]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu.c
Allow 'zpool events' filtering by pool name
[mirror_zfs.git] / module / zfs / dmu.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
82644107 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
bc77ba73 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
a08abc1b 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
5475aada 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
34dc7c2f
BB
28 */
29
34dc7c2f
BB
30#include <sys/dmu.h>
31#include <sys/dmu_impl.h>
32#include <sys/dmu_tx.h>
33#include <sys/dbuf.h>
34#include <sys/dnode.h>
35#include <sys/zfs_context.h>
36#include <sys/dmu_objset.h>
37#include <sys/dmu_traverse.h>
38#include <sys/dsl_dataset.h>
39#include <sys/dsl_dir.h>
40#include <sys/dsl_pool.h>
41#include <sys/dsl_synctask.h>
42#include <sys/dsl_prop.h>
43#include <sys/dmu_zfetch.h>
44#include <sys/zfs_ioctl.h>
45#include <sys/zap.h>
46#include <sys/zio_checksum.h>
03c6040b 47#include <sys/zio_compress.h>
428870ff 48#include <sys/sa.h>
62bdd5eb 49#include <sys/zfeature.h>
a6255b7f 50#include <sys/abd.h>
539d33c7 51#include <sys/trace_dmu.h>
f763c3d1 52#include <sys/zfs_rlock.h>
34dc7c2f
BB
53#ifdef _KERNEL
54#include <sys/vmsystm.h>
b128c09f 55#include <sys/zfs_znode.h>
34dc7c2f
BB
56#endif
57
03c6040b
GW
58/*
59 * Enable/disable nopwrite feature.
60 */
61int zfs_nopwrite_enabled = 1;
62
539d33c7
GM
63/*
64 * Tunable to control percentage of dirtied blocks from frees in one TXG.
65 * After this threshold is crossed, additional dirty blocks from frees
66 * wait until the next TXG.
67 * A value of zero will disable this throttle.
68 */
bef78122 69unsigned long zfs_per_txg_dirty_frees_percent = 30;
539d33c7 70
66aca247
DB
71/*
72 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
73 */
74int zfs_dmu_offset_next_sync = 0;
75
34dc7c2f 76const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
b5256303
TC
77 { DMU_BSWAP_UINT8, TRUE, FALSE, "unallocated" },
78 { DMU_BSWAP_ZAP, TRUE, FALSE, "object directory" },
79 { DMU_BSWAP_UINT64, TRUE, FALSE, "object array" },
80 { DMU_BSWAP_UINT8, TRUE, FALSE, "packed nvlist" },
81 { DMU_BSWAP_UINT64, TRUE, FALSE, "packed nvlist size" },
82 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj" },
83 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj header" },
84 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map header" },
85 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map" },
86 { DMU_BSWAP_UINT64, TRUE, TRUE, "ZIL intent log" },
87 { DMU_BSWAP_DNODE, TRUE, TRUE, "DMU dnode" },
88 { DMU_BSWAP_OBJSET, TRUE, FALSE, "DMU objset" },
89 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL directory" },
90 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL directory child map"},
91 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dataset snap map" },
92 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL props" },
93 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL dataset" },
94 { DMU_BSWAP_ZNODE, TRUE, FALSE, "ZFS znode" },
95 { DMU_BSWAP_OLDACL, TRUE, TRUE, "ZFS V0 ACL" },
96 { DMU_BSWAP_UINT8, FALSE, TRUE, "ZFS plain file" },
97 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS directory" },
98 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS master node" },
99 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS delete queue" },
100 { DMU_BSWAP_UINT8, FALSE, TRUE, "zvol object" },
101 { DMU_BSWAP_ZAP, TRUE, FALSE, "zvol prop" },
102 { DMU_BSWAP_UINT8, FALSE, TRUE, "other uint8[]" },
103 { DMU_BSWAP_UINT64, FALSE, TRUE, "other uint64[]" },
104 { DMU_BSWAP_ZAP, TRUE, FALSE, "other ZAP" },
105 { DMU_BSWAP_ZAP, TRUE, FALSE, "persistent error log" },
106 { DMU_BSWAP_UINT8, TRUE, FALSE, "SPA history" },
107 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA history offsets" },
108 { DMU_BSWAP_ZAP, TRUE, FALSE, "Pool properties" },
109 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL permissions" },
110 { DMU_BSWAP_ACL, TRUE, TRUE, "ZFS ACL" },
111 { DMU_BSWAP_UINT8, TRUE, TRUE, "ZFS SYSACL" },
112 { DMU_BSWAP_UINT8, TRUE, TRUE, "FUID table" },
113 { DMU_BSWAP_UINT64, TRUE, FALSE, "FUID table size" },
114 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dataset next clones"},
115 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan work queue" },
116 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS user/group used" },
117 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS user/group quota" },
118 { DMU_BSWAP_ZAP, TRUE, FALSE, "snapshot refcount tags"},
119 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT ZAP algorithm" },
120 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT statistics" },
121 { DMU_BSWAP_UINT8, TRUE, TRUE, "System attributes" },
122 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA master node" },
123 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA attr registration" },
124 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA attr layouts" },
125 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan translations" },
126 { DMU_BSWAP_UINT8, FALSE, TRUE, "deduplicated block" },
127 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL deadlist map" },
128 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL deadlist map hdr" },
129 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dir clones" },
130 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj subobj" }
9ae529ec
CS
131};
132
133const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
134 { byteswap_uint8_array, "uint8" },
135 { byteswap_uint16_array, "uint16" },
136 { byteswap_uint32_array, "uint32" },
137 { byteswap_uint64_array, "uint64" },
138 { zap_byteswap, "zap" },
139 { dnode_buf_byteswap, "dnode" },
140 { dmu_objset_byteswap, "objset" },
141 { zfs_znode_byteswap, "znode" },
142 { zfs_oldacl_byteswap, "oldacl" },
143 { zfs_acl_byteswap, "acl" }
34dc7c2f
BB
144};
145
2bce8049
MA
146int
147dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
148 void *tag, dmu_buf_t **dbp)
149{
150 uint64_t blkid;
151 dmu_buf_impl_t *db;
152
153 blkid = dbuf_whichblock(dn, 0, offset);
154 rw_enter(&dn->dn_struct_rwlock, RW_READER);
155 db = dbuf_hold(dn, blkid, tag);
156 rw_exit(&dn->dn_struct_rwlock);
157
158 if (db == NULL) {
159 *dbp = NULL;
160 return (SET_ERROR(EIO));
161 }
162
163 *dbp = &db->db;
164 return (0);
165}
34dc7c2f 166int
9b67f605
MA
167dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
168 void *tag, dmu_buf_t **dbp)
34dc7c2f
BB
169{
170 dnode_t *dn;
171 uint64_t blkid;
172 dmu_buf_impl_t *db;
173 int err;
428870ff
BB
174
175 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
176 if (err)
177 return (err);
fcff0f35 178 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f
BB
179 rw_enter(&dn->dn_struct_rwlock, RW_READER);
180 db = dbuf_hold(dn, blkid, tag);
181 rw_exit(&dn->dn_struct_rwlock);
9b67f605
MA
182 dnode_rele(dn, FTAG);
183
34dc7c2f 184 if (db == NULL) {
9b67f605
MA
185 *dbp = NULL;
186 return (SET_ERROR(EIO));
187 }
188
189 *dbp = &db->db;
190 return (err);
191}
192
2bce8049
MA
193int
194dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
195 void *tag, dmu_buf_t **dbp, int flags)
196{
197 int err;
198 int db_flags = DB_RF_CANFAIL;
199
200 if (flags & DMU_READ_NO_PREFETCH)
201 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
202 if (flags & DMU_READ_NO_DECRYPT)
203 db_flags |= DB_RF_NO_DECRYPT;
2bce8049
MA
204
205 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
206 if (err == 0) {
207 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
208 err = dbuf_read(db, NULL, db_flags);
209 if (err != 0) {
210 dbuf_rele(db, tag);
211 *dbp = NULL;
212 }
213 }
214
215 return (err);
216}
217
9b67f605
MA
218int
219dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
220 void *tag, dmu_buf_t **dbp, int flags)
221{
222 int err;
223 int db_flags = DB_RF_CANFAIL;
224
225 if (flags & DMU_READ_NO_PREFETCH)
226 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
227 if (flags & DMU_READ_NO_DECRYPT)
228 db_flags |= DB_RF_NO_DECRYPT;
9b67f605
MA
229
230 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
231 if (err == 0) {
232 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
428870ff 233 err = dbuf_read(db, NULL, db_flags);
9b67f605 234 if (err != 0) {
34dc7c2f 235 dbuf_rele(db, tag);
9b67f605 236 *dbp = NULL;
34dc7c2f
BB
237 }
238 }
239
34dc7c2f
BB
240 return (err);
241}
242
243int
244dmu_bonus_max(void)
245{
50c957f7 246 return (DN_OLD_MAX_BONUSLEN);
34dc7c2f
BB
247}
248
249int
572e2857 250dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
34dc7c2f 251{
572e2857
BB
252 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
253 dnode_t *dn;
254 int error;
34dc7c2f 255
572e2857
BB
256 DB_DNODE_ENTER(db);
257 dn = DB_DNODE(db);
258
259 if (dn->dn_bonus != db) {
2e528b49 260 error = SET_ERROR(EINVAL);
572e2857 261 } else if (newsize < 0 || newsize > db_fake->db_size) {
2e528b49 262 error = SET_ERROR(EINVAL);
572e2857
BB
263 } else {
264 dnode_setbonuslen(dn, newsize, tx);
265 error = 0;
266 }
267
268 DB_DNODE_EXIT(db);
269 return (error);
34dc7c2f
BB
270}
271
428870ff 272int
572e2857 273dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
428870ff 274{
572e2857
BB
275 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
276 dnode_t *dn;
277 int error;
428870ff 278
572e2857
BB
279 DB_DNODE_ENTER(db);
280 dn = DB_DNODE(db);
428870ff 281
9ae529ec 282 if (!DMU_OT_IS_VALID(type)) {
2e528b49 283 error = SET_ERROR(EINVAL);
572e2857 284 } else if (dn->dn_bonus != db) {
2e528b49 285 error = SET_ERROR(EINVAL);
572e2857
BB
286 } else {
287 dnode_setbonus_type(dn, type, tx);
288 error = 0;
289 }
428870ff 290
572e2857
BB
291 DB_DNODE_EXIT(db);
292 return (error);
293}
294
295dmu_object_type_t
296dmu_get_bonustype(dmu_buf_t *db_fake)
297{
298 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
299 dnode_t *dn;
300 dmu_object_type_t type;
301
302 DB_DNODE_ENTER(db);
303 dn = DB_DNODE(db);
304 type = dn->dn_bonustype;
305 DB_DNODE_EXIT(db);
306
307 return (type);
428870ff
BB
308}
309
310int
311dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
312{
313 dnode_t *dn;
314 int error;
315
316 error = dnode_hold(os, object, FTAG, &dn);
317 dbuf_rm_spill(dn, tx);
318 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
319 dnode_rm_spill(dn, tx);
320 rw_exit(&dn->dn_struct_rwlock);
321 dnode_rele(dn, FTAG);
322 return (error);
323}
324
34dc7c2f
BB
325/*
326 * returns ENOENT, EIO, or 0.
327 */
328int
b5256303
TC
329dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, uint32_t flags,
330 dmu_buf_t **dbp)
34dc7c2f
BB
331{
332 dnode_t *dn;
333 dmu_buf_impl_t *db;
334 int error;
b5256303
TC
335 uint32_t db_flags = DB_RF_MUST_SUCCEED;
336
337 if (flags & DMU_READ_NO_PREFETCH)
338 db_flags |= DB_RF_NOPREFETCH;
339 if (flags & DMU_READ_NO_DECRYPT)
340 db_flags |= DB_RF_NO_DECRYPT;
34dc7c2f 341
428870ff 342 error = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
343 if (error)
344 return (error);
345
346 rw_enter(&dn->dn_struct_rwlock, RW_READER);
347 if (dn->dn_bonus == NULL) {
348 rw_exit(&dn->dn_struct_rwlock);
349 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
350 if (dn->dn_bonus == NULL)
351 dbuf_create_bonus(dn);
352 }
353 db = dn->dn_bonus;
34dc7c2f
BB
354
355 /* as long as the bonus buf is held, the dnode will be held */
572e2857 356 if (refcount_add(&db->db_holds, tag) == 1) {
34dc7c2f 357 VERIFY(dnode_add_ref(dn, db));
73ad4a9f 358 atomic_inc_32(&dn->dn_dbufs_count);
572e2857
BB
359 }
360
361 /*
362 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
363 * hold and incrementing the dbuf count to ensure that dnode_move() sees
364 * a dnode hold for every dbuf.
365 */
366 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f
BB
367
368 dnode_rele(dn, FTAG);
369
b5256303
TC
370 error = dbuf_read(db, NULL, db_flags);
371 if (error) {
372 dnode_evict_bonus(dn);
373 dbuf_rele(db, tag);
374 *dbp = NULL;
375 return (error);
376 }
34dc7c2f
BB
377
378 *dbp = &db->db;
379 return (0);
380}
381
b5256303
TC
382int
383dmu_bonus_hold(objset_t *os, uint64_t obj, void *tag, dmu_buf_t **dbp)
384{
385 return (dmu_bonus_hold_impl(os, obj, tag, DMU_READ_NO_PREFETCH, dbp));
386}
387
428870ff
BB
388/*
389 * returns ENOENT, EIO, or 0.
390 *
391 * This interface will allocate a blank spill dbuf when a spill blk
392 * doesn't already exist on the dnode.
393 *
394 * if you only want to find an already existing spill db, then
395 * dmu_spill_hold_existing() should be used.
396 */
397int
398dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
399{
400 dmu_buf_impl_t *db = NULL;
401 int err;
402
403 if ((flags & DB_RF_HAVESTRUCT) == 0)
404 rw_enter(&dn->dn_struct_rwlock, RW_READER);
405
406 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
407
408 if ((flags & DB_RF_HAVESTRUCT) == 0)
409 rw_exit(&dn->dn_struct_rwlock);
410
b182ac00 411 if (db == NULL) {
412 *dbp = NULL;
413 return (SET_ERROR(EIO));
414 }
572e2857
BB
415 err = dbuf_read(db, NULL, flags);
416 if (err == 0)
417 *dbp = &db->db;
b182ac00 418 else {
572e2857 419 dbuf_rele(db, tag);
b182ac00 420 *dbp = NULL;
421 }
428870ff
BB
422 return (err);
423}
424
425int
426dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
427{
572e2857
BB
428 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
429 dnode_t *dn;
428870ff
BB
430 int err;
431
572e2857
BB
432 DB_DNODE_ENTER(db);
433 dn = DB_DNODE(db);
434
435 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
2e528b49 436 err = SET_ERROR(EINVAL);
572e2857
BB
437 } else {
438 rw_enter(&dn->dn_struct_rwlock, RW_READER);
439
440 if (!dn->dn_have_spill) {
2e528b49 441 err = SET_ERROR(ENOENT);
572e2857
BB
442 } else {
443 err = dmu_spill_hold_by_dnode(dn,
444 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
445 }
428870ff 446
428870ff 447 rw_exit(&dn->dn_struct_rwlock);
428870ff 448 }
572e2857
BB
449
450 DB_DNODE_EXIT(db);
428870ff
BB
451 return (err);
452}
453
454int
455dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
456{
572e2857
BB
457 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
458 dnode_t *dn;
459 int err;
460
461 DB_DNODE_ENTER(db);
462 dn = DB_DNODE(db);
463 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
464 DB_DNODE_EXIT(db);
465
466 return (err);
428870ff
BB
467}
468
34dc7c2f
BB
469/*
470 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
471 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
472 * and can induce severe lock contention when writing to several files
473 * whose dnodes are in the same block.
474 */
475static int
9babb374 476dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
7f60329a 477 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
34dc7c2f
BB
478{
479 dmu_buf_t **dbp;
480 uint64_t blkid, nblks, i;
9babb374 481 uint32_t dbuf_flags;
34dc7c2f
BB
482 int err;
483 zio_t *zio;
484
485 ASSERT(length <= DMU_MAX_ACCESS);
486
7f60329a
MA
487 /*
488 * Note: We directly notify the prefetch code of this read, so that
489 * we can tell it about the multi-block read. dbuf_read() only knows
490 * about the one block it is accessing.
491 */
492 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
493 DB_RF_NOPREFETCH;
34dc7c2f
BB
494
495 rw_enter(&dn->dn_struct_rwlock, RW_READER);
496 if (dn->dn_datablkshift) {
497 int blkshift = dn->dn_datablkshift;
7f60329a
MA
498 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
499 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
34dc7c2f
BB
500 } else {
501 if (offset + length > dn->dn_datablksz) {
502 zfs_panic_recover("zfs: accessing past end of object "
503 "%llx/%llx (size=%u access=%llu+%llu)",
504 (longlong_t)dn->dn_objset->
505 os_dsl_dataset->ds_object,
506 (longlong_t)dn->dn_object, dn->dn_datablksz,
507 (longlong_t)offset, (longlong_t)length);
45d1cae3 508 rw_exit(&dn->dn_struct_rwlock);
2e528b49 509 return (SET_ERROR(EIO));
34dc7c2f
BB
510 }
511 nblks = 1;
512 }
79c76d5b 513 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
34dc7c2f 514
b128c09f 515 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
fcff0f35 516 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f 517 for (i = 0; i < nblks; i++) {
7f60329a 518 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
34dc7c2f
BB
519 if (db == NULL) {
520 rw_exit(&dn->dn_struct_rwlock);
521 dmu_buf_rele_array(dbp, nblks, tag);
522 zio_nowait(zio);
2e528b49 523 return (SET_ERROR(EIO));
34dc7c2f 524 }
7f60329a 525
34dc7c2f 526 /* initiate async i/o */
7f60329a 527 if (read)
9babb374 528 (void) dbuf_read(db, zio, dbuf_flags);
34dc7c2f
BB
529 dbp[i] = &db->db;
530 }
7f60329a 531
755065f3
AM
532 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
533 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
534 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
535 read && DNODE_IS_CACHEABLE(dn));
7f60329a 536 }
34dc7c2f
BB
537 rw_exit(&dn->dn_struct_rwlock);
538
539 /* wait for async i/o */
540 err = zio_wait(zio);
541 if (err) {
542 dmu_buf_rele_array(dbp, nblks, tag);
543 return (err);
544 }
545
546 /* wait for other io to complete */
547 if (read) {
548 for (i = 0; i < nblks; i++) {
549 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
550 mutex_enter(&db->db_mtx);
551 while (db->db_state == DB_READ ||
552 db->db_state == DB_FILL)
553 cv_wait(&db->db_changed, &db->db_mtx);
554 if (db->db_state == DB_UNCACHED)
2e528b49 555 err = SET_ERROR(EIO);
34dc7c2f
BB
556 mutex_exit(&db->db_mtx);
557 if (err) {
558 dmu_buf_rele_array(dbp, nblks, tag);
559 return (err);
560 }
561 }
562 }
563
564 *numbufsp = nblks;
565 *dbpp = dbp;
566 return (0);
567}
568
569static int
570dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
571 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
572{
573 dnode_t *dn;
574 int err;
575
428870ff 576 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
577 if (err)
578 return (err);
579
580 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 581 numbufsp, dbpp, DMU_READ_PREFETCH);
34dc7c2f
BB
582
583 dnode_rele(dn, FTAG);
584
585 return (err);
586}
587
588int
572e2857 589dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
7f60329a
MA
590 uint64_t length, boolean_t read, void *tag, int *numbufsp,
591 dmu_buf_t ***dbpp)
34dc7c2f 592{
572e2857
BB
593 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
594 dnode_t *dn;
34dc7c2f
BB
595 int err;
596
572e2857
BB
597 DB_DNODE_ENTER(db);
598 dn = DB_DNODE(db);
34dc7c2f 599 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 600 numbufsp, dbpp, DMU_READ_PREFETCH);
572e2857 601 DB_DNODE_EXIT(db);
34dc7c2f
BB
602
603 return (err);
604}
605
606void
607dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
608{
609 int i;
610 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
611
612 if (numbufs == 0)
613 return;
614
615 for (i = 0; i < numbufs; i++) {
616 if (dbp[i])
617 dbuf_rele(dbp[i], tag);
618 }
619
620 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
621}
622
e8b96c60 623/*
fcff0f35
PD
624 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
625 * indirect blocks prefeteched will be those that point to the blocks containing
626 * the data starting at offset, and continuing to offset + len.
e8b96c60 627 *
b5256303
TC
628 * Note that if the indirect blocks above the blocks being prefetched are not
629 * in cache, they will be asychronously read in.
e8b96c60 630 */
34dc7c2f 631void
fcff0f35
PD
632dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
633 uint64_t len, zio_priority_t pri)
34dc7c2f
BB
634{
635 dnode_t *dn;
636 uint64_t blkid;
e8b96c60 637 int nblks, err;
34dc7c2f 638
34dc7c2f 639 if (len == 0) { /* they're interested in the bonus buffer */
572e2857 640 dn = DMU_META_DNODE(os);
34dc7c2f
BB
641
642 if (object == 0 || object >= DN_MAX_OBJECT)
643 return;
644
645 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
646 blkid = dbuf_whichblock(dn, level,
647 object * sizeof (dnode_phys_t));
648 dbuf_prefetch(dn, level, blkid, pri, 0);
34dc7c2f
BB
649 rw_exit(&dn->dn_struct_rwlock);
650 return;
651 }
652
653 /*
654 * XXX - Note, if the dnode for the requested object is not
655 * already cached, we will do a *synchronous* read in the
656 * dnode_hold() call. The same is true for any indirects.
657 */
428870ff 658 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
659 if (err != 0)
660 return;
661
662 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
663 /*
664 * offset + len - 1 is the last byte we want to prefetch for, and offset
665 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
666 * last block we want to prefetch, and dbuf_whichblock(dn, level,
667 * offset) is the first. Then the number we need to prefetch is the
668 * last - first + 1.
669 */
670 if (level > 0 || dn->dn_datablkshift != 0) {
671 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
672 dbuf_whichblock(dn, level, offset) + 1;
34dc7c2f
BB
673 } else {
674 nblks = (offset < dn->dn_datablksz);
675 }
676
677 if (nblks != 0) {
e8b96c60
MA
678 int i;
679
fcff0f35 680 blkid = dbuf_whichblock(dn, level, offset);
34dc7c2f 681 for (i = 0; i < nblks; i++)
fcff0f35 682 dbuf_prefetch(dn, level, blkid + i, pri, 0);
34dc7c2f
BB
683 }
684
685 rw_exit(&dn->dn_struct_rwlock);
686
687 dnode_rele(dn, FTAG);
688}
689
45d1cae3
BB
690/*
691 * Get the next "chunk" of file data to free. We traverse the file from
692 * the end so that the file gets shorter over time (if we crashes in the
693 * middle, this will leave us in a better state). We find allocated file
694 * data by simply searching the allocated level 1 indirects.
b663a23d
MA
695 *
696 * On input, *start should be the first offset that does not need to be
697 * freed (e.g. "offset + length"). On return, *start will be the first
698 * offset that should be freed.
45d1cae3 699 */
b128c09f 700static int
b663a23d 701get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
b128c09f 702{
b663a23d
MA
703 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
704 /* bytes of data covered by a level-1 indirect block */
45d1cae3 705 uint64_t iblkrange =
b128c09f 706 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
b663a23d 707 uint64_t blks;
b128c09f 708
b663a23d 709 ASSERT3U(minimum, <=, *start);
b128c09f 710
b663a23d
MA
711 if (*start - minimum <= iblkrange * maxblks) {
712 *start = minimum;
b128c09f
BB
713 return (0);
714 }
45d1cae3 715 ASSERT(ISP2(iblkrange));
b128c09f 716
b663a23d 717 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
b128c09f
BB
718 int err;
719
b663a23d
MA
720 /*
721 * dnode_next_offset(BACKWARDS) will find an allocated L1
722 * indirect block at or before the input offset. We must
723 * decrement *start so that it is at the end of the region
724 * to search.
725 */
726 (*start)--;
b128c09f 727 err = dnode_next_offset(dn,
45d1cae3 728 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
b128c09f 729
b663a23d 730 /* if there are no indirect blocks before start, we are done */
45d1cae3 731 if (err == ESRCH) {
b663a23d
MA
732 *start = minimum;
733 break;
734 } else if (err != 0) {
b128c09f 735 return (err);
45d1cae3 736 }
b128c09f 737
b663a23d 738 /* set start to the beginning of this L1 indirect */
45d1cae3 739 *start = P2ALIGN(*start, iblkrange);
b128c09f 740 }
b663a23d
MA
741 if (*start < minimum)
742 *start = minimum;
b128c09f
BB
743 return (0);
744}
745
a08abc1b
GM
746/*
747 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
748 * otherwise return false.
749 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
750 */
751/*ARGSUSED*/
752static boolean_t
753dmu_objset_zfs_unmounting(objset_t *os)
754{
755#ifdef _KERNEL
756 if (dmu_objset_type(os) == DMU_OST_ZFS)
757 return (zfs_get_vfs_flag_unmounted(os));
758#endif
759 return (B_FALSE);
760}
761
b128c09f
BB
762static int
763dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
440a3eb9 764 uint64_t length, boolean_t raw)
b128c09f 765{
c97d3069 766 uint64_t object_size;
b663a23d 767 int err;
539d33c7
GM
768 uint64_t dirty_frees_threshold;
769 dsl_pool_t *dp = dmu_objset_pool(os);
770 int t;
b663a23d 771
c97d3069
BB
772 if (dn == NULL)
773 return (SET_ERROR(EINVAL));
774
775 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
b663a23d 776 if (offset >= object_size)
b128c09f 777 return (0);
b128c09f 778
539d33c7
GM
779 if (zfs_per_txg_dirty_frees_percent <= 100)
780 dirty_frees_threshold =
781 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
782 else
783 dirty_frees_threshold = zfs_dirty_data_max / 4;
784
b663a23d
MA
785 if (length == DMU_OBJECT_END || offset + length > object_size)
786 length = object_size - offset;
787
788 while (length != 0) {
539d33c7
GM
789 uint64_t chunk_end, chunk_begin, chunk_len;
790 uint64_t long_free_dirty_all_txgs = 0;
b663a23d
MA
791 dmu_tx_t *tx;
792
a08abc1b
GM
793 if (dmu_objset_zfs_unmounting(dn->dn_objset))
794 return (SET_ERROR(EINTR));
795
b663a23d
MA
796 chunk_end = chunk_begin = offset + length;
797
798 /* move chunk_begin backwards to the beginning of this chunk */
799 err = get_next_chunk(dn, &chunk_begin, offset);
b128c09f
BB
800 if (err)
801 return (err);
b663a23d
MA
802 ASSERT3U(chunk_begin, >=, offset);
803 ASSERT3U(chunk_begin, <=, chunk_end);
b128c09f 804
539d33c7
GM
805 chunk_len = chunk_end - chunk_begin;
806
807 mutex_enter(&dp->dp_lock);
808 for (t = 0; t < TXG_SIZE; t++) {
809 long_free_dirty_all_txgs +=
810 dp->dp_long_free_dirty_pertxg[t];
811 }
812 mutex_exit(&dp->dp_lock);
813
814 /*
815 * To avoid filling up a TXG with just frees wait for
816 * the next TXG to open before freeing more chunks if
817 * we have reached the threshold of frees
818 */
819 if (dirty_frees_threshold != 0 &&
820 long_free_dirty_all_txgs >= dirty_frees_threshold) {
821 txg_wait_open(dp, 0);
822 continue;
823 }
824
b128c09f 825 tx = dmu_tx_create(os);
539d33c7 826 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
19d55079
MA
827
828 /*
829 * Mark this transaction as typically resulting in a net
830 * reduction in space used.
831 */
832 dmu_tx_mark_netfree(tx);
b128c09f
BB
833 err = dmu_tx_assign(tx, TXG_WAIT);
834 if (err) {
835 dmu_tx_abort(tx);
836 return (err);
837 }
539d33c7
GM
838
839 mutex_enter(&dp->dp_lock);
840 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] +=
841 chunk_len;
842 mutex_exit(&dp->dp_lock);
843 DTRACE_PROBE3(free__long__range,
844 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len,
845 uint64_t, dmu_tx_get_txg(tx));
846 dnode_free_range(dn, chunk_begin, chunk_len, tx);
440a3eb9
TC
847
848 /* if this is a raw free, mark the dirty record as such */
849 if (raw) {
850 dbuf_dirty_record_t *dr = dn->dn_dbuf->db_last_dirty;
851
852 while (dr != NULL && dr->dr_txg > tx->tx_txg)
853 dr = dr->dr_next;
854 if (dr != NULL && dr->dr_txg == tx->tx_txg)
855 dr->dt.dl.dr_raw = B_TRUE;
856 }
857
b128c09f 858 dmu_tx_commit(tx);
b663a23d 859
539d33c7 860 length -= chunk_len;
b128c09f
BB
861 }
862 return (0);
863}
864
865int
866dmu_free_long_range(objset_t *os, uint64_t object,
867 uint64_t offset, uint64_t length)
868{
869 dnode_t *dn;
870 int err;
871
428870ff 872 err = dnode_hold(os, object, FTAG, &dn);
b128c09f
BB
873 if (err != 0)
874 return (err);
440a3eb9 875 err = dmu_free_long_range_impl(os, dn, offset, length, B_FALSE);
92bc214c
MA
876
877 /*
878 * It is important to zero out the maxblkid when freeing the entire
879 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
880 * will take the fast path, and (b) dnode_reallocate() can verify
881 * that the entire file has been freed.
882 */
b0bc7a84 883 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
92bc214c
MA
884 dn->dn_maxblkid = 0;
885
b128c09f
BB
886 dnode_rele(dn, FTAG);
887 return (err);
888}
889
440a3eb9
TC
890/*
891 * This function is equivalent to dmu_free_long_range(), but also
892 * marks the new dirty record as a raw write.
893 */
b128c09f 894int
440a3eb9
TC
895dmu_free_long_range_raw(objset_t *os, uint64_t object,
896 uint64_t offset, uint64_t length)
897{
898 dnode_t *dn;
899 int err;
900
901 err = dnode_hold(os, object, FTAG, &dn);
902 if (err != 0)
903 return (err);
904 err = dmu_free_long_range_impl(os, dn, offset, length, B_TRUE);
905
906 /*
907 * It is important to zero out the maxblkid when freeing the entire
908 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
909 * will take the fast path, and (b) dnode_reallocate() can verify
910 * that the entire file has been freed.
911 */
912 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
913 dn->dn_maxblkid = 0;
914
915 dnode_rele(dn, FTAG);
916 return (err);
917}
918
919static int
920dmu_free_long_object_impl(objset_t *os, uint64_t object, boolean_t raw)
b128c09f 921{
b128c09f
BB
922 dmu_tx_t *tx;
923 int err;
924
b663a23d 925 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
b128c09f
BB
926 if (err != 0)
927 return (err);
b663a23d
MA
928
929 tx = dmu_tx_create(os);
930 dmu_tx_hold_bonus(tx, object);
931 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
19d55079 932 dmu_tx_mark_netfree(tx);
b663a23d
MA
933 err = dmu_tx_assign(tx, TXG_WAIT);
934 if (err == 0) {
35df0bb5
TC
935 if (raw)
936 err = dmu_object_dirty_raw(os, object, tx);
937 if (err == 0)
938 err = dmu_object_free(os, object, tx);
440a3eb9 939
b663a23d 940 dmu_tx_commit(tx);
b128c09f 941 } else {
b663a23d 942 dmu_tx_abort(tx);
b128c09f 943 }
b663a23d 944
b128c09f
BB
945 return (err);
946}
947
440a3eb9
TC
948int
949dmu_free_long_object(objset_t *os, uint64_t object)
950{
951 return (dmu_free_long_object_impl(os, object, B_FALSE));
952}
953
954int
955dmu_free_long_object_raw(objset_t *os, uint64_t object)
956{
957 return (dmu_free_long_object_impl(os, object, B_TRUE));
958}
959
960
34dc7c2f
BB
961int
962dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
963 uint64_t size, dmu_tx_t *tx)
964{
965 dnode_t *dn;
428870ff 966 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
967 if (err)
968 return (err);
969 ASSERT(offset < UINT64_MAX);
970 ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
971 dnode_free_range(dn, offset, size, tx);
972 dnode_rele(dn, FTAG);
973 return (0);
974}
975
0eef1bde 976static int
977dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
9babb374 978 void *buf, uint32_t flags)
34dc7c2f 979{
34dc7c2f 980 dmu_buf_t **dbp;
0eef1bde 981 int numbufs, err = 0;
34dc7c2f
BB
982
983 /*
984 * Deal with odd block sizes, where there can't be data past the first
985 * block. If we ever do the tail block optimization, we will need to
986 * handle that here as well.
987 */
45d1cae3 988 if (dn->dn_maxblkid == 0) {
c9520ecc 989 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
34dc7c2f
BB
990 MIN(size, dn->dn_datablksz - offset);
991 bzero((char *)buf + newsz, size - newsz);
992 size = newsz;
993 }
994
995 while (size > 0) {
996 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
45d1cae3 997 int i;
34dc7c2f
BB
998
999 /*
1000 * NB: we could do this block-at-a-time, but it's nice
1001 * to be reading in parallel.
1002 */
1003 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
9babb374 1004 TRUE, FTAG, &numbufs, &dbp, flags);
34dc7c2f
BB
1005 if (err)
1006 break;
1007
1008 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1009 uint64_t tocpy;
1010 int64_t bufoff;
34dc7c2f
BB
1011 dmu_buf_t *db = dbp[i];
1012
1013 ASSERT(size > 0);
1014
1015 bufoff = offset - db->db_offset;
c9520ecc 1016 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f 1017
c9520ecc 1018 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
34dc7c2f
BB
1019
1020 offset += tocpy;
1021 size -= tocpy;
1022 buf = (char *)buf + tocpy;
1023 }
1024 dmu_buf_rele_array(dbp, numbufs, FTAG);
1025 }
34dc7c2f
BB
1026 return (err);
1027}
1028
0eef1bde 1029int
1030dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1031 void *buf, uint32_t flags)
34dc7c2f 1032{
0eef1bde 1033 dnode_t *dn;
1034 int err;
34dc7c2f 1035
0eef1bde 1036 err = dnode_hold(os, object, FTAG, &dn);
1037 if (err != 0)
1038 return (err);
34dc7c2f 1039
0eef1bde 1040 err = dmu_read_impl(dn, offset, size, buf, flags);
1041 dnode_rele(dn, FTAG);
1042 return (err);
1043}
1044
1045int
1046dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1047 uint32_t flags)
1048{
1049 return (dmu_read_impl(dn, offset, size, buf, flags));
1050}
1051
1052static void
1053dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1054 const void *buf, dmu_tx_t *tx)
1055{
1056 int i;
34dc7c2f
BB
1057
1058 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1059 uint64_t tocpy;
1060 int64_t bufoff;
34dc7c2f
BB
1061 dmu_buf_t *db = dbp[i];
1062
1063 ASSERT(size > 0);
1064
1065 bufoff = offset - db->db_offset;
c9520ecc 1066 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f
BB
1067
1068 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1069
1070 if (tocpy == db->db_size)
1071 dmu_buf_will_fill(db, tx);
1072 else
1073 dmu_buf_will_dirty(db, tx);
1074
60101509 1075 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
34dc7c2f
BB
1076
1077 if (tocpy == db->db_size)
1078 dmu_buf_fill_done(db, tx);
1079
1080 offset += tocpy;
1081 size -= tocpy;
1082 buf = (char *)buf + tocpy;
1083 }
0eef1bde 1084}
1085
1086void
1087dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1088 const void *buf, dmu_tx_t *tx)
1089{
1090 dmu_buf_t **dbp;
1091 int numbufs;
1092
1093 if (size == 0)
1094 return;
1095
1096 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1097 FALSE, FTAG, &numbufs, &dbp));
1098 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1099 dmu_buf_rele_array(dbp, numbufs, FTAG);
1100}
1101
1102void
1103dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1104 const void *buf, dmu_tx_t *tx)
1105{
1106 dmu_buf_t **dbp;
1107 int numbufs;
1108
1109 if (size == 0)
1110 return;
1111
1112 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1113 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1114 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
34dc7c2f
BB
1115 dmu_buf_rele_array(dbp, numbufs, FTAG);
1116}
1117
b128c09f
BB
1118void
1119dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1120 dmu_tx_t *tx)
1121{
1122 dmu_buf_t **dbp;
1123 int numbufs, i;
1124
1125 if (size == 0)
1126 return;
1127
1128 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1129 FALSE, FTAG, &numbufs, &dbp));
1130
1131 for (i = 0; i < numbufs; i++) {
1132 dmu_buf_t *db = dbp[i];
1133
1134 dmu_buf_will_not_fill(db, tx);
1135 }
1136 dmu_buf_rele_array(dbp, numbufs, FTAG);
1137}
1138
9b67f605
MA
1139void
1140dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1141 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1142 int compressed_size, int byteorder, dmu_tx_t *tx)
1143{
1144 dmu_buf_t *db;
1145
1146 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1147 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1148 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1149 FTAG, &db));
1150
1151 dmu_buf_write_embedded(db,
1152 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1153 uncompressed_size, compressed_size, byteorder, tx);
1154
1155 dmu_buf_rele(db, FTAG);
1156}
1157
428870ff
BB
1158/*
1159 * DMU support for xuio
1160 */
1161kstat_t *xuio_ksp = NULL;
1162
59e6e7ca
BB
1163typedef struct xuio_stats {
1164 /* loaned yet not returned arc_buf */
1165 kstat_named_t xuiostat_onloan_rbuf;
1166 kstat_named_t xuiostat_onloan_wbuf;
1167 /* whether a copy is made when loaning out a read buffer */
1168 kstat_named_t xuiostat_rbuf_copied;
1169 kstat_named_t xuiostat_rbuf_nocopy;
1170 /* whether a copy is made when assigning a write buffer */
1171 kstat_named_t xuiostat_wbuf_copied;
1172 kstat_named_t xuiostat_wbuf_nocopy;
1173} xuio_stats_t;
1174
1175static xuio_stats_t xuio_stats = {
1176 { "onloan_read_buf", KSTAT_DATA_UINT64 },
1177 { "onloan_write_buf", KSTAT_DATA_UINT64 },
1178 { "read_buf_copied", KSTAT_DATA_UINT64 },
1179 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
1180 { "write_buf_copied", KSTAT_DATA_UINT64 },
1181 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
1182};
1183
d1d7e268
MK
1184#define XUIOSTAT_INCR(stat, val) \
1185 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
1186#define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
59e6e7ca 1187
5a6765cf 1188#ifdef HAVE_UIO_ZEROCOPY
428870ff
BB
1189int
1190dmu_xuio_init(xuio_t *xuio, int nblk)
1191{
1192 dmu_xuio_t *priv;
1193 uio_t *uio = &xuio->xu_uio;
1194
1195 uio->uio_iovcnt = nblk;
79c76d5b 1196 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
428870ff 1197
79c76d5b 1198 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
428870ff 1199 priv->cnt = nblk;
79c76d5b 1200 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
5475aada 1201 priv->iovp = (iovec_t *)uio->uio_iov;
428870ff
BB
1202 XUIO_XUZC_PRIV(xuio) = priv;
1203
1204 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1205 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1206 else
1207 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1208
1209 return (0);
1210}
1211
1212void
1213dmu_xuio_fini(xuio_t *xuio)
1214{
1215 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1216 int nblk = priv->cnt;
1217
1218 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1219 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1220 kmem_free(priv, sizeof (dmu_xuio_t));
1221
1222 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1223 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1224 else
1225 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1226}
1227
1228/*
1229 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1230 * and increase priv->next by 1.
1231 */
1232int
1233dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1234{
1235 struct iovec *iov;
1236 uio_t *uio = &xuio->xu_uio;
1237 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1238 int i = priv->next++;
1239
1240 ASSERT(i < priv->cnt);
2aa34383 1241 ASSERT(off + n <= arc_buf_lsize(abuf));
5475aada 1242 iov = (iovec_t *)uio->uio_iov + i;
428870ff
BB
1243 iov->iov_base = (char *)abuf->b_data + off;
1244 iov->iov_len = n;
1245 priv->bufs[i] = abuf;
1246 return (0);
1247}
1248
1249int
1250dmu_xuio_cnt(xuio_t *xuio)
1251{
1252 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1253 return (priv->cnt);
1254}
1255
1256arc_buf_t *
1257dmu_xuio_arcbuf(xuio_t *xuio, int i)
1258{
1259 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1260
1261 ASSERT(i < priv->cnt);
1262 return (priv->bufs[i]);
1263}
1264
1265void
1266dmu_xuio_clear(xuio_t *xuio, int i)
1267{
1268 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1269
1270 ASSERT(i < priv->cnt);
1271 priv->bufs[i] = NULL;
1272}
5a6765cf 1273#endif /* HAVE_UIO_ZEROCOPY */
428870ff
BB
1274
1275static void
1276xuio_stat_init(void)
1277{
1278 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1279 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1280 KSTAT_FLAG_VIRTUAL);
1281 if (xuio_ksp != NULL) {
1282 xuio_ksp->ks_data = &xuio_stats;
1283 kstat_install(xuio_ksp);
1284 }
1285}
1286
1287static void
1288xuio_stat_fini(void)
1289{
1290 if (xuio_ksp != NULL) {
1291 kstat_delete(xuio_ksp);
1292 xuio_ksp = NULL;
1293 }
1294}
1295
1296void
5043684a 1297xuio_stat_wbuf_copied(void)
428870ff
BB
1298{
1299 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1300}
1301
1302void
5043684a 1303xuio_stat_wbuf_nocopy(void)
428870ff
BB
1304{
1305 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1306}
1307
34dc7c2f 1308#ifdef _KERNEL
5228cf01 1309int
804e0504 1310dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
872e8d26
BB
1311{
1312 dmu_buf_t **dbp;
1313 int numbufs, i, err;
5a6765cf 1314#ifdef HAVE_UIO_ZEROCOPY
872e8d26 1315 xuio_t *xuio = NULL;
5a6765cf 1316#endif
872e8d26
BB
1317
1318 /*
1319 * NB: we could do this block-at-a-time, but it's nice
1320 * to be reading in parallel.
1321 */
804e0504
MA
1322 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1323 TRUE, FTAG, &numbufs, &dbp, 0);
872e8d26
BB
1324 if (err)
1325 return (err);
1326
1327 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1328 uint64_t tocpy;
1329 int64_t bufoff;
872e8d26
BB
1330 dmu_buf_t *db = dbp[i];
1331
1332 ASSERT(size > 0);
1333
1334 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1335 tocpy = MIN(db->db_size - bufoff, size);
872e8d26 1336
5a6765cf 1337#ifdef HAVE_UIO_ZEROCOPY
872e8d26
BB
1338 if (xuio) {
1339 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1340 arc_buf_t *dbuf_abuf = dbi->db_buf;
1341 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1342 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1343 if (!err) {
1344 uio->uio_resid -= tocpy;
1345 uio->uio_loffset += tocpy;
1346 }
1347
1348 if (abuf == dbuf_abuf)
1349 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1350 else
1351 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
5a6765cf 1352 } else
1353#endif
872e8d26
BB
1354 err = uiomove((char *)db->db_data + bufoff, tocpy,
1355 UIO_READ, uio);
872e8d26
BB
1356 if (err)
1357 break;
1358
1359 size -= tocpy;
1360 }
1361 dmu_buf_rele_array(dbp, numbufs, FTAG);
1362
1363 return (err);
1364}
1365
804e0504
MA
1366/*
1367 * Read 'size' bytes into the uio buffer.
1368 * From object zdb->db_object.
1369 * Starting at offset uio->uio_loffset.
1370 *
1371 * If the caller already has a dbuf in the target object
1372 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1373 * because we don't have to find the dnode_t for the object.
1374 */
1375int
1376dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1377{
1378 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1379 dnode_t *dn;
1380 int err;
1381
1382 if (size == 0)
1383 return (0);
1384
1385 DB_DNODE_ENTER(db);
1386 dn = DB_DNODE(db);
1387 err = dmu_read_uio_dnode(dn, uio, size);
1388 DB_DNODE_EXIT(db);
1389
1390 return (err);
1391}
1392
1393/*
1394 * Read 'size' bytes into the uio buffer.
1395 * From the specified object
1396 * Starting at offset uio->uio_loffset.
1397 */
1398int
1399dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1400{
1401 dnode_t *dn;
1402 int err;
1403
1404 if (size == 0)
1405 return (0);
1406
1407 err = dnode_hold(os, object, FTAG, &dn);
1408 if (err)
1409 return (err);
1410
1411 err = dmu_read_uio_dnode(dn, uio, size);
1412
1413 dnode_rele(dn, FTAG);
1414
1415 return (err);
1416}
1417
5228cf01 1418int
872e8d26
BB
1419dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1420{
1421 dmu_buf_t **dbp;
1422 int numbufs;
1423 int err = 0;
1424 int i;
1425
1426 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1427 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1428 if (err)
1429 return (err);
1430
1431 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1432 uint64_t tocpy;
1433 int64_t bufoff;
872e8d26
BB
1434 dmu_buf_t *db = dbp[i];
1435
1436 ASSERT(size > 0);
1437
1438 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1439 tocpy = MIN(db->db_size - bufoff, size);
872e8d26
BB
1440
1441 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1442
1443 if (tocpy == db->db_size)
1444 dmu_buf_will_fill(db, tx);
1445 else
1446 dmu_buf_will_dirty(db, tx);
1447
1448 /*
1449 * XXX uiomove could block forever (eg.nfs-backed
1450 * pages). There needs to be a uiolockdown() function
1451 * to lock the pages in memory, so that uiomove won't
1452 * block.
1453 */
1454 err = uiomove((char *)db->db_data + bufoff, tocpy,
1455 UIO_WRITE, uio);
1456
1457 if (tocpy == db->db_size)
1458 dmu_buf_fill_done(db, tx);
1459
1460 if (err)
1461 break;
1462
1463 size -= tocpy;
1464 }
1465
1466 dmu_buf_rele_array(dbp, numbufs, FTAG);
1467 return (err);
1468}
1469
804e0504
MA
1470/*
1471 * Write 'size' bytes from the uio buffer.
1472 * To object zdb->db_object.
1473 * Starting at offset uio->uio_loffset.
1474 *
1475 * If the caller already has a dbuf in the target object
1476 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1477 * because we don't have to find the dnode_t for the object.
1478 */
428870ff
BB
1479int
1480dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1481 dmu_tx_t *tx)
1482{
572e2857
BB
1483 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1484 dnode_t *dn;
1485 int err;
1486
428870ff
BB
1487 if (size == 0)
1488 return (0);
1489
572e2857
BB
1490 DB_DNODE_ENTER(db);
1491 dn = DB_DNODE(db);
1492 err = dmu_write_uio_dnode(dn, uio, size, tx);
1493 DB_DNODE_EXIT(db);
1494
1495 return (err);
428870ff
BB
1496}
1497
804e0504
MA
1498/*
1499 * Write 'size' bytes from the uio buffer.
1500 * To the specified object.
1501 * Starting at offset uio->uio_loffset.
1502 */
428870ff
BB
1503int
1504dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1505 dmu_tx_t *tx)
1506{
1507 dnode_t *dn;
1508 int err;
1509
1510 if (size == 0)
1511 return (0);
1512
1513 err = dnode_hold(os, object, FTAG, &dn);
1514 if (err)
1515 return (err);
1516
1517 err = dmu_write_uio_dnode(dn, uio, size, tx);
1518
1519 dnode_rele(dn, FTAG);
1520
1521 return (err);
1522}
872e8d26 1523#endif /* _KERNEL */
34dc7c2f 1524
9babb374
BB
1525/*
1526 * Allocate a loaned anonymous arc buffer.
1527 */
1528arc_buf_t *
1529dmu_request_arcbuf(dmu_buf_t *handle, int size)
1530{
572e2857 1531 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
9babb374 1532
2aa34383 1533 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
9babb374
BB
1534}
1535
1536/*
1537 * Free a loaned arc buffer.
1538 */
1539void
1540dmu_return_arcbuf(arc_buf_t *buf)
1541{
1542 arc_return_buf(buf, FTAG);
d3c2ae1c 1543 arc_buf_destroy(buf, FTAG);
9babb374
BB
1544}
1545
b5256303
TC
1546void
1547dmu_convert_to_raw(dmu_buf_t *handle, boolean_t byteorder, const uint8_t *salt,
1548 const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
1549{
1550 dmu_object_type_t type;
1551 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1552 uint64_t dsobj = dmu_objset_id(db->db_objset);
1553
1554 ASSERT3P(db->db_buf, !=, NULL);
1555 ASSERT3U(dsobj, !=, 0);
1556
1557 dmu_buf_will_change_crypt_params(handle, tx);
1558
1559 DB_DNODE_ENTER(db);
1560 type = DB_DNODE(db)->dn_type;
1561 DB_DNODE_EXIT(db);
1562
1563 /*
1564 * This technically violates the assumption the dmu code makes
1565 * that dnode blocks are only released in syncing context.
1566 */
1567 (void) arc_release(db->db_buf, db);
1568 arc_convert_to_raw(db->db_buf, dsobj, byteorder, type, salt, iv, mac);
1569}
1570
1571void
1572dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
1573 dmu_buf_t *handle, dmu_tx_t *tx)
1574{
1575 dmu_buf_t *dst_handle;
1576 dmu_buf_impl_t *dstdb;
1577 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle;
1578 arc_buf_t *abuf;
1579 uint64_t datalen;
1580 boolean_t byteorder;
1581 uint8_t salt[ZIO_DATA_SALT_LEN];
1582 uint8_t iv[ZIO_DATA_IV_LEN];
1583 uint8_t mac[ZIO_DATA_MAC_LEN];
1584
1585 ASSERT3P(srcdb->db_buf, !=, NULL);
1586
1587 /* hold the db that we want to write to */
1588 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle,
1589 DMU_READ_NO_DECRYPT));
1590 dstdb = (dmu_buf_impl_t *)dst_handle;
1591 datalen = arc_buf_size(srcdb->db_buf);
1592
1593 /* allocated an arc buffer that matches the type of srcdb->db_buf */
1594 if (arc_is_encrypted(srcdb->db_buf)) {
1595 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac);
1596 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os),
1597 byteorder, salt, iv, mac, DB_DNODE(dstdb)->dn_type,
1598 datalen, arc_buf_lsize(srcdb->db_buf),
1599 arc_get_compression(srcdb->db_buf));
1600 } else {
1601 /* we won't get a compressed db back from dmu_buf_hold() */
1602 ASSERT3U(arc_get_compression(srcdb->db_buf),
1603 ==, ZIO_COMPRESS_OFF);
1604 abuf = arc_loan_buf(os->os_spa,
1605 DMU_OT_IS_METADATA(DB_DNODE(dstdb)->dn_type), datalen);
1606 }
1607
1608 ASSERT3U(datalen, ==, arc_buf_size(abuf));
1609
1610 /* copy the data to the new buffer and assign it to the dstdb */
1611 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen);
1612 dbuf_assign_arcbuf(dstdb, abuf, tx);
1613 dmu_buf_rele(dst_handle, FTAG);
1614}
1615
9babb374
BB
1616/*
1617 * When possible directly assign passed loaned arc buffer to a dbuf.
1618 * If this is not possible copy the contents of passed arc buf via
1619 * dmu_write().
1620 */
1621void
440a3eb9 1622dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
9babb374
BB
1623 dmu_tx_t *tx)
1624{
9babb374 1625 dmu_buf_impl_t *db;
440a3eb9
TC
1626 objset_t *os = dn->dn_objset;
1627 uint64_t object = dn->dn_object;
2aa34383 1628 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
9babb374
BB
1629 uint64_t blkid;
1630
1631 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35 1632 blkid = dbuf_whichblock(dn, 0, offset);
9babb374
BB
1633 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1634 rw_exit(&dn->dn_struct_rwlock);
1635
88904bb3
MA
1636 /*
1637 * We can only assign if the offset is aligned, the arc buf is the
2aa34383 1638 * same size as the dbuf, and the dbuf is not metadata.
88904bb3 1639 */
2aa34383 1640 if (offset == db->db.db_offset && blksz == db->db.db_size) {
9babb374
BB
1641 dbuf_assign_arcbuf(db, buf, tx);
1642 dbuf_rele(db, FTAG);
1643 } else {
2aa34383
DK
1644 /* compressed bufs must always be assignable to their dbuf */
1645 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
524b4217 1646 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
2aa34383 1647
9babb374 1648 dbuf_rele(db, FTAG);
572e2857 1649 dmu_write(os, object, offset, blksz, buf->b_data, tx);
9babb374 1650 dmu_return_arcbuf(buf);
428870ff 1651 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
9babb374
BB
1652 }
1653}
1654
440a3eb9
TC
1655void
1656dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1657 dmu_tx_t *tx)
1658{
1659 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1660
1661 DB_DNODE_ENTER(dbuf);
1662 dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1663 DB_DNODE_EXIT(dbuf);
1664}
1665
34dc7c2f 1666typedef struct {
428870ff
BB
1667 dbuf_dirty_record_t *dsa_dr;
1668 dmu_sync_cb_t *dsa_done;
1669 zgd_t *dsa_zgd;
1670 dmu_tx_t *dsa_tx;
34dc7c2f
BB
1671} dmu_sync_arg_t;
1672
b128c09f
BB
1673/* ARGSUSED */
1674static void
1675dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1676{
428870ff
BB
1677 dmu_sync_arg_t *dsa = varg;
1678 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
b128c09f
BB
1679 blkptr_t *bp = zio->io_bp;
1680
428870ff
BB
1681 if (zio->io_error == 0) {
1682 if (BP_IS_HOLE(bp)) {
1683 /*
1684 * A block of zeros may compress to a hole, but the
1685 * block size still needs to be known for replay.
1686 */
1687 BP_SET_LSIZE(bp, db->db_size);
9b67f605 1688 } else if (!BP_IS_EMBEDDED(bp)) {
428870ff 1689 ASSERT(BP_GET_LEVEL(bp) == 0);
b5256303 1690 BP_SET_FILL(bp, 1);
428870ff 1691 }
b128c09f
BB
1692 }
1693}
1694
428870ff
BB
1695static void
1696dmu_sync_late_arrival_ready(zio_t *zio)
1697{
1698 dmu_sync_ready(zio, NULL, zio->io_private);
1699}
1700
34dc7c2f
BB
1701/* ARGSUSED */
1702static void
1703dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1704{
428870ff
BB
1705 dmu_sync_arg_t *dsa = varg;
1706 dbuf_dirty_record_t *dr = dsa->dsa_dr;
34dc7c2f 1707 dmu_buf_impl_t *db = dr->dr_dbuf;
34dc7c2f 1708
34dc7c2f
BB
1709 mutex_enter(&db->db_mtx);
1710 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
428870ff 1711 if (zio->io_error == 0) {
03c6040b
GW
1712 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1713 if (dr->dt.dl.dr_nopwrite) {
02dc43bc
MA
1714 blkptr_t *bp = zio->io_bp;
1715 blkptr_t *bp_orig = &zio->io_bp_orig;
1716 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
03c6040b
GW
1717
1718 ASSERT(BP_EQUAL(bp, bp_orig));
02dc43bc 1719 VERIFY(BP_EQUAL(bp, db->db_blkptr));
03c6040b 1720 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
02dc43bc 1721 VERIFY(zio_checksum_table[chksum].ci_flags &
3c67d83a 1722 ZCHECKSUM_FLAG_NOPWRITE);
03c6040b 1723 }
428870ff
BB
1724 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1725 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1726 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
a4069eef
PS
1727
1728 /*
1729 * Old style holes are filled with all zeros, whereas
1730 * new-style holes maintain their lsize, type, level,
1731 * and birth time (see zio_write_compress). While we
1732 * need to reset the BP_SET_LSIZE() call that happened
1733 * in dmu_sync_ready for old style holes, we do *not*
1734 * want to wipe out the information contained in new
1735 * style holes. Thus, only zero out the block pointer if
1736 * it's an old style hole.
1737 */
1738 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1739 dr->dt.dl.dr_overridden_by.blk_birth == 0)
428870ff
BB
1740 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1741 } else {
1742 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1743 }
34dc7c2f
BB
1744 cv_broadcast(&db->db_changed);
1745 mutex_exit(&db->db_mtx);
1746
428870ff 1747 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
34dc7c2f 1748
428870ff
BB
1749 kmem_free(dsa, sizeof (*dsa));
1750}
1751
1752static void
1753dmu_sync_late_arrival_done(zio_t *zio)
1754{
1755 blkptr_t *bp = zio->io_bp;
1756 dmu_sync_arg_t *dsa = zio->io_private;
03c6040b 1757 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
428870ff
BB
1758
1759 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
02dc43bc
MA
1760 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1761 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1762 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1763 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1764 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
428870ff
BB
1765 }
1766
1767 dmu_tx_commit(dsa->dsa_tx);
1768
1769 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1770
a6255b7f 1771 abd_put(zio->io_abd);
428870ff
BB
1772 kmem_free(dsa, sizeof (*dsa));
1773}
1774
1775static int
1776dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
5dbd68a3 1777 zio_prop_t *zp, zbookmark_phys_t *zb)
428870ff
BB
1778{
1779 dmu_sync_arg_t *dsa;
1780 dmu_tx_t *tx;
1781
1782 tx = dmu_tx_create(os);
1783 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1784 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1785 dmu_tx_abort(tx);
2e528b49
MA
1786 /* Make zl_get_data do txg_waited_synced() */
1787 return (SET_ERROR(EIO));
428870ff
BB
1788 }
1789
79c76d5b 1790 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1791 dsa->dsa_dr = NULL;
1792 dsa->dsa_done = done;
1793 dsa->dsa_zgd = zgd;
1794 dsa->dsa_tx = tx;
1795
02dc43bc
MA
1796 /*
1797 * Since we are currently syncing this txg, it's nontrivial to
1798 * determine what BP to nopwrite against, so we disable nopwrite.
1799 *
1800 * When syncing, the db_blkptr is initially the BP of the previous
1801 * txg. We can not nopwrite against it because it will be changed
1802 * (this is similar to the non-late-arrival case where the dbuf is
1803 * dirty in a future txg).
1804 *
1805 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1806 * We can not nopwrite against it because although the BP will not
1807 * (typically) be changed, the data has not yet been persisted to this
1808 * location.
1809 *
1810 * Finally, when dbuf_write_done() is called, it is theoretically
1811 * possible to always nopwrite, because the data that was written in
1812 * this txg is the same data that we are trying to write. However we
1813 * would need to check that this dbuf is not dirty in any future
1814 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1815 * don't nopwrite in this case.
1816 */
1817 zp->zp_nopwrite = B_FALSE;
1818
a6255b7f
DQ
1819 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1820 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1821 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1822 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1823 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
428870ff
BB
1824
1825 return (0);
34dc7c2f
BB
1826}
1827
1828/*
1829 * Intent log support: sync the block associated with db to disk.
1830 * N.B. and XXX: the caller is responsible for making sure that the
1831 * data isn't changing while dmu_sync() is writing it.
1832 *
1833 * Return values:
1834 *
03c6040b 1835 * EEXIST: this txg has already been synced, so there's nothing to do.
34dc7c2f
BB
1836 * The caller should not log the write.
1837 *
1838 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1839 * The caller should not log the write.
1840 *
1841 * EALREADY: this block is already in the process of being synced.
1842 * The caller should track its progress (somehow).
1843 *
428870ff
BB
1844 * EIO: could not do the I/O.
1845 * The caller should do a txg_wait_synced().
34dc7c2f 1846 *
428870ff
BB
1847 * 0: the I/O has been initiated.
1848 * The caller should log this blkptr in the done callback.
1849 * It is possible that the I/O will fail, in which case
1850 * the error will be reported to the done callback and
1851 * propagated to pio from zio_done().
34dc7c2f
BB
1852 */
1853int
428870ff 1854dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
34dc7c2f 1855{
428870ff
BB
1856 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1857 objset_t *os = db->db_objset;
1858 dsl_dataset_t *ds = os->os_dsl_dataset;
34dc7c2f 1859 dbuf_dirty_record_t *dr;
428870ff 1860 dmu_sync_arg_t *dsa;
5dbd68a3 1861 zbookmark_phys_t zb;
428870ff 1862 zio_prop_t zp;
572e2857 1863 dnode_t *dn;
34dc7c2f 1864
428870ff 1865 ASSERT(pio != NULL);
34dc7c2f
BB
1866 ASSERT(txg != 0);
1867
f763c3d1 1868 /* dbuf is within the locked range */
1869 ASSERT3U(db->db.db_offset, >=, zgd->zgd_rl->r_off);
1870 ASSERT3U(db->db.db_offset + db->db.db_size, <=,
1871 zgd->zgd_rl->r_off + zgd->zgd_rl->r_len);
1872
428870ff
BB
1873 SET_BOOKMARK(&zb, ds->ds_object,
1874 db->db.db_object, db->db_level, db->db_blkid);
1875
572e2857
BB
1876 DB_DNODE_ENTER(db);
1877 dn = DB_DNODE(db);
82644107 1878 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
572e2857 1879 DB_DNODE_EXIT(db);
34dc7c2f
BB
1880
1881 /*
428870ff 1882 * If we're frozen (running ziltest), we always need to generate a bp.
34dc7c2f 1883 */
428870ff
BB
1884 if (txg > spa_freeze_txg(os->os_spa))
1885 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1886
1887 /*
428870ff
BB
1888 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1889 * and us. If we determine that this txg is not yet syncing,
1890 * but it begins to sync a moment later, that's OK because the
1891 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
34dc7c2f 1892 */
428870ff
BB
1893 mutex_enter(&db->db_mtx);
1894
1895 if (txg <= spa_last_synced_txg(os->os_spa)) {
34dc7c2f 1896 /*
428870ff 1897 * This txg has already synced. There's nothing to do.
34dc7c2f 1898 */
428870ff 1899 mutex_exit(&db->db_mtx);
2e528b49 1900 return (SET_ERROR(EEXIST));
34dc7c2f
BB
1901 }
1902
428870ff
BB
1903 if (txg <= spa_syncing_txg(os->os_spa)) {
1904 /*
1905 * This txg is currently syncing, so we can't mess with
1906 * the dirty record anymore; just write a new log block.
1907 */
1908 mutex_exit(&db->db_mtx);
1909 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1910 }
1911
1912 dr = db->db_last_dirty;
428870ff 1913 while (dr && dr->dr_txg != txg)
34dc7c2f 1914 dr = dr->dr_next;
428870ff
BB
1915
1916 if (dr == NULL) {
34dc7c2f 1917 /*
428870ff 1918 * There's no dr for this dbuf, so it must have been freed.
34dc7c2f
BB
1919 * There's no need to log writes to freed blocks, so we're done.
1920 */
1921 mutex_exit(&db->db_mtx);
2e528b49 1922 return (SET_ERROR(ENOENT));
34dc7c2f
BB
1923 }
1924
03c6040b
GW
1925 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1926
02dc43bc
MA
1927 if (db->db_blkptr != NULL) {
1928 /*
1929 * We need to fill in zgd_bp with the current blkptr so that
1930 * the nopwrite code can check if we're writing the same
1931 * data that's already on disk. We can only nopwrite if we
1932 * are sure that after making the copy, db_blkptr will not
1933 * change until our i/o completes. We ensure this by
1934 * holding the db_mtx, and only allowing nopwrite if the
1935 * block is not already dirty (see below). This is verified
1936 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1937 * not changed.
1938 */
1939 *zgd->zgd_bp = *db->db_blkptr;
1940 }
1941
03c6040b 1942 /*
f3c517d8
MA
1943 * Assume the on-disk data is X, the current syncing data (in
1944 * txg - 1) is Y, and the current in-memory data is Z (currently
1945 * in dmu_sync).
1946 *
1947 * We usually want to perform a nopwrite if X and Z are the
1948 * same. However, if Y is different (i.e. the BP is going to
1949 * change before this write takes effect), then a nopwrite will
1950 * be incorrect - we would override with X, which could have
1951 * been freed when Y was written.
1952 *
1953 * (Note that this is not a concern when we are nop-writing from
1954 * syncing context, because X and Y must be identical, because
1955 * all previous txgs have been synced.)
1956 *
1957 * Therefore, we disable nopwrite if the current BP could change
1958 * before this TXG. There are two ways it could change: by
1959 * being dirty (dr_next is non-NULL), or by being freed
1960 * (dnode_block_freed()). This behavior is verified by
1961 * zio_done(), which VERIFYs that the override BP is identical
1962 * to the on-disk BP.
03c6040b 1963 */
f3c517d8
MA
1964 DB_DNODE_ENTER(db);
1965 dn = DB_DNODE(db);
1966 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
03c6040b 1967 zp.zp_nopwrite = B_FALSE;
f3c517d8 1968 DB_DNODE_EXIT(db);
03c6040b 1969
34dc7c2f 1970 ASSERT(dr->dr_txg == txg);
428870ff
BB
1971 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1972 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
34dc7c2f 1973 /*
428870ff
BB
1974 * We have already issued a sync write for this buffer,
1975 * or this buffer has already been synced. It could not
34dc7c2f
BB
1976 * have been dirtied since, or we would have cleared the state.
1977 */
34dc7c2f 1978 mutex_exit(&db->db_mtx);
2e528b49 1979 return (SET_ERROR(EALREADY));
34dc7c2f
BB
1980 }
1981
428870ff 1982 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
34dc7c2f 1983 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
34dc7c2f 1984 mutex_exit(&db->db_mtx);
34dc7c2f 1985
79c76d5b 1986 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1987 dsa->dsa_dr = dr;
1988 dsa->dsa_done = done;
1989 dsa->dsa_zgd = zgd;
1990 dsa->dsa_tx = NULL;
b128c09f 1991
428870ff 1992 zio_nowait(arc_write(pio, os->os_spa, txg,
02dc43bc 1993 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
d3c2ae1c 1994 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
bc77ba73 1995 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
b128c09f 1996
428870ff 1997 return (0);
34dc7c2f
BB
1998}
1999
b5256303
TC
2000int
2001dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2002{
2003 dnode_t *dn;
2004 int err;
2005
2006 err = dnode_hold(os, object, FTAG, &dn);
2007 if (err)
2008 return (err);
2009 err = dnode_set_nlevels(dn, nlevels, tx);
2010 dnode_rele(dn, FTAG);
2011 return (err);
2012}
2013
34dc7c2f
BB
2014int
2015dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
4ea3f864 2016 dmu_tx_t *tx)
34dc7c2f
BB
2017{
2018 dnode_t *dn;
2019 int err;
2020
428870ff 2021 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2022 if (err)
2023 return (err);
2024 err = dnode_set_blksz(dn, size, ibs, tx);
2025 dnode_rele(dn, FTAG);
2026 return (err);
2027}
2028
2029void
2030dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
4ea3f864 2031 dmu_tx_t *tx)
34dc7c2f
BB
2032{
2033 dnode_t *dn;
2034
9b67f605
MA
2035 /*
2036 * Send streams include each object's checksum function. This
2037 * check ensures that the receiving system can understand the
2038 * checksum function transmitted.
2039 */
2040 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2041
2042 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2043 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
34dc7c2f
BB
2044 dn->dn_checksum = checksum;
2045 dnode_setdirty(dn, tx);
2046 dnode_rele(dn, FTAG);
2047}
2048
2049void
2050dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
4ea3f864 2051 dmu_tx_t *tx)
34dc7c2f
BB
2052{
2053 dnode_t *dn;
2054
9b67f605
MA
2055 /*
2056 * Send streams include each object's compression function. This
2057 * check ensures that the receiving system can understand the
2058 * compression function transmitted.
2059 */
2060 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2061
2062 VERIFY0(dnode_hold(os, object, FTAG, &dn));
34dc7c2f
BB
2063 dn->dn_compress = compress;
2064 dnode_setdirty(dn, tx);
2065 dnode_rele(dn, FTAG);
2066}
2067
9b840763
TC
2068/*
2069 * Dirty an object and set the dirty record's raw flag. This is used
2070 * when writing raw data to an object that will not effect the
2071 * encryption parameters, specifically during raw receives.
2072 */
2073int
2074dmu_object_dirty_raw(objset_t *os, uint64_t object, dmu_tx_t *tx)
2075{
2076 dnode_t *dn;
2077 int err;
2078
2079 err = dnode_hold(os, object, FTAG, &dn);
2080 if (err)
2081 return (err);
2082 dmu_buf_will_change_crypt_params((dmu_buf_t *)dn->dn_dbuf, tx);
2083 dnode_rele(dn, FTAG);
2084 return (err);
2085}
2086
428870ff
BB
2087int zfs_mdcomp_disable = 0;
2088
faf0f58c
MA
2089/*
2090 * When the "redundant_metadata" property is set to "most", only indirect
2091 * blocks of this level and higher will have an additional ditto block.
2092 */
2093int zfs_redundant_metadata_most_ditto_level = 2;
2094
428870ff 2095void
82644107 2096dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
428870ff
BB
2097{
2098 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
9ae529ec 2099 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
572e2857 2100 (wp & WP_SPILL));
428870ff
BB
2101 enum zio_checksum checksum = os->os_checksum;
2102 enum zio_compress compress = os->os_compress;
2103 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
03c6040b
GW
2104 boolean_t dedup = B_FALSE;
2105 boolean_t nopwrite = B_FALSE;
428870ff 2106 boolean_t dedup_verify = os->os_dedup_verify;
b5256303 2107 boolean_t encrypt = B_FALSE;
428870ff 2108 int copies = os->os_copies;
a7004725 2109
428870ff 2110 /*
03c6040b
GW
2111 * We maintain different write policies for each of the following
2112 * types of data:
2113 * 1. metadata
2114 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2115 * 3. all other level 0 blocks
428870ff
BB
2116 */
2117 if (ismd) {
62bdd5eb
DL
2118 if (zfs_mdcomp_disable) {
2119 compress = ZIO_COMPRESS_EMPTY;
62bdd5eb 2120 } else {
99197f03
JG
2121 /*
2122 * XXX -- we should design a compression algorithm
2123 * that specializes in arrays of bps.
2124 */
2125 compress = zio_compress_select(os->os_spa,
2126 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
62bdd5eb 2127 }
03c6040b 2128
428870ff
BB
2129 /*
2130 * Metadata always gets checksummed. If the data
2131 * checksum is multi-bit correctable, and it's not a
2132 * ZBT-style checksum, then it's suitable for metadata
2133 * as well. Otherwise, the metadata checksum defaults
2134 * to fletcher4.
2135 */
3c67d83a
TH
2136 if (!(zio_checksum_table[checksum].ci_flags &
2137 ZCHECKSUM_FLAG_METADATA) ||
2138 (zio_checksum_table[checksum].ci_flags &
2139 ZCHECKSUM_FLAG_EMBEDDED))
428870ff 2140 checksum = ZIO_CHECKSUM_FLETCHER_4;
faf0f58c
MA
2141
2142 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2143 (os->os_redundant_metadata ==
2144 ZFS_REDUNDANT_METADATA_MOST &&
2145 (level >= zfs_redundant_metadata_most_ditto_level ||
2146 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2147 copies++;
03c6040b
GW
2148 } else if (wp & WP_NOFILL) {
2149 ASSERT(level == 0);
428870ff 2150
428870ff 2151 /*
03c6040b
GW
2152 * If we're writing preallocated blocks, we aren't actually
2153 * writing them so don't set any policy properties. These
2154 * blocks are currently only used by an external subsystem
2155 * outside of zfs (i.e. dump) and not written by the zio
2156 * pipeline.
428870ff 2157 */
03c6040b
GW
2158 compress = ZIO_COMPRESS_OFF;
2159 checksum = ZIO_CHECKSUM_OFF;
428870ff 2160 } else {
99197f03
JG
2161 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2162 compress);
428870ff 2163
03c6040b
GW
2164 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2165 zio_checksum_select(dn->dn_checksum, checksum) :
2166 dedup_checksum;
428870ff 2167
03c6040b
GW
2168 /*
2169 * Determine dedup setting. If we are in dmu_sync(),
2170 * we won't actually dedup now because that's all
2171 * done in syncing context; but we do want to use the
2172 * dedup checkum. If the checksum is not strong
2173 * enough to ensure unique signatures, force
2174 * dedup_verify.
2175 */
2176 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2177 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
3c67d83a
TH
2178 if (!(zio_checksum_table[checksum].ci_flags &
2179 ZCHECKSUM_FLAG_DEDUP))
03c6040b
GW
2180 dedup_verify = B_TRUE;
2181 }
428870ff 2182
03c6040b 2183 /*
3c67d83a
TH
2184 * Enable nopwrite if we have secure enough checksum
2185 * algorithm (see comment in zio_nop_write) and
2186 * compression is enabled. We don't enable nopwrite if
2187 * dedup is enabled as the two features are mutually
2188 * exclusive.
03c6040b 2189 */
3c67d83a
TH
2190 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2191 ZCHECKSUM_FLAG_NOPWRITE) &&
03c6040b 2192 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
428870ff
BB
2193 }
2194
b5256303
TC
2195 /*
2196 * All objects in an encrypted objset are protected from modification
2197 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2198 * in the bp, so we cannot use all copies. Encrypted objects are also
2199 * not subject to nopwrite since writing the same data will still
2200 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2201 * to avoid ambiguity in the dedup code since the DDT does not store
2202 * object types.
2203 */
2204 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2205 encrypt = B_TRUE;
2206
2207 if (DMU_OT_IS_ENCRYPTED(type)) {
2208 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2209 nopwrite = B_FALSE;
2210 } else {
2211 dedup = B_FALSE;
2212 }
2213
2214 if (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)
2215 compress = ZIO_COMPRESS_EMPTY;
2216 }
2aa34383 2217
b5256303
TC
2218 zp->zp_compress = compress;
2219 zp->zp_checksum = checksum;
428870ff
BB
2220 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2221 zp->zp_level = level;
faf0f58c 2222 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
428870ff
BB
2223 zp->zp_dedup = dedup;
2224 zp->zp_dedup_verify = dedup && dedup_verify;
03c6040b 2225 zp->zp_nopwrite = nopwrite;
b5256303
TC
2226 zp->zp_encrypt = encrypt;
2227 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2228 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2229 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2230 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2231
2232 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
428870ff
BB
2233}
2234
66aca247
DB
2235/*
2236 * This function is only called from zfs_holey_common() for zpl_llseek()
2237 * in order to determine the location of holes. In order to accurately
2238 * report holes all dirty data must be synced to disk. This causes extremely
2239 * poor performance when seeking for holes in a dirty file. As a compromise,
2240 * only provide hole data when the dnode is clean. When a dnode is dirty
2241 * report the dnode as having no holes which is always a safe thing to do.
2242 */
34dc7c2f
BB
2243int
2244dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2245{
2246 dnode_t *dn;
2247 int i, err;
66aca247 2248 boolean_t clean = B_TRUE;
34dc7c2f 2249
428870ff 2250 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2251 if (err)
2252 return (err);
66aca247 2253
34dc7c2f 2254 /*
66aca247 2255 * Check if dnode is dirty
34dc7c2f 2256 */
66aca247
DB
2257 if (dn->dn_dirtyctx != DN_UNDIRTIED) {
2258 for (i = 0; i < TXG_SIZE; i++) {
2259 if (!list_is_empty(&dn->dn_dirty_records[i])) {
2260 clean = B_FALSE;
2261 break;
2262 }
2263 }
34dc7c2f 2264 }
66aca247
DB
2265
2266 /*
2267 * If compatibility option is on, sync any current changes before
2268 * we go trundling through the block pointers.
2269 */
2270 if (!clean && zfs_dmu_offset_next_sync) {
2271 clean = B_TRUE;
34dc7c2f
BB
2272 dnode_rele(dn, FTAG);
2273 txg_wait_synced(dmu_objset_pool(os), 0);
428870ff 2274 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2275 if (err)
2276 return (err);
2277 }
2278
66aca247
DB
2279 if (clean)
2280 err = dnode_next_offset(dn,
2281 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2282 else
2283 err = SET_ERROR(EBUSY);
2284
34dc7c2f
BB
2285 dnode_rele(dn, FTAG);
2286
2287 return (err);
2288}
2289
2290void
e0b0ca98 2291__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
34dc7c2f 2292{
e0b0ca98 2293 dnode_phys_t *dnp = dn->dn_phys;
d6320ddb 2294 int i;
428870ff 2295
34dc7c2f
BB
2296 doi->doi_data_block_size = dn->dn_datablksz;
2297 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2298 1ULL << dn->dn_indblkshift : 0;
428870ff
BB
2299 doi->doi_type = dn->dn_type;
2300 doi->doi_bonus_type = dn->dn_bonustype;
2301 doi->doi_bonus_size = dn->dn_bonuslen;
50c957f7 2302 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
34dc7c2f
BB
2303 doi->doi_indirection = dn->dn_nlevels;
2304 doi->doi_checksum = dn->dn_checksum;
2305 doi->doi_compress = dn->dn_compress;
6c59307a 2306 doi->doi_nblkptr = dn->dn_nblkptr;
428870ff 2307 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
d1fada1e 2308 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
428870ff 2309 doi->doi_fill_count = 0;
d6320ddb 2310 for (i = 0; i < dnp->dn_nblkptr; i++)
9b67f605 2311 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
e0b0ca98
BB
2312}
2313
2314void
2315dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2316{
2317 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2318 mutex_enter(&dn->dn_mtx);
2319
2320 __dmu_object_info_from_dnode(dn, doi);
34dc7c2f
BB
2321
2322 mutex_exit(&dn->dn_mtx);
2323 rw_exit(&dn->dn_struct_rwlock);
2324}
2325
2326/*
2327 * Get information on a DMU object.
2328 * If doi is NULL, just indicates whether the object exists.
2329 */
2330int
2331dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2332{
2333 dnode_t *dn;
428870ff 2334 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2335
2336 if (err)
2337 return (err);
2338
2339 if (doi != NULL)
2340 dmu_object_info_from_dnode(dn, doi);
2341
2342 dnode_rele(dn, FTAG);
2343 return (0);
2344}
2345
2346/*
2347 * As above, but faster; can be used when you have a held dbuf in hand.
2348 */
2349void
572e2857 2350dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
34dc7c2f 2351{
572e2857
BB
2352 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2353
2354 DB_DNODE_ENTER(db);
2355 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2356 DB_DNODE_EXIT(db);
34dc7c2f
BB
2357}
2358
2359/*
2360 * Faster still when you only care about the size.
2361 * This is specifically optimized for zfs_getattr().
2362 */
2363void
572e2857
BB
2364dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2365 u_longlong_t *nblk512)
34dc7c2f 2366{
572e2857
BB
2367 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2368 dnode_t *dn;
2369
2370 DB_DNODE_ENTER(db);
2371 dn = DB_DNODE(db);
34dc7c2f
BB
2372
2373 *blksize = dn->dn_datablksz;
50c957f7 2374 /* add in number of slots used for the dnode itself */
34dc7c2f 2375 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
50c957f7
NB
2376 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2377 DB_DNODE_EXIT(db);
2378}
2379
2380void
2381dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2382{
2383 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2384 dnode_t *dn;
2385
2386 DB_DNODE_ENTER(db);
2387 dn = DB_DNODE(db);
2388 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
572e2857 2389 DB_DNODE_EXIT(db);
34dc7c2f
BB
2390}
2391
2392void
2393byteswap_uint64_array(void *vbuf, size_t size)
2394{
2395 uint64_t *buf = vbuf;
2396 size_t count = size >> 3;
2397 int i;
2398
2399 ASSERT((size & 7) == 0);
2400
2401 for (i = 0; i < count; i++)
2402 buf[i] = BSWAP_64(buf[i]);
2403}
2404
2405void
2406byteswap_uint32_array(void *vbuf, size_t size)
2407{
2408 uint32_t *buf = vbuf;
2409 size_t count = size >> 2;
2410 int i;
2411
2412 ASSERT((size & 3) == 0);
2413
2414 for (i = 0; i < count; i++)
2415 buf[i] = BSWAP_32(buf[i]);
2416}
2417
2418void
2419byteswap_uint16_array(void *vbuf, size_t size)
2420{
2421 uint16_t *buf = vbuf;
2422 size_t count = size >> 1;
2423 int i;
2424
2425 ASSERT((size & 1) == 0);
2426
2427 for (i = 0; i < count; i++)
2428 buf[i] = BSWAP_16(buf[i]);
2429}
2430
2431/* ARGSUSED */
2432void
2433byteswap_uint8_array(void *vbuf, size_t size)
2434{
2435}
2436
2437void
2438dmu_init(void)
2439{
a6255b7f 2440 abd_init();
428870ff 2441 zfs_dbgmsg_init();
572e2857
BB
2442 sa_cache_init();
2443 xuio_stat_init();
2444 dmu_objset_init();
34dc7c2f 2445 dnode_init();
428870ff 2446 zfetch_init();
570827e1 2447 dmu_tx_init();
34dc7c2f 2448 l2arc_init();
29809a6c 2449 arc_init();
d3c2ae1c 2450 dbuf_init();
34dc7c2f
BB
2451}
2452
2453void
2454dmu_fini(void)
2455{
e49f1e20 2456 arc_fini(); /* arc depends on l2arc, so arc must go first */
29809a6c 2457 l2arc_fini();
570827e1 2458 dmu_tx_fini();
428870ff 2459 zfetch_fini();
34dc7c2f 2460 dbuf_fini();
572e2857
BB
2461 dnode_fini();
2462 dmu_objset_fini();
428870ff
BB
2463 xuio_stat_fini();
2464 sa_cache_fini();
2465 zfs_dbgmsg_fini();
a6255b7f 2466 abd_fini();
34dc7c2f 2467}
c28b2279
BB
2468
2469#if defined(_KERNEL) && defined(HAVE_SPL)
2470EXPORT_SYMBOL(dmu_bonus_hold);
a473d90c
AZ
2471EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2472EXPORT_SYMBOL(dmu_buf_rele_array);
57b650b8 2473EXPORT_SYMBOL(dmu_prefetch);
c28b2279 2474EXPORT_SYMBOL(dmu_free_range);
57b650b8 2475EXPORT_SYMBOL(dmu_free_long_range);
440a3eb9 2476EXPORT_SYMBOL(dmu_free_long_range_raw);
b663a23d 2477EXPORT_SYMBOL(dmu_free_long_object);
440a3eb9 2478EXPORT_SYMBOL(dmu_free_long_object_raw);
c28b2279 2479EXPORT_SYMBOL(dmu_read);
0eef1bde 2480EXPORT_SYMBOL(dmu_read_by_dnode);
c28b2279 2481EXPORT_SYMBOL(dmu_write);
0eef1bde 2482EXPORT_SYMBOL(dmu_write_by_dnode);
57b650b8 2483EXPORT_SYMBOL(dmu_prealloc);
c28b2279
BB
2484EXPORT_SYMBOL(dmu_object_info);
2485EXPORT_SYMBOL(dmu_object_info_from_dnode);
2486EXPORT_SYMBOL(dmu_object_info_from_db);
2487EXPORT_SYMBOL(dmu_object_size_from_db);
50c957f7 2488EXPORT_SYMBOL(dmu_object_dnsize_from_db);
b5256303 2489EXPORT_SYMBOL(dmu_object_set_nlevels);
c28b2279
BB
2490EXPORT_SYMBOL(dmu_object_set_blocksize);
2491EXPORT_SYMBOL(dmu_object_set_checksum);
2492EXPORT_SYMBOL(dmu_object_set_compress);
57b650b8
BB
2493EXPORT_SYMBOL(dmu_write_policy);
2494EXPORT_SYMBOL(dmu_sync);
b10c77f7
BB
2495EXPORT_SYMBOL(dmu_request_arcbuf);
2496EXPORT_SYMBOL(dmu_return_arcbuf);
440a3eb9
TC
2497EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2498EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
b10c77f7 2499EXPORT_SYMBOL(dmu_buf_hold);
c28b2279 2500EXPORT_SYMBOL(dmu_ot);
afec56b4 2501
bef78122 2502/* BEGIN CSTYLED */
afec56b4
BB
2503module_param(zfs_mdcomp_disable, int, 0644);
2504MODULE_PARM_DESC(zfs_mdcomp_disable, "Disable meta data compression");
03c6040b
GW
2505
2506module_param(zfs_nopwrite_enabled, int, 0644);
2507MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
2508
bef78122
DQ
2509module_param(zfs_per_txg_dirty_frees_percent, ulong, 0644);
2510MODULE_PARM_DESC(zfs_per_txg_dirty_frees_percent,
2511 "percentage of dirtied blocks from frees in one TXG");
66aca247
DB
2512
2513module_param(zfs_dmu_offset_next_sync, int, 0644);
2514MODULE_PARM_DESC(zfs_dmu_offset_next_sync,
2515 "Enable forcing txg sync to find holes");
2516
bef78122 2517/* END CSTYLED */
66aca247 2518
c28b2279 2519#endif