]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu.c
Minimize aggsum_compare(&arc_size, arc_c) calls.
[mirror_zfs.git] / module / zfs / dmu.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
82644107 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
bc77ba73 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
a08abc1b 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
5475aada 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
65282ee9 28 * Copyright (c) 2019 Datto Inc.
34dc7c2f
BB
29 */
30
34dc7c2f
BB
31#include <sys/dmu.h>
32#include <sys/dmu_impl.h>
33#include <sys/dmu_tx.h>
34#include <sys/dbuf.h>
35#include <sys/dnode.h>
36#include <sys/zfs_context.h>
37#include <sys/dmu_objset.h>
38#include <sys/dmu_traverse.h>
39#include <sys/dsl_dataset.h>
40#include <sys/dsl_dir.h>
41#include <sys/dsl_pool.h>
42#include <sys/dsl_synctask.h>
43#include <sys/dsl_prop.h>
44#include <sys/dmu_zfetch.h>
45#include <sys/zfs_ioctl.h>
46#include <sys/zap.h>
47#include <sys/zio_checksum.h>
03c6040b 48#include <sys/zio_compress.h>
428870ff 49#include <sys/sa.h>
62bdd5eb 50#include <sys/zfeature.h>
a6255b7f 51#include <sys/abd.h>
539d33c7 52#include <sys/trace_dmu.h>
f763c3d1 53#include <sys/zfs_rlock.h>
34dc7c2f
BB
54#ifdef _KERNEL
55#include <sys/vmsystm.h>
b128c09f 56#include <sys/zfs_znode.h>
34dc7c2f
BB
57#endif
58
03c6040b
GW
59/*
60 * Enable/disable nopwrite feature.
61 */
62int zfs_nopwrite_enabled = 1;
63
539d33c7 64/*
65282ee9
AP
65 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
66 * one TXG. After this threshold is crossed, additional dirty blocks from frees
67 * will wait until the next TXG.
539d33c7
GM
68 * A value of zero will disable this throttle.
69 */
65282ee9 70unsigned long zfs_per_txg_dirty_frees_percent = 5;
539d33c7 71
66aca247
DB
72/*
73 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
74 */
75int zfs_dmu_offset_next_sync = 0;
76
a1d477c2
MA
77/*
78 * This can be used for testing, to ensure that certain actions happen
79 * while in the middle of a remap (which might otherwise complete too
65ca2c1e 80 * quickly). Used by ztest(8).
a1d477c2 81 */
65ca2c1e 82int zfs_object_remap_one_indirect_delay_ms = 0;
a1d477c2 83
d9b4bf06
MA
84/*
85 * Limit the amount we can prefetch with one call to this amount. This
86 * helps to limit the amount of memory that can be used by prefetching.
87 * Larger objects should be prefetched a bit at a time.
88 */
89int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
90
34dc7c2f 91const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
2e5dc449
MA
92 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
93 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
94 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
95 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
96 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
97 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
98 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
99 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
100 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
101 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
102 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
103 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
104 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
105 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
106 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
107 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
108 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
109 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
110 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
111 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
112 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
113 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
114 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
115 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
116 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
117 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
118 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
119 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
120 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
121 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
122 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
123 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
124 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
125 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
126 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
127 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
128 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
129 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
130 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
131 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
132 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
133 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
134 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
135 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
136 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
137 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
138 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
139 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
140 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
141 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
142 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
143 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
144 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
145 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
9ae529ec
CS
146};
147
148const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
149 { byteswap_uint8_array, "uint8" },
150 { byteswap_uint16_array, "uint16" },
151 { byteswap_uint32_array, "uint32" },
152 { byteswap_uint64_array, "uint64" },
153 { zap_byteswap, "zap" },
154 { dnode_buf_byteswap, "dnode" },
155 { dmu_objset_byteswap, "objset" },
156 { zfs_znode_byteswap, "znode" },
157 { zfs_oldacl_byteswap, "oldacl" },
158 { zfs_acl_byteswap, "acl" }
34dc7c2f
BB
159};
160
2bce8049
MA
161int
162dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
163 void *tag, dmu_buf_t **dbp)
164{
165 uint64_t blkid;
166 dmu_buf_impl_t *db;
167
168 blkid = dbuf_whichblock(dn, 0, offset);
169 rw_enter(&dn->dn_struct_rwlock, RW_READER);
170 db = dbuf_hold(dn, blkid, tag);
171 rw_exit(&dn->dn_struct_rwlock);
172
173 if (db == NULL) {
174 *dbp = NULL;
175 return (SET_ERROR(EIO));
176 }
177
178 *dbp = &db->db;
179 return (0);
180}
34dc7c2f 181int
9b67f605
MA
182dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
183 void *tag, dmu_buf_t **dbp)
34dc7c2f
BB
184{
185 dnode_t *dn;
186 uint64_t blkid;
187 dmu_buf_impl_t *db;
188 int err;
428870ff
BB
189
190 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
191 if (err)
192 return (err);
fcff0f35 193 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f
BB
194 rw_enter(&dn->dn_struct_rwlock, RW_READER);
195 db = dbuf_hold(dn, blkid, tag);
196 rw_exit(&dn->dn_struct_rwlock);
9b67f605
MA
197 dnode_rele(dn, FTAG);
198
34dc7c2f 199 if (db == NULL) {
9b67f605
MA
200 *dbp = NULL;
201 return (SET_ERROR(EIO));
202 }
203
204 *dbp = &db->db;
205 return (err);
206}
207
2bce8049
MA
208int
209dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
210 void *tag, dmu_buf_t **dbp, int flags)
211{
212 int err;
213 int db_flags = DB_RF_CANFAIL;
214
215 if (flags & DMU_READ_NO_PREFETCH)
216 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
217 if (flags & DMU_READ_NO_DECRYPT)
218 db_flags |= DB_RF_NO_DECRYPT;
2bce8049
MA
219
220 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
221 if (err == 0) {
222 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
223 err = dbuf_read(db, NULL, db_flags);
224 if (err != 0) {
225 dbuf_rele(db, tag);
226 *dbp = NULL;
227 }
228 }
229
230 return (err);
231}
232
9b67f605
MA
233int
234dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
235 void *tag, dmu_buf_t **dbp, int flags)
236{
237 int err;
238 int db_flags = DB_RF_CANFAIL;
239
240 if (flags & DMU_READ_NO_PREFETCH)
241 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
242 if (flags & DMU_READ_NO_DECRYPT)
243 db_flags |= DB_RF_NO_DECRYPT;
9b67f605
MA
244
245 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
246 if (err == 0) {
247 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
428870ff 248 err = dbuf_read(db, NULL, db_flags);
9b67f605 249 if (err != 0) {
34dc7c2f 250 dbuf_rele(db, tag);
9b67f605 251 *dbp = NULL;
34dc7c2f
BB
252 }
253 }
254
34dc7c2f
BB
255 return (err);
256}
257
258int
259dmu_bonus_max(void)
260{
50c957f7 261 return (DN_OLD_MAX_BONUSLEN);
34dc7c2f
BB
262}
263
264int
572e2857 265dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
34dc7c2f 266{
572e2857
BB
267 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
268 dnode_t *dn;
269 int error;
34dc7c2f 270
572e2857
BB
271 DB_DNODE_ENTER(db);
272 dn = DB_DNODE(db);
273
274 if (dn->dn_bonus != db) {
2e528b49 275 error = SET_ERROR(EINVAL);
572e2857 276 } else if (newsize < 0 || newsize > db_fake->db_size) {
2e528b49 277 error = SET_ERROR(EINVAL);
572e2857
BB
278 } else {
279 dnode_setbonuslen(dn, newsize, tx);
280 error = 0;
281 }
282
283 DB_DNODE_EXIT(db);
284 return (error);
34dc7c2f
BB
285}
286
428870ff 287int
572e2857 288dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
428870ff 289{
572e2857
BB
290 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
291 dnode_t *dn;
292 int error;
428870ff 293
572e2857
BB
294 DB_DNODE_ENTER(db);
295 dn = DB_DNODE(db);
428870ff 296
9ae529ec 297 if (!DMU_OT_IS_VALID(type)) {
2e528b49 298 error = SET_ERROR(EINVAL);
572e2857 299 } else if (dn->dn_bonus != db) {
2e528b49 300 error = SET_ERROR(EINVAL);
572e2857
BB
301 } else {
302 dnode_setbonus_type(dn, type, tx);
303 error = 0;
304 }
428870ff 305
572e2857
BB
306 DB_DNODE_EXIT(db);
307 return (error);
308}
309
310dmu_object_type_t
311dmu_get_bonustype(dmu_buf_t *db_fake)
312{
313 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
314 dnode_t *dn;
315 dmu_object_type_t type;
316
317 DB_DNODE_ENTER(db);
318 dn = DB_DNODE(db);
319 type = dn->dn_bonustype;
320 DB_DNODE_EXIT(db);
321
322 return (type);
428870ff
BB
323}
324
325int
326dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
327{
328 dnode_t *dn;
329 int error;
330
331 error = dnode_hold(os, object, FTAG, &dn);
332 dbuf_rm_spill(dn, tx);
333 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
334 dnode_rm_spill(dn, tx);
335 rw_exit(&dn->dn_struct_rwlock);
336 dnode_rele(dn, FTAG);
337 return (error);
338}
339
34dc7c2f 340/*
6955b401
BB
341 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
342 * has not yet been allocated a new bonus dbuf a will be allocated.
343 * Returns ENOENT, EIO, or 0.
34dc7c2f 344 */
6955b401
BB
345int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
346 uint32_t flags)
34dc7c2f 347{
34dc7c2f
BB
348 dmu_buf_impl_t *db;
349 int error;
b5256303
TC
350 uint32_t db_flags = DB_RF_MUST_SUCCEED;
351
352 if (flags & DMU_READ_NO_PREFETCH)
353 db_flags |= DB_RF_NOPREFETCH;
354 if (flags & DMU_READ_NO_DECRYPT)
355 db_flags |= DB_RF_NO_DECRYPT;
34dc7c2f 356
34dc7c2f
BB
357 rw_enter(&dn->dn_struct_rwlock, RW_READER);
358 if (dn->dn_bonus == NULL) {
359 rw_exit(&dn->dn_struct_rwlock);
360 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
361 if (dn->dn_bonus == NULL)
362 dbuf_create_bonus(dn);
363 }
364 db = dn->dn_bonus;
34dc7c2f
BB
365
366 /* as long as the bonus buf is held, the dnode will be held */
c13060e4 367 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
34dc7c2f 368 VERIFY(dnode_add_ref(dn, db));
73ad4a9f 369 atomic_inc_32(&dn->dn_dbufs_count);
572e2857
BB
370 }
371
372 /*
373 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
374 * hold and incrementing the dbuf count to ensure that dnode_move() sees
375 * a dnode hold for every dbuf.
376 */
377 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f 378
b5256303
TC
379 error = dbuf_read(db, NULL, db_flags);
380 if (error) {
381 dnode_evict_bonus(dn);
382 dbuf_rele(db, tag);
383 *dbp = NULL;
384 return (error);
385 }
34dc7c2f
BB
386
387 *dbp = &db->db;
388 return (0);
389}
390
b5256303 391int
6955b401 392dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
b5256303 393{
6955b401
BB
394 dnode_t *dn;
395 int error;
396
397 error = dnode_hold(os, object, FTAG, &dn);
398 if (error)
399 return (error);
400
401 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
402 dnode_rele(dn, FTAG);
403
404 return (error);
b5256303
TC
405}
406
428870ff
BB
407/*
408 * returns ENOENT, EIO, or 0.
409 *
410 * This interface will allocate a blank spill dbuf when a spill blk
411 * doesn't already exist on the dnode.
412 *
413 * if you only want to find an already existing spill db, then
414 * dmu_spill_hold_existing() should be used.
415 */
416int
417dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
418{
419 dmu_buf_impl_t *db = NULL;
420 int err;
421
422 if ((flags & DB_RF_HAVESTRUCT) == 0)
423 rw_enter(&dn->dn_struct_rwlock, RW_READER);
424
425 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
426
427 if ((flags & DB_RF_HAVESTRUCT) == 0)
428 rw_exit(&dn->dn_struct_rwlock);
429
b182ac00 430 if (db == NULL) {
431 *dbp = NULL;
432 return (SET_ERROR(EIO));
433 }
572e2857
BB
434 err = dbuf_read(db, NULL, flags);
435 if (err == 0)
436 *dbp = &db->db;
b182ac00 437 else {
572e2857 438 dbuf_rele(db, tag);
b182ac00 439 *dbp = NULL;
440 }
428870ff
BB
441 return (err);
442}
443
444int
445dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
446{
572e2857
BB
447 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
448 dnode_t *dn;
428870ff
BB
449 int err;
450
572e2857
BB
451 DB_DNODE_ENTER(db);
452 dn = DB_DNODE(db);
453
454 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
2e528b49 455 err = SET_ERROR(EINVAL);
572e2857
BB
456 } else {
457 rw_enter(&dn->dn_struct_rwlock, RW_READER);
458
459 if (!dn->dn_have_spill) {
2e528b49 460 err = SET_ERROR(ENOENT);
572e2857
BB
461 } else {
462 err = dmu_spill_hold_by_dnode(dn,
463 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
464 }
428870ff 465
428870ff 466 rw_exit(&dn->dn_struct_rwlock);
428870ff 467 }
572e2857
BB
468
469 DB_DNODE_EXIT(db);
428870ff
BB
470 return (err);
471}
472
473int
e7504d7a
TC
474dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
475 dmu_buf_t **dbp)
428870ff 476{
572e2857
BB
477 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
478 dnode_t *dn;
479 int err;
e7504d7a
TC
480 uint32_t db_flags = DB_RF_CANFAIL;
481
482 if (flags & DMU_READ_NO_DECRYPT)
483 db_flags |= DB_RF_NO_DECRYPT;
572e2857
BB
484
485 DB_DNODE_ENTER(db);
486 dn = DB_DNODE(db);
e7504d7a 487 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
572e2857
BB
488 DB_DNODE_EXIT(db);
489
490 return (err);
428870ff
BB
491}
492
34dc7c2f
BB
493/*
494 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
495 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
496 * and can induce severe lock contention when writing to several files
497 * whose dnodes are in the same block.
498 */
499static int
9babb374 500dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
7f60329a 501 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
34dc7c2f
BB
502{
503 dmu_buf_t **dbp;
504 uint64_t blkid, nblks, i;
9babb374 505 uint32_t dbuf_flags;
34dc7c2f
BB
506 int err;
507 zio_t *zio;
508
509 ASSERT(length <= DMU_MAX_ACCESS);
510
7f60329a
MA
511 /*
512 * Note: We directly notify the prefetch code of this read, so that
513 * we can tell it about the multi-block read. dbuf_read() only knows
514 * about the one block it is accessing.
515 */
516 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
517 DB_RF_NOPREFETCH;
34dc7c2f
BB
518
519 rw_enter(&dn->dn_struct_rwlock, RW_READER);
520 if (dn->dn_datablkshift) {
521 int blkshift = dn->dn_datablkshift;
7f60329a
MA
522 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
523 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
34dc7c2f
BB
524 } else {
525 if (offset + length > dn->dn_datablksz) {
526 zfs_panic_recover("zfs: accessing past end of object "
527 "%llx/%llx (size=%u access=%llu+%llu)",
528 (longlong_t)dn->dn_objset->
529 os_dsl_dataset->ds_object,
530 (longlong_t)dn->dn_object, dn->dn_datablksz,
531 (longlong_t)offset, (longlong_t)length);
45d1cae3 532 rw_exit(&dn->dn_struct_rwlock);
2e528b49 533 return (SET_ERROR(EIO));
34dc7c2f
BB
534 }
535 nblks = 1;
536 }
79c76d5b 537 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
34dc7c2f 538
b128c09f 539 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
fcff0f35 540 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f 541 for (i = 0; i < nblks; i++) {
7f60329a 542 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
34dc7c2f
BB
543 if (db == NULL) {
544 rw_exit(&dn->dn_struct_rwlock);
545 dmu_buf_rele_array(dbp, nblks, tag);
546 zio_nowait(zio);
2e528b49 547 return (SET_ERROR(EIO));
34dc7c2f 548 }
7f60329a 549
34dc7c2f 550 /* initiate async i/o */
7f60329a 551 if (read)
9babb374 552 (void) dbuf_read(db, zio, dbuf_flags);
34dc7c2f
BB
553 dbp[i] = &db->db;
554 }
7f60329a 555
755065f3
AM
556 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
557 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
558 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
559 read && DNODE_IS_CACHEABLE(dn));
7f60329a 560 }
34dc7c2f
BB
561 rw_exit(&dn->dn_struct_rwlock);
562
563 /* wait for async i/o */
564 err = zio_wait(zio);
565 if (err) {
566 dmu_buf_rele_array(dbp, nblks, tag);
567 return (err);
568 }
569
570 /* wait for other io to complete */
571 if (read) {
572 for (i = 0; i < nblks; i++) {
573 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
574 mutex_enter(&db->db_mtx);
575 while (db->db_state == DB_READ ||
576 db->db_state == DB_FILL)
577 cv_wait(&db->db_changed, &db->db_mtx);
578 if (db->db_state == DB_UNCACHED)
2e528b49 579 err = SET_ERROR(EIO);
34dc7c2f
BB
580 mutex_exit(&db->db_mtx);
581 if (err) {
582 dmu_buf_rele_array(dbp, nblks, tag);
583 return (err);
584 }
585 }
586 }
587
588 *numbufsp = nblks;
589 *dbpp = dbp;
590 return (0);
591}
592
593static int
594dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
595 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
596{
597 dnode_t *dn;
598 int err;
599
428870ff 600 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
601 if (err)
602 return (err);
603
604 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 605 numbufsp, dbpp, DMU_READ_PREFETCH);
34dc7c2f
BB
606
607 dnode_rele(dn, FTAG);
608
609 return (err);
610}
611
612int
572e2857 613dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
7f60329a
MA
614 uint64_t length, boolean_t read, void *tag, int *numbufsp,
615 dmu_buf_t ***dbpp)
34dc7c2f 616{
572e2857
BB
617 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
618 dnode_t *dn;
34dc7c2f
BB
619 int err;
620
572e2857
BB
621 DB_DNODE_ENTER(db);
622 dn = DB_DNODE(db);
34dc7c2f 623 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 624 numbufsp, dbpp, DMU_READ_PREFETCH);
572e2857 625 DB_DNODE_EXIT(db);
34dc7c2f
BB
626
627 return (err);
628}
629
630void
631dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
632{
633 int i;
634 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
635
636 if (numbufs == 0)
637 return;
638
639 for (i = 0; i < numbufs; i++) {
640 if (dbp[i])
641 dbuf_rele(dbp[i], tag);
642 }
643
644 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
645}
646
e8b96c60 647/*
fcff0f35
PD
648 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
649 * indirect blocks prefeteched will be those that point to the blocks containing
650 * the data starting at offset, and continuing to offset + len.
e8b96c60 651 *
b5256303
TC
652 * Note that if the indirect blocks above the blocks being prefetched are not
653 * in cache, they will be asychronously read in.
e8b96c60 654 */
34dc7c2f 655void
fcff0f35
PD
656dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
657 uint64_t len, zio_priority_t pri)
34dc7c2f
BB
658{
659 dnode_t *dn;
660 uint64_t blkid;
e8b96c60 661 int nblks, err;
34dc7c2f 662
34dc7c2f 663 if (len == 0) { /* they're interested in the bonus buffer */
572e2857 664 dn = DMU_META_DNODE(os);
34dc7c2f
BB
665
666 if (object == 0 || object >= DN_MAX_OBJECT)
667 return;
668
669 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
670 blkid = dbuf_whichblock(dn, level,
671 object * sizeof (dnode_phys_t));
672 dbuf_prefetch(dn, level, blkid, pri, 0);
34dc7c2f
BB
673 rw_exit(&dn->dn_struct_rwlock);
674 return;
675 }
676
d9b4bf06
MA
677 /*
678 * See comment before the definition of dmu_prefetch_max.
679 */
680 len = MIN(len, dmu_prefetch_max);
681
34dc7c2f
BB
682 /*
683 * XXX - Note, if the dnode for the requested object is not
684 * already cached, we will do a *synchronous* read in the
685 * dnode_hold() call. The same is true for any indirects.
686 */
428870ff 687 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
688 if (err != 0)
689 return;
690
691 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
692 /*
693 * offset + len - 1 is the last byte we want to prefetch for, and offset
694 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
695 * last block we want to prefetch, and dbuf_whichblock(dn, level,
696 * offset) is the first. Then the number we need to prefetch is the
697 * last - first + 1.
698 */
699 if (level > 0 || dn->dn_datablkshift != 0) {
700 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
701 dbuf_whichblock(dn, level, offset) + 1;
34dc7c2f
BB
702 } else {
703 nblks = (offset < dn->dn_datablksz);
704 }
705
706 if (nblks != 0) {
fcff0f35 707 blkid = dbuf_whichblock(dn, level, offset);
1c27024e 708 for (int i = 0; i < nblks; i++)
fcff0f35 709 dbuf_prefetch(dn, level, blkid + i, pri, 0);
34dc7c2f
BB
710 }
711
712 rw_exit(&dn->dn_struct_rwlock);
713
714 dnode_rele(dn, FTAG);
715}
716
45d1cae3
BB
717/*
718 * Get the next "chunk" of file data to free. We traverse the file from
719 * the end so that the file gets shorter over time (if we crashes in the
720 * middle, this will leave us in a better state). We find allocated file
721 * data by simply searching the allocated level 1 indirects.
b663a23d
MA
722 *
723 * On input, *start should be the first offset that does not need to be
724 * freed (e.g. "offset + length"). On return, *start will be the first
65282ee9
AP
725 * offset that should be freed and l1blks is set to the number of level 1
726 * indirect blocks found within the chunk.
45d1cae3 727 */
b128c09f 728static int
65282ee9 729get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
b128c09f 730{
65282ee9 731 uint64_t blks;
b663a23d
MA
732 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
733 /* bytes of data covered by a level-1 indirect block */
ec4afd27
OM
734 uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
735 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
b128c09f 736
b663a23d 737 ASSERT3U(minimum, <=, *start);
b128c09f 738
f4c594da
TC
739 /*
740 * Check if we can free the entire range assuming that all of the
741 * L1 blocks in this range have data. If we can, we use this
742 * worst case value as an estimate so we can avoid having to look
743 * at the object's actual data.
744 */
745 uint64_t total_l1blks =
746 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
747 iblkrange;
748 if (total_l1blks <= maxblks) {
749 *l1blks = total_l1blks;
b663a23d 750 *start = minimum;
b128c09f
BB
751 return (0);
752 }
45d1cae3 753 ASSERT(ISP2(iblkrange));
b128c09f 754
65282ee9 755 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
b128c09f
BB
756 int err;
757
b663a23d
MA
758 /*
759 * dnode_next_offset(BACKWARDS) will find an allocated L1
760 * indirect block at or before the input offset. We must
761 * decrement *start so that it is at the end of the region
762 * to search.
763 */
764 (*start)--;
f4c594da 765
b128c09f 766 err = dnode_next_offset(dn,
45d1cae3 767 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
b128c09f 768
b663a23d 769 /* if there are no indirect blocks before start, we are done */
45d1cae3 770 if (err == ESRCH) {
b663a23d
MA
771 *start = minimum;
772 break;
773 } else if (err != 0) {
65282ee9 774 *l1blks = blks;
b128c09f 775 return (err);
45d1cae3 776 }
b128c09f 777
b663a23d 778 /* set start to the beginning of this L1 indirect */
45d1cae3 779 *start = P2ALIGN(*start, iblkrange);
b128c09f 780 }
b663a23d
MA
781 if (*start < minimum)
782 *start = minimum;
65282ee9 783 *l1blks = blks;
f4c594da 784
b128c09f
BB
785 return (0);
786}
787
a08abc1b
GM
788/*
789 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
790 * otherwise return false.
791 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
792 */
793/*ARGSUSED*/
794static boolean_t
795dmu_objset_zfs_unmounting(objset_t *os)
796{
797#ifdef _KERNEL
798 if (dmu_objset_type(os) == DMU_OST_ZFS)
799 return (zfs_get_vfs_flag_unmounted(os));
800#endif
801 return (B_FALSE);
802}
803
b128c09f
BB
804static int
805dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
0c03d21a 806 uint64_t length)
b128c09f 807{
c97d3069 808 uint64_t object_size;
b663a23d 809 int err;
539d33c7
GM
810 uint64_t dirty_frees_threshold;
811 dsl_pool_t *dp = dmu_objset_pool(os);
b663a23d 812
c97d3069
BB
813 if (dn == NULL)
814 return (SET_ERROR(EINVAL));
815
816 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
b663a23d 817 if (offset >= object_size)
b128c09f 818 return (0);
b128c09f 819
539d33c7
GM
820 if (zfs_per_txg_dirty_frees_percent <= 100)
821 dirty_frees_threshold =
822 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
823 else
65282ee9 824 dirty_frees_threshold = zfs_dirty_data_max / 20;
539d33c7 825
b663a23d
MA
826 if (length == DMU_OBJECT_END || offset + length > object_size)
827 length = object_size - offset;
828
829 while (length != 0) {
539d33c7 830 uint64_t chunk_end, chunk_begin, chunk_len;
65282ee9 831 uint64_t l1blks;
b663a23d
MA
832 dmu_tx_t *tx;
833
a08abc1b
GM
834 if (dmu_objset_zfs_unmounting(dn->dn_objset))
835 return (SET_ERROR(EINTR));
836
b663a23d
MA
837 chunk_end = chunk_begin = offset + length;
838
839 /* move chunk_begin backwards to the beginning of this chunk */
65282ee9 840 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
b128c09f
BB
841 if (err)
842 return (err);
b663a23d
MA
843 ASSERT3U(chunk_begin, >=, offset);
844 ASSERT3U(chunk_begin, <=, chunk_end);
b128c09f 845
539d33c7
GM
846 chunk_len = chunk_end - chunk_begin;
847
b128c09f 848 tx = dmu_tx_create(os);
539d33c7 849 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
19d55079
MA
850
851 /*
852 * Mark this transaction as typically resulting in a net
853 * reduction in space used.
854 */
855 dmu_tx_mark_netfree(tx);
b128c09f
BB
856 err = dmu_tx_assign(tx, TXG_WAIT);
857 if (err) {
858 dmu_tx_abort(tx);
859 return (err);
860 }
539d33c7 861
f4c594da
TC
862 uint64_t txg = dmu_tx_get_txg(tx);
863
864 mutex_enter(&dp->dp_lock);
865 uint64_t long_free_dirty =
866 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
867 mutex_exit(&dp->dp_lock);
868
869 /*
870 * To avoid filling up a TXG with just frees, wait for
871 * the next TXG to open before freeing more chunks if
872 * we have reached the threshold of frees.
873 */
874 if (dirty_frees_threshold != 0 &&
875 long_free_dirty >= dirty_frees_threshold) {
876 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
877 dmu_tx_commit(tx);
878 txg_wait_open(dp, 0, B_TRUE);
879 continue;
880 }
881
65282ee9
AP
882 /*
883 * In order to prevent unnecessary write throttling, for each
884 * TXG, we track the cumulative size of L1 blocks being dirtied
885 * in dnode_free_range() below. We compare this number to a
886 * tunable threshold, past which we prevent new L1 dirty freeing
887 * blocks from being added into the open TXG. See
888 * dmu_free_long_range_impl() for details. The threshold
889 * prevents write throttle activation due to dirty freeing L1
890 * blocks taking up a large percentage of zfs_dirty_data_max.
891 */
539d33c7 892 mutex_enter(&dp->dp_lock);
f4c594da 893 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
65282ee9 894 l1blks << dn->dn_indblkshift;
539d33c7
GM
895 mutex_exit(&dp->dp_lock);
896 DTRACE_PROBE3(free__long__range,
f4c594da
TC
897 uint64_t, long_free_dirty, uint64_t, chunk_len,
898 uint64_t, txg);
539d33c7 899 dnode_free_range(dn, chunk_begin, chunk_len, tx);
440a3eb9 900
b128c09f 901 dmu_tx_commit(tx);
b663a23d 902
539d33c7 903 length -= chunk_len;
b128c09f
BB
904 }
905 return (0);
906}
907
908int
909dmu_free_long_range(objset_t *os, uint64_t object,
910 uint64_t offset, uint64_t length)
911{
912 dnode_t *dn;
913 int err;
914
428870ff 915 err = dnode_hold(os, object, FTAG, &dn);
b128c09f
BB
916 if (err != 0)
917 return (err);
0c03d21a 918 err = dmu_free_long_range_impl(os, dn, offset, length);
92bc214c
MA
919
920 /*
921 * It is important to zero out the maxblkid when freeing the entire
922 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
923 * will take the fast path, and (b) dnode_reallocate() can verify
924 * that the entire file has been freed.
925 */
b0bc7a84 926 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
92bc214c
MA
927 dn->dn_maxblkid = 0;
928
b128c09f
BB
929 dnode_rele(dn, FTAG);
930 return (err);
931}
932
933int
0c03d21a 934dmu_free_long_object(objset_t *os, uint64_t object)
b128c09f 935{
b128c09f
BB
936 dmu_tx_t *tx;
937 int err;
938
b663a23d 939 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
b128c09f
BB
940 if (err != 0)
941 return (err);
b663a23d
MA
942
943 tx = dmu_tx_create(os);
944 dmu_tx_hold_bonus(tx, object);
945 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
19d55079 946 dmu_tx_mark_netfree(tx);
b663a23d
MA
947 err = dmu_tx_assign(tx, TXG_WAIT);
948 if (err == 0) {
35df0bb5
TC
949 if (err == 0)
950 err = dmu_object_free(os, object, tx);
440a3eb9 951
b663a23d 952 dmu_tx_commit(tx);
b128c09f 953 } else {
b663a23d 954 dmu_tx_abort(tx);
b128c09f 955 }
b663a23d 956
b128c09f
BB
957 return (err);
958}
959
34dc7c2f
BB
960int
961dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
962 uint64_t size, dmu_tx_t *tx)
963{
964 dnode_t *dn;
428870ff 965 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
966 if (err)
967 return (err);
968 ASSERT(offset < UINT64_MAX);
ee45fbd8 969 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
34dc7c2f
BB
970 dnode_free_range(dn, offset, size, tx);
971 dnode_rele(dn, FTAG);
972 return (0);
973}
974
0eef1bde 975static int
976dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
9babb374 977 void *buf, uint32_t flags)
34dc7c2f 978{
34dc7c2f 979 dmu_buf_t **dbp;
0eef1bde 980 int numbufs, err = 0;
34dc7c2f
BB
981
982 /*
983 * Deal with odd block sizes, where there can't be data past the first
984 * block. If we ever do the tail block optimization, we will need to
985 * handle that here as well.
986 */
45d1cae3 987 if (dn->dn_maxblkid == 0) {
c9520ecc 988 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
34dc7c2f
BB
989 MIN(size, dn->dn_datablksz - offset);
990 bzero((char *)buf + newsz, size - newsz);
991 size = newsz;
992 }
993
994 while (size > 0) {
995 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
45d1cae3 996 int i;
34dc7c2f
BB
997
998 /*
999 * NB: we could do this block-at-a-time, but it's nice
1000 * to be reading in parallel.
1001 */
1002 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
9babb374 1003 TRUE, FTAG, &numbufs, &dbp, flags);
34dc7c2f
BB
1004 if (err)
1005 break;
1006
1007 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1008 uint64_t tocpy;
1009 int64_t bufoff;
34dc7c2f
BB
1010 dmu_buf_t *db = dbp[i];
1011
1012 ASSERT(size > 0);
1013
1014 bufoff = offset - db->db_offset;
c9520ecc 1015 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f 1016
c9520ecc 1017 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
34dc7c2f
BB
1018
1019 offset += tocpy;
1020 size -= tocpy;
1021 buf = (char *)buf + tocpy;
1022 }
1023 dmu_buf_rele_array(dbp, numbufs, FTAG);
1024 }
34dc7c2f
BB
1025 return (err);
1026}
1027
0eef1bde 1028int
1029dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1030 void *buf, uint32_t flags)
34dc7c2f 1031{
0eef1bde 1032 dnode_t *dn;
1033 int err;
34dc7c2f 1034
0eef1bde 1035 err = dnode_hold(os, object, FTAG, &dn);
1036 if (err != 0)
1037 return (err);
34dc7c2f 1038
0eef1bde 1039 err = dmu_read_impl(dn, offset, size, buf, flags);
1040 dnode_rele(dn, FTAG);
1041 return (err);
1042}
1043
1044int
1045dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1046 uint32_t flags)
1047{
1048 return (dmu_read_impl(dn, offset, size, buf, flags));
1049}
1050
1051static void
1052dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1053 const void *buf, dmu_tx_t *tx)
1054{
1055 int i;
34dc7c2f
BB
1056
1057 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1058 uint64_t tocpy;
1059 int64_t bufoff;
34dc7c2f
BB
1060 dmu_buf_t *db = dbp[i];
1061
1062 ASSERT(size > 0);
1063
1064 bufoff = offset - db->db_offset;
c9520ecc 1065 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f
BB
1066
1067 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1068
1069 if (tocpy == db->db_size)
1070 dmu_buf_will_fill(db, tx);
1071 else
1072 dmu_buf_will_dirty(db, tx);
1073
60101509 1074 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
34dc7c2f
BB
1075
1076 if (tocpy == db->db_size)
1077 dmu_buf_fill_done(db, tx);
1078
1079 offset += tocpy;
1080 size -= tocpy;
1081 buf = (char *)buf + tocpy;
1082 }
0eef1bde 1083}
1084
1085void
1086dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1087 const void *buf, dmu_tx_t *tx)
1088{
1089 dmu_buf_t **dbp;
1090 int numbufs;
1091
1092 if (size == 0)
1093 return;
1094
1095 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1096 FALSE, FTAG, &numbufs, &dbp));
1097 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1098 dmu_buf_rele_array(dbp, numbufs, FTAG);
1099}
1100
1101void
1102dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1103 const void *buf, dmu_tx_t *tx)
1104{
1105 dmu_buf_t **dbp;
1106 int numbufs;
1107
1108 if (size == 0)
1109 return;
1110
1111 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1112 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1113 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
34dc7c2f
BB
1114 dmu_buf_rele_array(dbp, numbufs, FTAG);
1115}
1116
a1d477c2
MA
1117static int
1118dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn,
1119 uint64_t last_removal_txg, uint64_t offset)
1120{
1121 uint64_t l1blkid = dbuf_whichblock(dn, 1, offset);
65ca2c1e 1122 dnode_t *dn_tx;
a1d477c2
MA
1123 int err = 0;
1124
1125 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1126 dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1127 ASSERT3P(dbuf, !=, NULL);
1128
1129 /*
1130 * If the block hasn't been written yet, this default will ensure
1131 * we don't try to remap it.
1132 */
1133 uint64_t birth = UINT64_MAX;
1134 ASSERT3U(last_removal_txg, !=, UINT64_MAX);
1135 if (dbuf->db_blkptr != NULL)
1136 birth = dbuf->db_blkptr->blk_birth;
1137 rw_exit(&dn->dn_struct_rwlock);
1138
1139 /*
1140 * If this L1 was already written after the last removal, then we've
65ca2c1e
BB
1141 * already tried to remap it. An additional hold is taken after the
1142 * dmu_tx_assign() to handle the case where the dnode is freed while
1143 * waiting for the next open txg.
a1d477c2
MA
1144 */
1145 if (birth <= last_removal_txg &&
1146 dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 &&
1147 dbuf_can_remap(dbuf)) {
1148 dmu_tx_t *tx = dmu_tx_create(os);
1149 dmu_tx_hold_remap_l1indirect(tx, dn->dn_object);
1150 err = dmu_tx_assign(tx, TXG_WAIT);
1151 if (err == 0) {
65ca2c1e
BB
1152 err = dnode_hold(os, dn->dn_object, FTAG, &dn_tx);
1153 if (err == 0) {
1154 (void) dbuf_dirty(dbuf, tx);
1155 dnode_rele(dn_tx, FTAG);
1156 }
a1d477c2
MA
1157 dmu_tx_commit(tx);
1158 } else {
1159 dmu_tx_abort(tx);
1160 }
1161 }
1162
1163 dbuf_rele(dbuf, FTAG);
1164
65ca2c1e 1165 delay(MSEC_TO_TICK(zfs_object_remap_one_indirect_delay_ms));
a1d477c2
MA
1166
1167 return (err);
1168}
1169
1170/*
1171 * Remap all blockpointers in the object, if possible, so that they reference
1172 * only concrete vdevs.
1173 *
1174 * To do this, iterate over the L0 blockpointers and remap any that reference
1175 * an indirect vdev. Note that we only examine L0 blockpointers; since we
1176 * cannot guarantee that we can remap all blockpointer anyways (due to split
1177 * blocks), we do not want to make the code unnecessarily complicated to
1178 * catch the unlikely case that there is an L1 block on an indirect vdev that
1179 * contains no indirect blockpointers.
1180 */
1181int
1182dmu_object_remap_indirects(objset_t *os, uint64_t object,
1183 uint64_t last_removal_txg)
1184{
1185 uint64_t offset, l1span;
1186 int err;
65ca2c1e 1187 dnode_t *dn, *dn_tx;
a1d477c2
MA
1188
1189 err = dnode_hold(os, object, FTAG, &dn);
1190 if (err != 0) {
1191 return (err);
1192 }
1193
1194 if (dn->dn_nlevels <= 1) {
1195 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1196 err = SET_ERROR(EINTR);
1197 }
1198
1199 /*
1200 * If the dnode has no indirect blocks, we cannot dirty them.
1201 * We still want to remap the blkptr(s) in the dnode if
65ca2c1e
BB
1202 * appropriate, so mark it as dirty. An additional hold is
1203 * taken after the dmu_tx_assign() to handle the case where
1204 * the dnode is freed while waiting for the next open txg.
a1d477c2
MA
1205 */
1206 if (err == 0 && dnode_needs_remap(dn)) {
1207 dmu_tx_t *tx = dmu_tx_create(os);
65ca2c1e
BB
1208 dmu_tx_hold_bonus(tx, object);
1209 err = dmu_tx_assign(tx, TXG_WAIT);
1210 if (err == 0) {
1211 err = dnode_hold(os, object, FTAG, &dn_tx);
1212 if (err == 0) {
1213 dnode_setdirty(dn_tx, tx);
1214 dnode_rele(dn_tx, FTAG);
1215 }
a1d477c2
MA
1216 dmu_tx_commit(tx);
1217 } else {
1218 dmu_tx_abort(tx);
1219 }
1220 }
1221
1222 dnode_rele(dn, FTAG);
1223 return (err);
1224 }
1225
1226 offset = 0;
1227 l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT +
1228 dn->dn_datablkshift);
1229 /*
1230 * Find the next L1 indirect that is not a hole.
1231 */
1232 while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) {
1233 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1234 err = SET_ERROR(EINTR);
1235 break;
1236 }
1237 if ((err = dmu_object_remap_one_indirect(os, dn,
1238 last_removal_txg, offset)) != 0) {
1239 break;
1240 }
1241 offset += l1span;
1242 }
1243
1244 dnode_rele(dn, FTAG);
1245 return (err);
1246}
1247
b128c09f
BB
1248void
1249dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1250 dmu_tx_t *tx)
1251{
1252 dmu_buf_t **dbp;
1253 int numbufs, i;
1254
1255 if (size == 0)
1256 return;
1257
1258 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1259 FALSE, FTAG, &numbufs, &dbp));
1260
1261 for (i = 0; i < numbufs; i++) {
1262 dmu_buf_t *db = dbp[i];
1263
1264 dmu_buf_will_not_fill(db, tx);
1265 }
1266 dmu_buf_rele_array(dbp, numbufs, FTAG);
1267}
1268
9b67f605
MA
1269void
1270dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1271 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1272 int compressed_size, int byteorder, dmu_tx_t *tx)
1273{
1274 dmu_buf_t *db;
1275
1276 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1277 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1278 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1279 FTAG, &db));
1280
1281 dmu_buf_write_embedded(db,
1282 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1283 uncompressed_size, compressed_size, byteorder, tx);
1284
1285 dmu_buf_rele(db, FTAG);
1286}
1287
428870ff
BB
1288/*
1289 * DMU support for xuio
1290 */
1291kstat_t *xuio_ksp = NULL;
1292
59e6e7ca
BB
1293typedef struct xuio_stats {
1294 /* loaned yet not returned arc_buf */
1295 kstat_named_t xuiostat_onloan_rbuf;
1296 kstat_named_t xuiostat_onloan_wbuf;
1297 /* whether a copy is made when loaning out a read buffer */
1298 kstat_named_t xuiostat_rbuf_copied;
1299 kstat_named_t xuiostat_rbuf_nocopy;
1300 /* whether a copy is made when assigning a write buffer */
1301 kstat_named_t xuiostat_wbuf_copied;
1302 kstat_named_t xuiostat_wbuf_nocopy;
1303} xuio_stats_t;
1304
1305static xuio_stats_t xuio_stats = {
1306 { "onloan_read_buf", KSTAT_DATA_UINT64 },
1307 { "onloan_write_buf", KSTAT_DATA_UINT64 },
1308 { "read_buf_copied", KSTAT_DATA_UINT64 },
1309 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
1310 { "write_buf_copied", KSTAT_DATA_UINT64 },
1311 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
1312};
1313
d1d7e268
MK
1314#define XUIOSTAT_INCR(stat, val) \
1315 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
1316#define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
59e6e7ca 1317
5a6765cf 1318#ifdef HAVE_UIO_ZEROCOPY
428870ff
BB
1319int
1320dmu_xuio_init(xuio_t *xuio, int nblk)
1321{
1322 dmu_xuio_t *priv;
1323 uio_t *uio = &xuio->xu_uio;
1324
1325 uio->uio_iovcnt = nblk;
79c76d5b 1326 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
428870ff 1327
79c76d5b 1328 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
428870ff 1329 priv->cnt = nblk;
79c76d5b 1330 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
5475aada 1331 priv->iovp = (iovec_t *)uio->uio_iov;
428870ff
BB
1332 XUIO_XUZC_PRIV(xuio) = priv;
1333
1334 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1335 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1336 else
1337 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1338
1339 return (0);
1340}
1341
1342void
1343dmu_xuio_fini(xuio_t *xuio)
1344{
1345 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1346 int nblk = priv->cnt;
1347
1348 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1349 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1350 kmem_free(priv, sizeof (dmu_xuio_t));
1351
1352 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1353 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1354 else
1355 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1356}
1357
1358/*
1359 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1360 * and increase priv->next by 1.
1361 */
1362int
1363dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1364{
1365 struct iovec *iov;
1366 uio_t *uio = &xuio->xu_uio;
1367 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1368 int i = priv->next++;
1369
1370 ASSERT(i < priv->cnt);
2aa34383 1371 ASSERT(off + n <= arc_buf_lsize(abuf));
5475aada 1372 iov = (iovec_t *)uio->uio_iov + i;
428870ff
BB
1373 iov->iov_base = (char *)abuf->b_data + off;
1374 iov->iov_len = n;
1375 priv->bufs[i] = abuf;
1376 return (0);
1377}
1378
1379int
1380dmu_xuio_cnt(xuio_t *xuio)
1381{
1382 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1383 return (priv->cnt);
1384}
1385
1386arc_buf_t *
1387dmu_xuio_arcbuf(xuio_t *xuio, int i)
1388{
1389 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1390
1391 ASSERT(i < priv->cnt);
1392 return (priv->bufs[i]);
1393}
1394
1395void
1396dmu_xuio_clear(xuio_t *xuio, int i)
1397{
1398 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1399
1400 ASSERT(i < priv->cnt);
1401 priv->bufs[i] = NULL;
1402}
5a6765cf 1403#endif /* HAVE_UIO_ZEROCOPY */
428870ff
BB
1404
1405static void
1406xuio_stat_init(void)
1407{
1408 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1409 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1410 KSTAT_FLAG_VIRTUAL);
1411 if (xuio_ksp != NULL) {
1412 xuio_ksp->ks_data = &xuio_stats;
1413 kstat_install(xuio_ksp);
1414 }
1415}
1416
1417static void
1418xuio_stat_fini(void)
1419{
1420 if (xuio_ksp != NULL) {
1421 kstat_delete(xuio_ksp);
1422 xuio_ksp = NULL;
1423 }
1424}
1425
1426void
5043684a 1427xuio_stat_wbuf_copied(void)
428870ff
BB
1428{
1429 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1430}
1431
1432void
5043684a 1433xuio_stat_wbuf_nocopy(void)
428870ff
BB
1434{
1435 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1436}
1437
34dc7c2f 1438#ifdef _KERNEL
5228cf01 1439int
804e0504 1440dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
872e8d26
BB
1441{
1442 dmu_buf_t **dbp;
1443 int numbufs, i, err;
5a6765cf 1444#ifdef HAVE_UIO_ZEROCOPY
872e8d26 1445 xuio_t *xuio = NULL;
5a6765cf 1446#endif
872e8d26
BB
1447
1448 /*
1449 * NB: we could do this block-at-a-time, but it's nice
1450 * to be reading in parallel.
1451 */
804e0504
MA
1452 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1453 TRUE, FTAG, &numbufs, &dbp, 0);
872e8d26
BB
1454 if (err)
1455 return (err);
1456
1457 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1458 uint64_t tocpy;
1459 int64_t bufoff;
872e8d26
BB
1460 dmu_buf_t *db = dbp[i];
1461
1462 ASSERT(size > 0);
1463
1464 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1465 tocpy = MIN(db->db_size - bufoff, size);
872e8d26 1466
5a6765cf 1467#ifdef HAVE_UIO_ZEROCOPY
872e8d26
BB
1468 if (xuio) {
1469 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1470 arc_buf_t *dbuf_abuf = dbi->db_buf;
1471 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1472 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1473 if (!err) {
1474 uio->uio_resid -= tocpy;
1475 uio->uio_loffset += tocpy;
1476 }
1477
1478 if (abuf == dbuf_abuf)
1479 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1480 else
1481 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
5a6765cf 1482 } else
1483#endif
872e8d26
BB
1484 err = uiomove((char *)db->db_data + bufoff, tocpy,
1485 UIO_READ, uio);
872e8d26
BB
1486 if (err)
1487 break;
1488
1489 size -= tocpy;
1490 }
1491 dmu_buf_rele_array(dbp, numbufs, FTAG);
1492
1493 return (err);
1494}
1495
804e0504
MA
1496/*
1497 * Read 'size' bytes into the uio buffer.
1498 * From object zdb->db_object.
1499 * Starting at offset uio->uio_loffset.
1500 *
1501 * If the caller already has a dbuf in the target object
1502 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1503 * because we don't have to find the dnode_t for the object.
1504 */
1505int
1506dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1507{
1508 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1509 dnode_t *dn;
1510 int err;
1511
1512 if (size == 0)
1513 return (0);
1514
1515 DB_DNODE_ENTER(db);
1516 dn = DB_DNODE(db);
1517 err = dmu_read_uio_dnode(dn, uio, size);
1518 DB_DNODE_EXIT(db);
1519
1520 return (err);
1521}
1522
1523/*
1524 * Read 'size' bytes into the uio buffer.
1525 * From the specified object
1526 * Starting at offset uio->uio_loffset.
1527 */
1528int
1529dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1530{
1531 dnode_t *dn;
1532 int err;
1533
1534 if (size == 0)
1535 return (0);
1536
1537 err = dnode_hold(os, object, FTAG, &dn);
1538 if (err)
1539 return (err);
1540
1541 err = dmu_read_uio_dnode(dn, uio, size);
1542
1543 dnode_rele(dn, FTAG);
1544
1545 return (err);
1546}
1547
5228cf01 1548int
872e8d26
BB
1549dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1550{
1551 dmu_buf_t **dbp;
1552 int numbufs;
1553 int err = 0;
1554 int i;
1555
1556 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1557 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1558 if (err)
1559 return (err);
1560
1561 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1562 uint64_t tocpy;
1563 int64_t bufoff;
872e8d26
BB
1564 dmu_buf_t *db = dbp[i];
1565
1566 ASSERT(size > 0);
1567
1568 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1569 tocpy = MIN(db->db_size - bufoff, size);
872e8d26
BB
1570
1571 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1572
1573 if (tocpy == db->db_size)
1574 dmu_buf_will_fill(db, tx);
1575 else
1576 dmu_buf_will_dirty(db, tx);
1577
1578 /*
1579 * XXX uiomove could block forever (eg.nfs-backed
1580 * pages). There needs to be a uiolockdown() function
1581 * to lock the pages in memory, so that uiomove won't
1582 * block.
1583 */
1584 err = uiomove((char *)db->db_data + bufoff, tocpy,
1585 UIO_WRITE, uio);
1586
1587 if (tocpy == db->db_size)
1588 dmu_buf_fill_done(db, tx);
1589
1590 if (err)
1591 break;
1592
1593 size -= tocpy;
1594 }
1595
1596 dmu_buf_rele_array(dbp, numbufs, FTAG);
1597 return (err);
1598}
1599
804e0504
MA
1600/*
1601 * Write 'size' bytes from the uio buffer.
1602 * To object zdb->db_object.
1603 * Starting at offset uio->uio_loffset.
1604 *
1605 * If the caller already has a dbuf in the target object
1606 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1607 * because we don't have to find the dnode_t for the object.
1608 */
428870ff
BB
1609int
1610dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1611 dmu_tx_t *tx)
1612{
572e2857
BB
1613 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1614 dnode_t *dn;
1615 int err;
1616
428870ff
BB
1617 if (size == 0)
1618 return (0);
1619
572e2857
BB
1620 DB_DNODE_ENTER(db);
1621 dn = DB_DNODE(db);
1622 err = dmu_write_uio_dnode(dn, uio, size, tx);
1623 DB_DNODE_EXIT(db);
1624
1625 return (err);
428870ff
BB
1626}
1627
804e0504
MA
1628/*
1629 * Write 'size' bytes from the uio buffer.
1630 * To the specified object.
1631 * Starting at offset uio->uio_loffset.
1632 */
428870ff
BB
1633int
1634dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1635 dmu_tx_t *tx)
1636{
1637 dnode_t *dn;
1638 int err;
1639
1640 if (size == 0)
1641 return (0);
1642
1643 err = dnode_hold(os, object, FTAG, &dn);
1644 if (err)
1645 return (err);
1646
1647 err = dmu_write_uio_dnode(dn, uio, size, tx);
1648
1649 dnode_rele(dn, FTAG);
1650
1651 return (err);
1652}
872e8d26 1653#endif /* _KERNEL */
34dc7c2f 1654
9babb374
BB
1655/*
1656 * Allocate a loaned anonymous arc buffer.
1657 */
1658arc_buf_t *
1659dmu_request_arcbuf(dmu_buf_t *handle, int size)
1660{
572e2857 1661 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
9babb374 1662
2aa34383 1663 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
9babb374
BB
1664}
1665
1666/*
1667 * Free a loaned arc buffer.
1668 */
1669void
1670dmu_return_arcbuf(arc_buf_t *buf)
1671{
1672 arc_return_buf(buf, FTAG);
d3c2ae1c 1673 arc_buf_destroy(buf, FTAG);
9babb374
BB
1674}
1675
b5256303
TC
1676void
1677dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
1678 dmu_buf_t *handle, dmu_tx_t *tx)
1679{
1680 dmu_buf_t *dst_handle;
1681 dmu_buf_impl_t *dstdb;
1682 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle;
149ce888 1683 dmu_object_type_t type;
b5256303
TC
1684 arc_buf_t *abuf;
1685 uint64_t datalen;
1686 boolean_t byteorder;
1687 uint8_t salt[ZIO_DATA_SALT_LEN];
1688 uint8_t iv[ZIO_DATA_IV_LEN];
1689 uint8_t mac[ZIO_DATA_MAC_LEN];
1690
1691 ASSERT3P(srcdb->db_buf, !=, NULL);
1692
1693 /* hold the db that we want to write to */
1694 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle,
1695 DMU_READ_NO_DECRYPT));
1696 dstdb = (dmu_buf_impl_t *)dst_handle;
1697 datalen = arc_buf_size(srcdb->db_buf);
1698
149ce888
TC
1699 DB_DNODE_ENTER(dstdb);
1700 type = DB_DNODE(dstdb)->dn_type;
1701 DB_DNODE_EXIT(dstdb);
1702
b5256303
TC
1703 /* allocated an arc buffer that matches the type of srcdb->db_buf */
1704 if (arc_is_encrypted(srcdb->db_buf)) {
1705 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac);
1706 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os),
149ce888 1707 byteorder, salt, iv, mac, type,
b5256303
TC
1708 datalen, arc_buf_lsize(srcdb->db_buf),
1709 arc_get_compression(srcdb->db_buf));
1710 } else {
1711 /* we won't get a compressed db back from dmu_buf_hold() */
1712 ASSERT3U(arc_get_compression(srcdb->db_buf),
1713 ==, ZIO_COMPRESS_OFF);
1714 abuf = arc_loan_buf(os->os_spa,
149ce888 1715 DMU_OT_IS_METADATA(type), datalen);
b5256303
TC
1716 }
1717
1718 ASSERT3U(datalen, ==, arc_buf_size(abuf));
1719
1720 /* copy the data to the new buffer and assign it to the dstdb */
1721 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen);
1722 dbuf_assign_arcbuf(dstdb, abuf, tx);
1723 dmu_buf_rele(dst_handle, FTAG);
1724}
1725
9babb374
BB
1726/*
1727 * When possible directly assign passed loaned arc buffer to a dbuf.
1728 * If this is not possible copy the contents of passed arc buf via
1729 * dmu_write().
1730 */
305781da 1731int
440a3eb9 1732dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
9babb374
BB
1733 dmu_tx_t *tx)
1734{
9babb374 1735 dmu_buf_impl_t *db;
440a3eb9
TC
1736 objset_t *os = dn->dn_objset;
1737 uint64_t object = dn->dn_object;
2aa34383 1738 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
9babb374
BB
1739 uint64_t blkid;
1740
1741 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35 1742 blkid = dbuf_whichblock(dn, 0, offset);
305781da
TC
1743 db = dbuf_hold(dn, blkid, FTAG);
1744 if (db == NULL)
1745 return (SET_ERROR(EIO));
9babb374
BB
1746 rw_exit(&dn->dn_struct_rwlock);
1747
88904bb3
MA
1748 /*
1749 * We can only assign if the offset is aligned, the arc buf is the
2aa34383 1750 * same size as the dbuf, and the dbuf is not metadata.
88904bb3 1751 */
2aa34383 1752 if (offset == db->db.db_offset && blksz == db->db.db_size) {
9babb374
BB
1753 dbuf_assign_arcbuf(db, buf, tx);
1754 dbuf_rele(db, FTAG);
1755 } else {
2aa34383
DK
1756 /* compressed bufs must always be assignable to their dbuf */
1757 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
524b4217 1758 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
2aa34383 1759
9babb374 1760 dbuf_rele(db, FTAG);
572e2857 1761 dmu_write(os, object, offset, blksz, buf->b_data, tx);
9babb374 1762 dmu_return_arcbuf(buf);
428870ff 1763 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
9babb374 1764 }
305781da
TC
1765
1766 return (0);
9babb374
BB
1767}
1768
305781da 1769int
440a3eb9
TC
1770dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1771 dmu_tx_t *tx)
1772{
305781da 1773 int err;
440a3eb9
TC
1774 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1775
1776 DB_DNODE_ENTER(dbuf);
305781da 1777 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
440a3eb9 1778 DB_DNODE_EXIT(dbuf);
305781da
TC
1779
1780 return (err);
440a3eb9
TC
1781}
1782
34dc7c2f 1783typedef struct {
428870ff
BB
1784 dbuf_dirty_record_t *dsa_dr;
1785 dmu_sync_cb_t *dsa_done;
1786 zgd_t *dsa_zgd;
1787 dmu_tx_t *dsa_tx;
34dc7c2f
BB
1788} dmu_sync_arg_t;
1789
b128c09f
BB
1790/* ARGSUSED */
1791static void
1792dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1793{
428870ff
BB
1794 dmu_sync_arg_t *dsa = varg;
1795 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
b128c09f
BB
1796 blkptr_t *bp = zio->io_bp;
1797
428870ff
BB
1798 if (zio->io_error == 0) {
1799 if (BP_IS_HOLE(bp)) {
1800 /*
1801 * A block of zeros may compress to a hole, but the
1802 * block size still needs to be known for replay.
1803 */
1804 BP_SET_LSIZE(bp, db->db_size);
9b67f605 1805 } else if (!BP_IS_EMBEDDED(bp)) {
428870ff 1806 ASSERT(BP_GET_LEVEL(bp) == 0);
b5256303 1807 BP_SET_FILL(bp, 1);
428870ff 1808 }
b128c09f
BB
1809 }
1810}
1811
428870ff
BB
1812static void
1813dmu_sync_late_arrival_ready(zio_t *zio)
1814{
1815 dmu_sync_ready(zio, NULL, zio->io_private);
1816}
1817
34dc7c2f
BB
1818/* ARGSUSED */
1819static void
1820dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1821{
428870ff
BB
1822 dmu_sync_arg_t *dsa = varg;
1823 dbuf_dirty_record_t *dr = dsa->dsa_dr;
34dc7c2f 1824 dmu_buf_impl_t *db = dr->dr_dbuf;
900d09b2
PS
1825 zgd_t *zgd = dsa->dsa_zgd;
1826
1827 /*
1828 * Record the vdev(s) backing this blkptr so they can be flushed after
1829 * the writes for the lwb have completed.
1830 */
1831 if (zio->io_error == 0) {
1832 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1833 }
34dc7c2f 1834
34dc7c2f
BB
1835 mutex_enter(&db->db_mtx);
1836 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
428870ff 1837 if (zio->io_error == 0) {
03c6040b
GW
1838 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1839 if (dr->dt.dl.dr_nopwrite) {
02dc43bc
MA
1840 blkptr_t *bp = zio->io_bp;
1841 blkptr_t *bp_orig = &zio->io_bp_orig;
1842 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
03c6040b
GW
1843
1844 ASSERT(BP_EQUAL(bp, bp_orig));
02dc43bc 1845 VERIFY(BP_EQUAL(bp, db->db_blkptr));
03c6040b 1846 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
02dc43bc 1847 VERIFY(zio_checksum_table[chksum].ci_flags &
3c67d83a 1848 ZCHECKSUM_FLAG_NOPWRITE);
03c6040b 1849 }
428870ff
BB
1850 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1851 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1852 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
a4069eef
PS
1853
1854 /*
1855 * Old style holes are filled with all zeros, whereas
1856 * new-style holes maintain their lsize, type, level,
1857 * and birth time (see zio_write_compress). While we
1858 * need to reset the BP_SET_LSIZE() call that happened
1859 * in dmu_sync_ready for old style holes, we do *not*
1860 * want to wipe out the information contained in new
1861 * style holes. Thus, only zero out the block pointer if
1862 * it's an old style hole.
1863 */
1864 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1865 dr->dt.dl.dr_overridden_by.blk_birth == 0)
428870ff
BB
1866 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1867 } else {
1868 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1869 }
34dc7c2f
BB
1870 cv_broadcast(&db->db_changed);
1871 mutex_exit(&db->db_mtx);
1872
428870ff 1873 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
34dc7c2f 1874
428870ff
BB
1875 kmem_free(dsa, sizeof (*dsa));
1876}
1877
1878static void
1879dmu_sync_late_arrival_done(zio_t *zio)
1880{
1881 blkptr_t *bp = zio->io_bp;
1882 dmu_sync_arg_t *dsa = zio->io_private;
900d09b2
PS
1883 zgd_t *zgd = dsa->dsa_zgd;
1884
1885 if (zio->io_error == 0) {
1886 /*
1887 * Record the vdev(s) backing this blkptr so they can be
1888 * flushed after the writes for the lwb have completed.
1889 */
1890 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1891
1892 if (!BP_IS_HOLE(bp)) {
1893 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
1894 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1895 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1896 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1897 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1898 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1899 }
428870ff
BB
1900 }
1901
1902 dmu_tx_commit(dsa->dsa_tx);
1903
1904 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1905
a6255b7f 1906 abd_put(zio->io_abd);
428870ff
BB
1907 kmem_free(dsa, sizeof (*dsa));
1908}
1909
1910static int
1911dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
5dbd68a3 1912 zio_prop_t *zp, zbookmark_phys_t *zb)
428870ff
BB
1913{
1914 dmu_sync_arg_t *dsa;
1915 dmu_tx_t *tx;
1916
1917 tx = dmu_tx_create(os);
1918 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1919 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1920 dmu_tx_abort(tx);
2e528b49
MA
1921 /* Make zl_get_data do txg_waited_synced() */
1922 return (SET_ERROR(EIO));
428870ff
BB
1923 }
1924
1ce23dca
PS
1925 /*
1926 * In order to prevent the zgd's lwb from being free'd prior to
1927 * dmu_sync_late_arrival_done() being called, we have to ensure
1928 * the lwb's "max txg" takes this tx's txg into account.
1929 */
1930 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1931
79c76d5b 1932 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1933 dsa->dsa_dr = NULL;
1934 dsa->dsa_done = done;
1935 dsa->dsa_zgd = zgd;
1936 dsa->dsa_tx = tx;
1937
02dc43bc
MA
1938 /*
1939 * Since we are currently syncing this txg, it's nontrivial to
1940 * determine what BP to nopwrite against, so we disable nopwrite.
1941 *
1942 * When syncing, the db_blkptr is initially the BP of the previous
1943 * txg. We can not nopwrite against it because it will be changed
1944 * (this is similar to the non-late-arrival case where the dbuf is
1945 * dirty in a future txg).
1946 *
1947 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1948 * We can not nopwrite against it because although the BP will not
1949 * (typically) be changed, the data has not yet been persisted to this
1950 * location.
1951 *
1952 * Finally, when dbuf_write_done() is called, it is theoretically
1953 * possible to always nopwrite, because the data that was written in
1954 * this txg is the same data that we are trying to write. However we
1955 * would need to check that this dbuf is not dirty in any future
1956 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1957 * don't nopwrite in this case.
1958 */
1959 zp->zp_nopwrite = B_FALSE;
1960
a6255b7f
DQ
1961 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1962 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1963 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1964 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1965 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
428870ff
BB
1966
1967 return (0);
34dc7c2f
BB
1968}
1969
1970/*
1971 * Intent log support: sync the block associated with db to disk.
1972 * N.B. and XXX: the caller is responsible for making sure that the
1973 * data isn't changing while dmu_sync() is writing it.
1974 *
1975 * Return values:
1976 *
03c6040b 1977 * EEXIST: this txg has already been synced, so there's nothing to do.
34dc7c2f
BB
1978 * The caller should not log the write.
1979 *
1980 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1981 * The caller should not log the write.
1982 *
1983 * EALREADY: this block is already in the process of being synced.
1984 * The caller should track its progress (somehow).
1985 *
428870ff
BB
1986 * EIO: could not do the I/O.
1987 * The caller should do a txg_wait_synced().
34dc7c2f 1988 *
428870ff
BB
1989 * 0: the I/O has been initiated.
1990 * The caller should log this blkptr in the done callback.
1991 * It is possible that the I/O will fail, in which case
1992 * the error will be reported to the done callback and
1993 * propagated to pio from zio_done().
34dc7c2f
BB
1994 */
1995int
428870ff 1996dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
34dc7c2f 1997{
428870ff
BB
1998 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1999 objset_t *os = db->db_objset;
2000 dsl_dataset_t *ds = os->os_dsl_dataset;
34dc7c2f 2001 dbuf_dirty_record_t *dr;
428870ff 2002 dmu_sync_arg_t *dsa;
5dbd68a3 2003 zbookmark_phys_t zb;
428870ff 2004 zio_prop_t zp;
572e2857 2005 dnode_t *dn;
34dc7c2f 2006
428870ff 2007 ASSERT(pio != NULL);
34dc7c2f
BB
2008 ASSERT(txg != 0);
2009
428870ff
BB
2010 SET_BOOKMARK(&zb, ds->ds_object,
2011 db->db.db_object, db->db_level, db->db_blkid);
2012
572e2857
BB
2013 DB_DNODE_ENTER(db);
2014 dn = DB_DNODE(db);
82644107 2015 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
572e2857 2016 DB_DNODE_EXIT(db);
34dc7c2f
BB
2017
2018 /*
428870ff 2019 * If we're frozen (running ziltest), we always need to generate a bp.
34dc7c2f 2020 */
428870ff
BB
2021 if (txg > spa_freeze_txg(os->os_spa))
2022 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
2023
2024 /*
428870ff
BB
2025 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
2026 * and us. If we determine that this txg is not yet syncing,
2027 * but it begins to sync a moment later, that's OK because the
2028 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
34dc7c2f 2029 */
428870ff
BB
2030 mutex_enter(&db->db_mtx);
2031
2032 if (txg <= spa_last_synced_txg(os->os_spa)) {
34dc7c2f 2033 /*
428870ff 2034 * This txg has already synced. There's nothing to do.
34dc7c2f 2035 */
428870ff 2036 mutex_exit(&db->db_mtx);
2e528b49 2037 return (SET_ERROR(EEXIST));
34dc7c2f
BB
2038 }
2039
428870ff
BB
2040 if (txg <= spa_syncing_txg(os->os_spa)) {
2041 /*
2042 * This txg is currently syncing, so we can't mess with
2043 * the dirty record anymore; just write a new log block.
2044 */
2045 mutex_exit(&db->db_mtx);
2046 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
2047 }
2048
2049 dr = db->db_last_dirty;
428870ff 2050 while (dr && dr->dr_txg != txg)
34dc7c2f 2051 dr = dr->dr_next;
428870ff
BB
2052
2053 if (dr == NULL) {
34dc7c2f 2054 /*
428870ff 2055 * There's no dr for this dbuf, so it must have been freed.
34dc7c2f
BB
2056 * There's no need to log writes to freed blocks, so we're done.
2057 */
2058 mutex_exit(&db->db_mtx);
2e528b49 2059 return (SET_ERROR(ENOENT));
34dc7c2f
BB
2060 }
2061
03c6040b
GW
2062 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
2063
02dc43bc
MA
2064 if (db->db_blkptr != NULL) {
2065 /*
2066 * We need to fill in zgd_bp with the current blkptr so that
2067 * the nopwrite code can check if we're writing the same
2068 * data that's already on disk. We can only nopwrite if we
2069 * are sure that after making the copy, db_blkptr will not
2070 * change until our i/o completes. We ensure this by
2071 * holding the db_mtx, and only allowing nopwrite if the
2072 * block is not already dirty (see below). This is verified
2073 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
2074 * not changed.
2075 */
2076 *zgd->zgd_bp = *db->db_blkptr;
2077 }
2078
03c6040b 2079 /*
f3c517d8
MA
2080 * Assume the on-disk data is X, the current syncing data (in
2081 * txg - 1) is Y, and the current in-memory data is Z (currently
2082 * in dmu_sync).
2083 *
2084 * We usually want to perform a nopwrite if X and Z are the
2085 * same. However, if Y is different (i.e. the BP is going to
2086 * change before this write takes effect), then a nopwrite will
2087 * be incorrect - we would override with X, which could have
2088 * been freed when Y was written.
2089 *
2090 * (Note that this is not a concern when we are nop-writing from
2091 * syncing context, because X and Y must be identical, because
2092 * all previous txgs have been synced.)
2093 *
2094 * Therefore, we disable nopwrite if the current BP could change
2095 * before this TXG. There are two ways it could change: by
2096 * being dirty (dr_next is non-NULL), or by being freed
2097 * (dnode_block_freed()). This behavior is verified by
2098 * zio_done(), which VERIFYs that the override BP is identical
2099 * to the on-disk BP.
03c6040b 2100 */
f3c517d8
MA
2101 DB_DNODE_ENTER(db);
2102 dn = DB_DNODE(db);
2103 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
03c6040b 2104 zp.zp_nopwrite = B_FALSE;
f3c517d8 2105 DB_DNODE_EXIT(db);
03c6040b 2106
34dc7c2f 2107 ASSERT(dr->dr_txg == txg);
428870ff
BB
2108 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
2109 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
34dc7c2f 2110 /*
428870ff
BB
2111 * We have already issued a sync write for this buffer,
2112 * or this buffer has already been synced. It could not
34dc7c2f
BB
2113 * have been dirtied since, or we would have cleared the state.
2114 */
34dc7c2f 2115 mutex_exit(&db->db_mtx);
2e528b49 2116 return (SET_ERROR(EALREADY));
34dc7c2f
BB
2117 }
2118
428870ff 2119 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
34dc7c2f 2120 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
34dc7c2f 2121 mutex_exit(&db->db_mtx);
34dc7c2f 2122
79c76d5b 2123 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
2124 dsa->dsa_dr = dr;
2125 dsa->dsa_done = done;
2126 dsa->dsa_zgd = zgd;
2127 dsa->dsa_tx = NULL;
b128c09f 2128
428870ff 2129 zio_nowait(arc_write(pio, os->os_spa, txg,
02dc43bc 2130 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
d3c2ae1c 2131 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
bc77ba73 2132 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
b128c09f 2133
428870ff 2134 return (0);
34dc7c2f
BB
2135}
2136
b5256303
TC
2137int
2138dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2139{
2140 dnode_t *dn;
2141 int err;
2142
2143 err = dnode_hold(os, object, FTAG, &dn);
2144 if (err)
2145 return (err);
2146 err = dnode_set_nlevels(dn, nlevels, tx);
2147 dnode_rele(dn, FTAG);
2148 return (err);
2149}
2150
34dc7c2f
BB
2151int
2152dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
4ea3f864 2153 dmu_tx_t *tx)
34dc7c2f
BB
2154{
2155 dnode_t *dn;
2156 int err;
2157
428870ff 2158 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2159 if (err)
2160 return (err);
2161 err = dnode_set_blksz(dn, size, ibs, tx);
2162 dnode_rele(dn, FTAG);
2163 return (err);
2164}
2165
ae76f45c
TC
2166int
2167dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2168 dmu_tx_t *tx)
2169{
2170 dnode_t *dn;
2171 int err;
2172
2173 err = dnode_hold(os, object, FTAG, &dn);
2174 if (err)
2175 return (err);
2176 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
369aa501 2177 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
ae76f45c
TC
2178 rw_exit(&dn->dn_struct_rwlock);
2179 dnode_rele(dn, FTAG);
2180 return (0);
2181}
2182
34dc7c2f
BB
2183void
2184dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
4ea3f864 2185 dmu_tx_t *tx)
34dc7c2f
BB
2186{
2187 dnode_t *dn;
2188
9b67f605
MA
2189 /*
2190 * Send streams include each object's checksum function. This
2191 * check ensures that the receiving system can understand the
2192 * checksum function transmitted.
2193 */
2194 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2195
2196 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2197 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
34dc7c2f
BB
2198 dn->dn_checksum = checksum;
2199 dnode_setdirty(dn, tx);
2200 dnode_rele(dn, FTAG);
2201}
2202
2203void
2204dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
4ea3f864 2205 dmu_tx_t *tx)
34dc7c2f
BB
2206{
2207 dnode_t *dn;
2208
9b67f605
MA
2209 /*
2210 * Send streams include each object's compression function. This
2211 * check ensures that the receiving system can understand the
2212 * compression function transmitted.
2213 */
2214 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2215
2216 VERIFY0(dnode_hold(os, object, FTAG, &dn));
34dc7c2f
BB
2217 dn->dn_compress = compress;
2218 dnode_setdirty(dn, tx);
2219 dnode_rele(dn, FTAG);
2220}
2221
faf0f58c
MA
2222/*
2223 * When the "redundant_metadata" property is set to "most", only indirect
2224 * blocks of this level and higher will have an additional ditto block.
2225 */
2226int zfs_redundant_metadata_most_ditto_level = 2;
2227
428870ff 2228void
82644107 2229dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
428870ff
BB
2230{
2231 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
9ae529ec 2232 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
572e2857 2233 (wp & WP_SPILL));
428870ff
BB
2234 enum zio_checksum checksum = os->os_checksum;
2235 enum zio_compress compress = os->os_compress;
2236 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
03c6040b
GW
2237 boolean_t dedup = B_FALSE;
2238 boolean_t nopwrite = B_FALSE;
428870ff 2239 boolean_t dedup_verify = os->os_dedup_verify;
b5256303 2240 boolean_t encrypt = B_FALSE;
428870ff 2241 int copies = os->os_copies;
a7004725 2242
428870ff 2243 /*
03c6040b
GW
2244 * We maintain different write policies for each of the following
2245 * types of data:
2246 * 1. metadata
2247 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2248 * 3. all other level 0 blocks
428870ff
BB
2249 */
2250 if (ismd) {
b1d21733
TC
2251 /*
2252 * XXX -- we should design a compression algorithm
2253 * that specializes in arrays of bps.
2254 */
2255 compress = zio_compress_select(os->os_spa,
2256 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
03c6040b 2257
428870ff
BB
2258 /*
2259 * Metadata always gets checksummed. If the data
2260 * checksum is multi-bit correctable, and it's not a
2261 * ZBT-style checksum, then it's suitable for metadata
2262 * as well. Otherwise, the metadata checksum defaults
2263 * to fletcher4.
2264 */
3c67d83a
TH
2265 if (!(zio_checksum_table[checksum].ci_flags &
2266 ZCHECKSUM_FLAG_METADATA) ||
2267 (zio_checksum_table[checksum].ci_flags &
2268 ZCHECKSUM_FLAG_EMBEDDED))
428870ff 2269 checksum = ZIO_CHECKSUM_FLETCHER_4;
faf0f58c
MA
2270
2271 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2272 (os->os_redundant_metadata ==
2273 ZFS_REDUNDANT_METADATA_MOST &&
2274 (level >= zfs_redundant_metadata_most_ditto_level ||
2275 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2276 copies++;
03c6040b
GW
2277 } else if (wp & WP_NOFILL) {
2278 ASSERT(level == 0);
428870ff 2279
428870ff 2280 /*
03c6040b
GW
2281 * If we're writing preallocated blocks, we aren't actually
2282 * writing them so don't set any policy properties. These
2283 * blocks are currently only used by an external subsystem
2284 * outside of zfs (i.e. dump) and not written by the zio
2285 * pipeline.
428870ff 2286 */
03c6040b
GW
2287 compress = ZIO_COMPRESS_OFF;
2288 checksum = ZIO_CHECKSUM_OFF;
428870ff 2289 } else {
99197f03
JG
2290 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2291 compress);
428870ff 2292
03c6040b
GW
2293 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2294 zio_checksum_select(dn->dn_checksum, checksum) :
2295 dedup_checksum;
428870ff 2296
03c6040b
GW
2297 /*
2298 * Determine dedup setting. If we are in dmu_sync(),
2299 * we won't actually dedup now because that's all
2300 * done in syncing context; but we do want to use the
2301 * dedup checkum. If the checksum is not strong
2302 * enough to ensure unique signatures, force
2303 * dedup_verify.
2304 */
2305 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2306 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
3c67d83a
TH
2307 if (!(zio_checksum_table[checksum].ci_flags &
2308 ZCHECKSUM_FLAG_DEDUP))
03c6040b
GW
2309 dedup_verify = B_TRUE;
2310 }
428870ff 2311
03c6040b 2312 /*
3c67d83a
TH
2313 * Enable nopwrite if we have secure enough checksum
2314 * algorithm (see comment in zio_nop_write) and
2315 * compression is enabled. We don't enable nopwrite if
2316 * dedup is enabled as the two features are mutually
2317 * exclusive.
03c6040b 2318 */
3c67d83a
TH
2319 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2320 ZCHECKSUM_FLAG_NOPWRITE) &&
03c6040b 2321 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
428870ff
BB
2322 }
2323
b5256303
TC
2324 /*
2325 * All objects in an encrypted objset are protected from modification
2326 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2327 * in the bp, so we cannot use all copies. Encrypted objects are also
2328 * not subject to nopwrite since writing the same data will still
2329 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2330 * to avoid ambiguity in the dedup code since the DDT does not store
2331 * object types.
2332 */
2333 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2334 encrypt = B_TRUE;
2335
2336 if (DMU_OT_IS_ENCRYPTED(type)) {
2337 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2338 nopwrite = B_FALSE;
2339 } else {
2340 dedup = B_FALSE;
2341 }
2342
ae76f45c
TC
2343 if (level <= 0 &&
2344 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
b5256303 2345 compress = ZIO_COMPRESS_EMPTY;
ae76f45c 2346 }
b5256303 2347 }
2aa34383 2348
b5256303
TC
2349 zp->zp_compress = compress;
2350 zp->zp_checksum = checksum;
428870ff
BB
2351 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2352 zp->zp_level = level;
faf0f58c 2353 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
428870ff
BB
2354 zp->zp_dedup = dedup;
2355 zp->zp_dedup_verify = dedup && dedup_verify;
03c6040b 2356 zp->zp_nopwrite = nopwrite;
b5256303
TC
2357 zp->zp_encrypt = encrypt;
2358 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2359 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2360 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2361 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
cc99f275
DB
2362 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2363 os->os_zpl_special_smallblock : 0;
b5256303
TC
2364
2365 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
428870ff
BB
2366}
2367
66aca247
DB
2368/*
2369 * This function is only called from zfs_holey_common() for zpl_llseek()
2370 * in order to determine the location of holes. In order to accurately
2371 * report holes all dirty data must be synced to disk. This causes extremely
2372 * poor performance when seeking for holes in a dirty file. As a compromise,
2373 * only provide hole data when the dnode is clean. When a dnode is dirty
2374 * report the dnode as having no holes which is always a safe thing to do.
2375 */
34dc7c2f
BB
2376int
2377dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2378{
2379 dnode_t *dn;
2380 int i, err;
66aca247 2381 boolean_t clean = B_TRUE;
34dc7c2f 2382
428870ff 2383 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2384 if (err)
2385 return (err);
66aca247 2386
34dc7c2f 2387 /*
2531ce37 2388 * Check if dnode is dirty
34dc7c2f 2389 */
454365bb 2390 for (i = 0; i < TXG_SIZE; i++) {
edc1e713 2391 if (multilist_link_active(&dn->dn_dirty_link[i])) {
2531ce37 2392 clean = B_FALSE;
ec4f9b8f 2393 break;
2531ce37 2394 }
34dc7c2f 2395 }
66aca247
DB
2396
2397 /*
2398 * If compatibility option is on, sync any current changes before
2399 * we go trundling through the block pointers.
2400 */
2401 if (!clean && zfs_dmu_offset_next_sync) {
2402 clean = B_TRUE;
34dc7c2f
BB
2403 dnode_rele(dn, FTAG);
2404 txg_wait_synced(dmu_objset_pool(os), 0);
428870ff 2405 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2406 if (err)
2407 return (err);
2408 }
2409
66aca247
DB
2410 if (clean)
2411 err = dnode_next_offset(dn,
2412 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2413 else
2414 err = SET_ERROR(EBUSY);
2415
34dc7c2f
BB
2416 dnode_rele(dn, FTAG);
2417
2418 return (err);
2419}
2420
2421void
e0b0ca98 2422__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
34dc7c2f 2423{
e0b0ca98 2424 dnode_phys_t *dnp = dn->dn_phys;
428870ff 2425
34dc7c2f
BB
2426 doi->doi_data_block_size = dn->dn_datablksz;
2427 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2428 1ULL << dn->dn_indblkshift : 0;
428870ff
BB
2429 doi->doi_type = dn->dn_type;
2430 doi->doi_bonus_type = dn->dn_bonustype;
2431 doi->doi_bonus_size = dn->dn_bonuslen;
50c957f7 2432 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
34dc7c2f
BB
2433 doi->doi_indirection = dn->dn_nlevels;
2434 doi->doi_checksum = dn->dn_checksum;
2435 doi->doi_compress = dn->dn_compress;
6c59307a 2436 doi->doi_nblkptr = dn->dn_nblkptr;
428870ff 2437 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
d1fada1e 2438 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
428870ff 2439 doi->doi_fill_count = 0;
1c27024e 2440 for (int i = 0; i < dnp->dn_nblkptr; i++)
9b67f605 2441 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
e0b0ca98
BB
2442}
2443
2444void
2445dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2446{
2447 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2448 mutex_enter(&dn->dn_mtx);
2449
2450 __dmu_object_info_from_dnode(dn, doi);
34dc7c2f
BB
2451
2452 mutex_exit(&dn->dn_mtx);
2453 rw_exit(&dn->dn_struct_rwlock);
2454}
2455
2456/*
2457 * Get information on a DMU object.
2458 * If doi is NULL, just indicates whether the object exists.
2459 */
2460int
2461dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2462{
2463 dnode_t *dn;
428870ff 2464 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2465
2466 if (err)
2467 return (err);
2468
2469 if (doi != NULL)
2470 dmu_object_info_from_dnode(dn, doi);
2471
2472 dnode_rele(dn, FTAG);
2473 return (0);
2474}
2475
2476/*
2477 * As above, but faster; can be used when you have a held dbuf in hand.
2478 */
2479void
572e2857 2480dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
34dc7c2f 2481{
572e2857
BB
2482 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2483
2484 DB_DNODE_ENTER(db);
2485 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2486 DB_DNODE_EXIT(db);
34dc7c2f
BB
2487}
2488
2489/*
2490 * Faster still when you only care about the size.
2491 * This is specifically optimized for zfs_getattr().
2492 */
2493void
572e2857
BB
2494dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2495 u_longlong_t *nblk512)
34dc7c2f 2496{
572e2857
BB
2497 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2498 dnode_t *dn;
2499
2500 DB_DNODE_ENTER(db);
2501 dn = DB_DNODE(db);
34dc7c2f
BB
2502
2503 *blksize = dn->dn_datablksz;
50c957f7 2504 /* add in number of slots used for the dnode itself */
34dc7c2f 2505 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
50c957f7
NB
2506 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2507 DB_DNODE_EXIT(db);
2508}
2509
2510void
2511dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2512{
2513 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2514 dnode_t *dn;
2515
2516 DB_DNODE_ENTER(db);
2517 dn = DB_DNODE(db);
2518 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
572e2857 2519 DB_DNODE_EXIT(db);
34dc7c2f
BB
2520}
2521
2522void
2523byteswap_uint64_array(void *vbuf, size_t size)
2524{
2525 uint64_t *buf = vbuf;
2526 size_t count = size >> 3;
2527 int i;
2528
2529 ASSERT((size & 7) == 0);
2530
2531 for (i = 0; i < count; i++)
2532 buf[i] = BSWAP_64(buf[i]);
2533}
2534
2535void
2536byteswap_uint32_array(void *vbuf, size_t size)
2537{
2538 uint32_t *buf = vbuf;
2539 size_t count = size >> 2;
2540 int i;
2541
2542 ASSERT((size & 3) == 0);
2543
2544 for (i = 0; i < count; i++)
2545 buf[i] = BSWAP_32(buf[i]);
2546}
2547
2548void
2549byteswap_uint16_array(void *vbuf, size_t size)
2550{
2551 uint16_t *buf = vbuf;
2552 size_t count = size >> 1;
2553 int i;
2554
2555 ASSERT((size & 1) == 0);
2556
2557 for (i = 0; i < count; i++)
2558 buf[i] = BSWAP_16(buf[i]);
2559}
2560
2561/* ARGSUSED */
2562void
2563byteswap_uint8_array(void *vbuf, size_t size)
2564{
2565}
2566
2567void
2568dmu_init(void)
2569{
a6255b7f 2570 abd_init();
428870ff 2571 zfs_dbgmsg_init();
572e2857
BB
2572 sa_cache_init();
2573 xuio_stat_init();
2574 dmu_objset_init();
34dc7c2f 2575 dnode_init();
428870ff 2576 zfetch_init();
570827e1 2577 dmu_tx_init();
34dc7c2f 2578 l2arc_init();
29809a6c 2579 arc_init();
d3c2ae1c 2580 dbuf_init();
34dc7c2f
BB
2581}
2582
2583void
2584dmu_fini(void)
2585{
e49f1e20 2586 arc_fini(); /* arc depends on l2arc, so arc must go first */
29809a6c 2587 l2arc_fini();
570827e1 2588 dmu_tx_fini();
428870ff 2589 zfetch_fini();
34dc7c2f 2590 dbuf_fini();
572e2857
BB
2591 dnode_fini();
2592 dmu_objset_fini();
428870ff
BB
2593 xuio_stat_fini();
2594 sa_cache_fini();
2595 zfs_dbgmsg_fini();
a6255b7f 2596 abd_fini();
34dc7c2f 2597}
c28b2279 2598
93ce2b4c 2599#if defined(_KERNEL)
c28b2279 2600EXPORT_SYMBOL(dmu_bonus_hold);
6955b401 2601EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
a473d90c
AZ
2602EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2603EXPORT_SYMBOL(dmu_buf_rele_array);
57b650b8 2604EXPORT_SYMBOL(dmu_prefetch);
c28b2279 2605EXPORT_SYMBOL(dmu_free_range);
57b650b8 2606EXPORT_SYMBOL(dmu_free_long_range);
b663a23d 2607EXPORT_SYMBOL(dmu_free_long_object);
c28b2279 2608EXPORT_SYMBOL(dmu_read);
0eef1bde 2609EXPORT_SYMBOL(dmu_read_by_dnode);
c28b2279 2610EXPORT_SYMBOL(dmu_write);
0eef1bde 2611EXPORT_SYMBOL(dmu_write_by_dnode);
57b650b8 2612EXPORT_SYMBOL(dmu_prealloc);
c28b2279
BB
2613EXPORT_SYMBOL(dmu_object_info);
2614EXPORT_SYMBOL(dmu_object_info_from_dnode);
2615EXPORT_SYMBOL(dmu_object_info_from_db);
2616EXPORT_SYMBOL(dmu_object_size_from_db);
50c957f7 2617EXPORT_SYMBOL(dmu_object_dnsize_from_db);
b5256303 2618EXPORT_SYMBOL(dmu_object_set_nlevels);
c28b2279 2619EXPORT_SYMBOL(dmu_object_set_blocksize);
ae76f45c 2620EXPORT_SYMBOL(dmu_object_set_maxblkid);
c28b2279
BB
2621EXPORT_SYMBOL(dmu_object_set_checksum);
2622EXPORT_SYMBOL(dmu_object_set_compress);
57b650b8
BB
2623EXPORT_SYMBOL(dmu_write_policy);
2624EXPORT_SYMBOL(dmu_sync);
b10c77f7
BB
2625EXPORT_SYMBOL(dmu_request_arcbuf);
2626EXPORT_SYMBOL(dmu_return_arcbuf);
440a3eb9
TC
2627EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2628EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
b10c77f7 2629EXPORT_SYMBOL(dmu_buf_hold);
c28b2279 2630EXPORT_SYMBOL(dmu_ot);
afec56b4 2631
bef78122 2632/* BEGIN CSTYLED */
03c6040b
GW
2633module_param(zfs_nopwrite_enabled, int, 0644);
2634MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
2635
bef78122
DQ
2636module_param(zfs_per_txg_dirty_frees_percent, ulong, 0644);
2637MODULE_PARM_DESC(zfs_per_txg_dirty_frees_percent,
2638 "percentage of dirtied blocks from frees in one TXG");
66aca247
DB
2639
2640module_param(zfs_dmu_offset_next_sync, int, 0644);
2641MODULE_PARM_DESC(zfs_dmu_offset_next_sync,
2642 "Enable forcing txg sync to find holes");
2643
d9b4bf06
MA
2644module_param(dmu_prefetch_max, int, 0644);
2645MODULE_PARM_DESC(dmu_prefetch_max,
2646 "Limit one prefetch call to this size");
2647
bef78122 2648/* END CSTYLED */
66aca247 2649
c28b2279 2650#endif