]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu.c
Project Quota on ZFS
[mirror_zfs.git] / module / zfs / dmu.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
82644107 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
bc77ba73 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
a08abc1b 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
5475aada 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
34dc7c2f
BB
28 */
29
34dc7c2f
BB
30#include <sys/dmu.h>
31#include <sys/dmu_impl.h>
32#include <sys/dmu_tx.h>
33#include <sys/dbuf.h>
34#include <sys/dnode.h>
35#include <sys/zfs_context.h>
36#include <sys/dmu_objset.h>
37#include <sys/dmu_traverse.h>
38#include <sys/dsl_dataset.h>
39#include <sys/dsl_dir.h>
40#include <sys/dsl_pool.h>
41#include <sys/dsl_synctask.h>
42#include <sys/dsl_prop.h>
43#include <sys/dmu_zfetch.h>
44#include <sys/zfs_ioctl.h>
45#include <sys/zap.h>
46#include <sys/zio_checksum.h>
03c6040b 47#include <sys/zio_compress.h>
428870ff 48#include <sys/sa.h>
62bdd5eb 49#include <sys/zfeature.h>
a6255b7f 50#include <sys/abd.h>
539d33c7 51#include <sys/trace_dmu.h>
f763c3d1 52#include <sys/zfs_rlock.h>
34dc7c2f
BB
53#ifdef _KERNEL
54#include <sys/vmsystm.h>
b128c09f 55#include <sys/zfs_znode.h>
34dc7c2f
BB
56#endif
57
03c6040b
GW
58/*
59 * Enable/disable nopwrite feature.
60 */
61int zfs_nopwrite_enabled = 1;
62
539d33c7
GM
63/*
64 * Tunable to control percentage of dirtied blocks from frees in one TXG.
65 * After this threshold is crossed, additional dirty blocks from frees
66 * wait until the next TXG.
67 * A value of zero will disable this throttle.
68 */
bef78122 69unsigned long zfs_per_txg_dirty_frees_percent = 30;
539d33c7 70
66aca247
DB
71/*
72 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
73 */
74int zfs_dmu_offset_next_sync = 0;
75
34dc7c2f 76const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
b5256303
TC
77 { DMU_BSWAP_UINT8, TRUE, FALSE, "unallocated" },
78 { DMU_BSWAP_ZAP, TRUE, FALSE, "object directory" },
79 { DMU_BSWAP_UINT64, TRUE, FALSE, "object array" },
80 { DMU_BSWAP_UINT8, TRUE, FALSE, "packed nvlist" },
81 { DMU_BSWAP_UINT64, TRUE, FALSE, "packed nvlist size" },
82 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj" },
83 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj header" },
84 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map header" },
85 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map" },
86 { DMU_BSWAP_UINT64, TRUE, TRUE, "ZIL intent log" },
87 { DMU_BSWAP_DNODE, TRUE, TRUE, "DMU dnode" },
88 { DMU_BSWAP_OBJSET, TRUE, FALSE, "DMU objset" },
89 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL directory" },
90 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL directory child map"},
91 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dataset snap map" },
92 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL props" },
93 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL dataset" },
94 { DMU_BSWAP_ZNODE, TRUE, FALSE, "ZFS znode" },
95 { DMU_BSWAP_OLDACL, TRUE, TRUE, "ZFS V0 ACL" },
96 { DMU_BSWAP_UINT8, FALSE, TRUE, "ZFS plain file" },
97 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS directory" },
98 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS master node" },
99 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS delete queue" },
100 { DMU_BSWAP_UINT8, FALSE, TRUE, "zvol object" },
101 { DMU_BSWAP_ZAP, TRUE, FALSE, "zvol prop" },
102 { DMU_BSWAP_UINT8, FALSE, TRUE, "other uint8[]" },
103 { DMU_BSWAP_UINT64, FALSE, TRUE, "other uint64[]" },
104 { DMU_BSWAP_ZAP, TRUE, FALSE, "other ZAP" },
105 { DMU_BSWAP_ZAP, TRUE, FALSE, "persistent error log" },
106 { DMU_BSWAP_UINT8, TRUE, FALSE, "SPA history" },
107 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA history offsets" },
108 { DMU_BSWAP_ZAP, TRUE, FALSE, "Pool properties" },
109 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL permissions" },
110 { DMU_BSWAP_ACL, TRUE, TRUE, "ZFS ACL" },
111 { DMU_BSWAP_UINT8, TRUE, TRUE, "ZFS SYSACL" },
112 { DMU_BSWAP_UINT8, TRUE, TRUE, "FUID table" },
113 { DMU_BSWAP_UINT64, TRUE, FALSE, "FUID table size" },
114 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dataset next clones"},
115 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan work queue" },
9c5167d1
NF
116 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS user/group/project used" },
117 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS user/group/project quota"},
b5256303
TC
118 { DMU_BSWAP_ZAP, TRUE, FALSE, "snapshot refcount tags"},
119 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT ZAP algorithm" },
120 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT statistics" },
121 { DMU_BSWAP_UINT8, TRUE, TRUE, "System attributes" },
122 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA master node" },
123 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA attr registration" },
124 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA attr layouts" },
125 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan translations" },
126 { DMU_BSWAP_UINT8, FALSE, TRUE, "deduplicated block" },
127 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL deadlist map" },
128 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL deadlist map hdr" },
129 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dir clones" },
130 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj subobj" }
9ae529ec
CS
131};
132
133const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
134 { byteswap_uint8_array, "uint8" },
135 { byteswap_uint16_array, "uint16" },
136 { byteswap_uint32_array, "uint32" },
137 { byteswap_uint64_array, "uint64" },
138 { zap_byteswap, "zap" },
139 { dnode_buf_byteswap, "dnode" },
140 { dmu_objset_byteswap, "objset" },
141 { zfs_znode_byteswap, "znode" },
142 { zfs_oldacl_byteswap, "oldacl" },
143 { zfs_acl_byteswap, "acl" }
34dc7c2f
BB
144};
145
2bce8049
MA
146int
147dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
148 void *tag, dmu_buf_t **dbp)
149{
150 uint64_t blkid;
151 dmu_buf_impl_t *db;
152
153 blkid = dbuf_whichblock(dn, 0, offset);
154 rw_enter(&dn->dn_struct_rwlock, RW_READER);
155 db = dbuf_hold(dn, blkid, tag);
156 rw_exit(&dn->dn_struct_rwlock);
157
158 if (db == NULL) {
159 *dbp = NULL;
160 return (SET_ERROR(EIO));
161 }
162
163 *dbp = &db->db;
164 return (0);
165}
34dc7c2f 166int
9b67f605
MA
167dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
168 void *tag, dmu_buf_t **dbp)
34dc7c2f
BB
169{
170 dnode_t *dn;
171 uint64_t blkid;
172 dmu_buf_impl_t *db;
173 int err;
428870ff
BB
174
175 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
176 if (err)
177 return (err);
fcff0f35 178 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f
BB
179 rw_enter(&dn->dn_struct_rwlock, RW_READER);
180 db = dbuf_hold(dn, blkid, tag);
181 rw_exit(&dn->dn_struct_rwlock);
9b67f605
MA
182 dnode_rele(dn, FTAG);
183
34dc7c2f 184 if (db == NULL) {
9b67f605
MA
185 *dbp = NULL;
186 return (SET_ERROR(EIO));
187 }
188
189 *dbp = &db->db;
190 return (err);
191}
192
2bce8049
MA
193int
194dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
195 void *tag, dmu_buf_t **dbp, int flags)
196{
197 int err;
198 int db_flags = DB_RF_CANFAIL;
199
200 if (flags & DMU_READ_NO_PREFETCH)
201 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
202 if (flags & DMU_READ_NO_DECRYPT)
203 db_flags |= DB_RF_NO_DECRYPT;
2bce8049
MA
204
205 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
206 if (err == 0) {
207 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
208 err = dbuf_read(db, NULL, db_flags);
209 if (err != 0) {
210 dbuf_rele(db, tag);
211 *dbp = NULL;
212 }
213 }
214
215 return (err);
216}
217
9b67f605
MA
218int
219dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
220 void *tag, dmu_buf_t **dbp, int flags)
221{
222 int err;
223 int db_flags = DB_RF_CANFAIL;
224
225 if (flags & DMU_READ_NO_PREFETCH)
226 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
227 if (flags & DMU_READ_NO_DECRYPT)
228 db_flags |= DB_RF_NO_DECRYPT;
9b67f605
MA
229
230 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
231 if (err == 0) {
232 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
428870ff 233 err = dbuf_read(db, NULL, db_flags);
9b67f605 234 if (err != 0) {
34dc7c2f 235 dbuf_rele(db, tag);
9b67f605 236 *dbp = NULL;
34dc7c2f
BB
237 }
238 }
239
34dc7c2f
BB
240 return (err);
241}
242
243int
244dmu_bonus_max(void)
245{
50c957f7 246 return (DN_OLD_MAX_BONUSLEN);
34dc7c2f
BB
247}
248
249int
572e2857 250dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
34dc7c2f 251{
572e2857
BB
252 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
253 dnode_t *dn;
254 int error;
34dc7c2f 255
572e2857
BB
256 DB_DNODE_ENTER(db);
257 dn = DB_DNODE(db);
258
259 if (dn->dn_bonus != db) {
2e528b49 260 error = SET_ERROR(EINVAL);
572e2857 261 } else if (newsize < 0 || newsize > db_fake->db_size) {
2e528b49 262 error = SET_ERROR(EINVAL);
572e2857
BB
263 } else {
264 dnode_setbonuslen(dn, newsize, tx);
265 error = 0;
266 }
267
268 DB_DNODE_EXIT(db);
269 return (error);
34dc7c2f
BB
270}
271
428870ff 272int
572e2857 273dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
428870ff 274{
572e2857
BB
275 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
276 dnode_t *dn;
277 int error;
428870ff 278
572e2857
BB
279 DB_DNODE_ENTER(db);
280 dn = DB_DNODE(db);
428870ff 281
9ae529ec 282 if (!DMU_OT_IS_VALID(type)) {
2e528b49 283 error = SET_ERROR(EINVAL);
572e2857 284 } else if (dn->dn_bonus != db) {
2e528b49 285 error = SET_ERROR(EINVAL);
572e2857
BB
286 } else {
287 dnode_setbonus_type(dn, type, tx);
288 error = 0;
289 }
428870ff 290
572e2857
BB
291 DB_DNODE_EXIT(db);
292 return (error);
293}
294
295dmu_object_type_t
296dmu_get_bonustype(dmu_buf_t *db_fake)
297{
298 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
299 dnode_t *dn;
300 dmu_object_type_t type;
301
302 DB_DNODE_ENTER(db);
303 dn = DB_DNODE(db);
304 type = dn->dn_bonustype;
305 DB_DNODE_EXIT(db);
306
307 return (type);
428870ff
BB
308}
309
310int
311dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
312{
313 dnode_t *dn;
314 int error;
315
316 error = dnode_hold(os, object, FTAG, &dn);
317 dbuf_rm_spill(dn, tx);
318 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
319 dnode_rm_spill(dn, tx);
320 rw_exit(&dn->dn_struct_rwlock);
321 dnode_rele(dn, FTAG);
322 return (error);
323}
324
34dc7c2f
BB
325/*
326 * returns ENOENT, EIO, or 0.
327 */
328int
b5256303
TC
329dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, uint32_t flags,
330 dmu_buf_t **dbp)
34dc7c2f
BB
331{
332 dnode_t *dn;
333 dmu_buf_impl_t *db;
334 int error;
b5256303
TC
335 uint32_t db_flags = DB_RF_MUST_SUCCEED;
336
337 if (flags & DMU_READ_NO_PREFETCH)
338 db_flags |= DB_RF_NOPREFETCH;
339 if (flags & DMU_READ_NO_DECRYPT)
340 db_flags |= DB_RF_NO_DECRYPT;
34dc7c2f 341
428870ff 342 error = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
343 if (error)
344 return (error);
345
346 rw_enter(&dn->dn_struct_rwlock, RW_READER);
347 if (dn->dn_bonus == NULL) {
348 rw_exit(&dn->dn_struct_rwlock);
349 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
350 if (dn->dn_bonus == NULL)
351 dbuf_create_bonus(dn);
352 }
353 db = dn->dn_bonus;
34dc7c2f
BB
354
355 /* as long as the bonus buf is held, the dnode will be held */
572e2857 356 if (refcount_add(&db->db_holds, tag) == 1) {
34dc7c2f 357 VERIFY(dnode_add_ref(dn, db));
73ad4a9f 358 atomic_inc_32(&dn->dn_dbufs_count);
572e2857
BB
359 }
360
361 /*
362 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
363 * hold and incrementing the dbuf count to ensure that dnode_move() sees
364 * a dnode hold for every dbuf.
365 */
366 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f
BB
367
368 dnode_rele(dn, FTAG);
369
b5256303
TC
370 error = dbuf_read(db, NULL, db_flags);
371 if (error) {
372 dnode_evict_bonus(dn);
373 dbuf_rele(db, tag);
374 *dbp = NULL;
375 return (error);
376 }
34dc7c2f
BB
377
378 *dbp = &db->db;
379 return (0);
380}
381
b5256303
TC
382int
383dmu_bonus_hold(objset_t *os, uint64_t obj, void *tag, dmu_buf_t **dbp)
384{
385 return (dmu_bonus_hold_impl(os, obj, tag, DMU_READ_NO_PREFETCH, dbp));
386}
387
428870ff
BB
388/*
389 * returns ENOENT, EIO, or 0.
390 *
391 * This interface will allocate a blank spill dbuf when a spill blk
392 * doesn't already exist on the dnode.
393 *
394 * if you only want to find an already existing spill db, then
395 * dmu_spill_hold_existing() should be used.
396 */
397int
398dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
399{
400 dmu_buf_impl_t *db = NULL;
401 int err;
402
403 if ((flags & DB_RF_HAVESTRUCT) == 0)
404 rw_enter(&dn->dn_struct_rwlock, RW_READER);
405
406 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
407
408 if ((flags & DB_RF_HAVESTRUCT) == 0)
409 rw_exit(&dn->dn_struct_rwlock);
410
b182ac00 411 if (db == NULL) {
412 *dbp = NULL;
413 return (SET_ERROR(EIO));
414 }
572e2857
BB
415 err = dbuf_read(db, NULL, flags);
416 if (err == 0)
417 *dbp = &db->db;
b182ac00 418 else {
572e2857 419 dbuf_rele(db, tag);
b182ac00 420 *dbp = NULL;
421 }
428870ff
BB
422 return (err);
423}
424
425int
426dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
427{
572e2857
BB
428 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
429 dnode_t *dn;
428870ff
BB
430 int err;
431
572e2857
BB
432 DB_DNODE_ENTER(db);
433 dn = DB_DNODE(db);
434
435 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
2e528b49 436 err = SET_ERROR(EINVAL);
572e2857
BB
437 } else {
438 rw_enter(&dn->dn_struct_rwlock, RW_READER);
439
440 if (!dn->dn_have_spill) {
2e528b49 441 err = SET_ERROR(ENOENT);
572e2857
BB
442 } else {
443 err = dmu_spill_hold_by_dnode(dn,
444 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
445 }
428870ff 446
428870ff 447 rw_exit(&dn->dn_struct_rwlock);
428870ff 448 }
572e2857
BB
449
450 DB_DNODE_EXIT(db);
428870ff
BB
451 return (err);
452}
453
454int
455dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
456{
572e2857
BB
457 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
458 dnode_t *dn;
459 int err;
460
461 DB_DNODE_ENTER(db);
462 dn = DB_DNODE(db);
463 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
464 DB_DNODE_EXIT(db);
465
466 return (err);
428870ff
BB
467}
468
34dc7c2f
BB
469/*
470 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
471 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
472 * and can induce severe lock contention when writing to several files
473 * whose dnodes are in the same block.
474 */
475static int
9babb374 476dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
7f60329a 477 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
34dc7c2f
BB
478{
479 dmu_buf_t **dbp;
480 uint64_t blkid, nblks, i;
9babb374 481 uint32_t dbuf_flags;
34dc7c2f
BB
482 int err;
483 zio_t *zio;
484
485 ASSERT(length <= DMU_MAX_ACCESS);
486
7f60329a
MA
487 /*
488 * Note: We directly notify the prefetch code of this read, so that
489 * we can tell it about the multi-block read. dbuf_read() only knows
490 * about the one block it is accessing.
491 */
492 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
493 DB_RF_NOPREFETCH;
34dc7c2f
BB
494
495 rw_enter(&dn->dn_struct_rwlock, RW_READER);
496 if (dn->dn_datablkshift) {
497 int blkshift = dn->dn_datablkshift;
7f60329a
MA
498 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
499 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
34dc7c2f
BB
500 } else {
501 if (offset + length > dn->dn_datablksz) {
502 zfs_panic_recover("zfs: accessing past end of object "
503 "%llx/%llx (size=%u access=%llu+%llu)",
504 (longlong_t)dn->dn_objset->
505 os_dsl_dataset->ds_object,
506 (longlong_t)dn->dn_object, dn->dn_datablksz,
507 (longlong_t)offset, (longlong_t)length);
45d1cae3 508 rw_exit(&dn->dn_struct_rwlock);
2e528b49 509 return (SET_ERROR(EIO));
34dc7c2f
BB
510 }
511 nblks = 1;
512 }
79c76d5b 513 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
34dc7c2f 514
b128c09f 515 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
fcff0f35 516 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f 517 for (i = 0; i < nblks; i++) {
7f60329a 518 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
34dc7c2f
BB
519 if (db == NULL) {
520 rw_exit(&dn->dn_struct_rwlock);
521 dmu_buf_rele_array(dbp, nblks, tag);
522 zio_nowait(zio);
2e528b49 523 return (SET_ERROR(EIO));
34dc7c2f 524 }
7f60329a 525
34dc7c2f 526 /* initiate async i/o */
7f60329a 527 if (read)
9babb374 528 (void) dbuf_read(db, zio, dbuf_flags);
34dc7c2f
BB
529 dbp[i] = &db->db;
530 }
7f60329a 531
755065f3
AM
532 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
533 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
534 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
535 read && DNODE_IS_CACHEABLE(dn));
7f60329a 536 }
34dc7c2f
BB
537 rw_exit(&dn->dn_struct_rwlock);
538
539 /* wait for async i/o */
540 err = zio_wait(zio);
541 if (err) {
542 dmu_buf_rele_array(dbp, nblks, tag);
543 return (err);
544 }
545
546 /* wait for other io to complete */
547 if (read) {
548 for (i = 0; i < nblks; i++) {
549 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
550 mutex_enter(&db->db_mtx);
551 while (db->db_state == DB_READ ||
552 db->db_state == DB_FILL)
553 cv_wait(&db->db_changed, &db->db_mtx);
554 if (db->db_state == DB_UNCACHED)
2e528b49 555 err = SET_ERROR(EIO);
34dc7c2f
BB
556 mutex_exit(&db->db_mtx);
557 if (err) {
558 dmu_buf_rele_array(dbp, nblks, tag);
559 return (err);
560 }
561 }
562 }
563
564 *numbufsp = nblks;
565 *dbpp = dbp;
566 return (0);
567}
568
569static int
570dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
571 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
572{
573 dnode_t *dn;
574 int err;
575
428870ff 576 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
577 if (err)
578 return (err);
579
580 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 581 numbufsp, dbpp, DMU_READ_PREFETCH);
34dc7c2f
BB
582
583 dnode_rele(dn, FTAG);
584
585 return (err);
586}
587
588int
572e2857 589dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
7f60329a
MA
590 uint64_t length, boolean_t read, void *tag, int *numbufsp,
591 dmu_buf_t ***dbpp)
34dc7c2f 592{
572e2857
BB
593 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
594 dnode_t *dn;
34dc7c2f
BB
595 int err;
596
572e2857
BB
597 DB_DNODE_ENTER(db);
598 dn = DB_DNODE(db);
34dc7c2f 599 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 600 numbufsp, dbpp, DMU_READ_PREFETCH);
572e2857 601 DB_DNODE_EXIT(db);
34dc7c2f
BB
602
603 return (err);
604}
605
606void
607dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
608{
609 int i;
610 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
611
612 if (numbufs == 0)
613 return;
614
615 for (i = 0; i < numbufs; i++) {
616 if (dbp[i])
617 dbuf_rele(dbp[i], tag);
618 }
619
620 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
621}
622
e8b96c60 623/*
fcff0f35
PD
624 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
625 * indirect blocks prefeteched will be those that point to the blocks containing
626 * the data starting at offset, and continuing to offset + len.
e8b96c60 627 *
b5256303
TC
628 * Note that if the indirect blocks above the blocks being prefetched are not
629 * in cache, they will be asychronously read in.
e8b96c60 630 */
34dc7c2f 631void
fcff0f35
PD
632dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
633 uint64_t len, zio_priority_t pri)
34dc7c2f
BB
634{
635 dnode_t *dn;
636 uint64_t blkid;
e8b96c60 637 int nblks, err;
34dc7c2f 638
34dc7c2f 639 if (len == 0) { /* they're interested in the bonus buffer */
572e2857 640 dn = DMU_META_DNODE(os);
34dc7c2f
BB
641
642 if (object == 0 || object >= DN_MAX_OBJECT)
643 return;
644
645 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
646 blkid = dbuf_whichblock(dn, level,
647 object * sizeof (dnode_phys_t));
648 dbuf_prefetch(dn, level, blkid, pri, 0);
34dc7c2f
BB
649 rw_exit(&dn->dn_struct_rwlock);
650 return;
651 }
652
653 /*
654 * XXX - Note, if the dnode for the requested object is not
655 * already cached, we will do a *synchronous* read in the
656 * dnode_hold() call. The same is true for any indirects.
657 */
428870ff 658 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
659 if (err != 0)
660 return;
661
662 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
663 /*
664 * offset + len - 1 is the last byte we want to prefetch for, and offset
665 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
666 * last block we want to prefetch, and dbuf_whichblock(dn, level,
667 * offset) is the first. Then the number we need to prefetch is the
668 * last - first + 1.
669 */
670 if (level > 0 || dn->dn_datablkshift != 0) {
671 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
672 dbuf_whichblock(dn, level, offset) + 1;
34dc7c2f
BB
673 } else {
674 nblks = (offset < dn->dn_datablksz);
675 }
676
677 if (nblks != 0) {
fcff0f35 678 blkid = dbuf_whichblock(dn, level, offset);
1c27024e 679 for (int i = 0; i < nblks; i++)
fcff0f35 680 dbuf_prefetch(dn, level, blkid + i, pri, 0);
34dc7c2f
BB
681 }
682
683 rw_exit(&dn->dn_struct_rwlock);
684
685 dnode_rele(dn, FTAG);
686}
687
45d1cae3
BB
688/*
689 * Get the next "chunk" of file data to free. We traverse the file from
690 * the end so that the file gets shorter over time (if we crashes in the
691 * middle, this will leave us in a better state). We find allocated file
692 * data by simply searching the allocated level 1 indirects.
b663a23d
MA
693 *
694 * On input, *start should be the first offset that does not need to be
695 * freed (e.g. "offset + length"). On return, *start will be the first
696 * offset that should be freed.
45d1cae3 697 */
b128c09f 698static int
b663a23d 699get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
b128c09f 700{
b663a23d
MA
701 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
702 /* bytes of data covered by a level-1 indirect block */
45d1cae3 703 uint64_t iblkrange =
b128c09f
BB
704 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
705
b663a23d 706 ASSERT3U(minimum, <=, *start);
b128c09f 707
b663a23d
MA
708 if (*start - minimum <= iblkrange * maxblks) {
709 *start = minimum;
b128c09f
BB
710 return (0);
711 }
45d1cae3 712 ASSERT(ISP2(iblkrange));
b128c09f 713
1c27024e 714 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
b128c09f
BB
715 int err;
716
b663a23d
MA
717 /*
718 * dnode_next_offset(BACKWARDS) will find an allocated L1
719 * indirect block at or before the input offset. We must
720 * decrement *start so that it is at the end of the region
721 * to search.
722 */
723 (*start)--;
b128c09f 724 err = dnode_next_offset(dn,
45d1cae3 725 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
b128c09f 726
b663a23d 727 /* if there are no indirect blocks before start, we are done */
45d1cae3 728 if (err == ESRCH) {
b663a23d
MA
729 *start = minimum;
730 break;
731 } else if (err != 0) {
b128c09f 732 return (err);
45d1cae3 733 }
b128c09f 734
b663a23d 735 /* set start to the beginning of this L1 indirect */
45d1cae3 736 *start = P2ALIGN(*start, iblkrange);
b128c09f 737 }
b663a23d
MA
738 if (*start < minimum)
739 *start = minimum;
b128c09f
BB
740 return (0);
741}
742
a08abc1b
GM
743/*
744 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
745 * otherwise return false.
746 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
747 */
748/*ARGSUSED*/
749static boolean_t
750dmu_objset_zfs_unmounting(objset_t *os)
751{
752#ifdef _KERNEL
753 if (dmu_objset_type(os) == DMU_OST_ZFS)
754 return (zfs_get_vfs_flag_unmounted(os));
755#endif
756 return (B_FALSE);
757}
758
b128c09f
BB
759static int
760dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
440a3eb9 761 uint64_t length, boolean_t raw)
b128c09f 762{
c97d3069 763 uint64_t object_size;
b663a23d 764 int err;
539d33c7
GM
765 uint64_t dirty_frees_threshold;
766 dsl_pool_t *dp = dmu_objset_pool(os);
b663a23d 767
c97d3069
BB
768 if (dn == NULL)
769 return (SET_ERROR(EINVAL));
770
771 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
b663a23d 772 if (offset >= object_size)
b128c09f 773 return (0);
b128c09f 774
539d33c7
GM
775 if (zfs_per_txg_dirty_frees_percent <= 100)
776 dirty_frees_threshold =
777 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
778 else
779 dirty_frees_threshold = zfs_dirty_data_max / 4;
780
b663a23d
MA
781 if (length == DMU_OBJECT_END || offset + length > object_size)
782 length = object_size - offset;
783
784 while (length != 0) {
539d33c7
GM
785 uint64_t chunk_end, chunk_begin, chunk_len;
786 uint64_t long_free_dirty_all_txgs = 0;
b663a23d
MA
787 dmu_tx_t *tx;
788
a08abc1b
GM
789 if (dmu_objset_zfs_unmounting(dn->dn_objset))
790 return (SET_ERROR(EINTR));
791
b663a23d
MA
792 chunk_end = chunk_begin = offset + length;
793
794 /* move chunk_begin backwards to the beginning of this chunk */
795 err = get_next_chunk(dn, &chunk_begin, offset);
b128c09f
BB
796 if (err)
797 return (err);
b663a23d
MA
798 ASSERT3U(chunk_begin, >=, offset);
799 ASSERT3U(chunk_begin, <=, chunk_end);
b128c09f 800
539d33c7
GM
801 chunk_len = chunk_end - chunk_begin;
802
803 mutex_enter(&dp->dp_lock);
1c27024e 804 for (int t = 0; t < TXG_SIZE; t++) {
539d33c7
GM
805 long_free_dirty_all_txgs +=
806 dp->dp_long_free_dirty_pertxg[t];
807 }
808 mutex_exit(&dp->dp_lock);
809
810 /*
811 * To avoid filling up a TXG with just frees wait for
812 * the next TXG to open before freeing more chunks if
813 * we have reached the threshold of frees
814 */
815 if (dirty_frees_threshold != 0 &&
816 long_free_dirty_all_txgs >= dirty_frees_threshold) {
817 txg_wait_open(dp, 0);
818 continue;
819 }
820
b128c09f 821 tx = dmu_tx_create(os);
539d33c7 822 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
19d55079
MA
823
824 /*
825 * Mark this transaction as typically resulting in a net
826 * reduction in space used.
827 */
828 dmu_tx_mark_netfree(tx);
b128c09f
BB
829 err = dmu_tx_assign(tx, TXG_WAIT);
830 if (err) {
831 dmu_tx_abort(tx);
832 return (err);
833 }
539d33c7
GM
834
835 mutex_enter(&dp->dp_lock);
836 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] +=
837 chunk_len;
838 mutex_exit(&dp->dp_lock);
839 DTRACE_PROBE3(free__long__range,
840 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len,
841 uint64_t, dmu_tx_get_txg(tx));
842 dnode_free_range(dn, chunk_begin, chunk_len, tx);
440a3eb9
TC
843
844 /* if this is a raw free, mark the dirty record as such */
845 if (raw) {
846 dbuf_dirty_record_t *dr = dn->dn_dbuf->db_last_dirty;
847
848 while (dr != NULL && dr->dr_txg > tx->tx_txg)
849 dr = dr->dr_next;
850 if (dr != NULL && dr->dr_txg == tx->tx_txg)
851 dr->dt.dl.dr_raw = B_TRUE;
852 }
853
b128c09f 854 dmu_tx_commit(tx);
b663a23d 855
539d33c7 856 length -= chunk_len;
b128c09f
BB
857 }
858 return (0);
859}
860
861int
862dmu_free_long_range(objset_t *os, uint64_t object,
863 uint64_t offset, uint64_t length)
864{
865 dnode_t *dn;
866 int err;
867
428870ff 868 err = dnode_hold(os, object, FTAG, &dn);
b128c09f
BB
869 if (err != 0)
870 return (err);
440a3eb9 871 err = dmu_free_long_range_impl(os, dn, offset, length, B_FALSE);
92bc214c
MA
872
873 /*
874 * It is important to zero out the maxblkid when freeing the entire
875 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
876 * will take the fast path, and (b) dnode_reallocate() can verify
877 * that the entire file has been freed.
878 */
b0bc7a84 879 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
92bc214c
MA
880 dn->dn_maxblkid = 0;
881
b128c09f
BB
882 dnode_rele(dn, FTAG);
883 return (err);
884}
885
440a3eb9
TC
886/*
887 * This function is equivalent to dmu_free_long_range(), but also
888 * marks the new dirty record as a raw write.
889 */
b128c09f 890int
440a3eb9
TC
891dmu_free_long_range_raw(objset_t *os, uint64_t object,
892 uint64_t offset, uint64_t length)
893{
894 dnode_t *dn;
895 int err;
896
897 err = dnode_hold(os, object, FTAG, &dn);
898 if (err != 0)
899 return (err);
900 err = dmu_free_long_range_impl(os, dn, offset, length, B_TRUE);
901
902 /*
903 * It is important to zero out the maxblkid when freeing the entire
904 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
905 * will take the fast path, and (b) dnode_reallocate() can verify
906 * that the entire file has been freed.
907 */
908 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
909 dn->dn_maxblkid = 0;
910
911 dnode_rele(dn, FTAG);
912 return (err);
913}
914
915static int
916dmu_free_long_object_impl(objset_t *os, uint64_t object, boolean_t raw)
b128c09f 917{
b128c09f
BB
918 dmu_tx_t *tx;
919 int err;
920
b663a23d 921 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
b128c09f
BB
922 if (err != 0)
923 return (err);
b663a23d
MA
924
925 tx = dmu_tx_create(os);
926 dmu_tx_hold_bonus(tx, object);
927 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
19d55079 928 dmu_tx_mark_netfree(tx);
b663a23d
MA
929 err = dmu_tx_assign(tx, TXG_WAIT);
930 if (err == 0) {
35df0bb5
TC
931 if (raw)
932 err = dmu_object_dirty_raw(os, object, tx);
933 if (err == 0)
934 err = dmu_object_free(os, object, tx);
440a3eb9 935
b663a23d 936 dmu_tx_commit(tx);
b128c09f 937 } else {
b663a23d 938 dmu_tx_abort(tx);
b128c09f 939 }
b663a23d 940
b128c09f
BB
941 return (err);
942}
943
440a3eb9
TC
944int
945dmu_free_long_object(objset_t *os, uint64_t object)
946{
947 return (dmu_free_long_object_impl(os, object, B_FALSE));
948}
949
950int
951dmu_free_long_object_raw(objset_t *os, uint64_t object)
952{
953 return (dmu_free_long_object_impl(os, object, B_TRUE));
954}
955
956
34dc7c2f
BB
957int
958dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
959 uint64_t size, dmu_tx_t *tx)
960{
961 dnode_t *dn;
428870ff 962 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
963 if (err)
964 return (err);
965 ASSERT(offset < UINT64_MAX);
ee45fbd8 966 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
34dc7c2f
BB
967 dnode_free_range(dn, offset, size, tx);
968 dnode_rele(dn, FTAG);
969 return (0);
970}
971
0eef1bde 972static int
973dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
9babb374 974 void *buf, uint32_t flags)
34dc7c2f 975{
34dc7c2f 976 dmu_buf_t **dbp;
0eef1bde 977 int numbufs, err = 0;
34dc7c2f
BB
978
979 /*
980 * Deal with odd block sizes, where there can't be data past the first
981 * block. If we ever do the tail block optimization, we will need to
982 * handle that here as well.
983 */
45d1cae3 984 if (dn->dn_maxblkid == 0) {
c9520ecc 985 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
34dc7c2f
BB
986 MIN(size, dn->dn_datablksz - offset);
987 bzero((char *)buf + newsz, size - newsz);
988 size = newsz;
989 }
990
991 while (size > 0) {
992 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
45d1cae3 993 int i;
34dc7c2f
BB
994
995 /*
996 * NB: we could do this block-at-a-time, but it's nice
997 * to be reading in parallel.
998 */
999 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
9babb374 1000 TRUE, FTAG, &numbufs, &dbp, flags);
34dc7c2f
BB
1001 if (err)
1002 break;
1003
1004 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1005 uint64_t tocpy;
1006 int64_t bufoff;
34dc7c2f
BB
1007 dmu_buf_t *db = dbp[i];
1008
1009 ASSERT(size > 0);
1010
1011 bufoff = offset - db->db_offset;
c9520ecc 1012 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f 1013
c9520ecc 1014 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
34dc7c2f
BB
1015
1016 offset += tocpy;
1017 size -= tocpy;
1018 buf = (char *)buf + tocpy;
1019 }
1020 dmu_buf_rele_array(dbp, numbufs, FTAG);
1021 }
34dc7c2f
BB
1022 return (err);
1023}
1024
0eef1bde 1025int
1026dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1027 void *buf, uint32_t flags)
34dc7c2f 1028{
0eef1bde 1029 dnode_t *dn;
1030 int err;
34dc7c2f 1031
0eef1bde 1032 err = dnode_hold(os, object, FTAG, &dn);
1033 if (err != 0)
1034 return (err);
34dc7c2f 1035
0eef1bde 1036 err = dmu_read_impl(dn, offset, size, buf, flags);
1037 dnode_rele(dn, FTAG);
1038 return (err);
1039}
1040
1041int
1042dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1043 uint32_t flags)
1044{
1045 return (dmu_read_impl(dn, offset, size, buf, flags));
1046}
1047
1048static void
1049dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1050 const void *buf, dmu_tx_t *tx)
1051{
1052 int i;
34dc7c2f
BB
1053
1054 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1055 uint64_t tocpy;
1056 int64_t bufoff;
34dc7c2f
BB
1057 dmu_buf_t *db = dbp[i];
1058
1059 ASSERT(size > 0);
1060
1061 bufoff = offset - db->db_offset;
c9520ecc 1062 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f
BB
1063
1064 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1065
1066 if (tocpy == db->db_size)
1067 dmu_buf_will_fill(db, tx);
1068 else
1069 dmu_buf_will_dirty(db, tx);
1070
60101509 1071 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
34dc7c2f
BB
1072
1073 if (tocpy == db->db_size)
1074 dmu_buf_fill_done(db, tx);
1075
1076 offset += tocpy;
1077 size -= tocpy;
1078 buf = (char *)buf + tocpy;
1079 }
0eef1bde 1080}
1081
1082void
1083dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1084 const void *buf, dmu_tx_t *tx)
1085{
1086 dmu_buf_t **dbp;
1087 int numbufs;
1088
1089 if (size == 0)
1090 return;
1091
1092 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1093 FALSE, FTAG, &numbufs, &dbp));
1094 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1095 dmu_buf_rele_array(dbp, numbufs, FTAG);
1096}
1097
1098void
1099dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1100 const void *buf, dmu_tx_t *tx)
1101{
1102 dmu_buf_t **dbp;
1103 int numbufs;
1104
1105 if (size == 0)
1106 return;
1107
1108 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1109 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1110 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
34dc7c2f
BB
1111 dmu_buf_rele_array(dbp, numbufs, FTAG);
1112}
1113
b128c09f
BB
1114void
1115dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1116 dmu_tx_t *tx)
1117{
1118 dmu_buf_t **dbp;
1119 int numbufs, i;
1120
1121 if (size == 0)
1122 return;
1123
1124 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1125 FALSE, FTAG, &numbufs, &dbp));
1126
1127 for (i = 0; i < numbufs; i++) {
1128 dmu_buf_t *db = dbp[i];
1129
1130 dmu_buf_will_not_fill(db, tx);
1131 }
1132 dmu_buf_rele_array(dbp, numbufs, FTAG);
1133}
1134
9b67f605
MA
1135void
1136dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1137 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1138 int compressed_size, int byteorder, dmu_tx_t *tx)
1139{
1140 dmu_buf_t *db;
1141
1142 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1143 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1144 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1145 FTAG, &db));
1146
1147 dmu_buf_write_embedded(db,
1148 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1149 uncompressed_size, compressed_size, byteorder, tx);
1150
1151 dmu_buf_rele(db, FTAG);
1152}
1153
428870ff
BB
1154/*
1155 * DMU support for xuio
1156 */
1157kstat_t *xuio_ksp = NULL;
1158
59e6e7ca
BB
1159typedef struct xuio_stats {
1160 /* loaned yet not returned arc_buf */
1161 kstat_named_t xuiostat_onloan_rbuf;
1162 kstat_named_t xuiostat_onloan_wbuf;
1163 /* whether a copy is made when loaning out a read buffer */
1164 kstat_named_t xuiostat_rbuf_copied;
1165 kstat_named_t xuiostat_rbuf_nocopy;
1166 /* whether a copy is made when assigning a write buffer */
1167 kstat_named_t xuiostat_wbuf_copied;
1168 kstat_named_t xuiostat_wbuf_nocopy;
1169} xuio_stats_t;
1170
1171static xuio_stats_t xuio_stats = {
1172 { "onloan_read_buf", KSTAT_DATA_UINT64 },
1173 { "onloan_write_buf", KSTAT_DATA_UINT64 },
1174 { "read_buf_copied", KSTAT_DATA_UINT64 },
1175 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
1176 { "write_buf_copied", KSTAT_DATA_UINT64 },
1177 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
1178};
1179
d1d7e268
MK
1180#define XUIOSTAT_INCR(stat, val) \
1181 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
1182#define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
59e6e7ca 1183
5a6765cf 1184#ifdef HAVE_UIO_ZEROCOPY
428870ff
BB
1185int
1186dmu_xuio_init(xuio_t *xuio, int nblk)
1187{
1188 dmu_xuio_t *priv;
1189 uio_t *uio = &xuio->xu_uio;
1190
1191 uio->uio_iovcnt = nblk;
79c76d5b 1192 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
428870ff 1193
79c76d5b 1194 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
428870ff 1195 priv->cnt = nblk;
79c76d5b 1196 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
5475aada 1197 priv->iovp = (iovec_t *)uio->uio_iov;
428870ff
BB
1198 XUIO_XUZC_PRIV(xuio) = priv;
1199
1200 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1201 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1202 else
1203 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1204
1205 return (0);
1206}
1207
1208void
1209dmu_xuio_fini(xuio_t *xuio)
1210{
1211 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1212 int nblk = priv->cnt;
1213
1214 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1215 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1216 kmem_free(priv, sizeof (dmu_xuio_t));
1217
1218 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1219 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1220 else
1221 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1222}
1223
1224/*
1225 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1226 * and increase priv->next by 1.
1227 */
1228int
1229dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1230{
1231 struct iovec *iov;
1232 uio_t *uio = &xuio->xu_uio;
1233 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1234 int i = priv->next++;
1235
1236 ASSERT(i < priv->cnt);
2aa34383 1237 ASSERT(off + n <= arc_buf_lsize(abuf));
5475aada 1238 iov = (iovec_t *)uio->uio_iov + i;
428870ff
BB
1239 iov->iov_base = (char *)abuf->b_data + off;
1240 iov->iov_len = n;
1241 priv->bufs[i] = abuf;
1242 return (0);
1243}
1244
1245int
1246dmu_xuio_cnt(xuio_t *xuio)
1247{
1248 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1249 return (priv->cnt);
1250}
1251
1252arc_buf_t *
1253dmu_xuio_arcbuf(xuio_t *xuio, int i)
1254{
1255 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1256
1257 ASSERT(i < priv->cnt);
1258 return (priv->bufs[i]);
1259}
1260
1261void
1262dmu_xuio_clear(xuio_t *xuio, int i)
1263{
1264 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1265
1266 ASSERT(i < priv->cnt);
1267 priv->bufs[i] = NULL;
1268}
5a6765cf 1269#endif /* HAVE_UIO_ZEROCOPY */
428870ff
BB
1270
1271static void
1272xuio_stat_init(void)
1273{
1274 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1275 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1276 KSTAT_FLAG_VIRTUAL);
1277 if (xuio_ksp != NULL) {
1278 xuio_ksp->ks_data = &xuio_stats;
1279 kstat_install(xuio_ksp);
1280 }
1281}
1282
1283static void
1284xuio_stat_fini(void)
1285{
1286 if (xuio_ksp != NULL) {
1287 kstat_delete(xuio_ksp);
1288 xuio_ksp = NULL;
1289 }
1290}
1291
1292void
5043684a 1293xuio_stat_wbuf_copied(void)
428870ff
BB
1294{
1295 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1296}
1297
1298void
5043684a 1299xuio_stat_wbuf_nocopy(void)
428870ff
BB
1300{
1301 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1302}
1303
34dc7c2f 1304#ifdef _KERNEL
5228cf01 1305int
804e0504 1306dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
872e8d26
BB
1307{
1308 dmu_buf_t **dbp;
1309 int numbufs, i, err;
5a6765cf 1310#ifdef HAVE_UIO_ZEROCOPY
872e8d26 1311 xuio_t *xuio = NULL;
5a6765cf 1312#endif
872e8d26
BB
1313
1314 /*
1315 * NB: we could do this block-at-a-time, but it's nice
1316 * to be reading in parallel.
1317 */
804e0504
MA
1318 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1319 TRUE, FTAG, &numbufs, &dbp, 0);
872e8d26
BB
1320 if (err)
1321 return (err);
1322
1323 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1324 uint64_t tocpy;
1325 int64_t bufoff;
872e8d26
BB
1326 dmu_buf_t *db = dbp[i];
1327
1328 ASSERT(size > 0);
1329
1330 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1331 tocpy = MIN(db->db_size - bufoff, size);
872e8d26 1332
5a6765cf 1333#ifdef HAVE_UIO_ZEROCOPY
872e8d26
BB
1334 if (xuio) {
1335 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1336 arc_buf_t *dbuf_abuf = dbi->db_buf;
1337 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1338 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1339 if (!err) {
1340 uio->uio_resid -= tocpy;
1341 uio->uio_loffset += tocpy;
1342 }
1343
1344 if (abuf == dbuf_abuf)
1345 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1346 else
1347 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
5a6765cf 1348 } else
1349#endif
872e8d26
BB
1350 err = uiomove((char *)db->db_data + bufoff, tocpy,
1351 UIO_READ, uio);
872e8d26
BB
1352 if (err)
1353 break;
1354
1355 size -= tocpy;
1356 }
1357 dmu_buf_rele_array(dbp, numbufs, FTAG);
1358
1359 return (err);
1360}
1361
804e0504
MA
1362/*
1363 * Read 'size' bytes into the uio buffer.
1364 * From object zdb->db_object.
1365 * Starting at offset uio->uio_loffset.
1366 *
1367 * If the caller already has a dbuf in the target object
1368 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1369 * because we don't have to find the dnode_t for the object.
1370 */
1371int
1372dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1373{
1374 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1375 dnode_t *dn;
1376 int err;
1377
1378 if (size == 0)
1379 return (0);
1380
1381 DB_DNODE_ENTER(db);
1382 dn = DB_DNODE(db);
1383 err = dmu_read_uio_dnode(dn, uio, size);
1384 DB_DNODE_EXIT(db);
1385
1386 return (err);
1387}
1388
1389/*
1390 * Read 'size' bytes into the uio buffer.
1391 * From the specified object
1392 * Starting at offset uio->uio_loffset.
1393 */
1394int
1395dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1396{
1397 dnode_t *dn;
1398 int err;
1399
1400 if (size == 0)
1401 return (0);
1402
1403 err = dnode_hold(os, object, FTAG, &dn);
1404 if (err)
1405 return (err);
1406
1407 err = dmu_read_uio_dnode(dn, uio, size);
1408
1409 dnode_rele(dn, FTAG);
1410
1411 return (err);
1412}
1413
5228cf01 1414int
872e8d26
BB
1415dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1416{
1417 dmu_buf_t **dbp;
1418 int numbufs;
1419 int err = 0;
1420 int i;
1421
1422 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1423 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1424 if (err)
1425 return (err);
1426
1427 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1428 uint64_t tocpy;
1429 int64_t bufoff;
872e8d26
BB
1430 dmu_buf_t *db = dbp[i];
1431
1432 ASSERT(size > 0);
1433
1434 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1435 tocpy = MIN(db->db_size - bufoff, size);
872e8d26
BB
1436
1437 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1438
1439 if (tocpy == db->db_size)
1440 dmu_buf_will_fill(db, tx);
1441 else
1442 dmu_buf_will_dirty(db, tx);
1443
1444 /*
1445 * XXX uiomove could block forever (eg.nfs-backed
1446 * pages). There needs to be a uiolockdown() function
1447 * to lock the pages in memory, so that uiomove won't
1448 * block.
1449 */
1450 err = uiomove((char *)db->db_data + bufoff, tocpy,
1451 UIO_WRITE, uio);
1452
1453 if (tocpy == db->db_size)
1454 dmu_buf_fill_done(db, tx);
1455
1456 if (err)
1457 break;
1458
1459 size -= tocpy;
1460 }
1461
1462 dmu_buf_rele_array(dbp, numbufs, FTAG);
1463 return (err);
1464}
1465
804e0504
MA
1466/*
1467 * Write 'size' bytes from the uio buffer.
1468 * To object zdb->db_object.
1469 * Starting at offset uio->uio_loffset.
1470 *
1471 * If the caller already has a dbuf in the target object
1472 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1473 * because we don't have to find the dnode_t for the object.
1474 */
428870ff
BB
1475int
1476dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1477 dmu_tx_t *tx)
1478{
572e2857
BB
1479 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1480 dnode_t *dn;
1481 int err;
1482
428870ff
BB
1483 if (size == 0)
1484 return (0);
1485
572e2857
BB
1486 DB_DNODE_ENTER(db);
1487 dn = DB_DNODE(db);
1488 err = dmu_write_uio_dnode(dn, uio, size, tx);
1489 DB_DNODE_EXIT(db);
1490
1491 return (err);
428870ff
BB
1492}
1493
804e0504
MA
1494/*
1495 * Write 'size' bytes from the uio buffer.
1496 * To the specified object.
1497 * Starting at offset uio->uio_loffset.
1498 */
428870ff
BB
1499int
1500dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1501 dmu_tx_t *tx)
1502{
1503 dnode_t *dn;
1504 int err;
1505
1506 if (size == 0)
1507 return (0);
1508
1509 err = dnode_hold(os, object, FTAG, &dn);
1510 if (err)
1511 return (err);
1512
1513 err = dmu_write_uio_dnode(dn, uio, size, tx);
1514
1515 dnode_rele(dn, FTAG);
1516
1517 return (err);
1518}
872e8d26 1519#endif /* _KERNEL */
34dc7c2f 1520
9babb374
BB
1521/*
1522 * Allocate a loaned anonymous arc buffer.
1523 */
1524arc_buf_t *
1525dmu_request_arcbuf(dmu_buf_t *handle, int size)
1526{
572e2857 1527 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
9babb374 1528
2aa34383 1529 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
9babb374
BB
1530}
1531
1532/*
1533 * Free a loaned arc buffer.
1534 */
1535void
1536dmu_return_arcbuf(arc_buf_t *buf)
1537{
1538 arc_return_buf(buf, FTAG);
d3c2ae1c 1539 arc_buf_destroy(buf, FTAG);
9babb374
BB
1540}
1541
b5256303
TC
1542void
1543dmu_convert_to_raw(dmu_buf_t *handle, boolean_t byteorder, const uint8_t *salt,
1544 const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
1545{
1546 dmu_object_type_t type;
1547 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1548 uint64_t dsobj = dmu_objset_id(db->db_objset);
1549
1550 ASSERT3P(db->db_buf, !=, NULL);
1551 ASSERT3U(dsobj, !=, 0);
1552
1553 dmu_buf_will_change_crypt_params(handle, tx);
1554
1555 DB_DNODE_ENTER(db);
1556 type = DB_DNODE(db)->dn_type;
1557 DB_DNODE_EXIT(db);
1558
1559 /*
1560 * This technically violates the assumption the dmu code makes
1561 * that dnode blocks are only released in syncing context.
1562 */
1563 (void) arc_release(db->db_buf, db);
1564 arc_convert_to_raw(db->db_buf, dsobj, byteorder, type, salt, iv, mac);
1565}
1566
1567void
1568dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
1569 dmu_buf_t *handle, dmu_tx_t *tx)
1570{
1571 dmu_buf_t *dst_handle;
1572 dmu_buf_impl_t *dstdb;
1573 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle;
1574 arc_buf_t *abuf;
1575 uint64_t datalen;
1576 boolean_t byteorder;
1577 uint8_t salt[ZIO_DATA_SALT_LEN];
1578 uint8_t iv[ZIO_DATA_IV_LEN];
1579 uint8_t mac[ZIO_DATA_MAC_LEN];
1580
1581 ASSERT3P(srcdb->db_buf, !=, NULL);
1582
1583 /* hold the db that we want to write to */
1584 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle,
1585 DMU_READ_NO_DECRYPT));
1586 dstdb = (dmu_buf_impl_t *)dst_handle;
1587 datalen = arc_buf_size(srcdb->db_buf);
1588
1589 /* allocated an arc buffer that matches the type of srcdb->db_buf */
1590 if (arc_is_encrypted(srcdb->db_buf)) {
1591 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac);
1592 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os),
1593 byteorder, salt, iv, mac, DB_DNODE(dstdb)->dn_type,
1594 datalen, arc_buf_lsize(srcdb->db_buf),
1595 arc_get_compression(srcdb->db_buf));
1596 } else {
1597 /* we won't get a compressed db back from dmu_buf_hold() */
1598 ASSERT3U(arc_get_compression(srcdb->db_buf),
1599 ==, ZIO_COMPRESS_OFF);
1600 abuf = arc_loan_buf(os->os_spa,
1601 DMU_OT_IS_METADATA(DB_DNODE(dstdb)->dn_type), datalen);
1602 }
1603
1604 ASSERT3U(datalen, ==, arc_buf_size(abuf));
1605
1606 /* copy the data to the new buffer and assign it to the dstdb */
1607 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen);
1608 dbuf_assign_arcbuf(dstdb, abuf, tx);
1609 dmu_buf_rele(dst_handle, FTAG);
1610}
1611
9babb374
BB
1612/*
1613 * When possible directly assign passed loaned arc buffer to a dbuf.
1614 * If this is not possible copy the contents of passed arc buf via
1615 * dmu_write().
1616 */
1617void
440a3eb9 1618dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
9babb374
BB
1619 dmu_tx_t *tx)
1620{
9babb374 1621 dmu_buf_impl_t *db;
440a3eb9
TC
1622 objset_t *os = dn->dn_objset;
1623 uint64_t object = dn->dn_object;
2aa34383 1624 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
9babb374
BB
1625 uint64_t blkid;
1626
1627 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35 1628 blkid = dbuf_whichblock(dn, 0, offset);
9babb374
BB
1629 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1630 rw_exit(&dn->dn_struct_rwlock);
1631
88904bb3
MA
1632 /*
1633 * We can only assign if the offset is aligned, the arc buf is the
2aa34383 1634 * same size as the dbuf, and the dbuf is not metadata.
88904bb3 1635 */
2aa34383 1636 if (offset == db->db.db_offset && blksz == db->db.db_size) {
9babb374
BB
1637 dbuf_assign_arcbuf(db, buf, tx);
1638 dbuf_rele(db, FTAG);
1639 } else {
2aa34383
DK
1640 /* compressed bufs must always be assignable to their dbuf */
1641 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
524b4217 1642 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
2aa34383 1643
9babb374 1644 dbuf_rele(db, FTAG);
572e2857 1645 dmu_write(os, object, offset, blksz, buf->b_data, tx);
9babb374 1646 dmu_return_arcbuf(buf);
428870ff 1647 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
9babb374
BB
1648 }
1649}
1650
440a3eb9
TC
1651void
1652dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1653 dmu_tx_t *tx)
1654{
1655 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1656
1657 DB_DNODE_ENTER(dbuf);
1658 dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1659 DB_DNODE_EXIT(dbuf);
1660}
1661
34dc7c2f 1662typedef struct {
428870ff
BB
1663 dbuf_dirty_record_t *dsa_dr;
1664 dmu_sync_cb_t *dsa_done;
1665 zgd_t *dsa_zgd;
1666 dmu_tx_t *dsa_tx;
34dc7c2f
BB
1667} dmu_sync_arg_t;
1668
b128c09f
BB
1669/* ARGSUSED */
1670static void
1671dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1672{
428870ff
BB
1673 dmu_sync_arg_t *dsa = varg;
1674 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
b128c09f
BB
1675 blkptr_t *bp = zio->io_bp;
1676
428870ff
BB
1677 if (zio->io_error == 0) {
1678 if (BP_IS_HOLE(bp)) {
1679 /*
1680 * A block of zeros may compress to a hole, but the
1681 * block size still needs to be known for replay.
1682 */
1683 BP_SET_LSIZE(bp, db->db_size);
9b67f605 1684 } else if (!BP_IS_EMBEDDED(bp)) {
428870ff 1685 ASSERT(BP_GET_LEVEL(bp) == 0);
b5256303 1686 BP_SET_FILL(bp, 1);
428870ff 1687 }
b128c09f
BB
1688 }
1689}
1690
428870ff
BB
1691static void
1692dmu_sync_late_arrival_ready(zio_t *zio)
1693{
1694 dmu_sync_ready(zio, NULL, zio->io_private);
1695}
1696
34dc7c2f
BB
1697/* ARGSUSED */
1698static void
1699dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1700{
428870ff
BB
1701 dmu_sync_arg_t *dsa = varg;
1702 dbuf_dirty_record_t *dr = dsa->dsa_dr;
34dc7c2f 1703 dmu_buf_impl_t *db = dr->dr_dbuf;
34dc7c2f 1704
34dc7c2f
BB
1705 mutex_enter(&db->db_mtx);
1706 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
428870ff 1707 if (zio->io_error == 0) {
03c6040b
GW
1708 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1709 if (dr->dt.dl.dr_nopwrite) {
02dc43bc
MA
1710 blkptr_t *bp = zio->io_bp;
1711 blkptr_t *bp_orig = &zio->io_bp_orig;
1712 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
03c6040b
GW
1713
1714 ASSERT(BP_EQUAL(bp, bp_orig));
02dc43bc 1715 VERIFY(BP_EQUAL(bp, db->db_blkptr));
03c6040b 1716 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
02dc43bc 1717 VERIFY(zio_checksum_table[chksum].ci_flags &
3c67d83a 1718 ZCHECKSUM_FLAG_NOPWRITE);
03c6040b 1719 }
428870ff
BB
1720 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1721 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1722 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
a4069eef
PS
1723
1724 /*
1725 * Old style holes are filled with all zeros, whereas
1726 * new-style holes maintain their lsize, type, level,
1727 * and birth time (see zio_write_compress). While we
1728 * need to reset the BP_SET_LSIZE() call that happened
1729 * in dmu_sync_ready for old style holes, we do *not*
1730 * want to wipe out the information contained in new
1731 * style holes. Thus, only zero out the block pointer if
1732 * it's an old style hole.
1733 */
1734 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1735 dr->dt.dl.dr_overridden_by.blk_birth == 0)
428870ff
BB
1736 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1737 } else {
1738 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1739 }
34dc7c2f
BB
1740 cv_broadcast(&db->db_changed);
1741 mutex_exit(&db->db_mtx);
1742
428870ff 1743 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
34dc7c2f 1744
428870ff
BB
1745 kmem_free(dsa, sizeof (*dsa));
1746}
1747
1748static void
1749dmu_sync_late_arrival_done(zio_t *zio)
1750{
1751 blkptr_t *bp = zio->io_bp;
1752 dmu_sync_arg_t *dsa = zio->io_private;
03c6040b 1753 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
428870ff
BB
1754
1755 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
02dc43bc
MA
1756 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1757 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1758 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1759 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1760 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
428870ff
BB
1761 }
1762
1763 dmu_tx_commit(dsa->dsa_tx);
1764
1765 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1766
a6255b7f 1767 abd_put(zio->io_abd);
428870ff
BB
1768 kmem_free(dsa, sizeof (*dsa));
1769}
1770
1771static int
1772dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
5dbd68a3 1773 zio_prop_t *zp, zbookmark_phys_t *zb)
428870ff
BB
1774{
1775 dmu_sync_arg_t *dsa;
1776 dmu_tx_t *tx;
1777
1778 tx = dmu_tx_create(os);
1779 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1780 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1781 dmu_tx_abort(tx);
2e528b49
MA
1782 /* Make zl_get_data do txg_waited_synced() */
1783 return (SET_ERROR(EIO));
428870ff
BB
1784 }
1785
1ce23dca
PS
1786 /*
1787 * In order to prevent the zgd's lwb from being free'd prior to
1788 * dmu_sync_late_arrival_done() being called, we have to ensure
1789 * the lwb's "max txg" takes this tx's txg into account.
1790 */
1791 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1792
79c76d5b 1793 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1794 dsa->dsa_dr = NULL;
1795 dsa->dsa_done = done;
1796 dsa->dsa_zgd = zgd;
1797 dsa->dsa_tx = tx;
1798
02dc43bc
MA
1799 /*
1800 * Since we are currently syncing this txg, it's nontrivial to
1801 * determine what BP to nopwrite against, so we disable nopwrite.
1802 *
1803 * When syncing, the db_blkptr is initially the BP of the previous
1804 * txg. We can not nopwrite against it because it will be changed
1805 * (this is similar to the non-late-arrival case where the dbuf is
1806 * dirty in a future txg).
1807 *
1808 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1809 * We can not nopwrite against it because although the BP will not
1810 * (typically) be changed, the data has not yet been persisted to this
1811 * location.
1812 *
1813 * Finally, when dbuf_write_done() is called, it is theoretically
1814 * possible to always nopwrite, because the data that was written in
1815 * this txg is the same data that we are trying to write. However we
1816 * would need to check that this dbuf is not dirty in any future
1817 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1818 * don't nopwrite in this case.
1819 */
1820 zp->zp_nopwrite = B_FALSE;
1821
a6255b7f
DQ
1822 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1823 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1824 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1825 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1826 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
428870ff
BB
1827
1828 return (0);
34dc7c2f
BB
1829}
1830
1831/*
1832 * Intent log support: sync the block associated with db to disk.
1833 * N.B. and XXX: the caller is responsible for making sure that the
1834 * data isn't changing while dmu_sync() is writing it.
1835 *
1836 * Return values:
1837 *
03c6040b 1838 * EEXIST: this txg has already been synced, so there's nothing to do.
34dc7c2f
BB
1839 * The caller should not log the write.
1840 *
1841 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1842 * The caller should not log the write.
1843 *
1844 * EALREADY: this block is already in the process of being synced.
1845 * The caller should track its progress (somehow).
1846 *
428870ff
BB
1847 * EIO: could not do the I/O.
1848 * The caller should do a txg_wait_synced().
34dc7c2f 1849 *
428870ff
BB
1850 * 0: the I/O has been initiated.
1851 * The caller should log this blkptr in the done callback.
1852 * It is possible that the I/O will fail, in which case
1853 * the error will be reported to the done callback and
1854 * propagated to pio from zio_done().
34dc7c2f
BB
1855 */
1856int
428870ff 1857dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
34dc7c2f 1858{
428870ff
BB
1859 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1860 objset_t *os = db->db_objset;
1861 dsl_dataset_t *ds = os->os_dsl_dataset;
34dc7c2f 1862 dbuf_dirty_record_t *dr;
428870ff 1863 dmu_sync_arg_t *dsa;
5dbd68a3 1864 zbookmark_phys_t zb;
428870ff 1865 zio_prop_t zp;
572e2857 1866 dnode_t *dn;
34dc7c2f 1867
428870ff 1868 ASSERT(pio != NULL);
34dc7c2f
BB
1869 ASSERT(txg != 0);
1870
f763c3d1 1871 /* dbuf is within the locked range */
1872 ASSERT3U(db->db.db_offset, >=, zgd->zgd_rl->r_off);
1873 ASSERT3U(db->db.db_offset + db->db.db_size, <=,
1874 zgd->zgd_rl->r_off + zgd->zgd_rl->r_len);
1875
428870ff
BB
1876 SET_BOOKMARK(&zb, ds->ds_object,
1877 db->db.db_object, db->db_level, db->db_blkid);
1878
572e2857
BB
1879 DB_DNODE_ENTER(db);
1880 dn = DB_DNODE(db);
82644107 1881 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
572e2857 1882 DB_DNODE_EXIT(db);
34dc7c2f
BB
1883
1884 /*
428870ff 1885 * If we're frozen (running ziltest), we always need to generate a bp.
34dc7c2f 1886 */
428870ff
BB
1887 if (txg > spa_freeze_txg(os->os_spa))
1888 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1889
1890 /*
428870ff
BB
1891 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1892 * and us. If we determine that this txg is not yet syncing,
1893 * but it begins to sync a moment later, that's OK because the
1894 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
34dc7c2f 1895 */
428870ff
BB
1896 mutex_enter(&db->db_mtx);
1897
1898 if (txg <= spa_last_synced_txg(os->os_spa)) {
34dc7c2f 1899 /*
428870ff 1900 * This txg has already synced. There's nothing to do.
34dc7c2f 1901 */
428870ff 1902 mutex_exit(&db->db_mtx);
2e528b49 1903 return (SET_ERROR(EEXIST));
34dc7c2f
BB
1904 }
1905
428870ff
BB
1906 if (txg <= spa_syncing_txg(os->os_spa)) {
1907 /*
1908 * This txg is currently syncing, so we can't mess with
1909 * the dirty record anymore; just write a new log block.
1910 */
1911 mutex_exit(&db->db_mtx);
1912 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1913 }
1914
1915 dr = db->db_last_dirty;
428870ff 1916 while (dr && dr->dr_txg != txg)
34dc7c2f 1917 dr = dr->dr_next;
428870ff
BB
1918
1919 if (dr == NULL) {
34dc7c2f 1920 /*
428870ff 1921 * There's no dr for this dbuf, so it must have been freed.
34dc7c2f
BB
1922 * There's no need to log writes to freed blocks, so we're done.
1923 */
1924 mutex_exit(&db->db_mtx);
2e528b49 1925 return (SET_ERROR(ENOENT));
34dc7c2f
BB
1926 }
1927
03c6040b
GW
1928 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1929
02dc43bc
MA
1930 if (db->db_blkptr != NULL) {
1931 /*
1932 * We need to fill in zgd_bp with the current blkptr so that
1933 * the nopwrite code can check if we're writing the same
1934 * data that's already on disk. We can only nopwrite if we
1935 * are sure that after making the copy, db_blkptr will not
1936 * change until our i/o completes. We ensure this by
1937 * holding the db_mtx, and only allowing nopwrite if the
1938 * block is not already dirty (see below). This is verified
1939 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1940 * not changed.
1941 */
1942 *zgd->zgd_bp = *db->db_blkptr;
1943 }
1944
03c6040b 1945 /*
f3c517d8
MA
1946 * Assume the on-disk data is X, the current syncing data (in
1947 * txg - 1) is Y, and the current in-memory data is Z (currently
1948 * in dmu_sync).
1949 *
1950 * We usually want to perform a nopwrite if X and Z are the
1951 * same. However, if Y is different (i.e. the BP is going to
1952 * change before this write takes effect), then a nopwrite will
1953 * be incorrect - we would override with X, which could have
1954 * been freed when Y was written.
1955 *
1956 * (Note that this is not a concern when we are nop-writing from
1957 * syncing context, because X and Y must be identical, because
1958 * all previous txgs have been synced.)
1959 *
1960 * Therefore, we disable nopwrite if the current BP could change
1961 * before this TXG. There are two ways it could change: by
1962 * being dirty (dr_next is non-NULL), or by being freed
1963 * (dnode_block_freed()). This behavior is verified by
1964 * zio_done(), which VERIFYs that the override BP is identical
1965 * to the on-disk BP.
03c6040b 1966 */
f3c517d8
MA
1967 DB_DNODE_ENTER(db);
1968 dn = DB_DNODE(db);
1969 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
03c6040b 1970 zp.zp_nopwrite = B_FALSE;
f3c517d8 1971 DB_DNODE_EXIT(db);
03c6040b 1972
34dc7c2f 1973 ASSERT(dr->dr_txg == txg);
428870ff
BB
1974 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1975 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
34dc7c2f 1976 /*
428870ff
BB
1977 * We have already issued a sync write for this buffer,
1978 * or this buffer has already been synced. It could not
34dc7c2f
BB
1979 * have been dirtied since, or we would have cleared the state.
1980 */
34dc7c2f 1981 mutex_exit(&db->db_mtx);
2e528b49 1982 return (SET_ERROR(EALREADY));
34dc7c2f
BB
1983 }
1984
428870ff 1985 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
34dc7c2f 1986 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
34dc7c2f 1987 mutex_exit(&db->db_mtx);
34dc7c2f 1988
79c76d5b 1989 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1990 dsa->dsa_dr = dr;
1991 dsa->dsa_done = done;
1992 dsa->dsa_zgd = zgd;
1993 dsa->dsa_tx = NULL;
b128c09f 1994
428870ff 1995 zio_nowait(arc_write(pio, os->os_spa, txg,
02dc43bc 1996 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
d3c2ae1c 1997 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
bc77ba73 1998 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
b128c09f 1999
428870ff 2000 return (0);
34dc7c2f
BB
2001}
2002
b5256303
TC
2003int
2004dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2005{
2006 dnode_t *dn;
2007 int err;
2008
2009 err = dnode_hold(os, object, FTAG, &dn);
2010 if (err)
2011 return (err);
2012 err = dnode_set_nlevels(dn, nlevels, tx);
2013 dnode_rele(dn, FTAG);
2014 return (err);
2015}
2016
34dc7c2f
BB
2017int
2018dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
4ea3f864 2019 dmu_tx_t *tx)
34dc7c2f
BB
2020{
2021 dnode_t *dn;
2022 int err;
2023
428870ff 2024 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2025 if (err)
2026 return (err);
2027 err = dnode_set_blksz(dn, size, ibs, tx);
2028 dnode_rele(dn, FTAG);
2029 return (err);
2030}
2031
ae76f45c
TC
2032int
2033dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2034 dmu_tx_t *tx)
2035{
2036 dnode_t *dn;
2037 int err;
2038
2039 err = dnode_hold(os, object, FTAG, &dn);
2040 if (err)
2041 return (err);
2042 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2043 dnode_new_blkid(dn, maxblkid, tx, B_FALSE);
2044 rw_exit(&dn->dn_struct_rwlock);
2045 dnode_rele(dn, FTAG);
2046 return (0);
2047}
2048
34dc7c2f
BB
2049void
2050dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
4ea3f864 2051 dmu_tx_t *tx)
34dc7c2f
BB
2052{
2053 dnode_t *dn;
2054
9b67f605
MA
2055 /*
2056 * Send streams include each object's checksum function. This
2057 * check ensures that the receiving system can understand the
2058 * checksum function transmitted.
2059 */
2060 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2061
2062 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2063 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
34dc7c2f
BB
2064 dn->dn_checksum = checksum;
2065 dnode_setdirty(dn, tx);
2066 dnode_rele(dn, FTAG);
2067}
2068
2069void
2070dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
4ea3f864 2071 dmu_tx_t *tx)
34dc7c2f
BB
2072{
2073 dnode_t *dn;
2074
9b67f605
MA
2075 /*
2076 * Send streams include each object's compression function. This
2077 * check ensures that the receiving system can understand the
2078 * compression function transmitted.
2079 */
2080 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2081
2082 VERIFY0(dnode_hold(os, object, FTAG, &dn));
34dc7c2f
BB
2083 dn->dn_compress = compress;
2084 dnode_setdirty(dn, tx);
2085 dnode_rele(dn, FTAG);
2086}
2087
9b840763
TC
2088/*
2089 * Dirty an object and set the dirty record's raw flag. This is used
2090 * when writing raw data to an object that will not effect the
2091 * encryption parameters, specifically during raw receives.
2092 */
2093int
2094dmu_object_dirty_raw(objset_t *os, uint64_t object, dmu_tx_t *tx)
2095{
2096 dnode_t *dn;
2097 int err;
2098
2099 err = dnode_hold(os, object, FTAG, &dn);
2100 if (err)
2101 return (err);
2102 dmu_buf_will_change_crypt_params((dmu_buf_t *)dn->dn_dbuf, tx);
2103 dnode_rele(dn, FTAG);
2104 return (err);
2105}
2106
428870ff
BB
2107int zfs_mdcomp_disable = 0;
2108
faf0f58c
MA
2109/*
2110 * When the "redundant_metadata" property is set to "most", only indirect
2111 * blocks of this level and higher will have an additional ditto block.
2112 */
2113int zfs_redundant_metadata_most_ditto_level = 2;
2114
428870ff 2115void
82644107 2116dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
428870ff
BB
2117{
2118 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
9ae529ec 2119 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
572e2857 2120 (wp & WP_SPILL));
428870ff
BB
2121 enum zio_checksum checksum = os->os_checksum;
2122 enum zio_compress compress = os->os_compress;
2123 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
03c6040b
GW
2124 boolean_t dedup = B_FALSE;
2125 boolean_t nopwrite = B_FALSE;
428870ff 2126 boolean_t dedup_verify = os->os_dedup_verify;
b5256303 2127 boolean_t encrypt = B_FALSE;
428870ff 2128 int copies = os->os_copies;
a7004725 2129
428870ff 2130 /*
03c6040b
GW
2131 * We maintain different write policies for each of the following
2132 * types of data:
2133 * 1. metadata
2134 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2135 * 3. all other level 0 blocks
428870ff
BB
2136 */
2137 if (ismd) {
62bdd5eb
DL
2138 if (zfs_mdcomp_disable) {
2139 compress = ZIO_COMPRESS_EMPTY;
62bdd5eb 2140 } else {
99197f03
JG
2141 /*
2142 * XXX -- we should design a compression algorithm
2143 * that specializes in arrays of bps.
2144 */
2145 compress = zio_compress_select(os->os_spa,
2146 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
62bdd5eb 2147 }
03c6040b 2148
428870ff
BB
2149 /*
2150 * Metadata always gets checksummed. If the data
2151 * checksum is multi-bit correctable, and it's not a
2152 * ZBT-style checksum, then it's suitable for metadata
2153 * as well. Otherwise, the metadata checksum defaults
2154 * to fletcher4.
2155 */
3c67d83a
TH
2156 if (!(zio_checksum_table[checksum].ci_flags &
2157 ZCHECKSUM_FLAG_METADATA) ||
2158 (zio_checksum_table[checksum].ci_flags &
2159 ZCHECKSUM_FLAG_EMBEDDED))
428870ff 2160 checksum = ZIO_CHECKSUM_FLETCHER_4;
faf0f58c
MA
2161
2162 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2163 (os->os_redundant_metadata ==
2164 ZFS_REDUNDANT_METADATA_MOST &&
2165 (level >= zfs_redundant_metadata_most_ditto_level ||
2166 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2167 copies++;
03c6040b
GW
2168 } else if (wp & WP_NOFILL) {
2169 ASSERT(level == 0);
428870ff 2170
428870ff 2171 /*
03c6040b
GW
2172 * If we're writing preallocated blocks, we aren't actually
2173 * writing them so don't set any policy properties. These
2174 * blocks are currently only used by an external subsystem
2175 * outside of zfs (i.e. dump) and not written by the zio
2176 * pipeline.
428870ff 2177 */
03c6040b
GW
2178 compress = ZIO_COMPRESS_OFF;
2179 checksum = ZIO_CHECKSUM_OFF;
428870ff 2180 } else {
99197f03
JG
2181 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2182 compress);
428870ff 2183
03c6040b
GW
2184 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2185 zio_checksum_select(dn->dn_checksum, checksum) :
2186 dedup_checksum;
428870ff 2187
03c6040b
GW
2188 /*
2189 * Determine dedup setting. If we are in dmu_sync(),
2190 * we won't actually dedup now because that's all
2191 * done in syncing context; but we do want to use the
2192 * dedup checkum. If the checksum is not strong
2193 * enough to ensure unique signatures, force
2194 * dedup_verify.
2195 */
2196 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2197 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
3c67d83a
TH
2198 if (!(zio_checksum_table[checksum].ci_flags &
2199 ZCHECKSUM_FLAG_DEDUP))
03c6040b
GW
2200 dedup_verify = B_TRUE;
2201 }
428870ff 2202
03c6040b 2203 /*
3c67d83a
TH
2204 * Enable nopwrite if we have secure enough checksum
2205 * algorithm (see comment in zio_nop_write) and
2206 * compression is enabled. We don't enable nopwrite if
2207 * dedup is enabled as the two features are mutually
2208 * exclusive.
03c6040b 2209 */
3c67d83a
TH
2210 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2211 ZCHECKSUM_FLAG_NOPWRITE) &&
03c6040b 2212 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
428870ff
BB
2213 }
2214
b5256303
TC
2215 /*
2216 * All objects in an encrypted objset are protected from modification
2217 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2218 * in the bp, so we cannot use all copies. Encrypted objects are also
2219 * not subject to nopwrite since writing the same data will still
2220 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2221 * to avoid ambiguity in the dedup code since the DDT does not store
2222 * object types.
2223 */
2224 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2225 encrypt = B_TRUE;
2226
2227 if (DMU_OT_IS_ENCRYPTED(type)) {
2228 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2229 nopwrite = B_FALSE;
2230 } else {
2231 dedup = B_FALSE;
2232 }
2233
ae76f45c
TC
2234 if (level <= 0 &&
2235 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
b5256303 2236 compress = ZIO_COMPRESS_EMPTY;
ae76f45c 2237 }
b5256303 2238 }
2aa34383 2239
b5256303
TC
2240 zp->zp_compress = compress;
2241 zp->zp_checksum = checksum;
428870ff
BB
2242 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2243 zp->zp_level = level;
faf0f58c 2244 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
428870ff
BB
2245 zp->zp_dedup = dedup;
2246 zp->zp_dedup_verify = dedup && dedup_verify;
03c6040b 2247 zp->zp_nopwrite = nopwrite;
b5256303
TC
2248 zp->zp_encrypt = encrypt;
2249 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2250 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2251 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2252 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2253
2254 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
428870ff
BB
2255}
2256
66aca247
DB
2257/*
2258 * This function is only called from zfs_holey_common() for zpl_llseek()
2259 * in order to determine the location of holes. In order to accurately
2260 * report holes all dirty data must be synced to disk. This causes extremely
2261 * poor performance when seeking for holes in a dirty file. As a compromise,
2262 * only provide hole data when the dnode is clean. When a dnode is dirty
2263 * report the dnode as having no holes which is always a safe thing to do.
2264 */
34dc7c2f
BB
2265int
2266dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2267{
2268 dnode_t *dn;
2269 int i, err;
66aca247 2270 boolean_t clean = B_TRUE;
34dc7c2f 2271
428870ff 2272 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2273 if (err)
2274 return (err);
66aca247 2275
34dc7c2f 2276 /*
66aca247 2277 * Check if dnode is dirty
34dc7c2f 2278 */
454365bb
BB
2279 for (i = 0; i < TXG_SIZE; i++) {
2280 if (list_link_active(&dn->dn_dirty_link[i])) {
2281 clean = B_FALSE;
2282 break;
66aca247 2283 }
34dc7c2f 2284 }
66aca247
DB
2285
2286 /*
2287 * If compatibility option is on, sync any current changes before
2288 * we go trundling through the block pointers.
2289 */
2290 if (!clean && zfs_dmu_offset_next_sync) {
2291 clean = B_TRUE;
34dc7c2f
BB
2292 dnode_rele(dn, FTAG);
2293 txg_wait_synced(dmu_objset_pool(os), 0);
428870ff 2294 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2295 if (err)
2296 return (err);
2297 }
2298
66aca247
DB
2299 if (clean)
2300 err = dnode_next_offset(dn,
2301 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2302 else
2303 err = SET_ERROR(EBUSY);
2304
34dc7c2f
BB
2305 dnode_rele(dn, FTAG);
2306
2307 return (err);
2308}
2309
2310void
e0b0ca98 2311__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
34dc7c2f 2312{
e0b0ca98 2313 dnode_phys_t *dnp = dn->dn_phys;
428870ff 2314
34dc7c2f
BB
2315 doi->doi_data_block_size = dn->dn_datablksz;
2316 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2317 1ULL << dn->dn_indblkshift : 0;
428870ff
BB
2318 doi->doi_type = dn->dn_type;
2319 doi->doi_bonus_type = dn->dn_bonustype;
2320 doi->doi_bonus_size = dn->dn_bonuslen;
50c957f7 2321 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
34dc7c2f
BB
2322 doi->doi_indirection = dn->dn_nlevels;
2323 doi->doi_checksum = dn->dn_checksum;
2324 doi->doi_compress = dn->dn_compress;
6c59307a 2325 doi->doi_nblkptr = dn->dn_nblkptr;
428870ff 2326 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
d1fada1e 2327 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
428870ff 2328 doi->doi_fill_count = 0;
1c27024e 2329 for (int i = 0; i < dnp->dn_nblkptr; i++)
9b67f605 2330 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
e0b0ca98
BB
2331}
2332
2333void
2334dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2335{
2336 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2337 mutex_enter(&dn->dn_mtx);
2338
2339 __dmu_object_info_from_dnode(dn, doi);
34dc7c2f
BB
2340
2341 mutex_exit(&dn->dn_mtx);
2342 rw_exit(&dn->dn_struct_rwlock);
2343}
2344
2345/*
2346 * Get information on a DMU object.
2347 * If doi is NULL, just indicates whether the object exists.
2348 */
2349int
2350dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2351{
2352 dnode_t *dn;
428870ff 2353 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2354
2355 if (err)
2356 return (err);
2357
2358 if (doi != NULL)
2359 dmu_object_info_from_dnode(dn, doi);
2360
2361 dnode_rele(dn, FTAG);
2362 return (0);
2363}
2364
2365/*
2366 * As above, but faster; can be used when you have a held dbuf in hand.
2367 */
2368void
572e2857 2369dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
34dc7c2f 2370{
572e2857
BB
2371 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2372
2373 DB_DNODE_ENTER(db);
2374 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2375 DB_DNODE_EXIT(db);
34dc7c2f
BB
2376}
2377
2378/*
2379 * Faster still when you only care about the size.
2380 * This is specifically optimized for zfs_getattr().
2381 */
2382void
572e2857
BB
2383dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2384 u_longlong_t *nblk512)
34dc7c2f 2385{
572e2857
BB
2386 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2387 dnode_t *dn;
2388
2389 DB_DNODE_ENTER(db);
2390 dn = DB_DNODE(db);
34dc7c2f
BB
2391
2392 *blksize = dn->dn_datablksz;
50c957f7 2393 /* add in number of slots used for the dnode itself */
34dc7c2f 2394 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
50c957f7
NB
2395 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2396 DB_DNODE_EXIT(db);
2397}
2398
2399void
2400dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2401{
2402 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2403 dnode_t *dn;
2404
2405 DB_DNODE_ENTER(db);
2406 dn = DB_DNODE(db);
2407 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
572e2857 2408 DB_DNODE_EXIT(db);
34dc7c2f
BB
2409}
2410
2411void
2412byteswap_uint64_array(void *vbuf, size_t size)
2413{
2414 uint64_t *buf = vbuf;
2415 size_t count = size >> 3;
2416 int i;
2417
2418 ASSERT((size & 7) == 0);
2419
2420 for (i = 0; i < count; i++)
2421 buf[i] = BSWAP_64(buf[i]);
2422}
2423
2424void
2425byteswap_uint32_array(void *vbuf, size_t size)
2426{
2427 uint32_t *buf = vbuf;
2428 size_t count = size >> 2;
2429 int i;
2430
2431 ASSERT((size & 3) == 0);
2432
2433 for (i = 0; i < count; i++)
2434 buf[i] = BSWAP_32(buf[i]);
2435}
2436
2437void
2438byteswap_uint16_array(void *vbuf, size_t size)
2439{
2440 uint16_t *buf = vbuf;
2441 size_t count = size >> 1;
2442 int i;
2443
2444 ASSERT((size & 1) == 0);
2445
2446 for (i = 0; i < count; i++)
2447 buf[i] = BSWAP_16(buf[i]);
2448}
2449
2450/* ARGSUSED */
2451void
2452byteswap_uint8_array(void *vbuf, size_t size)
2453{
2454}
2455
2456void
2457dmu_init(void)
2458{
a6255b7f 2459 abd_init();
428870ff 2460 zfs_dbgmsg_init();
572e2857
BB
2461 sa_cache_init();
2462 xuio_stat_init();
2463 dmu_objset_init();
34dc7c2f 2464 dnode_init();
428870ff 2465 zfetch_init();
570827e1 2466 dmu_tx_init();
34dc7c2f 2467 l2arc_init();
29809a6c 2468 arc_init();
d3c2ae1c 2469 dbuf_init();
34dc7c2f
BB
2470}
2471
2472void
2473dmu_fini(void)
2474{
e49f1e20 2475 arc_fini(); /* arc depends on l2arc, so arc must go first */
29809a6c 2476 l2arc_fini();
570827e1 2477 dmu_tx_fini();
428870ff 2478 zfetch_fini();
34dc7c2f 2479 dbuf_fini();
572e2857
BB
2480 dnode_fini();
2481 dmu_objset_fini();
428870ff
BB
2482 xuio_stat_fini();
2483 sa_cache_fini();
2484 zfs_dbgmsg_fini();
a6255b7f 2485 abd_fini();
34dc7c2f 2486}
c28b2279
BB
2487
2488#if defined(_KERNEL) && defined(HAVE_SPL)
2489EXPORT_SYMBOL(dmu_bonus_hold);
a473d90c
AZ
2490EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2491EXPORT_SYMBOL(dmu_buf_rele_array);
57b650b8 2492EXPORT_SYMBOL(dmu_prefetch);
c28b2279 2493EXPORT_SYMBOL(dmu_free_range);
57b650b8 2494EXPORT_SYMBOL(dmu_free_long_range);
440a3eb9 2495EXPORT_SYMBOL(dmu_free_long_range_raw);
b663a23d 2496EXPORT_SYMBOL(dmu_free_long_object);
440a3eb9 2497EXPORT_SYMBOL(dmu_free_long_object_raw);
c28b2279 2498EXPORT_SYMBOL(dmu_read);
0eef1bde 2499EXPORT_SYMBOL(dmu_read_by_dnode);
c28b2279 2500EXPORT_SYMBOL(dmu_write);
0eef1bde 2501EXPORT_SYMBOL(dmu_write_by_dnode);
57b650b8 2502EXPORT_SYMBOL(dmu_prealloc);
c28b2279
BB
2503EXPORT_SYMBOL(dmu_object_info);
2504EXPORT_SYMBOL(dmu_object_info_from_dnode);
2505EXPORT_SYMBOL(dmu_object_info_from_db);
2506EXPORT_SYMBOL(dmu_object_size_from_db);
50c957f7 2507EXPORT_SYMBOL(dmu_object_dnsize_from_db);
b5256303 2508EXPORT_SYMBOL(dmu_object_set_nlevels);
c28b2279 2509EXPORT_SYMBOL(dmu_object_set_blocksize);
ae76f45c 2510EXPORT_SYMBOL(dmu_object_set_maxblkid);
c28b2279
BB
2511EXPORT_SYMBOL(dmu_object_set_checksum);
2512EXPORT_SYMBOL(dmu_object_set_compress);
57b650b8
BB
2513EXPORT_SYMBOL(dmu_write_policy);
2514EXPORT_SYMBOL(dmu_sync);
b10c77f7
BB
2515EXPORT_SYMBOL(dmu_request_arcbuf);
2516EXPORT_SYMBOL(dmu_return_arcbuf);
440a3eb9
TC
2517EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2518EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
b10c77f7 2519EXPORT_SYMBOL(dmu_buf_hold);
c28b2279 2520EXPORT_SYMBOL(dmu_ot);
afec56b4 2521
bef78122 2522/* BEGIN CSTYLED */
afec56b4
BB
2523module_param(zfs_mdcomp_disable, int, 0644);
2524MODULE_PARM_DESC(zfs_mdcomp_disable, "Disable meta data compression");
03c6040b
GW
2525
2526module_param(zfs_nopwrite_enabled, int, 0644);
2527MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
2528
bef78122
DQ
2529module_param(zfs_per_txg_dirty_frees_percent, ulong, 0644);
2530MODULE_PARM_DESC(zfs_per_txg_dirty_frees_percent,
2531 "percentage of dirtied blocks from frees in one TXG");
66aca247
DB
2532
2533module_param(zfs_dmu_offset_next_sync, int, 0644);
2534MODULE_PARM_DESC(zfs_dmu_offset_next_sync,
2535 "Enable forcing txg sync to find holes");
2536
bef78122 2537/* END CSTYLED */
66aca247 2538
c28b2279 2539#endif