]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu.c
Encryption patch follow-up
[mirror_zfs.git] / module / zfs / dmu.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
82644107 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
bc77ba73 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
a08abc1b 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
5475aada 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
34dc7c2f
BB
28 */
29
34dc7c2f
BB
30#include <sys/dmu.h>
31#include <sys/dmu_impl.h>
32#include <sys/dmu_tx.h>
33#include <sys/dbuf.h>
34#include <sys/dnode.h>
35#include <sys/zfs_context.h>
36#include <sys/dmu_objset.h>
37#include <sys/dmu_traverse.h>
38#include <sys/dsl_dataset.h>
39#include <sys/dsl_dir.h>
40#include <sys/dsl_pool.h>
41#include <sys/dsl_synctask.h>
42#include <sys/dsl_prop.h>
43#include <sys/dmu_zfetch.h>
44#include <sys/zfs_ioctl.h>
45#include <sys/zap.h>
46#include <sys/zio_checksum.h>
03c6040b 47#include <sys/zio_compress.h>
428870ff 48#include <sys/sa.h>
62bdd5eb 49#include <sys/zfeature.h>
a6255b7f 50#include <sys/abd.h>
539d33c7 51#include <sys/trace_dmu.h>
f763c3d1 52#include <sys/zfs_rlock.h>
34dc7c2f
BB
53#ifdef _KERNEL
54#include <sys/vmsystm.h>
b128c09f 55#include <sys/zfs_znode.h>
34dc7c2f
BB
56#endif
57
03c6040b
GW
58/*
59 * Enable/disable nopwrite feature.
60 */
61int zfs_nopwrite_enabled = 1;
62
539d33c7
GM
63/*
64 * Tunable to control percentage of dirtied blocks from frees in one TXG.
65 * After this threshold is crossed, additional dirty blocks from frees
66 * wait until the next TXG.
67 * A value of zero will disable this throttle.
68 */
bef78122 69unsigned long zfs_per_txg_dirty_frees_percent = 30;
539d33c7 70
66aca247
DB
71/*
72 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
73 */
74int zfs_dmu_offset_next_sync = 0;
75
34dc7c2f 76const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
b5256303
TC
77 { DMU_BSWAP_UINT8, TRUE, FALSE, "unallocated" },
78 { DMU_BSWAP_ZAP, TRUE, FALSE, "object directory" },
79 { DMU_BSWAP_UINT64, TRUE, FALSE, "object array" },
80 { DMU_BSWAP_UINT8, TRUE, FALSE, "packed nvlist" },
81 { DMU_BSWAP_UINT64, TRUE, FALSE, "packed nvlist size" },
82 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj" },
83 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj header" },
84 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map header" },
85 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map" },
86 { DMU_BSWAP_UINT64, TRUE, TRUE, "ZIL intent log" },
87 { DMU_BSWAP_DNODE, TRUE, TRUE, "DMU dnode" },
88 { DMU_BSWAP_OBJSET, TRUE, FALSE, "DMU objset" },
89 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL directory" },
90 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL directory child map"},
91 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dataset snap map" },
92 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL props" },
93 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL dataset" },
94 { DMU_BSWAP_ZNODE, TRUE, FALSE, "ZFS znode" },
95 { DMU_BSWAP_OLDACL, TRUE, TRUE, "ZFS V0 ACL" },
96 { DMU_BSWAP_UINT8, FALSE, TRUE, "ZFS plain file" },
97 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS directory" },
98 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS master node" },
99 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS delete queue" },
100 { DMU_BSWAP_UINT8, FALSE, TRUE, "zvol object" },
101 { DMU_BSWAP_ZAP, TRUE, FALSE, "zvol prop" },
102 { DMU_BSWAP_UINT8, FALSE, TRUE, "other uint8[]" },
103 { DMU_BSWAP_UINT64, FALSE, TRUE, "other uint64[]" },
104 { DMU_BSWAP_ZAP, TRUE, FALSE, "other ZAP" },
105 { DMU_BSWAP_ZAP, TRUE, FALSE, "persistent error log" },
106 { DMU_BSWAP_UINT8, TRUE, FALSE, "SPA history" },
107 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA history offsets" },
108 { DMU_BSWAP_ZAP, TRUE, FALSE, "Pool properties" },
109 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL permissions" },
110 { DMU_BSWAP_ACL, TRUE, TRUE, "ZFS ACL" },
111 { DMU_BSWAP_UINT8, TRUE, TRUE, "ZFS SYSACL" },
112 { DMU_BSWAP_UINT8, TRUE, TRUE, "FUID table" },
113 { DMU_BSWAP_UINT64, TRUE, FALSE, "FUID table size" },
114 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dataset next clones"},
115 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan work queue" },
116 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS user/group used" },
117 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS user/group quota" },
118 { DMU_BSWAP_ZAP, TRUE, FALSE, "snapshot refcount tags"},
119 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT ZAP algorithm" },
120 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT statistics" },
121 { DMU_BSWAP_UINT8, TRUE, TRUE, "System attributes" },
122 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA master node" },
123 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA attr registration" },
124 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA attr layouts" },
125 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan translations" },
126 { DMU_BSWAP_UINT8, FALSE, TRUE, "deduplicated block" },
127 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL deadlist map" },
128 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL deadlist map hdr" },
129 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dir clones" },
130 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj subobj" }
9ae529ec
CS
131};
132
133const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
134 { byteswap_uint8_array, "uint8" },
135 { byteswap_uint16_array, "uint16" },
136 { byteswap_uint32_array, "uint32" },
137 { byteswap_uint64_array, "uint64" },
138 { zap_byteswap, "zap" },
139 { dnode_buf_byteswap, "dnode" },
140 { dmu_objset_byteswap, "objset" },
141 { zfs_znode_byteswap, "znode" },
142 { zfs_oldacl_byteswap, "oldacl" },
143 { zfs_acl_byteswap, "acl" }
34dc7c2f
BB
144};
145
2bce8049
MA
146int
147dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
148 void *tag, dmu_buf_t **dbp)
149{
150 uint64_t blkid;
151 dmu_buf_impl_t *db;
152
153 blkid = dbuf_whichblock(dn, 0, offset);
154 rw_enter(&dn->dn_struct_rwlock, RW_READER);
155 db = dbuf_hold(dn, blkid, tag);
156 rw_exit(&dn->dn_struct_rwlock);
157
158 if (db == NULL) {
159 *dbp = NULL;
160 return (SET_ERROR(EIO));
161 }
162
163 *dbp = &db->db;
164 return (0);
165}
34dc7c2f 166int
9b67f605
MA
167dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
168 void *tag, dmu_buf_t **dbp)
34dc7c2f
BB
169{
170 dnode_t *dn;
171 uint64_t blkid;
172 dmu_buf_impl_t *db;
173 int err;
428870ff
BB
174
175 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
176 if (err)
177 return (err);
fcff0f35 178 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f
BB
179 rw_enter(&dn->dn_struct_rwlock, RW_READER);
180 db = dbuf_hold(dn, blkid, tag);
181 rw_exit(&dn->dn_struct_rwlock);
9b67f605
MA
182 dnode_rele(dn, FTAG);
183
34dc7c2f 184 if (db == NULL) {
9b67f605
MA
185 *dbp = NULL;
186 return (SET_ERROR(EIO));
187 }
188
189 *dbp = &db->db;
190 return (err);
191}
192
2bce8049
MA
193int
194dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
195 void *tag, dmu_buf_t **dbp, int flags)
196{
197 int err;
198 int db_flags = DB_RF_CANFAIL;
199
200 if (flags & DMU_READ_NO_PREFETCH)
201 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
202 if (flags & DMU_READ_NO_DECRYPT)
203 db_flags |= DB_RF_NO_DECRYPT;
2bce8049
MA
204
205 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
206 if (err == 0) {
207 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
208 err = dbuf_read(db, NULL, db_flags);
209 if (err != 0) {
210 dbuf_rele(db, tag);
211 *dbp = NULL;
212 }
213 }
214
215 return (err);
216}
217
9b67f605
MA
218int
219dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
220 void *tag, dmu_buf_t **dbp, int flags)
221{
222 int err;
223 int db_flags = DB_RF_CANFAIL;
224
225 if (flags & DMU_READ_NO_PREFETCH)
226 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
227 if (flags & DMU_READ_NO_DECRYPT)
228 db_flags |= DB_RF_NO_DECRYPT;
9b67f605
MA
229
230 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
231 if (err == 0) {
232 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
428870ff 233 err = dbuf_read(db, NULL, db_flags);
9b67f605 234 if (err != 0) {
34dc7c2f 235 dbuf_rele(db, tag);
9b67f605 236 *dbp = NULL;
34dc7c2f
BB
237 }
238 }
239
34dc7c2f
BB
240 return (err);
241}
242
243int
244dmu_bonus_max(void)
245{
50c957f7 246 return (DN_OLD_MAX_BONUSLEN);
34dc7c2f
BB
247}
248
249int
572e2857 250dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
34dc7c2f 251{
572e2857
BB
252 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
253 dnode_t *dn;
254 int error;
34dc7c2f 255
572e2857
BB
256 DB_DNODE_ENTER(db);
257 dn = DB_DNODE(db);
258
259 if (dn->dn_bonus != db) {
2e528b49 260 error = SET_ERROR(EINVAL);
572e2857 261 } else if (newsize < 0 || newsize > db_fake->db_size) {
2e528b49 262 error = SET_ERROR(EINVAL);
572e2857
BB
263 } else {
264 dnode_setbonuslen(dn, newsize, tx);
265 error = 0;
266 }
267
268 DB_DNODE_EXIT(db);
269 return (error);
34dc7c2f
BB
270}
271
428870ff 272int
572e2857 273dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
428870ff 274{
572e2857
BB
275 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
276 dnode_t *dn;
277 int error;
428870ff 278
572e2857
BB
279 DB_DNODE_ENTER(db);
280 dn = DB_DNODE(db);
428870ff 281
9ae529ec 282 if (!DMU_OT_IS_VALID(type)) {
2e528b49 283 error = SET_ERROR(EINVAL);
572e2857 284 } else if (dn->dn_bonus != db) {
2e528b49 285 error = SET_ERROR(EINVAL);
572e2857
BB
286 } else {
287 dnode_setbonus_type(dn, type, tx);
288 error = 0;
289 }
428870ff 290
572e2857
BB
291 DB_DNODE_EXIT(db);
292 return (error);
293}
294
295dmu_object_type_t
296dmu_get_bonustype(dmu_buf_t *db_fake)
297{
298 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
299 dnode_t *dn;
300 dmu_object_type_t type;
301
302 DB_DNODE_ENTER(db);
303 dn = DB_DNODE(db);
304 type = dn->dn_bonustype;
305 DB_DNODE_EXIT(db);
306
307 return (type);
428870ff
BB
308}
309
310int
311dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
312{
313 dnode_t *dn;
314 int error;
315
316 error = dnode_hold(os, object, FTAG, &dn);
317 dbuf_rm_spill(dn, tx);
318 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
319 dnode_rm_spill(dn, tx);
320 rw_exit(&dn->dn_struct_rwlock);
321 dnode_rele(dn, FTAG);
322 return (error);
323}
324
34dc7c2f
BB
325/*
326 * returns ENOENT, EIO, or 0.
327 */
328int
b5256303
TC
329dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, uint32_t flags,
330 dmu_buf_t **dbp)
34dc7c2f
BB
331{
332 dnode_t *dn;
333 dmu_buf_impl_t *db;
334 int error;
b5256303
TC
335 uint32_t db_flags = DB_RF_MUST_SUCCEED;
336
337 if (flags & DMU_READ_NO_PREFETCH)
338 db_flags |= DB_RF_NOPREFETCH;
339 if (flags & DMU_READ_NO_DECRYPT)
340 db_flags |= DB_RF_NO_DECRYPT;
34dc7c2f 341
428870ff 342 error = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
343 if (error)
344 return (error);
345
346 rw_enter(&dn->dn_struct_rwlock, RW_READER);
347 if (dn->dn_bonus == NULL) {
348 rw_exit(&dn->dn_struct_rwlock);
349 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
350 if (dn->dn_bonus == NULL)
351 dbuf_create_bonus(dn);
352 }
353 db = dn->dn_bonus;
34dc7c2f
BB
354
355 /* as long as the bonus buf is held, the dnode will be held */
572e2857 356 if (refcount_add(&db->db_holds, tag) == 1) {
34dc7c2f 357 VERIFY(dnode_add_ref(dn, db));
73ad4a9f 358 atomic_inc_32(&dn->dn_dbufs_count);
572e2857
BB
359 }
360
361 /*
362 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
363 * hold and incrementing the dbuf count to ensure that dnode_move() sees
364 * a dnode hold for every dbuf.
365 */
366 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f
BB
367
368 dnode_rele(dn, FTAG);
369
b5256303
TC
370 error = dbuf_read(db, NULL, db_flags);
371 if (error) {
372 dnode_evict_bonus(dn);
373 dbuf_rele(db, tag);
374 *dbp = NULL;
375 return (error);
376 }
34dc7c2f
BB
377
378 *dbp = &db->db;
379 return (0);
380}
381
b5256303
TC
382int
383dmu_bonus_hold(objset_t *os, uint64_t obj, void *tag, dmu_buf_t **dbp)
384{
385 return (dmu_bonus_hold_impl(os, obj, tag, DMU_READ_NO_PREFETCH, dbp));
386}
387
428870ff
BB
388/*
389 * returns ENOENT, EIO, or 0.
390 *
391 * This interface will allocate a blank spill dbuf when a spill blk
392 * doesn't already exist on the dnode.
393 *
394 * if you only want to find an already existing spill db, then
395 * dmu_spill_hold_existing() should be used.
396 */
397int
398dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
399{
400 dmu_buf_impl_t *db = NULL;
401 int err;
402
403 if ((flags & DB_RF_HAVESTRUCT) == 0)
404 rw_enter(&dn->dn_struct_rwlock, RW_READER);
405
406 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
407
408 if ((flags & DB_RF_HAVESTRUCT) == 0)
409 rw_exit(&dn->dn_struct_rwlock);
410
b182ac00 411 if (db == NULL) {
412 *dbp = NULL;
413 return (SET_ERROR(EIO));
414 }
572e2857
BB
415 err = dbuf_read(db, NULL, flags);
416 if (err == 0)
417 *dbp = &db->db;
b182ac00 418 else {
572e2857 419 dbuf_rele(db, tag);
b182ac00 420 *dbp = NULL;
421 }
428870ff
BB
422 return (err);
423}
424
425int
426dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
427{
572e2857
BB
428 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
429 dnode_t *dn;
428870ff
BB
430 int err;
431
572e2857
BB
432 DB_DNODE_ENTER(db);
433 dn = DB_DNODE(db);
434
435 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
2e528b49 436 err = SET_ERROR(EINVAL);
572e2857
BB
437 } else {
438 rw_enter(&dn->dn_struct_rwlock, RW_READER);
439
440 if (!dn->dn_have_spill) {
2e528b49 441 err = SET_ERROR(ENOENT);
572e2857
BB
442 } else {
443 err = dmu_spill_hold_by_dnode(dn,
444 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
445 }
428870ff 446
428870ff 447 rw_exit(&dn->dn_struct_rwlock);
428870ff 448 }
572e2857
BB
449
450 DB_DNODE_EXIT(db);
428870ff
BB
451 return (err);
452}
453
454int
455dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
456{
572e2857
BB
457 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
458 dnode_t *dn;
459 int err;
460
461 DB_DNODE_ENTER(db);
462 dn = DB_DNODE(db);
463 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
464 DB_DNODE_EXIT(db);
465
466 return (err);
428870ff
BB
467}
468
34dc7c2f
BB
469/*
470 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
471 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
472 * and can induce severe lock contention when writing to several files
473 * whose dnodes are in the same block.
474 */
475static int
9babb374 476dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
7f60329a 477 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
34dc7c2f
BB
478{
479 dmu_buf_t **dbp;
480 uint64_t blkid, nblks, i;
9babb374 481 uint32_t dbuf_flags;
34dc7c2f
BB
482 int err;
483 zio_t *zio;
484
485 ASSERT(length <= DMU_MAX_ACCESS);
486
7f60329a
MA
487 /*
488 * Note: We directly notify the prefetch code of this read, so that
489 * we can tell it about the multi-block read. dbuf_read() only knows
490 * about the one block it is accessing.
491 */
492 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
493 DB_RF_NOPREFETCH;
34dc7c2f
BB
494
495 rw_enter(&dn->dn_struct_rwlock, RW_READER);
496 if (dn->dn_datablkshift) {
497 int blkshift = dn->dn_datablkshift;
7f60329a
MA
498 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
499 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
34dc7c2f
BB
500 } else {
501 if (offset + length > dn->dn_datablksz) {
502 zfs_panic_recover("zfs: accessing past end of object "
503 "%llx/%llx (size=%u access=%llu+%llu)",
504 (longlong_t)dn->dn_objset->
505 os_dsl_dataset->ds_object,
506 (longlong_t)dn->dn_object, dn->dn_datablksz,
507 (longlong_t)offset, (longlong_t)length);
45d1cae3 508 rw_exit(&dn->dn_struct_rwlock);
2e528b49 509 return (SET_ERROR(EIO));
34dc7c2f
BB
510 }
511 nblks = 1;
512 }
79c76d5b 513 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
34dc7c2f 514
b128c09f 515 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
fcff0f35 516 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f 517 for (i = 0; i < nblks; i++) {
7f60329a 518 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
34dc7c2f
BB
519 if (db == NULL) {
520 rw_exit(&dn->dn_struct_rwlock);
521 dmu_buf_rele_array(dbp, nblks, tag);
522 zio_nowait(zio);
2e528b49 523 return (SET_ERROR(EIO));
34dc7c2f 524 }
7f60329a 525
34dc7c2f 526 /* initiate async i/o */
7f60329a 527 if (read)
9babb374 528 (void) dbuf_read(db, zio, dbuf_flags);
34dc7c2f
BB
529 dbp[i] = &db->db;
530 }
7f60329a 531
755065f3
AM
532 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
533 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
534 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
535 read && DNODE_IS_CACHEABLE(dn));
7f60329a 536 }
34dc7c2f
BB
537 rw_exit(&dn->dn_struct_rwlock);
538
539 /* wait for async i/o */
540 err = zio_wait(zio);
541 if (err) {
542 dmu_buf_rele_array(dbp, nblks, tag);
543 return (err);
544 }
545
546 /* wait for other io to complete */
547 if (read) {
548 for (i = 0; i < nblks; i++) {
549 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
550 mutex_enter(&db->db_mtx);
551 while (db->db_state == DB_READ ||
552 db->db_state == DB_FILL)
553 cv_wait(&db->db_changed, &db->db_mtx);
554 if (db->db_state == DB_UNCACHED)
2e528b49 555 err = SET_ERROR(EIO);
34dc7c2f
BB
556 mutex_exit(&db->db_mtx);
557 if (err) {
558 dmu_buf_rele_array(dbp, nblks, tag);
559 return (err);
560 }
561 }
562 }
563
564 *numbufsp = nblks;
565 *dbpp = dbp;
566 return (0);
567}
568
569static int
570dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
571 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
572{
573 dnode_t *dn;
574 int err;
575
428870ff 576 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
577 if (err)
578 return (err);
579
580 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 581 numbufsp, dbpp, DMU_READ_PREFETCH);
34dc7c2f
BB
582
583 dnode_rele(dn, FTAG);
584
585 return (err);
586}
587
588int
572e2857 589dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
7f60329a
MA
590 uint64_t length, boolean_t read, void *tag, int *numbufsp,
591 dmu_buf_t ***dbpp)
34dc7c2f 592{
572e2857
BB
593 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
594 dnode_t *dn;
34dc7c2f
BB
595 int err;
596
572e2857
BB
597 DB_DNODE_ENTER(db);
598 dn = DB_DNODE(db);
34dc7c2f 599 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 600 numbufsp, dbpp, DMU_READ_PREFETCH);
572e2857 601 DB_DNODE_EXIT(db);
34dc7c2f
BB
602
603 return (err);
604}
605
606void
607dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
608{
609 int i;
610 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
611
612 if (numbufs == 0)
613 return;
614
615 for (i = 0; i < numbufs; i++) {
616 if (dbp[i])
617 dbuf_rele(dbp[i], tag);
618 }
619
620 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
621}
622
e8b96c60 623/*
fcff0f35
PD
624 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
625 * indirect blocks prefeteched will be those that point to the blocks containing
626 * the data starting at offset, and continuing to offset + len.
e8b96c60 627 *
b5256303
TC
628 * Note that if the indirect blocks above the blocks being prefetched are not
629 * in cache, they will be asychronously read in.
e8b96c60 630 */
34dc7c2f 631void
fcff0f35
PD
632dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
633 uint64_t len, zio_priority_t pri)
34dc7c2f
BB
634{
635 dnode_t *dn;
636 uint64_t blkid;
e8b96c60 637 int nblks, err;
34dc7c2f 638
34dc7c2f 639 if (len == 0) { /* they're interested in the bonus buffer */
572e2857 640 dn = DMU_META_DNODE(os);
34dc7c2f
BB
641
642 if (object == 0 || object >= DN_MAX_OBJECT)
643 return;
644
645 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
646 blkid = dbuf_whichblock(dn, level,
647 object * sizeof (dnode_phys_t));
648 dbuf_prefetch(dn, level, blkid, pri, 0);
34dc7c2f
BB
649 rw_exit(&dn->dn_struct_rwlock);
650 return;
651 }
652
653 /*
654 * XXX - Note, if the dnode for the requested object is not
655 * already cached, we will do a *synchronous* read in the
656 * dnode_hold() call. The same is true for any indirects.
657 */
428870ff 658 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
659 if (err != 0)
660 return;
661
662 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
663 /*
664 * offset + len - 1 is the last byte we want to prefetch for, and offset
665 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
666 * last block we want to prefetch, and dbuf_whichblock(dn, level,
667 * offset) is the first. Then the number we need to prefetch is the
668 * last - first + 1.
669 */
670 if (level > 0 || dn->dn_datablkshift != 0) {
671 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
672 dbuf_whichblock(dn, level, offset) + 1;
34dc7c2f
BB
673 } else {
674 nblks = (offset < dn->dn_datablksz);
675 }
676
677 if (nblks != 0) {
e8b96c60
MA
678 int i;
679
fcff0f35 680 blkid = dbuf_whichblock(dn, level, offset);
34dc7c2f 681 for (i = 0; i < nblks; i++)
fcff0f35 682 dbuf_prefetch(dn, level, blkid + i, pri, 0);
34dc7c2f
BB
683 }
684
685 rw_exit(&dn->dn_struct_rwlock);
686
687 dnode_rele(dn, FTAG);
688}
689
45d1cae3
BB
690/*
691 * Get the next "chunk" of file data to free. We traverse the file from
692 * the end so that the file gets shorter over time (if we crashes in the
693 * middle, this will leave us in a better state). We find allocated file
694 * data by simply searching the allocated level 1 indirects.
b663a23d
MA
695 *
696 * On input, *start should be the first offset that does not need to be
697 * freed (e.g. "offset + length"). On return, *start will be the first
698 * offset that should be freed.
45d1cae3 699 */
b128c09f 700static int
b663a23d 701get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
b128c09f 702{
b663a23d
MA
703 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
704 /* bytes of data covered by a level-1 indirect block */
45d1cae3 705 uint64_t iblkrange =
b128c09f 706 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
b663a23d 707 uint64_t blks;
b128c09f 708
b663a23d 709 ASSERT3U(minimum, <=, *start);
b128c09f 710
b663a23d
MA
711 if (*start - minimum <= iblkrange * maxblks) {
712 *start = minimum;
b128c09f
BB
713 return (0);
714 }
45d1cae3 715 ASSERT(ISP2(iblkrange));
b128c09f 716
b663a23d 717 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
b128c09f
BB
718 int err;
719
b663a23d
MA
720 /*
721 * dnode_next_offset(BACKWARDS) will find an allocated L1
722 * indirect block at or before the input offset. We must
723 * decrement *start so that it is at the end of the region
724 * to search.
725 */
726 (*start)--;
b128c09f 727 err = dnode_next_offset(dn,
45d1cae3 728 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
b128c09f 729
b663a23d 730 /* if there are no indirect blocks before start, we are done */
45d1cae3 731 if (err == ESRCH) {
b663a23d
MA
732 *start = minimum;
733 break;
734 } else if (err != 0) {
b128c09f 735 return (err);
45d1cae3 736 }
b128c09f 737
b663a23d 738 /* set start to the beginning of this L1 indirect */
45d1cae3 739 *start = P2ALIGN(*start, iblkrange);
b128c09f 740 }
b663a23d
MA
741 if (*start < minimum)
742 *start = minimum;
b128c09f
BB
743 return (0);
744}
745
a08abc1b
GM
746/*
747 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
748 * otherwise return false.
749 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
750 */
751/*ARGSUSED*/
752static boolean_t
753dmu_objset_zfs_unmounting(objset_t *os)
754{
755#ifdef _KERNEL
756 if (dmu_objset_type(os) == DMU_OST_ZFS)
757 return (zfs_get_vfs_flag_unmounted(os));
758#endif
759 return (B_FALSE);
760}
761
b128c09f
BB
762static int
763dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
b663a23d 764 uint64_t length)
b128c09f 765{
c97d3069 766 uint64_t object_size;
b663a23d 767 int err;
539d33c7
GM
768 uint64_t dirty_frees_threshold;
769 dsl_pool_t *dp = dmu_objset_pool(os);
770 int t;
b663a23d 771
c97d3069
BB
772 if (dn == NULL)
773 return (SET_ERROR(EINVAL));
774
775 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
b663a23d 776 if (offset >= object_size)
b128c09f 777 return (0);
b128c09f 778
539d33c7
GM
779 if (zfs_per_txg_dirty_frees_percent <= 100)
780 dirty_frees_threshold =
781 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
782 else
783 dirty_frees_threshold = zfs_dirty_data_max / 4;
784
b663a23d
MA
785 if (length == DMU_OBJECT_END || offset + length > object_size)
786 length = object_size - offset;
787
788 while (length != 0) {
539d33c7
GM
789 uint64_t chunk_end, chunk_begin, chunk_len;
790 uint64_t long_free_dirty_all_txgs = 0;
b663a23d
MA
791 dmu_tx_t *tx;
792
a08abc1b
GM
793 if (dmu_objset_zfs_unmounting(dn->dn_objset))
794 return (SET_ERROR(EINTR));
795
b663a23d
MA
796 chunk_end = chunk_begin = offset + length;
797
798 /* move chunk_begin backwards to the beginning of this chunk */
799 err = get_next_chunk(dn, &chunk_begin, offset);
b128c09f
BB
800 if (err)
801 return (err);
b663a23d
MA
802 ASSERT3U(chunk_begin, >=, offset);
803 ASSERT3U(chunk_begin, <=, chunk_end);
b128c09f 804
539d33c7
GM
805 chunk_len = chunk_end - chunk_begin;
806
807 mutex_enter(&dp->dp_lock);
808 for (t = 0; t < TXG_SIZE; t++) {
809 long_free_dirty_all_txgs +=
810 dp->dp_long_free_dirty_pertxg[t];
811 }
812 mutex_exit(&dp->dp_lock);
813
814 /*
815 * To avoid filling up a TXG with just frees wait for
816 * the next TXG to open before freeing more chunks if
817 * we have reached the threshold of frees
818 */
819 if (dirty_frees_threshold != 0 &&
820 long_free_dirty_all_txgs >= dirty_frees_threshold) {
821 txg_wait_open(dp, 0);
822 continue;
823 }
824
b128c09f 825 tx = dmu_tx_create(os);
539d33c7 826 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
19d55079
MA
827
828 /*
829 * Mark this transaction as typically resulting in a net
830 * reduction in space used.
831 */
832 dmu_tx_mark_netfree(tx);
b128c09f
BB
833 err = dmu_tx_assign(tx, TXG_WAIT);
834 if (err) {
835 dmu_tx_abort(tx);
836 return (err);
837 }
539d33c7
GM
838
839 mutex_enter(&dp->dp_lock);
840 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] +=
841 chunk_len;
842 mutex_exit(&dp->dp_lock);
843 DTRACE_PROBE3(free__long__range,
844 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len,
845 uint64_t, dmu_tx_get_txg(tx));
846 dnode_free_range(dn, chunk_begin, chunk_len, tx);
b128c09f 847 dmu_tx_commit(tx);
b663a23d 848
539d33c7 849 length -= chunk_len;
b128c09f
BB
850 }
851 return (0);
852}
853
854int
855dmu_free_long_range(objset_t *os, uint64_t object,
856 uint64_t offset, uint64_t length)
857{
858 dnode_t *dn;
859 int err;
860
428870ff 861 err = dnode_hold(os, object, FTAG, &dn);
b128c09f
BB
862 if (err != 0)
863 return (err);
b663a23d 864 err = dmu_free_long_range_impl(os, dn, offset, length);
92bc214c
MA
865
866 /*
867 * It is important to zero out the maxblkid when freeing the entire
868 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
869 * will take the fast path, and (b) dnode_reallocate() can verify
870 * that the entire file has been freed.
871 */
b0bc7a84 872 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
92bc214c
MA
873 dn->dn_maxblkid = 0;
874
b128c09f
BB
875 dnode_rele(dn, FTAG);
876 return (err);
877}
878
879int
b663a23d 880dmu_free_long_object(objset_t *os, uint64_t object)
b128c09f 881{
b128c09f
BB
882 dmu_tx_t *tx;
883 int err;
884
b663a23d 885 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
b128c09f
BB
886 if (err != 0)
887 return (err);
b663a23d
MA
888
889 tx = dmu_tx_create(os);
890 dmu_tx_hold_bonus(tx, object);
891 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
19d55079 892 dmu_tx_mark_netfree(tx);
b663a23d
MA
893 err = dmu_tx_assign(tx, TXG_WAIT);
894 if (err == 0) {
895 err = dmu_object_free(os, object, tx);
896 dmu_tx_commit(tx);
b128c09f 897 } else {
b663a23d 898 dmu_tx_abort(tx);
b128c09f 899 }
b663a23d 900
b128c09f
BB
901 return (err);
902}
903
34dc7c2f
BB
904int
905dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
906 uint64_t size, dmu_tx_t *tx)
907{
908 dnode_t *dn;
428870ff 909 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
910 if (err)
911 return (err);
912 ASSERT(offset < UINT64_MAX);
913 ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
914 dnode_free_range(dn, offset, size, tx);
915 dnode_rele(dn, FTAG);
916 return (0);
917}
918
0eef1bde 919static int
920dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
9babb374 921 void *buf, uint32_t flags)
34dc7c2f 922{
34dc7c2f 923 dmu_buf_t **dbp;
0eef1bde 924 int numbufs, err = 0;
34dc7c2f
BB
925
926 /*
927 * Deal with odd block sizes, where there can't be data past the first
928 * block. If we ever do the tail block optimization, we will need to
929 * handle that here as well.
930 */
45d1cae3 931 if (dn->dn_maxblkid == 0) {
c9520ecc 932 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
34dc7c2f
BB
933 MIN(size, dn->dn_datablksz - offset);
934 bzero((char *)buf + newsz, size - newsz);
935 size = newsz;
936 }
937
938 while (size > 0) {
939 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
45d1cae3 940 int i;
34dc7c2f
BB
941
942 /*
943 * NB: we could do this block-at-a-time, but it's nice
944 * to be reading in parallel.
945 */
946 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
9babb374 947 TRUE, FTAG, &numbufs, &dbp, flags);
34dc7c2f
BB
948 if (err)
949 break;
950
951 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
952 uint64_t tocpy;
953 int64_t bufoff;
34dc7c2f
BB
954 dmu_buf_t *db = dbp[i];
955
956 ASSERT(size > 0);
957
958 bufoff = offset - db->db_offset;
c9520ecc 959 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f 960
c9520ecc 961 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
34dc7c2f
BB
962
963 offset += tocpy;
964 size -= tocpy;
965 buf = (char *)buf + tocpy;
966 }
967 dmu_buf_rele_array(dbp, numbufs, FTAG);
968 }
34dc7c2f
BB
969 return (err);
970}
971
0eef1bde 972int
973dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
974 void *buf, uint32_t flags)
34dc7c2f 975{
0eef1bde 976 dnode_t *dn;
977 int err;
34dc7c2f 978
0eef1bde 979 err = dnode_hold(os, object, FTAG, &dn);
980 if (err != 0)
981 return (err);
34dc7c2f 982
0eef1bde 983 err = dmu_read_impl(dn, offset, size, buf, flags);
984 dnode_rele(dn, FTAG);
985 return (err);
986}
987
988int
989dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
990 uint32_t flags)
991{
992 return (dmu_read_impl(dn, offset, size, buf, flags));
993}
994
995static void
996dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
997 const void *buf, dmu_tx_t *tx)
998{
999 int i;
34dc7c2f
BB
1000
1001 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1002 uint64_t tocpy;
1003 int64_t bufoff;
34dc7c2f
BB
1004 dmu_buf_t *db = dbp[i];
1005
1006 ASSERT(size > 0);
1007
1008 bufoff = offset - db->db_offset;
c9520ecc 1009 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f
BB
1010
1011 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1012
1013 if (tocpy == db->db_size)
1014 dmu_buf_will_fill(db, tx);
1015 else
1016 dmu_buf_will_dirty(db, tx);
1017
60101509 1018 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
34dc7c2f
BB
1019
1020 if (tocpy == db->db_size)
1021 dmu_buf_fill_done(db, tx);
1022
1023 offset += tocpy;
1024 size -= tocpy;
1025 buf = (char *)buf + tocpy;
1026 }
0eef1bde 1027}
1028
1029void
1030dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1031 const void *buf, dmu_tx_t *tx)
1032{
1033 dmu_buf_t **dbp;
1034 int numbufs;
1035
1036 if (size == 0)
1037 return;
1038
1039 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1040 FALSE, FTAG, &numbufs, &dbp));
1041 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1042 dmu_buf_rele_array(dbp, numbufs, FTAG);
1043}
1044
1045void
1046dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1047 const void *buf, dmu_tx_t *tx)
1048{
1049 dmu_buf_t **dbp;
1050 int numbufs;
1051
1052 if (size == 0)
1053 return;
1054
1055 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1056 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1057 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
34dc7c2f
BB
1058 dmu_buf_rele_array(dbp, numbufs, FTAG);
1059}
1060
b128c09f
BB
1061void
1062dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1063 dmu_tx_t *tx)
1064{
1065 dmu_buf_t **dbp;
1066 int numbufs, i;
1067
1068 if (size == 0)
1069 return;
1070
1071 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1072 FALSE, FTAG, &numbufs, &dbp));
1073
1074 for (i = 0; i < numbufs; i++) {
1075 dmu_buf_t *db = dbp[i];
1076
1077 dmu_buf_will_not_fill(db, tx);
1078 }
1079 dmu_buf_rele_array(dbp, numbufs, FTAG);
1080}
1081
9b67f605
MA
1082void
1083dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1084 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1085 int compressed_size, int byteorder, dmu_tx_t *tx)
1086{
1087 dmu_buf_t *db;
1088
1089 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1090 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1091 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1092 FTAG, &db));
1093
1094 dmu_buf_write_embedded(db,
1095 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1096 uncompressed_size, compressed_size, byteorder, tx);
1097
1098 dmu_buf_rele(db, FTAG);
1099}
1100
428870ff
BB
1101/*
1102 * DMU support for xuio
1103 */
1104kstat_t *xuio_ksp = NULL;
1105
59e6e7ca
BB
1106typedef struct xuio_stats {
1107 /* loaned yet not returned arc_buf */
1108 kstat_named_t xuiostat_onloan_rbuf;
1109 kstat_named_t xuiostat_onloan_wbuf;
1110 /* whether a copy is made when loaning out a read buffer */
1111 kstat_named_t xuiostat_rbuf_copied;
1112 kstat_named_t xuiostat_rbuf_nocopy;
1113 /* whether a copy is made when assigning a write buffer */
1114 kstat_named_t xuiostat_wbuf_copied;
1115 kstat_named_t xuiostat_wbuf_nocopy;
1116} xuio_stats_t;
1117
1118static xuio_stats_t xuio_stats = {
1119 { "onloan_read_buf", KSTAT_DATA_UINT64 },
1120 { "onloan_write_buf", KSTAT_DATA_UINT64 },
1121 { "read_buf_copied", KSTAT_DATA_UINT64 },
1122 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
1123 { "write_buf_copied", KSTAT_DATA_UINT64 },
1124 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
1125};
1126
d1d7e268
MK
1127#define XUIOSTAT_INCR(stat, val) \
1128 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
1129#define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
59e6e7ca 1130
5a6765cf 1131#ifdef HAVE_UIO_ZEROCOPY
428870ff
BB
1132int
1133dmu_xuio_init(xuio_t *xuio, int nblk)
1134{
1135 dmu_xuio_t *priv;
1136 uio_t *uio = &xuio->xu_uio;
1137
1138 uio->uio_iovcnt = nblk;
79c76d5b 1139 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
428870ff 1140
79c76d5b 1141 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
428870ff 1142 priv->cnt = nblk;
79c76d5b 1143 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
5475aada 1144 priv->iovp = (iovec_t *)uio->uio_iov;
428870ff
BB
1145 XUIO_XUZC_PRIV(xuio) = priv;
1146
1147 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1148 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1149 else
1150 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1151
1152 return (0);
1153}
1154
1155void
1156dmu_xuio_fini(xuio_t *xuio)
1157{
1158 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1159 int nblk = priv->cnt;
1160
1161 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1162 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1163 kmem_free(priv, sizeof (dmu_xuio_t));
1164
1165 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1166 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1167 else
1168 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1169}
1170
1171/*
1172 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1173 * and increase priv->next by 1.
1174 */
1175int
1176dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1177{
1178 struct iovec *iov;
1179 uio_t *uio = &xuio->xu_uio;
1180 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1181 int i = priv->next++;
1182
1183 ASSERT(i < priv->cnt);
2aa34383 1184 ASSERT(off + n <= arc_buf_lsize(abuf));
5475aada 1185 iov = (iovec_t *)uio->uio_iov + i;
428870ff
BB
1186 iov->iov_base = (char *)abuf->b_data + off;
1187 iov->iov_len = n;
1188 priv->bufs[i] = abuf;
1189 return (0);
1190}
1191
1192int
1193dmu_xuio_cnt(xuio_t *xuio)
1194{
1195 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1196 return (priv->cnt);
1197}
1198
1199arc_buf_t *
1200dmu_xuio_arcbuf(xuio_t *xuio, int i)
1201{
1202 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1203
1204 ASSERT(i < priv->cnt);
1205 return (priv->bufs[i]);
1206}
1207
1208void
1209dmu_xuio_clear(xuio_t *xuio, int i)
1210{
1211 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1212
1213 ASSERT(i < priv->cnt);
1214 priv->bufs[i] = NULL;
1215}
5a6765cf 1216#endif /* HAVE_UIO_ZEROCOPY */
428870ff
BB
1217
1218static void
1219xuio_stat_init(void)
1220{
1221 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1222 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1223 KSTAT_FLAG_VIRTUAL);
1224 if (xuio_ksp != NULL) {
1225 xuio_ksp->ks_data = &xuio_stats;
1226 kstat_install(xuio_ksp);
1227 }
1228}
1229
1230static void
1231xuio_stat_fini(void)
1232{
1233 if (xuio_ksp != NULL) {
1234 kstat_delete(xuio_ksp);
1235 xuio_ksp = NULL;
1236 }
1237}
1238
1239void
5043684a 1240xuio_stat_wbuf_copied(void)
428870ff
BB
1241{
1242 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1243}
1244
1245void
5043684a 1246xuio_stat_wbuf_nocopy(void)
428870ff
BB
1247{
1248 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1249}
1250
34dc7c2f 1251#ifdef _KERNEL
5228cf01 1252int
804e0504 1253dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
872e8d26
BB
1254{
1255 dmu_buf_t **dbp;
1256 int numbufs, i, err;
5a6765cf 1257#ifdef HAVE_UIO_ZEROCOPY
872e8d26 1258 xuio_t *xuio = NULL;
5a6765cf 1259#endif
872e8d26
BB
1260
1261 /*
1262 * NB: we could do this block-at-a-time, but it's nice
1263 * to be reading in parallel.
1264 */
804e0504
MA
1265 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1266 TRUE, FTAG, &numbufs, &dbp, 0);
872e8d26
BB
1267 if (err)
1268 return (err);
1269
1270 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1271 uint64_t tocpy;
1272 int64_t bufoff;
872e8d26
BB
1273 dmu_buf_t *db = dbp[i];
1274
1275 ASSERT(size > 0);
1276
1277 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1278 tocpy = MIN(db->db_size - bufoff, size);
872e8d26 1279
5a6765cf 1280#ifdef HAVE_UIO_ZEROCOPY
872e8d26
BB
1281 if (xuio) {
1282 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1283 arc_buf_t *dbuf_abuf = dbi->db_buf;
1284 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1285 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1286 if (!err) {
1287 uio->uio_resid -= tocpy;
1288 uio->uio_loffset += tocpy;
1289 }
1290
1291 if (abuf == dbuf_abuf)
1292 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1293 else
1294 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
5a6765cf 1295 } else
1296#endif
872e8d26
BB
1297 err = uiomove((char *)db->db_data + bufoff, tocpy,
1298 UIO_READ, uio);
872e8d26
BB
1299 if (err)
1300 break;
1301
1302 size -= tocpy;
1303 }
1304 dmu_buf_rele_array(dbp, numbufs, FTAG);
1305
1306 return (err);
1307}
1308
804e0504
MA
1309/*
1310 * Read 'size' bytes into the uio buffer.
1311 * From object zdb->db_object.
1312 * Starting at offset uio->uio_loffset.
1313 *
1314 * If the caller already has a dbuf in the target object
1315 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1316 * because we don't have to find the dnode_t for the object.
1317 */
1318int
1319dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1320{
1321 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1322 dnode_t *dn;
1323 int err;
1324
1325 if (size == 0)
1326 return (0);
1327
1328 DB_DNODE_ENTER(db);
1329 dn = DB_DNODE(db);
1330 err = dmu_read_uio_dnode(dn, uio, size);
1331 DB_DNODE_EXIT(db);
1332
1333 return (err);
1334}
1335
1336/*
1337 * Read 'size' bytes into the uio buffer.
1338 * From the specified object
1339 * Starting at offset uio->uio_loffset.
1340 */
1341int
1342dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1343{
1344 dnode_t *dn;
1345 int err;
1346
1347 if (size == 0)
1348 return (0);
1349
1350 err = dnode_hold(os, object, FTAG, &dn);
1351 if (err)
1352 return (err);
1353
1354 err = dmu_read_uio_dnode(dn, uio, size);
1355
1356 dnode_rele(dn, FTAG);
1357
1358 return (err);
1359}
1360
5228cf01 1361int
872e8d26
BB
1362dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1363{
1364 dmu_buf_t **dbp;
1365 int numbufs;
1366 int err = 0;
1367 int i;
1368
1369 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1370 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1371 if (err)
1372 return (err);
1373
1374 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1375 uint64_t tocpy;
1376 int64_t bufoff;
872e8d26
BB
1377 dmu_buf_t *db = dbp[i];
1378
1379 ASSERT(size > 0);
1380
1381 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1382 tocpy = MIN(db->db_size - bufoff, size);
872e8d26
BB
1383
1384 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1385
1386 if (tocpy == db->db_size)
1387 dmu_buf_will_fill(db, tx);
1388 else
1389 dmu_buf_will_dirty(db, tx);
1390
1391 /*
1392 * XXX uiomove could block forever (eg.nfs-backed
1393 * pages). There needs to be a uiolockdown() function
1394 * to lock the pages in memory, so that uiomove won't
1395 * block.
1396 */
1397 err = uiomove((char *)db->db_data + bufoff, tocpy,
1398 UIO_WRITE, uio);
1399
1400 if (tocpy == db->db_size)
1401 dmu_buf_fill_done(db, tx);
1402
1403 if (err)
1404 break;
1405
1406 size -= tocpy;
1407 }
1408
1409 dmu_buf_rele_array(dbp, numbufs, FTAG);
1410 return (err);
1411}
1412
804e0504
MA
1413/*
1414 * Write 'size' bytes from the uio buffer.
1415 * To object zdb->db_object.
1416 * Starting at offset uio->uio_loffset.
1417 *
1418 * If the caller already has a dbuf in the target object
1419 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1420 * because we don't have to find the dnode_t for the object.
1421 */
428870ff
BB
1422int
1423dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1424 dmu_tx_t *tx)
1425{
572e2857
BB
1426 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1427 dnode_t *dn;
1428 int err;
1429
428870ff
BB
1430 if (size == 0)
1431 return (0);
1432
572e2857
BB
1433 DB_DNODE_ENTER(db);
1434 dn = DB_DNODE(db);
1435 err = dmu_write_uio_dnode(dn, uio, size, tx);
1436 DB_DNODE_EXIT(db);
1437
1438 return (err);
428870ff
BB
1439}
1440
804e0504
MA
1441/*
1442 * Write 'size' bytes from the uio buffer.
1443 * To the specified object.
1444 * Starting at offset uio->uio_loffset.
1445 */
428870ff
BB
1446int
1447dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1448 dmu_tx_t *tx)
1449{
1450 dnode_t *dn;
1451 int err;
1452
1453 if (size == 0)
1454 return (0);
1455
1456 err = dnode_hold(os, object, FTAG, &dn);
1457 if (err)
1458 return (err);
1459
1460 err = dmu_write_uio_dnode(dn, uio, size, tx);
1461
1462 dnode_rele(dn, FTAG);
1463
1464 return (err);
1465}
872e8d26 1466#endif /* _KERNEL */
34dc7c2f 1467
9babb374
BB
1468/*
1469 * Allocate a loaned anonymous arc buffer.
1470 */
1471arc_buf_t *
1472dmu_request_arcbuf(dmu_buf_t *handle, int size)
1473{
572e2857 1474 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
9babb374 1475
2aa34383 1476 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
9babb374
BB
1477}
1478
1479/*
1480 * Free a loaned arc buffer.
1481 */
1482void
1483dmu_return_arcbuf(arc_buf_t *buf)
1484{
1485 arc_return_buf(buf, FTAG);
d3c2ae1c 1486 arc_buf_destroy(buf, FTAG);
9babb374
BB
1487}
1488
b5256303
TC
1489void
1490dmu_assign_arcbuf_impl(dmu_buf_t *handle, arc_buf_t *buf, dmu_tx_t *tx)
1491{
1492 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1493 dbuf_assign_arcbuf(db, buf, tx);
1494}
1495
1496void
1497dmu_convert_to_raw(dmu_buf_t *handle, boolean_t byteorder, const uint8_t *salt,
1498 const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
1499{
1500 dmu_object_type_t type;
1501 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1502 uint64_t dsobj = dmu_objset_id(db->db_objset);
1503
1504 ASSERT3P(db->db_buf, !=, NULL);
1505 ASSERT3U(dsobj, !=, 0);
1506
1507 dmu_buf_will_change_crypt_params(handle, tx);
1508
1509 DB_DNODE_ENTER(db);
1510 type = DB_DNODE(db)->dn_type;
1511 DB_DNODE_EXIT(db);
1512
1513 /*
1514 * This technically violates the assumption the dmu code makes
1515 * that dnode blocks are only released in syncing context.
1516 */
1517 (void) arc_release(db->db_buf, db);
1518 arc_convert_to_raw(db->db_buf, dsobj, byteorder, type, salt, iv, mac);
1519}
1520
1521void
1522dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
1523 dmu_buf_t *handle, dmu_tx_t *tx)
1524{
1525 dmu_buf_t *dst_handle;
1526 dmu_buf_impl_t *dstdb;
1527 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle;
1528 arc_buf_t *abuf;
1529 uint64_t datalen;
1530 boolean_t byteorder;
1531 uint8_t salt[ZIO_DATA_SALT_LEN];
1532 uint8_t iv[ZIO_DATA_IV_LEN];
1533 uint8_t mac[ZIO_DATA_MAC_LEN];
1534
1535 ASSERT3P(srcdb->db_buf, !=, NULL);
1536
1537 /* hold the db that we want to write to */
1538 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle,
1539 DMU_READ_NO_DECRYPT));
1540 dstdb = (dmu_buf_impl_t *)dst_handle;
1541 datalen = arc_buf_size(srcdb->db_buf);
1542
1543 /* allocated an arc buffer that matches the type of srcdb->db_buf */
1544 if (arc_is_encrypted(srcdb->db_buf)) {
1545 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac);
1546 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os),
1547 byteorder, salt, iv, mac, DB_DNODE(dstdb)->dn_type,
1548 datalen, arc_buf_lsize(srcdb->db_buf),
1549 arc_get_compression(srcdb->db_buf));
1550 } else {
1551 /* we won't get a compressed db back from dmu_buf_hold() */
1552 ASSERT3U(arc_get_compression(srcdb->db_buf),
1553 ==, ZIO_COMPRESS_OFF);
1554 abuf = arc_loan_buf(os->os_spa,
1555 DMU_OT_IS_METADATA(DB_DNODE(dstdb)->dn_type), datalen);
1556 }
1557
1558 ASSERT3U(datalen, ==, arc_buf_size(abuf));
1559
1560 /* copy the data to the new buffer and assign it to the dstdb */
1561 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen);
1562 dbuf_assign_arcbuf(dstdb, abuf, tx);
1563 dmu_buf_rele(dst_handle, FTAG);
1564}
1565
9babb374
BB
1566/*
1567 * When possible directly assign passed loaned arc buffer to a dbuf.
1568 * If this is not possible copy the contents of passed arc buf via
1569 * dmu_write().
1570 */
1571void
1572dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1573 dmu_tx_t *tx)
1574{
572e2857
BB
1575 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1576 dnode_t *dn;
9babb374 1577 dmu_buf_impl_t *db;
2aa34383 1578 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
9babb374
BB
1579 uint64_t blkid;
1580
572e2857
BB
1581 DB_DNODE_ENTER(dbuf);
1582 dn = DB_DNODE(dbuf);
9babb374 1583 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35 1584 blkid = dbuf_whichblock(dn, 0, offset);
9babb374
BB
1585 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1586 rw_exit(&dn->dn_struct_rwlock);
572e2857 1587 DB_DNODE_EXIT(dbuf);
9babb374 1588
88904bb3
MA
1589 /*
1590 * We can only assign if the offset is aligned, the arc buf is the
2aa34383 1591 * same size as the dbuf, and the dbuf is not metadata.
88904bb3 1592 */
2aa34383 1593 if (offset == db->db.db_offset && blksz == db->db.db_size) {
9babb374
BB
1594 dbuf_assign_arcbuf(db, buf, tx);
1595 dbuf_rele(db, FTAG);
1596 } else {
572e2857
BB
1597 objset_t *os;
1598 uint64_t object;
1599
2aa34383
DK
1600 /* compressed bufs must always be assignable to their dbuf */
1601 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
524b4217 1602 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
2aa34383 1603
572e2857
BB
1604 DB_DNODE_ENTER(dbuf);
1605 dn = DB_DNODE(dbuf);
1606 os = dn->dn_objset;
1607 object = dn->dn_object;
1608 DB_DNODE_EXIT(dbuf);
1609
9babb374 1610 dbuf_rele(db, FTAG);
572e2857 1611 dmu_write(os, object, offset, blksz, buf->b_data, tx);
9babb374 1612 dmu_return_arcbuf(buf);
428870ff 1613 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
9babb374
BB
1614 }
1615}
1616
34dc7c2f 1617typedef struct {
428870ff
BB
1618 dbuf_dirty_record_t *dsa_dr;
1619 dmu_sync_cb_t *dsa_done;
1620 zgd_t *dsa_zgd;
1621 dmu_tx_t *dsa_tx;
34dc7c2f
BB
1622} dmu_sync_arg_t;
1623
b128c09f
BB
1624/* ARGSUSED */
1625static void
1626dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1627{
428870ff
BB
1628 dmu_sync_arg_t *dsa = varg;
1629 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
b128c09f
BB
1630 blkptr_t *bp = zio->io_bp;
1631
428870ff
BB
1632 if (zio->io_error == 0) {
1633 if (BP_IS_HOLE(bp)) {
1634 /*
1635 * A block of zeros may compress to a hole, but the
1636 * block size still needs to be known for replay.
1637 */
1638 BP_SET_LSIZE(bp, db->db_size);
9b67f605 1639 } else if (!BP_IS_EMBEDDED(bp)) {
428870ff 1640 ASSERT(BP_GET_LEVEL(bp) == 0);
b5256303 1641 BP_SET_FILL(bp, 1);
428870ff 1642 }
b128c09f
BB
1643 }
1644}
1645
428870ff
BB
1646static void
1647dmu_sync_late_arrival_ready(zio_t *zio)
1648{
1649 dmu_sync_ready(zio, NULL, zio->io_private);
1650}
1651
34dc7c2f
BB
1652/* ARGSUSED */
1653static void
1654dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1655{
428870ff
BB
1656 dmu_sync_arg_t *dsa = varg;
1657 dbuf_dirty_record_t *dr = dsa->dsa_dr;
34dc7c2f 1658 dmu_buf_impl_t *db = dr->dr_dbuf;
34dc7c2f 1659
34dc7c2f
BB
1660 mutex_enter(&db->db_mtx);
1661 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
428870ff 1662 if (zio->io_error == 0) {
03c6040b
GW
1663 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1664 if (dr->dt.dl.dr_nopwrite) {
02dc43bc
MA
1665 blkptr_t *bp = zio->io_bp;
1666 blkptr_t *bp_orig = &zio->io_bp_orig;
1667 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
03c6040b
GW
1668
1669 ASSERT(BP_EQUAL(bp, bp_orig));
02dc43bc 1670 VERIFY(BP_EQUAL(bp, db->db_blkptr));
03c6040b 1671 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
02dc43bc 1672 VERIFY(zio_checksum_table[chksum].ci_flags &
3c67d83a 1673 ZCHECKSUM_FLAG_NOPWRITE);
03c6040b 1674 }
428870ff
BB
1675 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1676 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1677 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
a4069eef
PS
1678
1679 /*
1680 * Old style holes are filled with all zeros, whereas
1681 * new-style holes maintain their lsize, type, level,
1682 * and birth time (see zio_write_compress). While we
1683 * need to reset the BP_SET_LSIZE() call that happened
1684 * in dmu_sync_ready for old style holes, we do *not*
1685 * want to wipe out the information contained in new
1686 * style holes. Thus, only zero out the block pointer if
1687 * it's an old style hole.
1688 */
1689 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1690 dr->dt.dl.dr_overridden_by.blk_birth == 0)
428870ff
BB
1691 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1692 } else {
1693 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1694 }
34dc7c2f
BB
1695 cv_broadcast(&db->db_changed);
1696 mutex_exit(&db->db_mtx);
1697
428870ff 1698 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
34dc7c2f 1699
428870ff
BB
1700 kmem_free(dsa, sizeof (*dsa));
1701}
1702
1703static void
1704dmu_sync_late_arrival_done(zio_t *zio)
1705{
1706 blkptr_t *bp = zio->io_bp;
1707 dmu_sync_arg_t *dsa = zio->io_private;
03c6040b 1708 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
428870ff
BB
1709
1710 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
02dc43bc
MA
1711 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1712 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1713 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1714 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1715 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
428870ff
BB
1716 }
1717
1718 dmu_tx_commit(dsa->dsa_tx);
1719
1720 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1721
a6255b7f 1722 abd_put(zio->io_abd);
428870ff
BB
1723 kmem_free(dsa, sizeof (*dsa));
1724}
1725
1726static int
1727dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
5dbd68a3 1728 zio_prop_t *zp, zbookmark_phys_t *zb)
428870ff
BB
1729{
1730 dmu_sync_arg_t *dsa;
1731 dmu_tx_t *tx;
1732
1733 tx = dmu_tx_create(os);
1734 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1735 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1736 dmu_tx_abort(tx);
2e528b49
MA
1737 /* Make zl_get_data do txg_waited_synced() */
1738 return (SET_ERROR(EIO));
428870ff
BB
1739 }
1740
79c76d5b 1741 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1742 dsa->dsa_dr = NULL;
1743 dsa->dsa_done = done;
1744 dsa->dsa_zgd = zgd;
1745 dsa->dsa_tx = tx;
1746
02dc43bc
MA
1747 /*
1748 * Since we are currently syncing this txg, it's nontrivial to
1749 * determine what BP to nopwrite against, so we disable nopwrite.
1750 *
1751 * When syncing, the db_blkptr is initially the BP of the previous
1752 * txg. We can not nopwrite against it because it will be changed
1753 * (this is similar to the non-late-arrival case where the dbuf is
1754 * dirty in a future txg).
1755 *
1756 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1757 * We can not nopwrite against it because although the BP will not
1758 * (typically) be changed, the data has not yet been persisted to this
1759 * location.
1760 *
1761 * Finally, when dbuf_write_done() is called, it is theoretically
1762 * possible to always nopwrite, because the data that was written in
1763 * this txg is the same data that we are trying to write. However we
1764 * would need to check that this dbuf is not dirty in any future
1765 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1766 * don't nopwrite in this case.
1767 */
1768 zp->zp_nopwrite = B_FALSE;
1769
a6255b7f
DQ
1770 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1771 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1772 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1773 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1774 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
428870ff
BB
1775
1776 return (0);
34dc7c2f
BB
1777}
1778
1779/*
1780 * Intent log support: sync the block associated with db to disk.
1781 * N.B. and XXX: the caller is responsible for making sure that the
1782 * data isn't changing while dmu_sync() is writing it.
1783 *
1784 * Return values:
1785 *
03c6040b 1786 * EEXIST: this txg has already been synced, so there's nothing to do.
34dc7c2f
BB
1787 * The caller should not log the write.
1788 *
1789 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1790 * The caller should not log the write.
1791 *
1792 * EALREADY: this block is already in the process of being synced.
1793 * The caller should track its progress (somehow).
1794 *
428870ff
BB
1795 * EIO: could not do the I/O.
1796 * The caller should do a txg_wait_synced().
34dc7c2f 1797 *
428870ff
BB
1798 * 0: the I/O has been initiated.
1799 * The caller should log this blkptr in the done callback.
1800 * It is possible that the I/O will fail, in which case
1801 * the error will be reported to the done callback and
1802 * propagated to pio from zio_done().
34dc7c2f
BB
1803 */
1804int
428870ff 1805dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
34dc7c2f 1806{
428870ff
BB
1807 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1808 objset_t *os = db->db_objset;
1809 dsl_dataset_t *ds = os->os_dsl_dataset;
34dc7c2f 1810 dbuf_dirty_record_t *dr;
428870ff 1811 dmu_sync_arg_t *dsa;
5dbd68a3 1812 zbookmark_phys_t zb;
428870ff 1813 zio_prop_t zp;
572e2857 1814 dnode_t *dn;
34dc7c2f 1815
428870ff 1816 ASSERT(pio != NULL);
34dc7c2f
BB
1817 ASSERT(txg != 0);
1818
f763c3d1 1819 /* dbuf is within the locked range */
1820 ASSERT3U(db->db.db_offset, >=, zgd->zgd_rl->r_off);
1821 ASSERT3U(db->db.db_offset + db->db.db_size, <=,
1822 zgd->zgd_rl->r_off + zgd->zgd_rl->r_len);
1823
428870ff
BB
1824 SET_BOOKMARK(&zb, ds->ds_object,
1825 db->db.db_object, db->db_level, db->db_blkid);
1826
572e2857
BB
1827 DB_DNODE_ENTER(db);
1828 dn = DB_DNODE(db);
82644107 1829 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
572e2857 1830 DB_DNODE_EXIT(db);
34dc7c2f
BB
1831
1832 /*
428870ff 1833 * If we're frozen (running ziltest), we always need to generate a bp.
34dc7c2f 1834 */
428870ff
BB
1835 if (txg > spa_freeze_txg(os->os_spa))
1836 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1837
1838 /*
428870ff
BB
1839 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1840 * and us. If we determine that this txg is not yet syncing,
1841 * but it begins to sync a moment later, that's OK because the
1842 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
34dc7c2f 1843 */
428870ff
BB
1844 mutex_enter(&db->db_mtx);
1845
1846 if (txg <= spa_last_synced_txg(os->os_spa)) {
34dc7c2f 1847 /*
428870ff 1848 * This txg has already synced. There's nothing to do.
34dc7c2f 1849 */
428870ff 1850 mutex_exit(&db->db_mtx);
2e528b49 1851 return (SET_ERROR(EEXIST));
34dc7c2f
BB
1852 }
1853
428870ff
BB
1854 if (txg <= spa_syncing_txg(os->os_spa)) {
1855 /*
1856 * This txg is currently syncing, so we can't mess with
1857 * the dirty record anymore; just write a new log block.
1858 */
1859 mutex_exit(&db->db_mtx);
1860 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1861 }
1862
1863 dr = db->db_last_dirty;
428870ff 1864 while (dr && dr->dr_txg != txg)
34dc7c2f 1865 dr = dr->dr_next;
428870ff
BB
1866
1867 if (dr == NULL) {
34dc7c2f 1868 /*
428870ff 1869 * There's no dr for this dbuf, so it must have been freed.
34dc7c2f
BB
1870 * There's no need to log writes to freed blocks, so we're done.
1871 */
1872 mutex_exit(&db->db_mtx);
2e528b49 1873 return (SET_ERROR(ENOENT));
34dc7c2f
BB
1874 }
1875
03c6040b
GW
1876 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1877
02dc43bc
MA
1878 if (db->db_blkptr != NULL) {
1879 /*
1880 * We need to fill in zgd_bp with the current blkptr so that
1881 * the nopwrite code can check if we're writing the same
1882 * data that's already on disk. We can only nopwrite if we
1883 * are sure that after making the copy, db_blkptr will not
1884 * change until our i/o completes. We ensure this by
1885 * holding the db_mtx, and only allowing nopwrite if the
1886 * block is not already dirty (see below). This is verified
1887 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1888 * not changed.
1889 */
1890 *zgd->zgd_bp = *db->db_blkptr;
1891 }
1892
03c6040b 1893 /*
f3c517d8
MA
1894 * Assume the on-disk data is X, the current syncing data (in
1895 * txg - 1) is Y, and the current in-memory data is Z (currently
1896 * in dmu_sync).
1897 *
1898 * We usually want to perform a nopwrite if X and Z are the
1899 * same. However, if Y is different (i.e. the BP is going to
1900 * change before this write takes effect), then a nopwrite will
1901 * be incorrect - we would override with X, which could have
1902 * been freed when Y was written.
1903 *
1904 * (Note that this is not a concern when we are nop-writing from
1905 * syncing context, because X and Y must be identical, because
1906 * all previous txgs have been synced.)
1907 *
1908 * Therefore, we disable nopwrite if the current BP could change
1909 * before this TXG. There are two ways it could change: by
1910 * being dirty (dr_next is non-NULL), or by being freed
1911 * (dnode_block_freed()). This behavior is verified by
1912 * zio_done(), which VERIFYs that the override BP is identical
1913 * to the on-disk BP.
03c6040b 1914 */
f3c517d8
MA
1915 DB_DNODE_ENTER(db);
1916 dn = DB_DNODE(db);
1917 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
03c6040b 1918 zp.zp_nopwrite = B_FALSE;
f3c517d8 1919 DB_DNODE_EXIT(db);
03c6040b 1920
34dc7c2f 1921 ASSERT(dr->dr_txg == txg);
428870ff
BB
1922 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1923 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
34dc7c2f 1924 /*
428870ff
BB
1925 * We have already issued a sync write for this buffer,
1926 * or this buffer has already been synced. It could not
34dc7c2f
BB
1927 * have been dirtied since, or we would have cleared the state.
1928 */
34dc7c2f 1929 mutex_exit(&db->db_mtx);
2e528b49 1930 return (SET_ERROR(EALREADY));
34dc7c2f
BB
1931 }
1932
428870ff 1933 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
34dc7c2f 1934 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
34dc7c2f 1935 mutex_exit(&db->db_mtx);
34dc7c2f 1936
79c76d5b 1937 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1938 dsa->dsa_dr = dr;
1939 dsa->dsa_done = done;
1940 dsa->dsa_zgd = zgd;
1941 dsa->dsa_tx = NULL;
b128c09f 1942
428870ff 1943 zio_nowait(arc_write(pio, os->os_spa, txg,
02dc43bc 1944 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
d3c2ae1c 1945 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
bc77ba73 1946 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
b128c09f 1947
428870ff 1948 return (0);
34dc7c2f
BB
1949}
1950
b5256303
TC
1951int
1952dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1953{
1954 dnode_t *dn;
1955 int err;
1956
1957 err = dnode_hold(os, object, FTAG, &dn);
1958 if (err)
1959 return (err);
1960 err = dnode_set_nlevels(dn, nlevels, tx);
1961 dnode_rele(dn, FTAG);
1962 return (err);
1963}
1964
34dc7c2f
BB
1965int
1966dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
4ea3f864 1967 dmu_tx_t *tx)
34dc7c2f
BB
1968{
1969 dnode_t *dn;
1970 int err;
1971
428870ff 1972 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
1973 if (err)
1974 return (err);
1975 err = dnode_set_blksz(dn, size, ibs, tx);
1976 dnode_rele(dn, FTAG);
1977 return (err);
1978}
1979
1980void
1981dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
4ea3f864 1982 dmu_tx_t *tx)
34dc7c2f
BB
1983{
1984 dnode_t *dn;
1985
9b67f605
MA
1986 /*
1987 * Send streams include each object's checksum function. This
1988 * check ensures that the receiving system can understand the
1989 * checksum function transmitted.
1990 */
1991 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1992
1993 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1994 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
34dc7c2f
BB
1995 dn->dn_checksum = checksum;
1996 dnode_setdirty(dn, tx);
1997 dnode_rele(dn, FTAG);
1998}
1999
2000void
2001dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
4ea3f864 2002 dmu_tx_t *tx)
34dc7c2f
BB
2003{
2004 dnode_t *dn;
2005
9b67f605
MA
2006 /*
2007 * Send streams include each object's compression function. This
2008 * check ensures that the receiving system can understand the
2009 * compression function transmitted.
2010 */
2011 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2012
2013 VERIFY0(dnode_hold(os, object, FTAG, &dn));
34dc7c2f
BB
2014 dn->dn_compress = compress;
2015 dnode_setdirty(dn, tx);
2016 dnode_rele(dn, FTAG);
2017}
2018
9b840763
TC
2019/*
2020 * Dirty an object and set the dirty record's raw flag. This is used
2021 * when writing raw data to an object that will not effect the
2022 * encryption parameters, specifically during raw receives.
2023 */
2024int
2025dmu_object_dirty_raw(objset_t *os, uint64_t object, dmu_tx_t *tx)
2026{
2027 dnode_t *dn;
2028 int err;
2029
2030 err = dnode_hold(os, object, FTAG, &dn);
2031 if (err)
2032 return (err);
2033 dmu_buf_will_change_crypt_params((dmu_buf_t *)dn->dn_dbuf, tx);
2034 dnode_rele(dn, FTAG);
2035 return (err);
2036}
2037
428870ff
BB
2038int zfs_mdcomp_disable = 0;
2039
faf0f58c
MA
2040/*
2041 * When the "redundant_metadata" property is set to "most", only indirect
2042 * blocks of this level and higher will have an additional ditto block.
2043 */
2044int zfs_redundant_metadata_most_ditto_level = 2;
2045
428870ff 2046void
82644107 2047dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
428870ff
BB
2048{
2049 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
9ae529ec 2050 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
572e2857 2051 (wp & WP_SPILL));
428870ff
BB
2052 enum zio_checksum checksum = os->os_checksum;
2053 enum zio_compress compress = os->os_compress;
2054 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
03c6040b
GW
2055 boolean_t dedup = B_FALSE;
2056 boolean_t nopwrite = B_FALSE;
428870ff 2057 boolean_t dedup_verify = os->os_dedup_verify;
b5256303 2058 boolean_t encrypt = B_FALSE;
428870ff 2059 int copies = os->os_copies;
a7004725 2060
428870ff 2061 /*
03c6040b
GW
2062 * We maintain different write policies for each of the following
2063 * types of data:
2064 * 1. metadata
2065 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2066 * 3. all other level 0 blocks
428870ff
BB
2067 */
2068 if (ismd) {
62bdd5eb
DL
2069 if (zfs_mdcomp_disable) {
2070 compress = ZIO_COMPRESS_EMPTY;
62bdd5eb 2071 } else {
99197f03
JG
2072 /*
2073 * XXX -- we should design a compression algorithm
2074 * that specializes in arrays of bps.
2075 */
2076 compress = zio_compress_select(os->os_spa,
2077 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
62bdd5eb 2078 }
03c6040b 2079
428870ff
BB
2080 /*
2081 * Metadata always gets checksummed. If the data
2082 * checksum is multi-bit correctable, and it's not a
2083 * ZBT-style checksum, then it's suitable for metadata
2084 * as well. Otherwise, the metadata checksum defaults
2085 * to fletcher4.
2086 */
3c67d83a
TH
2087 if (!(zio_checksum_table[checksum].ci_flags &
2088 ZCHECKSUM_FLAG_METADATA) ||
2089 (zio_checksum_table[checksum].ci_flags &
2090 ZCHECKSUM_FLAG_EMBEDDED))
428870ff 2091 checksum = ZIO_CHECKSUM_FLETCHER_4;
faf0f58c
MA
2092
2093 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2094 (os->os_redundant_metadata ==
2095 ZFS_REDUNDANT_METADATA_MOST &&
2096 (level >= zfs_redundant_metadata_most_ditto_level ||
2097 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2098 copies++;
03c6040b
GW
2099 } else if (wp & WP_NOFILL) {
2100 ASSERT(level == 0);
428870ff 2101
428870ff 2102 /*
03c6040b
GW
2103 * If we're writing preallocated blocks, we aren't actually
2104 * writing them so don't set any policy properties. These
2105 * blocks are currently only used by an external subsystem
2106 * outside of zfs (i.e. dump) and not written by the zio
2107 * pipeline.
428870ff 2108 */
03c6040b
GW
2109 compress = ZIO_COMPRESS_OFF;
2110 checksum = ZIO_CHECKSUM_OFF;
428870ff 2111 } else {
99197f03
JG
2112 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2113 compress);
428870ff 2114
03c6040b
GW
2115 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2116 zio_checksum_select(dn->dn_checksum, checksum) :
2117 dedup_checksum;
428870ff 2118
03c6040b
GW
2119 /*
2120 * Determine dedup setting. If we are in dmu_sync(),
2121 * we won't actually dedup now because that's all
2122 * done in syncing context; but we do want to use the
2123 * dedup checkum. If the checksum is not strong
2124 * enough to ensure unique signatures, force
2125 * dedup_verify.
2126 */
2127 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2128 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
3c67d83a
TH
2129 if (!(zio_checksum_table[checksum].ci_flags &
2130 ZCHECKSUM_FLAG_DEDUP))
03c6040b
GW
2131 dedup_verify = B_TRUE;
2132 }
428870ff 2133
03c6040b 2134 /*
3c67d83a
TH
2135 * Enable nopwrite if we have secure enough checksum
2136 * algorithm (see comment in zio_nop_write) and
2137 * compression is enabled. We don't enable nopwrite if
2138 * dedup is enabled as the two features are mutually
2139 * exclusive.
03c6040b 2140 */
3c67d83a
TH
2141 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2142 ZCHECKSUM_FLAG_NOPWRITE) &&
03c6040b 2143 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
428870ff
BB
2144 }
2145
b5256303
TC
2146 /*
2147 * All objects in an encrypted objset are protected from modification
2148 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2149 * in the bp, so we cannot use all copies. Encrypted objects are also
2150 * not subject to nopwrite since writing the same data will still
2151 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2152 * to avoid ambiguity in the dedup code since the DDT does not store
2153 * object types.
2154 */
2155 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2156 encrypt = B_TRUE;
2157
2158 if (DMU_OT_IS_ENCRYPTED(type)) {
2159 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2160 nopwrite = B_FALSE;
2161 } else {
2162 dedup = B_FALSE;
2163 }
2164
2165 if (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)
2166 compress = ZIO_COMPRESS_EMPTY;
2167 }
2aa34383 2168
b5256303
TC
2169 zp->zp_compress = compress;
2170 zp->zp_checksum = checksum;
428870ff
BB
2171 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2172 zp->zp_level = level;
faf0f58c 2173 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
428870ff
BB
2174 zp->zp_dedup = dedup;
2175 zp->zp_dedup_verify = dedup && dedup_verify;
03c6040b 2176 zp->zp_nopwrite = nopwrite;
b5256303
TC
2177 zp->zp_encrypt = encrypt;
2178 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2179 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2180 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2181 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2182
2183 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
428870ff
BB
2184}
2185
66aca247
DB
2186/*
2187 * This function is only called from zfs_holey_common() for zpl_llseek()
2188 * in order to determine the location of holes. In order to accurately
2189 * report holes all dirty data must be synced to disk. This causes extremely
2190 * poor performance when seeking for holes in a dirty file. As a compromise,
2191 * only provide hole data when the dnode is clean. When a dnode is dirty
2192 * report the dnode as having no holes which is always a safe thing to do.
2193 */
34dc7c2f
BB
2194int
2195dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2196{
2197 dnode_t *dn;
2198 int i, err;
66aca247 2199 boolean_t clean = B_TRUE;
34dc7c2f 2200
428870ff 2201 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2202 if (err)
2203 return (err);
66aca247 2204
34dc7c2f 2205 /*
66aca247 2206 * Check if dnode is dirty
34dc7c2f 2207 */
66aca247
DB
2208 if (dn->dn_dirtyctx != DN_UNDIRTIED) {
2209 for (i = 0; i < TXG_SIZE; i++) {
2210 if (!list_is_empty(&dn->dn_dirty_records[i])) {
2211 clean = B_FALSE;
2212 break;
2213 }
2214 }
34dc7c2f 2215 }
66aca247
DB
2216
2217 /*
2218 * If compatibility option is on, sync any current changes before
2219 * we go trundling through the block pointers.
2220 */
2221 if (!clean && zfs_dmu_offset_next_sync) {
2222 clean = B_TRUE;
34dc7c2f
BB
2223 dnode_rele(dn, FTAG);
2224 txg_wait_synced(dmu_objset_pool(os), 0);
428870ff 2225 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2226 if (err)
2227 return (err);
2228 }
2229
66aca247
DB
2230 if (clean)
2231 err = dnode_next_offset(dn,
2232 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2233 else
2234 err = SET_ERROR(EBUSY);
2235
34dc7c2f
BB
2236 dnode_rele(dn, FTAG);
2237
2238 return (err);
2239}
2240
2241void
e0b0ca98 2242__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
34dc7c2f 2243{
e0b0ca98 2244 dnode_phys_t *dnp = dn->dn_phys;
d6320ddb 2245 int i;
428870ff 2246
34dc7c2f
BB
2247 doi->doi_data_block_size = dn->dn_datablksz;
2248 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2249 1ULL << dn->dn_indblkshift : 0;
428870ff
BB
2250 doi->doi_type = dn->dn_type;
2251 doi->doi_bonus_type = dn->dn_bonustype;
2252 doi->doi_bonus_size = dn->dn_bonuslen;
50c957f7 2253 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
34dc7c2f
BB
2254 doi->doi_indirection = dn->dn_nlevels;
2255 doi->doi_checksum = dn->dn_checksum;
2256 doi->doi_compress = dn->dn_compress;
6c59307a 2257 doi->doi_nblkptr = dn->dn_nblkptr;
428870ff 2258 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
d1fada1e 2259 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
428870ff 2260 doi->doi_fill_count = 0;
d6320ddb 2261 for (i = 0; i < dnp->dn_nblkptr; i++)
9b67f605 2262 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
e0b0ca98
BB
2263}
2264
2265void
2266dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2267{
2268 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2269 mutex_enter(&dn->dn_mtx);
2270
2271 __dmu_object_info_from_dnode(dn, doi);
34dc7c2f
BB
2272
2273 mutex_exit(&dn->dn_mtx);
2274 rw_exit(&dn->dn_struct_rwlock);
2275}
2276
2277/*
2278 * Get information on a DMU object.
2279 * If doi is NULL, just indicates whether the object exists.
2280 */
2281int
2282dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2283{
2284 dnode_t *dn;
428870ff 2285 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2286
2287 if (err)
2288 return (err);
2289
2290 if (doi != NULL)
2291 dmu_object_info_from_dnode(dn, doi);
2292
2293 dnode_rele(dn, FTAG);
2294 return (0);
2295}
2296
2297/*
2298 * As above, but faster; can be used when you have a held dbuf in hand.
2299 */
2300void
572e2857 2301dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
34dc7c2f 2302{
572e2857
BB
2303 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2304
2305 DB_DNODE_ENTER(db);
2306 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2307 DB_DNODE_EXIT(db);
34dc7c2f
BB
2308}
2309
2310/*
2311 * Faster still when you only care about the size.
2312 * This is specifically optimized for zfs_getattr().
2313 */
2314void
572e2857
BB
2315dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2316 u_longlong_t *nblk512)
34dc7c2f 2317{
572e2857
BB
2318 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2319 dnode_t *dn;
2320
2321 DB_DNODE_ENTER(db);
2322 dn = DB_DNODE(db);
34dc7c2f
BB
2323
2324 *blksize = dn->dn_datablksz;
50c957f7 2325 /* add in number of slots used for the dnode itself */
34dc7c2f 2326 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
50c957f7
NB
2327 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2328 DB_DNODE_EXIT(db);
2329}
2330
2331void
2332dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2333{
2334 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2335 dnode_t *dn;
2336
2337 DB_DNODE_ENTER(db);
2338 dn = DB_DNODE(db);
2339 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
572e2857 2340 DB_DNODE_EXIT(db);
34dc7c2f
BB
2341}
2342
2343void
2344byteswap_uint64_array(void *vbuf, size_t size)
2345{
2346 uint64_t *buf = vbuf;
2347 size_t count = size >> 3;
2348 int i;
2349
2350 ASSERT((size & 7) == 0);
2351
2352 for (i = 0; i < count; i++)
2353 buf[i] = BSWAP_64(buf[i]);
2354}
2355
2356void
2357byteswap_uint32_array(void *vbuf, size_t size)
2358{
2359 uint32_t *buf = vbuf;
2360 size_t count = size >> 2;
2361 int i;
2362
2363 ASSERT((size & 3) == 0);
2364
2365 for (i = 0; i < count; i++)
2366 buf[i] = BSWAP_32(buf[i]);
2367}
2368
2369void
2370byteswap_uint16_array(void *vbuf, size_t size)
2371{
2372 uint16_t *buf = vbuf;
2373 size_t count = size >> 1;
2374 int i;
2375
2376 ASSERT((size & 1) == 0);
2377
2378 for (i = 0; i < count; i++)
2379 buf[i] = BSWAP_16(buf[i]);
2380}
2381
2382/* ARGSUSED */
2383void
2384byteswap_uint8_array(void *vbuf, size_t size)
2385{
2386}
2387
2388void
2389dmu_init(void)
2390{
a6255b7f 2391 abd_init();
428870ff 2392 zfs_dbgmsg_init();
572e2857
BB
2393 sa_cache_init();
2394 xuio_stat_init();
2395 dmu_objset_init();
34dc7c2f 2396 dnode_init();
428870ff 2397 zfetch_init();
570827e1 2398 dmu_tx_init();
34dc7c2f 2399 l2arc_init();
29809a6c 2400 arc_init();
d3c2ae1c 2401 dbuf_init();
34dc7c2f
BB
2402}
2403
2404void
2405dmu_fini(void)
2406{
e49f1e20 2407 arc_fini(); /* arc depends on l2arc, so arc must go first */
29809a6c 2408 l2arc_fini();
570827e1 2409 dmu_tx_fini();
428870ff 2410 zfetch_fini();
34dc7c2f 2411 dbuf_fini();
572e2857
BB
2412 dnode_fini();
2413 dmu_objset_fini();
428870ff
BB
2414 xuio_stat_fini();
2415 sa_cache_fini();
2416 zfs_dbgmsg_fini();
a6255b7f 2417 abd_fini();
34dc7c2f 2418}
c28b2279
BB
2419
2420#if defined(_KERNEL) && defined(HAVE_SPL)
2421EXPORT_SYMBOL(dmu_bonus_hold);
a473d90c
AZ
2422EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2423EXPORT_SYMBOL(dmu_buf_rele_array);
57b650b8 2424EXPORT_SYMBOL(dmu_prefetch);
c28b2279 2425EXPORT_SYMBOL(dmu_free_range);
57b650b8 2426EXPORT_SYMBOL(dmu_free_long_range);
b663a23d 2427EXPORT_SYMBOL(dmu_free_long_object);
c28b2279 2428EXPORT_SYMBOL(dmu_read);
0eef1bde 2429EXPORT_SYMBOL(dmu_read_by_dnode);
c28b2279 2430EXPORT_SYMBOL(dmu_write);
0eef1bde 2431EXPORT_SYMBOL(dmu_write_by_dnode);
57b650b8 2432EXPORT_SYMBOL(dmu_prealloc);
c28b2279
BB
2433EXPORT_SYMBOL(dmu_object_info);
2434EXPORT_SYMBOL(dmu_object_info_from_dnode);
2435EXPORT_SYMBOL(dmu_object_info_from_db);
2436EXPORT_SYMBOL(dmu_object_size_from_db);
50c957f7 2437EXPORT_SYMBOL(dmu_object_dnsize_from_db);
b5256303 2438EXPORT_SYMBOL(dmu_object_set_nlevels);
c28b2279
BB
2439EXPORT_SYMBOL(dmu_object_set_blocksize);
2440EXPORT_SYMBOL(dmu_object_set_checksum);
2441EXPORT_SYMBOL(dmu_object_set_compress);
57b650b8
BB
2442EXPORT_SYMBOL(dmu_write_policy);
2443EXPORT_SYMBOL(dmu_sync);
b10c77f7
BB
2444EXPORT_SYMBOL(dmu_request_arcbuf);
2445EXPORT_SYMBOL(dmu_return_arcbuf);
2446EXPORT_SYMBOL(dmu_assign_arcbuf);
2447EXPORT_SYMBOL(dmu_buf_hold);
c28b2279 2448EXPORT_SYMBOL(dmu_ot);
afec56b4 2449
bef78122 2450/* BEGIN CSTYLED */
afec56b4
BB
2451module_param(zfs_mdcomp_disable, int, 0644);
2452MODULE_PARM_DESC(zfs_mdcomp_disable, "Disable meta data compression");
03c6040b
GW
2453
2454module_param(zfs_nopwrite_enabled, int, 0644);
2455MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
2456
bef78122
DQ
2457module_param(zfs_per_txg_dirty_frees_percent, ulong, 0644);
2458MODULE_PARM_DESC(zfs_per_txg_dirty_frees_percent,
2459 "percentage of dirtied blocks from frees in one TXG");
66aca247
DB
2460
2461module_param(zfs_dmu_offset_next_sync, int, 0644);
2462MODULE_PARM_DESC(zfs_dmu_offset_next_sync,
2463 "Enable forcing txg sync to find holes");
2464
bef78122 2465/* END CSTYLED */
66aca247 2466
c28b2279 2467#endif