]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu.c
Fix ENXIO from spa_ld_verify_logs() in ztest
[mirror_zfs.git] / module / zfs / dmu.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
82644107 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
bc77ba73 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
a08abc1b 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
5475aada 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
34dc7c2f
BB
28 */
29
34dc7c2f
BB
30#include <sys/dmu.h>
31#include <sys/dmu_impl.h>
32#include <sys/dmu_tx.h>
33#include <sys/dbuf.h>
34#include <sys/dnode.h>
35#include <sys/zfs_context.h>
36#include <sys/dmu_objset.h>
37#include <sys/dmu_traverse.h>
38#include <sys/dsl_dataset.h>
39#include <sys/dsl_dir.h>
40#include <sys/dsl_pool.h>
41#include <sys/dsl_synctask.h>
42#include <sys/dsl_prop.h>
43#include <sys/dmu_zfetch.h>
44#include <sys/zfs_ioctl.h>
45#include <sys/zap.h>
46#include <sys/zio_checksum.h>
03c6040b 47#include <sys/zio_compress.h>
428870ff 48#include <sys/sa.h>
62bdd5eb 49#include <sys/zfeature.h>
a6255b7f 50#include <sys/abd.h>
539d33c7 51#include <sys/trace_dmu.h>
f763c3d1 52#include <sys/zfs_rlock.h>
34dc7c2f
BB
53#ifdef _KERNEL
54#include <sys/vmsystm.h>
b128c09f 55#include <sys/zfs_znode.h>
34dc7c2f
BB
56#endif
57
03c6040b
GW
58/*
59 * Enable/disable nopwrite feature.
60 */
61int zfs_nopwrite_enabled = 1;
62
539d33c7
GM
63/*
64 * Tunable to control percentage of dirtied blocks from frees in one TXG.
65 * After this threshold is crossed, additional dirty blocks from frees
66 * wait until the next TXG.
67 * A value of zero will disable this throttle.
68 */
bef78122 69unsigned long zfs_per_txg_dirty_frees_percent = 30;
539d33c7 70
66aca247
DB
71/*
72 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
73 */
74int zfs_dmu_offset_next_sync = 0;
75
a1d477c2
MA
76/*
77 * This can be used for testing, to ensure that certain actions happen
78 * while in the middle of a remap (which might otherwise complete too
79 * quickly).
80 */
81int zfs_object_remap_one_indirect_delay_ticks = 0;
82
34dc7c2f 83const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
2e5dc449
MA
84 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
85 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
86 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
87 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
88 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
89 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
90 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
91 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
92 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
93 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
94 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
95 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
96 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
97 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
98 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
99 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
100 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
101 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
102 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
103 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
104 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
105 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
106 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
107 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
108 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
109 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
110 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
111 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
112 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
113 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
114 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
115 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
116 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
117 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
118 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
119 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
120 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
121 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
122 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
123 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
124 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
125 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
126 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
127 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
128 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
129 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
130 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
131 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
132 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
133 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
134 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
135 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
136 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
137 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
9ae529ec
CS
138};
139
140const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
141 { byteswap_uint8_array, "uint8" },
142 { byteswap_uint16_array, "uint16" },
143 { byteswap_uint32_array, "uint32" },
144 { byteswap_uint64_array, "uint64" },
145 { zap_byteswap, "zap" },
146 { dnode_buf_byteswap, "dnode" },
147 { dmu_objset_byteswap, "objset" },
148 { zfs_znode_byteswap, "znode" },
149 { zfs_oldacl_byteswap, "oldacl" },
150 { zfs_acl_byteswap, "acl" }
34dc7c2f
BB
151};
152
2bce8049
MA
153int
154dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
155 void *tag, dmu_buf_t **dbp)
156{
157 uint64_t blkid;
158 dmu_buf_impl_t *db;
159
160 blkid = dbuf_whichblock(dn, 0, offset);
161 rw_enter(&dn->dn_struct_rwlock, RW_READER);
162 db = dbuf_hold(dn, blkid, tag);
163 rw_exit(&dn->dn_struct_rwlock);
164
165 if (db == NULL) {
166 *dbp = NULL;
167 return (SET_ERROR(EIO));
168 }
169
170 *dbp = &db->db;
171 return (0);
172}
34dc7c2f 173int
9b67f605
MA
174dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
175 void *tag, dmu_buf_t **dbp)
34dc7c2f
BB
176{
177 dnode_t *dn;
178 uint64_t blkid;
179 dmu_buf_impl_t *db;
180 int err;
428870ff
BB
181
182 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
183 if (err)
184 return (err);
fcff0f35 185 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f
BB
186 rw_enter(&dn->dn_struct_rwlock, RW_READER);
187 db = dbuf_hold(dn, blkid, tag);
188 rw_exit(&dn->dn_struct_rwlock);
9b67f605
MA
189 dnode_rele(dn, FTAG);
190
34dc7c2f 191 if (db == NULL) {
9b67f605
MA
192 *dbp = NULL;
193 return (SET_ERROR(EIO));
194 }
195
196 *dbp = &db->db;
197 return (err);
198}
199
2bce8049
MA
200int
201dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
202 void *tag, dmu_buf_t **dbp, int flags)
203{
204 int err;
205 int db_flags = DB_RF_CANFAIL;
206
207 if (flags & DMU_READ_NO_PREFETCH)
208 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
209 if (flags & DMU_READ_NO_DECRYPT)
210 db_flags |= DB_RF_NO_DECRYPT;
2bce8049
MA
211
212 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
213 if (err == 0) {
214 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
215 err = dbuf_read(db, NULL, db_flags);
216 if (err != 0) {
217 dbuf_rele(db, tag);
218 *dbp = NULL;
219 }
220 }
221
222 return (err);
223}
224
9b67f605
MA
225int
226dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
227 void *tag, dmu_buf_t **dbp, int flags)
228{
229 int err;
230 int db_flags = DB_RF_CANFAIL;
231
232 if (flags & DMU_READ_NO_PREFETCH)
233 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
234 if (flags & DMU_READ_NO_DECRYPT)
235 db_flags |= DB_RF_NO_DECRYPT;
9b67f605
MA
236
237 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
238 if (err == 0) {
239 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
428870ff 240 err = dbuf_read(db, NULL, db_flags);
9b67f605 241 if (err != 0) {
34dc7c2f 242 dbuf_rele(db, tag);
9b67f605 243 *dbp = NULL;
34dc7c2f
BB
244 }
245 }
246
34dc7c2f
BB
247 return (err);
248}
249
250int
251dmu_bonus_max(void)
252{
50c957f7 253 return (DN_OLD_MAX_BONUSLEN);
34dc7c2f
BB
254}
255
256int
572e2857 257dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
34dc7c2f 258{
572e2857
BB
259 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
260 dnode_t *dn;
261 int error;
34dc7c2f 262
572e2857
BB
263 DB_DNODE_ENTER(db);
264 dn = DB_DNODE(db);
265
266 if (dn->dn_bonus != db) {
2e528b49 267 error = SET_ERROR(EINVAL);
572e2857 268 } else if (newsize < 0 || newsize > db_fake->db_size) {
2e528b49 269 error = SET_ERROR(EINVAL);
572e2857
BB
270 } else {
271 dnode_setbonuslen(dn, newsize, tx);
272 error = 0;
273 }
274
275 DB_DNODE_EXIT(db);
276 return (error);
34dc7c2f
BB
277}
278
428870ff 279int
572e2857 280dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
428870ff 281{
572e2857
BB
282 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
283 dnode_t *dn;
284 int error;
428870ff 285
572e2857
BB
286 DB_DNODE_ENTER(db);
287 dn = DB_DNODE(db);
428870ff 288
9ae529ec 289 if (!DMU_OT_IS_VALID(type)) {
2e528b49 290 error = SET_ERROR(EINVAL);
572e2857 291 } else if (dn->dn_bonus != db) {
2e528b49 292 error = SET_ERROR(EINVAL);
572e2857
BB
293 } else {
294 dnode_setbonus_type(dn, type, tx);
295 error = 0;
296 }
428870ff 297
572e2857
BB
298 DB_DNODE_EXIT(db);
299 return (error);
300}
301
302dmu_object_type_t
303dmu_get_bonustype(dmu_buf_t *db_fake)
304{
305 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
306 dnode_t *dn;
307 dmu_object_type_t type;
308
309 DB_DNODE_ENTER(db);
310 dn = DB_DNODE(db);
311 type = dn->dn_bonustype;
312 DB_DNODE_EXIT(db);
313
314 return (type);
428870ff
BB
315}
316
317int
318dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
319{
320 dnode_t *dn;
321 int error;
322
323 error = dnode_hold(os, object, FTAG, &dn);
324 dbuf_rm_spill(dn, tx);
325 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
326 dnode_rm_spill(dn, tx);
327 rw_exit(&dn->dn_struct_rwlock);
328 dnode_rele(dn, FTAG);
329 return (error);
330}
331
34dc7c2f
BB
332/*
333 * returns ENOENT, EIO, or 0.
334 */
335int
b5256303
TC
336dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, uint32_t flags,
337 dmu_buf_t **dbp)
34dc7c2f
BB
338{
339 dnode_t *dn;
340 dmu_buf_impl_t *db;
341 int error;
b5256303
TC
342 uint32_t db_flags = DB_RF_MUST_SUCCEED;
343
344 if (flags & DMU_READ_NO_PREFETCH)
345 db_flags |= DB_RF_NOPREFETCH;
346 if (flags & DMU_READ_NO_DECRYPT)
347 db_flags |= DB_RF_NO_DECRYPT;
34dc7c2f 348
428870ff 349 error = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
350 if (error)
351 return (error);
352
353 rw_enter(&dn->dn_struct_rwlock, RW_READER);
354 if (dn->dn_bonus == NULL) {
355 rw_exit(&dn->dn_struct_rwlock);
356 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
357 if (dn->dn_bonus == NULL)
358 dbuf_create_bonus(dn);
359 }
360 db = dn->dn_bonus;
34dc7c2f
BB
361
362 /* as long as the bonus buf is held, the dnode will be held */
c13060e4 363 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
34dc7c2f 364 VERIFY(dnode_add_ref(dn, db));
73ad4a9f 365 atomic_inc_32(&dn->dn_dbufs_count);
572e2857
BB
366 }
367
368 /*
369 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
370 * hold and incrementing the dbuf count to ensure that dnode_move() sees
371 * a dnode hold for every dbuf.
372 */
373 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f
BB
374
375 dnode_rele(dn, FTAG);
376
b5256303
TC
377 error = dbuf_read(db, NULL, db_flags);
378 if (error) {
379 dnode_evict_bonus(dn);
380 dbuf_rele(db, tag);
381 *dbp = NULL;
382 return (error);
383 }
34dc7c2f
BB
384
385 *dbp = &db->db;
386 return (0);
387}
388
b5256303
TC
389int
390dmu_bonus_hold(objset_t *os, uint64_t obj, void *tag, dmu_buf_t **dbp)
391{
392 return (dmu_bonus_hold_impl(os, obj, tag, DMU_READ_NO_PREFETCH, dbp));
393}
394
428870ff
BB
395/*
396 * returns ENOENT, EIO, or 0.
397 *
398 * This interface will allocate a blank spill dbuf when a spill blk
399 * doesn't already exist on the dnode.
400 *
401 * if you only want to find an already existing spill db, then
402 * dmu_spill_hold_existing() should be used.
403 */
404int
405dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
406{
407 dmu_buf_impl_t *db = NULL;
408 int err;
409
410 if ((flags & DB_RF_HAVESTRUCT) == 0)
411 rw_enter(&dn->dn_struct_rwlock, RW_READER);
412
413 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
414
415 if ((flags & DB_RF_HAVESTRUCT) == 0)
416 rw_exit(&dn->dn_struct_rwlock);
417
b182ac00 418 if (db == NULL) {
419 *dbp = NULL;
420 return (SET_ERROR(EIO));
421 }
572e2857
BB
422 err = dbuf_read(db, NULL, flags);
423 if (err == 0)
424 *dbp = &db->db;
b182ac00 425 else {
572e2857 426 dbuf_rele(db, tag);
b182ac00 427 *dbp = NULL;
428 }
428870ff
BB
429 return (err);
430}
431
432int
433dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
434{
572e2857
BB
435 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
436 dnode_t *dn;
428870ff
BB
437 int err;
438
572e2857
BB
439 DB_DNODE_ENTER(db);
440 dn = DB_DNODE(db);
441
442 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
2e528b49 443 err = SET_ERROR(EINVAL);
572e2857
BB
444 } else {
445 rw_enter(&dn->dn_struct_rwlock, RW_READER);
446
447 if (!dn->dn_have_spill) {
2e528b49 448 err = SET_ERROR(ENOENT);
572e2857
BB
449 } else {
450 err = dmu_spill_hold_by_dnode(dn,
451 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
452 }
428870ff 453
428870ff 454 rw_exit(&dn->dn_struct_rwlock);
428870ff 455 }
572e2857
BB
456
457 DB_DNODE_EXIT(db);
428870ff
BB
458 return (err);
459}
460
461int
e7504d7a
TC
462dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
463 dmu_buf_t **dbp)
428870ff 464{
572e2857
BB
465 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
466 dnode_t *dn;
467 int err;
e7504d7a
TC
468 uint32_t db_flags = DB_RF_CANFAIL;
469
470 if (flags & DMU_READ_NO_DECRYPT)
471 db_flags |= DB_RF_NO_DECRYPT;
572e2857
BB
472
473 DB_DNODE_ENTER(db);
474 dn = DB_DNODE(db);
e7504d7a 475 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
572e2857
BB
476 DB_DNODE_EXIT(db);
477
478 return (err);
428870ff
BB
479}
480
34dc7c2f
BB
481/*
482 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
483 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
484 * and can induce severe lock contention when writing to several files
485 * whose dnodes are in the same block.
486 */
487static int
9babb374 488dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
7f60329a 489 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
34dc7c2f
BB
490{
491 dmu_buf_t **dbp;
492 uint64_t blkid, nblks, i;
9babb374 493 uint32_t dbuf_flags;
34dc7c2f
BB
494 int err;
495 zio_t *zio;
496
497 ASSERT(length <= DMU_MAX_ACCESS);
498
7f60329a
MA
499 /*
500 * Note: We directly notify the prefetch code of this read, so that
501 * we can tell it about the multi-block read. dbuf_read() only knows
502 * about the one block it is accessing.
503 */
504 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
505 DB_RF_NOPREFETCH;
34dc7c2f
BB
506
507 rw_enter(&dn->dn_struct_rwlock, RW_READER);
508 if (dn->dn_datablkshift) {
509 int blkshift = dn->dn_datablkshift;
7f60329a
MA
510 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
511 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
34dc7c2f
BB
512 } else {
513 if (offset + length > dn->dn_datablksz) {
514 zfs_panic_recover("zfs: accessing past end of object "
515 "%llx/%llx (size=%u access=%llu+%llu)",
516 (longlong_t)dn->dn_objset->
517 os_dsl_dataset->ds_object,
518 (longlong_t)dn->dn_object, dn->dn_datablksz,
519 (longlong_t)offset, (longlong_t)length);
45d1cae3 520 rw_exit(&dn->dn_struct_rwlock);
2e528b49 521 return (SET_ERROR(EIO));
34dc7c2f
BB
522 }
523 nblks = 1;
524 }
79c76d5b 525 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
34dc7c2f 526
b128c09f 527 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
fcff0f35 528 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f 529 for (i = 0; i < nblks; i++) {
7f60329a 530 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
34dc7c2f
BB
531 if (db == NULL) {
532 rw_exit(&dn->dn_struct_rwlock);
533 dmu_buf_rele_array(dbp, nblks, tag);
534 zio_nowait(zio);
2e528b49 535 return (SET_ERROR(EIO));
34dc7c2f 536 }
7f60329a 537
34dc7c2f 538 /* initiate async i/o */
7f60329a 539 if (read)
9babb374 540 (void) dbuf_read(db, zio, dbuf_flags);
34dc7c2f
BB
541 dbp[i] = &db->db;
542 }
7f60329a 543
755065f3
AM
544 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
545 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
546 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
547 read && DNODE_IS_CACHEABLE(dn));
7f60329a 548 }
34dc7c2f
BB
549 rw_exit(&dn->dn_struct_rwlock);
550
551 /* wait for async i/o */
552 err = zio_wait(zio);
553 if (err) {
554 dmu_buf_rele_array(dbp, nblks, tag);
555 return (err);
556 }
557
558 /* wait for other io to complete */
559 if (read) {
560 for (i = 0; i < nblks; i++) {
561 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
562 mutex_enter(&db->db_mtx);
563 while (db->db_state == DB_READ ||
564 db->db_state == DB_FILL)
565 cv_wait(&db->db_changed, &db->db_mtx);
566 if (db->db_state == DB_UNCACHED)
2e528b49 567 err = SET_ERROR(EIO);
34dc7c2f
BB
568 mutex_exit(&db->db_mtx);
569 if (err) {
570 dmu_buf_rele_array(dbp, nblks, tag);
571 return (err);
572 }
573 }
574 }
575
576 *numbufsp = nblks;
577 *dbpp = dbp;
578 return (0);
579}
580
581static int
582dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
583 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
584{
585 dnode_t *dn;
586 int err;
587
428870ff 588 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
589 if (err)
590 return (err);
591
592 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 593 numbufsp, dbpp, DMU_READ_PREFETCH);
34dc7c2f
BB
594
595 dnode_rele(dn, FTAG);
596
597 return (err);
598}
599
600int
572e2857 601dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
7f60329a
MA
602 uint64_t length, boolean_t read, void *tag, int *numbufsp,
603 dmu_buf_t ***dbpp)
34dc7c2f 604{
572e2857
BB
605 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
606 dnode_t *dn;
34dc7c2f
BB
607 int err;
608
572e2857
BB
609 DB_DNODE_ENTER(db);
610 dn = DB_DNODE(db);
34dc7c2f 611 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 612 numbufsp, dbpp, DMU_READ_PREFETCH);
572e2857 613 DB_DNODE_EXIT(db);
34dc7c2f
BB
614
615 return (err);
616}
617
618void
619dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
620{
621 int i;
622 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
623
624 if (numbufs == 0)
625 return;
626
627 for (i = 0; i < numbufs; i++) {
628 if (dbp[i])
629 dbuf_rele(dbp[i], tag);
630 }
631
632 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
633}
634
e8b96c60 635/*
fcff0f35
PD
636 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
637 * indirect blocks prefeteched will be those that point to the blocks containing
638 * the data starting at offset, and continuing to offset + len.
e8b96c60 639 *
b5256303
TC
640 * Note that if the indirect blocks above the blocks being prefetched are not
641 * in cache, they will be asychronously read in.
e8b96c60 642 */
34dc7c2f 643void
fcff0f35
PD
644dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
645 uint64_t len, zio_priority_t pri)
34dc7c2f
BB
646{
647 dnode_t *dn;
648 uint64_t blkid;
e8b96c60 649 int nblks, err;
34dc7c2f 650
34dc7c2f 651 if (len == 0) { /* they're interested in the bonus buffer */
572e2857 652 dn = DMU_META_DNODE(os);
34dc7c2f
BB
653
654 if (object == 0 || object >= DN_MAX_OBJECT)
655 return;
656
657 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
658 blkid = dbuf_whichblock(dn, level,
659 object * sizeof (dnode_phys_t));
660 dbuf_prefetch(dn, level, blkid, pri, 0);
34dc7c2f
BB
661 rw_exit(&dn->dn_struct_rwlock);
662 return;
663 }
664
665 /*
666 * XXX - Note, if the dnode for the requested object is not
667 * already cached, we will do a *synchronous* read in the
668 * dnode_hold() call. The same is true for any indirects.
669 */
428870ff 670 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
671 if (err != 0)
672 return;
673
674 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
675 /*
676 * offset + len - 1 is the last byte we want to prefetch for, and offset
677 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
678 * last block we want to prefetch, and dbuf_whichblock(dn, level,
679 * offset) is the first. Then the number we need to prefetch is the
680 * last - first + 1.
681 */
682 if (level > 0 || dn->dn_datablkshift != 0) {
683 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
684 dbuf_whichblock(dn, level, offset) + 1;
34dc7c2f
BB
685 } else {
686 nblks = (offset < dn->dn_datablksz);
687 }
688
689 if (nblks != 0) {
fcff0f35 690 blkid = dbuf_whichblock(dn, level, offset);
1c27024e 691 for (int i = 0; i < nblks; i++)
fcff0f35 692 dbuf_prefetch(dn, level, blkid + i, pri, 0);
34dc7c2f
BB
693 }
694
695 rw_exit(&dn->dn_struct_rwlock);
696
697 dnode_rele(dn, FTAG);
698}
699
45d1cae3
BB
700/*
701 * Get the next "chunk" of file data to free. We traverse the file from
702 * the end so that the file gets shorter over time (if we crashes in the
703 * middle, this will leave us in a better state). We find allocated file
704 * data by simply searching the allocated level 1 indirects.
b663a23d
MA
705 *
706 * On input, *start should be the first offset that does not need to be
707 * freed (e.g. "offset + length"). On return, *start will be the first
708 * offset that should be freed.
45d1cae3 709 */
b128c09f 710static int
b663a23d 711get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
b128c09f 712{
b663a23d
MA
713 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
714 /* bytes of data covered by a level-1 indirect block */
45d1cae3 715 uint64_t iblkrange =
b128c09f
BB
716 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
717
b663a23d 718 ASSERT3U(minimum, <=, *start);
b128c09f 719
b663a23d
MA
720 if (*start - minimum <= iblkrange * maxblks) {
721 *start = minimum;
b128c09f
BB
722 return (0);
723 }
45d1cae3 724 ASSERT(ISP2(iblkrange));
b128c09f 725
1c27024e 726 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
b128c09f
BB
727 int err;
728
b663a23d
MA
729 /*
730 * dnode_next_offset(BACKWARDS) will find an allocated L1
731 * indirect block at or before the input offset. We must
732 * decrement *start so that it is at the end of the region
733 * to search.
734 */
735 (*start)--;
b128c09f 736 err = dnode_next_offset(dn,
45d1cae3 737 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
b128c09f 738
b663a23d 739 /* if there are no indirect blocks before start, we are done */
45d1cae3 740 if (err == ESRCH) {
b663a23d
MA
741 *start = minimum;
742 break;
743 } else if (err != 0) {
b128c09f 744 return (err);
45d1cae3 745 }
b128c09f 746
b663a23d 747 /* set start to the beginning of this L1 indirect */
45d1cae3 748 *start = P2ALIGN(*start, iblkrange);
b128c09f 749 }
b663a23d
MA
750 if (*start < minimum)
751 *start = minimum;
b128c09f
BB
752 return (0);
753}
754
a08abc1b
GM
755/*
756 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
757 * otherwise return false.
758 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
759 */
760/*ARGSUSED*/
761static boolean_t
762dmu_objset_zfs_unmounting(objset_t *os)
763{
764#ifdef _KERNEL
765 if (dmu_objset_type(os) == DMU_OST_ZFS)
766 return (zfs_get_vfs_flag_unmounted(os));
767#endif
768 return (B_FALSE);
769}
770
b128c09f
BB
771static int
772dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
0c03d21a 773 uint64_t length)
b128c09f 774{
c97d3069 775 uint64_t object_size;
b663a23d 776 int err;
539d33c7
GM
777 uint64_t dirty_frees_threshold;
778 dsl_pool_t *dp = dmu_objset_pool(os);
b663a23d 779
c97d3069
BB
780 if (dn == NULL)
781 return (SET_ERROR(EINVAL));
782
783 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
b663a23d 784 if (offset >= object_size)
b128c09f 785 return (0);
b128c09f 786
539d33c7
GM
787 if (zfs_per_txg_dirty_frees_percent <= 100)
788 dirty_frees_threshold =
789 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
790 else
791 dirty_frees_threshold = zfs_dirty_data_max / 4;
792
b663a23d
MA
793 if (length == DMU_OBJECT_END || offset + length > object_size)
794 length = object_size - offset;
795
796 while (length != 0) {
539d33c7
GM
797 uint64_t chunk_end, chunk_begin, chunk_len;
798 uint64_t long_free_dirty_all_txgs = 0;
b663a23d
MA
799 dmu_tx_t *tx;
800
a08abc1b
GM
801 if (dmu_objset_zfs_unmounting(dn->dn_objset))
802 return (SET_ERROR(EINTR));
803
b663a23d
MA
804 chunk_end = chunk_begin = offset + length;
805
806 /* move chunk_begin backwards to the beginning of this chunk */
807 err = get_next_chunk(dn, &chunk_begin, offset);
b128c09f
BB
808 if (err)
809 return (err);
b663a23d
MA
810 ASSERT3U(chunk_begin, >=, offset);
811 ASSERT3U(chunk_begin, <=, chunk_end);
b128c09f 812
539d33c7
GM
813 chunk_len = chunk_end - chunk_begin;
814
815 mutex_enter(&dp->dp_lock);
1c27024e 816 for (int t = 0; t < TXG_SIZE; t++) {
539d33c7
GM
817 long_free_dirty_all_txgs +=
818 dp->dp_long_free_dirty_pertxg[t];
819 }
820 mutex_exit(&dp->dp_lock);
821
822 /*
823 * To avoid filling up a TXG with just frees wait for
824 * the next TXG to open before freeing more chunks if
825 * we have reached the threshold of frees
826 */
827 if (dirty_frees_threshold != 0 &&
828 long_free_dirty_all_txgs >= dirty_frees_threshold) {
750e1f88 829 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
539d33c7
GM
830 txg_wait_open(dp, 0);
831 continue;
832 }
833
b128c09f 834 tx = dmu_tx_create(os);
539d33c7 835 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
19d55079
MA
836
837 /*
838 * Mark this transaction as typically resulting in a net
839 * reduction in space used.
840 */
841 dmu_tx_mark_netfree(tx);
b128c09f
BB
842 err = dmu_tx_assign(tx, TXG_WAIT);
843 if (err) {
844 dmu_tx_abort(tx);
845 return (err);
846 }
539d33c7
GM
847
848 mutex_enter(&dp->dp_lock);
849 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] +=
850 chunk_len;
851 mutex_exit(&dp->dp_lock);
852 DTRACE_PROBE3(free__long__range,
853 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len,
854 uint64_t, dmu_tx_get_txg(tx));
855 dnode_free_range(dn, chunk_begin, chunk_len, tx);
440a3eb9 856
b128c09f 857 dmu_tx_commit(tx);
b663a23d 858
539d33c7 859 length -= chunk_len;
b128c09f
BB
860 }
861 return (0);
862}
863
864int
865dmu_free_long_range(objset_t *os, uint64_t object,
866 uint64_t offset, uint64_t length)
867{
868 dnode_t *dn;
869 int err;
870
428870ff 871 err = dnode_hold(os, object, FTAG, &dn);
b128c09f
BB
872 if (err != 0)
873 return (err);
0c03d21a 874 err = dmu_free_long_range_impl(os, dn, offset, length);
92bc214c
MA
875
876 /*
877 * It is important to zero out the maxblkid when freeing the entire
878 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
879 * will take the fast path, and (b) dnode_reallocate() can verify
880 * that the entire file has been freed.
881 */
b0bc7a84 882 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
92bc214c
MA
883 dn->dn_maxblkid = 0;
884
b128c09f
BB
885 dnode_rele(dn, FTAG);
886 return (err);
887}
888
889int
0c03d21a 890dmu_free_long_object(objset_t *os, uint64_t object)
b128c09f 891{
b128c09f
BB
892 dmu_tx_t *tx;
893 int err;
894
b663a23d 895 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
b128c09f
BB
896 if (err != 0)
897 return (err);
b663a23d
MA
898
899 tx = dmu_tx_create(os);
900 dmu_tx_hold_bonus(tx, object);
901 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
19d55079 902 dmu_tx_mark_netfree(tx);
b663a23d
MA
903 err = dmu_tx_assign(tx, TXG_WAIT);
904 if (err == 0) {
35df0bb5
TC
905 if (err == 0)
906 err = dmu_object_free(os, object, tx);
440a3eb9 907
b663a23d 908 dmu_tx_commit(tx);
b128c09f 909 } else {
b663a23d 910 dmu_tx_abort(tx);
b128c09f 911 }
b663a23d 912
b128c09f
BB
913 return (err);
914}
915
34dc7c2f
BB
916int
917dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
918 uint64_t size, dmu_tx_t *tx)
919{
920 dnode_t *dn;
428870ff 921 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
922 if (err)
923 return (err);
924 ASSERT(offset < UINT64_MAX);
ee45fbd8 925 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
34dc7c2f
BB
926 dnode_free_range(dn, offset, size, tx);
927 dnode_rele(dn, FTAG);
928 return (0);
929}
930
0eef1bde 931static int
932dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
9babb374 933 void *buf, uint32_t flags)
34dc7c2f 934{
34dc7c2f 935 dmu_buf_t **dbp;
0eef1bde 936 int numbufs, err = 0;
34dc7c2f
BB
937
938 /*
939 * Deal with odd block sizes, where there can't be data past the first
940 * block. If we ever do the tail block optimization, we will need to
941 * handle that here as well.
942 */
45d1cae3 943 if (dn->dn_maxblkid == 0) {
c9520ecc 944 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
34dc7c2f
BB
945 MIN(size, dn->dn_datablksz - offset);
946 bzero((char *)buf + newsz, size - newsz);
947 size = newsz;
948 }
949
950 while (size > 0) {
951 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
45d1cae3 952 int i;
34dc7c2f
BB
953
954 /*
955 * NB: we could do this block-at-a-time, but it's nice
956 * to be reading in parallel.
957 */
958 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
9babb374 959 TRUE, FTAG, &numbufs, &dbp, flags);
34dc7c2f
BB
960 if (err)
961 break;
962
963 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
964 uint64_t tocpy;
965 int64_t bufoff;
34dc7c2f
BB
966 dmu_buf_t *db = dbp[i];
967
968 ASSERT(size > 0);
969
970 bufoff = offset - db->db_offset;
c9520ecc 971 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f 972
c9520ecc 973 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
34dc7c2f
BB
974
975 offset += tocpy;
976 size -= tocpy;
977 buf = (char *)buf + tocpy;
978 }
979 dmu_buf_rele_array(dbp, numbufs, FTAG);
980 }
34dc7c2f
BB
981 return (err);
982}
983
0eef1bde 984int
985dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
986 void *buf, uint32_t flags)
34dc7c2f 987{
0eef1bde 988 dnode_t *dn;
989 int err;
34dc7c2f 990
0eef1bde 991 err = dnode_hold(os, object, FTAG, &dn);
992 if (err != 0)
993 return (err);
34dc7c2f 994
0eef1bde 995 err = dmu_read_impl(dn, offset, size, buf, flags);
996 dnode_rele(dn, FTAG);
997 return (err);
998}
999
1000int
1001dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1002 uint32_t flags)
1003{
1004 return (dmu_read_impl(dn, offset, size, buf, flags));
1005}
1006
1007static void
1008dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1009 const void *buf, dmu_tx_t *tx)
1010{
1011 int i;
34dc7c2f
BB
1012
1013 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1014 uint64_t tocpy;
1015 int64_t bufoff;
34dc7c2f
BB
1016 dmu_buf_t *db = dbp[i];
1017
1018 ASSERT(size > 0);
1019
1020 bufoff = offset - db->db_offset;
c9520ecc 1021 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f
BB
1022
1023 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1024
1025 if (tocpy == db->db_size)
1026 dmu_buf_will_fill(db, tx);
1027 else
1028 dmu_buf_will_dirty(db, tx);
1029
60101509 1030 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
34dc7c2f
BB
1031
1032 if (tocpy == db->db_size)
1033 dmu_buf_fill_done(db, tx);
1034
1035 offset += tocpy;
1036 size -= tocpy;
1037 buf = (char *)buf + tocpy;
1038 }
0eef1bde 1039}
1040
1041void
1042dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1043 const void *buf, dmu_tx_t *tx)
1044{
1045 dmu_buf_t **dbp;
1046 int numbufs;
1047
1048 if (size == 0)
1049 return;
1050
1051 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1052 FALSE, FTAG, &numbufs, &dbp));
1053 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1054 dmu_buf_rele_array(dbp, numbufs, FTAG);
1055}
1056
1057void
1058dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1059 const void *buf, dmu_tx_t *tx)
1060{
1061 dmu_buf_t **dbp;
1062 int numbufs;
1063
1064 if (size == 0)
1065 return;
1066
1067 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1068 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1069 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
34dc7c2f
BB
1070 dmu_buf_rele_array(dbp, numbufs, FTAG);
1071}
1072
a1d477c2
MA
1073static int
1074dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn,
1075 uint64_t last_removal_txg, uint64_t offset)
1076{
1077 uint64_t l1blkid = dbuf_whichblock(dn, 1, offset);
1078 int err = 0;
1079
1080 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1081 dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1082 ASSERT3P(dbuf, !=, NULL);
1083
1084 /*
1085 * If the block hasn't been written yet, this default will ensure
1086 * we don't try to remap it.
1087 */
1088 uint64_t birth = UINT64_MAX;
1089 ASSERT3U(last_removal_txg, !=, UINT64_MAX);
1090 if (dbuf->db_blkptr != NULL)
1091 birth = dbuf->db_blkptr->blk_birth;
1092 rw_exit(&dn->dn_struct_rwlock);
1093
1094 /*
1095 * If this L1 was already written after the last removal, then we've
1096 * already tried to remap it.
1097 */
1098 if (birth <= last_removal_txg &&
1099 dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 &&
1100 dbuf_can_remap(dbuf)) {
1101 dmu_tx_t *tx = dmu_tx_create(os);
1102 dmu_tx_hold_remap_l1indirect(tx, dn->dn_object);
1103 err = dmu_tx_assign(tx, TXG_WAIT);
1104 if (err == 0) {
1105 (void) dbuf_dirty(dbuf, tx);
1106 dmu_tx_commit(tx);
1107 } else {
1108 dmu_tx_abort(tx);
1109 }
1110 }
1111
1112 dbuf_rele(dbuf, FTAG);
1113
1114 delay(zfs_object_remap_one_indirect_delay_ticks);
1115
1116 return (err);
1117}
1118
1119/*
1120 * Remap all blockpointers in the object, if possible, so that they reference
1121 * only concrete vdevs.
1122 *
1123 * To do this, iterate over the L0 blockpointers and remap any that reference
1124 * an indirect vdev. Note that we only examine L0 blockpointers; since we
1125 * cannot guarantee that we can remap all blockpointer anyways (due to split
1126 * blocks), we do not want to make the code unnecessarily complicated to
1127 * catch the unlikely case that there is an L1 block on an indirect vdev that
1128 * contains no indirect blockpointers.
1129 */
1130int
1131dmu_object_remap_indirects(objset_t *os, uint64_t object,
1132 uint64_t last_removal_txg)
1133{
1134 uint64_t offset, l1span;
1135 int err;
1136 dnode_t *dn;
1137
1138 err = dnode_hold(os, object, FTAG, &dn);
1139 if (err != 0) {
1140 return (err);
1141 }
1142
1143 if (dn->dn_nlevels <= 1) {
1144 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1145 err = SET_ERROR(EINTR);
1146 }
1147
1148 /*
1149 * If the dnode has no indirect blocks, we cannot dirty them.
1150 * We still want to remap the blkptr(s) in the dnode if
1151 * appropriate, so mark it as dirty.
1152 */
1153 if (err == 0 && dnode_needs_remap(dn)) {
1154 dmu_tx_t *tx = dmu_tx_create(os);
1155 dmu_tx_hold_bonus(tx, dn->dn_object);
1156 if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) {
1157 dnode_setdirty(dn, tx);
1158 dmu_tx_commit(tx);
1159 } else {
1160 dmu_tx_abort(tx);
1161 }
1162 }
1163
1164 dnode_rele(dn, FTAG);
1165 return (err);
1166 }
1167
1168 offset = 0;
1169 l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT +
1170 dn->dn_datablkshift);
1171 /*
1172 * Find the next L1 indirect that is not a hole.
1173 */
1174 while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) {
1175 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1176 err = SET_ERROR(EINTR);
1177 break;
1178 }
1179 if ((err = dmu_object_remap_one_indirect(os, dn,
1180 last_removal_txg, offset)) != 0) {
1181 break;
1182 }
1183 offset += l1span;
1184 }
1185
1186 dnode_rele(dn, FTAG);
1187 return (err);
1188}
1189
b128c09f
BB
1190void
1191dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1192 dmu_tx_t *tx)
1193{
1194 dmu_buf_t **dbp;
1195 int numbufs, i;
1196
1197 if (size == 0)
1198 return;
1199
1200 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1201 FALSE, FTAG, &numbufs, &dbp));
1202
1203 for (i = 0; i < numbufs; i++) {
1204 dmu_buf_t *db = dbp[i];
1205
1206 dmu_buf_will_not_fill(db, tx);
1207 }
1208 dmu_buf_rele_array(dbp, numbufs, FTAG);
1209}
1210
9b67f605
MA
1211void
1212dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1213 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1214 int compressed_size, int byteorder, dmu_tx_t *tx)
1215{
1216 dmu_buf_t *db;
1217
1218 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1219 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1220 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1221 FTAG, &db));
1222
1223 dmu_buf_write_embedded(db,
1224 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1225 uncompressed_size, compressed_size, byteorder, tx);
1226
1227 dmu_buf_rele(db, FTAG);
1228}
1229
428870ff
BB
1230/*
1231 * DMU support for xuio
1232 */
1233kstat_t *xuio_ksp = NULL;
1234
59e6e7ca
BB
1235typedef struct xuio_stats {
1236 /* loaned yet not returned arc_buf */
1237 kstat_named_t xuiostat_onloan_rbuf;
1238 kstat_named_t xuiostat_onloan_wbuf;
1239 /* whether a copy is made when loaning out a read buffer */
1240 kstat_named_t xuiostat_rbuf_copied;
1241 kstat_named_t xuiostat_rbuf_nocopy;
1242 /* whether a copy is made when assigning a write buffer */
1243 kstat_named_t xuiostat_wbuf_copied;
1244 kstat_named_t xuiostat_wbuf_nocopy;
1245} xuio_stats_t;
1246
1247static xuio_stats_t xuio_stats = {
1248 { "onloan_read_buf", KSTAT_DATA_UINT64 },
1249 { "onloan_write_buf", KSTAT_DATA_UINT64 },
1250 { "read_buf_copied", KSTAT_DATA_UINT64 },
1251 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
1252 { "write_buf_copied", KSTAT_DATA_UINT64 },
1253 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
1254};
1255
d1d7e268
MK
1256#define XUIOSTAT_INCR(stat, val) \
1257 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
1258#define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
59e6e7ca 1259
5a6765cf 1260#ifdef HAVE_UIO_ZEROCOPY
428870ff
BB
1261int
1262dmu_xuio_init(xuio_t *xuio, int nblk)
1263{
1264 dmu_xuio_t *priv;
1265 uio_t *uio = &xuio->xu_uio;
1266
1267 uio->uio_iovcnt = nblk;
79c76d5b 1268 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
428870ff 1269
79c76d5b 1270 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
428870ff 1271 priv->cnt = nblk;
79c76d5b 1272 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
5475aada 1273 priv->iovp = (iovec_t *)uio->uio_iov;
428870ff
BB
1274 XUIO_XUZC_PRIV(xuio) = priv;
1275
1276 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1277 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1278 else
1279 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1280
1281 return (0);
1282}
1283
1284void
1285dmu_xuio_fini(xuio_t *xuio)
1286{
1287 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1288 int nblk = priv->cnt;
1289
1290 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1291 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1292 kmem_free(priv, sizeof (dmu_xuio_t));
1293
1294 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1295 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1296 else
1297 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1298}
1299
1300/*
1301 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1302 * and increase priv->next by 1.
1303 */
1304int
1305dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1306{
1307 struct iovec *iov;
1308 uio_t *uio = &xuio->xu_uio;
1309 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1310 int i = priv->next++;
1311
1312 ASSERT(i < priv->cnt);
2aa34383 1313 ASSERT(off + n <= arc_buf_lsize(abuf));
5475aada 1314 iov = (iovec_t *)uio->uio_iov + i;
428870ff
BB
1315 iov->iov_base = (char *)abuf->b_data + off;
1316 iov->iov_len = n;
1317 priv->bufs[i] = abuf;
1318 return (0);
1319}
1320
1321int
1322dmu_xuio_cnt(xuio_t *xuio)
1323{
1324 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1325 return (priv->cnt);
1326}
1327
1328arc_buf_t *
1329dmu_xuio_arcbuf(xuio_t *xuio, int i)
1330{
1331 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1332
1333 ASSERT(i < priv->cnt);
1334 return (priv->bufs[i]);
1335}
1336
1337void
1338dmu_xuio_clear(xuio_t *xuio, int i)
1339{
1340 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1341
1342 ASSERT(i < priv->cnt);
1343 priv->bufs[i] = NULL;
1344}
5a6765cf 1345#endif /* HAVE_UIO_ZEROCOPY */
428870ff
BB
1346
1347static void
1348xuio_stat_init(void)
1349{
1350 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1351 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1352 KSTAT_FLAG_VIRTUAL);
1353 if (xuio_ksp != NULL) {
1354 xuio_ksp->ks_data = &xuio_stats;
1355 kstat_install(xuio_ksp);
1356 }
1357}
1358
1359static void
1360xuio_stat_fini(void)
1361{
1362 if (xuio_ksp != NULL) {
1363 kstat_delete(xuio_ksp);
1364 xuio_ksp = NULL;
1365 }
1366}
1367
1368void
5043684a 1369xuio_stat_wbuf_copied(void)
428870ff
BB
1370{
1371 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1372}
1373
1374void
5043684a 1375xuio_stat_wbuf_nocopy(void)
428870ff
BB
1376{
1377 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1378}
1379
34dc7c2f 1380#ifdef _KERNEL
5228cf01 1381int
804e0504 1382dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
872e8d26
BB
1383{
1384 dmu_buf_t **dbp;
1385 int numbufs, i, err;
5a6765cf 1386#ifdef HAVE_UIO_ZEROCOPY
872e8d26 1387 xuio_t *xuio = NULL;
5a6765cf 1388#endif
872e8d26
BB
1389
1390 /*
1391 * NB: we could do this block-at-a-time, but it's nice
1392 * to be reading in parallel.
1393 */
804e0504
MA
1394 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1395 TRUE, FTAG, &numbufs, &dbp, 0);
872e8d26
BB
1396 if (err)
1397 return (err);
1398
1399 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1400 uint64_t tocpy;
1401 int64_t bufoff;
872e8d26
BB
1402 dmu_buf_t *db = dbp[i];
1403
1404 ASSERT(size > 0);
1405
1406 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1407 tocpy = MIN(db->db_size - bufoff, size);
872e8d26 1408
5a6765cf 1409#ifdef HAVE_UIO_ZEROCOPY
872e8d26
BB
1410 if (xuio) {
1411 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1412 arc_buf_t *dbuf_abuf = dbi->db_buf;
1413 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1414 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1415 if (!err) {
1416 uio->uio_resid -= tocpy;
1417 uio->uio_loffset += tocpy;
1418 }
1419
1420 if (abuf == dbuf_abuf)
1421 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1422 else
1423 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
5a6765cf 1424 } else
1425#endif
872e8d26
BB
1426 err = uiomove((char *)db->db_data + bufoff, tocpy,
1427 UIO_READ, uio);
872e8d26
BB
1428 if (err)
1429 break;
1430
1431 size -= tocpy;
1432 }
1433 dmu_buf_rele_array(dbp, numbufs, FTAG);
1434
1435 return (err);
1436}
1437
804e0504
MA
1438/*
1439 * Read 'size' bytes into the uio buffer.
1440 * From object zdb->db_object.
1441 * Starting at offset uio->uio_loffset.
1442 *
1443 * If the caller already has a dbuf in the target object
1444 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1445 * because we don't have to find the dnode_t for the object.
1446 */
1447int
1448dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1449{
1450 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1451 dnode_t *dn;
1452 int err;
1453
1454 if (size == 0)
1455 return (0);
1456
1457 DB_DNODE_ENTER(db);
1458 dn = DB_DNODE(db);
1459 err = dmu_read_uio_dnode(dn, uio, size);
1460 DB_DNODE_EXIT(db);
1461
1462 return (err);
1463}
1464
1465/*
1466 * Read 'size' bytes into the uio buffer.
1467 * From the specified object
1468 * Starting at offset uio->uio_loffset.
1469 */
1470int
1471dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1472{
1473 dnode_t *dn;
1474 int err;
1475
1476 if (size == 0)
1477 return (0);
1478
1479 err = dnode_hold(os, object, FTAG, &dn);
1480 if (err)
1481 return (err);
1482
1483 err = dmu_read_uio_dnode(dn, uio, size);
1484
1485 dnode_rele(dn, FTAG);
1486
1487 return (err);
1488}
1489
5228cf01 1490int
872e8d26
BB
1491dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1492{
1493 dmu_buf_t **dbp;
1494 int numbufs;
1495 int err = 0;
1496 int i;
1497
1498 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1499 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1500 if (err)
1501 return (err);
1502
1503 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1504 uint64_t tocpy;
1505 int64_t bufoff;
872e8d26
BB
1506 dmu_buf_t *db = dbp[i];
1507
1508 ASSERT(size > 0);
1509
1510 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1511 tocpy = MIN(db->db_size - bufoff, size);
872e8d26
BB
1512
1513 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1514
1515 if (tocpy == db->db_size)
1516 dmu_buf_will_fill(db, tx);
1517 else
1518 dmu_buf_will_dirty(db, tx);
1519
1520 /*
1521 * XXX uiomove could block forever (eg.nfs-backed
1522 * pages). There needs to be a uiolockdown() function
1523 * to lock the pages in memory, so that uiomove won't
1524 * block.
1525 */
1526 err = uiomove((char *)db->db_data + bufoff, tocpy,
1527 UIO_WRITE, uio);
1528
1529 if (tocpy == db->db_size)
1530 dmu_buf_fill_done(db, tx);
1531
1532 if (err)
1533 break;
1534
1535 size -= tocpy;
1536 }
1537
1538 dmu_buf_rele_array(dbp, numbufs, FTAG);
1539 return (err);
1540}
1541
804e0504
MA
1542/*
1543 * Write 'size' bytes from the uio buffer.
1544 * To object zdb->db_object.
1545 * Starting at offset uio->uio_loffset.
1546 *
1547 * If the caller already has a dbuf in the target object
1548 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1549 * because we don't have to find the dnode_t for the object.
1550 */
428870ff
BB
1551int
1552dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1553 dmu_tx_t *tx)
1554{
572e2857
BB
1555 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1556 dnode_t *dn;
1557 int err;
1558
428870ff
BB
1559 if (size == 0)
1560 return (0);
1561
572e2857
BB
1562 DB_DNODE_ENTER(db);
1563 dn = DB_DNODE(db);
1564 err = dmu_write_uio_dnode(dn, uio, size, tx);
1565 DB_DNODE_EXIT(db);
1566
1567 return (err);
428870ff
BB
1568}
1569
804e0504
MA
1570/*
1571 * Write 'size' bytes from the uio buffer.
1572 * To the specified object.
1573 * Starting at offset uio->uio_loffset.
1574 */
428870ff
BB
1575int
1576dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1577 dmu_tx_t *tx)
1578{
1579 dnode_t *dn;
1580 int err;
1581
1582 if (size == 0)
1583 return (0);
1584
1585 err = dnode_hold(os, object, FTAG, &dn);
1586 if (err)
1587 return (err);
1588
1589 err = dmu_write_uio_dnode(dn, uio, size, tx);
1590
1591 dnode_rele(dn, FTAG);
1592
1593 return (err);
1594}
872e8d26 1595#endif /* _KERNEL */
34dc7c2f 1596
9babb374
BB
1597/*
1598 * Allocate a loaned anonymous arc buffer.
1599 */
1600arc_buf_t *
1601dmu_request_arcbuf(dmu_buf_t *handle, int size)
1602{
572e2857 1603 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
9babb374 1604
2aa34383 1605 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
9babb374
BB
1606}
1607
1608/*
1609 * Free a loaned arc buffer.
1610 */
1611void
1612dmu_return_arcbuf(arc_buf_t *buf)
1613{
1614 arc_return_buf(buf, FTAG);
d3c2ae1c 1615 arc_buf_destroy(buf, FTAG);
9babb374
BB
1616}
1617
b5256303
TC
1618void
1619dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
1620 dmu_buf_t *handle, dmu_tx_t *tx)
1621{
1622 dmu_buf_t *dst_handle;
1623 dmu_buf_impl_t *dstdb;
1624 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle;
149ce888 1625 dmu_object_type_t type;
b5256303
TC
1626 arc_buf_t *abuf;
1627 uint64_t datalen;
1628 boolean_t byteorder;
1629 uint8_t salt[ZIO_DATA_SALT_LEN];
1630 uint8_t iv[ZIO_DATA_IV_LEN];
1631 uint8_t mac[ZIO_DATA_MAC_LEN];
1632
1633 ASSERT3P(srcdb->db_buf, !=, NULL);
1634
1635 /* hold the db that we want to write to */
1636 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle,
1637 DMU_READ_NO_DECRYPT));
1638 dstdb = (dmu_buf_impl_t *)dst_handle;
1639 datalen = arc_buf_size(srcdb->db_buf);
1640
149ce888
TC
1641 DB_DNODE_ENTER(dstdb);
1642 type = DB_DNODE(dstdb)->dn_type;
1643 DB_DNODE_EXIT(dstdb);
1644
b5256303
TC
1645 /* allocated an arc buffer that matches the type of srcdb->db_buf */
1646 if (arc_is_encrypted(srcdb->db_buf)) {
1647 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac);
1648 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os),
149ce888 1649 byteorder, salt, iv, mac, type,
b5256303
TC
1650 datalen, arc_buf_lsize(srcdb->db_buf),
1651 arc_get_compression(srcdb->db_buf));
1652 } else {
1653 /* we won't get a compressed db back from dmu_buf_hold() */
1654 ASSERT3U(arc_get_compression(srcdb->db_buf),
1655 ==, ZIO_COMPRESS_OFF);
1656 abuf = arc_loan_buf(os->os_spa,
149ce888 1657 DMU_OT_IS_METADATA(type), datalen);
b5256303
TC
1658 }
1659
1660 ASSERT3U(datalen, ==, arc_buf_size(abuf));
1661
1662 /* copy the data to the new buffer and assign it to the dstdb */
1663 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen);
1664 dbuf_assign_arcbuf(dstdb, abuf, tx);
1665 dmu_buf_rele(dst_handle, FTAG);
1666}
1667
9babb374
BB
1668/*
1669 * When possible directly assign passed loaned arc buffer to a dbuf.
1670 * If this is not possible copy the contents of passed arc buf via
1671 * dmu_write().
1672 */
1673void
440a3eb9 1674dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
9babb374
BB
1675 dmu_tx_t *tx)
1676{
9babb374 1677 dmu_buf_impl_t *db;
440a3eb9
TC
1678 objset_t *os = dn->dn_objset;
1679 uint64_t object = dn->dn_object;
2aa34383 1680 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
9babb374
BB
1681 uint64_t blkid;
1682
1683 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35 1684 blkid = dbuf_whichblock(dn, 0, offset);
9babb374
BB
1685 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1686 rw_exit(&dn->dn_struct_rwlock);
1687
88904bb3
MA
1688 /*
1689 * We can only assign if the offset is aligned, the arc buf is the
2aa34383 1690 * same size as the dbuf, and the dbuf is not metadata.
88904bb3 1691 */
2aa34383 1692 if (offset == db->db.db_offset && blksz == db->db.db_size) {
9babb374
BB
1693 dbuf_assign_arcbuf(db, buf, tx);
1694 dbuf_rele(db, FTAG);
1695 } else {
2aa34383
DK
1696 /* compressed bufs must always be assignable to their dbuf */
1697 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
524b4217 1698 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
2aa34383 1699
9babb374 1700 dbuf_rele(db, FTAG);
572e2857 1701 dmu_write(os, object, offset, blksz, buf->b_data, tx);
9babb374 1702 dmu_return_arcbuf(buf);
428870ff 1703 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
9babb374
BB
1704 }
1705}
1706
440a3eb9
TC
1707void
1708dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1709 dmu_tx_t *tx)
1710{
1711 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1712
1713 DB_DNODE_ENTER(dbuf);
1714 dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1715 DB_DNODE_EXIT(dbuf);
1716}
1717
34dc7c2f 1718typedef struct {
428870ff
BB
1719 dbuf_dirty_record_t *dsa_dr;
1720 dmu_sync_cb_t *dsa_done;
1721 zgd_t *dsa_zgd;
1722 dmu_tx_t *dsa_tx;
34dc7c2f
BB
1723} dmu_sync_arg_t;
1724
b128c09f
BB
1725/* ARGSUSED */
1726static void
1727dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1728{
428870ff
BB
1729 dmu_sync_arg_t *dsa = varg;
1730 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
b128c09f
BB
1731 blkptr_t *bp = zio->io_bp;
1732
428870ff
BB
1733 if (zio->io_error == 0) {
1734 if (BP_IS_HOLE(bp)) {
1735 /*
1736 * A block of zeros may compress to a hole, but the
1737 * block size still needs to be known for replay.
1738 */
1739 BP_SET_LSIZE(bp, db->db_size);
9b67f605 1740 } else if (!BP_IS_EMBEDDED(bp)) {
428870ff 1741 ASSERT(BP_GET_LEVEL(bp) == 0);
b5256303 1742 BP_SET_FILL(bp, 1);
428870ff 1743 }
b128c09f
BB
1744 }
1745}
1746
428870ff
BB
1747static void
1748dmu_sync_late_arrival_ready(zio_t *zio)
1749{
1750 dmu_sync_ready(zio, NULL, zio->io_private);
1751}
1752
34dc7c2f
BB
1753/* ARGSUSED */
1754static void
1755dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1756{
428870ff
BB
1757 dmu_sync_arg_t *dsa = varg;
1758 dbuf_dirty_record_t *dr = dsa->dsa_dr;
34dc7c2f 1759 dmu_buf_impl_t *db = dr->dr_dbuf;
34dc7c2f 1760
34dc7c2f
BB
1761 mutex_enter(&db->db_mtx);
1762 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
428870ff 1763 if (zio->io_error == 0) {
03c6040b
GW
1764 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1765 if (dr->dt.dl.dr_nopwrite) {
02dc43bc
MA
1766 blkptr_t *bp = zio->io_bp;
1767 blkptr_t *bp_orig = &zio->io_bp_orig;
1768 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
03c6040b
GW
1769
1770 ASSERT(BP_EQUAL(bp, bp_orig));
02dc43bc 1771 VERIFY(BP_EQUAL(bp, db->db_blkptr));
03c6040b 1772 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
02dc43bc 1773 VERIFY(zio_checksum_table[chksum].ci_flags &
3c67d83a 1774 ZCHECKSUM_FLAG_NOPWRITE);
03c6040b 1775 }
428870ff
BB
1776 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1777 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1778 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
a4069eef
PS
1779
1780 /*
1781 * Old style holes are filled with all zeros, whereas
1782 * new-style holes maintain their lsize, type, level,
1783 * and birth time (see zio_write_compress). While we
1784 * need to reset the BP_SET_LSIZE() call that happened
1785 * in dmu_sync_ready for old style holes, we do *not*
1786 * want to wipe out the information contained in new
1787 * style holes. Thus, only zero out the block pointer if
1788 * it's an old style hole.
1789 */
1790 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1791 dr->dt.dl.dr_overridden_by.blk_birth == 0)
428870ff
BB
1792 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1793 } else {
1794 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1795 }
34dc7c2f
BB
1796 cv_broadcast(&db->db_changed);
1797 mutex_exit(&db->db_mtx);
1798
428870ff 1799 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
34dc7c2f 1800
428870ff
BB
1801 kmem_free(dsa, sizeof (*dsa));
1802}
1803
1804static void
1805dmu_sync_late_arrival_done(zio_t *zio)
1806{
1807 blkptr_t *bp = zio->io_bp;
1808 dmu_sync_arg_t *dsa = zio->io_private;
03c6040b 1809 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
428870ff
BB
1810
1811 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
02dc43bc
MA
1812 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1813 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1814 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1815 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1816 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
428870ff
BB
1817 }
1818
1819 dmu_tx_commit(dsa->dsa_tx);
1820
1821 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1822
a6255b7f 1823 abd_put(zio->io_abd);
428870ff
BB
1824 kmem_free(dsa, sizeof (*dsa));
1825}
1826
1827static int
1828dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
5dbd68a3 1829 zio_prop_t *zp, zbookmark_phys_t *zb)
428870ff
BB
1830{
1831 dmu_sync_arg_t *dsa;
1832 dmu_tx_t *tx;
1833
1834 tx = dmu_tx_create(os);
1835 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1836 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1837 dmu_tx_abort(tx);
2e528b49
MA
1838 /* Make zl_get_data do txg_waited_synced() */
1839 return (SET_ERROR(EIO));
428870ff
BB
1840 }
1841
1ce23dca
PS
1842 /*
1843 * In order to prevent the zgd's lwb from being free'd prior to
1844 * dmu_sync_late_arrival_done() being called, we have to ensure
1845 * the lwb's "max txg" takes this tx's txg into account.
1846 */
1847 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1848
79c76d5b 1849 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1850 dsa->dsa_dr = NULL;
1851 dsa->dsa_done = done;
1852 dsa->dsa_zgd = zgd;
1853 dsa->dsa_tx = tx;
1854
02dc43bc
MA
1855 /*
1856 * Since we are currently syncing this txg, it's nontrivial to
1857 * determine what BP to nopwrite against, so we disable nopwrite.
1858 *
1859 * When syncing, the db_blkptr is initially the BP of the previous
1860 * txg. We can not nopwrite against it because it will be changed
1861 * (this is similar to the non-late-arrival case where the dbuf is
1862 * dirty in a future txg).
1863 *
1864 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1865 * We can not nopwrite against it because although the BP will not
1866 * (typically) be changed, the data has not yet been persisted to this
1867 * location.
1868 *
1869 * Finally, when dbuf_write_done() is called, it is theoretically
1870 * possible to always nopwrite, because the data that was written in
1871 * this txg is the same data that we are trying to write. However we
1872 * would need to check that this dbuf is not dirty in any future
1873 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1874 * don't nopwrite in this case.
1875 */
1876 zp->zp_nopwrite = B_FALSE;
1877
a6255b7f
DQ
1878 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1879 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1880 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1881 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1882 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
428870ff
BB
1883
1884 return (0);
34dc7c2f
BB
1885}
1886
1887/*
1888 * Intent log support: sync the block associated with db to disk.
1889 * N.B. and XXX: the caller is responsible for making sure that the
1890 * data isn't changing while dmu_sync() is writing it.
1891 *
1892 * Return values:
1893 *
03c6040b 1894 * EEXIST: this txg has already been synced, so there's nothing to do.
34dc7c2f
BB
1895 * The caller should not log the write.
1896 *
1897 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1898 * The caller should not log the write.
1899 *
1900 * EALREADY: this block is already in the process of being synced.
1901 * The caller should track its progress (somehow).
1902 *
428870ff
BB
1903 * EIO: could not do the I/O.
1904 * The caller should do a txg_wait_synced().
34dc7c2f 1905 *
428870ff
BB
1906 * 0: the I/O has been initiated.
1907 * The caller should log this blkptr in the done callback.
1908 * It is possible that the I/O will fail, in which case
1909 * the error will be reported to the done callback and
1910 * propagated to pio from zio_done().
34dc7c2f
BB
1911 */
1912int
428870ff 1913dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
34dc7c2f 1914{
428870ff
BB
1915 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1916 objset_t *os = db->db_objset;
1917 dsl_dataset_t *ds = os->os_dsl_dataset;
34dc7c2f 1918 dbuf_dirty_record_t *dr;
428870ff 1919 dmu_sync_arg_t *dsa;
5dbd68a3 1920 zbookmark_phys_t zb;
428870ff 1921 zio_prop_t zp;
572e2857 1922 dnode_t *dn;
34dc7c2f 1923
428870ff 1924 ASSERT(pio != NULL);
34dc7c2f
BB
1925 ASSERT(txg != 0);
1926
428870ff
BB
1927 SET_BOOKMARK(&zb, ds->ds_object,
1928 db->db.db_object, db->db_level, db->db_blkid);
1929
572e2857
BB
1930 DB_DNODE_ENTER(db);
1931 dn = DB_DNODE(db);
82644107 1932 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
572e2857 1933 DB_DNODE_EXIT(db);
34dc7c2f
BB
1934
1935 /*
428870ff 1936 * If we're frozen (running ziltest), we always need to generate a bp.
34dc7c2f 1937 */
428870ff
BB
1938 if (txg > spa_freeze_txg(os->os_spa))
1939 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1940
1941 /*
428870ff
BB
1942 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1943 * and us. If we determine that this txg is not yet syncing,
1944 * but it begins to sync a moment later, that's OK because the
1945 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
34dc7c2f 1946 */
428870ff
BB
1947 mutex_enter(&db->db_mtx);
1948
1949 if (txg <= spa_last_synced_txg(os->os_spa)) {
34dc7c2f 1950 /*
428870ff 1951 * This txg has already synced. There's nothing to do.
34dc7c2f 1952 */
428870ff 1953 mutex_exit(&db->db_mtx);
2e528b49 1954 return (SET_ERROR(EEXIST));
34dc7c2f
BB
1955 }
1956
428870ff
BB
1957 if (txg <= spa_syncing_txg(os->os_spa)) {
1958 /*
1959 * This txg is currently syncing, so we can't mess with
1960 * the dirty record anymore; just write a new log block.
1961 */
1962 mutex_exit(&db->db_mtx);
1963 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1964 }
1965
1966 dr = db->db_last_dirty;
428870ff 1967 while (dr && dr->dr_txg != txg)
34dc7c2f 1968 dr = dr->dr_next;
428870ff
BB
1969
1970 if (dr == NULL) {
34dc7c2f 1971 /*
428870ff 1972 * There's no dr for this dbuf, so it must have been freed.
34dc7c2f
BB
1973 * There's no need to log writes to freed blocks, so we're done.
1974 */
1975 mutex_exit(&db->db_mtx);
2e528b49 1976 return (SET_ERROR(ENOENT));
34dc7c2f
BB
1977 }
1978
03c6040b
GW
1979 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1980
02dc43bc
MA
1981 if (db->db_blkptr != NULL) {
1982 /*
1983 * We need to fill in zgd_bp with the current blkptr so that
1984 * the nopwrite code can check if we're writing the same
1985 * data that's already on disk. We can only nopwrite if we
1986 * are sure that after making the copy, db_blkptr will not
1987 * change until our i/o completes. We ensure this by
1988 * holding the db_mtx, and only allowing nopwrite if the
1989 * block is not already dirty (see below). This is verified
1990 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1991 * not changed.
1992 */
1993 *zgd->zgd_bp = *db->db_blkptr;
1994 }
1995
03c6040b 1996 /*
f3c517d8
MA
1997 * Assume the on-disk data is X, the current syncing data (in
1998 * txg - 1) is Y, and the current in-memory data is Z (currently
1999 * in dmu_sync).
2000 *
2001 * We usually want to perform a nopwrite if X and Z are the
2002 * same. However, if Y is different (i.e. the BP is going to
2003 * change before this write takes effect), then a nopwrite will
2004 * be incorrect - we would override with X, which could have
2005 * been freed when Y was written.
2006 *
2007 * (Note that this is not a concern when we are nop-writing from
2008 * syncing context, because X and Y must be identical, because
2009 * all previous txgs have been synced.)
2010 *
2011 * Therefore, we disable nopwrite if the current BP could change
2012 * before this TXG. There are two ways it could change: by
2013 * being dirty (dr_next is non-NULL), or by being freed
2014 * (dnode_block_freed()). This behavior is verified by
2015 * zio_done(), which VERIFYs that the override BP is identical
2016 * to the on-disk BP.
03c6040b 2017 */
f3c517d8
MA
2018 DB_DNODE_ENTER(db);
2019 dn = DB_DNODE(db);
2020 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
03c6040b 2021 zp.zp_nopwrite = B_FALSE;
f3c517d8 2022 DB_DNODE_EXIT(db);
03c6040b 2023
34dc7c2f 2024 ASSERT(dr->dr_txg == txg);
428870ff
BB
2025 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
2026 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
34dc7c2f 2027 /*
428870ff
BB
2028 * We have already issued a sync write for this buffer,
2029 * or this buffer has already been synced. It could not
34dc7c2f
BB
2030 * have been dirtied since, or we would have cleared the state.
2031 */
34dc7c2f 2032 mutex_exit(&db->db_mtx);
2e528b49 2033 return (SET_ERROR(EALREADY));
34dc7c2f
BB
2034 }
2035
428870ff 2036 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
34dc7c2f 2037 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
34dc7c2f 2038 mutex_exit(&db->db_mtx);
34dc7c2f 2039
79c76d5b 2040 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
2041 dsa->dsa_dr = dr;
2042 dsa->dsa_done = done;
2043 dsa->dsa_zgd = zgd;
2044 dsa->dsa_tx = NULL;
b128c09f 2045
428870ff 2046 zio_nowait(arc_write(pio, os->os_spa, txg,
02dc43bc 2047 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
d3c2ae1c 2048 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
bc77ba73 2049 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
b128c09f 2050
428870ff 2051 return (0);
34dc7c2f
BB
2052}
2053
b5256303
TC
2054int
2055dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2056{
2057 dnode_t *dn;
2058 int err;
2059
2060 err = dnode_hold(os, object, FTAG, &dn);
2061 if (err)
2062 return (err);
2063 err = dnode_set_nlevels(dn, nlevels, tx);
2064 dnode_rele(dn, FTAG);
2065 return (err);
2066}
2067
34dc7c2f
BB
2068int
2069dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
4ea3f864 2070 dmu_tx_t *tx)
34dc7c2f
BB
2071{
2072 dnode_t *dn;
2073 int err;
2074
428870ff 2075 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2076 if (err)
2077 return (err);
2078 err = dnode_set_blksz(dn, size, ibs, tx);
2079 dnode_rele(dn, FTAG);
2080 return (err);
2081}
2082
ae76f45c
TC
2083int
2084dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2085 dmu_tx_t *tx)
2086{
2087 dnode_t *dn;
2088 int err;
2089
2090 err = dnode_hold(os, object, FTAG, &dn);
2091 if (err)
2092 return (err);
2093 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2094 dnode_new_blkid(dn, maxblkid, tx, B_FALSE);
2095 rw_exit(&dn->dn_struct_rwlock);
2096 dnode_rele(dn, FTAG);
2097 return (0);
2098}
2099
34dc7c2f
BB
2100void
2101dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
4ea3f864 2102 dmu_tx_t *tx)
34dc7c2f
BB
2103{
2104 dnode_t *dn;
2105
9b67f605
MA
2106 /*
2107 * Send streams include each object's checksum function. This
2108 * check ensures that the receiving system can understand the
2109 * checksum function transmitted.
2110 */
2111 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2112
2113 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2114 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
34dc7c2f
BB
2115 dn->dn_checksum = checksum;
2116 dnode_setdirty(dn, tx);
2117 dnode_rele(dn, FTAG);
2118}
2119
2120void
2121dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
4ea3f864 2122 dmu_tx_t *tx)
34dc7c2f
BB
2123{
2124 dnode_t *dn;
2125
9b67f605
MA
2126 /*
2127 * Send streams include each object's compression function. This
2128 * check ensures that the receiving system can understand the
2129 * compression function transmitted.
2130 */
2131 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2132
2133 VERIFY0(dnode_hold(os, object, FTAG, &dn));
34dc7c2f
BB
2134 dn->dn_compress = compress;
2135 dnode_setdirty(dn, tx);
2136 dnode_rele(dn, FTAG);
2137}
2138
faf0f58c
MA
2139/*
2140 * When the "redundant_metadata" property is set to "most", only indirect
2141 * blocks of this level and higher will have an additional ditto block.
2142 */
2143int zfs_redundant_metadata_most_ditto_level = 2;
2144
428870ff 2145void
82644107 2146dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
428870ff
BB
2147{
2148 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
9ae529ec 2149 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
572e2857 2150 (wp & WP_SPILL));
428870ff
BB
2151 enum zio_checksum checksum = os->os_checksum;
2152 enum zio_compress compress = os->os_compress;
2153 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
03c6040b
GW
2154 boolean_t dedup = B_FALSE;
2155 boolean_t nopwrite = B_FALSE;
428870ff 2156 boolean_t dedup_verify = os->os_dedup_verify;
b5256303 2157 boolean_t encrypt = B_FALSE;
428870ff 2158 int copies = os->os_copies;
a7004725 2159
428870ff 2160 /*
03c6040b
GW
2161 * We maintain different write policies for each of the following
2162 * types of data:
2163 * 1. metadata
2164 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2165 * 3. all other level 0 blocks
428870ff
BB
2166 */
2167 if (ismd) {
b1d21733
TC
2168 /*
2169 * XXX -- we should design a compression algorithm
2170 * that specializes in arrays of bps.
2171 */
2172 compress = zio_compress_select(os->os_spa,
2173 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
03c6040b 2174
428870ff
BB
2175 /*
2176 * Metadata always gets checksummed. If the data
2177 * checksum is multi-bit correctable, and it's not a
2178 * ZBT-style checksum, then it's suitable for metadata
2179 * as well. Otherwise, the metadata checksum defaults
2180 * to fletcher4.
2181 */
3c67d83a
TH
2182 if (!(zio_checksum_table[checksum].ci_flags &
2183 ZCHECKSUM_FLAG_METADATA) ||
2184 (zio_checksum_table[checksum].ci_flags &
2185 ZCHECKSUM_FLAG_EMBEDDED))
428870ff 2186 checksum = ZIO_CHECKSUM_FLETCHER_4;
faf0f58c
MA
2187
2188 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2189 (os->os_redundant_metadata ==
2190 ZFS_REDUNDANT_METADATA_MOST &&
2191 (level >= zfs_redundant_metadata_most_ditto_level ||
2192 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2193 copies++;
03c6040b
GW
2194 } else if (wp & WP_NOFILL) {
2195 ASSERT(level == 0);
428870ff 2196
428870ff 2197 /*
03c6040b
GW
2198 * If we're writing preallocated blocks, we aren't actually
2199 * writing them so don't set any policy properties. These
2200 * blocks are currently only used by an external subsystem
2201 * outside of zfs (i.e. dump) and not written by the zio
2202 * pipeline.
428870ff 2203 */
03c6040b
GW
2204 compress = ZIO_COMPRESS_OFF;
2205 checksum = ZIO_CHECKSUM_OFF;
428870ff 2206 } else {
99197f03
JG
2207 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2208 compress);
428870ff 2209
03c6040b
GW
2210 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2211 zio_checksum_select(dn->dn_checksum, checksum) :
2212 dedup_checksum;
428870ff 2213
03c6040b
GW
2214 /*
2215 * Determine dedup setting. If we are in dmu_sync(),
2216 * we won't actually dedup now because that's all
2217 * done in syncing context; but we do want to use the
2218 * dedup checkum. If the checksum is not strong
2219 * enough to ensure unique signatures, force
2220 * dedup_verify.
2221 */
2222 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2223 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
3c67d83a
TH
2224 if (!(zio_checksum_table[checksum].ci_flags &
2225 ZCHECKSUM_FLAG_DEDUP))
03c6040b
GW
2226 dedup_verify = B_TRUE;
2227 }
428870ff 2228
03c6040b 2229 /*
3c67d83a
TH
2230 * Enable nopwrite if we have secure enough checksum
2231 * algorithm (see comment in zio_nop_write) and
2232 * compression is enabled. We don't enable nopwrite if
2233 * dedup is enabled as the two features are mutually
2234 * exclusive.
03c6040b 2235 */
3c67d83a
TH
2236 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2237 ZCHECKSUM_FLAG_NOPWRITE) &&
03c6040b 2238 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
428870ff
BB
2239 }
2240
b5256303
TC
2241 /*
2242 * All objects in an encrypted objset are protected from modification
2243 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2244 * in the bp, so we cannot use all copies. Encrypted objects are also
2245 * not subject to nopwrite since writing the same data will still
2246 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2247 * to avoid ambiguity in the dedup code since the DDT does not store
2248 * object types.
2249 */
2250 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2251 encrypt = B_TRUE;
2252
2253 if (DMU_OT_IS_ENCRYPTED(type)) {
2254 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2255 nopwrite = B_FALSE;
2256 } else {
2257 dedup = B_FALSE;
2258 }
2259
ae76f45c
TC
2260 if (level <= 0 &&
2261 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
b5256303 2262 compress = ZIO_COMPRESS_EMPTY;
ae76f45c 2263 }
b5256303 2264 }
2aa34383 2265
b5256303
TC
2266 zp->zp_compress = compress;
2267 zp->zp_checksum = checksum;
428870ff
BB
2268 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2269 zp->zp_level = level;
faf0f58c 2270 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
428870ff
BB
2271 zp->zp_dedup = dedup;
2272 zp->zp_dedup_verify = dedup && dedup_verify;
03c6040b 2273 zp->zp_nopwrite = nopwrite;
b5256303
TC
2274 zp->zp_encrypt = encrypt;
2275 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2276 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2277 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2278 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
cc99f275
DB
2279 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2280 os->os_zpl_special_smallblock : 0;
b5256303
TC
2281
2282 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
428870ff
BB
2283}
2284
66aca247
DB
2285/*
2286 * This function is only called from zfs_holey_common() for zpl_llseek()
2287 * in order to determine the location of holes. In order to accurately
2288 * report holes all dirty data must be synced to disk. This causes extremely
2289 * poor performance when seeking for holes in a dirty file. As a compromise,
2290 * only provide hole data when the dnode is clean. When a dnode is dirty
2291 * report the dnode as having no holes which is always a safe thing to do.
2292 */
34dc7c2f
BB
2293int
2294dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2295{
2296 dnode_t *dn;
2297 int i, err;
66aca247 2298 boolean_t clean = B_TRUE;
34dc7c2f 2299
428870ff 2300 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2301 if (err)
2302 return (err);
66aca247 2303
34dc7c2f 2304 /*
66aca247 2305 * Check if dnode is dirty
34dc7c2f 2306 */
454365bb 2307 for (i = 0; i < TXG_SIZE; i++) {
edc1e713 2308 if (multilist_link_active(&dn->dn_dirty_link[i])) {
454365bb
BB
2309 clean = B_FALSE;
2310 break;
66aca247 2311 }
34dc7c2f 2312 }
66aca247
DB
2313
2314 /*
2315 * If compatibility option is on, sync any current changes before
2316 * we go trundling through the block pointers.
2317 */
2318 if (!clean && zfs_dmu_offset_next_sync) {
2319 clean = B_TRUE;
34dc7c2f
BB
2320 dnode_rele(dn, FTAG);
2321 txg_wait_synced(dmu_objset_pool(os), 0);
428870ff 2322 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2323 if (err)
2324 return (err);
2325 }
2326
66aca247
DB
2327 if (clean)
2328 err = dnode_next_offset(dn,
2329 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2330 else
2331 err = SET_ERROR(EBUSY);
2332
34dc7c2f
BB
2333 dnode_rele(dn, FTAG);
2334
2335 return (err);
2336}
2337
2338void
e0b0ca98 2339__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
34dc7c2f 2340{
e0b0ca98 2341 dnode_phys_t *dnp = dn->dn_phys;
428870ff 2342
34dc7c2f
BB
2343 doi->doi_data_block_size = dn->dn_datablksz;
2344 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2345 1ULL << dn->dn_indblkshift : 0;
428870ff
BB
2346 doi->doi_type = dn->dn_type;
2347 doi->doi_bonus_type = dn->dn_bonustype;
2348 doi->doi_bonus_size = dn->dn_bonuslen;
50c957f7 2349 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
34dc7c2f
BB
2350 doi->doi_indirection = dn->dn_nlevels;
2351 doi->doi_checksum = dn->dn_checksum;
2352 doi->doi_compress = dn->dn_compress;
6c59307a 2353 doi->doi_nblkptr = dn->dn_nblkptr;
428870ff 2354 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
d1fada1e 2355 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
428870ff 2356 doi->doi_fill_count = 0;
1c27024e 2357 for (int i = 0; i < dnp->dn_nblkptr; i++)
9b67f605 2358 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
e0b0ca98
BB
2359}
2360
2361void
2362dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2363{
2364 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2365 mutex_enter(&dn->dn_mtx);
2366
2367 __dmu_object_info_from_dnode(dn, doi);
34dc7c2f
BB
2368
2369 mutex_exit(&dn->dn_mtx);
2370 rw_exit(&dn->dn_struct_rwlock);
2371}
2372
2373/*
2374 * Get information on a DMU object.
2375 * If doi is NULL, just indicates whether the object exists.
2376 */
2377int
2378dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2379{
2380 dnode_t *dn;
428870ff 2381 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2382
2383 if (err)
2384 return (err);
2385
2386 if (doi != NULL)
2387 dmu_object_info_from_dnode(dn, doi);
2388
2389 dnode_rele(dn, FTAG);
2390 return (0);
2391}
2392
2393/*
2394 * As above, but faster; can be used when you have a held dbuf in hand.
2395 */
2396void
572e2857 2397dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
34dc7c2f 2398{
572e2857
BB
2399 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2400
2401 DB_DNODE_ENTER(db);
2402 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2403 DB_DNODE_EXIT(db);
34dc7c2f
BB
2404}
2405
2406/*
2407 * Faster still when you only care about the size.
2408 * This is specifically optimized for zfs_getattr().
2409 */
2410void
572e2857
BB
2411dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2412 u_longlong_t *nblk512)
34dc7c2f 2413{
572e2857
BB
2414 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2415 dnode_t *dn;
2416
2417 DB_DNODE_ENTER(db);
2418 dn = DB_DNODE(db);
34dc7c2f
BB
2419
2420 *blksize = dn->dn_datablksz;
50c957f7 2421 /* add in number of slots used for the dnode itself */
34dc7c2f 2422 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
50c957f7
NB
2423 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2424 DB_DNODE_EXIT(db);
2425}
2426
2427void
2428dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2429{
2430 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2431 dnode_t *dn;
2432
2433 DB_DNODE_ENTER(db);
2434 dn = DB_DNODE(db);
2435 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
572e2857 2436 DB_DNODE_EXIT(db);
34dc7c2f
BB
2437}
2438
2439void
2440byteswap_uint64_array(void *vbuf, size_t size)
2441{
2442 uint64_t *buf = vbuf;
2443 size_t count = size >> 3;
2444 int i;
2445
2446 ASSERT((size & 7) == 0);
2447
2448 for (i = 0; i < count; i++)
2449 buf[i] = BSWAP_64(buf[i]);
2450}
2451
2452void
2453byteswap_uint32_array(void *vbuf, size_t size)
2454{
2455 uint32_t *buf = vbuf;
2456 size_t count = size >> 2;
2457 int i;
2458
2459 ASSERT((size & 3) == 0);
2460
2461 for (i = 0; i < count; i++)
2462 buf[i] = BSWAP_32(buf[i]);
2463}
2464
2465void
2466byteswap_uint16_array(void *vbuf, size_t size)
2467{
2468 uint16_t *buf = vbuf;
2469 size_t count = size >> 1;
2470 int i;
2471
2472 ASSERT((size & 1) == 0);
2473
2474 for (i = 0; i < count; i++)
2475 buf[i] = BSWAP_16(buf[i]);
2476}
2477
2478/* ARGSUSED */
2479void
2480byteswap_uint8_array(void *vbuf, size_t size)
2481{
2482}
2483
2484void
2485dmu_init(void)
2486{
a6255b7f 2487 abd_init();
428870ff 2488 zfs_dbgmsg_init();
572e2857
BB
2489 sa_cache_init();
2490 xuio_stat_init();
2491 dmu_objset_init();
34dc7c2f 2492 dnode_init();
428870ff 2493 zfetch_init();
570827e1 2494 dmu_tx_init();
34dc7c2f 2495 l2arc_init();
29809a6c 2496 arc_init();
d3c2ae1c 2497 dbuf_init();
34dc7c2f
BB
2498}
2499
2500void
2501dmu_fini(void)
2502{
e49f1e20 2503 arc_fini(); /* arc depends on l2arc, so arc must go first */
29809a6c 2504 l2arc_fini();
570827e1 2505 dmu_tx_fini();
428870ff 2506 zfetch_fini();
34dc7c2f 2507 dbuf_fini();
572e2857
BB
2508 dnode_fini();
2509 dmu_objset_fini();
428870ff
BB
2510 xuio_stat_fini();
2511 sa_cache_fini();
2512 zfs_dbgmsg_fini();
a6255b7f 2513 abd_fini();
34dc7c2f 2514}
c28b2279 2515
93ce2b4c 2516#if defined(_KERNEL)
c28b2279 2517EXPORT_SYMBOL(dmu_bonus_hold);
a473d90c
AZ
2518EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2519EXPORT_SYMBOL(dmu_buf_rele_array);
57b650b8 2520EXPORT_SYMBOL(dmu_prefetch);
c28b2279 2521EXPORT_SYMBOL(dmu_free_range);
57b650b8 2522EXPORT_SYMBOL(dmu_free_long_range);
b663a23d 2523EXPORT_SYMBOL(dmu_free_long_object);
c28b2279 2524EXPORT_SYMBOL(dmu_read);
0eef1bde 2525EXPORT_SYMBOL(dmu_read_by_dnode);
c28b2279 2526EXPORT_SYMBOL(dmu_write);
0eef1bde 2527EXPORT_SYMBOL(dmu_write_by_dnode);
57b650b8 2528EXPORT_SYMBOL(dmu_prealloc);
c28b2279
BB
2529EXPORT_SYMBOL(dmu_object_info);
2530EXPORT_SYMBOL(dmu_object_info_from_dnode);
2531EXPORT_SYMBOL(dmu_object_info_from_db);
2532EXPORT_SYMBOL(dmu_object_size_from_db);
50c957f7 2533EXPORT_SYMBOL(dmu_object_dnsize_from_db);
b5256303 2534EXPORT_SYMBOL(dmu_object_set_nlevels);
c28b2279 2535EXPORT_SYMBOL(dmu_object_set_blocksize);
ae76f45c 2536EXPORT_SYMBOL(dmu_object_set_maxblkid);
c28b2279
BB
2537EXPORT_SYMBOL(dmu_object_set_checksum);
2538EXPORT_SYMBOL(dmu_object_set_compress);
57b650b8
BB
2539EXPORT_SYMBOL(dmu_write_policy);
2540EXPORT_SYMBOL(dmu_sync);
b10c77f7
BB
2541EXPORT_SYMBOL(dmu_request_arcbuf);
2542EXPORT_SYMBOL(dmu_return_arcbuf);
440a3eb9
TC
2543EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2544EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
b10c77f7 2545EXPORT_SYMBOL(dmu_buf_hold);
c28b2279 2546EXPORT_SYMBOL(dmu_ot);
afec56b4 2547
bef78122 2548/* BEGIN CSTYLED */
03c6040b
GW
2549module_param(zfs_nopwrite_enabled, int, 0644);
2550MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
2551
bef78122
DQ
2552module_param(zfs_per_txg_dirty_frees_percent, ulong, 0644);
2553MODULE_PARM_DESC(zfs_per_txg_dirty_frees_percent,
2554 "percentage of dirtied blocks from frees in one TXG");
66aca247
DB
2555
2556module_param(zfs_dmu_offset_next_sync, int, 0644);
2557MODULE_PARM_DESC(zfs_dmu_offset_next_sync,
2558 "Enable forcing txg sync to find holes");
2559
bef78122 2560/* END CSTYLED */
66aca247 2561
c28b2279 2562#endif