]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu.c
Fix zfs_get_data access to files with wrong generation
[mirror_zfs.git] / module / zfs / dmu.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
196bee4c 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
bc77ba73 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
a08abc1b 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
5475aada 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
65282ee9 28 * Copyright (c) 2019 Datto Inc.
10b3c7f5
MN
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
34dc7c2f
BB
31 */
32
34dc7c2f
BB
33#include <sys/dmu.h>
34#include <sys/dmu_impl.h>
35#include <sys/dmu_tx.h>
36#include <sys/dbuf.h>
37#include <sys/dnode.h>
38#include <sys/zfs_context.h>
39#include <sys/dmu_objset.h>
40#include <sys/dmu_traverse.h>
41#include <sys/dsl_dataset.h>
42#include <sys/dsl_dir.h>
43#include <sys/dsl_pool.h>
44#include <sys/dsl_synctask.h>
45#include <sys/dsl_prop.h>
46#include <sys/dmu_zfetch.h>
47#include <sys/zfs_ioctl.h>
48#include <sys/zap.h>
49#include <sys/zio_checksum.h>
03c6040b 50#include <sys/zio_compress.h>
428870ff 51#include <sys/sa.h>
62bdd5eb 52#include <sys/zfeature.h>
a6255b7f 53#include <sys/abd.h>
e5d1c27e 54#include <sys/trace_zfs.h>
64e0fe14 55#include <sys/zfs_racct.h>
f763c3d1 56#include <sys/zfs_rlock.h>
34dc7c2f
BB
57#ifdef _KERNEL
58#include <sys/vmsystm.h>
b128c09f 59#include <sys/zfs_znode.h>
34dc7c2f
BB
60#endif
61
03c6040b
GW
62/*
63 * Enable/disable nopwrite feature.
64 */
65int zfs_nopwrite_enabled = 1;
66
539d33c7 67/*
65282ee9
AP
68 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
69 * one TXG. After this threshold is crossed, additional dirty blocks from frees
70 * will wait until the next TXG.
539d33c7
GM
71 * A value of zero will disable this throttle.
72 */
65282ee9 73unsigned long zfs_per_txg_dirty_frees_percent = 5;
539d33c7 74
66aca247
DB
75/*
76 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
77 */
78int zfs_dmu_offset_next_sync = 0;
79
d9b4bf06
MA
80/*
81 * Limit the amount we can prefetch with one call to this amount. This
82 * helps to limit the amount of memory that can be used by prefetching.
83 * Larger objects should be prefetched a bit at a time.
84 */
85int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
86
34dc7c2f 87const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
2e5dc449
MA
88 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
89 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
90 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
91 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
92 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
93 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
94 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
95 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
96 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
97 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
98 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
99 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
100 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
101 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
102 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
103 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
104 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
105 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
106 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
107 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
108 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
109 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
110 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
111 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
112 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
113 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
114 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
115 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
116 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
117 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
118 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
119 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
120 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
121 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
122 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
123 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
124 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
125 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
126 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
127 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
128 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
129 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
130 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
131 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
132 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
133 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
134 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
135 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
136 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
137 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
138 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
139 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
140 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
141 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
9ae529ec
CS
142};
143
144const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
145 { byteswap_uint8_array, "uint8" },
146 { byteswap_uint16_array, "uint16" },
147 { byteswap_uint32_array, "uint32" },
148 { byteswap_uint64_array, "uint64" },
149 { zap_byteswap, "zap" },
150 { dnode_buf_byteswap, "dnode" },
151 { dmu_objset_byteswap, "objset" },
152 { zfs_znode_byteswap, "znode" },
153 { zfs_oldacl_byteswap, "oldacl" },
154 { zfs_acl_byteswap, "acl" }
34dc7c2f
BB
155};
156
65c7cc49 157static int
2bce8049
MA
158dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
159 void *tag, dmu_buf_t **dbp)
160{
161 uint64_t blkid;
162 dmu_buf_impl_t *db;
163
2bce8049 164 rw_enter(&dn->dn_struct_rwlock, RW_READER);
f664f1ee 165 blkid = dbuf_whichblock(dn, 0, offset);
2bce8049
MA
166 db = dbuf_hold(dn, blkid, tag);
167 rw_exit(&dn->dn_struct_rwlock);
168
169 if (db == NULL) {
170 *dbp = NULL;
171 return (SET_ERROR(EIO));
172 }
173
174 *dbp = &db->db;
175 return (0);
176}
34dc7c2f 177int
9b67f605
MA
178dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
179 void *tag, dmu_buf_t **dbp)
34dc7c2f
BB
180{
181 dnode_t *dn;
182 uint64_t blkid;
183 dmu_buf_impl_t *db;
184 int err;
428870ff
BB
185
186 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
187 if (err)
188 return (err);
34dc7c2f 189 rw_enter(&dn->dn_struct_rwlock, RW_READER);
f664f1ee 190 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f
BB
191 db = dbuf_hold(dn, blkid, tag);
192 rw_exit(&dn->dn_struct_rwlock);
9b67f605
MA
193 dnode_rele(dn, FTAG);
194
34dc7c2f 195 if (db == NULL) {
9b67f605
MA
196 *dbp = NULL;
197 return (SET_ERROR(EIO));
198 }
199
200 *dbp = &db->db;
201 return (err);
202}
203
2bce8049
MA
204int
205dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
206 void *tag, dmu_buf_t **dbp, int flags)
207{
208 int err;
209 int db_flags = DB_RF_CANFAIL;
210
211 if (flags & DMU_READ_NO_PREFETCH)
212 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
213 if (flags & DMU_READ_NO_DECRYPT)
214 db_flags |= DB_RF_NO_DECRYPT;
2bce8049
MA
215
216 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
217 if (err == 0) {
218 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
219 err = dbuf_read(db, NULL, db_flags);
220 if (err != 0) {
221 dbuf_rele(db, tag);
222 *dbp = NULL;
223 }
224 }
225
226 return (err);
227}
228
9b67f605
MA
229int
230dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
231 void *tag, dmu_buf_t **dbp, int flags)
232{
233 int err;
234 int db_flags = DB_RF_CANFAIL;
235
236 if (flags & DMU_READ_NO_PREFETCH)
237 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
238 if (flags & DMU_READ_NO_DECRYPT)
239 db_flags |= DB_RF_NO_DECRYPT;
9b67f605
MA
240
241 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
242 if (err == 0) {
243 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
428870ff 244 err = dbuf_read(db, NULL, db_flags);
9b67f605 245 if (err != 0) {
34dc7c2f 246 dbuf_rele(db, tag);
9b67f605 247 *dbp = NULL;
34dc7c2f
BB
248 }
249 }
250
34dc7c2f
BB
251 return (err);
252}
253
254int
255dmu_bonus_max(void)
256{
50c957f7 257 return (DN_OLD_MAX_BONUSLEN);
34dc7c2f
BB
258}
259
260int
572e2857 261dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
34dc7c2f 262{
572e2857
BB
263 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
264 dnode_t *dn;
265 int error;
34dc7c2f 266
572e2857
BB
267 DB_DNODE_ENTER(db);
268 dn = DB_DNODE(db);
269
270 if (dn->dn_bonus != db) {
2e528b49 271 error = SET_ERROR(EINVAL);
572e2857 272 } else if (newsize < 0 || newsize > db_fake->db_size) {
2e528b49 273 error = SET_ERROR(EINVAL);
572e2857
BB
274 } else {
275 dnode_setbonuslen(dn, newsize, tx);
276 error = 0;
277 }
278
279 DB_DNODE_EXIT(db);
280 return (error);
34dc7c2f
BB
281}
282
428870ff 283int
572e2857 284dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
428870ff 285{
572e2857
BB
286 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
287 dnode_t *dn;
288 int error;
428870ff 289
572e2857
BB
290 DB_DNODE_ENTER(db);
291 dn = DB_DNODE(db);
428870ff 292
9ae529ec 293 if (!DMU_OT_IS_VALID(type)) {
2e528b49 294 error = SET_ERROR(EINVAL);
572e2857 295 } else if (dn->dn_bonus != db) {
2e528b49 296 error = SET_ERROR(EINVAL);
572e2857
BB
297 } else {
298 dnode_setbonus_type(dn, type, tx);
299 error = 0;
300 }
428870ff 301
572e2857
BB
302 DB_DNODE_EXIT(db);
303 return (error);
304}
305
306dmu_object_type_t
307dmu_get_bonustype(dmu_buf_t *db_fake)
308{
309 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
310 dnode_t *dn;
311 dmu_object_type_t type;
312
313 DB_DNODE_ENTER(db);
314 dn = DB_DNODE(db);
315 type = dn->dn_bonustype;
316 DB_DNODE_EXIT(db);
317
318 return (type);
428870ff
BB
319}
320
321int
322dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
323{
324 dnode_t *dn;
325 int error;
326
327 error = dnode_hold(os, object, FTAG, &dn);
328 dbuf_rm_spill(dn, tx);
329 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
330 dnode_rm_spill(dn, tx);
331 rw_exit(&dn->dn_struct_rwlock);
332 dnode_rele(dn, FTAG);
333 return (error);
334}
335
34dc7c2f 336/*
6955b401
BB
337 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
338 * has not yet been allocated a new bonus dbuf a will be allocated.
339 * Returns ENOENT, EIO, or 0.
34dc7c2f 340 */
6955b401
BB
341int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
342 uint32_t flags)
34dc7c2f 343{
34dc7c2f
BB
344 dmu_buf_impl_t *db;
345 int error;
b5256303
TC
346 uint32_t db_flags = DB_RF_MUST_SUCCEED;
347
348 if (flags & DMU_READ_NO_PREFETCH)
349 db_flags |= DB_RF_NOPREFETCH;
350 if (flags & DMU_READ_NO_DECRYPT)
351 db_flags |= DB_RF_NO_DECRYPT;
34dc7c2f 352
34dc7c2f
BB
353 rw_enter(&dn->dn_struct_rwlock, RW_READER);
354 if (dn->dn_bonus == NULL) {
355 rw_exit(&dn->dn_struct_rwlock);
356 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
357 if (dn->dn_bonus == NULL)
358 dbuf_create_bonus(dn);
359 }
360 db = dn->dn_bonus;
34dc7c2f
BB
361
362 /* as long as the bonus buf is held, the dnode will be held */
c13060e4 363 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
34dc7c2f 364 VERIFY(dnode_add_ref(dn, db));
73ad4a9f 365 atomic_inc_32(&dn->dn_dbufs_count);
572e2857
BB
366 }
367
368 /*
369 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
370 * hold and incrementing the dbuf count to ensure that dnode_move() sees
371 * a dnode hold for every dbuf.
372 */
373 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f 374
b5256303
TC
375 error = dbuf_read(db, NULL, db_flags);
376 if (error) {
377 dnode_evict_bonus(dn);
378 dbuf_rele(db, tag);
379 *dbp = NULL;
380 return (error);
381 }
34dc7c2f
BB
382
383 *dbp = &db->db;
384 return (0);
385}
386
b5256303 387int
6955b401 388dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
b5256303 389{
6955b401
BB
390 dnode_t *dn;
391 int error;
392
393 error = dnode_hold(os, object, FTAG, &dn);
394 if (error)
395 return (error);
396
397 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
398 dnode_rele(dn, FTAG);
399
400 return (error);
b5256303
TC
401}
402
428870ff
BB
403/*
404 * returns ENOENT, EIO, or 0.
405 *
406 * This interface will allocate a blank spill dbuf when a spill blk
407 * doesn't already exist on the dnode.
408 *
409 * if you only want to find an already existing spill db, then
410 * dmu_spill_hold_existing() should be used.
411 */
412int
413dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
414{
415 dmu_buf_impl_t *db = NULL;
416 int err;
417
418 if ((flags & DB_RF_HAVESTRUCT) == 0)
419 rw_enter(&dn->dn_struct_rwlock, RW_READER);
420
421 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
422
423 if ((flags & DB_RF_HAVESTRUCT) == 0)
424 rw_exit(&dn->dn_struct_rwlock);
425
b182ac00 426 if (db == NULL) {
427 *dbp = NULL;
428 return (SET_ERROR(EIO));
429 }
572e2857
BB
430 err = dbuf_read(db, NULL, flags);
431 if (err == 0)
432 *dbp = &db->db;
b182ac00 433 else {
572e2857 434 dbuf_rele(db, tag);
b182ac00 435 *dbp = NULL;
436 }
428870ff
BB
437 return (err);
438}
439
440int
441dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
442{
572e2857
BB
443 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
444 dnode_t *dn;
428870ff
BB
445 int err;
446
572e2857
BB
447 DB_DNODE_ENTER(db);
448 dn = DB_DNODE(db);
449
450 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
2e528b49 451 err = SET_ERROR(EINVAL);
572e2857
BB
452 } else {
453 rw_enter(&dn->dn_struct_rwlock, RW_READER);
454
455 if (!dn->dn_have_spill) {
2e528b49 456 err = SET_ERROR(ENOENT);
572e2857
BB
457 } else {
458 err = dmu_spill_hold_by_dnode(dn,
459 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
460 }
428870ff 461
428870ff 462 rw_exit(&dn->dn_struct_rwlock);
428870ff 463 }
572e2857
BB
464
465 DB_DNODE_EXIT(db);
428870ff
BB
466 return (err);
467}
468
469int
e7504d7a
TC
470dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
471 dmu_buf_t **dbp)
428870ff 472{
572e2857
BB
473 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
474 dnode_t *dn;
475 int err;
e7504d7a
TC
476 uint32_t db_flags = DB_RF_CANFAIL;
477
478 if (flags & DMU_READ_NO_DECRYPT)
479 db_flags |= DB_RF_NO_DECRYPT;
572e2857
BB
480
481 DB_DNODE_ENTER(db);
482 dn = DB_DNODE(db);
e7504d7a 483 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
572e2857
BB
484 DB_DNODE_EXIT(db);
485
486 return (err);
428870ff
BB
487}
488
34dc7c2f
BB
489/*
490 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
491 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
492 * and can induce severe lock contention when writing to several files
493 * whose dnodes are in the same block.
494 */
af1698f5 495int
9babb374 496dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
7f60329a 497 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
34dc7c2f
BB
498{
499 dmu_buf_t **dbp;
500 uint64_t blkid, nblks, i;
9babb374 501 uint32_t dbuf_flags;
34dc7c2f 502 int err;
ec50cd24 503 zio_t *zio = NULL;
34dc7c2f
BB
504
505 ASSERT(length <= DMU_MAX_ACCESS);
506
7f60329a
MA
507 /*
508 * Note: We directly notify the prefetch code of this read, so that
509 * we can tell it about the multi-block read. dbuf_read() only knows
510 * about the one block it is accessing.
511 */
512 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
513 DB_RF_NOPREFETCH;
34dc7c2f
BB
514
515 rw_enter(&dn->dn_struct_rwlock, RW_READER);
516 if (dn->dn_datablkshift) {
517 int blkshift = dn->dn_datablkshift;
7f60329a
MA
518 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
519 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
34dc7c2f
BB
520 } else {
521 if (offset + length > dn->dn_datablksz) {
522 zfs_panic_recover("zfs: accessing past end of object "
523 "%llx/%llx (size=%u access=%llu+%llu)",
524 (longlong_t)dn->dn_objset->
525 os_dsl_dataset->ds_object,
526 (longlong_t)dn->dn_object, dn->dn_datablksz,
527 (longlong_t)offset, (longlong_t)length);
45d1cae3 528 rw_exit(&dn->dn_struct_rwlock);
2e528b49 529 return (SET_ERROR(EIO));
34dc7c2f
BB
530 }
531 nblks = 1;
532 }
79c76d5b 533 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
34dc7c2f 534
ec50cd24
FY
535 if (read)
536 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
537 ZIO_FLAG_CANFAIL);
fcff0f35 538 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f 539 for (i = 0; i < nblks; i++) {
7f60329a 540 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
34dc7c2f
BB
541 if (db == NULL) {
542 rw_exit(&dn->dn_struct_rwlock);
543 dmu_buf_rele_array(dbp, nblks, tag);
ec50cd24
FY
544 if (read)
545 zio_nowait(zio);
2e528b49 546 return (SET_ERROR(EIO));
34dc7c2f 547 }
7f60329a 548
34dc7c2f 549 /* initiate async i/o */
7f60329a 550 if (read)
9babb374 551 (void) dbuf_read(db, zio, dbuf_flags);
34dc7c2f
BB
552 dbp[i] = &db->db;
553 }
7f60329a 554
64e0fe14
RM
555 if (!read)
556 zfs_racct_write(length, nblks);
557
755065f3
AM
558 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
559 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
560 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
f664f1ee 561 read && DNODE_IS_CACHEABLE(dn), B_TRUE);
7f60329a 562 }
34dc7c2f
BB
563 rw_exit(&dn->dn_struct_rwlock);
564
34dc7c2f 565 if (read) {
ec50cd24
FY
566 /* wait for async read i/o */
567 err = zio_wait(zio);
568 if (err) {
569 dmu_buf_rele_array(dbp, nblks, tag);
570 return (err);
571 }
572
573 /* wait for other io to complete */
34dc7c2f
BB
574 for (i = 0; i < nblks; i++) {
575 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
576 mutex_enter(&db->db_mtx);
577 while (db->db_state == DB_READ ||
578 db->db_state == DB_FILL)
579 cv_wait(&db->db_changed, &db->db_mtx);
580 if (db->db_state == DB_UNCACHED)
2e528b49 581 err = SET_ERROR(EIO);
34dc7c2f
BB
582 mutex_exit(&db->db_mtx);
583 if (err) {
584 dmu_buf_rele_array(dbp, nblks, tag);
585 return (err);
586 }
587 }
588 }
589
590 *numbufsp = nblks;
591 *dbpp = dbp;
592 return (0);
593}
594
595static int
596dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
597 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
598{
599 dnode_t *dn;
600 int err;
601
428870ff 602 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
603 if (err)
604 return (err);
605
606 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 607 numbufsp, dbpp, DMU_READ_PREFETCH);
34dc7c2f
BB
608
609 dnode_rele(dn, FTAG);
610
611 return (err);
612}
613
614int
572e2857 615dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
7f60329a
MA
616 uint64_t length, boolean_t read, void *tag, int *numbufsp,
617 dmu_buf_t ***dbpp)
34dc7c2f 618{
572e2857
BB
619 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
620 dnode_t *dn;
34dc7c2f
BB
621 int err;
622
572e2857
BB
623 DB_DNODE_ENTER(db);
624 dn = DB_DNODE(db);
34dc7c2f 625 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 626 numbufsp, dbpp, DMU_READ_PREFETCH);
572e2857 627 DB_DNODE_EXIT(db);
34dc7c2f
BB
628
629 return (err);
630}
631
632void
633dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
634{
635 int i;
636 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
637
638 if (numbufs == 0)
639 return;
640
641 for (i = 0; i < numbufs; i++) {
642 if (dbp[i])
643 dbuf_rele(dbp[i], tag);
644 }
645
646 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
647}
648
e8b96c60 649/*
fcff0f35 650 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
e1cfd73f 651 * indirect blocks prefetched will be those that point to the blocks containing
fcff0f35 652 * the data starting at offset, and continuing to offset + len.
e8b96c60 653 *
b5256303 654 * Note that if the indirect blocks above the blocks being prefetched are not
e1cfd73f 655 * in cache, they will be asynchronously read in.
e8b96c60 656 */
34dc7c2f 657void
fcff0f35
PD
658dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
659 uint64_t len, zio_priority_t pri)
34dc7c2f
BB
660{
661 dnode_t *dn;
662 uint64_t blkid;
e8b96c60 663 int nblks, err;
34dc7c2f 664
34dc7c2f 665 if (len == 0) { /* they're interested in the bonus buffer */
572e2857 666 dn = DMU_META_DNODE(os);
34dc7c2f
BB
667
668 if (object == 0 || object >= DN_MAX_OBJECT)
669 return;
670
671 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
672 blkid = dbuf_whichblock(dn, level,
673 object * sizeof (dnode_phys_t));
674 dbuf_prefetch(dn, level, blkid, pri, 0);
34dc7c2f
BB
675 rw_exit(&dn->dn_struct_rwlock);
676 return;
677 }
678
d9b4bf06
MA
679 /*
680 * See comment before the definition of dmu_prefetch_max.
681 */
682 len = MIN(len, dmu_prefetch_max);
683
34dc7c2f
BB
684 /*
685 * XXX - Note, if the dnode for the requested object is not
686 * already cached, we will do a *synchronous* read in the
687 * dnode_hold() call. The same is true for any indirects.
688 */
428870ff 689 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
690 if (err != 0)
691 return;
692
fcff0f35
PD
693 /*
694 * offset + len - 1 is the last byte we want to prefetch for, and offset
695 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
696 * last block we want to prefetch, and dbuf_whichblock(dn, level,
697 * offset) is the first. Then the number we need to prefetch is the
698 * last - first + 1.
699 */
f664f1ee 700 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
701 if (level > 0 || dn->dn_datablkshift != 0) {
702 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
703 dbuf_whichblock(dn, level, offset) + 1;
34dc7c2f
BB
704 } else {
705 nblks = (offset < dn->dn_datablksz);
706 }
707
708 if (nblks != 0) {
fcff0f35 709 blkid = dbuf_whichblock(dn, level, offset);
1c27024e 710 for (int i = 0; i < nblks; i++)
fcff0f35 711 dbuf_prefetch(dn, level, blkid + i, pri, 0);
34dc7c2f 712 }
34dc7c2f
BB
713 rw_exit(&dn->dn_struct_rwlock);
714
715 dnode_rele(dn, FTAG);
716}
717
45d1cae3
BB
718/*
719 * Get the next "chunk" of file data to free. We traverse the file from
720 * the end so that the file gets shorter over time (if we crashes in the
721 * middle, this will leave us in a better state). We find allocated file
722 * data by simply searching the allocated level 1 indirects.
b663a23d
MA
723 *
724 * On input, *start should be the first offset that does not need to be
725 * freed (e.g. "offset + length"). On return, *start will be the first
65282ee9
AP
726 * offset that should be freed and l1blks is set to the number of level 1
727 * indirect blocks found within the chunk.
45d1cae3 728 */
b128c09f 729static int
65282ee9 730get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
b128c09f 731{
65282ee9 732 uint64_t blks;
b663a23d
MA
733 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
734 /* bytes of data covered by a level-1 indirect block */
ec4afd27
OM
735 uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
736 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
b128c09f 737
b663a23d 738 ASSERT3U(minimum, <=, *start);
b128c09f 739
f4c594da
TC
740 /*
741 * Check if we can free the entire range assuming that all of the
742 * L1 blocks in this range have data. If we can, we use this
743 * worst case value as an estimate so we can avoid having to look
744 * at the object's actual data.
745 */
746 uint64_t total_l1blks =
747 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
748 iblkrange;
749 if (total_l1blks <= maxblks) {
750 *l1blks = total_l1blks;
b663a23d 751 *start = minimum;
b128c09f
BB
752 return (0);
753 }
45d1cae3 754 ASSERT(ISP2(iblkrange));
b128c09f 755
65282ee9 756 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
b128c09f
BB
757 int err;
758
b663a23d
MA
759 /*
760 * dnode_next_offset(BACKWARDS) will find an allocated L1
761 * indirect block at or before the input offset. We must
762 * decrement *start so that it is at the end of the region
763 * to search.
764 */
765 (*start)--;
f4c594da 766
b128c09f 767 err = dnode_next_offset(dn,
45d1cae3 768 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
b128c09f 769
b663a23d 770 /* if there are no indirect blocks before start, we are done */
45d1cae3 771 if (err == ESRCH) {
b663a23d
MA
772 *start = minimum;
773 break;
774 } else if (err != 0) {
65282ee9 775 *l1blks = blks;
b128c09f 776 return (err);
45d1cae3 777 }
b128c09f 778
b663a23d 779 /* set start to the beginning of this L1 indirect */
45d1cae3 780 *start = P2ALIGN(*start, iblkrange);
b128c09f 781 }
b663a23d
MA
782 if (*start < minimum)
783 *start = minimum;
65282ee9 784 *l1blks = blks;
f4c594da 785
b128c09f
BB
786 return (0);
787}
788
a08abc1b
GM
789/*
790 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
791 * otherwise return false.
792 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
793 */
794/*ARGSUSED*/
795static boolean_t
796dmu_objset_zfs_unmounting(objset_t *os)
797{
798#ifdef _KERNEL
799 if (dmu_objset_type(os) == DMU_OST_ZFS)
800 return (zfs_get_vfs_flag_unmounted(os));
801#endif
802 return (B_FALSE);
803}
804
b128c09f
BB
805static int
806dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
0c03d21a 807 uint64_t length)
b128c09f 808{
c97d3069 809 uint64_t object_size;
b663a23d 810 int err;
539d33c7
GM
811 uint64_t dirty_frees_threshold;
812 dsl_pool_t *dp = dmu_objset_pool(os);
b663a23d 813
c97d3069
BB
814 if (dn == NULL)
815 return (SET_ERROR(EINVAL));
816
817 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
b663a23d 818 if (offset >= object_size)
b128c09f 819 return (0);
b128c09f 820
539d33c7
GM
821 if (zfs_per_txg_dirty_frees_percent <= 100)
822 dirty_frees_threshold =
823 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
824 else
65282ee9 825 dirty_frees_threshold = zfs_dirty_data_max / 20;
539d33c7 826
b663a23d
MA
827 if (length == DMU_OBJECT_END || offset + length > object_size)
828 length = object_size - offset;
829
830 while (length != 0) {
539d33c7 831 uint64_t chunk_end, chunk_begin, chunk_len;
65282ee9 832 uint64_t l1blks;
b663a23d
MA
833 dmu_tx_t *tx;
834
a08abc1b
GM
835 if (dmu_objset_zfs_unmounting(dn->dn_objset))
836 return (SET_ERROR(EINTR));
837
b663a23d
MA
838 chunk_end = chunk_begin = offset + length;
839
840 /* move chunk_begin backwards to the beginning of this chunk */
65282ee9 841 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
b128c09f
BB
842 if (err)
843 return (err);
b663a23d
MA
844 ASSERT3U(chunk_begin, >=, offset);
845 ASSERT3U(chunk_begin, <=, chunk_end);
b128c09f 846
539d33c7
GM
847 chunk_len = chunk_end - chunk_begin;
848
b128c09f 849 tx = dmu_tx_create(os);
539d33c7 850 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
19d55079
MA
851
852 /*
853 * Mark this transaction as typically resulting in a net
854 * reduction in space used.
855 */
856 dmu_tx_mark_netfree(tx);
b128c09f
BB
857 err = dmu_tx_assign(tx, TXG_WAIT);
858 if (err) {
859 dmu_tx_abort(tx);
860 return (err);
861 }
539d33c7 862
f4c594da
TC
863 uint64_t txg = dmu_tx_get_txg(tx);
864
865 mutex_enter(&dp->dp_lock);
866 uint64_t long_free_dirty =
867 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
868 mutex_exit(&dp->dp_lock);
869
870 /*
871 * To avoid filling up a TXG with just frees, wait for
872 * the next TXG to open before freeing more chunks if
873 * we have reached the threshold of frees.
874 */
875 if (dirty_frees_threshold != 0 &&
876 long_free_dirty >= dirty_frees_threshold) {
877 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
878 dmu_tx_commit(tx);
879 txg_wait_open(dp, 0, B_TRUE);
880 continue;
881 }
882
65282ee9
AP
883 /*
884 * In order to prevent unnecessary write throttling, for each
885 * TXG, we track the cumulative size of L1 blocks being dirtied
886 * in dnode_free_range() below. We compare this number to a
887 * tunable threshold, past which we prevent new L1 dirty freeing
888 * blocks from being added into the open TXG. See
889 * dmu_free_long_range_impl() for details. The threshold
890 * prevents write throttle activation due to dirty freeing L1
891 * blocks taking up a large percentage of zfs_dirty_data_max.
892 */
539d33c7 893 mutex_enter(&dp->dp_lock);
f4c594da 894 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
65282ee9 895 l1blks << dn->dn_indblkshift;
539d33c7
GM
896 mutex_exit(&dp->dp_lock);
897 DTRACE_PROBE3(free__long__range,
f4c594da
TC
898 uint64_t, long_free_dirty, uint64_t, chunk_len,
899 uint64_t, txg);
539d33c7 900 dnode_free_range(dn, chunk_begin, chunk_len, tx);
440a3eb9 901
b128c09f 902 dmu_tx_commit(tx);
b663a23d 903
539d33c7 904 length -= chunk_len;
b128c09f
BB
905 }
906 return (0);
907}
908
909int
910dmu_free_long_range(objset_t *os, uint64_t object,
911 uint64_t offset, uint64_t length)
912{
913 dnode_t *dn;
914 int err;
915
428870ff 916 err = dnode_hold(os, object, FTAG, &dn);
b128c09f
BB
917 if (err != 0)
918 return (err);
0c03d21a 919 err = dmu_free_long_range_impl(os, dn, offset, length);
92bc214c
MA
920
921 /*
922 * It is important to zero out the maxblkid when freeing the entire
923 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
924 * will take the fast path, and (b) dnode_reallocate() can verify
925 * that the entire file has been freed.
926 */
b0bc7a84 927 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
92bc214c
MA
928 dn->dn_maxblkid = 0;
929
b128c09f
BB
930 dnode_rele(dn, FTAG);
931 return (err);
932}
933
934int
0c03d21a 935dmu_free_long_object(objset_t *os, uint64_t object)
b128c09f 936{
b128c09f
BB
937 dmu_tx_t *tx;
938 int err;
939
b663a23d 940 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
b128c09f
BB
941 if (err != 0)
942 return (err);
b663a23d
MA
943
944 tx = dmu_tx_create(os);
945 dmu_tx_hold_bonus(tx, object);
946 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
19d55079 947 dmu_tx_mark_netfree(tx);
b663a23d
MA
948 err = dmu_tx_assign(tx, TXG_WAIT);
949 if (err == 0) {
35df0bb5
TC
950 if (err == 0)
951 err = dmu_object_free(os, object, tx);
440a3eb9 952
b663a23d 953 dmu_tx_commit(tx);
b128c09f 954 } else {
b663a23d 955 dmu_tx_abort(tx);
b128c09f 956 }
b663a23d 957
b128c09f
BB
958 return (err);
959}
960
34dc7c2f
BB
961int
962dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
963 uint64_t size, dmu_tx_t *tx)
964{
965 dnode_t *dn;
428870ff 966 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
967 if (err)
968 return (err);
969 ASSERT(offset < UINT64_MAX);
ee45fbd8 970 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
34dc7c2f
BB
971 dnode_free_range(dn, offset, size, tx);
972 dnode_rele(dn, FTAG);
973 return (0);
974}
975
0eef1bde 976static int
977dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
9babb374 978 void *buf, uint32_t flags)
34dc7c2f 979{
34dc7c2f 980 dmu_buf_t **dbp;
0eef1bde 981 int numbufs, err = 0;
34dc7c2f
BB
982
983 /*
984 * Deal with odd block sizes, where there can't be data past the first
985 * block. If we ever do the tail block optimization, we will need to
986 * handle that here as well.
987 */
45d1cae3 988 if (dn->dn_maxblkid == 0) {
c9520ecc 989 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
34dc7c2f
BB
990 MIN(size, dn->dn_datablksz - offset);
991 bzero((char *)buf + newsz, size - newsz);
992 size = newsz;
993 }
994
995 while (size > 0) {
996 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
45d1cae3 997 int i;
34dc7c2f
BB
998
999 /*
1000 * NB: we could do this block-at-a-time, but it's nice
1001 * to be reading in parallel.
1002 */
1003 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
9babb374 1004 TRUE, FTAG, &numbufs, &dbp, flags);
34dc7c2f
BB
1005 if (err)
1006 break;
1007
1008 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1009 uint64_t tocpy;
1010 int64_t bufoff;
34dc7c2f
BB
1011 dmu_buf_t *db = dbp[i];
1012
1013 ASSERT(size > 0);
1014
1015 bufoff = offset - db->db_offset;
c9520ecc 1016 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f 1017
c9520ecc 1018 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
34dc7c2f
BB
1019
1020 offset += tocpy;
1021 size -= tocpy;
1022 buf = (char *)buf + tocpy;
1023 }
1024 dmu_buf_rele_array(dbp, numbufs, FTAG);
1025 }
34dc7c2f
BB
1026 return (err);
1027}
1028
0eef1bde 1029int
1030dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1031 void *buf, uint32_t flags)
34dc7c2f 1032{
0eef1bde 1033 dnode_t *dn;
1034 int err;
34dc7c2f 1035
0eef1bde 1036 err = dnode_hold(os, object, FTAG, &dn);
1037 if (err != 0)
1038 return (err);
34dc7c2f 1039
0eef1bde 1040 err = dmu_read_impl(dn, offset, size, buf, flags);
1041 dnode_rele(dn, FTAG);
1042 return (err);
1043}
1044
1045int
1046dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1047 uint32_t flags)
1048{
1049 return (dmu_read_impl(dn, offset, size, buf, flags));
1050}
1051
1052static void
1053dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1054 const void *buf, dmu_tx_t *tx)
1055{
1056 int i;
34dc7c2f
BB
1057
1058 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1059 uint64_t tocpy;
1060 int64_t bufoff;
34dc7c2f
BB
1061 dmu_buf_t *db = dbp[i];
1062
1063 ASSERT(size > 0);
1064
1065 bufoff = offset - db->db_offset;
c9520ecc 1066 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f
BB
1067
1068 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1069
1070 if (tocpy == db->db_size)
1071 dmu_buf_will_fill(db, tx);
1072 else
1073 dmu_buf_will_dirty(db, tx);
1074
60101509 1075 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
34dc7c2f
BB
1076
1077 if (tocpy == db->db_size)
1078 dmu_buf_fill_done(db, tx);
1079
1080 offset += tocpy;
1081 size -= tocpy;
1082 buf = (char *)buf + tocpy;
1083 }
0eef1bde 1084}
1085
1086void
1087dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1088 const void *buf, dmu_tx_t *tx)
1089{
1090 dmu_buf_t **dbp;
1091 int numbufs;
1092
1093 if (size == 0)
1094 return;
1095
1096 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1097 FALSE, FTAG, &numbufs, &dbp));
1098 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1099 dmu_buf_rele_array(dbp, numbufs, FTAG);
1100}
1101
0f8ff49e
SD
1102/*
1103 * Note: Lustre is an external consumer of this interface.
1104 */
0eef1bde 1105void
1106dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1107 const void *buf, dmu_tx_t *tx)
1108{
1109 dmu_buf_t **dbp;
1110 int numbufs;
1111
1112 if (size == 0)
1113 return;
1114
1115 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1116 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1117 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
34dc7c2f
BB
1118 dmu_buf_rele_array(dbp, numbufs, FTAG);
1119}
1120
b128c09f
BB
1121void
1122dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1123 dmu_tx_t *tx)
1124{
1125 dmu_buf_t **dbp;
1126 int numbufs, i;
1127
1128 if (size == 0)
1129 return;
1130
1131 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1132 FALSE, FTAG, &numbufs, &dbp));
1133
1134 for (i = 0; i < numbufs; i++) {
1135 dmu_buf_t *db = dbp[i];
1136
1137 dmu_buf_will_not_fill(db, tx);
1138 }
1139 dmu_buf_rele_array(dbp, numbufs, FTAG);
1140}
1141
9b67f605
MA
1142void
1143dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1144 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1145 int compressed_size, int byteorder, dmu_tx_t *tx)
1146{
1147 dmu_buf_t *db;
1148
1149 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1150 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1151 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1152 FTAG, &db));
1153
1154 dmu_buf_write_embedded(db,
1155 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1156 uncompressed_size, compressed_size, byteorder, tx);
1157
1158 dmu_buf_rele(db, FTAG);
1159}
1160
30af21b0
PD
1161void
1162dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1163 dmu_tx_t *tx)
1164{
1165 int numbufs, i;
1166 dmu_buf_t **dbp;
1167
1168 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1169 &numbufs, &dbp));
1170 for (i = 0; i < numbufs; i++)
1171 dmu_buf_redact(dbp[i], tx);
1172 dmu_buf_rele_array(dbp, numbufs, FTAG);
1173}
1174
34dc7c2f 1175#ifdef _KERNEL
5228cf01 1176int
d0cd9a5c 1177dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
872e8d26
BB
1178{
1179 dmu_buf_t **dbp;
1180 int numbufs, i, err;
872e8d26
BB
1181
1182 /*
1183 * NB: we could do this block-at-a-time, but it's nice
1184 * to be reading in parallel.
1185 */
d0cd9a5c 1186 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
804e0504 1187 TRUE, FTAG, &numbufs, &dbp, 0);
872e8d26
BB
1188 if (err)
1189 return (err);
1190
1191 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1192 uint64_t tocpy;
1193 int64_t bufoff;
872e8d26
BB
1194 dmu_buf_t *db = dbp[i];
1195
1196 ASSERT(size > 0);
1197
d0cd9a5c 1198 bufoff = zfs_uio_offset(uio) - db->db_offset;
c9520ecc 1199 tocpy = MIN(db->db_size - bufoff, size);
872e8d26 1200
d0cd9a5c
BA
1201 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1202 UIO_READ, uio);
1203
872e8d26
BB
1204 if (err)
1205 break;
1206
1207 size -= tocpy;
1208 }
1209 dmu_buf_rele_array(dbp, numbufs, FTAG);
1210
1211 return (err);
1212}
1213
804e0504
MA
1214/*
1215 * Read 'size' bytes into the uio buffer.
1216 * From object zdb->db_object.
d0cd9a5c 1217 * Starting at zfs_uio_offset(uio).
804e0504
MA
1218 *
1219 * If the caller already has a dbuf in the target object
1220 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1221 * because we don't have to find the dnode_t for the object.
1222 */
1223int
d0cd9a5c 1224dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
804e0504
MA
1225{
1226 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1227 dnode_t *dn;
1228 int err;
1229
1230 if (size == 0)
1231 return (0);
1232
1233 DB_DNODE_ENTER(db);
1234 dn = DB_DNODE(db);
1235 err = dmu_read_uio_dnode(dn, uio, size);
1236 DB_DNODE_EXIT(db);
1237
1238 return (err);
1239}
1240
1241/*
1242 * Read 'size' bytes into the uio buffer.
1243 * From the specified object
d0cd9a5c 1244 * Starting at offset zfs_uio_offset(uio).
804e0504
MA
1245 */
1246int
d0cd9a5c 1247dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
804e0504
MA
1248{
1249 dnode_t *dn;
1250 int err;
1251
1252 if (size == 0)
1253 return (0);
1254
1255 err = dnode_hold(os, object, FTAG, &dn);
1256 if (err)
1257 return (err);
1258
1259 err = dmu_read_uio_dnode(dn, uio, size);
1260
1261 dnode_rele(dn, FTAG);
1262
1263 return (err);
1264}
1265
5228cf01 1266int
d0cd9a5c 1267dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
872e8d26
BB
1268{
1269 dmu_buf_t **dbp;
1270 int numbufs;
1271 int err = 0;
1272 int i;
1273
d0cd9a5c 1274 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
872e8d26
BB
1275 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1276 if (err)
1277 return (err);
1278
1279 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1280 uint64_t tocpy;
1281 int64_t bufoff;
872e8d26
BB
1282 dmu_buf_t *db = dbp[i];
1283
1284 ASSERT(size > 0);
1285
d0cd9a5c 1286 bufoff = zfs_uio_offset(uio) - db->db_offset;
c9520ecc 1287 tocpy = MIN(db->db_size - bufoff, size);
872e8d26
BB
1288
1289 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1290
1291 if (tocpy == db->db_size)
1292 dmu_buf_will_fill(db, tx);
1293 else
1294 dmu_buf_will_dirty(db, tx);
1295
1296 /*
d0cd9a5c 1297 * XXX zfs_uiomove could block forever (eg.nfs-backed
872e8d26 1298 * pages). There needs to be a uiolockdown() function
d0cd9a5c 1299 * to lock the pages in memory, so that zfs_uiomove won't
872e8d26
BB
1300 * block.
1301 */
d0cd9a5c
BA
1302 err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1303 tocpy, UIO_WRITE, uio);
1304
872e8d26
BB
1305 if (tocpy == db->db_size)
1306 dmu_buf_fill_done(db, tx);
1307
1308 if (err)
1309 break;
1310
1311 size -= tocpy;
1312 }
1313
1314 dmu_buf_rele_array(dbp, numbufs, FTAG);
1315 return (err);
1316}
1317
804e0504
MA
1318/*
1319 * Write 'size' bytes from the uio buffer.
1320 * To object zdb->db_object.
d0cd9a5c 1321 * Starting at offset zfs_uio_offset(uio).
804e0504
MA
1322 *
1323 * If the caller already has a dbuf in the target object
1324 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1325 * because we don't have to find the dnode_t for the object.
1326 */
428870ff 1327int
d0cd9a5c 1328dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
428870ff
BB
1329 dmu_tx_t *tx)
1330{
572e2857
BB
1331 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1332 dnode_t *dn;
1333 int err;
1334
428870ff
BB
1335 if (size == 0)
1336 return (0);
1337
572e2857
BB
1338 DB_DNODE_ENTER(db);
1339 dn = DB_DNODE(db);
1340 err = dmu_write_uio_dnode(dn, uio, size, tx);
1341 DB_DNODE_EXIT(db);
1342
1343 return (err);
428870ff
BB
1344}
1345
804e0504
MA
1346/*
1347 * Write 'size' bytes from the uio buffer.
1348 * To the specified object.
d0cd9a5c 1349 * Starting at offset zfs_uio_offset(uio).
804e0504 1350 */
428870ff 1351int
d0cd9a5c 1352dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
428870ff
BB
1353 dmu_tx_t *tx)
1354{
1355 dnode_t *dn;
1356 int err;
1357
1358 if (size == 0)
1359 return (0);
1360
1361 err = dnode_hold(os, object, FTAG, &dn);
1362 if (err)
1363 return (err);
1364
1365 err = dmu_write_uio_dnode(dn, uio, size, tx);
1366
1367 dnode_rele(dn, FTAG);
1368
1369 return (err);
1370}
872e8d26 1371#endif /* _KERNEL */
34dc7c2f 1372
9babb374
BB
1373/*
1374 * Allocate a loaned anonymous arc buffer.
1375 */
1376arc_buf_t *
1377dmu_request_arcbuf(dmu_buf_t *handle, int size)
1378{
572e2857 1379 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
9babb374 1380
2aa34383 1381 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
9babb374
BB
1382}
1383
1384/*
1385 * Free a loaned arc buffer.
1386 */
1387void
1388dmu_return_arcbuf(arc_buf_t *buf)
1389{
1390 arc_return_buf(buf, FTAG);
d3c2ae1c 1391 arc_buf_destroy(buf, FTAG);
9babb374
BB
1392}
1393
ba67d821
MA
1394/*
1395 * A "lightweight" write is faster than a regular write (e.g.
1396 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1397 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1398 * data can not be read or overwritten until the transaction's txg has been
1399 * synced. This makes it appropriate for workloads that are known to be
1400 * (temporarily) write-only, like "zfs receive".
1401 *
1402 * A single block is written, starting at the specified offset in bytes. If
1403 * the call is successful, it returns 0 and the provided abd has been
1404 * consumed (the caller should not free it).
1405 */
1406int
1407dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1408 const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx)
1409{
1410 dbuf_dirty_record_t *dr =
1411 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1412 if (dr == NULL)
1413 return (SET_ERROR(EIO));
1414 dr->dt.dll.dr_abd = abd;
1415 dr->dt.dll.dr_props = *zp;
1416 dr->dt.dll.dr_flags = flags;
1417 return (0);
1418}
1419
9babb374
BB
1420/*
1421 * When possible directly assign passed loaned arc buffer to a dbuf.
1422 * If this is not possible copy the contents of passed arc buf via
1423 * dmu_write().
1424 */
305781da 1425int
440a3eb9 1426dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
9babb374
BB
1427 dmu_tx_t *tx)
1428{
9babb374 1429 dmu_buf_impl_t *db;
440a3eb9
TC
1430 objset_t *os = dn->dn_objset;
1431 uint64_t object = dn->dn_object;
2aa34383 1432 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
9babb374
BB
1433 uint64_t blkid;
1434
1435 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35 1436 blkid = dbuf_whichblock(dn, 0, offset);
305781da
TC
1437 db = dbuf_hold(dn, blkid, FTAG);
1438 if (db == NULL)
1439 return (SET_ERROR(EIO));
9babb374
BB
1440 rw_exit(&dn->dn_struct_rwlock);
1441
88904bb3 1442 /*
ba67d821
MA
1443 * We can only assign if the offset is aligned and the arc buf is the
1444 * same size as the dbuf.
88904bb3 1445 */
2aa34383 1446 if (offset == db->db.db_offset && blksz == db->db.db_size) {
64e0fe14 1447 zfs_racct_write(blksz, 1);
9babb374
BB
1448 dbuf_assign_arcbuf(db, buf, tx);
1449 dbuf_rele(db, FTAG);
1450 } else {
2aa34383
DK
1451 /* compressed bufs must always be assignable to their dbuf */
1452 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
524b4217 1453 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
2aa34383 1454
9babb374 1455 dbuf_rele(db, FTAG);
572e2857 1456 dmu_write(os, object, offset, blksz, buf->b_data, tx);
9babb374
BB
1457 dmu_return_arcbuf(buf);
1458 }
305781da
TC
1459
1460 return (0);
9babb374
BB
1461}
1462
305781da 1463int
440a3eb9
TC
1464dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1465 dmu_tx_t *tx)
1466{
305781da 1467 int err;
440a3eb9
TC
1468 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1469
1470 DB_DNODE_ENTER(dbuf);
305781da 1471 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
440a3eb9 1472 DB_DNODE_EXIT(dbuf);
305781da
TC
1473
1474 return (err);
440a3eb9
TC
1475}
1476
34dc7c2f 1477typedef struct {
428870ff
BB
1478 dbuf_dirty_record_t *dsa_dr;
1479 dmu_sync_cb_t *dsa_done;
1480 zgd_t *dsa_zgd;
1481 dmu_tx_t *dsa_tx;
34dc7c2f
BB
1482} dmu_sync_arg_t;
1483
b128c09f
BB
1484/* ARGSUSED */
1485static void
1486dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1487{
428870ff
BB
1488 dmu_sync_arg_t *dsa = varg;
1489 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
b128c09f
BB
1490 blkptr_t *bp = zio->io_bp;
1491
428870ff
BB
1492 if (zio->io_error == 0) {
1493 if (BP_IS_HOLE(bp)) {
1494 /*
1495 * A block of zeros may compress to a hole, but the
1496 * block size still needs to be known for replay.
1497 */
1498 BP_SET_LSIZE(bp, db->db_size);
9b67f605 1499 } else if (!BP_IS_EMBEDDED(bp)) {
428870ff 1500 ASSERT(BP_GET_LEVEL(bp) == 0);
b5256303 1501 BP_SET_FILL(bp, 1);
428870ff 1502 }
b128c09f
BB
1503 }
1504}
1505
428870ff
BB
1506static void
1507dmu_sync_late_arrival_ready(zio_t *zio)
1508{
1509 dmu_sync_ready(zio, NULL, zio->io_private);
1510}
1511
34dc7c2f
BB
1512/* ARGSUSED */
1513static void
1514dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1515{
428870ff
BB
1516 dmu_sync_arg_t *dsa = varg;
1517 dbuf_dirty_record_t *dr = dsa->dsa_dr;
34dc7c2f 1518 dmu_buf_impl_t *db = dr->dr_dbuf;
900d09b2
PS
1519 zgd_t *zgd = dsa->dsa_zgd;
1520
1521 /*
1522 * Record the vdev(s) backing this blkptr so they can be flushed after
1523 * the writes for the lwb have completed.
1524 */
1525 if (zio->io_error == 0) {
1526 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1527 }
34dc7c2f 1528
34dc7c2f
BB
1529 mutex_enter(&db->db_mtx);
1530 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
428870ff 1531 if (zio->io_error == 0) {
03c6040b
GW
1532 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1533 if (dr->dt.dl.dr_nopwrite) {
02dc43bc
MA
1534 blkptr_t *bp = zio->io_bp;
1535 blkptr_t *bp_orig = &zio->io_bp_orig;
1536 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
03c6040b
GW
1537
1538 ASSERT(BP_EQUAL(bp, bp_orig));
02dc43bc 1539 VERIFY(BP_EQUAL(bp, db->db_blkptr));
03c6040b 1540 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
02dc43bc 1541 VERIFY(zio_checksum_table[chksum].ci_flags &
3c67d83a 1542 ZCHECKSUM_FLAG_NOPWRITE);
03c6040b 1543 }
428870ff
BB
1544 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1545 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1546 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
a4069eef
PS
1547
1548 /*
1549 * Old style holes are filled with all zeros, whereas
1550 * new-style holes maintain their lsize, type, level,
1551 * and birth time (see zio_write_compress). While we
1552 * need to reset the BP_SET_LSIZE() call that happened
1553 * in dmu_sync_ready for old style holes, we do *not*
1554 * want to wipe out the information contained in new
1555 * style holes. Thus, only zero out the block pointer if
1556 * it's an old style hole.
1557 */
1558 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1559 dr->dt.dl.dr_overridden_by.blk_birth == 0)
428870ff
BB
1560 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1561 } else {
1562 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1563 }
34dc7c2f
BB
1564 cv_broadcast(&db->db_changed);
1565 mutex_exit(&db->db_mtx);
1566
428870ff 1567 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
34dc7c2f 1568
428870ff
BB
1569 kmem_free(dsa, sizeof (*dsa));
1570}
1571
1572static void
1573dmu_sync_late_arrival_done(zio_t *zio)
1574{
1575 blkptr_t *bp = zio->io_bp;
1576 dmu_sync_arg_t *dsa = zio->io_private;
900d09b2
PS
1577 zgd_t *zgd = dsa->dsa_zgd;
1578
1579 if (zio->io_error == 0) {
1580 /*
1581 * Record the vdev(s) backing this blkptr so they can be
1582 * flushed after the writes for the lwb have completed.
1583 */
1584 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1585
1586 if (!BP_IS_HOLE(bp)) {
2a8ba608 1587 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
900d09b2
PS
1588 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1589 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1590 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1591 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1592 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1593 }
428870ff
BB
1594 }
1595
1596 dmu_tx_commit(dsa->dsa_tx);
1597
1598 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1599
e2af2acc 1600 abd_free(zio->io_abd);
428870ff
BB
1601 kmem_free(dsa, sizeof (*dsa));
1602}
1603
1604static int
1605dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
5dbd68a3 1606 zio_prop_t *zp, zbookmark_phys_t *zb)
428870ff
BB
1607{
1608 dmu_sync_arg_t *dsa;
1609 dmu_tx_t *tx;
1610
1611 tx = dmu_tx_create(os);
1612 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1613 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1614 dmu_tx_abort(tx);
2e528b49
MA
1615 /* Make zl_get_data do txg_waited_synced() */
1616 return (SET_ERROR(EIO));
428870ff
BB
1617 }
1618
1ce23dca
PS
1619 /*
1620 * In order to prevent the zgd's lwb from being free'd prior to
1621 * dmu_sync_late_arrival_done() being called, we have to ensure
1622 * the lwb's "max txg" takes this tx's txg into account.
1623 */
1624 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1625
79c76d5b 1626 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1627 dsa->dsa_dr = NULL;
1628 dsa->dsa_done = done;
1629 dsa->dsa_zgd = zgd;
1630 dsa->dsa_tx = tx;
1631
02dc43bc
MA
1632 /*
1633 * Since we are currently syncing this txg, it's nontrivial to
1634 * determine what BP to nopwrite against, so we disable nopwrite.
1635 *
1636 * When syncing, the db_blkptr is initially the BP of the previous
1637 * txg. We can not nopwrite against it because it will be changed
1638 * (this is similar to the non-late-arrival case where the dbuf is
1639 * dirty in a future txg).
1640 *
1641 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1642 * We can not nopwrite against it because although the BP will not
1643 * (typically) be changed, the data has not yet been persisted to this
1644 * location.
1645 *
1646 * Finally, when dbuf_write_done() is called, it is theoretically
1647 * possible to always nopwrite, because the data that was written in
1648 * this txg is the same data that we are trying to write. However we
1649 * would need to check that this dbuf is not dirty in any future
1650 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1651 * don't nopwrite in this case.
1652 */
1653 zp->zp_nopwrite = B_FALSE;
1654
a6255b7f
DQ
1655 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1656 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1657 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1658 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1659 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
428870ff
BB
1660
1661 return (0);
34dc7c2f
BB
1662}
1663
1664/*
1665 * Intent log support: sync the block associated with db to disk.
1666 * N.B. and XXX: the caller is responsible for making sure that the
1667 * data isn't changing while dmu_sync() is writing it.
1668 *
1669 * Return values:
1670 *
03c6040b 1671 * EEXIST: this txg has already been synced, so there's nothing to do.
34dc7c2f
BB
1672 * The caller should not log the write.
1673 *
1674 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1675 * The caller should not log the write.
1676 *
1677 * EALREADY: this block is already in the process of being synced.
1678 * The caller should track its progress (somehow).
1679 *
428870ff
BB
1680 * EIO: could not do the I/O.
1681 * The caller should do a txg_wait_synced().
34dc7c2f 1682 *
428870ff
BB
1683 * 0: the I/O has been initiated.
1684 * The caller should log this blkptr in the done callback.
1685 * It is possible that the I/O will fail, in which case
1686 * the error will be reported to the done callback and
1687 * propagated to pio from zio_done().
34dc7c2f
BB
1688 */
1689int
428870ff 1690dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
34dc7c2f 1691{
428870ff
BB
1692 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1693 objset_t *os = db->db_objset;
1694 dsl_dataset_t *ds = os->os_dsl_dataset;
cccbed9f 1695 dbuf_dirty_record_t *dr, *dr_next;
428870ff 1696 dmu_sync_arg_t *dsa;
5dbd68a3 1697 zbookmark_phys_t zb;
428870ff 1698 zio_prop_t zp;
572e2857 1699 dnode_t *dn;
34dc7c2f 1700
428870ff 1701 ASSERT(pio != NULL);
34dc7c2f
BB
1702 ASSERT(txg != 0);
1703
428870ff
BB
1704 SET_BOOKMARK(&zb, ds->ds_object,
1705 db->db.db_object, db->db_level, db->db_blkid);
1706
572e2857
BB
1707 DB_DNODE_ENTER(db);
1708 dn = DB_DNODE(db);
82644107 1709 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
572e2857 1710 DB_DNODE_EXIT(db);
34dc7c2f
BB
1711
1712 /*
428870ff 1713 * If we're frozen (running ziltest), we always need to generate a bp.
34dc7c2f 1714 */
428870ff
BB
1715 if (txg > spa_freeze_txg(os->os_spa))
1716 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1717
1718 /*
428870ff
BB
1719 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1720 * and us. If we determine that this txg is not yet syncing,
1721 * but it begins to sync a moment later, that's OK because the
1722 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
34dc7c2f 1723 */
428870ff
BB
1724 mutex_enter(&db->db_mtx);
1725
1726 if (txg <= spa_last_synced_txg(os->os_spa)) {
34dc7c2f 1727 /*
428870ff 1728 * This txg has already synced. There's nothing to do.
34dc7c2f 1729 */
428870ff 1730 mutex_exit(&db->db_mtx);
2e528b49 1731 return (SET_ERROR(EEXIST));
34dc7c2f
BB
1732 }
1733
428870ff
BB
1734 if (txg <= spa_syncing_txg(os->os_spa)) {
1735 /*
1736 * This txg is currently syncing, so we can't mess with
1737 * the dirty record anymore; just write a new log block.
1738 */
1739 mutex_exit(&db->db_mtx);
1740 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1741 }
1742
cccbed9f 1743 dr = dbuf_find_dirty_eq(db, txg);
428870ff
BB
1744
1745 if (dr == NULL) {
34dc7c2f 1746 /*
428870ff 1747 * There's no dr for this dbuf, so it must have been freed.
34dc7c2f
BB
1748 * There's no need to log writes to freed blocks, so we're done.
1749 */
1750 mutex_exit(&db->db_mtx);
2e528b49 1751 return (SET_ERROR(ENOENT));
34dc7c2f
BB
1752 }
1753
cccbed9f
MM
1754 dr_next = list_next(&db->db_dirty_records, dr);
1755 ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
03c6040b 1756
02dc43bc
MA
1757 if (db->db_blkptr != NULL) {
1758 /*
1759 * We need to fill in zgd_bp with the current blkptr so that
1760 * the nopwrite code can check if we're writing the same
1761 * data that's already on disk. We can only nopwrite if we
1762 * are sure that after making the copy, db_blkptr will not
1763 * change until our i/o completes. We ensure this by
1764 * holding the db_mtx, and only allowing nopwrite if the
1765 * block is not already dirty (see below). This is verified
1766 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1767 * not changed.
1768 */
1769 *zgd->zgd_bp = *db->db_blkptr;
1770 }
1771
03c6040b 1772 /*
f3c517d8
MA
1773 * Assume the on-disk data is X, the current syncing data (in
1774 * txg - 1) is Y, and the current in-memory data is Z (currently
1775 * in dmu_sync).
1776 *
1777 * We usually want to perform a nopwrite if X and Z are the
1778 * same. However, if Y is different (i.e. the BP is going to
1779 * change before this write takes effect), then a nopwrite will
1780 * be incorrect - we would override with X, which could have
1781 * been freed when Y was written.
1782 *
1783 * (Note that this is not a concern when we are nop-writing from
1784 * syncing context, because X and Y must be identical, because
1785 * all previous txgs have been synced.)
1786 *
1787 * Therefore, we disable nopwrite if the current BP could change
1788 * before this TXG. There are two ways it could change: by
1789 * being dirty (dr_next is non-NULL), or by being freed
1790 * (dnode_block_freed()). This behavior is verified by
1791 * zio_done(), which VERIFYs that the override BP is identical
1792 * to the on-disk BP.
03c6040b 1793 */
f3c517d8
MA
1794 DB_DNODE_ENTER(db);
1795 dn = DB_DNODE(db);
cccbed9f 1796 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
03c6040b 1797 zp.zp_nopwrite = B_FALSE;
f3c517d8 1798 DB_DNODE_EXIT(db);
03c6040b 1799
34dc7c2f 1800 ASSERT(dr->dr_txg == txg);
428870ff
BB
1801 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1802 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
34dc7c2f 1803 /*
428870ff
BB
1804 * We have already issued a sync write for this buffer,
1805 * or this buffer has already been synced. It could not
34dc7c2f
BB
1806 * have been dirtied since, or we would have cleared the state.
1807 */
34dc7c2f 1808 mutex_exit(&db->db_mtx);
2e528b49 1809 return (SET_ERROR(EALREADY));
34dc7c2f
BB
1810 }
1811
428870ff 1812 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
34dc7c2f 1813 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
34dc7c2f 1814 mutex_exit(&db->db_mtx);
34dc7c2f 1815
79c76d5b 1816 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1817 dsa->dsa_dr = dr;
1818 dsa->dsa_done = done;
1819 dsa->dsa_zgd = zgd;
1820 dsa->dsa_tx = NULL;
b128c09f 1821
428870ff 1822 zio_nowait(arc_write(pio, os->os_spa, txg,
02dc43bc 1823 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
d3c2ae1c 1824 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
bc77ba73 1825 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
b128c09f 1826
428870ff 1827 return (0);
34dc7c2f
BB
1828}
1829
b5256303
TC
1830int
1831dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1832{
1833 dnode_t *dn;
1834 int err;
1835
1836 err = dnode_hold(os, object, FTAG, &dn);
1837 if (err)
1838 return (err);
1839 err = dnode_set_nlevels(dn, nlevels, tx);
1840 dnode_rele(dn, FTAG);
1841 return (err);
1842}
1843
34dc7c2f
BB
1844int
1845dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
4ea3f864 1846 dmu_tx_t *tx)
34dc7c2f
BB
1847{
1848 dnode_t *dn;
1849 int err;
1850
428870ff 1851 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
1852 if (err)
1853 return (err);
1854 err = dnode_set_blksz(dn, size, ibs, tx);
1855 dnode_rele(dn, FTAG);
1856 return (err);
1857}
1858
ae76f45c
TC
1859int
1860dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1861 dmu_tx_t *tx)
1862{
1863 dnode_t *dn;
1864 int err;
1865
1866 err = dnode_hold(os, object, FTAG, &dn);
1867 if (err)
1868 return (err);
1869 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
369aa501 1870 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
ae76f45c
TC
1871 rw_exit(&dn->dn_struct_rwlock);
1872 dnode_rele(dn, FTAG);
1873 return (0);
1874}
1875
34dc7c2f
BB
1876void
1877dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
4ea3f864 1878 dmu_tx_t *tx)
34dc7c2f
BB
1879{
1880 dnode_t *dn;
1881
9b67f605
MA
1882 /*
1883 * Send streams include each object's checksum function. This
1884 * check ensures that the receiving system can understand the
1885 * checksum function transmitted.
1886 */
1887 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1888
1889 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1890 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
34dc7c2f
BB
1891 dn->dn_checksum = checksum;
1892 dnode_setdirty(dn, tx);
1893 dnode_rele(dn, FTAG);
1894}
1895
1896void
1897dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
4ea3f864 1898 dmu_tx_t *tx)
34dc7c2f
BB
1899{
1900 dnode_t *dn;
1901
9b67f605
MA
1902 /*
1903 * Send streams include each object's compression function. This
1904 * check ensures that the receiving system can understand the
1905 * compression function transmitted.
1906 */
1907 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1908
1909 VERIFY0(dnode_hold(os, object, FTAG, &dn));
34dc7c2f
BB
1910 dn->dn_compress = compress;
1911 dnode_setdirty(dn, tx);
1912 dnode_rele(dn, FTAG);
1913}
1914
faf0f58c
MA
1915/*
1916 * When the "redundant_metadata" property is set to "most", only indirect
1917 * blocks of this level and higher will have an additional ditto block.
1918 */
1919int zfs_redundant_metadata_most_ditto_level = 2;
1920
428870ff 1921void
82644107 1922dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
428870ff
BB
1923{
1924 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
9ae529ec 1925 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
572e2857 1926 (wp & WP_SPILL));
428870ff
BB
1927 enum zio_checksum checksum = os->os_checksum;
1928 enum zio_compress compress = os->os_compress;
10b3c7f5 1929 uint8_t complevel = os->os_complevel;
428870ff 1930 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
03c6040b
GW
1931 boolean_t dedup = B_FALSE;
1932 boolean_t nopwrite = B_FALSE;
428870ff 1933 boolean_t dedup_verify = os->os_dedup_verify;
b5256303 1934 boolean_t encrypt = B_FALSE;
428870ff 1935 int copies = os->os_copies;
a7004725 1936
428870ff 1937 /*
03c6040b
GW
1938 * We maintain different write policies for each of the following
1939 * types of data:
1940 * 1. metadata
1941 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1942 * 3. all other level 0 blocks
428870ff
BB
1943 */
1944 if (ismd) {
b1d21733
TC
1945 /*
1946 * XXX -- we should design a compression algorithm
1947 * that specializes in arrays of bps.
1948 */
1949 compress = zio_compress_select(os->os_spa,
1950 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
03c6040b 1951
428870ff
BB
1952 /*
1953 * Metadata always gets checksummed. If the data
1954 * checksum is multi-bit correctable, and it's not a
1955 * ZBT-style checksum, then it's suitable for metadata
1956 * as well. Otherwise, the metadata checksum defaults
1957 * to fletcher4.
1958 */
3c67d83a
TH
1959 if (!(zio_checksum_table[checksum].ci_flags &
1960 ZCHECKSUM_FLAG_METADATA) ||
1961 (zio_checksum_table[checksum].ci_flags &
1962 ZCHECKSUM_FLAG_EMBEDDED))
428870ff 1963 checksum = ZIO_CHECKSUM_FLETCHER_4;
faf0f58c
MA
1964
1965 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1966 (os->os_redundant_metadata ==
1967 ZFS_REDUNDANT_METADATA_MOST &&
1968 (level >= zfs_redundant_metadata_most_ditto_level ||
1969 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1970 copies++;
03c6040b
GW
1971 } else if (wp & WP_NOFILL) {
1972 ASSERT(level == 0);
428870ff 1973
428870ff 1974 /*
03c6040b
GW
1975 * If we're writing preallocated blocks, we aren't actually
1976 * writing them so don't set any policy properties. These
1977 * blocks are currently only used by an external subsystem
1978 * outside of zfs (i.e. dump) and not written by the zio
1979 * pipeline.
428870ff 1980 */
03c6040b
GW
1981 compress = ZIO_COMPRESS_OFF;
1982 checksum = ZIO_CHECKSUM_OFF;
428870ff 1983 } else {
99197f03
JG
1984 compress = zio_compress_select(os->os_spa, dn->dn_compress,
1985 compress);
10b3c7f5
MN
1986 complevel = zio_complevel_select(os->os_spa, compress,
1987 complevel, complevel);
428870ff 1988
03c6040b
GW
1989 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1990 zio_checksum_select(dn->dn_checksum, checksum) :
1991 dedup_checksum;
428870ff 1992
03c6040b
GW
1993 /*
1994 * Determine dedup setting. If we are in dmu_sync(),
1995 * we won't actually dedup now because that's all
1996 * done in syncing context; but we do want to use the
e1cfd73f 1997 * dedup checksum. If the checksum is not strong
03c6040b
GW
1998 * enough to ensure unique signatures, force
1999 * dedup_verify.
2000 */
2001 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2002 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
3c67d83a
TH
2003 if (!(zio_checksum_table[checksum].ci_flags &
2004 ZCHECKSUM_FLAG_DEDUP))
03c6040b
GW
2005 dedup_verify = B_TRUE;
2006 }
428870ff 2007
03c6040b 2008 /*
3c67d83a
TH
2009 * Enable nopwrite if we have secure enough checksum
2010 * algorithm (see comment in zio_nop_write) and
2011 * compression is enabled. We don't enable nopwrite if
2012 * dedup is enabled as the two features are mutually
2013 * exclusive.
03c6040b 2014 */
3c67d83a
TH
2015 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2016 ZCHECKSUM_FLAG_NOPWRITE) &&
03c6040b 2017 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
428870ff
BB
2018 }
2019
b5256303
TC
2020 /*
2021 * All objects in an encrypted objset are protected from modification
2022 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2023 * in the bp, so we cannot use all copies. Encrypted objects are also
2024 * not subject to nopwrite since writing the same data will still
2025 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2026 * to avoid ambiguity in the dedup code since the DDT does not store
2027 * object types.
2028 */
2029 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2030 encrypt = B_TRUE;
2031
2032 if (DMU_OT_IS_ENCRYPTED(type)) {
2033 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2034 nopwrite = B_FALSE;
2035 } else {
2036 dedup = B_FALSE;
2037 }
2038
ae76f45c
TC
2039 if (level <= 0 &&
2040 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
b5256303 2041 compress = ZIO_COMPRESS_EMPTY;
ae76f45c 2042 }
b5256303 2043 }
2aa34383 2044
b5256303 2045 zp->zp_compress = compress;
10b3c7f5 2046 zp->zp_complevel = complevel;
b5256303 2047 zp->zp_checksum = checksum;
428870ff
BB
2048 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2049 zp->zp_level = level;
faf0f58c 2050 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
428870ff
BB
2051 zp->zp_dedup = dedup;
2052 zp->zp_dedup_verify = dedup && dedup_verify;
03c6040b 2053 zp->zp_nopwrite = nopwrite;
b5256303
TC
2054 zp->zp_encrypt = encrypt;
2055 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2056 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2057 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2058 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
cc99f275
DB
2059 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2060 os->os_zpl_special_smallblock : 0;
b5256303
TC
2061
2062 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
428870ff
BB
2063}
2064
66aca247
DB
2065/*
2066 * This function is only called from zfs_holey_common() for zpl_llseek()
2067 * in order to determine the location of holes. In order to accurately
2068 * report holes all dirty data must be synced to disk. This causes extremely
2069 * poor performance when seeking for holes in a dirty file. As a compromise,
2070 * only provide hole data when the dnode is clean. When a dnode is dirty
2071 * report the dnode as having no holes which is always a safe thing to do.
2072 */
34dc7c2f
BB
2073int
2074dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2075{
2076 dnode_t *dn;
2077 int i, err;
66aca247 2078 boolean_t clean = B_TRUE;
34dc7c2f 2079
428870ff 2080 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2081 if (err)
2082 return (err);
66aca247 2083
34dc7c2f 2084 /*
2531ce37 2085 * Check if dnode is dirty
34dc7c2f 2086 */
454365bb 2087 for (i = 0; i < TXG_SIZE; i++) {
edc1e713 2088 if (multilist_link_active(&dn->dn_dirty_link[i])) {
2531ce37 2089 clean = B_FALSE;
ec4f9b8f 2090 break;
2531ce37 2091 }
34dc7c2f 2092 }
66aca247
DB
2093
2094 /*
2095 * If compatibility option is on, sync any current changes before
2096 * we go trundling through the block pointers.
2097 */
2098 if (!clean && zfs_dmu_offset_next_sync) {
2099 clean = B_TRUE;
34dc7c2f
BB
2100 dnode_rele(dn, FTAG);
2101 txg_wait_synced(dmu_objset_pool(os), 0);
428870ff 2102 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2103 if (err)
2104 return (err);
2105 }
2106
66aca247
DB
2107 if (clean)
2108 err = dnode_next_offset(dn,
2109 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2110 else
2111 err = SET_ERROR(EBUSY);
2112
34dc7c2f
BB
2113 dnode_rele(dn, FTAG);
2114
2115 return (err);
2116}
2117
2118void
e0b0ca98 2119__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
34dc7c2f 2120{
e0b0ca98 2121 dnode_phys_t *dnp = dn->dn_phys;
428870ff 2122
34dc7c2f
BB
2123 doi->doi_data_block_size = dn->dn_datablksz;
2124 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2125 1ULL << dn->dn_indblkshift : 0;
428870ff
BB
2126 doi->doi_type = dn->dn_type;
2127 doi->doi_bonus_type = dn->dn_bonustype;
2128 doi->doi_bonus_size = dn->dn_bonuslen;
50c957f7 2129 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
34dc7c2f
BB
2130 doi->doi_indirection = dn->dn_nlevels;
2131 doi->doi_checksum = dn->dn_checksum;
2132 doi->doi_compress = dn->dn_compress;
6c59307a 2133 doi->doi_nblkptr = dn->dn_nblkptr;
428870ff 2134 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
d1fada1e 2135 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
428870ff 2136 doi->doi_fill_count = 0;
1c27024e 2137 for (int i = 0; i < dnp->dn_nblkptr; i++)
9b67f605 2138 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
e0b0ca98
BB
2139}
2140
2141void
2142dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2143{
2144 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2145 mutex_enter(&dn->dn_mtx);
2146
2147 __dmu_object_info_from_dnode(dn, doi);
34dc7c2f
BB
2148
2149 mutex_exit(&dn->dn_mtx);
2150 rw_exit(&dn->dn_struct_rwlock);
2151}
2152
2153/*
2154 * Get information on a DMU object.
2155 * If doi is NULL, just indicates whether the object exists.
2156 */
2157int
2158dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2159{
2160 dnode_t *dn;
428870ff 2161 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2162
2163 if (err)
2164 return (err);
2165
2166 if (doi != NULL)
2167 dmu_object_info_from_dnode(dn, doi);
2168
2169 dnode_rele(dn, FTAG);
2170 return (0);
2171}
2172
2173/*
2174 * As above, but faster; can be used when you have a held dbuf in hand.
2175 */
2176void
572e2857 2177dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
34dc7c2f 2178{
572e2857
BB
2179 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2180
2181 DB_DNODE_ENTER(db);
2182 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2183 DB_DNODE_EXIT(db);
34dc7c2f
BB
2184}
2185
2186/*
2187 * Faster still when you only care about the size.
34dc7c2f
BB
2188 */
2189void
572e2857
BB
2190dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2191 u_longlong_t *nblk512)
34dc7c2f 2192{
572e2857
BB
2193 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2194 dnode_t *dn;
2195
2196 DB_DNODE_ENTER(db);
2197 dn = DB_DNODE(db);
34dc7c2f
BB
2198
2199 *blksize = dn->dn_datablksz;
50c957f7 2200 /* add in number of slots used for the dnode itself */
34dc7c2f 2201 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
50c957f7
NB
2202 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2203 DB_DNODE_EXIT(db);
2204}
2205
2206void
2207dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2208{
2209 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2210 dnode_t *dn;
2211
2212 DB_DNODE_ENTER(db);
2213 dn = DB_DNODE(db);
2214 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
572e2857 2215 DB_DNODE_EXIT(db);
34dc7c2f
BB
2216}
2217
2218void
2219byteswap_uint64_array(void *vbuf, size_t size)
2220{
2221 uint64_t *buf = vbuf;
2222 size_t count = size >> 3;
2223 int i;
2224
2225 ASSERT((size & 7) == 0);
2226
2227 for (i = 0; i < count; i++)
2228 buf[i] = BSWAP_64(buf[i]);
2229}
2230
2231void
2232byteswap_uint32_array(void *vbuf, size_t size)
2233{
2234 uint32_t *buf = vbuf;
2235 size_t count = size >> 2;
2236 int i;
2237
2238 ASSERT((size & 3) == 0);
2239
2240 for (i = 0; i < count; i++)
2241 buf[i] = BSWAP_32(buf[i]);
2242}
2243
2244void
2245byteswap_uint16_array(void *vbuf, size_t size)
2246{
2247 uint16_t *buf = vbuf;
2248 size_t count = size >> 1;
2249 int i;
2250
2251 ASSERT((size & 1) == 0);
2252
2253 for (i = 0; i < count; i++)
2254 buf[i] = BSWAP_16(buf[i]);
2255}
2256
2257/* ARGSUSED */
2258void
2259byteswap_uint8_array(void *vbuf, size_t size)
2260{
2261}
2262
2263void
2264dmu_init(void)
2265{
a6255b7f 2266 abd_init();
428870ff 2267 zfs_dbgmsg_init();
572e2857 2268 sa_cache_init();
572e2857 2269 dmu_objset_init();
34dc7c2f 2270 dnode_init();
428870ff 2271 zfetch_init();
570827e1 2272 dmu_tx_init();
34dc7c2f 2273 l2arc_init();
29809a6c 2274 arc_init();
d3c2ae1c 2275 dbuf_init();
34dc7c2f
BB
2276}
2277
2278void
2279dmu_fini(void)
2280{
e49f1e20 2281 arc_fini(); /* arc depends on l2arc, so arc must go first */
29809a6c 2282 l2arc_fini();
570827e1 2283 dmu_tx_fini();
428870ff 2284 zfetch_fini();
34dc7c2f 2285 dbuf_fini();
572e2857
BB
2286 dnode_fini();
2287 dmu_objset_fini();
428870ff
BB
2288 sa_cache_fini();
2289 zfs_dbgmsg_fini();
a6255b7f 2290 abd_fini();
34dc7c2f 2291}
c28b2279 2292
c28b2279 2293EXPORT_SYMBOL(dmu_bonus_hold);
6955b401 2294EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
a473d90c
AZ
2295EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2296EXPORT_SYMBOL(dmu_buf_rele_array);
57b650b8 2297EXPORT_SYMBOL(dmu_prefetch);
c28b2279 2298EXPORT_SYMBOL(dmu_free_range);
57b650b8 2299EXPORT_SYMBOL(dmu_free_long_range);
b663a23d 2300EXPORT_SYMBOL(dmu_free_long_object);
c28b2279 2301EXPORT_SYMBOL(dmu_read);
0eef1bde 2302EXPORT_SYMBOL(dmu_read_by_dnode);
c28b2279 2303EXPORT_SYMBOL(dmu_write);
0eef1bde 2304EXPORT_SYMBOL(dmu_write_by_dnode);
57b650b8 2305EXPORT_SYMBOL(dmu_prealloc);
c28b2279
BB
2306EXPORT_SYMBOL(dmu_object_info);
2307EXPORT_SYMBOL(dmu_object_info_from_dnode);
2308EXPORT_SYMBOL(dmu_object_info_from_db);
2309EXPORT_SYMBOL(dmu_object_size_from_db);
50c957f7 2310EXPORT_SYMBOL(dmu_object_dnsize_from_db);
b5256303 2311EXPORT_SYMBOL(dmu_object_set_nlevels);
c28b2279 2312EXPORT_SYMBOL(dmu_object_set_blocksize);
ae76f45c 2313EXPORT_SYMBOL(dmu_object_set_maxblkid);
c28b2279
BB
2314EXPORT_SYMBOL(dmu_object_set_checksum);
2315EXPORT_SYMBOL(dmu_object_set_compress);
94dac3e8 2316EXPORT_SYMBOL(dmu_offset_next);
57b650b8
BB
2317EXPORT_SYMBOL(dmu_write_policy);
2318EXPORT_SYMBOL(dmu_sync);
b10c77f7
BB
2319EXPORT_SYMBOL(dmu_request_arcbuf);
2320EXPORT_SYMBOL(dmu_return_arcbuf);
440a3eb9
TC
2321EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2322EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
b10c77f7 2323EXPORT_SYMBOL(dmu_buf_hold);
c28b2279 2324EXPORT_SYMBOL(dmu_ot);
afec56b4 2325
bef78122 2326/* BEGIN CSTYLED */
03fdcb9a
MM
2327ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2328 "Enable NOP writes");
03c6040b 2329
03fdcb9a
MM
2330ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW,
2331 "Percentage of dirtied blocks from frees in one TXG");
66aca247 2332
03fdcb9a 2333ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
66aca247
DB
2334 "Enable forcing txg sync to find holes");
2335
03fdcb9a 2336ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW,
d9b4bf06 2337 "Limit one prefetch call to this size");
bef78122 2338/* END CSTYLED */