impl_t *dh_db;
61 dmu_buf_impl_t *dh_parent;
62 blkptr_t *dh_bp;
63 int dh_err;
64 dbuf_dirty_record_t *dh_dr;
65 arc_buf_contents_t dh_type;
66 int dh_depth;
67};
68
69static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
fcff0f35
PD
70 dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
71 boolean_t fail_uncached,
72 void *tag, dmu_buf_impl_t **dbp, int depth);
fc5bb51f
BB
73static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
74
d3c2ae1c 75uint_t zfs_dbuf_evict_key;
b663a23d
MA
76/*
77 * Number of times that zfs_free_range() took the slow path while doing
78 * a zfs receive. A nonzero value indicates a potential performance problem.
79 */
80uint64_t zfs_free_range_recv_miss;
81
13fe0198 82static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
b128c09f 83static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
34dc7c2f 84
0c66c32d
JG
85#ifndef __lint
86extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
87 dmu_buf_evict_func_t *evict_func, dmu_buf_t **clear_on_evict_dbufp);
88#endif /* ! __lint */
89
34dc7c2f
BB
90/*
91 * Global data structures and functions for the dbuf cache.
92 */
d3c2ae1c 93static kmem_cache_t *dbuf_kmem_cache;
0c66c32d 94static taskq_t *dbu_evict_taskq;
34dc7c2f 95
d3c2ae1c
GW
96static kthread_t *dbuf_cache_evict_thread;
97static kmutex_t dbuf_evict_lock;
98static kcondvar_t dbuf_evict_cv;
99static boolean_t dbuf_evict_thread_exit;
100
101/*
102 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
103 * are not currently held but have been recently released. These dbufs
104 * are not eligible for arc eviction until they are aged out of the cache.
105 * Dbufs are added to the dbuf cache once the last hold is released. If a
106 * dbuf is later accessed and still exists in the dbuf cache, then it will
107 * be removed from the cache and later re-added to the head of the cache.
108 * Dbufs that are aged out of the cache will be immediately destroyed and
109 * become eligible for arc eviction.
110 */
111static multilist_t dbuf_cache;
112static refcount_t dbuf_cache_size;
113unsigned long dbuf_cache_max_bytes = 100 * 1024 * 1024;
114
115/* Cap the size of the dbuf cache to log2 fraction of arc size. */
116int dbuf_cache_max_shift = 5;
117
118/*
119 * The dbuf cache uses a three-stage eviction policy:
120 * - A low water marker designates when the dbuf eviction thread
121 * should stop evicting from the dbuf cache.
122 * - When we reach the maximum size (aka mid water mark), we
123 * signal the eviction thread to run.
124 * - The high water mark indicates when the eviction thread
125 * is unable to keep up with the incoming load and eviction must
126 * happen in the context of the calling thread.
127 *
128 * The dbuf cache:
129 * (max size)
130 * low water mid water hi water
131 * +----------------------------------------+----------+----------+
132 * | | | |
133 * | | | |
134 * | | | |
135 * | | | |
136 * +----------------------------------------+----------+----------+
137 * stop signal evict
138 * evicting eviction directly
139 * thread
140 *
141 * The high and low water marks indicate the operating range for the eviction
142 * thread. The low water mark is, by default, 90% of the total size of the
143 * cache and the high water mark is at 110% (both of these percentages can be
144 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
145 * respectively). The eviction thread will try to ensure that the cache remains
146 * within this range by waking up every second and checking if the cache is
147 * above the low water mark. The thread can also be woken up by callers adding
148 * elements into the cache if the cache is larger than the mid water (i.e max
149 * cache size). Once the eviction thread is woken up and eviction is required,
150 * it will continue evicting buffers until it's able to reduce the cache size
151 * to the low water mark. If the cache size continues to grow and hits the high
152 * water mark, then callers adding elments to the cache will begin to evict
153 * directly from the cache until the cache is no longer above the high water
154 * mark.
155 */
156
157/*
158 * The percentage above and below the maximum cache size.
159 */
160uint_t dbuf_cache_hiwater_pct = 10;
161uint_t dbuf_cache_lowater_pct = 10;
162
34dc7c2f
BB
163/* ARGSUSED */
164static int
165dbuf_cons(void *vdb, void *unused, int kmflag)
166{
167 dmu_buf_impl_t *db = vdb;
168 bzero(db, sizeof (dmu_buf_impl_t));
169
170 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
171 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
d3c2ae1c 172 multilist_link_init(&db->db_cache_link);
34dc7c2f 173 refcount_create(&db->db_holds);
d3c2ae1c 174 multilist_link_init(&db->db_cache_link);
8951cb8d 175
34dc7c2f
BB
176 return (0);
177}
178
179/* ARGSUSED */
180static void
181dbuf_dest(void *vdb, void *unused)
182{
183 dmu_buf_impl_t *db = vdb;
184 mutex_destroy(&db->db_mtx);
185 cv_destroy(&db->db_changed);
d3c2ae1c 186 ASSERT(!multilist_link_active(&db->db_cache_link));
34dc7c2f
BB
187 refcount_destroy(&db->db_holds);
188}
189
190/*
191 * dbuf hash table routines
192 */
193static dbuf_hash_table_t dbuf_hash_table;
194
195static uint64_t dbuf_hash_count;
196
197static uint64_t
198dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
199{
200 uintptr_t osv = (uintptr_t)os;
201 uint64_t crc = -1ULL;
202
203 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
204 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
205 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
206 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
207 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
208 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
209 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
210
211 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
212
213 return (crc);
214}
215
34dc7c2f
BB
216#define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
217 ((dbuf)->db.db_object == (obj) && \
218 (dbuf)->db_objset == (os) && \
219 (dbuf)->db_level == (level) && \
220 (dbuf)->db_blkid == (blkid))
221
222dmu_buf_impl_t *
6ebebace 223dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
34dc7c2f
BB
224{
225 dbuf_hash_table_t *h = &dbuf_hash_table;
d6320ddb
BB
226 uint64_t hv;
227 uint64_t idx;
34dc7c2f
BB
228 dmu_buf_impl_t *db;
229
d3c2ae1c 230 hv = dbuf_hash(os, obj, level, blkid);
d6320ddb
BB
231 idx = hv & h->hash_table_mask;
232
34dc7c2f
BB
233 mutex_enter(DBUF_HASH_MUTEX(h, idx));
234 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
235 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
236 mutex_enter(&db->db_mtx);
237 if (db->db_state != DB_EVICTING) {
238 mutex_exit(DBUF_HASH_MUTEX(h, idx));
239 return (db);
240 }
241 mutex_exit(&db->db_mtx);
242 }
243 }
244 mutex_exit(DBUF_HASH_MUTEX(h, idx));
245 return (NULL);
246}
247
6ebebace
JG
248static dmu_buf_impl_t *
249dbuf_find_bonus(objset_t *os, uint64_t object)
250{
251 dnode_t *dn;
252 dmu_buf_impl_t *db = NULL;
253
254 if (dnode_hold(os, object, FTAG, &dn) == 0) {
255 rw_enter(&dn->dn_struct_rwlock, RW_READER);
256 if (dn->dn_bonus != NULL) {
257 db = dn->dn_bonus;
258 mutex_enter(&db->db_mtx);
259 }
260 rw_exit(&dn->dn_struct_rwlock);
261 dnode_rele(dn, FTAG);
262 }
263 return (db);
264}
265
34dc7c2f
BB
266/*
267 * Insert an entry into the hash table. If there is already an element
268 * equal to elem in the hash table, then the already existing element
269 * will be returned and the new element will not be inserted.
270 * Otherwise returns NULL.
271 */
272static dmu_buf_impl_t *
273dbuf_hash_insert(dmu_buf_impl_t *db)
274{
275 dbuf_hash_table_t *h = &dbuf_hash_table;
428870ff 276 objset_t *os = db->db_objset;
34dc7c2f
BB
277 uint64_t obj = db->db.db_object;
278 int level = db->db_level;
d6320ddb 279 uint64_t blkid, hv, idx;
34dc7c2f
BB
280 dmu_buf_impl_t *dbf;
281
d6320ddb 282 blkid = db->db_blkid;
d3c2ae1c 283 hv = dbuf_hash(os, obj, level, blkid);
d6320ddb
BB
284 idx = hv & h->hash_table_mask;
285
34dc7c2f
BB
286 mutex_enter(DBUF_HASH_MUTEX(h, idx));
287 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
288 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
289 mutex_enter(&dbf->db_mtx);
290 if (dbf->db_state != DB_EVICTING) {
291 mutex_exit(DBUF_HASH_MUTEX(h, idx));
292 return (dbf);
293 }
294 mutex_exit(&dbf->db_mtx);
295 }
296 }
297
298 mutex_enter(&db->db_mtx);
299 db->db_hash_next = h->hash_table[idx];
300 h->hash_table[idx] = db;
301 mutex_exit(DBUF_HASH_MUTEX(h, idx));
bc89ac84 302 atomic_inc_64(&dbuf_hash_count);
34dc7c2f
BB
303
304 return (NULL);
305}
306
307/*
bd089c54 308 * Remove an entry from the hash table. It must be in the EVICTING state.
34dc7c2f
BB
309 */
310static void
311dbuf_hash_remove(dmu_buf_impl_t *db)
312{
313 dbuf_hash_table_t *h = &dbuf_hash_table;
d6320ddb 314 uint64_t hv, idx;
34dc7c2f
BB
315 dmu_buf_impl_t *dbf, **dbp;
316
d3c2ae1c 317 hv = dbuf_hash(db->db_objset, db->db.db_object,
d6320ddb
BB
318 db->db_level, db->db_blkid);
319 idx = hv & h->hash_table_mask;
320
34dc7c2f 321 /*
bd089c54 322 * We musn't hold db_mtx to maintain lock ordering:
34dc7c2f
BB
323 * DBUF_HASH_MUTEX > db_mtx.
324 */
325 ASSERT(refcount_is_zero(&db->db_holds));
326 ASSERT(db->db_state == DB_EVICTING);
327 ASSERT(!MUTEX_HELD(&db->db_mtx));
328
329 mutex_enter(DBUF_HASH_MUTEX(h, idx));
330 dbp = &h->hash_table[idx];
331 while ((dbf = *dbp) != db) {
332 dbp = &dbf->db_hash_next;
333 ASSERT(dbf != NULL);
334 }
335 *dbp = db->db_hash_next;
336 db->db_hash_next = NULL;
337 mutex_exit(DBUF_HASH_MUTEX(h, idx));
bc89ac84 338 atomic_dec_64(&dbuf_hash_count);
34dc7c2f
BB
339}
340
0c66c32d
JG
341typedef enum {
342 DBVU_EVICTING,
343 DBVU_NOT_EVICTING
344} dbvu_verify_type_t;
345
346static void
347dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
348{
349#ifdef ZFS_DEBUG
350 int64_t holds;
351
352 if (db->db_user == NULL)
353 return;
354
355 /* Only data blocks support the attachment of user data. */
356 ASSERT(db->db_level == 0);
357
358 /* Clients must resolve a dbuf before attaching user data. */
359 ASSERT(db->db.db_data != NULL);
360 ASSERT3U(db->db_state, ==, DB_CACHED);
361
362 holds = refcount_count(&db->db_holds);
363 if (verify_type == DBVU_EVICTING) {
364 /*
365 * Immediate eviction occurs when holds == dirtycnt.
366 * For normal eviction buffers, holds is zero on
367 * eviction, except when dbuf_fix_old_data() calls
368 * dbuf_clear_data(). However, the hold count can grow
369 * during eviction even though db_mtx is held (see
370 * dmu_bonus_hold() for an example), so we can only
371 * test the generic invariant that holds >= dirtycnt.
372 */
373 ASSERT3U(holds, >=, db->db_dirtycnt);
374 } else {
bc4501f7 375 if (db->db_user_immediate_evict == TRUE)
0c66c32d
JG
376 ASSERT3U(holds, >=, db->db_dirtycnt);
377 else
378 ASSERT3U(holds, >, 0);
379 }
380#endif
381}
382
34dc7c2f
BB
383static void
384dbuf_evict_user(dmu_buf_impl_t *db)
385{
0c66c32d
JG
386 dmu_buf_user_t *dbu = db->db_user;
387
34dc7c2f
BB
388 ASSERT(MUTEX_HELD(&db->db_mtx));
389
0c66c32d 390 if (dbu == NULL)
34dc7c2f
BB
391 return;
392
0c66c32d
JG
393 dbuf_verify_user(db, DBVU_EVICTING);
394 db->db_user = NULL;
395
396#ifdef ZFS_DEBUG
397 if (dbu->dbu_clear_on_evict_dbufp != NULL)
398 *dbu->dbu_clear_on_evict_dbufp = NULL;
399#endif
400
401 /*
402 * Invoke the callback from a taskq to avoid lock order reversals
403 * and limit stack depth.
404 */
405 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0,
406 &dbu->dbu_tqent);
34dc7c2f
BB
407}
408
572e2857
BB
409boolean_t
410dbuf_is_metadata(dmu_buf_impl_t *db)
411{
cc79a5c2
BB
412 /*
413 * Consider indirect blocks and spill blocks to be meta data.
414 */
415 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
572e2857
BB
416 return (B_TRUE);
417 } else {
418 boolean_t is_metadata;
419
420 DB_DNODE_ENTER(db);
9ae529ec 421 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
572e2857
BB
422 DB_DNODE_EXIT(db);
423
424 return (is_metadata);
425 }
426}
427
d3c2ae1c
GW
428
429/*
430 * This function *must* return indices evenly distributed between all
431 * sublists of the multilist. This is needed due to how the dbuf eviction
432 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
433 * distributed between all sublists and uses this assumption when
434 * deciding which sublist to evict from and how much to evict from it.
435 */
436unsigned int
437dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
34dc7c2f 438{
d3c2ae1c
GW
439 dmu_buf_impl_t *db = obj;
440
441 /*
442 * The assumption here, is the hash value for a given
443 * dmu_buf_impl_t will remain constant throughout it's lifetime
444 * (i.e. it's objset, object, level and blkid fields don't change).
445 * Thus, we don't need to store the dbuf's sublist index
446 * on insertion, as this index can be recalculated on removal.
447 *
448 * Also, the low order bits of the hash value are thought to be
449 * distributed evenly. Otherwise, in the case that the multilist
450 * has a power of two number of sublists, each sublists' usage
451 * would not be evenly distributed.
452 */
453 return (dbuf_hash(db->db_objset, db->db.db_object,
454 db->db_level, db->db_blkid) %
455 multilist_get_num_sublists(ml));
456}
457
458static inline boolean_t
459dbuf_cache_above_hiwater(void)
460{
461 uint64_t dbuf_cache_hiwater_bytes =
462 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
463
464 return (refcount_count(&dbuf_cache_size) >
465 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
466}
467
468static inline boolean_t
469dbuf_cache_above_lowater(void)
470{
471 uint64_t dbuf_cache_lowater_bytes =
472 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
473
474 return (refcount_count(&dbuf_cache_size) >
475 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
476}
477
478/*
479 * Evict the oldest eligible dbuf from the dbuf cache.
480 */
481static void
482dbuf_evict_one(void)
483{
484 int idx = multilist_get_random_index(&dbuf_cache);
485 multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx);
486 dmu_buf_impl_t *db;
487 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
488
489 /*
490 * Set the thread's tsd to indicate that it's processing evictions.
491 * Once a thread stops evicting from the dbuf cache it will
492 * reset its tsd to NULL.
493 */
494 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
495 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
496
497 db = multilist_sublist_tail(mls);
498 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
499 db = multilist_sublist_prev(mls, db);
500 }
501
502 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
503 multilist_sublist_t *, mls);
504
505 if (db != NULL) {
506 multilist_sublist_remove(mls, db);
507 multilist_sublist_unlock(mls);
508 (void) refcount_remove_many(&dbuf_cache_size,
509 db->db.db_size, db);
510 dbuf_destroy(db);
511 } else {
512 multilist_sublist_unlock(mls);
513 }
514 (void) tsd_set(zfs_dbuf_evict_key, NULL);
515}
516
517/*
518 * The dbuf evict thread is responsible for aging out dbufs from the
519 * cache. Once the cache has reached it's maximum size, dbufs are removed
520 * and destroyed. The eviction thread will continue running until the size
521 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
522 * out of the cache it is destroyed and becomes eligible for arc eviction.
523 */
524static void
525dbuf_evict_thread(void)
526{
527 callb_cpr_t cpr;
528
529 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
530
531 mutex_enter(&dbuf_evict_lock);
532 while (!dbuf_evict_thread_exit) {
533 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
534 CALLB_CPR_SAFE_BEGIN(&cpr);
535 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
536 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
537 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
538 }
539 mutex_exit(&dbuf_evict_lock);
540
541 /*
542 * Keep evicting as long as we're above the low water mark
543 * for the cache. We do this without holding the locks to
544 * minimize lock contention.
545 */
546 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
547 dbuf_evict_one();
548 }
549
550 mutex_enter(&dbuf_evict_lock);
551 }
552
553 dbuf_evict_thread_exit = B_FALSE;
554 cv_broadcast(&dbuf_evict_cv);
555 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
556 thread_exit();
557}
558
559/*
560 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
561 * If the dbuf cache is at its high water mark, then evict a dbuf from the
562 * dbuf cache using the callers context.
563 */
564static void
565dbuf_evict_notify(void)
566{
567
568 /*
569 * We use thread specific data to track when a thread has
570 * started processing evictions. This allows us to avoid deeply
571 * nested stacks that would have a call flow similar to this:
572 *
573 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
574 * ^ |
575 * | |
576 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
577 *
578 * The dbuf_eviction_thread will always have its tsd set until
579 * that thread exits. All other threads will only set their tsd
580 * if they are participating in the eviction process. This only
581 * happens if the eviction thread is unable to process evictions
582 * fast enough. To keep the dbuf cache size in check, other threads
583 * can evict from the dbuf cache directly. Those threads will set
584 * their tsd values so that we ensure that they only evict one dbuf
585 * from the dbuf cache.
586 */
587 if (tsd_get(zfs_dbuf_evict_key) != NULL)
588 return;
589
590 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
591 boolean_t evict_now = B_FALSE;
34dc7c2f 592
d3c2ae1c
GW
593 mutex_enter(&dbuf_evict_lock);
594 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
595 evict_now = dbuf_cache_above_hiwater();
596 cv_signal(&dbuf_evict_cv);
597 }
598 mutex_exit(&dbuf_evict_lock);
599
600 if (evict_now) {
601 dbuf_evict_one();
602 }
603 }
34dc7c2f
BB
604}
605
d3c2ae1c
GW
606
607
34dc7c2f
BB
608void
609dbuf_init(void)
610{
611 uint64_t hsize = 1ULL << 16;
612 dbuf_hash_table_t *h = &dbuf_hash_table;
613 int i;
614
615 /*
616 * The hash table is big enough to fill all of physical memory
69de3421
TC
617 * with an average block size of zfs_arc_average_blocksize (default 8K).
618 * By default, the table will take up
619 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 620 */
69de3421 621 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
34dc7c2f
BB
622 hsize <<= 1;
623
624retry:
625 h->hash_table_mask = hsize - 1;
00b46022 626#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
627 /*
628 * Large allocations which do not require contiguous pages
629 * should be using vmem_alloc() in the linux kernel
630 */
79c76d5b 631 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
00b46022 632#else
34dc7c2f 633 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
00b46022 634#endif
34dc7c2f
BB
635 if (h->hash_table == NULL) {
636 /* XXX - we should really return an error instead of assert */
637 ASSERT(hsize > (1ULL << 10));
638 hsize >>= 1;
639 goto retry;
640 }
641
d3c2ae1c 642 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
34dc7c2f
BB
643 sizeof (dmu_buf_impl_t),
644 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
645
646 for (i = 0; i < DBUF_MUTEXES; i++)
40d06e3c 647 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
e0b0ca98
BB
648
649 dbuf_stats_init(h);
0c66c32d 650
d3c2ae1c
GW
651 /*
652 * Setup the parameters for the dbuf cache. We cap the size of the
653 * dbuf cache to 1/32nd (default) of the size of the ARC.
654 */
655 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
656 arc_max_bytes() >> dbuf_cache_max_shift);
657
0c66c32d
JG
658 /*
659 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
660 * configuration is not required.
661 */
1229323d 662 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
d3c2ae1c
GW
663
664 multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t),
665 offsetof(dmu_buf_impl_t, db_cache_link),
666 zfs_arc_num_sublists_per_state,
667 dbuf_cache_multilist_index_func);
668 refcount_create(&dbuf_cache_size);
669
670 tsd_create(&zfs_dbuf_evict_key, NULL);
671 dbuf_evict_thread_exit = B_FALSE;
672 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
673 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
674 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
675 NULL, 0, &p0, TS_RUN, minclsyspri);
34dc7c2f
BB
676}
677
678void
679dbuf_fini(void)
680{
681 dbuf_hash_table_t *h = &dbuf_hash_table;
682 int i;
683
e0b0ca98
BB
684 dbuf_stats_destroy();
685
34dc7c2f
BB
686 for (i = 0; i < DBUF_MUTEXES; i++)
687 mutex_destroy(&h->hash_mutexes[i]);
00b46022 688#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
689 /*
690 * Large allocations which do not require contiguous pages
691 * should be using vmem_free() in the linux kernel
692 */
00b46022
BB
693 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
694#else
34dc7c2f 695 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
00b46022 696#endif
d3c2ae1c 697 kmem_cache_destroy(dbuf_kmem_cache);
0c66c32d 698 taskq_destroy(dbu_evict_taskq);
d3c2ae1c
GW
699
700 mutex_enter(&dbuf_evict_lock);
701 dbuf_evict_thread_exit = B_TRUE;
702 while (dbuf_evict_thread_exit) {
703 cv_signal(&dbuf_evict_cv);
704 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
705 }
706 mutex_exit(&dbuf_evict_lock);
707 tsd_destroy(&zfs_dbuf_evict_key);
708
709 mutex_destroy(&dbuf_evict_lock);
710 cv_destroy(&dbuf_evict_cv);
711
712 refcount_destroy(&dbuf_cache_size);
713 multilist_destroy(&dbuf_cache);
34dc7c2f
BB
714}
715
716/*
717 * Other stuff.
718 */
719
720#ifdef ZFS_DEBUG
721static void
722dbuf_verify(dmu_buf_impl_t *db)
723{
572e2857 724 dnode_t *dn;
428870ff 725 dbuf_dirty_record_t *dr;
34dc7c2f
BB
726
727 ASSERT(MUTEX_HELD(&db->db_mtx));
728
729 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
730 return;
731
732 ASSERT(db->db_objset != NULL);
572e2857
BB
733 DB_DNODE_ENTER(db);
734 dn = DB_DNODE(db);
34dc7c2f
BB
735 if (dn == NULL) {
736 ASSERT(db->db_parent == NULL);
737 ASSERT(db->db_blkptr == NULL);
738 } else {
739 ASSERT3U(db->db.db_object, ==, dn->dn_object);
740 ASSERT3P(db->db_objset, ==, dn->dn_objset);
741 ASSERT3U(db->db_level, <, dn->dn_nlevels);
572e2857
BB
742 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
743 db->db_blkid == DMU_SPILL_BLKID ||
8951cb8d 744 !avl_is_empty(&dn->dn_dbufs));
34dc7c2f 745 }
428870ff
BB
746 if (db->db_blkid == DMU_BONUS_BLKID) {
747 ASSERT(dn != NULL);
748 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
749 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
750 } else if (db->db_blkid == DMU_SPILL_BLKID) {
34dc7c2f 751 ASSERT(dn != NULL);
c99c9001 752 ASSERT0(db->db.db_offset);
34dc7c2f
BB
753 } else {
754 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
755 }
756
428870ff
BB
757 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
758 ASSERT(dr->dr_dbuf == db);
759
760 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
761 ASSERT(dr->dr_dbuf == db);
762
b128c09f
BB
763 /*
764 * We can't assert that db_size matches dn_datablksz because it
765 * can be momentarily different when another thread is doing
766 * dnode_set_blksz().
767 */
768 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
428870ff 769 dr = db->db_data_pending;
b128c09f
BB
770 /*
771 * It should only be modified in syncing context, so
772 * make sure we only have one copy of the data.
773 */
774 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
34dc7c2f
BB
775 }
776
777 /* verify db->db_blkptr */
778 if (db->db_blkptr) {
779 if (db->db_parent == dn->dn_dbuf) {
780 /* db is pointed to by the dnode */
781 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
9babb374 782 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
34dc7c2f
BB
783 ASSERT(db->db_parent == NULL);
784 else
785 ASSERT(db->db_parent != NULL);
428870ff
BB
786 if (db->db_blkid != DMU_SPILL_BLKID)
787 ASSERT3P(db->db_blkptr, ==,
788 &dn->dn_phys->dn_blkptr[db->db_blkid]);
34dc7c2f
BB
789 } else {
790 /* db is pointed to by an indirect block */
1fde1e37
BB
791 ASSERTV(int epb = db->db_parent->db.db_size >>
792 SPA_BLKPTRSHIFT);
34dc7c2f
BB
793 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
794 ASSERT3U(db->db_parent->db.db_object, ==,
795 db->db.db_object);
796 /*
797 * dnode_grow_indblksz() can make this fail if we don't
798 * have the struct_rwlock. XXX indblksz no longer
799 * grows. safe to do this now?
800 */
572e2857 801 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
34dc7c2f
BB
802 ASSERT3P(db->db_blkptr, ==,
803 ((blkptr_t *)db->db_parent->db.db_data +
804 db->db_blkid % epb));
805 }
806 }
807 }
808 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
428870ff
BB
809 (db->db_buf == NULL || db->db_buf->b_data) &&
810 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
34dc7c2f
BB
811 db->db_state != DB_FILL && !dn->dn_free_txg) {
812 /*
813 * If the blkptr isn't set but they have nonzero data,
814 * it had better be dirty, otherwise we'll lose that
815 * data when we evict this buffer.
bc77ba73
PD
816 *
817 * There is an exception to this rule for indirect blocks; in
818 * this case, if the indirect block is a hole, we fill in a few
819 * fields on each of the child blocks (importantly, birth time)
820 * to prevent hole birth times from being lost when you
821 * partially fill in a hole.
34dc7c2f
BB
822 */
823 if (db->db_dirtycnt == 0) {
bc77ba73
PD
824 if (db->db_level == 0) {
825 uint64_t *buf = db->db.db_data;
826 int i;
34dc7c2f 827
bc77ba73
PD
828 for (i = 0; i < db->db.db_size >> 3; i++) {
829 ASSERT(buf[i] == 0);
830 }
831 } else {
832 int i;
833 blkptr_t *bps = db->db.db_data;
834 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
835 db->db.db_size);
836 /*
837 * We want to verify that all the blkptrs in the
838 * indirect block are holes, but we may have
839 * automatically set up a few fields for them.
840 * We iterate through each blkptr and verify
841 * they only have those fields set.
842 */
843 for (i = 0;
844 i < db->db.db_size / sizeof (blkptr_t);
845 i++) {
846 blkptr_t *bp = &bps[i];
847 ASSERT(ZIO_CHECKSUM_IS_ZERO(
848 &bp->blk_cksum));
849 ASSERT(
850 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
851 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
852 DVA_IS_EMPTY(&bp->blk_dva[2]));
853 ASSERT0(bp->blk_fill);
854 ASSERT0(bp->blk_pad[0]);
855 ASSERT0(bp->blk_pad[1]);
856 ASSERT(!BP_IS_EMBEDDED(bp));
857 ASSERT(BP_IS_HOLE(bp));
858 ASSERT0(bp->blk_phys_birth);
859 }
34dc7c2f
BB
860 }
861 }
862 }
572e2857 863 DB_DNODE_EXIT(db);
34dc7c2f
BB
864}
865#endif
866
0c66c32d
JG
867static void
868dbuf_clear_data(dmu_buf_impl_t *db)
869{
870 ASSERT(MUTEX_HELD(&db->db_mtx));
871 dbuf_evict_user(db);
d3c2ae1c 872 ASSERT3P(db->db_buf, ==, NULL);
0c66c32d
JG
873 db->db.db_data = NULL;
874 if (db->db_state != DB_NOFILL)
875 db->db_state = DB_UNCACHED;
876}
877
34dc7c2f
BB
878static void
879dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
880{
881 ASSERT(MUTEX_HELD(&db->db_mtx));
0c66c32d
JG
882 ASSERT(buf != NULL);
883
34dc7c2f 884 db->db_buf = buf;
0c66c32d
JG
885 ASSERT(buf->b_data != NULL);
886 db->db.db_data = buf->b_data;
34dc7c2f
BB
887}
888
428870ff
BB
889/*
890 * Loan out an arc_buf for read. Return the loaned arc_buf.
891 */
892arc_buf_t *
893dbuf_loan_arcbuf(dmu_buf_impl_t *db)
894{
895 arc_buf_t *abuf;
896
d3c2ae1c 897 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
428870ff
BB
898 mutex_enter(&db->db_mtx);
899 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
900 int blksz = db->db.db_size;
b0bc7a84 901 spa_t *spa = db->db_objset->os_spa;
572e2857 902
428870ff 903 mutex_exit(&db->db_mtx);
2aa34383 904 abuf = arc_loan_buf(spa, B_FALSE, blksz);
428870ff
BB
905 bcopy(db->db.db_data, abuf->b_data, blksz);
906 } else {
907 abuf = db->db_buf;
908 arc_loan_inuse_buf(abuf, db);
d3c2ae1c 909 db->db_buf = NULL;
0c66c32d 910 dbuf_clear_data(db);
428870ff
BB
911 mutex_exit(&db->db_mtx);
912 }
913 return (abuf);
914}
915
fcff0f35
PD
916/*
917 * Calculate which level n block references the data at the level 0 offset
918 * provided.
919 */
34dc7c2f 920uint64_t
031d7c2f 921dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
34dc7c2f 922{
fcff0f35
PD
923 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
924 /*
925 * The level n blkid is equal to the level 0 blkid divided by
926 * the number of level 0s in a level n block.
927 *
928 * The level 0 blkid is offset >> datablkshift =
929 * offset / 2^datablkshift.
930 *
931 * The number of level 0s in a level n is the number of block
932 * pointers in an indirect block, raised to the power of level.
933 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
934 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
935 *
936 * Thus, the level n blkid is: offset /
937 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
938 * = offset / 2^(datablkshift + level *
939 * (indblkshift - SPA_BLKPTRSHIFT))
940 * = offset >> (datablkshift + level *
941 * (indblkshift - SPA_BLKPTRSHIFT))
942 */
031d7c2f
GN
943
944 const unsigned exp = dn->dn_datablkshift +
945 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
946
947 if (exp >= 8 * sizeof (offset)) {
948 /* This only happens on the highest indirection level */
949 ASSERT3U(level, ==, dn->dn_nlevels - 1);
950 return (0);
951 }
952
953 ASSERT3U(exp, <, 8 * sizeof (offset));
954
955 return (offset >> exp);
34dc7c2f
BB
956 } else {
957 ASSERT3U(offset, <, dn->dn_datablksz);
958 return (0);
959 }
960}
961
962static void
963dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
964{
965 dmu_buf_impl_t *db = vdb;
966
967 mutex_enter(&db->db_mtx);
968 ASSERT3U(db->db_state, ==, DB_READ);
969 /*
970 * All reads are synchronous, so we must have a hold on the dbuf
971 */
972 ASSERT(refcount_count(&db->db_holds) > 0);
973 ASSERT(db->db_buf == NULL);
974 ASSERT(db->db.db_data == NULL);
975 if (db->db_level == 0 && db->db_freed_in_flight) {
976 /* we were freed in flight; disregard any error */
977 arc_release(buf, db);
978 bzero(buf->b_data, db->db.db_size);
979 arc_buf_freeze(buf);
980 db->db_freed_in_flight = FALSE;
981 dbuf_set_data(db, buf);
982 db->db_state = DB_CACHED;
983 } else if (zio == NULL || zio->io_error == 0) {
984 dbuf_set_data(db, buf);
985 db->db_state = DB_CACHED;
986 } else {
428870ff 987 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f 988 ASSERT3P(db->db_buf, ==, NULL);
d3c2ae1c 989 arc_buf_destroy(buf, db);
34dc7c2f
BB
990 db->db_state = DB_UNCACHED;
991 }
992 cv_broadcast(&db->db_changed);
428870ff 993 dbuf_rele_and_unlock(db, NULL);
34dc7c2f
BB
994}
995
5f6d0b6f 996static int
7f60329a 997dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
34dc7c2f 998{
572e2857 999 dnode_t *dn;
5dbd68a3 1000 zbookmark_phys_t zb;
2a432414 1001 uint32_t aflags = ARC_FLAG_NOWAIT;
5f6d0b6f 1002 int err;
34dc7c2f 1003
572e2857
BB
1004 DB_DNODE_ENTER(db);
1005 dn = DB_DNODE(db);
34dc7c2f
BB
1006 ASSERT(!refcount_is_zero(&db->db_holds));
1007 /* We need the struct_rwlock to prevent db_blkptr from changing. */
b128c09f 1008 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
34dc7c2f
BB
1009 ASSERT(MUTEX_HELD(&db->db_mtx));
1010 ASSERT(db->db_state == DB_UNCACHED);
1011 ASSERT(db->db_buf == NULL);
1012
428870ff 1013 if (db->db_blkid == DMU_BONUS_BLKID) {
50c957f7
NB
1014 /*
1015 * The bonus length stored in the dnode may be less than
1016 * the maximum available space in the bonus buffer.
1017 */
9babb374 1018 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
50c957f7 1019 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
34dc7c2f
BB
1020
1021 ASSERT3U(bonuslen, <=, db->db.db_size);
50c957f7 1022 db->db.db_data = zio_buf_alloc(max_bonuslen);
25458cbe 1023 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
50c957f7
NB
1024 if (bonuslen < max_bonuslen)
1025 bzero(db->db.db_data, max_bonuslen);
9babb374
BB
1026 if (bonuslen)
1027 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
572e2857 1028 DB_DNODE_EXIT(db);
34dc7c2f
BB
1029 db->db_state = DB_CACHED;
1030 mutex_exit(&db->db_mtx);
5f6d0b6f 1031 return (0);
34dc7c2f
BB
1032 }
1033
b128c09f
BB
1034 /*
1035 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1036 * processes the delete record and clears the bp while we are waiting
1037 * for the dn_mtx (resulting in a "no" from block_freed).
1038 */
1039 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1040 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1041 BP_IS_HOLE(db->db_blkptr)))) {
34dc7c2f
BB
1042 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1043
2aa34383
DK
1044 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1045 db->db.db_size));
34dc7c2f 1046 bzero(db->db.db_data, db->db.db_size);
bc77ba73
PD
1047
1048 if (db->db_blkptr != NULL && db->db_level > 0 &&
1049 BP_IS_HOLE(db->db_blkptr) &&
1050 db->db_blkptr->blk_birth != 0) {
1051 blkptr_t *bps = db->db.db_data;
1052 int i;
1053 for (i = 0; i < ((1 <<
1054 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1055 i++) {
1056 blkptr_t *bp = &bps[i];
1057 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1058 1 << dn->dn_indblkshift);
1059 BP_SET_LSIZE(bp,
1060 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1061 dn->dn_datablksz :
1062 BP_GET_LSIZE(db->db_blkptr));
1063 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1064 BP_SET_LEVEL(bp,
1065 BP_GET_LEVEL(db->db_blkptr) - 1);
1066 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1067 }
1068 }
1069 DB_DNODE_EXIT(db);
34dc7c2f 1070 db->db_state = DB_CACHED;
34dc7c2f 1071 mutex_exit(&db->db_mtx);
5f6d0b6f 1072 return (0);
34dc7c2f
BB
1073 }
1074
572e2857
BB
1075 DB_DNODE_EXIT(db);
1076
34dc7c2f
BB
1077 db->db_state = DB_READ;
1078 mutex_exit(&db->db_mtx);
1079
b128c09f 1080 if (DBUF_IS_L2CACHEABLE(db))
2a432414 1081 aflags |= ARC_FLAG_L2CACHE;
b128c09f 1082
428870ff
BB
1083 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1084 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1085 db->db.db_object, db->db_level, db->db_blkid);
34dc7c2f
BB
1086
1087 dbuf_add_ref(db, NULL);
b128c09f 1088
5f6d0b6f 1089 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
34dc7c2f 1090 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
7f60329a 1091 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
34dc7c2f 1092 &aflags, &zb);
5f6d0b6f 1093
da8d5748 1094 return (err);
34dc7c2f
BB
1095}
1096
2aa34383
DK
1097/*
1098 * This is our just-in-time copy function. It makes a copy of buffers that
1099 * have been modified in a previous transaction group before we access them in
1100 * the current active group.
1101 *
1102 * This function is used in three places: when we are dirtying a buffer for the
1103 * first time in a txg, when we are freeing a range in a dnode that includes
1104 * this buffer, and when we are accessing a buffer which was received compressed
1105 * and later referenced in a WRITE_BYREF record.
1106 *
1107 * Note that when we are called from dbuf_free_range() we do not put a hold on
1108 * the buffer, we just traverse the active dbuf list for the dnode.
1109 */
1110static void
1111dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1112{
1113 dbuf_dirty_record_t *dr = db->db_last_dirty;
1114
1115 ASSERT(MUTEX_HELD(&db->db_mtx));
1116 ASSERT(db->db.db_data != NULL);
1117 ASSERT(db->db_level == 0);
1118 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1119
1120 if (dr == NULL ||
1121 (dr->dt.dl.dr_data !=
1122 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1123 return;
1124
1125 /*
1126 * If the last dirty record for this dbuf has not yet synced
1127 * and its referencing the dbuf data, either:
1128 * reset the reference to point to a new copy,
1129 * or (if there a no active holders)
1130 * just null out the current db_data pointer.
1131 */
1132 ASSERT(dr->dr_txg >= txg - 2);
1133 if (db->db_blkid == DMU_BONUS_BLKID) {
1134 /* Note that the data bufs here are zio_bufs */
1135 dnode_t *dn = DB_DNODE(db);
1136 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1137 dr->dt.dl.dr_data = zio_buf_alloc(bonuslen);
1138 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1139 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1140 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1141 int size = arc_buf_size(db->db_buf);
1142 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1143 spa_t *spa = db->db_objset->os_spa;
1144 enum zio_compress compress_type =
1145 arc_get_compression(db->db_buf);
1146
1147 if (compress_type == ZIO_COMPRESS_OFF) {
1148 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1149 } else {
1150 ASSERT3U(type, ==, ARC_BUFC_DATA);
1151 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1152 size, arc_buf_lsize(db->db_buf), compress_type);
1153 }
1154 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1155 } else {
1156 db->db_buf = NULL;
1157 dbuf_clear_data(db);
1158 }
1159}
1160
34dc7c2f
BB
1161int
1162dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1163{
1164 int err = 0;
b0bc7a84
MG
1165 boolean_t havepzio = (zio != NULL);
1166 boolean_t prefetch;
572e2857 1167 dnode_t *dn;
34dc7c2f
BB
1168
1169 /*
1170 * We don't have to hold the mutex to check db_state because it
1171 * can't be freed while we have a hold on the buffer.
1172 */
1173 ASSERT(!refcount_is_zero(&db->db_holds));
1174
b128c09f 1175 if (db->db_state == DB_NOFILL)
2e528b49 1176 return (SET_ERROR(EIO));
b128c09f 1177
572e2857
BB
1178 DB_DNODE_ENTER(db);
1179 dn = DB_DNODE(db);
34dc7c2f 1180 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857 1181 rw_enter(&dn->dn_struct_rwlock, RW_READER);
34dc7c2f 1182
428870ff 1183 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
572e2857 1184 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
b128c09f 1185 DBUF_IS_CACHEABLE(db);
34dc7c2f
BB
1186
1187 mutex_enter(&db->db_mtx);
1188 if (db->db_state == DB_CACHED) {
2aa34383
DK
1189 /*
1190 * If the arc buf is compressed, we need to decompress it to
1191 * read the data. This could happen during the "zfs receive" of
1192 * a stream which is compressed and deduplicated.
1193 */
1194 if (db->db_buf != NULL &&
1195 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1196 dbuf_fix_old_data(db,
1197 spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1198 err = arc_decompress(db->db_buf);
1199 dbuf_set_data(db, db->db_buf);
1200 }
34dc7c2f
BB
1201 mutex_exit(&db->db_mtx);
1202 if (prefetch)
755065f3 1203 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
34dc7c2f 1204 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857
BB
1205 rw_exit(&dn->dn_struct_rwlock);
1206 DB_DNODE_EXIT(db);
34dc7c2f 1207 } else if (db->db_state == DB_UNCACHED) {
572e2857
BB
1208 spa_t *spa = dn->dn_objset->os_spa;
1209
1210 if (zio == NULL)
1211 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
5f6d0b6f 1212
7f60329a 1213 err = dbuf_read_impl(db, zio, flags);
34dc7c2f
BB
1214
1215 /* dbuf_read_impl has dropped db_mtx for us */
1216
5f6d0b6f 1217 if (!err && prefetch)
755065f3 1218 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
34dc7c2f
BB
1219
1220 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857
BB
1221 rw_exit(&dn->dn_struct_rwlock);
1222 DB_DNODE_EXIT(db);
34dc7c2f 1223
5f6d0b6f 1224 if (!err && !havepzio)
34dc7c2f
BB
1225 err = zio_wait(zio);
1226 } else {
e49f1e20
WA
1227 /*
1228 * Another reader came in while the dbuf was in flight
1229 * between UNCACHED and CACHED. Either a writer will finish
1230 * writing the buffer (sending the dbuf to CACHED) or the
1231 * first reader's request will reach the read_done callback
1232 * and send the dbuf to CACHED. Otherwise, a failure
1233 * occurred and the dbuf went to UNCACHED.
1234 */
34dc7c2f
BB
1235 mutex_exit(&db->db_mtx);
1236 if (prefetch)
755065f3 1237 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
34dc7c2f 1238 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857
BB
1239 rw_exit(&dn->dn_struct_rwlock);
1240 DB_DNODE_EXIT(db);
34dc7c2f 1241
e49f1e20 1242 /* Skip the wait per the caller's request. */
34dc7c2f
BB
1243 mutex_enter(&db->db_mtx);
1244 if ((flags & DB_RF_NEVERWAIT) == 0) {
1245 while (db->db_state == DB_READ ||
1246 db->db_state == DB_FILL) {
1247 ASSERT(db->db_state == DB_READ ||
1248 (flags & DB_RF_HAVESTRUCT) == 0);
64dbba36
AL
1249 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1250 db, zio_t *, zio);
34dc7c2f
BB
1251 cv_wait(&db->db_changed, &db->db_mtx);
1252 }
1253 if (db->db_state == DB_UNCACHED)
2e528b49 1254 err = SET_ERROR(EIO);
34dc7c2f
BB
1255 }
1256 mutex_exit(&db->db_mtx);
1257 }
1258
1259 ASSERT(err || havepzio || db->db_state == DB_CACHED);
1260 return (err);
1261}
1262
1263static void
1264dbuf_noread(dmu_buf_impl_t *db)
1265{
1266 ASSERT(!refcount_is_zero(&db->db_holds));
428870ff 1267 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
1268 mutex_enter(&db->db_mtx);
1269 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1270 cv_wait(&db->db_changed, &db->db_mtx);
1271 if (db->db_state == DB_UNCACHED) {
1272 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
b0bc7a84 1273 spa_t *spa = db->db_objset->os_spa;
34dc7c2f
BB
1274
1275 ASSERT(db->db_buf == NULL);
1276 ASSERT(db->db.db_data == NULL);
2aa34383 1277 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
34dc7c2f 1278 db->db_state = DB_FILL;
b128c09f 1279 } else if (db->db_state == DB_NOFILL) {
0c66c32d 1280 dbuf_clear_data(db);
34dc7c2f
BB
1281 } else {
1282 ASSERT3U(db->db_state, ==, DB_CACHED);
1283 }
1284 mutex_exit(&db->db_mtx);
1285}
1286
34dc7c2f
BB
1287void
1288dbuf_unoverride(dbuf_dirty_record_t *dr)
1289{
1290 dmu_buf_impl_t *db = dr->dr_dbuf;
428870ff 1291 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
34dc7c2f
BB
1292 uint64_t txg = dr->dr_txg;
1293
1294 ASSERT(MUTEX_HELD(&db->db_mtx));
1295 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1296 ASSERT(db->db_level == 0);
1297
428870ff 1298 if (db->db_blkid == DMU_BONUS_BLKID ||
34dc7c2f
BB
1299 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1300 return;
1301
428870ff
BB
1302 ASSERT(db->db_data_pending != dr);
1303
34dc7c2f 1304 /* free this block */
b0bc7a84
MG
1305 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1306 zio_free(db->db_objset->os_spa, txg, bp);
428870ff 1307
34dc7c2f 1308 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
03c6040b
GW
1309 dr->dt.dl.dr_nopwrite = B_FALSE;
1310
34dc7c2f
BB
1311 /*
1312 * Release the already-written buffer, so we leave it in
1313 * a consistent dirty state. Note that all callers are
1314 * modifying the buffer, so they will immediately do
1315 * another (redundant) arc_release(). Therefore, leave
1316 * the buf thawed to save the effort of freezing &
1317 * immediately re-thawing it.
1318 */
1319 arc_release(dr->dt.dl.dr_data, db);
1320}
1321
b128c09f
BB
1322/*
1323 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1324 * data blocks in the free range, so that any future readers will find
b0bc7a84 1325 * empty blocks.
ea97f8ce
MA
1326 *
1327 * This is a no-op if the dataset is in the middle of an incremental
1328 * receive; see comment below for details.
b128c09f 1329 */
34dc7c2f 1330void
8951cb8d
AR
1331dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1332 dmu_tx_t *tx)
34dc7c2f 1333{
0c66c32d
JG
1334 dmu_buf_impl_t *db_search;
1335 dmu_buf_impl_t *db, *db_next;
34dc7c2f 1336 uint64_t txg = tx->tx_txg;
8951cb8d 1337 avl_index_t where;
4254acb0 1338 boolean_t freespill =
8951cb8d
AR
1339 (start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID);
1340
1341 if (end_blkid > dn->dn_maxblkid && !freespill)
1342 end_blkid = dn->dn_maxblkid;
1343 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
34dc7c2f 1344
0c66c32d 1345 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
8951cb8d
AR
1346 db_search->db_level = 0;
1347 db_search->db_blkid = start_blkid;
9925c28c 1348 db_search->db_state = DB_SEARCH;
ea97f8ce 1349
b663a23d 1350 mutex_enter(&dn->dn_dbufs_mtx);
8951cb8d 1351 if (start_blkid >= dn->dn_unlisted_l0_blkid && !freespill) {
b663a23d 1352 /* There can't be any dbufs in this range; no need to search. */
8951cb8d
AR
1353#ifdef DEBUG
1354 db = avl_find(&dn->dn_dbufs, db_search, &where);
1355 ASSERT3P(db, ==, NULL);
1356 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1357 ASSERT(db == NULL || db->db_level > 0);
1358#endif
1359 goto out;
b663a23d 1360 } else if (dmu_objset_is_receiving(dn->dn_objset)) {
ea97f8ce 1361 /*
b663a23d
MA
1362 * If we are receiving, we expect there to be no dbufs in
1363 * the range to be freed, because receive modifies each
1364 * block at most once, and in offset order. If this is
1365 * not the case, it can lead to performance problems,
1366 * so note that we unexpectedly took the slow path.
ea97f8ce 1367 */
b663a23d 1368 atomic_inc_64(&zfs_free_range_recv_miss);
ea97f8ce
MA
1369 }
1370
8951cb8d
AR
1371 db = avl_find(&dn->dn_dbufs, db_search, &where);
1372 ASSERT3P(db, ==, NULL);
1373 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1374
1375 for (; db != NULL; db = db_next) {
1376 db_next = AVL_NEXT(&dn->dn_dbufs, db);
428870ff 1377 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
b128c09f 1378
8951cb8d
AR
1379 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1380 break;
1381 }
1382 ASSERT3U(db->db_blkid, >=, start_blkid);
34dc7c2f
BB
1383
1384 /* found a level 0 buffer in the range */
13fe0198
MA
1385 mutex_enter(&db->db_mtx);
1386 if (dbuf_undirty(db, tx)) {
1387 /* mutex has been dropped and dbuf destroyed */
34dc7c2f 1388 continue;
13fe0198 1389 }
34dc7c2f 1390
34dc7c2f 1391 if (db->db_state == DB_UNCACHED ||
b128c09f 1392 db->db_state == DB_NOFILL ||
34dc7c2f
BB
1393 db->db_state == DB_EVICTING) {
1394 ASSERT(db->db.db_data == NULL);
1395 mutex_exit(&db->db_mtx);
1396 continue;
1397 }
1398 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1399 /* will be handled in dbuf_read_done or dbuf_rele */
1400 db->db_freed_in_flight = TRUE;
1401 mutex_exit(&db->db_mtx);
1402 continue;
1403 }
1404 if (refcount_count(&db->db_holds) == 0) {
1405 ASSERT(db->db_buf);
d3c2ae1c 1406 dbuf_destroy(db);
34dc7c2f
BB
1407 continue;
1408 }
1409 /* The dbuf is referenced */
1410
1411 if (db->db_last_dirty != NULL) {
1412 dbuf_dirty_record_t *dr = db->db_last_dirty;
1413
1414 if (dr->dr_txg == txg) {
1415 /*
1416 * This buffer is "in-use", re-adjust the file
1417 * size to reflect that this buffer may
1418 * contain new data when we sync.
1419 */
428870ff
BB
1420 if (db->db_blkid != DMU_SPILL_BLKID &&
1421 db->db_blkid > dn->dn_maxblkid)
34dc7c2f
BB
1422 dn->dn_maxblkid = db->db_blkid;
1423 dbuf_unoverride(dr);
1424 } else {
1425 /*
1426 * This dbuf is not dirty in the open context.
1427 * Either uncache it (if its not referenced in
1428 * the open context) or reset its contents to
1429 * empty.
1430 */
1431 dbuf_fix_old_data(db, txg);
1432 }
1433 }
1434 /* clear the contents if its cached */
1435 if (db->db_state == DB_CACHED) {
1436 ASSERT(db->db.db_data != NULL);
1437 arc_release(db->db_buf, db);
1438 bzero(db->db.db_data, db->db.db_size);
1439 arc_buf_freeze(db->db_buf);
1440 }
1441
1442 mutex_exit(&db->db_mtx);
1443 }
8951cb8d
AR
1444
1445out:
1446 kmem_free(db_search, sizeof (dmu_buf_impl_t));
34dc7c2f
BB
1447 mutex_exit(&dn->dn_dbufs_mtx);
1448}
1449
1450static int
1451dbuf_block_freeable(dmu_buf_impl_t *db)
1452{
1453 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1454 uint64_t birth_txg = 0;
1455
1456 /*
1457 * We don't need any locking to protect db_blkptr:
1458 * If it's syncing, then db_last_dirty will be set
1459 * so we'll ignore db_blkptr.
b0bc7a84
MG
1460 *
1461 * This logic ensures that only block births for
1462 * filled blocks are considered.
34dc7c2f
BB
1463 */
1464 ASSERT(MUTEX_HELD(&db->db_mtx));
b0bc7a84
MG
1465 if (db->db_last_dirty && (db->db_blkptr == NULL ||
1466 !BP_IS_HOLE(db->db_blkptr))) {
34dc7c2f 1467 birth_txg = db->db_last_dirty->dr_txg;
b0bc7a84 1468 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
34dc7c2f 1469 birth_txg = db->db_blkptr->blk_birth;
b0bc7a84 1470 }
34dc7c2f 1471
572e2857 1472 /*
b0bc7a84 1473 * If this block don't exist or is in a snapshot, it can't be freed.
572e2857
BB
1474 * Don't pass the bp to dsl_dataset_block_freeable() since we
1475 * are holding the db_mtx lock and might deadlock if we are
1476 * prefetching a dedup-ed block.
1477 */
b0bc7a84 1478 if (birth_txg != 0)
34dc7c2f 1479 return (ds == NULL ||
572e2857 1480 dsl_dataset_block_freeable(ds, NULL, birth_txg));
34dc7c2f 1481 else
b0bc7a84 1482 return (B_FALSE);
34dc7c2f
BB
1483}
1484
1485void
1486dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1487{
1488 arc_buf_t *buf, *obuf;
1489 int osize = db->db.db_size;
1490 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
572e2857 1491 dnode_t *dn;
34dc7c2f 1492
428870ff 1493 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f 1494
572e2857
BB
1495 DB_DNODE_ENTER(db);
1496 dn = DB_DNODE(db);
1497
34dc7c2f 1498 /* XXX does *this* func really need the lock? */
572e2857 1499 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
34dc7c2f
BB
1500
1501 /*
b0bc7a84 1502 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
34dc7c2f
BB
1503 * is OK, because there can be no other references to the db
1504 * when we are changing its size, so no concurrent DB_FILL can
1505 * be happening.
1506 */
1507 /*
1508 * XXX we should be doing a dbuf_read, checking the return
1509 * value and returning that up to our callers
1510 */
b0bc7a84 1511 dmu_buf_will_dirty(&db->db, tx);
34dc7c2f
BB
1512
1513 /* create the data buffer for the new block */
2aa34383 1514 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
34dc7c2f
BB
1515
1516 /* copy old block data to the new block */
1517 obuf = db->db_buf;
1518 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1519 /* zero the remainder */
1520 if (size > osize)
1521 bzero((uint8_t *)buf->b_data + osize, size - osize);
1522
1523 mutex_enter(&db->db_mtx);
1524 dbuf_set_data(db, buf);
d3c2ae1c 1525 arc_buf_destroy(obuf, db);
34dc7c2f
BB
1526 db->db.db_size = size;
1527
1528 if (db->db_level == 0) {
1529 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1530 db->db_last_dirty->dt.dl.dr_data = buf;
1531 }
1532 mutex_exit(&db->db_mtx);
1533
572e2857
BB
1534 dnode_willuse_space(dn, size-osize, tx);
1535 DB_DNODE_EXIT(db);
34dc7c2f
BB
1536}
1537
428870ff
BB
1538void
1539dbuf_release_bp(dmu_buf_impl_t *db)
1540{
b0bc7a84 1541 ASSERTV(objset_t *os = db->db_objset);
428870ff
BB
1542
1543 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1544 ASSERT(arc_released(os->os_phys_buf) ||
1545 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1546 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1547
294f6806 1548 (void) arc_release(db->db_buf, db);
428870ff
BB
1549}
1550
5a28a973
MA
1551/*
1552 * We already have a dirty record for this TXG, and we are being
1553 * dirtied again.
1554 */
1555static void
1556dbuf_redirty(dbuf_dirty_record_t *dr)
1557{
1558 dmu_buf_impl_t *db = dr->dr_dbuf;
1559
1560 ASSERT(MUTEX_HELD(&db->db_mtx));
1561
1562 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1563 /*
1564 * If this buffer has already been written out,
1565 * we now need to reset its state.
1566 */
1567 dbuf_unoverride(dr);
1568 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1569 db->db_state != DB_NOFILL) {
1570 /* Already released on initial dirty, so just thaw. */
1571 ASSERT(arc_released(db->db_buf));
1572 arc_buf_thaw(db->db_buf);
1573 }
1574 }
1575}
1576
34dc7c2f
BB
1577dbuf_dirty_record_t *
1578dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1579{
572e2857
BB
1580 dnode_t *dn;
1581 objset_t *os;
34dc7c2f
BB
1582 dbuf_dirty_record_t **drp, *dr;
1583 int drop_struct_lock = FALSE;
b128c09f 1584 boolean_t do_free_accounting = B_FALSE;
34dc7c2f
BB
1585 int txgoff = tx->tx_txg & TXG_MASK;
1586
1587 ASSERT(tx->tx_txg != 0);
1588 ASSERT(!refcount_is_zero(&db->db_holds));
1589 DMU_TX_DIRTY_BUF(tx, db);
1590
572e2857
BB
1591 DB_DNODE_ENTER(db);
1592 dn = DB_DNODE(db);
34dc7c2f
BB
1593 /*
1594 * Shouldn't dirty a regular buffer in syncing context. Private
1595 * objects may be dirtied in syncing context, but only if they
1596 * were already pre-dirtied in open context.
34dc7c2f
BB
1597 */
1598 ASSERT(!dmu_tx_is_syncing(tx) ||
1599 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
9babb374
BB
1600 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1601 dn->dn_objset->os_dsl_dataset == NULL);
34dc7c2f
BB
1602 /*
1603 * We make this assert for private objects as well, but after we
1604 * check if we're already dirty. They are allowed to re-dirty
1605 * in syncing context.
1606 */
1607 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1608 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1609 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1610
1611 mutex_enter(&db->db_mtx);
1612 /*
1613 * XXX make this true for indirects too? The problem is that
1614 * transactions created with dmu_tx_create_assigned() from
1615 * syncing context don't bother holding ahead.
1616 */
1617 ASSERT(db->db_level != 0 ||
b128c09f
BB
1618 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1619 db->db_state == DB_NOFILL);
34dc7c2f
BB
1620
1621 mutex_enter(&dn->dn_mtx);
1622 /*
1623 * Don't set dirtyctx to SYNC if we're just modifying this as we
1624 * initialize the objset.
1625 */
1626 if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1627 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1628 dn->dn_dirtyctx =
1629 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1630 ASSERT(dn->dn_dirtyctx_firstset == NULL);
79c76d5b 1631 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
34dc7c2f
BB
1632 }
1633 mutex_exit(&dn->dn_mtx);
1634
428870ff
BB
1635 if (db->db_blkid == DMU_SPILL_BLKID)
1636 dn->dn_have_spill = B_TRUE;
1637
34dc7c2f
BB
1638 /*
1639 * If this buffer is already dirty, we're done.
1640 */
1641 drp = &db->db_last_dirty;
1642 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1643 db->db.db_object == DMU_META_DNODE_OBJECT);
1644 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1645 drp = &dr->dr_next;
1646 if (dr && dr->dr_txg == tx->tx_txg) {
572e2857
BB
1647 DB_DNODE_EXIT(db);
1648
5a28a973 1649 dbuf_redirty(dr);
34dc7c2f
BB
1650 mutex_exit(&db->db_mtx);
1651 return (dr);
1652 }
1653
1654 /*
1655 * Only valid if not already dirty.
1656 */
9babb374
BB
1657 ASSERT(dn->dn_object == 0 ||
1658 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
34dc7c2f
BB
1659 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1660
1661 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1662 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1663 dn->dn_phys->dn_nlevels > db->db_level ||
1664 dn->dn_next_nlevels[txgoff] > db->db_level ||
1665 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1666 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1667
1668 /*
1669 * We should only be dirtying in syncing context if it's the
9babb374
BB
1670 * mos or we're initializing the os or it's a special object.
1671 * However, we are allowed to dirty in syncing context provided
1672 * we already dirtied it in open context. Hence we must make
1673 * this assertion only if we're not already dirty.
34dc7c2f 1674 */
572e2857 1675 os = dn->dn_objset;
9babb374
BB
1676 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1677 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
34dc7c2f
BB
1678 ASSERT(db->db.db_size != 0);
1679
1680 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1681
428870ff 1682 if (db->db_blkid != DMU_BONUS_BLKID) {
34dc7c2f
BB
1683 /*
1684 * Update the accounting.
b128c09f
BB
1685 * Note: we delay "free accounting" until after we drop
1686 * the db_mtx. This keeps us from grabbing other locks
428870ff 1687 * (and possibly deadlocking) in bp_get_dsize() while
b128c09f 1688 * also holding the db_mtx.
34dc7c2f 1689 */
34dc7c2f 1690 dnode_willuse_space(dn, db->db.db_size, tx);
b128c09f 1691 do_free_accounting = dbuf_block_freeable(db);
34dc7c2f
BB
1692 }
1693
1694 /*
1695 * If this buffer is dirty in an old transaction group we need
1696 * to make a copy of it so that the changes we make in this
1697 * transaction group won't leak out when we sync the older txg.
1698 */
79c76d5b 1699 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
98f72a53 1700 list_link_init(&dr->dr_dirty_node);
34dc7c2f
BB
1701 if (db->db_level == 0) {
1702 void *data_old = db->db_buf;
1703
b128c09f 1704 if (db->db_state != DB_NOFILL) {
428870ff 1705 if (db->db_blkid == DMU_BONUS_BLKID) {
b128c09f
BB
1706 dbuf_fix_old_data(db, tx->tx_txg);
1707 data_old = db->db.db_data;
1708 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1709 /*
1710 * Release the data buffer from the cache so
1711 * that we can modify it without impacting
1712 * possible other users of this cached data
1713 * block. Note that indirect blocks and
1714 * private objects are not released until the
1715 * syncing state (since they are only modified
1716 * then).
1717 */
1718 arc_release(db->db_buf, db);
1719 dbuf_fix_old_data(db, tx->tx_txg);
1720 data_old = db->db_buf;
1721 }
1722 ASSERT(data_old != NULL);
34dc7c2f 1723 }
34dc7c2f
BB
1724 dr->dt.dl.dr_data = data_old;
1725 } else {
448d7aaa 1726 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
34dc7c2f
BB
1727 list_create(&dr->dt.di.dr_children,
1728 sizeof (dbuf_dirty_record_t),
1729 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1730 }
e8b96c60
MA
1731 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1732 dr->dr_accounted = db->db.db_size;
34dc7c2f
BB
1733 dr->dr_dbuf = db;
1734 dr->dr_txg = tx->tx_txg;
1735 dr->dr_next = *drp;
1736 *drp = dr;
1737
1738 /*
1739 * We could have been freed_in_flight between the dbuf_noread
1740 * and dbuf_dirty. We win, as though the dbuf_noread() had
1741 * happened after the free.
1742 */
428870ff
BB
1743 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1744 db->db_blkid != DMU_SPILL_BLKID) {
34dc7c2f 1745 mutex_enter(&dn->dn_mtx);
9bd274dd
MA
1746 if (dn->dn_free_ranges[txgoff] != NULL) {
1747 range_tree_clear(dn->dn_free_ranges[txgoff],
1748 db->db_blkid, 1);
1749 }
34dc7c2f
BB
1750 mutex_exit(&dn->dn_mtx);
1751 db->db_freed_in_flight = FALSE;
1752 }
1753
1754 /*
1755 * This buffer is now part of this txg
1756 */
1757 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1758 db->db_dirtycnt += 1;
1759 ASSERT3U(db->db_dirtycnt, <=, 3);
1760
1761 mutex_exit(&db->db_mtx);
1762
428870ff
BB
1763 if (db->db_blkid == DMU_BONUS_BLKID ||
1764 db->db_blkid == DMU_SPILL_BLKID) {
34dc7c2f
BB
1765 mutex_enter(&dn->dn_mtx);
1766 ASSERT(!list_link_active(&dr->dr_dirty_node));
1767 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1768 mutex_exit(&dn->dn_mtx);
1769 dnode_setdirty(dn, tx);
572e2857 1770 DB_DNODE_EXIT(db);
34dc7c2f 1771 return (dr);
98ace739
MA
1772 }
1773
1774 /*
1775 * The dn_struct_rwlock prevents db_blkptr from changing
1776 * due to a write from syncing context completing
1777 * while we are running, so we want to acquire it before
1778 * looking at db_blkptr.
1779 */
1780 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1781 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1782 drop_struct_lock = TRUE;
1783 }
1784
1785 if (do_free_accounting) {
b128c09f
BB
1786 blkptr_t *bp = db->db_blkptr;
1787 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
428870ff 1788 bp_get_dsize(os->os_spa, bp) : db->db.db_size;
b128c09f
BB
1789 /*
1790 * This is only a guess -- if the dbuf is dirty
1791 * in a previous txg, we don't know how much
1792 * space it will use on disk yet. We should
1793 * really have the struct_rwlock to access
1794 * db_blkptr, but since this is just a guess,
1795 * it's OK if we get an odd answer.
1796 */
572e2857 1797 ddt_prefetch(os->os_spa, bp);
b128c09f 1798 dnode_willuse_space(dn, -willfree, tx);
34dc7c2f
BB
1799 }
1800
b128c09f
BB
1801 if (db->db_level == 0) {
1802 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1803 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1804 }
1805
34dc7c2f
BB
1806 if (db->db_level+1 < dn->dn_nlevels) {
1807 dmu_buf_impl_t *parent = db->db_parent;
1808 dbuf_dirty_record_t *di;
1809 int parent_held = FALSE;
1810
1811 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1812 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1813
1814 parent = dbuf_hold_level(dn, db->db_level+1,
1815 db->db_blkid >> epbs, FTAG);
428870ff 1816 ASSERT(parent != NULL);
34dc7c2f
BB
1817 parent_held = TRUE;
1818 }
1819 if (drop_struct_lock)
1820 rw_exit(&dn->dn_struct_rwlock);
1821 ASSERT3U(db->db_level+1, ==, parent->db_level);
1822 di = dbuf_dirty(parent, tx);
1823 if (parent_held)
1824 dbuf_rele(parent, FTAG);
1825
1826 mutex_enter(&db->db_mtx);
e8b96c60
MA
1827 /*
1828 * Since we've dropped the mutex, it's possible that
1829 * dbuf_undirty() might have changed this out from under us.
1830 */
34dc7c2f
BB
1831 if (db->db_last_dirty == dr ||
1832 dn->dn_object == DMU_META_DNODE_OBJECT) {
1833 mutex_enter(&di->dt.di.dr_mtx);
1834 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1835 ASSERT(!list_link_active(&dr->dr_dirty_node));
1836 list_insert_tail(&di->dt.di.dr_children, dr);
1837 mutex_exit(&di->dt.di.dr_mtx);
1838 dr->dr_parent = di;
1839 }
1840 mutex_exit(&db->db_mtx);
1841 } else {
1842 ASSERT(db->db_level+1 == dn->dn_nlevels);
1843 ASSERT(db->db_blkid < dn->dn_nblkptr);
572e2857 1844 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
34dc7c2f
BB
1845 mutex_enter(&dn->dn_mtx);
1846 ASSERT(!list_link_active(&dr->dr_dirty_node));
1847 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1848 mutex_exit(&dn->dn_mtx);
1849 if (drop_struct_lock)
1850 rw_exit(&dn->dn_struct_rwlock);
1851 }
1852
1853 dnode_setdirty(dn, tx);
572e2857 1854 DB_DNODE_EXIT(db);
34dc7c2f
BB
1855 return (dr);
1856}
1857
13fe0198 1858/*
e49f1e20
WA
1859 * Undirty a buffer in the transaction group referenced by the given
1860 * transaction. Return whether this evicted the dbuf.
13fe0198
MA
1861 */
1862static boolean_t
34dc7c2f
BB
1863dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1864{
572e2857 1865 dnode_t *dn;
34dc7c2f
BB
1866 uint64_t txg = tx->tx_txg;
1867 dbuf_dirty_record_t *dr, **drp;
1868
1869 ASSERT(txg != 0);
4bda3bd0
MA
1870
1871 /*
1872 * Due to our use of dn_nlevels below, this can only be called
1873 * in open context, unless we are operating on the MOS.
1874 * From syncing context, dn_nlevels may be different from the
1875 * dn_nlevels used when dbuf was dirtied.
1876 */
1877 ASSERT(db->db_objset ==
1878 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1879 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
428870ff 1880 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
13fe0198
MA
1881 ASSERT0(db->db_level);
1882 ASSERT(MUTEX_HELD(&db->db_mtx));
34dc7c2f 1883
34dc7c2f
BB
1884 /*
1885 * If this buffer is not dirty, we're done.
1886 */
1887 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1888 if (dr->dr_txg <= txg)
1889 break;
13fe0198
MA
1890 if (dr == NULL || dr->dr_txg < txg)
1891 return (B_FALSE);
34dc7c2f 1892 ASSERT(dr->dr_txg == txg);
428870ff 1893 ASSERT(dr->dr_dbuf == db);
34dc7c2f 1894
572e2857
BB
1895 DB_DNODE_ENTER(db);
1896 dn = DB_DNODE(db);
1897
34dc7c2f
BB
1898 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1899
1900 ASSERT(db->db.db_size != 0);
1901
4bda3bd0
MA
1902 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1903 dr->dr_accounted, txg);
34dc7c2f
BB
1904
1905 *drp = dr->dr_next;
1906
ef3c1dea
GR
1907 /*
1908 * Note that there are three places in dbuf_dirty()
1909 * where this dirty record may be put on a list.
1910 * Make sure to do a list_remove corresponding to
1911 * every one of those list_insert calls.
1912 */
34dc7c2f
BB
1913 if (dr->dr_parent) {
1914 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1915 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1916 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
ef3c1dea 1917 } else if (db->db_blkid == DMU_SPILL_BLKID ||
4bda3bd0 1918 db->db_level + 1 == dn->dn_nlevels) {
b128c09f 1919 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
34dc7c2f
BB
1920 mutex_enter(&dn->dn_mtx);
1921 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1922 mutex_exit(&dn->dn_mtx);
1923 }
572e2857 1924 DB_DNODE_EXIT(db);
34dc7c2f 1925
13fe0198
MA
1926 if (db->db_state != DB_NOFILL) {
1927 dbuf_unoverride(dr);
34dc7c2f 1928
34dc7c2f 1929 ASSERT(db->db_buf != NULL);
13fe0198
MA
1930 ASSERT(dr->dt.dl.dr_data != NULL);
1931 if (dr->dt.dl.dr_data != db->db_buf)
d3c2ae1c 1932 arc_buf_destroy(dr->dt.dl.dr_data, db);
34dc7c2f 1933 }
58c4aa00 1934
34dc7c2f
BB
1935 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1936
1937 ASSERT(db->db_dirtycnt > 0);
1938 db->db_dirtycnt -= 1;
1939
1940 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
d3c2ae1c
GW
1941 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1942 dbuf_destroy(db);
13fe0198 1943 return (B_TRUE);
34dc7c2f
BB
1944 }
1945
13fe0198 1946 return (B_FALSE);
34dc7c2f
BB
1947}
1948
34dc7c2f 1949void
b0bc7a84 1950dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
34dc7c2f 1951{
b0bc7a84 1952 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f 1953 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
5a28a973 1954 dbuf_dirty_record_t *dr;
34dc7c2f
BB
1955
1956 ASSERT(tx->tx_txg != 0);
1957 ASSERT(!refcount_is_zero(&db->db_holds));
1958
5a28a973
MA
1959 /*
1960 * Quick check for dirtyness. For already dirty blocks, this
1961 * reduces runtime of this function by >90%, and overall performance
1962 * by 50% for some workloads (e.g. file deletion with indirect blocks
1963 * cached).
1964 */
1965 mutex_enter(&db->db_mtx);
1966
1967 for (dr = db->db_last_dirty;
1968 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1969 /*
1970 * It's possible that it is already dirty but not cached,
1971 * because there are some calls to dbuf_dirty() that don't
1972 * go through dmu_buf_will_dirty().
1973 */
1974 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1975 /* This dbuf is already dirty and cached. */
1976 dbuf_redirty(dr);
1977 mutex_exit(&db->db_mtx);
1978 return;
1979 }
1980 }
1981 mutex_exit(&db->db_mtx);
1982
572e2857
BB
1983 DB_DNODE_ENTER(db);
1984 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
34dc7c2f 1985 rf |= DB_RF_HAVESTRUCT;
572e2857 1986 DB_DNODE_EXIT(db);
34dc7c2f
BB
1987 (void) dbuf_read(db, NULL, rf);
1988 (void) dbuf_dirty(db, tx);
1989}
1990
b128c09f
BB
1991void
1992dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1993{
1994 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1995
1996 db->db_state = DB_NOFILL;
1997
1998 dmu_buf_will_fill(db_fake, tx);
1999}
2000
34dc7c2f
BB
2001void
2002dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2003{
2004 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2005
428870ff 2006 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
2007 ASSERT(tx->tx_txg != 0);
2008 ASSERT(db->db_level == 0);
2009 ASSERT(!refcount_is_zero(&db->db_holds));
2010
2011 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2012 dmu_tx_private_ok(tx));
2013
2014 dbuf_noread(db);
2015 (void) dbuf_dirty(db, tx);
2016}
2017
2018#pragma weak dmu_buf_fill_done = dbuf_fill_done
2019/* ARGSUSED */
2020void
2021dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2022{
2023 mutex_enter(&db->db_mtx);
2024 DBUF_VERIFY(db);
2025
2026 if (db->db_state == DB_FILL) {
2027 if (db->db_level == 0 && db->db_freed_in_flight) {
428870ff 2028 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
2029 /* we were freed while filling */
2030 /* XXX dbuf_undirty? */
2031 bzero(db->db.db_data, db->db.db_size);
2032 db->db_freed_in_flight = FALSE;
2033 }
2034 db->db_state = DB_CACHED;
2035 cv_broadcast(&db->db_changed);
2036 }
2037 mutex_exit(&db->db_mtx);
2038}
2039
9b67f605
MA
2040void
2041dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2042 bp_embedded_type_t etype, enum zio_compress comp,
2043 int uncompressed_size, int compressed_size, int byteorder,
2044 dmu_tx_t *tx)
2045{
2046 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2047 struct dirty_leaf *dl;
2048 dmu_object_type_t type;
2049
241b5415
MA
2050 if (etype == BP_EMBEDDED_TYPE_DATA) {
2051 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2052 SPA_FEATURE_EMBEDDED_DATA));
2053 }
2054
9b67f605
MA
2055 DB_DNODE_ENTER(db);
2056 type = DB_DNODE(db)->dn_type;
2057 DB_DNODE_EXIT(db);
2058
2059 ASSERT0(db->db_level);
2060 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2061
2062 dmu_buf_will_not_fill(dbuf, tx);
2063
2064 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2065 dl = &db->db_last_dirty->dt.dl;
2066 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2067 data, comp, uncompressed_size, compressed_size);
2068 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2069 BP_SET_TYPE(&dl->dr_overridden_by, type);
2070 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2071 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2072
2073 dl->dr_override_state = DR_OVERRIDDEN;
2074 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2075}
2076
9babb374
BB
2077/*
2078 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2079 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2080 */
2081void
2082dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2083{
2084 ASSERT(!refcount_is_zero(&db->db_holds));
428870ff 2085 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
9babb374 2086 ASSERT(db->db_level == 0);
2aa34383 2087 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
9babb374 2088 ASSERT(buf != NULL);
2aa34383 2089 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
9babb374
BB
2090 ASSERT(tx->tx_txg != 0);
2091
2092 arc_return_buf(buf, db);
2093 ASSERT(arc_released(buf));
2094
2095 mutex_enter(&db->db_mtx);
2096
2097 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2098 cv_wait(&db->db_changed, &db->db_mtx);
2099
2100 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2101
2102 if (db->db_state == DB_CACHED &&
2103 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2104 mutex_exit(&db->db_mtx);
2105 (void) dbuf_dirty(db, tx);
2106 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
d3c2ae1c 2107 arc_buf_destroy(buf, db);
428870ff 2108 xuio_stat_wbuf_copied();
9babb374
BB
2109 return;
2110 }
2111
428870ff 2112 xuio_stat_wbuf_nocopy();
9babb374
BB
2113 if (db->db_state == DB_CACHED) {
2114 dbuf_dirty_record_t *dr = db->db_last_dirty;
2115
2116 ASSERT(db->db_buf != NULL);
2117 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2118 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2119 if (!arc_released(db->db_buf)) {
2120 ASSERT(dr->dt.dl.dr_override_state ==
2121 DR_OVERRIDDEN);
2122 arc_release(db->db_buf, db);
2123 }
2124 dr->dt.dl.dr_data = buf;
d3c2ae1c 2125 arc_buf_destroy(db->db_buf, db);
9babb374
BB
2126 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2127 arc_release(db->db_buf, db);
d3c2ae1c 2128 arc_buf_destroy(db->db_buf, db);
9babb374
BB
2129 }
2130 db->db_buf = NULL;
2131 }
2132 ASSERT(db->db_buf == NULL);
2133 dbuf_set_data(db, buf);
2134 db->db_state = DB_FILL;
2135 mutex_exit(&db->db_mtx);
2136 (void) dbuf_dirty(db, tx);
b0bc7a84 2137 dmu_buf_fill_done(&db->db, tx);
9babb374
BB
2138}
2139
34dc7c2f 2140void
d3c2ae1c 2141dbuf_destroy(dmu_buf_impl_t *db)
34dc7c2f 2142{
572e2857 2143 dnode_t *dn;
34dc7c2f 2144 dmu_buf_impl_t *parent = db->db_parent;
572e2857 2145 dmu_buf_impl_t *dndb;
34dc7c2f
BB
2146
2147 ASSERT(MUTEX_HELD(&db->db_mtx));
2148 ASSERT(refcount_is_zero(&db->db_holds));
2149
d3c2ae1c
GW
2150 if (db->db_buf != NULL) {
2151 arc_buf_destroy(db->db_buf, db);
2152 db->db_buf = NULL;
2153 }
34dc7c2f 2154
d3c2ae1c
GW
2155 if (db->db_blkid == DMU_BONUS_BLKID) {
2156 int slots = DB_DNODE(db)->dn_num_slots;
2157 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
34dc7c2f 2158 ASSERT(db->db.db_data != NULL);
d3c2ae1c
GW
2159 zio_buf_free(db->db.db_data, bonuslen);
2160 arc_space_return(bonuslen, ARC_SPACE_BONUS);
34dc7c2f
BB
2161 db->db_state = DB_UNCACHED;
2162 }
2163
d3c2ae1c
GW
2164 dbuf_clear_data(db);
2165
2166 if (multilist_link_active(&db->db_cache_link)) {
2167 multilist_remove(&dbuf_cache, db);
2168 (void) refcount_remove_many(&dbuf_cache_size,
2169 db->db.db_size, db);
2170 }
2171
b128c09f 2172 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
34dc7c2f
BB
2173 ASSERT(db->db_data_pending == NULL);
2174
2175 db->db_state = DB_EVICTING;
2176 db->db_blkptr = NULL;
2177
d3c2ae1c
GW
2178 /*
2179 * Now that db_state is DB_EVICTING, nobody else can find this via
2180 * the hash table. We can now drop db_mtx, which allows us to
2181 * acquire the dn_dbufs_mtx.
2182 */
2183 mutex_exit(&db->db_mtx);
2184
572e2857
BB
2185 DB_DNODE_ENTER(db);
2186 dn = DB_DNODE(db);
2187 dndb = dn->dn_dbuf;
d3c2ae1c
GW
2188 if (db->db_blkid != DMU_BONUS_BLKID) {
2189 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2190 if (needlock)
2191 mutex_enter(&dn->dn_dbufs_mtx);
8951cb8d 2192 avl_remove(&dn->dn_dbufs, db);
73ad4a9f 2193 atomic_dec_32(&dn->dn_dbufs_count);
572e2857
BB
2194 membar_producer();
2195 DB_DNODE_EXIT(db);
d3c2ae1c
GW
2196 if (needlock)
2197 mutex_exit(&dn->dn_dbufs_mtx);
572e2857
BB
2198 /*
2199 * Decrementing the dbuf count means that the hold corresponding
2200 * to the removed dbuf is no longer discounted in dnode_move(),
2201 * so the dnode cannot be moved until after we release the hold.
2202 * The membar_producer() ensures visibility of the decremented
2203 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2204 * release any lock.
2205 */
34dc7c2f 2206 dnode_rele(dn, db);
572e2857 2207 db->db_dnode_handle = NULL;
d3c2ae1c
GW
2208
2209 dbuf_hash_remove(db);
572e2857
BB
2210 } else {
2211 DB_DNODE_EXIT(db);
34dc7c2f
BB
2212 }
2213
d3c2ae1c 2214 ASSERT(refcount_is_zero(&db->db_holds));
34dc7c2f 2215
d3c2ae1c
GW
2216 db->db_parent = NULL;
2217
2218 ASSERT(db->db_buf == NULL);
2219 ASSERT(db->db.db_data == NULL);
2220 ASSERT(db->db_hash_next == NULL);
2221 ASSERT(db->db_blkptr == NULL);
2222 ASSERT(db->db_data_pending == NULL);
2223 ASSERT(!multilist_link_active(&db->db_cache_link));
2224
2225 kmem_cache_free(dbuf_kmem_cache, db);
2226 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f
BB
2227
2228 /*
572e2857 2229 * If this dbuf is referenced from an indirect dbuf,
34dc7c2f
BB
2230 * decrement the ref count on the indirect dbuf.
2231 */
2232 if (parent && parent != dndb)
2233 dbuf_rele(parent, db);
2234}
2235
fcff0f35
PD
2236/*
2237 * Note: While bpp will always be updated if the function returns success,
2238 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2239 * this happens when the dnode is the meta-dnode, or a userused or groupused
2240 * object.
2241 */
bf701a83
BB
2242__attribute__((always_inline))
2243static inline int
34dc7c2f 2244dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
fc5bb51f 2245 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
34dc7c2f
BB
2246{
2247 int nlevels, epbs;
2248
2249 *parentp = NULL;
2250 *bpp = NULL;
2251
428870ff
BB
2252 ASSERT(blkid != DMU_BONUS_BLKID);
2253
2254 if (blkid == DMU_SPILL_BLKID) {
2255 mutex_enter(&dn->dn_mtx);
2256 if (dn->dn_have_spill &&
2257 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
50c957f7 2258 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
428870ff
BB
2259 else
2260 *bpp = NULL;
2261 dbuf_add_ref(dn->dn_dbuf, NULL);
2262 *parentp = dn->dn_dbuf;
2263 mutex_exit(&dn->dn_mtx);
2264 return (0);
2265 }
34dc7c2f 2266
32d41fb7
PD
2267 nlevels =
2268 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
34dc7c2f
BB
2269 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2270
2271 ASSERT3U(level * epbs, <, 64);
2272 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
32d41fb7
PD
2273 /*
2274 * This assertion shouldn't trip as long as the max indirect block size
2275 * is less than 1M. The reason for this is that up to that point,
2276 * the number of levels required to address an entire object with blocks
2277 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2278 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2279 * (i.e. we can address the entire object), objects will all use at most
2280 * N-1 levels and the assertion won't overflow. However, once epbs is
2281 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2282 * enough to address an entire object, so objects will have 5 levels,
2283 * but then this assertion will overflow.
2284 *
2285 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2286 * need to redo this logic to handle overflows.
2287 */
2288 ASSERT(level >= nlevels ||
2289 ((nlevels - level - 1) * epbs) +
2290 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
34dc7c2f 2291 if (level >= nlevels ||
32d41fb7
PD
2292 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2293 ((nlevels - level - 1) * epbs)) ||
2294 (fail_sparse &&
2295 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
34dc7c2f 2296 /* the buffer has no parent yet */
2e528b49 2297 return (SET_ERROR(ENOENT));
34dc7c2f
BB
2298 } else if (level < nlevels-1) {
2299 /* this block is referenced from an indirect block */
fc5bb51f
BB
2300 int err;
2301 if (dh == NULL) {
fcff0f35
PD
2302 err = dbuf_hold_impl(dn, level+1,
2303 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
d1d7e268 2304 } else {
fc5bb51f 2305 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
fcff0f35
PD
2306 blkid >> epbs, fail_sparse, FALSE, NULL,
2307 parentp, dh->dh_depth + 1);
fc5bb51f
BB
2308 err = __dbuf_hold_impl(dh + 1);
2309 }
34dc7c2f
BB
2310 if (err)
2311 return (err);
2312 err = dbuf_read(*parentp, NULL,
2313 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2314 if (err) {
2315 dbuf_rele(*parentp, NULL);
2316 *parentp = NULL;
2317 return (err);
2318 }
2319 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2320 (blkid & ((1ULL << epbs) - 1));
32d41fb7
PD
2321 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2322 ASSERT(BP_IS_HOLE(*bpp));
34dc7c2f
BB
2323 return (0);
2324 } else {
2325 /* the block is referenced from the dnode */
2326 ASSERT3U(level, ==, nlevels-1);
2327 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2328 blkid < dn->dn_phys->dn_nblkptr);
2329 if (dn->dn_dbuf) {
2330 dbuf_add_ref(dn->dn_dbuf, NULL);
2331 *parentp = dn->dn_dbuf;
2332 }
2333 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2334 return (0);
2335 }
2336}
2337
2338static dmu_buf_impl_t *
2339dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2340 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2341{
428870ff 2342 objset_t *os = dn->dn_objset;
34dc7c2f
BB
2343 dmu_buf_impl_t *db, *odb;
2344
2345 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2346 ASSERT(dn->dn_type != DMU_OT_NONE);
2347
d3c2ae1c 2348 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
34dc7c2f
BB
2349
2350 db->db_objset = os;
2351 db->db.db_object = dn->dn_object;
2352 db->db_level = level;
2353 db->db_blkid = blkid;
2354 db->db_last_dirty = NULL;
2355 db->db_dirtycnt = 0;
572e2857 2356 db->db_dnode_handle = dn->dn_handle;
34dc7c2f
BB
2357 db->db_parent = parent;
2358 db->db_blkptr = blkptr;
2359
0c66c32d 2360 db->db_user = NULL;
bc4501f7
JG
2361 db->db_user_immediate_evict = FALSE;
2362 db->db_freed_in_flight = FALSE;
2363 db->db_pending_evict = FALSE;
34dc7c2f 2364
428870ff 2365 if (blkid == DMU_BONUS_BLKID) {
34dc7c2f 2366 ASSERT3P(parent, ==, dn->dn_dbuf);
50c957f7 2367 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
34dc7c2f
BB
2368 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2369 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
428870ff 2370 db->db.db_offset = DMU_BONUS_BLKID;
34dc7c2f
BB
2371 db->db_state = DB_UNCACHED;
2372 /* the bonus dbuf is not placed in the hash table */
25458cbe 2373 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f 2374 return (db);
428870ff
BB
2375 } else if (blkid == DMU_SPILL_BLKID) {
2376 db->db.db_size = (blkptr != NULL) ?
2377 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2378 db->db.db_offset = 0;
34dc7c2f
BB
2379 } else {
2380 int blocksize =
e8b96c60 2381 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
34dc7c2f
BB
2382 db->db.db_size = blocksize;
2383 db->db.db_offset = db->db_blkid * blocksize;
2384 }
2385
2386 /*
2387 * Hold the dn_dbufs_mtx while we get the new dbuf
2388 * in the hash table *and* added to the dbufs list.
2389 * This prevents a possible deadlock with someone
2390 * trying to look up this dbuf before its added to the
2391 * dn_dbufs list.
2392 */
2393 mutex_enter(&dn->dn_dbufs_mtx);
2394 db->db_state = DB_EVICTING;
2395 if ((odb = dbuf_hash_insert(db)) != NULL) {
2396 /* someone else inserted it first */
d3c2ae1c 2397 kmem_cache_free(dbuf_kmem_cache, db);
34dc7c2f
BB
2398 mutex_exit(&dn->dn_dbufs_mtx);
2399 return (odb);
2400 }
8951cb8d 2401 avl_add(&dn->dn_dbufs, db);
b663a23d
MA
2402 if (db->db_level == 0 && db->db_blkid >=
2403 dn->dn_unlisted_l0_blkid)
2404 dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
34dc7c2f
BB
2405 db->db_state = DB_UNCACHED;
2406 mutex_exit(&dn->dn_dbufs_mtx);
25458cbe 2407 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f
BB
2408
2409 if (parent && parent != dn->dn_dbuf)
2410 dbuf_add_ref(parent, db);
2411
2412 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2413 refcount_count(&dn->dn_holds) > 0);
2414 (void) refcount_add(&dn->dn_holds, db);
73ad4a9f 2415 atomic_inc_32(&dn->dn_dbufs_count);
34dc7c2f
BB
2416
2417 dprintf_dbuf(db, "db=%p\n", db);
2418
2419 return (db);
2420}
2421
fcff0f35
PD
2422typedef struct dbuf_prefetch_arg {
2423 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2424 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2425 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2426 int dpa_curlevel; /* The current level that we're reading */
d3c2ae1c 2427 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
fcff0f35
PD
2428 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2429 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2430 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2431} dbuf_prefetch_arg_t;
2432
2433/*
2434 * Actually issue the prefetch read for the block given.
2435 */
2436static void
2437dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2438{
2439 arc_flags_t aflags;
2440 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2441 return;
2442
2443 aflags = dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2444
2445 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2446 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2447 ASSERT(dpa->dpa_zio != NULL);
2448 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2449 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2450 &aflags, &dpa->dpa_zb);
2451}
2452
2453/*
2454 * Called when an indirect block above our prefetch target is read in. This
2455 * will either read in the next indirect block down the tree or issue the actual
2456 * prefetch if the next block down is our target.
2457 */
2458static void
2459dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2460{
2461 dbuf_prefetch_arg_t *dpa = private;
2462 uint64_t nextblkid;
2463 blkptr_t *bp;
2464
2465 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2466 ASSERT3S(dpa->dpa_curlevel, >, 0);
d3c2ae1c
GW
2467
2468 /*
2469 * The dpa_dnode is only valid if we are called with a NULL
2470 * zio. This indicates that the arc_read() returned without
2471 * first calling zio_read() to issue a physical read. Once
2472 * a physical read is made the dpa_dnode must be invalidated
2473 * as the locks guarding it may have been dropped. If the
2474 * dpa_dnode is still valid, then we want to add it to the dbuf
2475 * cache. To do so, we must hold the dbuf associated with the block
2476 * we just prefetched, read its contents so that we associate it
2477 * with an arc_buf_t, and then release it.
2478 */
fcff0f35
PD
2479 if (zio != NULL) {
2480 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
d3c2ae1c
GW
2481 if (zio->io_flags & ZIO_FLAG_RAW) {
2482 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2483 } else {
2484 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2485 }
fcff0f35 2486 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
d3c2ae1c
GW
2487
2488 dpa->dpa_dnode = NULL;
2489 } else if (dpa->dpa_dnode != NULL) {
2490 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2491 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2492 dpa->dpa_zb.zb_level));
2493 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2494 dpa->dpa_curlevel, curblkid, FTAG);
2495 (void) dbuf_read(db, NULL,
2496 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2497 dbuf_rele(db, FTAG);
fcff0f35
PD
2498 }
2499
2500 dpa->dpa_curlevel--;
2501
2502 nextblkid = dpa->dpa_zb.zb_blkid >>
2503 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2504 bp = ((blkptr_t *)abuf->b_data) +
2505 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2506 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2507 kmem_free(dpa, sizeof (*dpa));
2508 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2509 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2510 dbuf_issue_final_prefetch(dpa, bp);
2511 kmem_free(dpa, sizeof (*dpa));
2512 } else {
2513 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2514 zbookmark_phys_t zb;
2515
2516 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2517
2518 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2519 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2520
2521 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2522 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2523 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2524 &iter_aflags, &zb);
2525 }
d3c2ae1c
GW
2526
2527 arc_buf_destroy(abuf, private);
fcff0f35
PD
2528}
2529
2530/*
2531 * Issue prefetch reads for the given block on the given level. If the indirect
2532 * blocks above that block are not in memory, we will read them in
2533 * asynchronously. As a result, this call never blocks waiting for a read to
2534 * complete.
2535 */
34dc7c2f 2536void
fcff0f35
PD
2537dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2538 arc_flags_t aflags)
34dc7c2f 2539{
fcff0f35
PD
2540 blkptr_t bp;
2541 int epbs, nlevels, curlevel;
2542 uint64_t curblkid;
2543 dmu_buf_impl_t *db;
2544 zio_t *pio;
2545 dbuf_prefetch_arg_t *dpa;
2546 dsl_dataset_t *ds;
34dc7c2f 2547
428870ff 2548 ASSERT(blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
2549 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2550
7f60329a
MA
2551 if (blkid > dn->dn_maxblkid)
2552 return;
2553
34dc7c2f
BB
2554 if (dnode_block_freed(dn, blkid))
2555 return;
2556
fcff0f35
PD
2557 /*
2558 * This dnode hasn't been written to disk yet, so there's nothing to
2559 * prefetch.
2560 */
2561 nlevels = dn->dn_phys->dn_nlevels;
2562 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2563 return;
2564
2565 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2566 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2567 return;
2568
2569 db = dbuf_find(dn->dn_objset, dn->dn_object,
2570 level, blkid);
2571 if (db != NULL) {
2572 mutex_exit(&db->db_mtx);
572e2857 2573 /*
fcff0f35
PD
2574 * This dbuf already exists. It is either CACHED, or
2575 * (we assume) about to be read or filled.
572e2857 2576 */
572e2857 2577 return;
34dc7c2f
BB
2578 }
2579
fcff0f35
PD
2580 /*
2581 * Find the closest ancestor (indirect block) of the target block
2582 * that is present in the cache. In this indirect block, we will
2583 * find the bp that is at curlevel, curblkid.
2584 */
2585 curlevel = level;
2586 curblkid = blkid;
2587 while (curlevel < nlevels - 1) {
2588 int parent_level = curlevel + 1;
2589 uint64_t parent_blkid = curblkid >> epbs;
2590 dmu_buf_impl_t *db;
2591
2592 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2593 FALSE, TRUE, FTAG, &db) == 0) {
2594 blkptr_t *bpp = db->db_buf->b_data;
2595 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2596 dbuf_rele(db, FTAG);
2597 break;
2598 }
428870ff 2599
fcff0f35
PD
2600 curlevel = parent_level;
2601 curblkid = parent_blkid;
2602 }
34dc7c2f 2603
fcff0f35
PD
2604 if (curlevel == nlevels - 1) {
2605 /* No cached indirect blocks found. */
2606 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2607 bp = dn->dn_phys->dn_blkptr[curblkid];
34dc7c2f 2608 }
fcff0f35
PD
2609 if (BP_IS_HOLE(&bp))
2610 return;
2611
2612 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2613
2614 pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2615 ZIO_FLAG_CANFAIL);
2616
2617 dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2618 ds = dn->dn_objset->os_dsl_dataset;
2619 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2620 dn->dn_object, level, blkid);
2621 dpa->dpa_curlevel = curlevel;
2622 dpa->dpa_prio = prio;
2623 dpa->dpa_aflags = aflags;
2624 dpa->dpa_spa = dn->dn_objset->os_spa;
d3c2ae1c 2625 dpa->dpa_dnode = dn;
fcff0f35
PD
2626 dpa->dpa_epbs = epbs;
2627 dpa->dpa_zio = pio;
2628
2629 /*
2630 * If we have the indirect just above us, no need to do the asynchronous
2631 * prefetch chain; we'll just run the last step ourselves. If we're at
2632 * a higher level, though, we want to issue the prefetches for all the
2633 * indirect blocks asynchronously, so we can go on with whatever we were
2634 * doing.
2635 */
2636 if (curlevel == level) {
2637 ASSERT3U(curblkid, ==, blkid);
2638 dbuf_issue_final_prefetch(dpa, &bp);
2639 kmem_free(dpa, sizeof (*dpa));
2640 } else {
2641 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2642 zbookmark_phys_t zb;
2643
2644 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2645 dn->dn_object, curlevel, curblkid);
2646 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2647 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2648 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2649 &iter_aflags, &zb);
2650 }
2651 /*
2652 * We use pio here instead of dpa_zio since it's possible that
2653 * dpa may have already been freed.
2654 */
2655 zio_nowait(pio);
34dc7c2f
BB
2656}
2657
d1d7e268 2658#define DBUF_HOLD_IMPL_MAX_DEPTH 20
fc5bb51f 2659
34dc7c2f
BB
2660/*
2661 * Returns with db_holds incremented, and db_mtx not held.
2662 * Note: dn_struct_rwlock must be held.
2663 */
fc5bb51f
BB
2664static int
2665__dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
34dc7c2f 2666{
fc5bb51f
BB
2667 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2668 dh->dh_parent = NULL;
34dc7c2f 2669
fc5bb51f
BB
2670 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2671 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2672 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
34dc7c2f 2673
fc5bb51f 2674 *(dh->dh_dbp) = NULL;
d3c2ae1c 2675
34dc7c2f 2676 /* dbuf_find() returns with db_mtx held */
6ebebace
JG
2677 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2678 dh->dh_level, dh->dh_blkid);
fc5bb51f
BB
2679
2680 if (dh->dh_db == NULL) {
2681 dh->dh_bp = NULL;
2682
fcff0f35
PD
2683 if (dh->dh_fail_uncached)
2684 return (SET_ERROR(ENOENT));
2685
fc5bb51f
BB
2686 ASSERT3P(dh->dh_parent, ==, NULL);
2687 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2688 dh->dh_fail_sparse, &dh->dh_parent,
2689 &dh->dh_bp, dh);
2690 if (dh->dh_fail_sparse) {
d1d7e268
MK
2691 if (dh->dh_err == 0 &&
2692 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2e528b49 2693 dh->dh_err = SET_ERROR(ENOENT);
fc5bb51f
BB
2694 if (dh->dh_err) {
2695 if (dh->dh_parent)
2696 dbuf_rele(dh->dh_parent, NULL);
2697 return (dh->dh_err);
34dc7c2f
BB
2698 }
2699 }
fc5bb51f
BB
2700 if (dh->dh_err && dh->dh_err != ENOENT)
2701 return (dh->dh_err);
2702 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2703 dh->dh_parent, dh->dh_bp);
34dc7c2f
BB
2704 }
2705
fcff0f35
PD
2706 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2707 mutex_exit(&dh->dh_db->db_mtx);
2708 return (SET_ERROR(ENOENT));
2709 }
2710
d3c2ae1c 2711 if (dh->dh_db->db_buf != NULL)
fc5bb51f 2712 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
34dc7c2f 2713
fc5bb51f 2714 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
34dc7c2f
BB
2715
2716 /*
2717 * If this buffer is currently syncing out, and we are are
2718 * still referencing it from db_data, we need to make a copy
2719 * of it in case we decide we want to dirty it again in this txg.
2720 */
fc5bb51f
BB
2721 if (dh->dh_db->db_level == 0 &&
2722 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
2723 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
2724 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
2725 dh->dh_dr = dh->dh_db->db_data_pending;
2726
2727 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf) {
2728 dh->dh_type = DBUF_GET_BUFC_TYPE(dh->dh_db);
2729
2730 dbuf_set_data(dh->dh_db,
d3c2ae1c 2731 arc_alloc_buf(dh->dh_dn->dn_objset->os_spa,
2aa34383 2732 dh->dh_db, dh->dh_type, dh->dh_db->db.db_size));
fc5bb51f
BB
2733 bcopy(dh->dh_dr->dt.dl.dr_data->b_data,
2734 dh->dh_db->db.db_data, dh->dh_db->db.db_size);
34dc7c2f
BB
2735 }
2736 }
2737
d3c2ae1c
GW
2738 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
2739 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
2740 multilist_remove(&dbuf_cache, dh->dh_db);
2741 (void) refcount_remove_many(&dbuf_cache_size,
2742 dh->dh_db->db.db_size, dh->dh_db);
2743 }
fc5bb51f 2744 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
fc5bb51f
BB
2745 DBUF_VERIFY(dh->dh_db);
2746 mutex_exit(&dh->dh_db->db_mtx);
34dc7c2f
BB
2747
2748 /* NOTE: we can't rele the parent until after we drop the db_mtx */
fc5bb51f
BB
2749 if (dh->dh_parent)
2750 dbuf_rele(dh->dh_parent, NULL);
34dc7c2f 2751
fc5bb51f
BB
2752 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
2753 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
2754 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
2755 *(dh->dh_dbp) = dh->dh_db;
34dc7c2f
BB
2756
2757 return (0);
2758}
2759
fc5bb51f
BB
2760/*
2761 * The following code preserves the recursive function dbuf_hold_impl()
2762 * but moves the local variables AND function arguments to the heap to
2763 * minimize the stack frame size. Enough space is initially allocated
2764 * on the stack for 20 levels of recursion.
2765 */
2766int
fcff0f35
PD
2767dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2768 boolean_t fail_sparse, boolean_t fail_uncached,
fc5bb51f
BB
2769 void *tag, dmu_buf_impl_t **dbp)
2770{
2771 struct dbuf_hold_impl_data *dh;
2772 int error;
2773
d9eea113 2774 dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
79c76d5b 2775 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
fcff0f35
PD
2776 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
2777 fail_uncached, tag, dbp, 0);
fc5bb51f
BB
2778
2779 error = __dbuf_hold_impl(dh);
2780
d1d7e268 2781 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
fc5bb51f
BB
2782 DBUF_HOLD_IMPL_MAX_DEPTH);
2783
2784 return (error);
2785}
2786
2787static void
2788__dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
fcff0f35
PD
2789 dnode_t *dn, uint8_t level, uint64_t blkid,
2790 boolean_t fail_sparse, boolean_t fail_uncached,
2791 void *tag, dmu_buf_impl_t **dbp, int depth)
fc5bb51f
BB
2792{
2793 dh->dh_dn = dn;
2794 dh->dh_level = level;
2795 dh->dh_blkid = blkid;
fcff0f35 2796
fc5bb51f 2797 dh->dh_fail_sparse = fail_sparse;
fcff0f35
PD
2798 dh->dh_fail_uncached = fail_uncached;
2799
fc5bb51f
BB
2800 dh->dh_tag = tag;
2801 dh->dh_dbp = dbp;
d9eea113
MA
2802
2803 dh->dh_db = NULL;
2804 dh->dh_parent = NULL;
2805 dh->dh_bp = NULL;
2806 dh->dh_err = 0;
2807 dh->dh_dr = NULL;
2808 dh->dh_type = 0;
2809
fc5bb51f
BB
2810 dh->dh_depth = depth;
2811}
2812
34dc7c2f
BB
2813dmu_buf_impl_t *
2814dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2815{
fcff0f35 2816 return (dbuf_hold_level(dn, 0, blkid, tag));
34dc7c2f
BB
2817}
2818
2819dmu_buf_impl_t *
2820dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2821{
2822 dmu_buf_impl_t *db;
fcff0f35 2823 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
34dc7c2f
BB
2824 return (err ? NULL : db);
2825}
2826
2827void
2828dbuf_create_bonus(dnode_t *dn)
2829{
2830 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2831
2832 ASSERT(dn->dn_bonus == NULL);
428870ff
BB
2833 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2834}
2835
2836int
2837dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2838{
2839 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
572e2857
BB
2840 dnode_t *dn;
2841
428870ff 2842 if (db->db_blkid != DMU_SPILL_BLKID)
2e528b49 2843 return (SET_ERROR(ENOTSUP));
428870ff
BB
2844 if (blksz == 0)
2845 blksz = SPA_MINBLOCKSIZE;
f1512ee6
MA
2846 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2847 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
428870ff 2848
572e2857
BB
2849 DB_DNODE_ENTER(db);
2850 dn = DB_DNODE(db);
2851 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
428870ff 2852 dbuf_new_size(db, blksz, tx);
572e2857
BB
2853 rw_exit(&dn->dn_struct_rwlock);
2854 DB_DNODE_EXIT(db);
428870ff
BB
2855
2856 return (0);
2857}
2858
2859void
2860dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2861{
2862 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
34dc7c2f
BB
2863}
2864
2865#pragma weak dmu_buf_add_ref = dbuf_add_ref
2866void
2867dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2868{
d3c2ae1c
GW
2869 int64_t holds = refcount_add(&db->db_holds, tag);
2870 VERIFY3S(holds, >, 1);
34dc7c2f
BB
2871}
2872
6ebebace
JG
2873#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2874boolean_t
2875dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2876 void *tag)
2877{
2878 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2879 dmu_buf_impl_t *found_db;
2880 boolean_t result = B_FALSE;
2881
d617648c 2882 if (blkid == DMU_BONUS_BLKID)
6ebebace
JG
2883 found_db = dbuf_find_bonus(os, obj);
2884 else
2885 found_db = dbuf_find(os, obj, 0, blkid);
2886
2887 if (found_db != NULL) {
2888 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2889 (void) refcount_add(&db->db_holds, tag);
2890 result = B_TRUE;
2891 }
d617648c 2892 mutex_exit(&found_db->db_mtx);
6ebebace
JG
2893 }
2894 return (result);
2895}
2896
572e2857
BB
2897/*
2898 * If you call dbuf_rele() you had better not be referencing the dnode handle
2899 * unless you have some other direct or indirect hold on the dnode. (An indirect
2900 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2901 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2902 * dnode's parent dbuf evicting its dnode handles.
2903 */
34dc7c2f
BB
2904void
2905dbuf_rele(dmu_buf_impl_t *db, void *tag)
428870ff
BB
2906{
2907 mutex_enter(&db->db_mtx);
2908 dbuf_rele_and_unlock(db, tag);
2909}
2910
b0bc7a84
MG
2911void
2912dmu_buf_rele(dmu_buf_t *db, void *tag)
2913{
2914 dbuf_rele((dmu_buf_impl_t *)db, tag);
2915}
2916
428870ff
BB
2917/*
2918 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2919 * db_dirtycnt and db_holds to be updated atomically.
2920 */
2921void
2922dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
34dc7c2f
BB
2923{
2924 int64_t holds;
2925
428870ff 2926 ASSERT(MUTEX_HELD(&db->db_mtx));
34dc7c2f
BB
2927 DBUF_VERIFY(db);
2928
572e2857
BB
2929 /*
2930 * Remove the reference to the dbuf before removing its hold on the
2931 * dnode so we can guarantee in dnode_move() that a referenced bonus
2932 * buffer has a corresponding dnode hold.
2933 */
34dc7c2f
BB
2934 holds = refcount_remove(&db->db_holds, tag);
2935 ASSERT(holds >= 0);
2936
2937 /*
2938 * We can't freeze indirects if there is a possibility that they
2939 * may be modified in the current syncing context.
2940 */
d3c2ae1c
GW
2941 if (db->db_buf != NULL &&
2942 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
34dc7c2f 2943 arc_buf_freeze(db->db_buf);
d3c2ae1c 2944 }
34dc7c2f
BB
2945
2946 if (holds == db->db_dirtycnt &&
bc4501f7 2947 db->db_level == 0 && db->db_user_immediate_evict)
34dc7c2f
BB
2948 dbuf_evict_user(db);
2949
2950 if (holds == 0) {
428870ff 2951 if (db->db_blkid == DMU_BONUS_BLKID) {
4c7b7eed 2952 dnode_t *dn;
bc4501f7 2953 boolean_t evict_dbuf = db->db_pending_evict;
572e2857
BB
2954
2955 /*
4c7b7eed
JG
2956 * If the dnode moves here, we cannot cross this
2957 * barrier until the move completes.
572e2857
BB
2958 */
2959 DB_DNODE_ENTER(db);
4c7b7eed
JG
2960
2961 dn = DB_DNODE(db);
2962 atomic_dec_32(&dn->dn_dbufs_count);
2963
2964 /*
2965 * Decrementing the dbuf count means that the bonus
2966 * buffer's dnode hold is no longer discounted in
2967 * dnode_move(). The dnode cannot move until after
bc4501f7 2968 * the dnode_rele() below.
4c7b7eed 2969 */
572e2857 2970 DB_DNODE_EXIT(db);
4c7b7eed
JG
2971
2972 /*
2973 * Do not reference db after its lock is dropped.
2974 * Another thread may evict it.
2975 */
2976 mutex_exit(&db->db_mtx);
2977
bc4501f7 2978 if (evict_dbuf)
4c7b7eed 2979 dnode_evict_bonus(dn);
bc4501f7
JG
2980
2981 dnode_rele(dn, db);
34dc7c2f
BB
2982 } else if (db->db_buf == NULL) {
2983 /*
2984 * This is a special case: we never associated this
2985 * dbuf with any data allocated from the ARC.
2986 */
b128c09f
BB
2987 ASSERT(db->db_state == DB_UNCACHED ||
2988 db->db_state == DB_NOFILL);
d3c2ae1c 2989 dbuf_destroy(db);
34dc7c2f 2990 } else if (arc_released(db->db_buf)) {
34dc7c2f
BB
2991 /*
2992 * This dbuf has anonymous data associated with it.
2993 */
d3c2ae1c 2994 dbuf_destroy(db);
34dc7c2f 2995 } else {
d3c2ae1c
GW
2996 boolean_t do_arc_evict = B_FALSE;
2997 blkptr_t bp;
2998 spa_t *spa = dmu_objset_spa(db->db_objset);
2999
3000 if (!DBUF_IS_CACHEABLE(db) &&
3001 db->db_blkptr != NULL &&
3002 !BP_IS_HOLE(db->db_blkptr) &&
3003 !BP_IS_EMBEDDED(db->db_blkptr)) {
3004 do_arc_evict = B_TRUE;
3005 bp = *db->db_blkptr;
3006 }
1eb5bfa3 3007
d3c2ae1c
GW
3008 if (!DBUF_IS_CACHEABLE(db) ||
3009 db->db_pending_evict) {
3010 dbuf_destroy(db);
3011 } else if (!multilist_link_active(&db->db_cache_link)) {
3012 multilist_insert(&dbuf_cache, db);
3013 (void) refcount_add_many(&dbuf_cache_size,
3014 db->db.db_size, db);
b128c09f 3015 mutex_exit(&db->db_mtx);
d3c2ae1c
GW
3016
3017 dbuf_evict_notify();
bd089c54 3018 }
d3c2ae1c
GW
3019
3020 if (do_arc_evict)
3021 arc_freed(spa, &bp);
34dc7c2f
BB
3022 }
3023 } else {
3024 mutex_exit(&db->db_mtx);
3025 }
d3c2ae1c 3026
34dc7c2f
BB
3027}
3028
3029#pragma weak dmu_buf_refcount = dbuf_refcount
3030uint64_t
3031dbuf_refcount(dmu_buf_impl_t *db)
3032{
3033 return (refcount_count(&db->db_holds));
3034}
3035
3036void *
0c66c32d
JG
3037dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3038 dmu_buf_user_t *new_user)
34dc7c2f 3039{
0c66c32d
JG
3040 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3041
3042 mutex_enter(&db->db_mtx);
3043 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3044 if (db->db_user == old_user)
3045 db->db_user = new_user;
3046 else
3047 old_user = db->db_user;
3048 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3049 mutex_exit(&db->db_mtx);
3050
3051 return (old_user);
34dc7c2f
BB
3052}
3053
3054void *
0c66c32d 3055dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
34dc7c2f 3056{
0c66c32d 3057 return (dmu_buf_replace_user(db_fake, NULL, user));
34dc7c2f
BB
3058}
3059
3060void *
0c66c32d 3061dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
34dc7c2f
BB
3062{
3063 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f 3064
bc4501f7 3065 db->db_user_immediate_evict = TRUE;
0c66c32d
JG
3066 return (dmu_buf_set_user(db_fake, user));
3067}
34dc7c2f 3068
0c66c32d
JG
3069void *
3070dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3071{
3072 return (dmu_buf_replace_user(db_fake, user, NULL));
34dc7c2f
BB
3073}
3074
3075void *
3076dmu_buf_get_user(dmu_buf_t *db_fake)
3077{
3078 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f 3079
0c66c32d
JG
3080 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3081 return (db->db_user);
3082}
3083
3084void
3085dmu_buf_user_evict_wait()
3086{
3087 taskq_wait(dbu_evict_taskq);
34dc7c2f
BB
3088}
3089
9babb374
BB
3090boolean_t
3091dmu_buf_freeable(dmu_buf_t *dbuf)
3092{
3093 boolean_t res = B_FALSE;
3094 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3095
3096 if (db->db_blkptr)
3097 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
428870ff 3098 db->db_blkptr, db->db_blkptr->blk_birth);
9babb374
BB
3099
3100 return (res);
3101}
3102
03c6040b
GW
3103blkptr_t *
3104dmu_buf_get_blkptr(dmu_buf_t *db)
3105{
3106 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3107 return (dbi->db_blkptr);
3108}
3109
8bea9815
MA
3110objset_t *
3111dmu_buf_get_objset(dmu_buf_t *db)
3112{
3113 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3114 return (dbi->db_objset);
3115}
3116
2bce8049
MA
3117dnode_t *
3118dmu_buf_dnode_enter(dmu_buf_t *db)
3119{
3120 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3121 DB_DNODE_ENTER(dbi);
3122 return (DB_DNODE(dbi));
3123}
3124
3125void
3126dmu_buf_dnode_exit(dmu_buf_t *db)
3127{
3128 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3129 DB_DNODE_EXIT(dbi);
3130}
3131
34dc7c2f
BB
3132static void
3133dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3134{
3135 /* ASSERT(dmu_tx_is_syncing(tx) */
3136 ASSERT(MUTEX_HELD(&db->db_mtx));
3137
3138 if (db->db_blkptr != NULL)
3139 return;
3140
428870ff 3141 if (db->db_blkid == DMU_SPILL_BLKID) {
50c957f7 3142 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
428870ff
BB
3143 BP_ZERO(db->db_blkptr);
3144 return;
3145 }
34dc7c2f
BB
3146 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3147 /*
3148 * This buffer was allocated at a time when there was
3149 * no available blkptrs from the dnode, or it was
3150 * inappropriate to hook it in (i.e., nlevels mis-match).
3151 */
3152 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3153 ASSERT(db->db_parent == NULL);
3154 db->db_parent = dn->dn_dbuf;
3155 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3156 DBUF_VERIFY(db);
3157 } else {
3158 dmu_buf_impl_t *parent = db->db_parent;
3159 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3160
3161 ASSERT(dn->dn_phys->dn_nlevels > 1);
3162 if (parent == NULL) {
3163 mutex_exit(&db->db_mtx);
3164 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
3165 parent = dbuf_hold_level(dn, db->db_level + 1,
3166 db->db_blkid >> epbs, db);
34dc7c2f
BB
3167 rw_exit(&dn->dn_struct_rwlock);
3168 mutex_enter(&db->db_mtx);
3169 db->db_parent = parent;
3170 }
3171 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3172 (db->db_blkid & ((1ULL << epbs) - 1));
3173 DBUF_VERIFY(db);
3174 }
3175}
3176
d1d7e268
MK
3177/*
3178 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
60948de1
BB
3179 * is critical the we not allow the compiler to inline this function in to
3180 * dbuf_sync_list() thereby drastically bloating the stack usage.
3181 */
3182noinline static void
34dc7c2f
BB
3183dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3184{
3185 dmu_buf_impl_t *db = dr->dr_dbuf;
572e2857 3186 dnode_t *dn;
34dc7c2f
BB
3187 zio_t *zio;
3188
3189 ASSERT(dmu_tx_is_syncing(tx));
3190
3191 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3192
3193 mutex_enter(&db->db_mtx);
3194
3195 ASSERT(db->db_level > 0);
3196 DBUF_VERIFY(db);
3197
e49f1e20 3198 /* Read the block if it hasn't been read yet. */
34dc7c2f
BB
3199 if (db->db_buf == NULL) {
3200 mutex_exit(&db->db_mtx);
3201 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3202 mutex_enter(&db->db_mtx);
3203 }
3204 ASSERT3U(db->db_state, ==, DB_CACHED);
34dc7c2f
BB
3205 ASSERT(db->db_buf != NULL);
3206
572e2857
BB
3207 DB_DNODE_ENTER(db);
3208 dn = DB_DNODE(db);
e49f1e20 3209 /* Indirect block size must match what the dnode thinks it is. */
572e2857 3210 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
34dc7c2f 3211 dbuf_check_blkptr(dn, db);
572e2857 3212 DB_DNODE_EXIT(db);
34dc7c2f 3213
e49f1e20 3214 /* Provide the pending dirty record to child dbufs */
34dc7c2f
BB
3215 db->db_data_pending = dr;
3216
34dc7c2f 3217 mutex_exit(&db->db_mtx);
b128c09f 3218 dbuf_write(dr, db->db_buf, tx);
34dc7c2f
BB
3219
3220 zio = dr->dr_zio;
3221 mutex_enter(&dr->dt.di.dr_mtx);
4bda3bd0 3222 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
34dc7c2f
BB
3223 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3224 mutex_exit(&dr->dt.di.dr_mtx);
3225 zio_nowait(zio);
3226}
3227
d1d7e268
MK
3228/*
3229 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
60948de1
BB
3230 * critical the we not allow the compiler to inline this function in to
3231 * dbuf_sync_list() thereby drastically bloating the stack usage.
3232 */
3233noinline static void
34dc7c2f
BB
3234dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3235{
3236 arc_buf_t **datap = &dr->dt.dl.dr_data;
3237 dmu_buf_impl_t *db = dr->dr_dbuf;
572e2857
BB
3238 dnode_t *dn;
3239 objset_t *os;
34dc7c2f 3240 uint64_t txg = tx->tx_txg;
34dc7c2f
BB
3241
3242 ASSERT(dmu_tx_is_syncing(tx));
3243
3244 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3245
3246 mutex_enter(&db->db_mtx);
3247 /*
3248 * To be synced, we must be dirtied. But we
3249 * might have been freed after the dirty.
3250 */
3251 if (db->db_state == DB_UNCACHED) {
3252 /* This buffer has been freed since it was dirtied */
3253 ASSERT(db->db.db_data == NULL);
3254 } else if (db->db_state == DB_FILL) {
3255 /* This buffer was freed and is now being re-filled */
3256 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3257 } else {
b128c09f 3258 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
34dc7c2f
BB
3259 }
3260 DBUF_VERIFY(db);
3261
572e2857
BB
3262 DB_DNODE_ENTER(db);
3263 dn = DB_DNODE(db);
3264
428870ff
BB
3265 if (db->db_blkid == DMU_SPILL_BLKID) {
3266 mutex_enter(&dn->dn_mtx);
81edd3e8
P
3267 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3268 /*
3269 * In the previous transaction group, the bonus buffer
3270 * was entirely used to store the attributes for the
3271 * dnode which overrode the dn_spill field. However,
3272 * when adding more attributes to the file a spill
3273 * block was required to hold the extra attributes.
3274 *
3275 * Make sure to clear the garbage left in the dn_spill
3276 * field from the previous attributes in the bonus
3277 * buffer. Otherwise, after writing out the spill
3278 * block to the new allocated dva, it will free
3279 * the old block pointed to by the invalid dn_spill.
3280 */
3281 db->db_blkptr = NULL;
3282 }
428870ff
BB
3283 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3284 mutex_exit(&dn->dn_mtx);
3285 }
3286
34dc7c2f
BB
3287 /*
3288 * If this is a bonus buffer, simply copy the bonus data into the
3289 * dnode. It will be written out when the dnode is synced (and it
3290 * will be synced, since it must have been dirty for dbuf_sync to
3291 * be called).
3292 */
428870ff 3293 if (db->db_blkid == DMU_BONUS_BLKID) {
34dc7c2f
BB
3294 dbuf_dirty_record_t **drp;
3295
3296 ASSERT(*datap != NULL);
c99c9001 3297 ASSERT0(db->db_level);
50c957f7
NB
3298 ASSERT3U(dn->dn_phys->dn_bonuslen, <=,
3299 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
34dc7c2f 3300 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
572e2857
BB
3301 DB_DNODE_EXIT(db);
3302
34dc7c2f 3303 if (*datap != db->db.db_data) {
50c957f7
NB
3304 int slots = DB_DNODE(db)->dn_num_slots;
3305 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3306 zio_buf_free(*datap, bonuslen);
25458cbe 3307 arc_space_return(bonuslen, ARC_SPACE_BONUS);
34dc7c2f
BB
3308 }
3309 db->db_data_pending = NULL;
3310 drp = &db->db_last_dirty;
3311 while (*drp != dr)
3312 drp = &(*drp)->dr_next;
3313 ASSERT(dr->dr_next == NULL);
428870ff 3314 ASSERT(dr->dr_dbuf == db);
34dc7c2f 3315 *drp = dr->dr_next;
753972fc
BB
3316 if (dr->dr_dbuf->db_level != 0) {
3317 mutex_destroy(&dr->dt.di.dr_mtx);
3318 list_destroy(&dr->dt.di.dr_children);
3319 }
34dc7c2f
BB
3320 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3321 ASSERT(db->db_dirtycnt > 0);
3322 db->db_dirtycnt -= 1;
428870ff 3323 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
34dc7c2f
BB
3324 return;
3325 }
3326
572e2857
BB
3327 os = dn->dn_objset;
3328
34dc7c2f
BB
3329 /*
3330 * This function may have dropped the db_mtx lock allowing a dmu_sync
3331 * operation to sneak in. As a result, we need to ensure that we
3332 * don't check the dr_override_state until we have returned from
3333 * dbuf_check_blkptr.
3334 */
3335 dbuf_check_blkptr(dn, db);
3336
3337 /*
572e2857 3338 * If this buffer is in the middle of an immediate write,
34dc7c2f
BB
3339 * wait for the synchronous IO to complete.
3340 */
3341 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3342 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3343 cv_wait(&db->db_changed, &db->db_mtx);
3344 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3345 }
3346
9babb374
BB
3347 if (db->db_state != DB_NOFILL &&
3348 dn->dn_object != DMU_META_DNODE_OBJECT &&
3349 refcount_count(&db->db_holds) > 1 &&
428870ff 3350 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
9babb374
BB
3351 *datap == db->db_buf) {
3352 /*
3353 * If this buffer is currently "in use" (i.e., there
3354 * are active holds and db_data still references it),
3355 * then make a copy before we start the write so that
3356 * any modifications from the open txg will not leak
3357 * into this write.
3358 *
3359 * NOTE: this copy does not need to be made for
3360 * objects only modified in the syncing context (e.g.
3361 * DNONE_DNODE blocks).
3362 */
2aa34383 3363 int psize = arc_buf_size(*datap);
9babb374 3364 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2aa34383
DK
3365 enum zio_compress compress_type = arc_get_compression(*datap);
3366
3367 if (compress_type == ZIO_COMPRESS_OFF) {
3368 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3369 } else {
3370 int lsize = arc_buf_lsize(*datap);
3371 ASSERT3U(type, ==, ARC_BUFC_DATA);
3372 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3373 psize, lsize, compress_type);
3374 }
3375 bcopy(db->db.db_data, (*datap)->b_data, psize);
b128c09f 3376 }
34dc7c2f
BB
3377 db->db_data_pending = dr;
3378
3379 mutex_exit(&db->db_mtx);
3380
b128c09f 3381 dbuf_write(dr, *datap, tx);
34dc7c2f
BB
3382
3383 ASSERT(!list_link_active(&dr->dr_dirty_node));
572e2857 3384 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
34dc7c2f 3385 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
572e2857
BB
3386 DB_DNODE_EXIT(db);
3387 } else {
3388 /*
3389 * Although zio_nowait() does not "wait for an IO", it does
3390 * initiate the IO. If this is an empty write it seems plausible
3391 * that the IO could actually be completed before the nowait
3392 * returns. We need to DB_DNODE_EXIT() first in case
3393 * zio_nowait() invalidates the dbuf.
3394 */
3395 DB_DNODE_EXIT(db);
34dc7c2f 3396 zio_nowait(dr->dr_zio);
572e2857 3397 }
34dc7c2f
BB
3398}
3399
3400void
4bda3bd0 3401dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
34dc7c2f
BB
3402{
3403 dbuf_dirty_record_t *dr;
3404
c65aa5b2 3405 while ((dr = list_head(list))) {
34dc7c2f
BB
3406 if (dr->dr_zio != NULL) {
3407 /*
3408 * If we find an already initialized zio then we
3409 * are processing the meta-dnode, and we have finished.
3410 * The dbufs for all dnodes are put back on the list
3411 * during processing, so that we can zio_wait()
3412 * these IOs after initiating all child IOs.
3413 */
3414 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3415 DMU_META_DNODE_OBJECT);
3416 break;
3417 }
4bda3bd0
MA
3418 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3419 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3420 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3421 }
34dc7c2f
BB
3422 list_remove(list, dr);
3423 if (dr->dr_dbuf->db_level > 0)
3424 dbuf_sync_indirect(dr, tx);
3425 else
3426 dbuf_sync_leaf(dr, tx);
3427 }
3428}
3429
34dc7c2f
BB
3430/* ARGSUSED */
3431static void
3432dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3433{
3434 dmu_buf_impl_t *db = vdb;
572e2857 3435 dnode_t *dn;
b128c09f 3436 blkptr_t *bp = zio->io_bp;
34dc7c2f 3437 blkptr_t *bp_orig = &zio->io_bp_orig;
428870ff
BB
3438 spa_t *spa = zio->io_spa;
3439 int64_t delta;
34dc7c2f 3440 uint64_t fill = 0;
428870ff 3441 int i;
34dc7c2f 3442
463a8cfe
AR
3443 ASSERT3P(db->db_blkptr, !=, NULL);
3444 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
b128c09f 3445
572e2857
BB
3446 DB_DNODE_ENTER(db);
3447 dn = DB_DNODE(db);
428870ff
BB
3448 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3449 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3450 zio->io_prev_space_delta = delta;
34dc7c2f 3451
b0bc7a84
MG
3452 if (bp->blk_birth != 0) {
3453 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3454 BP_GET_TYPE(bp) == dn->dn_type) ||
3455 (db->db_blkid == DMU_SPILL_BLKID &&
9b67f605
MA
3456 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3457 BP_IS_EMBEDDED(bp));
b0bc7a84 3458 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
34dc7c2f
BB
3459 }
3460
3461 mutex_enter(&db->db_mtx);
3462
428870ff
BB
3463#ifdef ZFS_DEBUG
3464 if (db->db_blkid == DMU_SPILL_BLKID) {
428870ff 3465 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
463a8cfe 3466 ASSERT(!(BP_IS_HOLE(bp)) &&
50c957f7 3467 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
428870ff
BB
3468 }
3469#endif
3470
34dc7c2f
BB
3471 if (db->db_level == 0) {
3472 mutex_enter(&dn->dn_mtx);
428870ff
BB
3473 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3474 db->db_blkid != DMU_SPILL_BLKID)
34dc7c2f
BB
3475 dn->dn_phys->dn_maxblkid = db->db_blkid;
3476 mutex_exit(&dn->dn_mtx);
3477
3478 if (dn->dn_type == DMU_OT_DNODE) {
50c957f7
NB
3479 i = 0;
3480 while (i < db->db.db_size) {
3481 dnode_phys_t *dnp = db->db.db_data + i;
3482
3483 i += DNODE_MIN_SIZE;
3484 if (dnp->dn_type != DMU_OT_NONE) {
34dc7c2f 3485 fill++;
50c957f7
NB
3486 i += dnp->dn_extra_slots *
3487 DNODE_MIN_SIZE;
3488 }
34dc7c2f
BB
3489 }
3490 } else {
b0bc7a84
MG
3491 if (BP_IS_HOLE(bp)) {
3492 fill = 0;
3493 } else {
3494 fill = 1;
3495 }
34dc7c2f
BB
3496 }
3497 } else {
b128c09f 3498 blkptr_t *ibp = db->db.db_data;
34dc7c2f 3499 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
b128c09f
BB
3500 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3501 if (BP_IS_HOLE(ibp))
34dc7c2f 3502 continue;
9b67f605 3503 fill += BP_GET_FILL(ibp);
34dc7c2f
BB
3504 }
3505 }
572e2857 3506 DB_DNODE_EXIT(db);
34dc7c2f 3507
9b67f605
MA
3508 if (!BP_IS_EMBEDDED(bp))
3509 bp->blk_fill = fill;
34dc7c2f
BB
3510
3511 mutex_exit(&db->db_mtx);
463a8cfe
AR
3512
3513 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3514 *db->db_blkptr = *bp;
3515 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f
BB
3516}
3517
bc77ba73
PD
3518/* ARGSUSED */
3519/*
3520 * This function gets called just prior to running through the compression
3521 * stage of the zio pipeline. If we're an indirect block comprised of only
3522 * holes, then we want this indirect to be compressed away to a hole. In
3523 * order to do that we must zero out any information about the holes that
3524 * this indirect points to prior to before we try to compress it.
3525 */
3526static void
3527dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3528{
3529 dmu_buf_impl_t *db = vdb;
3530 dnode_t *dn;
3531 blkptr_t *bp;
3532 uint64_t i;
3533 int epbs;
3534
3535 ASSERT3U(db->db_level, >, 0);
3536 DB_DNODE_ENTER(db);
3537 dn = DB_DNODE(db);
3538 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3539
3540 /* Determine if all our children are holes */
3f93077b 3541 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
bc77ba73
PD
3542 if (!BP_IS_HOLE(bp))
3543 break;
3544 }
3545
3546 /*
3547 * If all the children are holes, then zero them all out so that
3548 * we may get compressed away.
3549 */
3f93077b 3550 if (i == 1ULL << epbs) {
bc77ba73
PD
3551 /* didn't find any non-holes */
3552 bzero(db->db.db_data, db->db.db_size);
3553 }
3554 DB_DNODE_EXIT(db);
3555}
3556
e8b96c60
MA
3557/*
3558 * The SPA will call this callback several times for each zio - once
3559 * for every physical child i/o (zio->io_phys_children times). This
3560 * allows the DMU to monitor the progress of each logical i/o. For example,
3561 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3562 * block. There may be a long delay before all copies/fragments are completed,
3563 * so this callback allows us to retire dirty space gradually, as the physical
3564 * i/os complete.
3565 */
3566/* ARGSUSED */
3567static void
3568dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3569{
3570 dmu_buf_impl_t *db = arg;
3571 objset_t *os = db->db_objset;
3572 dsl_pool_t *dp = dmu_objset_pool(os);
3573 dbuf_dirty_record_t *dr;
3574 int delta = 0;
3575
3576 dr = db->db_data_pending;
3577 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3578
3579 /*
3580 * The callback will be called io_phys_children times. Retire one
3581 * portion of our dirty space each time we are called. Any rounding
3582 * error will be cleaned up by dsl_pool_sync()'s call to
3583 * dsl_pool_undirty_space().
3584 */
3585 delta = dr->dr_accounted / zio->io_phys_children;
3586 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3587}
3588
34dc7c2f
BB
3589/* ARGSUSED */
3590static void
3591dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3592{
3593 dmu_buf_impl_t *db = vdb;
428870ff 3594 blkptr_t *bp_orig = &zio->io_bp_orig;
b0bc7a84
MG
3595 blkptr_t *bp = db->db_blkptr;
3596 objset_t *os = db->db_objset;
3597 dmu_tx_t *tx = os->os_synctx;
34dc7c2f
BB
3598 dbuf_dirty_record_t **drp, *dr;
3599
c99c9001 3600 ASSERT0(zio->io_error);
428870ff
BB
3601 ASSERT(db->db_blkptr == bp);
3602
03c6040b
GW
3603 /*
3604 * For nopwrites and rewrites we ensure that the bp matches our
3605 * original and bypass all the accounting.
3606 */
3607 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
428870ff
BB
3608 ASSERT(BP_EQUAL(bp, bp_orig));
3609 } else {
b0bc7a84 3610 dsl_dataset_t *ds = os->os_dsl_dataset;
428870ff
BB
3611 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3612 dsl_dataset_block_born(ds, bp, tx);
3613 }
34dc7c2f
BB
3614
3615 mutex_enter(&db->db_mtx);
3616
428870ff
BB
3617 DBUF_VERIFY(db);
3618
34dc7c2f
BB
3619 drp = &db->db_last_dirty;
3620 while ((dr = *drp) != db->db_data_pending)
3621 drp = &dr->dr_next;
3622 ASSERT(!list_link_active(&dr->dr_dirty_node));
428870ff 3623 ASSERT(dr->dr_dbuf == db);
34dc7c2f
BB
3624 ASSERT(dr->dr_next == NULL);
3625 *drp = dr->dr_next;
3626
428870ff
BB
3627#ifdef ZFS_DEBUG
3628 if (db->db_blkid == DMU_SPILL_BLKID) {
572e2857
BB
3629 dnode_t *dn;
3630
3631 DB_DNODE_ENTER(db);
3632 dn = DB_DNODE(db);
428870ff
BB
3633 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3634 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
50c957f7 3635 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
572e2857 3636 DB_DNODE_EXIT(db);
428870ff
BB
3637 }
3638#endif
3639
34dc7c2f 3640 if (db->db_level == 0) {
428870ff 3641 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f 3642 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
b128c09f
BB
3643 if (db->db_state != DB_NOFILL) {
3644 if (dr->dt.dl.dr_data != db->db_buf)
d3c2ae1c 3645 arc_buf_destroy(dr->dt.dl.dr_data, db);
b128c09f 3646 }
34dc7c2f 3647 } else {
572e2857
BB
3648 dnode_t *dn;
3649
3650 DB_DNODE_ENTER(db);
3651 dn = DB_DNODE(db);
34dc7c2f 3652 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
b0bc7a84 3653 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
34dc7c2f 3654 if (!BP_IS_HOLE(db->db_blkptr)) {
1fde1e37
BB
3655 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
3656 SPA_BLKPTRSHIFT);
b0bc7a84
MG
3657 ASSERT3U(db->db_blkid, <=,
3658 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
34dc7c2f
BB
3659 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3660 db->db.db_size);
34dc7c2f 3661 }
572e2857 3662 DB_DNODE_EXIT(db);
34dc7c2f
BB
3663 mutex_destroy(&dr->dt.di.dr_mtx);
3664 list_destroy(&dr->dt.di.dr_children);
3665 }
3666 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3667
3668 cv_broadcast(&db->db_changed);
3669 ASSERT(db->db_dirtycnt > 0);
3670 db->db_dirtycnt -= 1;
3671 db->db_data_pending = NULL;
b0bc7a84 3672 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
428870ff
BB
3673}
3674
3675static void
3676dbuf_write_nofill_ready(zio_t *zio)
3677{
3678 dbuf_write_ready(zio, NULL, zio->io_private);
3679}
3680
3681static void
3682dbuf_write_nofill_done(zio_t *zio)
3683{
3684 dbuf_write_done(zio, NULL, zio->io_private);
3685}
3686
3687static void
3688dbuf_write_override_ready(zio_t *zio)
3689{
3690 dbuf_dirty_record_t *dr = zio->io_private;
3691 dmu_buf_impl_t *db = dr->dr_dbuf;
3692
3693 dbuf_write_ready(zio, NULL, db);
3694}
3695
3696static void
3697dbuf_write_override_done(zio_t *zio)
3698{
3699 dbuf_dirty_record_t *dr = zio->io_private;
3700 dmu_buf_impl_t *db = dr->dr_dbuf;
3701 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3702
3703 mutex_enter(&db->db_mtx);
3704 if (!BP_EQUAL(zio->io_bp, obp)) {
3705 if (!BP_IS_HOLE(obp))
3706 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3707 arc_release(dr->dt.dl.dr_data, db);
3708 }
34dc7c2f
BB
3709 mutex_exit(&db->db_mtx);
3710
428870ff
BB
3711 dbuf_write_done(zio, NULL, db);
3712}
3713
e49f1e20 3714/* Issue I/O to commit a dirty buffer to disk. */
428870ff
BB
3715static void
3716dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3717{
3718 dmu_buf_impl_t *db = dr->dr_dbuf;
572e2857
BB
3719 dnode_t *dn;
3720 objset_t *os;
428870ff
BB
3721 dmu_buf_impl_t *parent = db->db_parent;
3722 uint64_t txg = tx->tx_txg;
5dbd68a3 3723 zbookmark_phys_t zb;
428870ff
BB
3724 zio_prop_t zp;
3725 zio_t *zio;
3726 int wp_flag = 0;
34dc7c2f 3727
463a8cfe
AR
3728 ASSERT(dmu_tx_is_syncing(tx));
3729
572e2857
BB
3730 DB_DNODE_ENTER(db);
3731 dn = DB_DNODE(db);
3732 os = dn->dn_objset;
3733
428870ff
BB
3734 if (db->db_state != DB_NOFILL) {
3735 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3736 /*
3737 * Private object buffers are released here rather
3738 * than in dbuf_dirty() since they are only modified
3739 * in the syncing context and we don't want the
3740 * overhead of making multiple copies of the data.
3741 */
3742 if (BP_IS_HOLE(db->db_blkptr)) {
3743 arc_buf_thaw(data);
3744 } else {
3745 dbuf_release_bp(db);
3746 }
3747 }
3748 }
3749
3750 if (parent != dn->dn_dbuf) {
e49f1e20
WA
3751 /* Our parent is an indirect block. */
3752 /* We have a dirty parent that has been scheduled for write. */
428870ff 3753 ASSERT(parent && parent->db_data_pending);
e49f1e20 3754 /* Our parent's buffer is one level closer to the dnode. */
428870ff 3755 ASSERT(db->db_level == parent->db_level-1);
e49f1e20
WA
3756 /*
3757 * We're about to modify our parent's db_data by modifying
3758 * our block pointer, so the parent must be released.
3759 */
428870ff
BB
3760 ASSERT(arc_released(parent->db_buf));
3761 zio = parent->db_data_pending->dr_zio;
3762 } else {
e49f1e20 3763 /* Our parent is the dnode itself. */
428870ff
BB
3764 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3765 db->db_blkid != DMU_SPILL_BLKID) ||
3766 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3767 if (db->db_blkid != DMU_SPILL_BLKID)
3768 ASSERT3P(db->db_blkptr, ==,
3769 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3770 zio = dn->dn_zio;
3771 }
3772
3773 ASSERT(db->db_level == 0 || data == db->db_buf);
3774 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3775 ASSERT(zio);
3776
3777 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3778 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3779 db->db.db_object, db->db_level, db->db_blkid);
3780
3781 if (db->db_blkid == DMU_SPILL_BLKID)
3782 wp_flag = WP_SPILL;
3783 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3784
2aa34383
DK
3785 dmu_write_policy(os, dn, db->db_level, wp_flag,
3786 (data != NULL && arc_get_compression(data) != ZIO_COMPRESS_OFF) ?
3787 arc_get_compression(data) : ZIO_COMPRESS_INHERIT, &zp);
572e2857 3788 DB_DNODE_EXIT(db);
428870ff 3789
463a8cfe
AR
3790 /*
3791 * We copy the blkptr now (rather than when we instantiate the dirty
3792 * record), because its value can change between open context and
3793 * syncing context. We do not need to hold dn_struct_rwlock to read
3794 * db_blkptr because we are in syncing context.
3795 */
3796 dr->dr_bp_copy = *db->db_blkptr;
3797
9b67f605
MA
3798 if (db->db_level == 0 &&
3799 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3800 /*
3801 * The BP for this block has been provided by open context
3802 * (by dmu_sync() or dmu_buf_write_embedded()).
3803 */
3804 void *contents = (data != NULL) ? data->b_data : NULL;
3805
428870ff 3806 dr->dr_zio = zio_write(zio, os->os_spa, txg,
2aa34383
DK
3807 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
3808 &zp, dbuf_write_override_ready, NULL, NULL,
bc77ba73 3809 dbuf_write_override_done,
e8b96c60 3810 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
428870ff
BB
3811 mutex_enter(&db->db_mtx);
3812 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3813 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
03c6040b 3814 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
428870ff
BB
3815 mutex_exit(&db->db_mtx);
3816 } else if (db->db_state == DB_NOFILL) {
3c67d83a
TH
3817 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3818 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
428870ff 3819 dr->dr_zio = zio_write(zio, os->os_spa, txg,
2aa34383 3820 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
bc77ba73
PD
3821 dbuf_write_nofill_ready, NULL, NULL,
3822 dbuf_write_nofill_done, db,
428870ff
BB
3823 ZIO_PRIORITY_ASYNC_WRITE,
3824 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3825 } else {
bc77ba73 3826 arc_done_func_t *children_ready_cb = NULL;
428870ff 3827 ASSERT(arc_released(data));
bc77ba73
PD
3828
3829 /*
3830 * For indirect blocks, we want to setup the children
3831 * ready callback so that we can properly handle an indirect
3832 * block that only contains holes.
3833 */
3834 if (db->db_level != 0)
3835 children_ready_cb = dbuf_write_children_ready;
3836
428870ff 3837 dr->dr_zio = arc_write(zio, os->os_spa, txg,
463a8cfe 3838 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
d3c2ae1c
GW
3839 &zp, dbuf_write_ready,
3840 children_ready_cb, dbuf_write_physdone,
3841 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
3842 ZIO_FLAG_MUSTSUCCEED, &zb);
428870ff 3843 }
34dc7c2f 3844}
c28b2279
BB
3845
3846#if defined(_KERNEL) && defined(HAVE_SPL)
8f576c23
BB
3847EXPORT_SYMBOL(dbuf_find);
3848EXPORT_SYMBOL(dbuf_is_metadata);
d3c2ae1c 3849EXPORT_SYMBOL(dbuf_destroy);
8f576c23
BB
3850EXPORT_SYMBOL(dbuf_loan_arcbuf);
3851EXPORT_SYMBOL(dbuf_whichblock);
3852EXPORT_SYMBOL(dbuf_read);
3853EXPORT_SYMBOL(dbuf_unoverride);
3854EXPORT_SYMBOL(dbuf_free_range);
3855EXPORT_SYMBOL(dbuf_new_size);
3856EXPORT_SYMBOL(dbuf_release_bp);
3857EXPORT_SYMBOL(dbuf_dirty);
c28b2279 3858EXPORT_SYMBOL(dmu_buf_will_dirty);
8f576c23
BB
3859EXPORT_SYMBOL(dmu_buf_will_not_fill);
3860EXPORT_SYMBOL(dmu_buf_will_fill);
3861EXPORT_SYMBOL(dmu_buf_fill_done);
4047414a 3862EXPORT_SYMBOL(dmu_buf_rele);
8f576c23 3863EXPORT_SYMBOL(dbuf_assign_arcbuf);
8f576c23
BB
3864EXPORT_SYMBOL(dbuf_prefetch);
3865EXPORT_SYMBOL(dbuf_hold_impl);
3866EXPORT_SYMBOL(dbuf_hold);
3867EXPORT_SYMBOL(dbuf_hold_level);
3868EXPORT_SYMBOL(dbuf_create_bonus);
3869EXPORT_SYMBOL(dbuf_spill_set_blksz);
3870EXPORT_SYMBOL(dbuf_rm_spill);
3871EXPORT_SYMBOL(dbuf_add_ref);
3872EXPORT_SYMBOL(dbuf_rele);
3873EXPORT_SYMBOL(dbuf_rele_and_unlock);
3874EXPORT_SYMBOL(dbuf_refcount);
3875EXPORT_SYMBOL(dbuf_sync_list);
3876EXPORT_SYMBOL(dmu_buf_set_user);
3877EXPORT_SYMBOL(dmu_buf_set_user_ie);
8f576c23
BB
3878EXPORT_SYMBOL(dmu_buf_get_user);
3879EXPORT_SYMBOL(dmu_buf_freeable);
0f699108 3880EXPORT_SYMBOL(dmu_buf_get_blkptr);
d3c2ae1c
GW
3881
3882
3883module_param(dbuf_cache_max_bytes, ulong, 0644);
3884MODULE_PARM_DESC(dbuf_cache_max_bytes,
3885 "Maximum size in bytes of the dbuf cache.");
3886
3887module_param(dbuf_cache_hiwater_pct, uint, 0644);
3888MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
3889 "Percentage over dbuf_cache_max_bytes when dbufs \
3890 much be evicted directly.");
3891
3892module_param(dbuf_cache_lowater_pct, uint, 0644);
3893MODULE_PARM_DESC(dbuf_cache_lowater_pct,
3894 "Percentage below dbuf_cache_max_bytes \
3895 when the evict thread stop evicting dbufs.");
3896
3897module_param(dbuf_cache_max_shift, int, 0644);
3898MODULE_PARM_DESC(dbuf_cache_max_shift,
3899 "Cap the size of the dbuf cache to log2 fraction of arc size.");
3900
c28b2279 3901#endif