]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu.c
Linux 6.5 compat: Use copy_splice_read instead of filemap_splice_read
[mirror_zfs.git] / module / zfs / dmu.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
34dc7c2f
BB
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
196bee4c 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
bc77ba73 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
a08abc1b 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
5475aada 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
65282ee9 28 * Copyright (c) 2019 Datto Inc.
10b3c7f5
MN
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
5405be03 31 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
67a1b037 32 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
34dc7c2f
BB
33 */
34
34dc7c2f
BB
35#include <sys/dmu.h>
36#include <sys/dmu_impl.h>
37#include <sys/dmu_tx.h>
38#include <sys/dbuf.h>
39#include <sys/dnode.h>
40#include <sys/zfs_context.h>
41#include <sys/dmu_objset.h>
42#include <sys/dmu_traverse.h>
43#include <sys/dsl_dataset.h>
44#include <sys/dsl_dir.h>
45#include <sys/dsl_pool.h>
46#include <sys/dsl_synctask.h>
47#include <sys/dsl_prop.h>
48#include <sys/dmu_zfetch.h>
49#include <sys/zfs_ioctl.h>
50#include <sys/zap.h>
51#include <sys/zio_checksum.h>
03c6040b 52#include <sys/zio_compress.h>
428870ff 53#include <sys/sa.h>
62bdd5eb 54#include <sys/zfeature.h>
a6255b7f 55#include <sys/abd.h>
67a1b037 56#include <sys/brt.h>
e5d1c27e 57#include <sys/trace_zfs.h>
64e0fe14 58#include <sys/zfs_racct.h>
f763c3d1 59#include <sys/zfs_rlock.h>
34dc7c2f
BB
60#ifdef _KERNEL
61#include <sys/vmsystm.h>
b128c09f 62#include <sys/zfs_znode.h>
34dc7c2f
BB
63#endif
64
03c6040b
GW
65/*
66 * Enable/disable nopwrite feature.
67 */
18168da7 68static int zfs_nopwrite_enabled = 1;
03c6040b 69
539d33c7 70/*
65282ee9
AP
71 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
72 * one TXG. After this threshold is crossed, additional dirty blocks from frees
73 * will wait until the next TXG.
539d33c7
GM
74 * A value of zero will disable this throttle.
75 */
ab8d9c17 76static uint_t zfs_per_txg_dirty_frees_percent = 30;
539d33c7 77
66aca247 78/*
05b3eb6d
BB
79 * Enable/disable forcing txg sync when dirty checking for holes with lseek().
80 * By default this is enabled to ensure accurate hole reporting, it can result
81 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
82 * Disabling this option will result in holes never being reported in dirty
83 * files which is always safe.
66aca247 84 */
18168da7 85static int zfs_dmu_offset_next_sync = 1;
66aca247 86
d9b4bf06
MA
87/*
88 * Limit the amount we can prefetch with one call to this amount. This
89 * helps to limit the amount of memory that can be used by prefetching.
90 * Larger objects should be prefetched a bit at a time.
91 */
34b3d498
AM
92#ifdef _ILP32
93uint_t dmu_prefetch_max = 8 * 1024 * 1024;
94#else
fdc2d303 95uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
34b3d498 96#endif
d9b4bf06 97
34dc7c2f 98const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
2e5dc449
MA
99 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
100 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
101 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
102 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
103 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
104 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
105 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
106 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
107 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
108 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
109 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
110 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
111 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
112 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
113 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
114 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
115 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
116 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
117 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
118 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
119 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
120 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
121 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
122 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
123 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
124 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
125 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
126 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
127 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
128 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
129 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
130 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
131 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
132 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
133 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
134 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
135 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
136 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
137 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
138 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
139 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
140 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
141 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
142 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
143 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
144 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
145 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
146 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
147 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
148 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
149 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
150 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
151 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
152 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
9ae529ec
CS
153};
154
a2d5643f 155dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
9ae529ec
CS
156 { byteswap_uint8_array, "uint8" },
157 { byteswap_uint16_array, "uint16" },
158 { byteswap_uint32_array, "uint32" },
159 { byteswap_uint64_array, "uint64" },
160 { zap_byteswap, "zap" },
161 { dnode_buf_byteswap, "dnode" },
162 { dmu_objset_byteswap, "objset" },
163 { zfs_znode_byteswap, "znode" },
164 { zfs_oldacl_byteswap, "oldacl" },
165 { zfs_acl_byteswap, "acl" }
34dc7c2f
BB
166};
167
65c7cc49 168static int
2bce8049 169dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
a926aab9 170 const void *tag, dmu_buf_t **dbp)
2bce8049
MA
171{
172 uint64_t blkid;
173 dmu_buf_impl_t *db;
174
2bce8049 175 rw_enter(&dn->dn_struct_rwlock, RW_READER);
f664f1ee 176 blkid = dbuf_whichblock(dn, 0, offset);
2bce8049
MA
177 db = dbuf_hold(dn, blkid, tag);
178 rw_exit(&dn->dn_struct_rwlock);
179
180 if (db == NULL) {
181 *dbp = NULL;
182 return (SET_ERROR(EIO));
183 }
184
185 *dbp = &db->db;
186 return (0);
187}
34dc7c2f 188int
9b67f605 189dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
a926aab9 190 const void *tag, dmu_buf_t **dbp)
34dc7c2f
BB
191{
192 dnode_t *dn;
193 uint64_t blkid;
194 dmu_buf_impl_t *db;
195 int err;
428870ff
BB
196
197 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
198 if (err)
199 return (err);
34dc7c2f 200 rw_enter(&dn->dn_struct_rwlock, RW_READER);
f664f1ee 201 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f
BB
202 db = dbuf_hold(dn, blkid, tag);
203 rw_exit(&dn->dn_struct_rwlock);
9b67f605
MA
204 dnode_rele(dn, FTAG);
205
34dc7c2f 206 if (db == NULL) {
9b67f605
MA
207 *dbp = NULL;
208 return (SET_ERROR(EIO));
209 }
210
211 *dbp = &db->db;
212 return (err);
213}
214
2bce8049
MA
215int
216dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
a926aab9 217 const void *tag, dmu_buf_t **dbp, int flags)
2bce8049
MA
218{
219 int err;
220 int db_flags = DB_RF_CANFAIL;
221
222 if (flags & DMU_READ_NO_PREFETCH)
223 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
224 if (flags & DMU_READ_NO_DECRYPT)
225 db_flags |= DB_RF_NO_DECRYPT;
2bce8049
MA
226
227 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
228 if (err == 0) {
229 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
230 err = dbuf_read(db, NULL, db_flags);
231 if (err != 0) {
232 dbuf_rele(db, tag);
233 *dbp = NULL;
234 }
235 }
236
237 return (err);
238}
239
9b67f605
MA
240int
241dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
a926aab9 242 const void *tag, dmu_buf_t **dbp, int flags)
9b67f605
MA
243{
244 int err;
245 int db_flags = DB_RF_CANFAIL;
246
247 if (flags & DMU_READ_NO_PREFETCH)
248 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
249 if (flags & DMU_READ_NO_DECRYPT)
250 db_flags |= DB_RF_NO_DECRYPT;
9b67f605
MA
251
252 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
253 if (err == 0) {
254 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
428870ff 255 err = dbuf_read(db, NULL, db_flags);
9b67f605 256 if (err != 0) {
34dc7c2f 257 dbuf_rele(db, tag);
9b67f605 258 *dbp = NULL;
34dc7c2f
BB
259 }
260 }
261
34dc7c2f
BB
262 return (err);
263}
264
265int
266dmu_bonus_max(void)
267{
50c957f7 268 return (DN_OLD_MAX_BONUSLEN);
34dc7c2f
BB
269}
270
271int
572e2857 272dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
34dc7c2f 273{
572e2857
BB
274 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
275 dnode_t *dn;
276 int error;
34dc7c2f 277
572e2857
BB
278 DB_DNODE_ENTER(db);
279 dn = DB_DNODE(db);
280
281 if (dn->dn_bonus != db) {
2e528b49 282 error = SET_ERROR(EINVAL);
572e2857 283 } else if (newsize < 0 || newsize > db_fake->db_size) {
2e528b49 284 error = SET_ERROR(EINVAL);
572e2857
BB
285 } else {
286 dnode_setbonuslen(dn, newsize, tx);
287 error = 0;
288 }
289
290 DB_DNODE_EXIT(db);
291 return (error);
34dc7c2f
BB
292}
293
428870ff 294int
572e2857 295dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
428870ff 296{
572e2857
BB
297 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
298 dnode_t *dn;
299 int error;
428870ff 300
572e2857
BB
301 DB_DNODE_ENTER(db);
302 dn = DB_DNODE(db);
428870ff 303
9ae529ec 304 if (!DMU_OT_IS_VALID(type)) {
2e528b49 305 error = SET_ERROR(EINVAL);
572e2857 306 } else if (dn->dn_bonus != db) {
2e528b49 307 error = SET_ERROR(EINVAL);
572e2857
BB
308 } else {
309 dnode_setbonus_type(dn, type, tx);
310 error = 0;
311 }
428870ff 312
572e2857
BB
313 DB_DNODE_EXIT(db);
314 return (error);
315}
316
317dmu_object_type_t
318dmu_get_bonustype(dmu_buf_t *db_fake)
319{
320 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
321 dnode_t *dn;
322 dmu_object_type_t type;
323
324 DB_DNODE_ENTER(db);
325 dn = DB_DNODE(db);
326 type = dn->dn_bonustype;
327 DB_DNODE_EXIT(db);
328
329 return (type);
428870ff
BB
330}
331
332int
333dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
334{
335 dnode_t *dn;
336 int error;
337
338 error = dnode_hold(os, object, FTAG, &dn);
339 dbuf_rm_spill(dn, tx);
340 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
341 dnode_rm_spill(dn, tx);
342 rw_exit(&dn->dn_struct_rwlock);
343 dnode_rele(dn, FTAG);
344 return (error);
345}
346
34dc7c2f 347/*
6955b401
BB
348 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
349 * has not yet been allocated a new bonus dbuf a will be allocated.
350 * Returns ENOENT, EIO, or 0.
34dc7c2f 351 */
a926aab9 352int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
6955b401 353 uint32_t flags)
34dc7c2f 354{
34dc7c2f
BB
355 dmu_buf_impl_t *db;
356 int error;
b5256303
TC
357 uint32_t db_flags = DB_RF_MUST_SUCCEED;
358
359 if (flags & DMU_READ_NO_PREFETCH)
360 db_flags |= DB_RF_NOPREFETCH;
361 if (flags & DMU_READ_NO_DECRYPT)
362 db_flags |= DB_RF_NO_DECRYPT;
34dc7c2f 363
34dc7c2f
BB
364 rw_enter(&dn->dn_struct_rwlock, RW_READER);
365 if (dn->dn_bonus == NULL) {
c9e39da9
RY
366 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
367 rw_exit(&dn->dn_struct_rwlock);
368 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
369 }
34dc7c2f
BB
370 if (dn->dn_bonus == NULL)
371 dbuf_create_bonus(dn);
372 }
373 db = dn->dn_bonus;
34dc7c2f
BB
374
375 /* as long as the bonus buf is held, the dnode will be held */
c13060e4 376 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
34dc7c2f 377 VERIFY(dnode_add_ref(dn, db));
73ad4a9f 378 atomic_inc_32(&dn->dn_dbufs_count);
572e2857
BB
379 }
380
381 /*
382 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
383 * hold and incrementing the dbuf count to ensure that dnode_move() sees
384 * a dnode hold for every dbuf.
385 */
386 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f 387
b5256303
TC
388 error = dbuf_read(db, NULL, db_flags);
389 if (error) {
390 dnode_evict_bonus(dn);
391 dbuf_rele(db, tag);
392 *dbp = NULL;
393 return (error);
394 }
34dc7c2f
BB
395
396 *dbp = &db->db;
397 return (0);
398}
399
b5256303 400int
a926aab9 401dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
b5256303 402{
6955b401
BB
403 dnode_t *dn;
404 int error;
405
406 error = dnode_hold(os, object, FTAG, &dn);
407 if (error)
408 return (error);
409
410 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
411 dnode_rele(dn, FTAG);
412
413 return (error);
b5256303
TC
414}
415
428870ff
BB
416/*
417 * returns ENOENT, EIO, or 0.
418 *
419 * This interface will allocate a blank spill dbuf when a spill blk
420 * doesn't already exist on the dnode.
421 *
422 * if you only want to find an already existing spill db, then
423 * dmu_spill_hold_existing() should be used.
424 */
425int
a926aab9
AZ
426dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
427 dmu_buf_t **dbp)
428870ff
BB
428{
429 dmu_buf_impl_t *db = NULL;
430 int err;
431
432 if ((flags & DB_RF_HAVESTRUCT) == 0)
433 rw_enter(&dn->dn_struct_rwlock, RW_READER);
434
435 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
436
437 if ((flags & DB_RF_HAVESTRUCT) == 0)
438 rw_exit(&dn->dn_struct_rwlock);
439
b182ac00 440 if (db == NULL) {
441 *dbp = NULL;
442 return (SET_ERROR(EIO));
443 }
572e2857
BB
444 err = dbuf_read(db, NULL, flags);
445 if (err == 0)
446 *dbp = &db->db;
b182ac00 447 else {
572e2857 448 dbuf_rele(db, tag);
b182ac00 449 *dbp = NULL;
450 }
428870ff
BB
451 return (err);
452}
453
454int
a926aab9 455dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
428870ff 456{
572e2857
BB
457 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
458 dnode_t *dn;
428870ff
BB
459 int err;
460
572e2857
BB
461 DB_DNODE_ENTER(db);
462 dn = DB_DNODE(db);
463
464 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
2e528b49 465 err = SET_ERROR(EINVAL);
572e2857
BB
466 } else {
467 rw_enter(&dn->dn_struct_rwlock, RW_READER);
468
469 if (!dn->dn_have_spill) {
2e528b49 470 err = SET_ERROR(ENOENT);
572e2857
BB
471 } else {
472 err = dmu_spill_hold_by_dnode(dn,
473 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
474 }
428870ff 475
428870ff 476 rw_exit(&dn->dn_struct_rwlock);
428870ff 477 }
572e2857
BB
478
479 DB_DNODE_EXIT(db);
428870ff
BB
480 return (err);
481}
482
483int
a926aab9 484dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
e7504d7a 485 dmu_buf_t **dbp)
428870ff 486{
572e2857
BB
487 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
488 dnode_t *dn;
489 int err;
e7504d7a
TC
490 uint32_t db_flags = DB_RF_CANFAIL;
491
492 if (flags & DMU_READ_NO_DECRYPT)
493 db_flags |= DB_RF_NO_DECRYPT;
572e2857
BB
494
495 DB_DNODE_ENTER(db);
496 dn = DB_DNODE(db);
e7504d7a 497 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
572e2857
BB
498 DB_DNODE_EXIT(db);
499
500 return (err);
428870ff
BB
501}
502
34dc7c2f
BB
503/*
504 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
505 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
506 * and can induce severe lock contention when writing to several files
507 * whose dnodes are in the same block.
508 */
af1698f5 509int
9babb374 510dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
a926aab9
AZ
511 boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
512 uint32_t flags)
34dc7c2f
BB
513{
514 dmu_buf_t **dbp;
891568c9 515 zstream_t *zs = NULL;
34dc7c2f 516 uint64_t blkid, nblks, i;
9babb374 517 uint32_t dbuf_flags;
34dc7c2f 518 int err;
ec50cd24 519 zio_t *zio = NULL;
891568c9 520 boolean_t missed = B_FALSE;
34dc7c2f 521
67a1b037 522 ASSERT(!read || length <= DMU_MAX_ACCESS);
34dc7c2f 523
7f60329a
MA
524 /*
525 * Note: We directly notify the prefetch code of this read, so that
526 * we can tell it about the multi-block read. dbuf_read() only knows
527 * about the one block it is accessing.
528 */
529 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
530 DB_RF_NOPREFETCH;
34dc7c2f 531
e8cf3a4f
AP
532 if ((flags & DMU_READ_NO_DECRYPT) != 0)
533 dbuf_flags |= DB_RF_NO_DECRYPT;
534
34dc7c2f
BB
535 rw_enter(&dn->dn_struct_rwlock, RW_READER);
536 if (dn->dn_datablkshift) {
537 int blkshift = dn->dn_datablkshift;
7f60329a
MA
538 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
539 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
34dc7c2f
BB
540 } else {
541 if (offset + length > dn->dn_datablksz) {
542 zfs_panic_recover("zfs: accessing past end of object "
543 "%llx/%llx (size=%u access=%llu+%llu)",
544 (longlong_t)dn->dn_objset->
545 os_dsl_dataset->ds_object,
546 (longlong_t)dn->dn_object, dn->dn_datablksz,
547 (longlong_t)offset, (longlong_t)length);
45d1cae3 548 rw_exit(&dn->dn_struct_rwlock);
2e528b49 549 return (SET_ERROR(EIO));
34dc7c2f
BB
550 }
551 nblks = 1;
552 }
79c76d5b 553 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
34dc7c2f 554
ec50cd24
FY
555 if (read)
556 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
557 ZIO_FLAG_CANFAIL);
fcff0f35 558 blkid = dbuf_whichblock(dn, 0, offset);
34b3d498 559 if ((flags & DMU_READ_NO_PREFETCH) == 0) {
891568c9
AM
560 /*
561 * Prepare the zfetch before initiating the demand reads, so
562 * that if multiple threads block on same indirect block, we
563 * base predictions on the original less racy request order.
564 */
ed2f7ba0
AM
565 zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
566 B_TRUE);
891568c9 567 }
34dc7c2f 568 for (i = 0; i < nblks; i++) {
7f60329a 569 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
34dc7c2f 570 if (db == NULL) {
891568c9
AM
571 if (zs)
572 dmu_zfetch_run(zs, missed, B_TRUE);
34dc7c2f
BB
573 rw_exit(&dn->dn_struct_rwlock);
574 dmu_buf_rele_array(dbp, nblks, tag);
ec50cd24
FY
575 if (read)
576 zio_nowait(zio);
2e528b49 577 return (SET_ERROR(EIO));
34dc7c2f 578 }
7f60329a 579
891568c9
AM
580 /*
581 * Initiate async demand data read.
582 * We check the db_state after calling dbuf_read() because
583 * (1) dbuf_read() may change the state to CACHED due to a
584 * hit in the ARC, and (2) on a cache miss, a child will
585 * have been added to "zio" but not yet completed, so the
586 * state will not yet be CACHED.
587 */
588 if (read) {
ed2f7ba0
AM
589 if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
590 offset + length < db->db.db_offset +
591 db->db.db_size) {
592 if (offset <= db->db.db_offset)
593 dbuf_flags |= DB_RF_PARTIAL_FIRST;
594 else
595 dbuf_flags |= DB_RF_PARTIAL_MORE;
596 }
9babb374 597 (void) dbuf_read(db, zio, dbuf_flags);
891568c9
AM
598 if (db->db_state != DB_CACHED)
599 missed = B_TRUE;
600 }
34dc7c2f
BB
601 dbp[i] = &db->db;
602 }
7f60329a 603
64e0fe14
RM
604 if (!read)
605 zfs_racct_write(length, nblks);
606
891568c9
AM
607 if (zs)
608 dmu_zfetch_run(zs, missed, B_TRUE);
34dc7c2f
BB
609 rw_exit(&dn->dn_struct_rwlock);
610
34dc7c2f 611 if (read) {
ec50cd24
FY
612 /* wait for async read i/o */
613 err = zio_wait(zio);
614 if (err) {
615 dmu_buf_rele_array(dbp, nblks, tag);
616 return (err);
617 }
618
619 /* wait for other io to complete */
34dc7c2f
BB
620 for (i = 0; i < nblks; i++) {
621 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
622 mutex_enter(&db->db_mtx);
623 while (db->db_state == DB_READ ||
624 db->db_state == DB_FILL)
625 cv_wait(&db->db_changed, &db->db_mtx);
626 if (db->db_state == DB_UNCACHED)
2e528b49 627 err = SET_ERROR(EIO);
34dc7c2f
BB
628 mutex_exit(&db->db_mtx);
629 if (err) {
630 dmu_buf_rele_array(dbp, nblks, tag);
631 return (err);
632 }
633 }
634 }
635
636 *numbufsp = nblks;
637 *dbpp = dbp;
638 return (0);
639}
640
afbc6179 641int
34dc7c2f 642dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
a926aab9
AZ
643 uint64_t length, int read, const void *tag, int *numbufsp,
644 dmu_buf_t ***dbpp)
34dc7c2f
BB
645{
646 dnode_t *dn;
647 int err;
648
428870ff 649 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
650 if (err)
651 return (err);
652
653 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 654 numbufsp, dbpp, DMU_READ_PREFETCH);
34dc7c2f
BB
655
656 dnode_rele(dn, FTAG);
657
658 return (err);
659}
660
661int
572e2857 662dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
a926aab9 663 uint64_t length, boolean_t read, const void *tag, int *numbufsp,
7f60329a 664 dmu_buf_t ***dbpp)
34dc7c2f 665{
572e2857
BB
666 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
667 dnode_t *dn;
34dc7c2f
BB
668 int err;
669
572e2857
BB
670 DB_DNODE_ENTER(db);
671 dn = DB_DNODE(db);
34dc7c2f 672 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 673 numbufsp, dbpp, DMU_READ_PREFETCH);
572e2857 674 DB_DNODE_EXIT(db);
34dc7c2f
BB
675
676 return (err);
677}
678
679void
a926aab9 680dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
34dc7c2f
BB
681{
682 int i;
683 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
684
685 if (numbufs == 0)
686 return;
687
688 for (i = 0; i < numbufs; i++) {
689 if (dbp[i])
690 dbuf_rele(dbp[i], tag);
691 }
692
693 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
694}
695
e8b96c60 696/*
6c94e649 697 * Issue prefetch I/Os for the given blocks. If level is greater than 0, the
e1cfd73f 698 * indirect blocks prefetched will be those that point to the blocks containing
6c94e649
AM
699 * the data starting at offset, and continuing to offset + len. If the range
700 * it too long, prefetch the first dmu_prefetch_max bytes as requested, while
701 * for the rest only a higher level, also fitting within dmu_prefetch_max. It
702 * should primarily help random reads, since for long sequential reads there is
703 * a speculative prefetcher.
e8b96c60 704 *
b5256303 705 * Note that if the indirect blocks above the blocks being prefetched are not
6c94e649
AM
706 * in cache, they will be asynchronously read in. Dnode read by dnode_hold()
707 * is currently synchronous.
e8b96c60 708 */
34dc7c2f 709void
fcff0f35
PD
710dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
711 uint64_t len, zio_priority_t pri)
34dc7c2f
BB
712{
713 dnode_t *dn;
6c94e649
AM
714 int64_t level2 = level;
715 uint64_t start, end, start2, end2;
34dc7c2f 716
6c94e649
AM
717 if (dmu_prefetch_max == 0 || len == 0) {
718 dmu_prefetch_dnode(os, object, pri);
34dc7c2f
BB
719 return;
720 }
721
6c94e649 722 if (dnode_hold(os, object, FTAG, &dn) != 0)
34dc7c2f
BB
723 return;
724
fcff0f35 725 /*
6c94e649
AM
726 * Depending on len we may do two prefetches: blocks [start, end) at
727 * level, and following blocks [start2, end2) at higher level2.
fcff0f35 728 */
f664f1ee 729 rw_enter(&dn->dn_struct_rwlock, RW_READER);
6c94e649
AM
730 if (dn->dn_datablkshift != 0) {
731 /*
732 * The object has multiple blocks. Calculate the full range
733 * of blocks [start, end2) and then split it into two parts,
734 * so that the first [start, end) fits into dmu_prefetch_max.
735 */
736 start = dbuf_whichblock(dn, level, offset);
737 end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1;
738 uint8_t ibs = dn->dn_indblkshift;
739 uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs;
740 uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs;
741 start2 = end = MIN(end2, start + limit);
742
743 /*
744 * Find level2 where [start2, end2) fits into dmu_prefetch_max.
745 */
746 uint8_t ibps = ibs - SPA_BLKPTRSHIFT;
747 limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs;
748 do {
749 level2++;
750 start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps;
751 end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps;
752 } while (end2 - start2 > limit);
34dc7c2f 753 } else {
6c94e649
AM
754 /* There is only one block. Prefetch it or nothing. */
755 start = start2 = end2 = 0;
756 end = start + (level == 0 && offset < dn->dn_datablksz);
34dc7c2f
BB
757 }
758
6c94e649
AM
759 for (uint64_t i = start; i < end; i++)
760 dbuf_prefetch(dn, level, i, pri, 0);
761 for (uint64_t i = start2; i < end2; i++)
762 dbuf_prefetch(dn, level2, i, pri, 0);
34dc7c2f
BB
763 rw_exit(&dn->dn_struct_rwlock);
764
765 dnode_rele(dn, FTAG);
766}
767
6c94e649
AM
768/*
769 * Issue prefetch I/Os for the given object's dnode.
770 */
771void
772dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri)
773{
774 if (object == 0 || object >= DN_MAX_OBJECT)
775 return;
776
777 dnode_t *dn = DMU_META_DNODE(os);
778 rw_enter(&dn->dn_struct_rwlock, RW_READER);
779 uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t));
780 dbuf_prefetch(dn, 0, blkid, pri, 0);
781 rw_exit(&dn->dn_struct_rwlock);
782}
783
45d1cae3
BB
784/*
785 * Get the next "chunk" of file data to free. We traverse the file from
786 * the end so that the file gets shorter over time (if we crashes in the
787 * middle, this will leave us in a better state). We find allocated file
788 * data by simply searching the allocated level 1 indirects.
b663a23d
MA
789 *
790 * On input, *start should be the first offset that does not need to be
791 * freed (e.g. "offset + length"). On return, *start will be the first
65282ee9
AP
792 * offset that should be freed and l1blks is set to the number of level 1
793 * indirect blocks found within the chunk.
45d1cae3 794 */
b128c09f 795static int
65282ee9 796get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
b128c09f 797{
65282ee9 798 uint64_t blks;
b663a23d
MA
799 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
800 /* bytes of data covered by a level-1 indirect block */
ec4afd27
OM
801 uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
802 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
b128c09f 803
b663a23d 804 ASSERT3U(minimum, <=, *start);
b128c09f 805
f4c594da
TC
806 /*
807 * Check if we can free the entire range assuming that all of the
808 * L1 blocks in this range have data. If we can, we use this
809 * worst case value as an estimate so we can avoid having to look
810 * at the object's actual data.
811 */
812 uint64_t total_l1blks =
813 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
814 iblkrange;
815 if (total_l1blks <= maxblks) {
816 *l1blks = total_l1blks;
b663a23d 817 *start = minimum;
b128c09f
BB
818 return (0);
819 }
45d1cae3 820 ASSERT(ISP2(iblkrange));
b128c09f 821
65282ee9 822 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
b128c09f
BB
823 int err;
824
b663a23d
MA
825 /*
826 * dnode_next_offset(BACKWARDS) will find an allocated L1
827 * indirect block at or before the input offset. We must
828 * decrement *start so that it is at the end of the region
829 * to search.
830 */
831 (*start)--;
f4c594da 832
b128c09f 833 err = dnode_next_offset(dn,
45d1cae3 834 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
b128c09f 835
b663a23d 836 /* if there are no indirect blocks before start, we are done */
45d1cae3 837 if (err == ESRCH) {
b663a23d
MA
838 *start = minimum;
839 break;
840 } else if (err != 0) {
65282ee9 841 *l1blks = blks;
b128c09f 842 return (err);
45d1cae3 843 }
b128c09f 844
b663a23d 845 /* set start to the beginning of this L1 indirect */
45d1cae3 846 *start = P2ALIGN(*start, iblkrange);
b128c09f 847 }
b663a23d
MA
848 if (*start < minimum)
849 *start = minimum;
65282ee9 850 *l1blks = blks;
f4c594da 851
b128c09f
BB
852 return (0);
853}
854
a08abc1b
GM
855/*
856 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
857 * otherwise return false.
858 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
859 */
a08abc1b
GM
860static boolean_t
861dmu_objset_zfs_unmounting(objset_t *os)
862{
863#ifdef _KERNEL
864 if (dmu_objset_type(os) == DMU_OST_ZFS)
865 return (zfs_get_vfs_flag_unmounted(os));
14e4e3cb
AZ
866#else
867 (void) os;
a08abc1b
GM
868#endif
869 return (B_FALSE);
870}
871
b128c09f
BB
872static int
873dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
0c03d21a 874 uint64_t length)
b128c09f 875{
c97d3069 876 uint64_t object_size;
b663a23d 877 int err;
539d33c7
GM
878 uint64_t dirty_frees_threshold;
879 dsl_pool_t *dp = dmu_objset_pool(os);
b663a23d 880
c97d3069
BB
881 if (dn == NULL)
882 return (SET_ERROR(EINVAL));
883
884 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
b663a23d 885 if (offset >= object_size)
b128c09f 886 return (0);
b128c09f 887
539d33c7
GM
888 if (zfs_per_txg_dirty_frees_percent <= 100)
889 dirty_frees_threshold =
890 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
891 else
65282ee9 892 dirty_frees_threshold = zfs_dirty_data_max / 20;
539d33c7 893
b663a23d
MA
894 if (length == DMU_OBJECT_END || offset + length > object_size)
895 length = object_size - offset;
896
897 while (length != 0) {
539d33c7 898 uint64_t chunk_end, chunk_begin, chunk_len;
65282ee9 899 uint64_t l1blks;
b663a23d
MA
900 dmu_tx_t *tx;
901
a08abc1b
GM
902 if (dmu_objset_zfs_unmounting(dn->dn_objset))
903 return (SET_ERROR(EINTR));
904
b663a23d
MA
905 chunk_end = chunk_begin = offset + length;
906
907 /* move chunk_begin backwards to the beginning of this chunk */
65282ee9 908 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
b128c09f
BB
909 if (err)
910 return (err);
b663a23d
MA
911 ASSERT3U(chunk_begin, >=, offset);
912 ASSERT3U(chunk_begin, <=, chunk_end);
b128c09f 913
539d33c7
GM
914 chunk_len = chunk_end - chunk_begin;
915
b128c09f 916 tx = dmu_tx_create(os);
539d33c7 917 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
19d55079
MA
918
919 /*
920 * Mark this transaction as typically resulting in a net
921 * reduction in space used.
922 */
923 dmu_tx_mark_netfree(tx);
b128c09f
BB
924 err = dmu_tx_assign(tx, TXG_WAIT);
925 if (err) {
926 dmu_tx_abort(tx);
927 return (err);
928 }
539d33c7 929
f4c594da
TC
930 uint64_t txg = dmu_tx_get_txg(tx);
931
932 mutex_enter(&dp->dp_lock);
933 uint64_t long_free_dirty =
934 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
935 mutex_exit(&dp->dp_lock);
936
937 /*
938 * To avoid filling up a TXG with just frees, wait for
939 * the next TXG to open before freeing more chunks if
940 * we have reached the threshold of frees.
941 */
942 if (dirty_frees_threshold != 0 &&
943 long_free_dirty >= dirty_frees_threshold) {
944 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
945 dmu_tx_commit(tx);
946 txg_wait_open(dp, 0, B_TRUE);
947 continue;
948 }
949
65282ee9
AP
950 /*
951 * In order to prevent unnecessary write throttling, for each
952 * TXG, we track the cumulative size of L1 blocks being dirtied
953 * in dnode_free_range() below. We compare this number to a
954 * tunable threshold, past which we prevent new L1 dirty freeing
955 * blocks from being added into the open TXG. See
956 * dmu_free_long_range_impl() for details. The threshold
957 * prevents write throttle activation due to dirty freeing L1
958 * blocks taking up a large percentage of zfs_dirty_data_max.
959 */
539d33c7 960 mutex_enter(&dp->dp_lock);
f4c594da 961 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
65282ee9 962 l1blks << dn->dn_indblkshift;
539d33c7
GM
963 mutex_exit(&dp->dp_lock);
964 DTRACE_PROBE3(free__long__range,
f4c594da
TC
965 uint64_t, long_free_dirty, uint64_t, chunk_len,
966 uint64_t, txg);
539d33c7 967 dnode_free_range(dn, chunk_begin, chunk_len, tx);
440a3eb9 968
b128c09f 969 dmu_tx_commit(tx);
b663a23d 970
539d33c7 971 length -= chunk_len;
b128c09f
BB
972 }
973 return (0);
974}
975
976int
977dmu_free_long_range(objset_t *os, uint64_t object,
978 uint64_t offset, uint64_t length)
979{
980 dnode_t *dn;
981 int err;
982
428870ff 983 err = dnode_hold(os, object, FTAG, &dn);
b128c09f
BB
984 if (err != 0)
985 return (err);
0c03d21a 986 err = dmu_free_long_range_impl(os, dn, offset, length);
92bc214c
MA
987
988 /*
989 * It is important to zero out the maxblkid when freeing the entire
990 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
991 * will take the fast path, and (b) dnode_reallocate() can verify
992 * that the entire file has been freed.
993 */
b0bc7a84 994 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
92bc214c
MA
995 dn->dn_maxblkid = 0;
996
b128c09f
BB
997 dnode_rele(dn, FTAG);
998 return (err);
999}
1000
1001int
0c03d21a 1002dmu_free_long_object(objset_t *os, uint64_t object)
b128c09f 1003{
b128c09f
BB
1004 dmu_tx_t *tx;
1005 int err;
1006
b663a23d 1007 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
b128c09f
BB
1008 if (err != 0)
1009 return (err);
b663a23d
MA
1010
1011 tx = dmu_tx_create(os);
1012 dmu_tx_hold_bonus(tx, object);
1013 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
19d55079 1014 dmu_tx_mark_netfree(tx);
b663a23d
MA
1015 err = dmu_tx_assign(tx, TXG_WAIT);
1016 if (err == 0) {
60b618a9 1017 err = dmu_object_free(os, object, tx);
b663a23d 1018 dmu_tx_commit(tx);
b128c09f 1019 } else {
b663a23d 1020 dmu_tx_abort(tx);
b128c09f 1021 }
b663a23d 1022
b128c09f
BB
1023 return (err);
1024}
1025
34dc7c2f
BB
1026int
1027dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1028 uint64_t size, dmu_tx_t *tx)
1029{
1030 dnode_t *dn;
428870ff 1031 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
1032 if (err)
1033 return (err);
1034 ASSERT(offset < UINT64_MAX);
ee45fbd8 1035 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
34dc7c2f
BB
1036 dnode_free_range(dn, offset, size, tx);
1037 dnode_rele(dn, FTAG);
1038 return (0);
1039}
1040
0eef1bde 1041static int
1042dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
9babb374 1043 void *buf, uint32_t flags)
34dc7c2f 1044{
34dc7c2f 1045 dmu_buf_t **dbp;
0eef1bde 1046 int numbufs, err = 0;
34dc7c2f
BB
1047
1048 /*
1049 * Deal with odd block sizes, where there can't be data past the first
1050 * block. If we ever do the tail block optimization, we will need to
1051 * handle that here as well.
1052 */
45d1cae3 1053 if (dn->dn_maxblkid == 0) {
c9520ecc 1054 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
34dc7c2f 1055 MIN(size, dn->dn_datablksz - offset);
861166b0 1056 memset((char *)buf + newsz, 0, size - newsz);
34dc7c2f
BB
1057 size = newsz;
1058 }
1059
1060 while (size > 0) {
1061 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
45d1cae3 1062 int i;
34dc7c2f
BB
1063
1064 /*
1065 * NB: we could do this block-at-a-time, but it's nice
1066 * to be reading in parallel.
1067 */
1068 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
9babb374 1069 TRUE, FTAG, &numbufs, &dbp, flags);
34dc7c2f
BB
1070 if (err)
1071 break;
1072
1073 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1074 uint64_t tocpy;
1075 int64_t bufoff;
34dc7c2f
BB
1076 dmu_buf_t *db = dbp[i];
1077
1078 ASSERT(size > 0);
1079
1080 bufoff = offset - db->db_offset;
c9520ecc 1081 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f 1082
c9520ecc 1083 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
34dc7c2f
BB
1084
1085 offset += tocpy;
1086 size -= tocpy;
1087 buf = (char *)buf + tocpy;
1088 }
1089 dmu_buf_rele_array(dbp, numbufs, FTAG);
1090 }
34dc7c2f
BB
1091 return (err);
1092}
1093
0eef1bde 1094int
1095dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1096 void *buf, uint32_t flags)
34dc7c2f 1097{
0eef1bde 1098 dnode_t *dn;
1099 int err;
34dc7c2f 1100
0eef1bde 1101 err = dnode_hold(os, object, FTAG, &dn);
1102 if (err != 0)
1103 return (err);
34dc7c2f 1104
0eef1bde 1105 err = dmu_read_impl(dn, offset, size, buf, flags);
1106 dnode_rele(dn, FTAG);
1107 return (err);
1108}
1109
1110int
1111dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1112 uint32_t flags)
1113{
1114 return (dmu_read_impl(dn, offset, size, buf, flags));
1115}
1116
1117static void
1118dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1119 const void *buf, dmu_tx_t *tx)
1120{
1121 int i;
34dc7c2f
BB
1122
1123 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1124 uint64_t tocpy;
1125 int64_t bufoff;
34dc7c2f
BB
1126 dmu_buf_t *db = dbp[i];
1127
1128 ASSERT(size > 0);
1129
1130 bufoff = offset - db->db_offset;
c9520ecc 1131 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f
BB
1132
1133 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1134
1135 if (tocpy == db->db_size)
1136 dmu_buf_will_fill(db, tx);
1137 else
1138 dmu_buf_will_dirty(db, tx);
1139
60101509 1140 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
34dc7c2f
BB
1141
1142 if (tocpy == db->db_size)
1143 dmu_buf_fill_done(db, tx);
1144
1145 offset += tocpy;
1146 size -= tocpy;
1147 buf = (char *)buf + tocpy;
1148 }
0eef1bde 1149}
1150
1151void
1152dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1153 const void *buf, dmu_tx_t *tx)
1154{
1155 dmu_buf_t **dbp;
1156 int numbufs;
1157
1158 if (size == 0)
1159 return;
1160
1161 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1162 FALSE, FTAG, &numbufs, &dbp));
1163 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1164 dmu_buf_rele_array(dbp, numbufs, FTAG);
1165}
1166
0f8ff49e
SD
1167/*
1168 * Note: Lustre is an external consumer of this interface.
1169 */
0eef1bde 1170void
1171dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1172 const void *buf, dmu_tx_t *tx)
1173{
1174 dmu_buf_t **dbp;
1175 int numbufs;
1176
1177 if (size == 0)
1178 return;
1179
1180 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1181 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1182 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
34dc7c2f
BB
1183 dmu_buf_rele_array(dbp, numbufs, FTAG);
1184}
1185
b128c09f
BB
1186void
1187dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1188 dmu_tx_t *tx)
1189{
1190 dmu_buf_t **dbp;
1191 int numbufs, i;
1192
1193 if (size == 0)
1194 return;
1195
1196 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1197 FALSE, FTAG, &numbufs, &dbp));
1198
1199 for (i = 0; i < numbufs; i++) {
1200 dmu_buf_t *db = dbp[i];
1201
1202 dmu_buf_will_not_fill(db, tx);
1203 }
1204 dmu_buf_rele_array(dbp, numbufs, FTAG);
1205}
1206
9b67f605
MA
1207void
1208dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1209 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1210 int compressed_size, int byteorder, dmu_tx_t *tx)
1211{
1212 dmu_buf_t *db;
1213
1214 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1215 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1216 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1217 FTAG, &db));
1218
1219 dmu_buf_write_embedded(db,
1220 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1221 uncompressed_size, compressed_size, byteorder, tx);
1222
1223 dmu_buf_rele(db, FTAG);
1224}
1225
30af21b0
PD
1226void
1227dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1228 dmu_tx_t *tx)
1229{
1230 int numbufs, i;
1231 dmu_buf_t **dbp;
1232
1233 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1234 &numbufs, &dbp));
1235 for (i = 0; i < numbufs; i++)
1236 dmu_buf_redact(dbp[i], tx);
1237 dmu_buf_rele_array(dbp, numbufs, FTAG);
1238}
1239
34dc7c2f 1240#ifdef _KERNEL
5228cf01 1241int
d0cd9a5c 1242dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
872e8d26
BB
1243{
1244 dmu_buf_t **dbp;
1245 int numbufs, i, err;
872e8d26
BB
1246
1247 /*
1248 * NB: we could do this block-at-a-time, but it's nice
1249 * to be reading in parallel.
1250 */
d0cd9a5c 1251 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
804e0504 1252 TRUE, FTAG, &numbufs, &dbp, 0);
872e8d26
BB
1253 if (err)
1254 return (err);
1255
1256 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1257 uint64_t tocpy;
1258 int64_t bufoff;
872e8d26
BB
1259 dmu_buf_t *db = dbp[i];
1260
1261 ASSERT(size > 0);
1262
d0cd9a5c 1263 bufoff = zfs_uio_offset(uio) - db->db_offset;
c9520ecc 1264 tocpy = MIN(db->db_size - bufoff, size);
872e8d26 1265
d0cd9a5c
BA
1266 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1267 UIO_READ, uio);
1268
872e8d26
BB
1269 if (err)
1270 break;
1271
1272 size -= tocpy;
1273 }
1274 dmu_buf_rele_array(dbp, numbufs, FTAG);
1275
1276 return (err);
1277}
1278
804e0504
MA
1279/*
1280 * Read 'size' bytes into the uio buffer.
1281 * From object zdb->db_object.
d0cd9a5c 1282 * Starting at zfs_uio_offset(uio).
804e0504
MA
1283 *
1284 * If the caller already has a dbuf in the target object
1285 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1286 * because we don't have to find the dnode_t for the object.
1287 */
1288int
d0cd9a5c 1289dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
804e0504
MA
1290{
1291 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1292 dnode_t *dn;
1293 int err;
1294
1295 if (size == 0)
1296 return (0);
1297
1298 DB_DNODE_ENTER(db);
1299 dn = DB_DNODE(db);
1300 err = dmu_read_uio_dnode(dn, uio, size);
1301 DB_DNODE_EXIT(db);
1302
1303 return (err);
1304}
1305
1306/*
1307 * Read 'size' bytes into the uio buffer.
1308 * From the specified object
d0cd9a5c 1309 * Starting at offset zfs_uio_offset(uio).
804e0504
MA
1310 */
1311int
d0cd9a5c 1312dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
804e0504
MA
1313{
1314 dnode_t *dn;
1315 int err;
1316
1317 if (size == 0)
1318 return (0);
1319
1320 err = dnode_hold(os, object, FTAG, &dn);
1321 if (err)
1322 return (err);
1323
1324 err = dmu_read_uio_dnode(dn, uio, size);
1325
1326 dnode_rele(dn, FTAG);
1327
1328 return (err);
1329}
1330
5228cf01 1331int
d0cd9a5c 1332dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
872e8d26
BB
1333{
1334 dmu_buf_t **dbp;
1335 int numbufs;
1336 int err = 0;
1337 int i;
1338
d0cd9a5c 1339 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
872e8d26
BB
1340 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1341 if (err)
1342 return (err);
1343
1344 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1345 uint64_t tocpy;
1346 int64_t bufoff;
872e8d26
BB
1347 dmu_buf_t *db = dbp[i];
1348
1349 ASSERT(size > 0);
1350
d0cd9a5c 1351 bufoff = zfs_uio_offset(uio) - db->db_offset;
c9520ecc 1352 tocpy = MIN(db->db_size - bufoff, size);
872e8d26
BB
1353
1354 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1355
1356 if (tocpy == db->db_size)
1357 dmu_buf_will_fill(db, tx);
1358 else
1359 dmu_buf_will_dirty(db, tx);
1360
1361 /*
d0cd9a5c 1362 * XXX zfs_uiomove could block forever (eg.nfs-backed
872e8d26 1363 * pages). There needs to be a uiolockdown() function
d0cd9a5c 1364 * to lock the pages in memory, so that zfs_uiomove won't
872e8d26
BB
1365 * block.
1366 */
d0cd9a5c
BA
1367 err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1368 tocpy, UIO_WRITE, uio);
1369
872e8d26
BB
1370 if (tocpy == db->db_size)
1371 dmu_buf_fill_done(db, tx);
1372
1373 if (err)
1374 break;
1375
1376 size -= tocpy;
1377 }
1378
1379 dmu_buf_rele_array(dbp, numbufs, FTAG);
1380 return (err);
1381}
1382
804e0504
MA
1383/*
1384 * Write 'size' bytes from the uio buffer.
1385 * To object zdb->db_object.
d0cd9a5c 1386 * Starting at offset zfs_uio_offset(uio).
804e0504
MA
1387 *
1388 * If the caller already has a dbuf in the target object
1389 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1390 * because we don't have to find the dnode_t for the object.
1391 */
428870ff 1392int
d0cd9a5c 1393dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
428870ff
BB
1394 dmu_tx_t *tx)
1395{
572e2857
BB
1396 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1397 dnode_t *dn;
1398 int err;
1399
428870ff
BB
1400 if (size == 0)
1401 return (0);
1402
572e2857
BB
1403 DB_DNODE_ENTER(db);
1404 dn = DB_DNODE(db);
1405 err = dmu_write_uio_dnode(dn, uio, size, tx);
1406 DB_DNODE_EXIT(db);
1407
1408 return (err);
428870ff
BB
1409}
1410
804e0504
MA
1411/*
1412 * Write 'size' bytes from the uio buffer.
1413 * To the specified object.
d0cd9a5c 1414 * Starting at offset zfs_uio_offset(uio).
804e0504 1415 */
428870ff 1416int
d0cd9a5c 1417dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
428870ff
BB
1418 dmu_tx_t *tx)
1419{
1420 dnode_t *dn;
1421 int err;
1422
1423 if (size == 0)
1424 return (0);
1425
1426 err = dnode_hold(os, object, FTAG, &dn);
1427 if (err)
1428 return (err);
1429
1430 err = dmu_write_uio_dnode(dn, uio, size, tx);
1431
1432 dnode_rele(dn, FTAG);
1433
1434 return (err);
1435}
872e8d26 1436#endif /* _KERNEL */
34dc7c2f 1437
9babb374
BB
1438/*
1439 * Allocate a loaned anonymous arc buffer.
1440 */
1441arc_buf_t *
1442dmu_request_arcbuf(dmu_buf_t *handle, int size)
1443{
572e2857 1444 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
9babb374 1445
2aa34383 1446 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
9babb374
BB
1447}
1448
1449/*
1450 * Free a loaned arc buffer.
1451 */
1452void
1453dmu_return_arcbuf(arc_buf_t *buf)
1454{
1455 arc_return_buf(buf, FTAG);
d3c2ae1c 1456 arc_buf_destroy(buf, FTAG);
9babb374
BB
1457}
1458
ba67d821
MA
1459/*
1460 * A "lightweight" write is faster than a regular write (e.g.
1461 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1462 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1463 * data can not be read or overwritten until the transaction's txg has been
1464 * synced. This makes it appropriate for workloads that are known to be
1465 * (temporarily) write-only, like "zfs receive".
1466 *
1467 * A single block is written, starting at the specified offset in bytes. If
1468 * the call is successful, it returns 0 and the provided abd has been
1469 * consumed (the caller should not free it).
1470 */
1471int
1472dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
4938d01d 1473 const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
ba67d821
MA
1474{
1475 dbuf_dirty_record_t *dr =
1476 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1477 if (dr == NULL)
1478 return (SET_ERROR(EIO));
1479 dr->dt.dll.dr_abd = abd;
1480 dr->dt.dll.dr_props = *zp;
1481 dr->dt.dll.dr_flags = flags;
1482 return (0);
1483}
1484
9babb374
BB
1485/*
1486 * When possible directly assign passed loaned arc buffer to a dbuf.
1487 * If this is not possible copy the contents of passed arc buf via
1488 * dmu_write().
1489 */
305781da 1490int
440a3eb9 1491dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
9babb374
BB
1492 dmu_tx_t *tx)
1493{
9babb374 1494 dmu_buf_impl_t *db;
440a3eb9
TC
1495 objset_t *os = dn->dn_objset;
1496 uint64_t object = dn->dn_object;
2aa34383 1497 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
9babb374
BB
1498 uint64_t blkid;
1499
1500 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35 1501 blkid = dbuf_whichblock(dn, 0, offset);
305781da
TC
1502 db = dbuf_hold(dn, blkid, FTAG);
1503 if (db == NULL)
1504 return (SET_ERROR(EIO));
9babb374
BB
1505 rw_exit(&dn->dn_struct_rwlock);
1506
88904bb3 1507 /*
ba67d821
MA
1508 * We can only assign if the offset is aligned and the arc buf is the
1509 * same size as the dbuf.
88904bb3 1510 */
2aa34383 1511 if (offset == db->db.db_offset && blksz == db->db.db_size) {
64e0fe14 1512 zfs_racct_write(blksz, 1);
9babb374
BB
1513 dbuf_assign_arcbuf(db, buf, tx);
1514 dbuf_rele(db, FTAG);
1515 } else {
2aa34383
DK
1516 /* compressed bufs must always be assignable to their dbuf */
1517 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
524b4217 1518 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
2aa34383 1519
9babb374 1520 dbuf_rele(db, FTAG);
572e2857 1521 dmu_write(os, object, offset, blksz, buf->b_data, tx);
9babb374
BB
1522 dmu_return_arcbuf(buf);
1523 }
305781da
TC
1524
1525 return (0);
9babb374
BB
1526}
1527
305781da 1528int
440a3eb9
TC
1529dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1530 dmu_tx_t *tx)
1531{
305781da 1532 int err;
440a3eb9
TC
1533 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1534
1535 DB_DNODE_ENTER(dbuf);
305781da 1536 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
440a3eb9 1537 DB_DNODE_EXIT(dbuf);
305781da
TC
1538
1539 return (err);
440a3eb9
TC
1540}
1541
34dc7c2f 1542typedef struct {
428870ff
BB
1543 dbuf_dirty_record_t *dsa_dr;
1544 dmu_sync_cb_t *dsa_done;
1545 zgd_t *dsa_zgd;
1546 dmu_tx_t *dsa_tx;
34dc7c2f
BB
1547} dmu_sync_arg_t;
1548
b128c09f
BB
1549static void
1550dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1551{
14e4e3cb 1552 (void) buf;
428870ff
BB
1553 dmu_sync_arg_t *dsa = varg;
1554 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
b128c09f
BB
1555 blkptr_t *bp = zio->io_bp;
1556
428870ff
BB
1557 if (zio->io_error == 0) {
1558 if (BP_IS_HOLE(bp)) {
1559 /*
1560 * A block of zeros may compress to a hole, but the
1561 * block size still needs to be known for replay.
1562 */
1563 BP_SET_LSIZE(bp, db->db_size);
9b67f605 1564 } else if (!BP_IS_EMBEDDED(bp)) {
428870ff 1565 ASSERT(BP_GET_LEVEL(bp) == 0);
b5256303 1566 BP_SET_FILL(bp, 1);
428870ff 1567 }
b128c09f
BB
1568 }
1569}
1570
428870ff
BB
1571static void
1572dmu_sync_late_arrival_ready(zio_t *zio)
1573{
1574 dmu_sync_ready(zio, NULL, zio->io_private);
1575}
1576
34dc7c2f
BB
1577static void
1578dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1579{
14e4e3cb 1580 (void) buf;
428870ff
BB
1581 dmu_sync_arg_t *dsa = varg;
1582 dbuf_dirty_record_t *dr = dsa->dsa_dr;
34dc7c2f 1583 dmu_buf_impl_t *db = dr->dr_dbuf;
900d09b2
PS
1584 zgd_t *zgd = dsa->dsa_zgd;
1585
1586 /*
1587 * Record the vdev(s) backing this blkptr so they can be flushed after
1588 * the writes for the lwb have completed.
1589 */
1590 if (zio->io_error == 0) {
1591 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1592 }
34dc7c2f 1593
34dc7c2f
BB
1594 mutex_enter(&db->db_mtx);
1595 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
428870ff 1596 if (zio->io_error == 0) {
03c6040b
GW
1597 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1598 if (dr->dt.dl.dr_nopwrite) {
02dc43bc
MA
1599 blkptr_t *bp = zio->io_bp;
1600 blkptr_t *bp_orig = &zio->io_bp_orig;
1601 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
03c6040b
GW
1602
1603 ASSERT(BP_EQUAL(bp, bp_orig));
02dc43bc 1604 VERIFY(BP_EQUAL(bp, db->db_blkptr));
03c6040b 1605 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
02dc43bc 1606 VERIFY(zio_checksum_table[chksum].ci_flags &
3c67d83a 1607 ZCHECKSUM_FLAG_NOPWRITE);
03c6040b 1608 }
428870ff
BB
1609 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1610 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1611 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
a4069eef
PS
1612
1613 /*
1614 * Old style holes are filled with all zeros, whereas
1615 * new-style holes maintain their lsize, type, level,
1616 * and birth time (see zio_write_compress). While we
1617 * need to reset the BP_SET_LSIZE() call that happened
1618 * in dmu_sync_ready for old style holes, we do *not*
1619 * want to wipe out the information contained in new
1620 * style holes. Thus, only zero out the block pointer if
1621 * it's an old style hole.
1622 */
1623 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1624 dr->dt.dl.dr_overridden_by.blk_birth == 0)
428870ff
BB
1625 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1626 } else {
1627 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1628 }
34dc7c2f
BB
1629 cv_broadcast(&db->db_changed);
1630 mutex_exit(&db->db_mtx);
1631
428870ff 1632 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
34dc7c2f 1633
428870ff
BB
1634 kmem_free(dsa, sizeof (*dsa));
1635}
1636
1637static void
1638dmu_sync_late_arrival_done(zio_t *zio)
1639{
1640 blkptr_t *bp = zio->io_bp;
1641 dmu_sync_arg_t *dsa = zio->io_private;
900d09b2
PS
1642 zgd_t *zgd = dsa->dsa_zgd;
1643
1644 if (zio->io_error == 0) {
1645 /*
1646 * Record the vdev(s) backing this blkptr so they can be
1647 * flushed after the writes for the lwb have completed.
1648 */
1649 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1650
1651 if (!BP_IS_HOLE(bp)) {
2a8ba608 1652 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
900d09b2
PS
1653 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1654 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1655 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1656 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1657 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1658 }
428870ff
BB
1659 }
1660
1661 dmu_tx_commit(dsa->dsa_tx);
1662
1663 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1664
e2af2acc 1665 abd_free(zio->io_abd);
428870ff
BB
1666 kmem_free(dsa, sizeof (*dsa));
1667}
1668
1669static int
1670dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
5dbd68a3 1671 zio_prop_t *zp, zbookmark_phys_t *zb)
428870ff
BB
1672{
1673 dmu_sync_arg_t *dsa;
1674 dmu_tx_t *tx;
1675
1676 tx = dmu_tx_create(os);
1677 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
704c80f0
AM
1678 /*
1679 * This transaction does not produce any dirty data or log blocks, so
1680 * it should not be throttled. All other cases wait for TXG sync, by
1681 * which time the log block we are writing will be obsolete, so we can
1682 * skip waiting and just return error here instead.
1683 */
1684 if (dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE) != 0) {
428870ff 1685 dmu_tx_abort(tx);
2e528b49
MA
1686 /* Make zl_get_data do txg_waited_synced() */
1687 return (SET_ERROR(EIO));
428870ff
BB
1688 }
1689
1ce23dca
PS
1690 /*
1691 * In order to prevent the zgd's lwb from being free'd prior to
1692 * dmu_sync_late_arrival_done() being called, we have to ensure
1693 * the lwb's "max txg" takes this tx's txg into account.
1694 */
1695 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1696
79c76d5b 1697 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1698 dsa->dsa_dr = NULL;
1699 dsa->dsa_done = done;
1700 dsa->dsa_zgd = zgd;
1701 dsa->dsa_tx = tx;
1702
02dc43bc
MA
1703 /*
1704 * Since we are currently syncing this txg, it's nontrivial to
1705 * determine what BP to nopwrite against, so we disable nopwrite.
1706 *
1707 * When syncing, the db_blkptr is initially the BP of the previous
1708 * txg. We can not nopwrite against it because it will be changed
1709 * (this is similar to the non-late-arrival case where the dbuf is
1710 * dirty in a future txg).
1711 *
1712 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1713 * We can not nopwrite against it because although the BP will not
1714 * (typically) be changed, the data has not yet been persisted to this
1715 * location.
1716 *
1717 * Finally, when dbuf_write_done() is called, it is theoretically
1718 * possible to always nopwrite, because the data that was written in
1719 * this txg is the same data that we are trying to write. However we
1720 * would need to check that this dbuf is not dirty in any future
1721 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1722 * don't nopwrite in this case.
1723 */
1724 zp->zp_nopwrite = B_FALSE;
1725
a6255b7f
DQ
1726 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1727 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1728 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
ccec7fbe 1729 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
a6255b7f 1730 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
428870ff
BB
1731
1732 return (0);
34dc7c2f
BB
1733}
1734
1735/*
1736 * Intent log support: sync the block associated with db to disk.
1737 * N.B. and XXX: the caller is responsible for making sure that the
1738 * data isn't changing while dmu_sync() is writing it.
1739 *
1740 * Return values:
1741 *
03c6040b 1742 * EEXIST: this txg has already been synced, so there's nothing to do.
34dc7c2f
BB
1743 * The caller should not log the write.
1744 *
1745 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1746 * The caller should not log the write.
1747 *
1748 * EALREADY: this block is already in the process of being synced.
1749 * The caller should track its progress (somehow).
1750 *
428870ff
BB
1751 * EIO: could not do the I/O.
1752 * The caller should do a txg_wait_synced().
34dc7c2f 1753 *
428870ff
BB
1754 * 0: the I/O has been initiated.
1755 * The caller should log this blkptr in the done callback.
1756 * It is possible that the I/O will fail, in which case
1757 * the error will be reported to the done callback and
1758 * propagated to pio from zio_done().
34dc7c2f
BB
1759 */
1760int
428870ff 1761dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
34dc7c2f 1762{
428870ff
BB
1763 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1764 objset_t *os = db->db_objset;
1765 dsl_dataset_t *ds = os->os_dsl_dataset;
cccbed9f 1766 dbuf_dirty_record_t *dr, *dr_next;
428870ff 1767 dmu_sync_arg_t *dsa;
5dbd68a3 1768 zbookmark_phys_t zb;
428870ff 1769 zio_prop_t zp;
572e2857 1770 dnode_t *dn;
34dc7c2f 1771
428870ff 1772 ASSERT(pio != NULL);
34dc7c2f
BB
1773 ASSERT(txg != 0);
1774
428870ff
BB
1775 SET_BOOKMARK(&zb, ds->ds_object,
1776 db->db.db_object, db->db_level, db->db_blkid);
1777
572e2857
BB
1778 DB_DNODE_ENTER(db);
1779 dn = DB_DNODE(db);
82644107 1780 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
572e2857 1781 DB_DNODE_EXIT(db);
34dc7c2f
BB
1782
1783 /*
428870ff 1784 * If we're frozen (running ziltest), we always need to generate a bp.
34dc7c2f 1785 */
428870ff
BB
1786 if (txg > spa_freeze_txg(os->os_spa))
1787 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1788
1789 /*
428870ff
BB
1790 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1791 * and us. If we determine that this txg is not yet syncing,
1792 * but it begins to sync a moment later, that's OK because the
1793 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
34dc7c2f 1794 */
428870ff
BB
1795 mutex_enter(&db->db_mtx);
1796
1797 if (txg <= spa_last_synced_txg(os->os_spa)) {
34dc7c2f 1798 /*
428870ff 1799 * This txg has already synced. There's nothing to do.
34dc7c2f 1800 */
428870ff 1801 mutex_exit(&db->db_mtx);
2e528b49 1802 return (SET_ERROR(EEXIST));
34dc7c2f
BB
1803 }
1804
428870ff
BB
1805 if (txg <= spa_syncing_txg(os->os_spa)) {
1806 /*
1807 * This txg is currently syncing, so we can't mess with
1808 * the dirty record anymore; just write a new log block.
1809 */
1810 mutex_exit(&db->db_mtx);
1811 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1812 }
1813
cccbed9f 1814 dr = dbuf_find_dirty_eq(db, txg);
428870ff
BB
1815
1816 if (dr == NULL) {
34dc7c2f 1817 /*
428870ff 1818 * There's no dr for this dbuf, so it must have been freed.
34dc7c2f
BB
1819 * There's no need to log writes to freed blocks, so we're done.
1820 */
1821 mutex_exit(&db->db_mtx);
2e528b49 1822 return (SET_ERROR(ENOENT));
34dc7c2f
BB
1823 }
1824
cccbed9f
MM
1825 dr_next = list_next(&db->db_dirty_records, dr);
1826 ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
03c6040b 1827
02dc43bc
MA
1828 if (db->db_blkptr != NULL) {
1829 /*
1830 * We need to fill in zgd_bp with the current blkptr so that
1831 * the nopwrite code can check if we're writing the same
1832 * data that's already on disk. We can only nopwrite if we
1833 * are sure that after making the copy, db_blkptr will not
1834 * change until our i/o completes. We ensure this by
1835 * holding the db_mtx, and only allowing nopwrite if the
1836 * block is not already dirty (see below). This is verified
1837 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1838 * not changed.
1839 */
1840 *zgd->zgd_bp = *db->db_blkptr;
1841 }
1842
03c6040b 1843 /*
f3c517d8
MA
1844 * Assume the on-disk data is X, the current syncing data (in
1845 * txg - 1) is Y, and the current in-memory data is Z (currently
1846 * in dmu_sync).
1847 *
1848 * We usually want to perform a nopwrite if X and Z are the
1849 * same. However, if Y is different (i.e. the BP is going to
1850 * change before this write takes effect), then a nopwrite will
1851 * be incorrect - we would override with X, which could have
1852 * been freed when Y was written.
1853 *
1854 * (Note that this is not a concern when we are nop-writing from
1855 * syncing context, because X and Y must be identical, because
1856 * all previous txgs have been synced.)
1857 *
1858 * Therefore, we disable nopwrite if the current BP could change
1859 * before this TXG. There are two ways it could change: by
1860 * being dirty (dr_next is non-NULL), or by being freed
1861 * (dnode_block_freed()). This behavior is verified by
1862 * zio_done(), which VERIFYs that the override BP is identical
1863 * to the on-disk BP.
03c6040b 1864 */
f3c517d8
MA
1865 DB_DNODE_ENTER(db);
1866 dn = DB_DNODE(db);
cccbed9f 1867 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
03c6040b 1868 zp.zp_nopwrite = B_FALSE;
f3c517d8 1869 DB_DNODE_EXIT(db);
03c6040b 1870
34dc7c2f 1871 ASSERT(dr->dr_txg == txg);
428870ff
BB
1872 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1873 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
34dc7c2f 1874 /*
428870ff
BB
1875 * We have already issued a sync write for this buffer,
1876 * or this buffer has already been synced. It could not
34dc7c2f
BB
1877 * have been dirtied since, or we would have cleared the state.
1878 */
34dc7c2f 1879 mutex_exit(&db->db_mtx);
2e528b49 1880 return (SET_ERROR(EALREADY));
34dc7c2f
BB
1881 }
1882
428870ff 1883 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
34dc7c2f 1884 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
34dc7c2f 1885 mutex_exit(&db->db_mtx);
34dc7c2f 1886
79c76d5b 1887 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1888 dsa->dsa_dr = dr;
1889 dsa->dsa_done = done;
1890 dsa->dsa_zgd = zgd;
1891 dsa->dsa_tx = NULL;
b128c09f 1892
ed2f7ba0
AM
1893 zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
1894 dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db),
ccec7fbe 1895 &zp, dmu_sync_ready, NULL, dmu_sync_done, dsa,
bc77ba73 1896 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
b128c09f 1897
428870ff 1898 return (0);
34dc7c2f
BB
1899}
1900
b5256303
TC
1901int
1902dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1903{
1904 dnode_t *dn;
1905 int err;
1906
1907 err = dnode_hold(os, object, FTAG, &dn);
1908 if (err)
1909 return (err);
1910 err = dnode_set_nlevels(dn, nlevels, tx);
1911 dnode_rele(dn, FTAG);
1912 return (err);
1913}
1914
34dc7c2f
BB
1915int
1916dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
4ea3f864 1917 dmu_tx_t *tx)
34dc7c2f
BB
1918{
1919 dnode_t *dn;
1920 int err;
1921
428870ff 1922 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
1923 if (err)
1924 return (err);
1925 err = dnode_set_blksz(dn, size, ibs, tx);
1926 dnode_rele(dn, FTAG);
1927 return (err);
1928}
1929
ae76f45c
TC
1930int
1931dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1932 dmu_tx_t *tx)
1933{
1934 dnode_t *dn;
1935 int err;
1936
1937 err = dnode_hold(os, object, FTAG, &dn);
1938 if (err)
1939 return (err);
1940 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
369aa501 1941 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
ae76f45c
TC
1942 rw_exit(&dn->dn_struct_rwlock);
1943 dnode_rele(dn, FTAG);
1944 return (0);
1945}
1946
34dc7c2f
BB
1947void
1948dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
4ea3f864 1949 dmu_tx_t *tx)
34dc7c2f
BB
1950{
1951 dnode_t *dn;
1952
9b67f605
MA
1953 /*
1954 * Send streams include each object's checksum function. This
1955 * check ensures that the receiving system can understand the
1956 * checksum function transmitted.
1957 */
1958 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1959
1960 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1961 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
34dc7c2f
BB
1962 dn->dn_checksum = checksum;
1963 dnode_setdirty(dn, tx);
1964 dnode_rele(dn, FTAG);
1965}
1966
1967void
1968dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
4ea3f864 1969 dmu_tx_t *tx)
34dc7c2f
BB
1970{
1971 dnode_t *dn;
1972
9b67f605
MA
1973 /*
1974 * Send streams include each object's compression function. This
1975 * check ensures that the receiving system can understand the
1976 * compression function transmitted.
1977 */
1978 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1979
1980 VERIFY0(dnode_hold(os, object, FTAG, &dn));
34dc7c2f
BB
1981 dn->dn_compress = compress;
1982 dnode_setdirty(dn, tx);
1983 dnode_rele(dn, FTAG);
1984}
1985
faf0f58c
MA
1986/*
1987 * When the "redundant_metadata" property is set to "most", only indirect
1988 * blocks of this level and higher will have an additional ditto block.
1989 */
18168da7 1990static const int zfs_redundant_metadata_most_ditto_level = 2;
faf0f58c 1991
428870ff 1992void
82644107 1993dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
428870ff
BB
1994{
1995 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
9ae529ec 1996 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
572e2857 1997 (wp & WP_SPILL));
428870ff
BB
1998 enum zio_checksum checksum = os->os_checksum;
1999 enum zio_compress compress = os->os_compress;
10b3c7f5 2000 uint8_t complevel = os->os_complevel;
428870ff 2001 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
03c6040b
GW
2002 boolean_t dedup = B_FALSE;
2003 boolean_t nopwrite = B_FALSE;
428870ff 2004 boolean_t dedup_verify = os->os_dedup_verify;
b5256303 2005 boolean_t encrypt = B_FALSE;
428870ff 2006 int copies = os->os_copies;
a7004725 2007
428870ff 2008 /*
03c6040b
GW
2009 * We maintain different write policies for each of the following
2010 * types of data:
2011 * 1. metadata
2012 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2013 * 3. all other level 0 blocks
428870ff
BB
2014 */
2015 if (ismd) {
b1d21733
TC
2016 /*
2017 * XXX -- we should design a compression algorithm
2018 * that specializes in arrays of bps.
2019 */
2020 compress = zio_compress_select(os->os_spa,
2021 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
03c6040b 2022
428870ff
BB
2023 /*
2024 * Metadata always gets checksummed. If the data
2025 * checksum is multi-bit correctable, and it's not a
2026 * ZBT-style checksum, then it's suitable for metadata
2027 * as well. Otherwise, the metadata checksum defaults
2028 * to fletcher4.
2029 */
3c67d83a
TH
2030 if (!(zio_checksum_table[checksum].ci_flags &
2031 ZCHECKSUM_FLAG_METADATA) ||
2032 (zio_checksum_table[checksum].ci_flags &
2033 ZCHECKSUM_FLAG_EMBEDDED))
428870ff 2034 checksum = ZIO_CHECKSUM_FLETCHER_4;
faf0f58c 2035
5405be03
A
2036 switch (os->os_redundant_metadata) {
2037 case ZFS_REDUNDANT_METADATA_ALL:
faf0f58c 2038 copies++;
5405be03
A
2039 break;
2040 case ZFS_REDUNDANT_METADATA_MOST:
2041 if (level >= zfs_redundant_metadata_most_ditto_level ||
2042 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2043 copies++;
2044 break;
2045 case ZFS_REDUNDANT_METADATA_SOME:
2046 if (DMU_OT_IS_CRITICAL(type))
2047 copies++;
2048 break;
2049 case ZFS_REDUNDANT_METADATA_NONE:
2050 break;
2051 }
03c6040b
GW
2052 } else if (wp & WP_NOFILL) {
2053 ASSERT(level == 0);
428870ff 2054
428870ff 2055 /*
03c6040b
GW
2056 * If we're writing preallocated blocks, we aren't actually
2057 * writing them so don't set any policy properties. These
2058 * blocks are currently only used by an external subsystem
2059 * outside of zfs (i.e. dump) and not written by the zio
2060 * pipeline.
428870ff 2061 */
03c6040b
GW
2062 compress = ZIO_COMPRESS_OFF;
2063 checksum = ZIO_CHECKSUM_OFF;
428870ff 2064 } else {
99197f03
JG
2065 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2066 compress);
10b3c7f5
MN
2067 complevel = zio_complevel_select(os->os_spa, compress,
2068 complevel, complevel);
428870ff 2069
03c6040b
GW
2070 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2071 zio_checksum_select(dn->dn_checksum, checksum) :
2072 dedup_checksum;
428870ff 2073
03c6040b
GW
2074 /*
2075 * Determine dedup setting. If we are in dmu_sync(),
2076 * we won't actually dedup now because that's all
2077 * done in syncing context; but we do want to use the
e1cfd73f 2078 * dedup checksum. If the checksum is not strong
03c6040b
GW
2079 * enough to ensure unique signatures, force
2080 * dedup_verify.
2081 */
2082 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2083 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
3c67d83a
TH
2084 if (!(zio_checksum_table[checksum].ci_flags &
2085 ZCHECKSUM_FLAG_DEDUP))
03c6040b
GW
2086 dedup_verify = B_TRUE;
2087 }
428870ff 2088
03c6040b 2089 /*
3c67d83a
TH
2090 * Enable nopwrite if we have secure enough checksum
2091 * algorithm (see comment in zio_nop_write) and
2092 * compression is enabled. We don't enable nopwrite if
2093 * dedup is enabled as the two features are mutually
2094 * exclusive.
03c6040b 2095 */
3c67d83a
TH
2096 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2097 ZCHECKSUM_FLAG_NOPWRITE) &&
03c6040b 2098 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
428870ff
BB
2099 }
2100
b5256303
TC
2101 /*
2102 * All objects in an encrypted objset are protected from modification
2103 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2104 * in the bp, so we cannot use all copies. Encrypted objects are also
2105 * not subject to nopwrite since writing the same data will still
2106 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2107 * to avoid ambiguity in the dedup code since the DDT does not store
2108 * object types.
2109 */
2110 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2111 encrypt = B_TRUE;
2112
2113 if (DMU_OT_IS_ENCRYPTED(type)) {
2114 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2115 nopwrite = B_FALSE;
2116 } else {
2117 dedup = B_FALSE;
2118 }
2119
ae76f45c
TC
2120 if (level <= 0 &&
2121 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
b5256303 2122 compress = ZIO_COMPRESS_EMPTY;
ae76f45c 2123 }
b5256303 2124 }
2aa34383 2125
b5256303 2126 zp->zp_compress = compress;
10b3c7f5 2127 zp->zp_complevel = complevel;
b5256303 2128 zp->zp_checksum = checksum;
428870ff
BB
2129 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2130 zp->zp_level = level;
faf0f58c 2131 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
428870ff
BB
2132 zp->zp_dedup = dedup;
2133 zp->zp_dedup_verify = dedup && dedup_verify;
03c6040b 2134 zp->zp_nopwrite = nopwrite;
b5256303
TC
2135 zp->zp_encrypt = encrypt;
2136 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
861166b0
AZ
2137 memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2138 memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2139 memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
cc99f275
DB
2140 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2141 os->os_zpl_special_smallblock : 0;
b5256303
TC
2142
2143 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
428870ff
BB
2144}
2145
66aca247 2146/*
64bfa6ba
BB
2147 * Reports the location of data and holes in an object. In order to
2148 * accurately report holes all dirty data must be synced to disk. This
2149 * causes extremely poor performance when seeking for holes in a dirty file.
2150 * As a compromise, only provide hole data when the dnode is clean. When
2151 * a dnode is dirty report the dnode as having no holes by returning EBUSY
2152 * which is always safe to do.
66aca247 2153 */
34dc7c2f
BB
2154int
2155dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2156{
2157 dnode_t *dn;
64bfa6ba 2158 int restarted = 0, err;
34dc7c2f 2159
de198f2d 2160restart:
428870ff 2161 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2162 if (err)
2163 return (err);
66aca247 2164
de198f2d 2165 rw_enter(&dn->dn_struct_rwlock, RW_READER);
66aca247 2166
de198f2d
BB
2167 if (dnode_is_dirty(dn)) {
2168 /*
2169 * If the zfs_dmu_offset_next_sync module option is enabled
64bfa6ba
BB
2170 * then hole reporting has been requested. Dirty dnodes
2171 * must be synced to disk to accurately report holes.
de198f2d 2172 *
64bfa6ba
BB
2173 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2174 * held by the caller only a single restart will be required.
2175 * We tolerate callers which do not hold the rangelock by
2176 * returning EBUSY and not reporting holes after one restart.
de198f2d
BB
2177 */
2178 if (zfs_dmu_offset_next_sync) {
2179 rw_exit(&dn->dn_struct_rwlock);
2180 dnode_rele(dn, FTAG);
64bfa6ba
BB
2181
2182 if (restarted)
2183 return (SET_ERROR(EBUSY));
2184
de198f2d 2185 txg_wait_synced(dmu_objset_pool(os), 0);
64bfa6ba 2186 restarted = 1;
de198f2d
BB
2187 goto restart;
2188 }
34dc7c2f 2189
66aca247 2190 err = SET_ERROR(EBUSY);
de198f2d
BB
2191 } else {
2192 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2193 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2194 }
66aca247 2195
de198f2d 2196 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f
BB
2197 dnode_rele(dn, FTAG);
2198
2199 return (err);
67a1b037
PJD
2200}
2201
2202int
2203dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
d0d91f18 2204 blkptr_t *bps, size_t *nbpsp)
67a1b037
PJD
2205{
2206 dmu_buf_t **dbp, *dbuf;
2207 dmu_buf_impl_t *db;
2208 blkptr_t *bp;
2209 int error, numbufs;
2210
2211 error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2212 &numbufs, &dbp);
2213 if (error != 0) {
2214 if (error == ESRCH) {
2215 error = SET_ERROR(ENXIO);
2216 }
2217 return (error);
2218 }
2219
2220 ASSERT3U(numbufs, <=, *nbpsp);
2221
2222 for (int i = 0; i < numbufs; i++) {
2223 dbuf = dbp[i];
2224 db = (dmu_buf_impl_t *)dbuf;
ce0e1cc4
PJD
2225
2226 mutex_enter(&db->db_mtx);
67a1b037 2227
67a1b037
PJD
2228 if (!list_is_empty(&db->db_dirty_records)) {
2229 dbuf_dirty_record_t *dr;
2230
2231 dr = list_head(&db->db_dirty_records);
2232 if (dr->dt.dl.dr_brtwrite) {
2233 /*
2234 * This is very special case where we clone a
2235 * block and in the same transaction group we
2236 * read its BP (most likely to clone the clone).
2237 */
2238 bp = &dr->dt.dl.dr_overridden_by;
2239 } else {
2240 /*
2241 * The block was modified in the same
2242 * transaction group.
2243 */
ce0e1cc4 2244 mutex_exit(&db->db_mtx);
67a1b037
PJD
2245 error = SET_ERROR(EAGAIN);
2246 goto out;
2247 }
ce0e1cc4
PJD
2248 } else {
2249 bp = db->db_blkptr;
67a1b037 2250 }
ce0e1cc4
PJD
2251
2252 mutex_exit(&db->db_mtx);
2253
67a1b037
PJD
2254 if (bp == NULL) {
2255 /*
2256 * The block was created in this transaction group,
2257 * so it has no BP yet.
2258 */
2259 error = SET_ERROR(EAGAIN);
2260 goto out;
2261 }
67a1b037
PJD
2262 /*
2263 * Make sure we clone only data blocks.
2264 */
2265 if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
2266 error = SET_ERROR(EINVAL);
2267 goto out;
2268 }
2269
2270 bps[i] = *bp;
2271 }
2272
2273 *nbpsp = numbufs;
2274out:
2275 dmu_buf_rele_array(dbp, numbufs, FTAG);
2276
2277 return (error);
2278}
2279
bd8c6bd6 2280int
67a1b037
PJD
2281dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2282 dmu_tx_t *tx, const blkptr_t *bps, size_t nbps, boolean_t replay)
2283{
2284 spa_t *spa;
2285 dmu_buf_t **dbp, *dbuf;
2286 dmu_buf_impl_t *db;
2287 struct dirty_leaf *dl;
2288 dbuf_dirty_record_t *dr;
2289 const blkptr_t *bp;
bd8c6bd6 2290 int error = 0, i, numbufs;
67a1b037
PJD
2291
2292 spa = os->os_spa;
2293
2294 VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2295 &numbufs, &dbp));
2296 ASSERT3U(nbps, ==, numbufs);
2297
bd8c6bd6 2298 /*
fbbe5e96 2299 * Before we start cloning make sure that the dbufs sizes match new BPs
bd8c6bd6
PJD
2300 * sizes. If they don't, that's a no-go, as we are not able to shrink
2301 * dbufs.
2302 */
2303 for (i = 0; i < numbufs; i++) {
2304 dbuf = dbp[i];
2305 db = (dmu_buf_impl_t *)dbuf;
2306 bp = &bps[i];
2307
2308 ASSERT0(db->db_level);
2309 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
e6107668 2310 ASSERT(db->db_blkid != DMU_SPILL_BLKID);
bd8c6bd6
PJD
2311
2312 if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
2313 error = SET_ERROR(EXDEV);
2314 goto out;
2315 }
2316 }
2317
2318 for (i = 0; i < numbufs; i++) {
67a1b037
PJD
2319 dbuf = dbp[i];
2320 db = (dmu_buf_impl_t *)dbuf;
2321 bp = &bps[i];
2322
2323 ASSERT0(db->db_level);
2324 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
e6107668 2325 ASSERT(db->db_blkid != DMU_SPILL_BLKID);
67a1b037
PJD
2326 ASSERT(BP_IS_HOLE(bp) || dbuf->db_size == BP_GET_LSIZE(bp));
2327
555ef90c 2328 dmu_buf_will_clone(dbuf, tx);
ce0e1cc4
PJD
2329
2330 mutex_enter(&db->db_mtx);
2331
67a1b037 2332 dr = list_head(&db->db_dirty_records);
ce0e1cc4 2333 VERIFY(dr != NULL);
67a1b037
PJD
2334 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2335 dl = &dr->dt.dl;
2336 dl->dr_overridden_by = *bp;
2337 dl->dr_brtwrite = B_TRUE;
67a1b037
PJD
2338 dl->dr_override_state = DR_OVERRIDDEN;
2339 if (BP_IS_HOLE(bp)) {
2340 dl->dr_overridden_by.blk_birth = 0;
2341 dl->dr_overridden_by.blk_phys_birth = 0;
2342 } else {
2343 dl->dr_overridden_by.blk_birth = dr->dr_txg;
c71fe716
PJD
2344 if (!BP_IS_EMBEDDED(bp)) {
2345 dl->dr_overridden_by.blk_phys_birth =
2346 BP_PHYSICAL_BIRTH(bp);
2347 }
67a1b037
PJD
2348 }
2349
ce0e1cc4
PJD
2350 mutex_exit(&db->db_mtx);
2351
67a1b037
PJD
2352 /*
2353 * When data in embedded into BP there is no need to create
2354 * BRT entry as there is no data block. Just copy the BP as
2355 * it contains the data.
2356 * Also, when replaying ZIL we don't want to bump references
2357 * in the BRT as it was already done during ZIL claim.
2358 */
2359 if (!replay && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2360 brt_pending_add(spa, bp, tx);
2361 }
2362 }
bd8c6bd6 2363out:
67a1b037 2364 dmu_buf_rele_array(dbp, numbufs, FTAG);
bd8c6bd6
PJD
2365
2366 return (error);
34dc7c2f
BB
2367}
2368
2369void
e0b0ca98 2370__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
34dc7c2f 2371{
e0b0ca98 2372 dnode_phys_t *dnp = dn->dn_phys;
428870ff 2373
34dc7c2f
BB
2374 doi->doi_data_block_size = dn->dn_datablksz;
2375 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2376 1ULL << dn->dn_indblkshift : 0;
428870ff
BB
2377 doi->doi_type = dn->dn_type;
2378 doi->doi_bonus_type = dn->dn_bonustype;
2379 doi->doi_bonus_size = dn->dn_bonuslen;
50c957f7 2380 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
34dc7c2f
BB
2381 doi->doi_indirection = dn->dn_nlevels;
2382 doi->doi_checksum = dn->dn_checksum;
2383 doi->doi_compress = dn->dn_compress;
6c59307a 2384 doi->doi_nblkptr = dn->dn_nblkptr;
428870ff 2385 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
d1fada1e 2386 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
428870ff 2387 doi->doi_fill_count = 0;
1c27024e 2388 for (int i = 0; i < dnp->dn_nblkptr; i++)
9b67f605 2389 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
e0b0ca98
BB
2390}
2391
2392void
2393dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2394{
2395 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2396 mutex_enter(&dn->dn_mtx);
2397
2398 __dmu_object_info_from_dnode(dn, doi);
34dc7c2f
BB
2399
2400 mutex_exit(&dn->dn_mtx);
2401 rw_exit(&dn->dn_struct_rwlock);
2402}
2403
2404/*
2405 * Get information on a DMU object.
2406 * If doi is NULL, just indicates whether the object exists.
2407 */
2408int
2409dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2410{
2411 dnode_t *dn;
428870ff 2412 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2413
2414 if (err)
2415 return (err);
2416
2417 if (doi != NULL)
2418 dmu_object_info_from_dnode(dn, doi);
2419
2420 dnode_rele(dn, FTAG);
2421 return (0);
2422}
2423
2424/*
2425 * As above, but faster; can be used when you have a held dbuf in hand.
2426 */
2427void
572e2857 2428dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
34dc7c2f 2429{
572e2857
BB
2430 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2431
2432 DB_DNODE_ENTER(db);
2433 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2434 DB_DNODE_EXIT(db);
34dc7c2f
BB
2435}
2436
2437/*
2438 * Faster still when you only care about the size.
34dc7c2f
BB
2439 */
2440void
572e2857
BB
2441dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2442 u_longlong_t *nblk512)
34dc7c2f 2443{
572e2857
BB
2444 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2445 dnode_t *dn;
2446
2447 DB_DNODE_ENTER(db);
2448 dn = DB_DNODE(db);
34dc7c2f
BB
2449
2450 *blksize = dn->dn_datablksz;
50c957f7 2451 /* add in number of slots used for the dnode itself */
34dc7c2f 2452 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
50c957f7
NB
2453 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2454 DB_DNODE_EXIT(db);
2455}
2456
2457void
2458dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2459{
2460 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2461 dnode_t *dn;
2462
2463 DB_DNODE_ENTER(db);
2464 dn = DB_DNODE(db);
2465 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
572e2857 2466 DB_DNODE_EXIT(db);
34dc7c2f
BB
2467}
2468
2469void
2470byteswap_uint64_array(void *vbuf, size_t size)
2471{
2472 uint64_t *buf = vbuf;
2473 size_t count = size >> 3;
2474 int i;
2475
2476 ASSERT((size & 7) == 0);
2477
2478 for (i = 0; i < count; i++)
2479 buf[i] = BSWAP_64(buf[i]);
2480}
2481
2482void
2483byteswap_uint32_array(void *vbuf, size_t size)
2484{
2485 uint32_t *buf = vbuf;
2486 size_t count = size >> 2;
2487 int i;
2488
2489 ASSERT((size & 3) == 0);
2490
2491 for (i = 0; i < count; i++)
2492 buf[i] = BSWAP_32(buf[i]);
2493}
2494
2495void
2496byteswap_uint16_array(void *vbuf, size_t size)
2497{
2498 uint16_t *buf = vbuf;
2499 size_t count = size >> 1;
2500 int i;
2501
2502 ASSERT((size & 1) == 0);
2503
2504 for (i = 0; i < count; i++)
2505 buf[i] = BSWAP_16(buf[i]);
2506}
2507
34dc7c2f
BB
2508void
2509byteswap_uint8_array(void *vbuf, size_t size)
2510{
14e4e3cb 2511 (void) vbuf, (void) size;
34dc7c2f
BB
2512}
2513
2514void
2515dmu_init(void)
2516{
a6255b7f 2517 abd_init();
428870ff 2518 zfs_dbgmsg_init();
572e2857 2519 sa_cache_init();
572e2857 2520 dmu_objset_init();
34dc7c2f 2521 dnode_init();
428870ff 2522 zfetch_init();
570827e1 2523 dmu_tx_init();
34dc7c2f 2524 l2arc_init();
29809a6c 2525 arc_init();
d3c2ae1c 2526 dbuf_init();
34dc7c2f
BB
2527}
2528
2529void
2530dmu_fini(void)
2531{
e49f1e20 2532 arc_fini(); /* arc depends on l2arc, so arc must go first */
29809a6c 2533 l2arc_fini();
570827e1 2534 dmu_tx_fini();
428870ff 2535 zfetch_fini();
34dc7c2f 2536 dbuf_fini();
572e2857
BB
2537 dnode_fini();
2538 dmu_objset_fini();
428870ff
BB
2539 sa_cache_fini();
2540 zfs_dbgmsg_fini();
a6255b7f 2541 abd_fini();
34dc7c2f 2542}
c28b2279 2543
c28b2279 2544EXPORT_SYMBOL(dmu_bonus_hold);
6955b401 2545EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
a473d90c
AZ
2546EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2547EXPORT_SYMBOL(dmu_buf_rele_array);
57b650b8 2548EXPORT_SYMBOL(dmu_prefetch);
c28b2279 2549EXPORT_SYMBOL(dmu_free_range);
57b650b8 2550EXPORT_SYMBOL(dmu_free_long_range);
b663a23d 2551EXPORT_SYMBOL(dmu_free_long_object);
c28b2279 2552EXPORT_SYMBOL(dmu_read);
0eef1bde 2553EXPORT_SYMBOL(dmu_read_by_dnode);
c28b2279 2554EXPORT_SYMBOL(dmu_write);
0eef1bde 2555EXPORT_SYMBOL(dmu_write_by_dnode);
57b650b8 2556EXPORT_SYMBOL(dmu_prealloc);
c28b2279
BB
2557EXPORT_SYMBOL(dmu_object_info);
2558EXPORT_SYMBOL(dmu_object_info_from_dnode);
2559EXPORT_SYMBOL(dmu_object_info_from_db);
2560EXPORT_SYMBOL(dmu_object_size_from_db);
50c957f7 2561EXPORT_SYMBOL(dmu_object_dnsize_from_db);
b5256303 2562EXPORT_SYMBOL(dmu_object_set_nlevels);
c28b2279 2563EXPORT_SYMBOL(dmu_object_set_blocksize);
ae76f45c 2564EXPORT_SYMBOL(dmu_object_set_maxblkid);
c28b2279
BB
2565EXPORT_SYMBOL(dmu_object_set_checksum);
2566EXPORT_SYMBOL(dmu_object_set_compress);
94dac3e8 2567EXPORT_SYMBOL(dmu_offset_next);
57b650b8
BB
2568EXPORT_SYMBOL(dmu_write_policy);
2569EXPORT_SYMBOL(dmu_sync);
b10c77f7
BB
2570EXPORT_SYMBOL(dmu_request_arcbuf);
2571EXPORT_SYMBOL(dmu_return_arcbuf);
440a3eb9
TC
2572EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2573EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
b10c77f7 2574EXPORT_SYMBOL(dmu_buf_hold);
c28b2279 2575EXPORT_SYMBOL(dmu_ot);
afec56b4 2576
03fdcb9a
MM
2577ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2578 "Enable NOP writes");
03c6040b 2579
ab8d9c17 2580ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
03fdcb9a 2581 "Percentage of dirtied blocks from frees in one TXG");
66aca247 2582
03fdcb9a 2583ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
66aca247
DB
2584 "Enable forcing txg sync to find holes");
2585
7ada752a 2586/* CSTYLED */
fdc2d303 2587ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
d9b4bf06 2588 "Limit one prefetch call to this size");