]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu.c
Fix typos in module/zfs/
[mirror_zfs.git] / module / zfs / dmu.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
30af21b0 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
bc77ba73 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
a08abc1b 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
5475aada 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
65282ee9 28 * Copyright (c) 2019 Datto Inc.
34dc7c2f
BB
29 */
30
34dc7c2f
BB
31#include <sys/dmu.h>
32#include <sys/dmu_impl.h>
33#include <sys/dmu_tx.h>
34#include <sys/dbuf.h>
35#include <sys/dnode.h>
36#include <sys/zfs_context.h>
37#include <sys/dmu_objset.h>
38#include <sys/dmu_traverse.h>
39#include <sys/dsl_dataset.h>
40#include <sys/dsl_dir.h>
41#include <sys/dsl_pool.h>
42#include <sys/dsl_synctask.h>
43#include <sys/dsl_prop.h>
44#include <sys/dmu_zfetch.h>
45#include <sys/zfs_ioctl.h>
46#include <sys/zap.h>
47#include <sys/zio_checksum.h>
03c6040b 48#include <sys/zio_compress.h>
428870ff 49#include <sys/sa.h>
62bdd5eb 50#include <sys/zfeature.h>
a6255b7f 51#include <sys/abd.h>
539d33c7 52#include <sys/trace_dmu.h>
f763c3d1 53#include <sys/zfs_rlock.h>
34dc7c2f
BB
54#ifdef _KERNEL
55#include <sys/vmsystm.h>
b128c09f 56#include <sys/zfs_znode.h>
34dc7c2f
BB
57#endif
58
03c6040b
GW
59/*
60 * Enable/disable nopwrite feature.
61 */
62int zfs_nopwrite_enabled = 1;
63
539d33c7 64/*
65282ee9
AP
65 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
66 * one TXG. After this threshold is crossed, additional dirty blocks from frees
67 * will wait until the next TXG.
539d33c7
GM
68 * A value of zero will disable this throttle.
69 */
65282ee9 70unsigned long zfs_per_txg_dirty_frees_percent = 5;
539d33c7 71
66aca247
DB
72/*
73 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
74 */
75int zfs_dmu_offset_next_sync = 0;
76
d9b4bf06
MA
77/*
78 * Limit the amount we can prefetch with one call to this amount. This
79 * helps to limit the amount of memory that can be used by prefetching.
80 * Larger objects should be prefetched a bit at a time.
81 */
82int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
83
34dc7c2f 84const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
2e5dc449
MA
85 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
86 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
87 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
88 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
89 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
90 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
91 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
92 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
93 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
94 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
95 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
96 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
97 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
98 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
99 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
100 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
101 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
102 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
103 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
104 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
105 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
106 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
107 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
108 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
109 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
110 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
111 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
112 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
113 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
114 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
115 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
116 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
117 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
118 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
119 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
120 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
121 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
122 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
123 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
124 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
125 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
126 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
127 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
128 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
129 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
130 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
131 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
132 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
133 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
134 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
135 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
136 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
137 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
138 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
9ae529ec
CS
139};
140
141const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
142 { byteswap_uint8_array, "uint8" },
143 { byteswap_uint16_array, "uint16" },
144 { byteswap_uint32_array, "uint32" },
145 { byteswap_uint64_array, "uint64" },
146 { zap_byteswap, "zap" },
147 { dnode_buf_byteswap, "dnode" },
148 { dmu_objset_byteswap, "objset" },
149 { zfs_znode_byteswap, "znode" },
150 { zfs_oldacl_byteswap, "oldacl" },
151 { zfs_acl_byteswap, "acl" }
34dc7c2f
BB
152};
153
2bce8049
MA
154int
155dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
156 void *tag, dmu_buf_t **dbp)
157{
158 uint64_t blkid;
159 dmu_buf_impl_t *db;
160
2bce8049 161 rw_enter(&dn->dn_struct_rwlock, RW_READER);
f664f1ee 162 blkid = dbuf_whichblock(dn, 0, offset);
2bce8049
MA
163 db = dbuf_hold(dn, blkid, tag);
164 rw_exit(&dn->dn_struct_rwlock);
165
166 if (db == NULL) {
167 *dbp = NULL;
168 return (SET_ERROR(EIO));
169 }
170
171 *dbp = &db->db;
172 return (0);
173}
34dc7c2f 174int
9b67f605
MA
175dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
176 void *tag, dmu_buf_t **dbp)
34dc7c2f
BB
177{
178 dnode_t *dn;
179 uint64_t blkid;
180 dmu_buf_impl_t *db;
181 int err;
428870ff
BB
182
183 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
184 if (err)
185 return (err);
34dc7c2f 186 rw_enter(&dn->dn_struct_rwlock, RW_READER);
f664f1ee 187 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f
BB
188 db = dbuf_hold(dn, blkid, tag);
189 rw_exit(&dn->dn_struct_rwlock);
9b67f605
MA
190 dnode_rele(dn, FTAG);
191
34dc7c2f 192 if (db == NULL) {
9b67f605
MA
193 *dbp = NULL;
194 return (SET_ERROR(EIO));
195 }
196
197 *dbp = &db->db;
198 return (err);
199}
200
2bce8049
MA
201int
202dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
203 void *tag, dmu_buf_t **dbp, int flags)
204{
205 int err;
206 int db_flags = DB_RF_CANFAIL;
207
208 if (flags & DMU_READ_NO_PREFETCH)
209 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
210 if (flags & DMU_READ_NO_DECRYPT)
211 db_flags |= DB_RF_NO_DECRYPT;
2bce8049
MA
212
213 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
214 if (err == 0) {
215 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
216 err = dbuf_read(db, NULL, db_flags);
217 if (err != 0) {
218 dbuf_rele(db, tag);
219 *dbp = NULL;
220 }
221 }
222
223 return (err);
224}
225
9b67f605
MA
226int
227dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
228 void *tag, dmu_buf_t **dbp, int flags)
229{
230 int err;
231 int db_flags = DB_RF_CANFAIL;
232
233 if (flags & DMU_READ_NO_PREFETCH)
234 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
235 if (flags & DMU_READ_NO_DECRYPT)
236 db_flags |= DB_RF_NO_DECRYPT;
9b67f605
MA
237
238 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
239 if (err == 0) {
240 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
428870ff 241 err = dbuf_read(db, NULL, db_flags);
9b67f605 242 if (err != 0) {
34dc7c2f 243 dbuf_rele(db, tag);
9b67f605 244 *dbp = NULL;
34dc7c2f
BB
245 }
246 }
247
34dc7c2f
BB
248 return (err);
249}
250
251int
252dmu_bonus_max(void)
253{
50c957f7 254 return (DN_OLD_MAX_BONUSLEN);
34dc7c2f
BB
255}
256
257int
572e2857 258dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
34dc7c2f 259{
572e2857
BB
260 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
261 dnode_t *dn;
262 int error;
34dc7c2f 263
572e2857
BB
264 DB_DNODE_ENTER(db);
265 dn = DB_DNODE(db);
266
267 if (dn->dn_bonus != db) {
2e528b49 268 error = SET_ERROR(EINVAL);
572e2857 269 } else if (newsize < 0 || newsize > db_fake->db_size) {
2e528b49 270 error = SET_ERROR(EINVAL);
572e2857
BB
271 } else {
272 dnode_setbonuslen(dn, newsize, tx);
273 error = 0;
274 }
275
276 DB_DNODE_EXIT(db);
277 return (error);
34dc7c2f
BB
278}
279
428870ff 280int
572e2857 281dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
428870ff 282{
572e2857
BB
283 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
284 dnode_t *dn;
285 int error;
428870ff 286
572e2857
BB
287 DB_DNODE_ENTER(db);
288 dn = DB_DNODE(db);
428870ff 289
9ae529ec 290 if (!DMU_OT_IS_VALID(type)) {
2e528b49 291 error = SET_ERROR(EINVAL);
572e2857 292 } else if (dn->dn_bonus != db) {
2e528b49 293 error = SET_ERROR(EINVAL);
572e2857
BB
294 } else {
295 dnode_setbonus_type(dn, type, tx);
296 error = 0;
297 }
428870ff 298
572e2857
BB
299 DB_DNODE_EXIT(db);
300 return (error);
301}
302
303dmu_object_type_t
304dmu_get_bonustype(dmu_buf_t *db_fake)
305{
306 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
307 dnode_t *dn;
308 dmu_object_type_t type;
309
310 DB_DNODE_ENTER(db);
311 dn = DB_DNODE(db);
312 type = dn->dn_bonustype;
313 DB_DNODE_EXIT(db);
314
315 return (type);
428870ff
BB
316}
317
318int
319dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
320{
321 dnode_t *dn;
322 int error;
323
324 error = dnode_hold(os, object, FTAG, &dn);
325 dbuf_rm_spill(dn, tx);
326 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
327 dnode_rm_spill(dn, tx);
328 rw_exit(&dn->dn_struct_rwlock);
329 dnode_rele(dn, FTAG);
330 return (error);
331}
332
34dc7c2f 333/*
6955b401
BB
334 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
335 * has not yet been allocated a new bonus dbuf a will be allocated.
336 * Returns ENOENT, EIO, or 0.
34dc7c2f 337 */
6955b401
BB
338int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
339 uint32_t flags)
34dc7c2f 340{
34dc7c2f
BB
341 dmu_buf_impl_t *db;
342 int error;
b5256303
TC
343 uint32_t db_flags = DB_RF_MUST_SUCCEED;
344
345 if (flags & DMU_READ_NO_PREFETCH)
346 db_flags |= DB_RF_NOPREFETCH;
347 if (flags & DMU_READ_NO_DECRYPT)
348 db_flags |= DB_RF_NO_DECRYPT;
34dc7c2f 349
34dc7c2f
BB
350 rw_enter(&dn->dn_struct_rwlock, RW_READER);
351 if (dn->dn_bonus == NULL) {
352 rw_exit(&dn->dn_struct_rwlock);
353 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
354 if (dn->dn_bonus == NULL)
355 dbuf_create_bonus(dn);
356 }
357 db = dn->dn_bonus;
34dc7c2f
BB
358
359 /* as long as the bonus buf is held, the dnode will be held */
c13060e4 360 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
34dc7c2f 361 VERIFY(dnode_add_ref(dn, db));
73ad4a9f 362 atomic_inc_32(&dn->dn_dbufs_count);
572e2857
BB
363 }
364
365 /*
366 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
367 * hold and incrementing the dbuf count to ensure that dnode_move() sees
368 * a dnode hold for every dbuf.
369 */
370 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f 371
b5256303
TC
372 error = dbuf_read(db, NULL, db_flags);
373 if (error) {
374 dnode_evict_bonus(dn);
375 dbuf_rele(db, tag);
376 *dbp = NULL;
377 return (error);
378 }
34dc7c2f
BB
379
380 *dbp = &db->db;
381 return (0);
382}
383
b5256303 384int
6955b401 385dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
b5256303 386{
6955b401
BB
387 dnode_t *dn;
388 int error;
389
390 error = dnode_hold(os, object, FTAG, &dn);
391 if (error)
392 return (error);
393
394 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
395 dnode_rele(dn, FTAG);
396
397 return (error);
b5256303
TC
398}
399
428870ff
BB
400/*
401 * returns ENOENT, EIO, or 0.
402 *
403 * This interface will allocate a blank spill dbuf when a spill blk
404 * doesn't already exist on the dnode.
405 *
406 * if you only want to find an already existing spill db, then
407 * dmu_spill_hold_existing() should be used.
408 */
409int
410dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
411{
412 dmu_buf_impl_t *db = NULL;
413 int err;
414
415 if ((flags & DB_RF_HAVESTRUCT) == 0)
416 rw_enter(&dn->dn_struct_rwlock, RW_READER);
417
418 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
419
420 if ((flags & DB_RF_HAVESTRUCT) == 0)
421 rw_exit(&dn->dn_struct_rwlock);
422
b182ac00 423 if (db == NULL) {
424 *dbp = NULL;
425 return (SET_ERROR(EIO));
426 }
572e2857
BB
427 err = dbuf_read(db, NULL, flags);
428 if (err == 0)
429 *dbp = &db->db;
b182ac00 430 else {
572e2857 431 dbuf_rele(db, tag);
b182ac00 432 *dbp = NULL;
433 }
428870ff
BB
434 return (err);
435}
436
437int
438dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
439{
572e2857
BB
440 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
441 dnode_t *dn;
428870ff
BB
442 int err;
443
572e2857
BB
444 DB_DNODE_ENTER(db);
445 dn = DB_DNODE(db);
446
447 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
2e528b49 448 err = SET_ERROR(EINVAL);
572e2857
BB
449 } else {
450 rw_enter(&dn->dn_struct_rwlock, RW_READER);
451
452 if (!dn->dn_have_spill) {
2e528b49 453 err = SET_ERROR(ENOENT);
572e2857
BB
454 } else {
455 err = dmu_spill_hold_by_dnode(dn,
456 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
457 }
428870ff 458
428870ff 459 rw_exit(&dn->dn_struct_rwlock);
428870ff 460 }
572e2857
BB
461
462 DB_DNODE_EXIT(db);
428870ff
BB
463 return (err);
464}
465
466int
e7504d7a
TC
467dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
468 dmu_buf_t **dbp)
428870ff 469{
572e2857
BB
470 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
471 dnode_t *dn;
472 int err;
e7504d7a
TC
473 uint32_t db_flags = DB_RF_CANFAIL;
474
475 if (flags & DMU_READ_NO_DECRYPT)
476 db_flags |= DB_RF_NO_DECRYPT;
572e2857
BB
477
478 DB_DNODE_ENTER(db);
479 dn = DB_DNODE(db);
e7504d7a 480 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
572e2857
BB
481 DB_DNODE_EXIT(db);
482
483 return (err);
428870ff
BB
484}
485
34dc7c2f
BB
486/*
487 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
488 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
489 * and can induce severe lock contention when writing to several files
490 * whose dnodes are in the same block.
491 */
492static int
9babb374 493dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
7f60329a 494 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
34dc7c2f
BB
495{
496 dmu_buf_t **dbp;
497 uint64_t blkid, nblks, i;
9babb374 498 uint32_t dbuf_flags;
34dc7c2f
BB
499 int err;
500 zio_t *zio;
501
502 ASSERT(length <= DMU_MAX_ACCESS);
503
7f60329a
MA
504 /*
505 * Note: We directly notify the prefetch code of this read, so that
506 * we can tell it about the multi-block read. dbuf_read() only knows
507 * about the one block it is accessing.
508 */
509 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
510 DB_RF_NOPREFETCH;
34dc7c2f
BB
511
512 rw_enter(&dn->dn_struct_rwlock, RW_READER);
513 if (dn->dn_datablkshift) {
514 int blkshift = dn->dn_datablkshift;
7f60329a
MA
515 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
516 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
34dc7c2f
BB
517 } else {
518 if (offset + length > dn->dn_datablksz) {
519 zfs_panic_recover("zfs: accessing past end of object "
520 "%llx/%llx (size=%u access=%llu+%llu)",
521 (longlong_t)dn->dn_objset->
522 os_dsl_dataset->ds_object,
523 (longlong_t)dn->dn_object, dn->dn_datablksz,
524 (longlong_t)offset, (longlong_t)length);
45d1cae3 525 rw_exit(&dn->dn_struct_rwlock);
2e528b49 526 return (SET_ERROR(EIO));
34dc7c2f
BB
527 }
528 nblks = 1;
529 }
79c76d5b 530 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
34dc7c2f 531
b128c09f 532 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
fcff0f35 533 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f 534 for (i = 0; i < nblks; i++) {
7f60329a 535 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
34dc7c2f
BB
536 if (db == NULL) {
537 rw_exit(&dn->dn_struct_rwlock);
538 dmu_buf_rele_array(dbp, nblks, tag);
539 zio_nowait(zio);
2e528b49 540 return (SET_ERROR(EIO));
34dc7c2f 541 }
7f60329a 542
34dc7c2f 543 /* initiate async i/o */
7f60329a 544 if (read)
9babb374 545 (void) dbuf_read(db, zio, dbuf_flags);
34dc7c2f
BB
546 dbp[i] = &db->db;
547 }
7f60329a 548
755065f3
AM
549 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
550 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
551 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
f664f1ee 552 read && DNODE_IS_CACHEABLE(dn), B_TRUE);
7f60329a 553 }
34dc7c2f
BB
554 rw_exit(&dn->dn_struct_rwlock);
555
556 /* wait for async i/o */
557 err = zio_wait(zio);
558 if (err) {
559 dmu_buf_rele_array(dbp, nblks, tag);
560 return (err);
561 }
562
563 /* wait for other io to complete */
564 if (read) {
565 for (i = 0; i < nblks; i++) {
566 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
567 mutex_enter(&db->db_mtx);
568 while (db->db_state == DB_READ ||
569 db->db_state == DB_FILL)
570 cv_wait(&db->db_changed, &db->db_mtx);
571 if (db->db_state == DB_UNCACHED)
2e528b49 572 err = SET_ERROR(EIO);
34dc7c2f
BB
573 mutex_exit(&db->db_mtx);
574 if (err) {
575 dmu_buf_rele_array(dbp, nblks, tag);
576 return (err);
577 }
578 }
579 }
580
581 *numbufsp = nblks;
582 *dbpp = dbp;
583 return (0);
584}
585
586static int
587dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
588 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
589{
590 dnode_t *dn;
591 int err;
592
428870ff 593 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
594 if (err)
595 return (err);
596
597 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 598 numbufsp, dbpp, DMU_READ_PREFETCH);
34dc7c2f
BB
599
600 dnode_rele(dn, FTAG);
601
602 return (err);
603}
604
605int
572e2857 606dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
7f60329a
MA
607 uint64_t length, boolean_t read, void *tag, int *numbufsp,
608 dmu_buf_t ***dbpp)
34dc7c2f 609{
572e2857
BB
610 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
611 dnode_t *dn;
34dc7c2f
BB
612 int err;
613
572e2857
BB
614 DB_DNODE_ENTER(db);
615 dn = DB_DNODE(db);
34dc7c2f 616 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 617 numbufsp, dbpp, DMU_READ_PREFETCH);
572e2857 618 DB_DNODE_EXIT(db);
34dc7c2f
BB
619
620 return (err);
621}
622
623void
624dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
625{
626 int i;
627 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
628
629 if (numbufs == 0)
630 return;
631
632 for (i = 0; i < numbufs; i++) {
633 if (dbp[i])
634 dbuf_rele(dbp[i], tag);
635 }
636
637 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
638}
639
e8b96c60 640/*
fcff0f35 641 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
e1cfd73f 642 * indirect blocks prefetched will be those that point to the blocks containing
fcff0f35 643 * the data starting at offset, and continuing to offset + len.
e8b96c60 644 *
b5256303 645 * Note that if the indirect blocks above the blocks being prefetched are not
e1cfd73f 646 * in cache, they will be asynchronously read in.
e8b96c60 647 */
34dc7c2f 648void
fcff0f35
PD
649dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
650 uint64_t len, zio_priority_t pri)
34dc7c2f
BB
651{
652 dnode_t *dn;
653 uint64_t blkid;
e8b96c60 654 int nblks, err;
34dc7c2f 655
34dc7c2f 656 if (len == 0) { /* they're interested in the bonus buffer */
572e2857 657 dn = DMU_META_DNODE(os);
34dc7c2f
BB
658
659 if (object == 0 || object >= DN_MAX_OBJECT)
660 return;
661
662 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
663 blkid = dbuf_whichblock(dn, level,
664 object * sizeof (dnode_phys_t));
665 dbuf_prefetch(dn, level, blkid, pri, 0);
34dc7c2f
BB
666 rw_exit(&dn->dn_struct_rwlock);
667 return;
668 }
669
d9b4bf06
MA
670 /*
671 * See comment before the definition of dmu_prefetch_max.
672 */
673 len = MIN(len, dmu_prefetch_max);
674
34dc7c2f
BB
675 /*
676 * XXX - Note, if the dnode for the requested object is not
677 * already cached, we will do a *synchronous* read in the
678 * dnode_hold() call. The same is true for any indirects.
679 */
428870ff 680 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
681 if (err != 0)
682 return;
683
fcff0f35
PD
684 /*
685 * offset + len - 1 is the last byte we want to prefetch for, and offset
686 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
687 * last block we want to prefetch, and dbuf_whichblock(dn, level,
688 * offset) is the first. Then the number we need to prefetch is the
689 * last - first + 1.
690 */
f664f1ee 691 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
692 if (level > 0 || dn->dn_datablkshift != 0) {
693 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
694 dbuf_whichblock(dn, level, offset) + 1;
34dc7c2f
BB
695 } else {
696 nblks = (offset < dn->dn_datablksz);
697 }
698
699 if (nblks != 0) {
fcff0f35 700 blkid = dbuf_whichblock(dn, level, offset);
1c27024e 701 for (int i = 0; i < nblks; i++)
fcff0f35 702 dbuf_prefetch(dn, level, blkid + i, pri, 0);
34dc7c2f 703 }
34dc7c2f
BB
704 rw_exit(&dn->dn_struct_rwlock);
705
706 dnode_rele(dn, FTAG);
707}
708
45d1cae3
BB
709/*
710 * Get the next "chunk" of file data to free. We traverse the file from
711 * the end so that the file gets shorter over time (if we crashes in the
712 * middle, this will leave us in a better state). We find allocated file
713 * data by simply searching the allocated level 1 indirects.
b663a23d
MA
714 *
715 * On input, *start should be the first offset that does not need to be
716 * freed (e.g. "offset + length"). On return, *start will be the first
65282ee9
AP
717 * offset that should be freed and l1blks is set to the number of level 1
718 * indirect blocks found within the chunk.
45d1cae3 719 */
b128c09f 720static int
65282ee9 721get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
b128c09f 722{
65282ee9 723 uint64_t blks;
b663a23d
MA
724 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
725 /* bytes of data covered by a level-1 indirect block */
ec4afd27
OM
726 uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
727 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
b128c09f 728
b663a23d 729 ASSERT3U(minimum, <=, *start);
b128c09f 730
f4c594da
TC
731 /*
732 * Check if we can free the entire range assuming that all of the
733 * L1 blocks in this range have data. If we can, we use this
734 * worst case value as an estimate so we can avoid having to look
735 * at the object's actual data.
736 */
737 uint64_t total_l1blks =
738 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
739 iblkrange;
740 if (total_l1blks <= maxblks) {
741 *l1blks = total_l1blks;
b663a23d 742 *start = minimum;
b128c09f
BB
743 return (0);
744 }
45d1cae3 745 ASSERT(ISP2(iblkrange));
b128c09f 746
65282ee9 747 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
b128c09f
BB
748 int err;
749
b663a23d
MA
750 /*
751 * dnode_next_offset(BACKWARDS) will find an allocated L1
752 * indirect block at or before the input offset. We must
753 * decrement *start so that it is at the end of the region
754 * to search.
755 */
756 (*start)--;
f4c594da 757
b128c09f 758 err = dnode_next_offset(dn,
45d1cae3 759 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
b128c09f 760
b663a23d 761 /* if there are no indirect blocks before start, we are done */
45d1cae3 762 if (err == ESRCH) {
b663a23d
MA
763 *start = minimum;
764 break;
765 } else if (err != 0) {
65282ee9 766 *l1blks = blks;
b128c09f 767 return (err);
45d1cae3 768 }
b128c09f 769
b663a23d 770 /* set start to the beginning of this L1 indirect */
45d1cae3 771 *start = P2ALIGN(*start, iblkrange);
b128c09f 772 }
b663a23d
MA
773 if (*start < minimum)
774 *start = minimum;
65282ee9 775 *l1blks = blks;
f4c594da 776
b128c09f
BB
777 return (0);
778}
779
a08abc1b
GM
780/*
781 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
782 * otherwise return false.
783 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
784 */
785/*ARGSUSED*/
786static boolean_t
787dmu_objset_zfs_unmounting(objset_t *os)
788{
789#ifdef _KERNEL
790 if (dmu_objset_type(os) == DMU_OST_ZFS)
791 return (zfs_get_vfs_flag_unmounted(os));
792#endif
793 return (B_FALSE);
794}
795
b128c09f
BB
796static int
797dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
0c03d21a 798 uint64_t length)
b128c09f 799{
c97d3069 800 uint64_t object_size;
b663a23d 801 int err;
539d33c7
GM
802 uint64_t dirty_frees_threshold;
803 dsl_pool_t *dp = dmu_objset_pool(os);
b663a23d 804
c97d3069
BB
805 if (dn == NULL)
806 return (SET_ERROR(EINVAL));
807
808 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
b663a23d 809 if (offset >= object_size)
b128c09f 810 return (0);
b128c09f 811
539d33c7
GM
812 if (zfs_per_txg_dirty_frees_percent <= 100)
813 dirty_frees_threshold =
814 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
815 else
65282ee9 816 dirty_frees_threshold = zfs_dirty_data_max / 20;
539d33c7 817
b663a23d
MA
818 if (length == DMU_OBJECT_END || offset + length > object_size)
819 length = object_size - offset;
820
821 while (length != 0) {
539d33c7 822 uint64_t chunk_end, chunk_begin, chunk_len;
65282ee9 823 uint64_t l1blks;
b663a23d
MA
824 dmu_tx_t *tx;
825
a08abc1b
GM
826 if (dmu_objset_zfs_unmounting(dn->dn_objset))
827 return (SET_ERROR(EINTR));
828
b663a23d
MA
829 chunk_end = chunk_begin = offset + length;
830
831 /* move chunk_begin backwards to the beginning of this chunk */
65282ee9 832 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
b128c09f
BB
833 if (err)
834 return (err);
b663a23d
MA
835 ASSERT3U(chunk_begin, >=, offset);
836 ASSERT3U(chunk_begin, <=, chunk_end);
b128c09f 837
539d33c7
GM
838 chunk_len = chunk_end - chunk_begin;
839
b128c09f 840 tx = dmu_tx_create(os);
539d33c7 841 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
19d55079
MA
842
843 /*
844 * Mark this transaction as typically resulting in a net
845 * reduction in space used.
846 */
847 dmu_tx_mark_netfree(tx);
b128c09f
BB
848 err = dmu_tx_assign(tx, TXG_WAIT);
849 if (err) {
850 dmu_tx_abort(tx);
851 return (err);
852 }
539d33c7 853
f4c594da
TC
854 uint64_t txg = dmu_tx_get_txg(tx);
855
856 mutex_enter(&dp->dp_lock);
857 uint64_t long_free_dirty =
858 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
859 mutex_exit(&dp->dp_lock);
860
861 /*
862 * To avoid filling up a TXG with just frees, wait for
863 * the next TXG to open before freeing more chunks if
864 * we have reached the threshold of frees.
865 */
866 if (dirty_frees_threshold != 0 &&
867 long_free_dirty >= dirty_frees_threshold) {
868 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
869 dmu_tx_commit(tx);
870 txg_wait_open(dp, 0, B_TRUE);
871 continue;
872 }
873
65282ee9
AP
874 /*
875 * In order to prevent unnecessary write throttling, for each
876 * TXG, we track the cumulative size of L1 blocks being dirtied
877 * in dnode_free_range() below. We compare this number to a
878 * tunable threshold, past which we prevent new L1 dirty freeing
879 * blocks from being added into the open TXG. See
880 * dmu_free_long_range_impl() for details. The threshold
881 * prevents write throttle activation due to dirty freeing L1
882 * blocks taking up a large percentage of zfs_dirty_data_max.
883 */
539d33c7 884 mutex_enter(&dp->dp_lock);
f4c594da 885 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
65282ee9 886 l1blks << dn->dn_indblkshift;
539d33c7
GM
887 mutex_exit(&dp->dp_lock);
888 DTRACE_PROBE3(free__long__range,
f4c594da
TC
889 uint64_t, long_free_dirty, uint64_t, chunk_len,
890 uint64_t, txg);
539d33c7 891 dnode_free_range(dn, chunk_begin, chunk_len, tx);
440a3eb9 892
b128c09f 893 dmu_tx_commit(tx);
b663a23d 894
539d33c7 895 length -= chunk_len;
b128c09f
BB
896 }
897 return (0);
898}
899
900int
901dmu_free_long_range(objset_t *os, uint64_t object,
902 uint64_t offset, uint64_t length)
903{
904 dnode_t *dn;
905 int err;
906
428870ff 907 err = dnode_hold(os, object, FTAG, &dn);
b128c09f
BB
908 if (err != 0)
909 return (err);
0c03d21a 910 err = dmu_free_long_range_impl(os, dn, offset, length);
92bc214c
MA
911
912 /*
913 * It is important to zero out the maxblkid when freeing the entire
914 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
915 * will take the fast path, and (b) dnode_reallocate() can verify
916 * that the entire file has been freed.
917 */
b0bc7a84 918 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
92bc214c
MA
919 dn->dn_maxblkid = 0;
920
b128c09f
BB
921 dnode_rele(dn, FTAG);
922 return (err);
923}
924
925int
0c03d21a 926dmu_free_long_object(objset_t *os, uint64_t object)
b128c09f 927{
b128c09f
BB
928 dmu_tx_t *tx;
929 int err;
930
b663a23d 931 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
b128c09f
BB
932 if (err != 0)
933 return (err);
b663a23d
MA
934
935 tx = dmu_tx_create(os);
936 dmu_tx_hold_bonus(tx, object);
937 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
19d55079 938 dmu_tx_mark_netfree(tx);
b663a23d
MA
939 err = dmu_tx_assign(tx, TXG_WAIT);
940 if (err == 0) {
35df0bb5
TC
941 if (err == 0)
942 err = dmu_object_free(os, object, tx);
440a3eb9 943
b663a23d 944 dmu_tx_commit(tx);
b128c09f 945 } else {
b663a23d 946 dmu_tx_abort(tx);
b128c09f 947 }
b663a23d 948
b128c09f
BB
949 return (err);
950}
951
34dc7c2f
BB
952int
953dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
954 uint64_t size, dmu_tx_t *tx)
955{
956 dnode_t *dn;
428870ff 957 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
958 if (err)
959 return (err);
960 ASSERT(offset < UINT64_MAX);
ee45fbd8 961 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
34dc7c2f
BB
962 dnode_free_range(dn, offset, size, tx);
963 dnode_rele(dn, FTAG);
964 return (0);
965}
966
0eef1bde 967static int
968dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
9babb374 969 void *buf, uint32_t flags)
34dc7c2f 970{
34dc7c2f 971 dmu_buf_t **dbp;
0eef1bde 972 int numbufs, err = 0;
34dc7c2f
BB
973
974 /*
975 * Deal with odd block sizes, where there can't be data past the first
976 * block. If we ever do the tail block optimization, we will need to
977 * handle that here as well.
978 */
45d1cae3 979 if (dn->dn_maxblkid == 0) {
c9520ecc 980 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
34dc7c2f
BB
981 MIN(size, dn->dn_datablksz - offset);
982 bzero((char *)buf + newsz, size - newsz);
983 size = newsz;
984 }
985
986 while (size > 0) {
987 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
45d1cae3 988 int i;
34dc7c2f
BB
989
990 /*
991 * NB: we could do this block-at-a-time, but it's nice
992 * to be reading in parallel.
993 */
994 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
9babb374 995 TRUE, FTAG, &numbufs, &dbp, flags);
34dc7c2f
BB
996 if (err)
997 break;
998
999 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1000 uint64_t tocpy;
1001 int64_t bufoff;
34dc7c2f
BB
1002 dmu_buf_t *db = dbp[i];
1003
1004 ASSERT(size > 0);
1005
1006 bufoff = offset - db->db_offset;
c9520ecc 1007 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f 1008
c9520ecc 1009 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
34dc7c2f
BB
1010
1011 offset += tocpy;
1012 size -= tocpy;
1013 buf = (char *)buf + tocpy;
1014 }
1015 dmu_buf_rele_array(dbp, numbufs, FTAG);
1016 }
34dc7c2f
BB
1017 return (err);
1018}
1019
0eef1bde 1020int
1021dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1022 void *buf, uint32_t flags)
34dc7c2f 1023{
0eef1bde 1024 dnode_t *dn;
1025 int err;
34dc7c2f 1026
0eef1bde 1027 err = dnode_hold(os, object, FTAG, &dn);
1028 if (err != 0)
1029 return (err);
34dc7c2f 1030
0eef1bde 1031 err = dmu_read_impl(dn, offset, size, buf, flags);
1032 dnode_rele(dn, FTAG);
1033 return (err);
1034}
1035
1036int
1037dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1038 uint32_t flags)
1039{
1040 return (dmu_read_impl(dn, offset, size, buf, flags));
1041}
1042
1043static void
1044dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1045 const void *buf, dmu_tx_t *tx)
1046{
1047 int i;
34dc7c2f
BB
1048
1049 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1050 uint64_t tocpy;
1051 int64_t bufoff;
34dc7c2f
BB
1052 dmu_buf_t *db = dbp[i];
1053
1054 ASSERT(size > 0);
1055
1056 bufoff = offset - db->db_offset;
c9520ecc 1057 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f
BB
1058
1059 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1060
1061 if (tocpy == db->db_size)
1062 dmu_buf_will_fill(db, tx);
1063 else
1064 dmu_buf_will_dirty(db, tx);
1065
60101509 1066 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
34dc7c2f
BB
1067
1068 if (tocpy == db->db_size)
1069 dmu_buf_fill_done(db, tx);
1070
1071 offset += tocpy;
1072 size -= tocpy;
1073 buf = (char *)buf + tocpy;
1074 }
0eef1bde 1075}
1076
1077void
1078dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1079 const void *buf, dmu_tx_t *tx)
1080{
1081 dmu_buf_t **dbp;
1082 int numbufs;
1083
1084 if (size == 0)
1085 return;
1086
1087 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1088 FALSE, FTAG, &numbufs, &dbp));
1089 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1090 dmu_buf_rele_array(dbp, numbufs, FTAG);
1091}
1092
0f8ff49e
SD
1093/*
1094 * Note: Lustre is an external consumer of this interface.
1095 */
0eef1bde 1096void
1097dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1098 const void *buf, dmu_tx_t *tx)
1099{
1100 dmu_buf_t **dbp;
1101 int numbufs;
1102
1103 if (size == 0)
1104 return;
1105
1106 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1107 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1108 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
34dc7c2f
BB
1109 dmu_buf_rele_array(dbp, numbufs, FTAG);
1110}
1111
b128c09f
BB
1112void
1113dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1114 dmu_tx_t *tx)
1115{
1116 dmu_buf_t **dbp;
1117 int numbufs, i;
1118
1119 if (size == 0)
1120 return;
1121
1122 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1123 FALSE, FTAG, &numbufs, &dbp));
1124
1125 for (i = 0; i < numbufs; i++) {
1126 dmu_buf_t *db = dbp[i];
1127
1128 dmu_buf_will_not_fill(db, tx);
1129 }
1130 dmu_buf_rele_array(dbp, numbufs, FTAG);
1131}
1132
9b67f605
MA
1133void
1134dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1135 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1136 int compressed_size, int byteorder, dmu_tx_t *tx)
1137{
1138 dmu_buf_t *db;
1139
1140 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1141 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1142 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1143 FTAG, &db));
1144
1145 dmu_buf_write_embedded(db,
1146 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1147 uncompressed_size, compressed_size, byteorder, tx);
1148
1149 dmu_buf_rele(db, FTAG);
1150}
1151
30af21b0
PD
1152void
1153dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1154 dmu_tx_t *tx)
1155{
1156 int numbufs, i;
1157 dmu_buf_t **dbp;
1158
1159 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1160 &numbufs, &dbp));
1161 for (i = 0; i < numbufs; i++)
1162 dmu_buf_redact(dbp[i], tx);
1163 dmu_buf_rele_array(dbp, numbufs, FTAG);
1164}
1165
428870ff
BB
1166/*
1167 * DMU support for xuio
1168 */
1169kstat_t *xuio_ksp = NULL;
1170
59e6e7ca
BB
1171typedef struct xuio_stats {
1172 /* loaned yet not returned arc_buf */
1173 kstat_named_t xuiostat_onloan_rbuf;
1174 kstat_named_t xuiostat_onloan_wbuf;
1175 /* whether a copy is made when loaning out a read buffer */
1176 kstat_named_t xuiostat_rbuf_copied;
1177 kstat_named_t xuiostat_rbuf_nocopy;
1178 /* whether a copy is made when assigning a write buffer */
1179 kstat_named_t xuiostat_wbuf_copied;
1180 kstat_named_t xuiostat_wbuf_nocopy;
1181} xuio_stats_t;
1182
1183static xuio_stats_t xuio_stats = {
1184 { "onloan_read_buf", KSTAT_DATA_UINT64 },
1185 { "onloan_write_buf", KSTAT_DATA_UINT64 },
1186 { "read_buf_copied", KSTAT_DATA_UINT64 },
1187 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
1188 { "write_buf_copied", KSTAT_DATA_UINT64 },
1189 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
1190};
1191
d1d7e268
MK
1192#define XUIOSTAT_INCR(stat, val) \
1193 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
1194#define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
59e6e7ca 1195
5a6765cf 1196#ifdef HAVE_UIO_ZEROCOPY
428870ff
BB
1197int
1198dmu_xuio_init(xuio_t *xuio, int nblk)
1199{
1200 dmu_xuio_t *priv;
1201 uio_t *uio = &xuio->xu_uio;
1202
1203 uio->uio_iovcnt = nblk;
79c76d5b 1204 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
428870ff 1205
79c76d5b 1206 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
428870ff 1207 priv->cnt = nblk;
79c76d5b 1208 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
5475aada 1209 priv->iovp = (iovec_t *)uio->uio_iov;
428870ff
BB
1210 XUIO_XUZC_PRIV(xuio) = priv;
1211
1212 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1213 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1214 else
1215 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1216
1217 return (0);
1218}
1219
1220void
1221dmu_xuio_fini(xuio_t *xuio)
1222{
1223 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1224 int nblk = priv->cnt;
1225
1226 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1227 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1228 kmem_free(priv, sizeof (dmu_xuio_t));
1229
1230 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1231 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1232 else
1233 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1234}
1235
1236/*
1237 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1238 * and increase priv->next by 1.
1239 */
1240int
1241dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1242{
1243 struct iovec *iov;
1244 uio_t *uio = &xuio->xu_uio;
1245 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1246 int i = priv->next++;
1247
1248 ASSERT(i < priv->cnt);
2aa34383 1249 ASSERT(off + n <= arc_buf_lsize(abuf));
5475aada 1250 iov = (iovec_t *)uio->uio_iov + i;
428870ff
BB
1251 iov->iov_base = (char *)abuf->b_data + off;
1252 iov->iov_len = n;
1253 priv->bufs[i] = abuf;
1254 return (0);
1255}
1256
1257int
1258dmu_xuio_cnt(xuio_t *xuio)
1259{
1260 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1261 return (priv->cnt);
1262}
1263
1264arc_buf_t *
1265dmu_xuio_arcbuf(xuio_t *xuio, int i)
1266{
1267 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1268
1269 ASSERT(i < priv->cnt);
1270 return (priv->bufs[i]);
1271}
1272
1273void
1274dmu_xuio_clear(xuio_t *xuio, int i)
1275{
1276 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1277
1278 ASSERT(i < priv->cnt);
1279 priv->bufs[i] = NULL;
1280}
5a6765cf 1281#endif /* HAVE_UIO_ZEROCOPY */
428870ff
BB
1282
1283static void
1284xuio_stat_init(void)
1285{
1286 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1287 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1288 KSTAT_FLAG_VIRTUAL);
1289 if (xuio_ksp != NULL) {
1290 xuio_ksp->ks_data = &xuio_stats;
1291 kstat_install(xuio_ksp);
1292 }
1293}
1294
1295static void
1296xuio_stat_fini(void)
1297{
1298 if (xuio_ksp != NULL) {
1299 kstat_delete(xuio_ksp);
1300 xuio_ksp = NULL;
1301 }
1302}
1303
1304void
5043684a 1305xuio_stat_wbuf_copied(void)
428870ff
BB
1306{
1307 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1308}
1309
1310void
5043684a 1311xuio_stat_wbuf_nocopy(void)
428870ff
BB
1312{
1313 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1314}
1315
34dc7c2f 1316#ifdef _KERNEL
5228cf01 1317int
804e0504 1318dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
872e8d26
BB
1319{
1320 dmu_buf_t **dbp;
1321 int numbufs, i, err;
5a6765cf 1322#ifdef HAVE_UIO_ZEROCOPY
872e8d26 1323 xuio_t *xuio = NULL;
5a6765cf 1324#endif
872e8d26
BB
1325
1326 /*
1327 * NB: we could do this block-at-a-time, but it's nice
1328 * to be reading in parallel.
1329 */
804e0504
MA
1330 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1331 TRUE, FTAG, &numbufs, &dbp, 0);
872e8d26
BB
1332 if (err)
1333 return (err);
1334
1335 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1336 uint64_t tocpy;
1337 int64_t bufoff;
872e8d26
BB
1338 dmu_buf_t *db = dbp[i];
1339
1340 ASSERT(size > 0);
1341
1342 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1343 tocpy = MIN(db->db_size - bufoff, size);
872e8d26 1344
5a6765cf 1345#ifdef HAVE_UIO_ZEROCOPY
872e8d26
BB
1346 if (xuio) {
1347 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1348 arc_buf_t *dbuf_abuf = dbi->db_buf;
1349 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1350 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1351 if (!err) {
1352 uio->uio_resid -= tocpy;
1353 uio->uio_loffset += tocpy;
1354 }
1355
1356 if (abuf == dbuf_abuf)
1357 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1358 else
1359 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
5a6765cf 1360 } else
1361#endif
872e8d26
BB
1362 err = uiomove((char *)db->db_data + bufoff, tocpy,
1363 UIO_READ, uio);
872e8d26
BB
1364 if (err)
1365 break;
1366
1367 size -= tocpy;
1368 }
1369 dmu_buf_rele_array(dbp, numbufs, FTAG);
1370
1371 return (err);
1372}
1373
804e0504
MA
1374/*
1375 * Read 'size' bytes into the uio buffer.
1376 * From object zdb->db_object.
1377 * Starting at offset uio->uio_loffset.
1378 *
1379 * If the caller already has a dbuf in the target object
1380 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1381 * because we don't have to find the dnode_t for the object.
1382 */
1383int
1384dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1385{
1386 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1387 dnode_t *dn;
1388 int err;
1389
1390 if (size == 0)
1391 return (0);
1392
1393 DB_DNODE_ENTER(db);
1394 dn = DB_DNODE(db);
1395 err = dmu_read_uio_dnode(dn, uio, size);
1396 DB_DNODE_EXIT(db);
1397
1398 return (err);
1399}
1400
1401/*
1402 * Read 'size' bytes into the uio buffer.
1403 * From the specified object
1404 * Starting at offset uio->uio_loffset.
1405 */
1406int
1407dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1408{
1409 dnode_t *dn;
1410 int err;
1411
1412 if (size == 0)
1413 return (0);
1414
1415 err = dnode_hold(os, object, FTAG, &dn);
1416 if (err)
1417 return (err);
1418
1419 err = dmu_read_uio_dnode(dn, uio, size);
1420
1421 dnode_rele(dn, FTAG);
1422
1423 return (err);
1424}
1425
5228cf01 1426int
872e8d26
BB
1427dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1428{
1429 dmu_buf_t **dbp;
1430 int numbufs;
1431 int err = 0;
1432 int i;
1433
1434 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1435 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1436 if (err)
1437 return (err);
1438
1439 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1440 uint64_t tocpy;
1441 int64_t bufoff;
872e8d26
BB
1442 dmu_buf_t *db = dbp[i];
1443
1444 ASSERT(size > 0);
1445
1446 bufoff = uio->uio_loffset - db->db_offset;
c9520ecc 1447 tocpy = MIN(db->db_size - bufoff, size);
872e8d26
BB
1448
1449 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1450
1451 if (tocpy == db->db_size)
1452 dmu_buf_will_fill(db, tx);
1453 else
1454 dmu_buf_will_dirty(db, tx);
1455
1456 /*
1457 * XXX uiomove could block forever (eg.nfs-backed
1458 * pages). There needs to be a uiolockdown() function
1459 * to lock the pages in memory, so that uiomove won't
1460 * block.
1461 */
1462 err = uiomove((char *)db->db_data + bufoff, tocpy,
1463 UIO_WRITE, uio);
1464
1465 if (tocpy == db->db_size)
1466 dmu_buf_fill_done(db, tx);
1467
1468 if (err)
1469 break;
1470
1471 size -= tocpy;
1472 }
1473
1474 dmu_buf_rele_array(dbp, numbufs, FTAG);
1475 return (err);
1476}
1477
804e0504
MA
1478/*
1479 * Write 'size' bytes from the uio buffer.
1480 * To object zdb->db_object.
1481 * Starting at offset uio->uio_loffset.
1482 *
1483 * If the caller already has a dbuf in the target object
1484 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1485 * because we don't have to find the dnode_t for the object.
1486 */
428870ff
BB
1487int
1488dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1489 dmu_tx_t *tx)
1490{
572e2857
BB
1491 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1492 dnode_t *dn;
1493 int err;
1494
428870ff
BB
1495 if (size == 0)
1496 return (0);
1497
572e2857
BB
1498 DB_DNODE_ENTER(db);
1499 dn = DB_DNODE(db);
1500 err = dmu_write_uio_dnode(dn, uio, size, tx);
1501 DB_DNODE_EXIT(db);
1502
1503 return (err);
428870ff
BB
1504}
1505
804e0504
MA
1506/*
1507 * Write 'size' bytes from the uio buffer.
1508 * To the specified object.
1509 * Starting at offset uio->uio_loffset.
1510 */
428870ff
BB
1511int
1512dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1513 dmu_tx_t *tx)
1514{
1515 dnode_t *dn;
1516 int err;
1517
1518 if (size == 0)
1519 return (0);
1520
1521 err = dnode_hold(os, object, FTAG, &dn);
1522 if (err)
1523 return (err);
1524
1525 err = dmu_write_uio_dnode(dn, uio, size, tx);
1526
1527 dnode_rele(dn, FTAG);
1528
1529 return (err);
1530}
872e8d26 1531#endif /* _KERNEL */
34dc7c2f 1532
9babb374
BB
1533/*
1534 * Allocate a loaned anonymous arc buffer.
1535 */
1536arc_buf_t *
1537dmu_request_arcbuf(dmu_buf_t *handle, int size)
1538{
572e2857 1539 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
9babb374 1540
2aa34383 1541 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
9babb374
BB
1542}
1543
1544/*
1545 * Free a loaned arc buffer.
1546 */
1547void
1548dmu_return_arcbuf(arc_buf_t *buf)
1549{
1550 arc_return_buf(buf, FTAG);
d3c2ae1c 1551 arc_buf_destroy(buf, FTAG);
9babb374
BB
1552}
1553
b5256303
TC
1554void
1555dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
1556 dmu_buf_t *handle, dmu_tx_t *tx)
1557{
1558 dmu_buf_t *dst_handle;
1559 dmu_buf_impl_t *dstdb;
1560 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle;
149ce888 1561 dmu_object_type_t type;
b5256303
TC
1562 arc_buf_t *abuf;
1563 uint64_t datalen;
1564 boolean_t byteorder;
1565 uint8_t salt[ZIO_DATA_SALT_LEN];
1566 uint8_t iv[ZIO_DATA_IV_LEN];
1567 uint8_t mac[ZIO_DATA_MAC_LEN];
1568
1569 ASSERT3P(srcdb->db_buf, !=, NULL);
1570
1571 /* hold the db that we want to write to */
1572 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle,
1573 DMU_READ_NO_DECRYPT));
1574 dstdb = (dmu_buf_impl_t *)dst_handle;
1575 datalen = arc_buf_size(srcdb->db_buf);
1576
149ce888
TC
1577 DB_DNODE_ENTER(dstdb);
1578 type = DB_DNODE(dstdb)->dn_type;
1579 DB_DNODE_EXIT(dstdb);
1580
b5256303
TC
1581 /* allocated an arc buffer that matches the type of srcdb->db_buf */
1582 if (arc_is_encrypted(srcdb->db_buf)) {
1583 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac);
1584 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os),
149ce888 1585 byteorder, salt, iv, mac, type,
b5256303
TC
1586 datalen, arc_buf_lsize(srcdb->db_buf),
1587 arc_get_compression(srcdb->db_buf));
1588 } else {
1589 /* we won't get a compressed db back from dmu_buf_hold() */
1590 ASSERT3U(arc_get_compression(srcdb->db_buf),
1591 ==, ZIO_COMPRESS_OFF);
1592 abuf = arc_loan_buf(os->os_spa,
149ce888 1593 DMU_OT_IS_METADATA(type), datalen);
b5256303
TC
1594 }
1595
1596 ASSERT3U(datalen, ==, arc_buf_size(abuf));
1597
1598 /* copy the data to the new buffer and assign it to the dstdb */
1599 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen);
1600 dbuf_assign_arcbuf(dstdb, abuf, tx);
1601 dmu_buf_rele(dst_handle, FTAG);
1602}
1603
9babb374
BB
1604/*
1605 * When possible directly assign passed loaned arc buffer to a dbuf.
1606 * If this is not possible copy the contents of passed arc buf via
1607 * dmu_write().
1608 */
305781da 1609int
440a3eb9 1610dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
9babb374
BB
1611 dmu_tx_t *tx)
1612{
9babb374 1613 dmu_buf_impl_t *db;
440a3eb9
TC
1614 objset_t *os = dn->dn_objset;
1615 uint64_t object = dn->dn_object;
2aa34383 1616 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
9babb374
BB
1617 uint64_t blkid;
1618
1619 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35 1620 blkid = dbuf_whichblock(dn, 0, offset);
305781da
TC
1621 db = dbuf_hold(dn, blkid, FTAG);
1622 if (db == NULL)
1623 return (SET_ERROR(EIO));
9babb374
BB
1624 rw_exit(&dn->dn_struct_rwlock);
1625
88904bb3
MA
1626 /*
1627 * We can only assign if the offset is aligned, the arc buf is the
2aa34383 1628 * same size as the dbuf, and the dbuf is not metadata.
88904bb3 1629 */
2aa34383 1630 if (offset == db->db.db_offset && blksz == db->db.db_size) {
9babb374
BB
1631 dbuf_assign_arcbuf(db, buf, tx);
1632 dbuf_rele(db, FTAG);
1633 } else {
2aa34383
DK
1634 /* compressed bufs must always be assignable to their dbuf */
1635 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
524b4217 1636 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
2aa34383 1637
9babb374 1638 dbuf_rele(db, FTAG);
572e2857 1639 dmu_write(os, object, offset, blksz, buf->b_data, tx);
9babb374 1640 dmu_return_arcbuf(buf);
428870ff 1641 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
9babb374 1642 }
305781da
TC
1643
1644 return (0);
9babb374
BB
1645}
1646
305781da 1647int
440a3eb9
TC
1648dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1649 dmu_tx_t *tx)
1650{
305781da 1651 int err;
440a3eb9
TC
1652 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1653
1654 DB_DNODE_ENTER(dbuf);
305781da 1655 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
440a3eb9 1656 DB_DNODE_EXIT(dbuf);
305781da
TC
1657
1658 return (err);
440a3eb9
TC
1659}
1660
34dc7c2f 1661typedef struct {
428870ff
BB
1662 dbuf_dirty_record_t *dsa_dr;
1663 dmu_sync_cb_t *dsa_done;
1664 zgd_t *dsa_zgd;
1665 dmu_tx_t *dsa_tx;
34dc7c2f
BB
1666} dmu_sync_arg_t;
1667
b128c09f
BB
1668/* ARGSUSED */
1669static void
1670dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1671{
428870ff
BB
1672 dmu_sync_arg_t *dsa = varg;
1673 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
b128c09f
BB
1674 blkptr_t *bp = zio->io_bp;
1675
428870ff
BB
1676 if (zio->io_error == 0) {
1677 if (BP_IS_HOLE(bp)) {
1678 /*
1679 * A block of zeros may compress to a hole, but the
1680 * block size still needs to be known for replay.
1681 */
1682 BP_SET_LSIZE(bp, db->db_size);
9b67f605 1683 } else if (!BP_IS_EMBEDDED(bp)) {
428870ff 1684 ASSERT(BP_GET_LEVEL(bp) == 0);
b5256303 1685 BP_SET_FILL(bp, 1);
428870ff 1686 }
b128c09f
BB
1687 }
1688}
1689
428870ff
BB
1690static void
1691dmu_sync_late_arrival_ready(zio_t *zio)
1692{
1693 dmu_sync_ready(zio, NULL, zio->io_private);
1694}
1695
34dc7c2f
BB
1696/* ARGSUSED */
1697static void
1698dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1699{
428870ff
BB
1700 dmu_sync_arg_t *dsa = varg;
1701 dbuf_dirty_record_t *dr = dsa->dsa_dr;
34dc7c2f 1702 dmu_buf_impl_t *db = dr->dr_dbuf;
900d09b2
PS
1703 zgd_t *zgd = dsa->dsa_zgd;
1704
1705 /*
1706 * Record the vdev(s) backing this blkptr so they can be flushed after
1707 * the writes for the lwb have completed.
1708 */
1709 if (zio->io_error == 0) {
1710 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1711 }
34dc7c2f 1712
34dc7c2f
BB
1713 mutex_enter(&db->db_mtx);
1714 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
428870ff 1715 if (zio->io_error == 0) {
03c6040b
GW
1716 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1717 if (dr->dt.dl.dr_nopwrite) {
02dc43bc
MA
1718 blkptr_t *bp = zio->io_bp;
1719 blkptr_t *bp_orig = &zio->io_bp_orig;
1720 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
03c6040b
GW
1721
1722 ASSERT(BP_EQUAL(bp, bp_orig));
02dc43bc 1723 VERIFY(BP_EQUAL(bp, db->db_blkptr));
03c6040b 1724 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
02dc43bc 1725 VERIFY(zio_checksum_table[chksum].ci_flags &
3c67d83a 1726 ZCHECKSUM_FLAG_NOPWRITE);
03c6040b 1727 }
428870ff
BB
1728 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1729 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1730 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
a4069eef
PS
1731
1732 /*
1733 * Old style holes are filled with all zeros, whereas
1734 * new-style holes maintain their lsize, type, level,
1735 * and birth time (see zio_write_compress). While we
1736 * need to reset the BP_SET_LSIZE() call that happened
1737 * in dmu_sync_ready for old style holes, we do *not*
1738 * want to wipe out the information contained in new
1739 * style holes. Thus, only zero out the block pointer if
1740 * it's an old style hole.
1741 */
1742 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1743 dr->dt.dl.dr_overridden_by.blk_birth == 0)
428870ff
BB
1744 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1745 } else {
1746 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1747 }
34dc7c2f
BB
1748 cv_broadcast(&db->db_changed);
1749 mutex_exit(&db->db_mtx);
1750
428870ff 1751 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
34dc7c2f 1752
428870ff
BB
1753 kmem_free(dsa, sizeof (*dsa));
1754}
1755
1756static void
1757dmu_sync_late_arrival_done(zio_t *zio)
1758{
1759 blkptr_t *bp = zio->io_bp;
1760 dmu_sync_arg_t *dsa = zio->io_private;
900d09b2
PS
1761 zgd_t *zgd = dsa->dsa_zgd;
1762
1763 if (zio->io_error == 0) {
1764 /*
1765 * Record the vdev(s) backing this blkptr so they can be
1766 * flushed after the writes for the lwb have completed.
1767 */
1768 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1769
1770 if (!BP_IS_HOLE(bp)) {
1771 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
1772 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1773 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1774 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1775 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1776 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1777 }
428870ff
BB
1778 }
1779
1780 dmu_tx_commit(dsa->dsa_tx);
1781
1782 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1783
a6255b7f 1784 abd_put(zio->io_abd);
428870ff
BB
1785 kmem_free(dsa, sizeof (*dsa));
1786}
1787
1788static int
1789dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
5dbd68a3 1790 zio_prop_t *zp, zbookmark_phys_t *zb)
428870ff
BB
1791{
1792 dmu_sync_arg_t *dsa;
1793 dmu_tx_t *tx;
1794
1795 tx = dmu_tx_create(os);
1796 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1797 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1798 dmu_tx_abort(tx);
2e528b49
MA
1799 /* Make zl_get_data do txg_waited_synced() */
1800 return (SET_ERROR(EIO));
428870ff
BB
1801 }
1802
1ce23dca
PS
1803 /*
1804 * In order to prevent the zgd's lwb from being free'd prior to
1805 * dmu_sync_late_arrival_done() being called, we have to ensure
1806 * the lwb's "max txg" takes this tx's txg into account.
1807 */
1808 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1809
79c76d5b 1810 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1811 dsa->dsa_dr = NULL;
1812 dsa->dsa_done = done;
1813 dsa->dsa_zgd = zgd;
1814 dsa->dsa_tx = tx;
1815
02dc43bc
MA
1816 /*
1817 * Since we are currently syncing this txg, it's nontrivial to
1818 * determine what BP to nopwrite against, so we disable nopwrite.
1819 *
1820 * When syncing, the db_blkptr is initially the BP of the previous
1821 * txg. We can not nopwrite against it because it will be changed
1822 * (this is similar to the non-late-arrival case where the dbuf is
1823 * dirty in a future txg).
1824 *
1825 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1826 * We can not nopwrite against it because although the BP will not
1827 * (typically) be changed, the data has not yet been persisted to this
1828 * location.
1829 *
1830 * Finally, when dbuf_write_done() is called, it is theoretically
1831 * possible to always nopwrite, because the data that was written in
1832 * this txg is the same data that we are trying to write. However we
1833 * would need to check that this dbuf is not dirty in any future
1834 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1835 * don't nopwrite in this case.
1836 */
1837 zp->zp_nopwrite = B_FALSE;
1838
a6255b7f
DQ
1839 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1840 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1841 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1842 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1843 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
428870ff
BB
1844
1845 return (0);
34dc7c2f
BB
1846}
1847
1848/*
1849 * Intent log support: sync the block associated with db to disk.
1850 * N.B. and XXX: the caller is responsible for making sure that the
1851 * data isn't changing while dmu_sync() is writing it.
1852 *
1853 * Return values:
1854 *
03c6040b 1855 * EEXIST: this txg has already been synced, so there's nothing to do.
34dc7c2f
BB
1856 * The caller should not log the write.
1857 *
1858 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1859 * The caller should not log the write.
1860 *
1861 * EALREADY: this block is already in the process of being synced.
1862 * The caller should track its progress (somehow).
1863 *
428870ff
BB
1864 * EIO: could not do the I/O.
1865 * The caller should do a txg_wait_synced().
34dc7c2f 1866 *
428870ff
BB
1867 * 0: the I/O has been initiated.
1868 * The caller should log this blkptr in the done callback.
1869 * It is possible that the I/O will fail, in which case
1870 * the error will be reported to the done callback and
1871 * propagated to pio from zio_done().
34dc7c2f
BB
1872 */
1873int
428870ff 1874dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
34dc7c2f 1875{
428870ff
BB
1876 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1877 objset_t *os = db->db_objset;
1878 dsl_dataset_t *ds = os->os_dsl_dataset;
34dc7c2f 1879 dbuf_dirty_record_t *dr;
428870ff 1880 dmu_sync_arg_t *dsa;
5dbd68a3 1881 zbookmark_phys_t zb;
428870ff 1882 zio_prop_t zp;
572e2857 1883 dnode_t *dn;
34dc7c2f 1884
428870ff 1885 ASSERT(pio != NULL);
34dc7c2f
BB
1886 ASSERT(txg != 0);
1887
428870ff
BB
1888 SET_BOOKMARK(&zb, ds->ds_object,
1889 db->db.db_object, db->db_level, db->db_blkid);
1890
572e2857
BB
1891 DB_DNODE_ENTER(db);
1892 dn = DB_DNODE(db);
82644107 1893 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
572e2857 1894 DB_DNODE_EXIT(db);
34dc7c2f
BB
1895
1896 /*
428870ff 1897 * If we're frozen (running ziltest), we always need to generate a bp.
34dc7c2f 1898 */
428870ff
BB
1899 if (txg > spa_freeze_txg(os->os_spa))
1900 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1901
1902 /*
428870ff
BB
1903 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1904 * and us. If we determine that this txg is not yet syncing,
1905 * but it begins to sync a moment later, that's OK because the
1906 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
34dc7c2f 1907 */
428870ff
BB
1908 mutex_enter(&db->db_mtx);
1909
1910 if (txg <= spa_last_synced_txg(os->os_spa)) {
34dc7c2f 1911 /*
428870ff 1912 * This txg has already synced. There's nothing to do.
34dc7c2f 1913 */
428870ff 1914 mutex_exit(&db->db_mtx);
2e528b49 1915 return (SET_ERROR(EEXIST));
34dc7c2f
BB
1916 }
1917
428870ff
BB
1918 if (txg <= spa_syncing_txg(os->os_spa)) {
1919 /*
1920 * This txg is currently syncing, so we can't mess with
1921 * the dirty record anymore; just write a new log block.
1922 */
1923 mutex_exit(&db->db_mtx);
1924 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1925 }
1926
1927 dr = db->db_last_dirty;
428870ff 1928 while (dr && dr->dr_txg != txg)
34dc7c2f 1929 dr = dr->dr_next;
428870ff
BB
1930
1931 if (dr == NULL) {
34dc7c2f 1932 /*
428870ff 1933 * There's no dr for this dbuf, so it must have been freed.
34dc7c2f
BB
1934 * There's no need to log writes to freed blocks, so we're done.
1935 */
1936 mutex_exit(&db->db_mtx);
2e528b49 1937 return (SET_ERROR(ENOENT));
34dc7c2f
BB
1938 }
1939
03c6040b
GW
1940 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1941
02dc43bc
MA
1942 if (db->db_blkptr != NULL) {
1943 /*
1944 * We need to fill in zgd_bp with the current blkptr so that
1945 * the nopwrite code can check if we're writing the same
1946 * data that's already on disk. We can only nopwrite if we
1947 * are sure that after making the copy, db_blkptr will not
1948 * change until our i/o completes. We ensure this by
1949 * holding the db_mtx, and only allowing nopwrite if the
1950 * block is not already dirty (see below). This is verified
1951 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1952 * not changed.
1953 */
1954 *zgd->zgd_bp = *db->db_blkptr;
1955 }
1956
03c6040b 1957 /*
f3c517d8
MA
1958 * Assume the on-disk data is X, the current syncing data (in
1959 * txg - 1) is Y, and the current in-memory data is Z (currently
1960 * in dmu_sync).
1961 *
1962 * We usually want to perform a nopwrite if X and Z are the
1963 * same. However, if Y is different (i.e. the BP is going to
1964 * change before this write takes effect), then a nopwrite will
1965 * be incorrect - we would override with X, which could have
1966 * been freed when Y was written.
1967 *
1968 * (Note that this is not a concern when we are nop-writing from
1969 * syncing context, because X and Y must be identical, because
1970 * all previous txgs have been synced.)
1971 *
1972 * Therefore, we disable nopwrite if the current BP could change
1973 * before this TXG. There are two ways it could change: by
1974 * being dirty (dr_next is non-NULL), or by being freed
1975 * (dnode_block_freed()). This behavior is verified by
1976 * zio_done(), which VERIFYs that the override BP is identical
1977 * to the on-disk BP.
03c6040b 1978 */
f3c517d8
MA
1979 DB_DNODE_ENTER(db);
1980 dn = DB_DNODE(db);
1981 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
03c6040b 1982 zp.zp_nopwrite = B_FALSE;
f3c517d8 1983 DB_DNODE_EXIT(db);
03c6040b 1984
34dc7c2f 1985 ASSERT(dr->dr_txg == txg);
428870ff
BB
1986 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1987 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
34dc7c2f 1988 /*
428870ff
BB
1989 * We have already issued a sync write for this buffer,
1990 * or this buffer has already been synced. It could not
34dc7c2f
BB
1991 * have been dirtied since, or we would have cleared the state.
1992 */
34dc7c2f 1993 mutex_exit(&db->db_mtx);
2e528b49 1994 return (SET_ERROR(EALREADY));
34dc7c2f
BB
1995 }
1996
428870ff 1997 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
34dc7c2f 1998 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
34dc7c2f 1999 mutex_exit(&db->db_mtx);
34dc7c2f 2000
79c76d5b 2001 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
2002 dsa->dsa_dr = dr;
2003 dsa->dsa_done = done;
2004 dsa->dsa_zgd = zgd;
2005 dsa->dsa_tx = NULL;
b128c09f 2006
428870ff 2007 zio_nowait(arc_write(pio, os->os_spa, txg,
02dc43bc 2008 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
d3c2ae1c 2009 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
bc77ba73 2010 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
b128c09f 2011
428870ff 2012 return (0);
34dc7c2f
BB
2013}
2014
b5256303
TC
2015int
2016dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2017{
2018 dnode_t *dn;
2019 int err;
2020
2021 err = dnode_hold(os, object, FTAG, &dn);
2022 if (err)
2023 return (err);
2024 err = dnode_set_nlevels(dn, nlevels, tx);
2025 dnode_rele(dn, FTAG);
2026 return (err);
2027}
2028
34dc7c2f
BB
2029int
2030dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
4ea3f864 2031 dmu_tx_t *tx)
34dc7c2f
BB
2032{
2033 dnode_t *dn;
2034 int err;
2035
428870ff 2036 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2037 if (err)
2038 return (err);
2039 err = dnode_set_blksz(dn, size, ibs, tx);
2040 dnode_rele(dn, FTAG);
2041 return (err);
2042}
2043
ae76f45c
TC
2044int
2045dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2046 dmu_tx_t *tx)
2047{
2048 dnode_t *dn;
2049 int err;
2050
2051 err = dnode_hold(os, object, FTAG, &dn);
2052 if (err)
2053 return (err);
2054 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
369aa501 2055 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
ae76f45c
TC
2056 rw_exit(&dn->dn_struct_rwlock);
2057 dnode_rele(dn, FTAG);
2058 return (0);
2059}
2060
34dc7c2f
BB
2061void
2062dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
4ea3f864 2063 dmu_tx_t *tx)
34dc7c2f
BB
2064{
2065 dnode_t *dn;
2066
9b67f605
MA
2067 /*
2068 * Send streams include each object's checksum function. This
2069 * check ensures that the receiving system can understand the
2070 * checksum function transmitted.
2071 */
2072 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2073
2074 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2075 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
34dc7c2f
BB
2076 dn->dn_checksum = checksum;
2077 dnode_setdirty(dn, tx);
2078 dnode_rele(dn, FTAG);
2079}
2080
2081void
2082dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
4ea3f864 2083 dmu_tx_t *tx)
34dc7c2f
BB
2084{
2085 dnode_t *dn;
2086
9b67f605
MA
2087 /*
2088 * Send streams include each object's compression function. This
2089 * check ensures that the receiving system can understand the
2090 * compression function transmitted.
2091 */
2092 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2093
2094 VERIFY0(dnode_hold(os, object, FTAG, &dn));
34dc7c2f
BB
2095 dn->dn_compress = compress;
2096 dnode_setdirty(dn, tx);
2097 dnode_rele(dn, FTAG);
2098}
2099
faf0f58c
MA
2100/*
2101 * When the "redundant_metadata" property is set to "most", only indirect
2102 * blocks of this level and higher will have an additional ditto block.
2103 */
2104int zfs_redundant_metadata_most_ditto_level = 2;
2105
428870ff 2106void
82644107 2107dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
428870ff
BB
2108{
2109 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
9ae529ec 2110 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
572e2857 2111 (wp & WP_SPILL));
428870ff
BB
2112 enum zio_checksum checksum = os->os_checksum;
2113 enum zio_compress compress = os->os_compress;
2114 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
03c6040b
GW
2115 boolean_t dedup = B_FALSE;
2116 boolean_t nopwrite = B_FALSE;
428870ff 2117 boolean_t dedup_verify = os->os_dedup_verify;
b5256303 2118 boolean_t encrypt = B_FALSE;
428870ff 2119 int copies = os->os_copies;
a7004725 2120
428870ff 2121 /*
03c6040b
GW
2122 * We maintain different write policies for each of the following
2123 * types of data:
2124 * 1. metadata
2125 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2126 * 3. all other level 0 blocks
428870ff
BB
2127 */
2128 if (ismd) {
b1d21733
TC
2129 /*
2130 * XXX -- we should design a compression algorithm
2131 * that specializes in arrays of bps.
2132 */
2133 compress = zio_compress_select(os->os_spa,
2134 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
03c6040b 2135
428870ff
BB
2136 /*
2137 * Metadata always gets checksummed. If the data
2138 * checksum is multi-bit correctable, and it's not a
2139 * ZBT-style checksum, then it's suitable for metadata
2140 * as well. Otherwise, the metadata checksum defaults
2141 * to fletcher4.
2142 */
3c67d83a
TH
2143 if (!(zio_checksum_table[checksum].ci_flags &
2144 ZCHECKSUM_FLAG_METADATA) ||
2145 (zio_checksum_table[checksum].ci_flags &
2146 ZCHECKSUM_FLAG_EMBEDDED))
428870ff 2147 checksum = ZIO_CHECKSUM_FLETCHER_4;
faf0f58c
MA
2148
2149 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2150 (os->os_redundant_metadata ==
2151 ZFS_REDUNDANT_METADATA_MOST &&
2152 (level >= zfs_redundant_metadata_most_ditto_level ||
2153 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2154 copies++;
03c6040b
GW
2155 } else if (wp & WP_NOFILL) {
2156 ASSERT(level == 0);
428870ff 2157
428870ff 2158 /*
03c6040b
GW
2159 * If we're writing preallocated blocks, we aren't actually
2160 * writing them so don't set any policy properties. These
2161 * blocks are currently only used by an external subsystem
2162 * outside of zfs (i.e. dump) and not written by the zio
2163 * pipeline.
428870ff 2164 */
03c6040b
GW
2165 compress = ZIO_COMPRESS_OFF;
2166 checksum = ZIO_CHECKSUM_OFF;
428870ff 2167 } else {
99197f03
JG
2168 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2169 compress);
428870ff 2170
03c6040b
GW
2171 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2172 zio_checksum_select(dn->dn_checksum, checksum) :
2173 dedup_checksum;
428870ff 2174
03c6040b
GW
2175 /*
2176 * Determine dedup setting. If we are in dmu_sync(),
2177 * we won't actually dedup now because that's all
2178 * done in syncing context; but we do want to use the
e1cfd73f 2179 * dedup checksum. If the checksum is not strong
03c6040b
GW
2180 * enough to ensure unique signatures, force
2181 * dedup_verify.
2182 */
2183 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2184 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
3c67d83a
TH
2185 if (!(zio_checksum_table[checksum].ci_flags &
2186 ZCHECKSUM_FLAG_DEDUP))
03c6040b
GW
2187 dedup_verify = B_TRUE;
2188 }
428870ff 2189
03c6040b 2190 /*
3c67d83a
TH
2191 * Enable nopwrite if we have secure enough checksum
2192 * algorithm (see comment in zio_nop_write) and
2193 * compression is enabled. We don't enable nopwrite if
2194 * dedup is enabled as the two features are mutually
2195 * exclusive.
03c6040b 2196 */
3c67d83a
TH
2197 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2198 ZCHECKSUM_FLAG_NOPWRITE) &&
03c6040b 2199 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
428870ff
BB
2200 }
2201
b5256303
TC
2202 /*
2203 * All objects in an encrypted objset are protected from modification
2204 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2205 * in the bp, so we cannot use all copies. Encrypted objects are also
2206 * not subject to nopwrite since writing the same data will still
2207 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2208 * to avoid ambiguity in the dedup code since the DDT does not store
2209 * object types.
2210 */
2211 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2212 encrypt = B_TRUE;
2213
2214 if (DMU_OT_IS_ENCRYPTED(type)) {
2215 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2216 nopwrite = B_FALSE;
2217 } else {
2218 dedup = B_FALSE;
2219 }
2220
ae76f45c
TC
2221 if (level <= 0 &&
2222 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
b5256303 2223 compress = ZIO_COMPRESS_EMPTY;
ae76f45c 2224 }
b5256303 2225 }
2aa34383 2226
b5256303
TC
2227 zp->zp_compress = compress;
2228 zp->zp_checksum = checksum;
428870ff
BB
2229 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2230 zp->zp_level = level;
faf0f58c 2231 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
428870ff
BB
2232 zp->zp_dedup = dedup;
2233 zp->zp_dedup_verify = dedup && dedup_verify;
03c6040b 2234 zp->zp_nopwrite = nopwrite;
b5256303
TC
2235 zp->zp_encrypt = encrypt;
2236 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2237 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2238 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2239 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
cc99f275
DB
2240 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2241 os->os_zpl_special_smallblock : 0;
b5256303
TC
2242
2243 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
428870ff
BB
2244}
2245
66aca247
DB
2246/*
2247 * This function is only called from zfs_holey_common() for zpl_llseek()
2248 * in order to determine the location of holes. In order to accurately
2249 * report holes all dirty data must be synced to disk. This causes extremely
2250 * poor performance when seeking for holes in a dirty file. As a compromise,
2251 * only provide hole data when the dnode is clean. When a dnode is dirty
2252 * report the dnode as having no holes which is always a safe thing to do.
2253 */
34dc7c2f
BB
2254int
2255dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2256{
2257 dnode_t *dn;
2258 int i, err;
66aca247 2259 boolean_t clean = B_TRUE;
34dc7c2f 2260
428870ff 2261 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2262 if (err)
2263 return (err);
66aca247 2264
34dc7c2f 2265 /*
2531ce37 2266 * Check if dnode is dirty
34dc7c2f 2267 */
454365bb 2268 for (i = 0; i < TXG_SIZE; i++) {
edc1e713 2269 if (multilist_link_active(&dn->dn_dirty_link[i])) {
2531ce37 2270 clean = B_FALSE;
ec4f9b8f 2271 break;
2531ce37 2272 }
34dc7c2f 2273 }
66aca247
DB
2274
2275 /*
2276 * If compatibility option is on, sync any current changes before
2277 * we go trundling through the block pointers.
2278 */
2279 if (!clean && zfs_dmu_offset_next_sync) {
2280 clean = B_TRUE;
34dc7c2f
BB
2281 dnode_rele(dn, FTAG);
2282 txg_wait_synced(dmu_objset_pool(os), 0);
428870ff 2283 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2284 if (err)
2285 return (err);
2286 }
2287
66aca247
DB
2288 if (clean)
2289 err = dnode_next_offset(dn,
2290 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2291 else
2292 err = SET_ERROR(EBUSY);
2293
34dc7c2f
BB
2294 dnode_rele(dn, FTAG);
2295
2296 return (err);
2297}
2298
2299void
e0b0ca98 2300__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
34dc7c2f 2301{
e0b0ca98 2302 dnode_phys_t *dnp = dn->dn_phys;
428870ff 2303
34dc7c2f
BB
2304 doi->doi_data_block_size = dn->dn_datablksz;
2305 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2306 1ULL << dn->dn_indblkshift : 0;
428870ff
BB
2307 doi->doi_type = dn->dn_type;
2308 doi->doi_bonus_type = dn->dn_bonustype;
2309 doi->doi_bonus_size = dn->dn_bonuslen;
50c957f7 2310 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
34dc7c2f
BB
2311 doi->doi_indirection = dn->dn_nlevels;
2312 doi->doi_checksum = dn->dn_checksum;
2313 doi->doi_compress = dn->dn_compress;
6c59307a 2314 doi->doi_nblkptr = dn->dn_nblkptr;
428870ff 2315 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
d1fada1e 2316 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
428870ff 2317 doi->doi_fill_count = 0;
1c27024e 2318 for (int i = 0; i < dnp->dn_nblkptr; i++)
9b67f605 2319 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
e0b0ca98
BB
2320}
2321
2322void
2323dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2324{
2325 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2326 mutex_enter(&dn->dn_mtx);
2327
2328 __dmu_object_info_from_dnode(dn, doi);
34dc7c2f
BB
2329
2330 mutex_exit(&dn->dn_mtx);
2331 rw_exit(&dn->dn_struct_rwlock);
2332}
2333
2334/*
2335 * Get information on a DMU object.
2336 * If doi is NULL, just indicates whether the object exists.
2337 */
2338int
2339dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2340{
2341 dnode_t *dn;
428870ff 2342 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2343
2344 if (err)
2345 return (err);
2346
2347 if (doi != NULL)
2348 dmu_object_info_from_dnode(dn, doi);
2349
2350 dnode_rele(dn, FTAG);
2351 return (0);
2352}
2353
2354/*
2355 * As above, but faster; can be used when you have a held dbuf in hand.
2356 */
2357void
572e2857 2358dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
34dc7c2f 2359{
572e2857
BB
2360 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2361
2362 DB_DNODE_ENTER(db);
2363 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2364 DB_DNODE_EXIT(db);
34dc7c2f
BB
2365}
2366
2367/*
2368 * Faster still when you only care about the size.
2369 * This is specifically optimized for zfs_getattr().
2370 */
2371void
572e2857
BB
2372dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2373 u_longlong_t *nblk512)
34dc7c2f 2374{
572e2857
BB
2375 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2376 dnode_t *dn;
2377
2378 DB_DNODE_ENTER(db);
2379 dn = DB_DNODE(db);
34dc7c2f
BB
2380
2381 *blksize = dn->dn_datablksz;
50c957f7 2382 /* add in number of slots used for the dnode itself */
34dc7c2f 2383 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
50c957f7
NB
2384 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2385 DB_DNODE_EXIT(db);
2386}
2387
2388void
2389dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2390{
2391 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2392 dnode_t *dn;
2393
2394 DB_DNODE_ENTER(db);
2395 dn = DB_DNODE(db);
2396 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
572e2857 2397 DB_DNODE_EXIT(db);
34dc7c2f
BB
2398}
2399
2400void
2401byteswap_uint64_array(void *vbuf, size_t size)
2402{
2403 uint64_t *buf = vbuf;
2404 size_t count = size >> 3;
2405 int i;
2406
2407 ASSERT((size & 7) == 0);
2408
2409 for (i = 0; i < count; i++)
2410 buf[i] = BSWAP_64(buf[i]);
2411}
2412
2413void
2414byteswap_uint32_array(void *vbuf, size_t size)
2415{
2416 uint32_t *buf = vbuf;
2417 size_t count = size >> 2;
2418 int i;
2419
2420 ASSERT((size & 3) == 0);
2421
2422 for (i = 0; i < count; i++)
2423 buf[i] = BSWAP_32(buf[i]);
2424}
2425
2426void
2427byteswap_uint16_array(void *vbuf, size_t size)
2428{
2429 uint16_t *buf = vbuf;
2430 size_t count = size >> 1;
2431 int i;
2432
2433 ASSERT((size & 1) == 0);
2434
2435 for (i = 0; i < count; i++)
2436 buf[i] = BSWAP_16(buf[i]);
2437}
2438
2439/* ARGSUSED */
2440void
2441byteswap_uint8_array(void *vbuf, size_t size)
2442{
2443}
2444
2445void
2446dmu_init(void)
2447{
a6255b7f 2448 abd_init();
428870ff 2449 zfs_dbgmsg_init();
572e2857
BB
2450 sa_cache_init();
2451 xuio_stat_init();
2452 dmu_objset_init();
34dc7c2f 2453 dnode_init();
428870ff 2454 zfetch_init();
570827e1 2455 dmu_tx_init();
34dc7c2f 2456 l2arc_init();
29809a6c 2457 arc_init();
d3c2ae1c 2458 dbuf_init();
34dc7c2f
BB
2459}
2460
2461void
2462dmu_fini(void)
2463{
e49f1e20 2464 arc_fini(); /* arc depends on l2arc, so arc must go first */
29809a6c 2465 l2arc_fini();
570827e1 2466 dmu_tx_fini();
428870ff 2467 zfetch_fini();
34dc7c2f 2468 dbuf_fini();
572e2857
BB
2469 dnode_fini();
2470 dmu_objset_fini();
428870ff
BB
2471 xuio_stat_fini();
2472 sa_cache_fini();
2473 zfs_dbgmsg_fini();
a6255b7f 2474 abd_fini();
34dc7c2f 2475}
c28b2279 2476
93ce2b4c 2477#if defined(_KERNEL)
c28b2279 2478EXPORT_SYMBOL(dmu_bonus_hold);
6955b401 2479EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
a473d90c
AZ
2480EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2481EXPORT_SYMBOL(dmu_buf_rele_array);
57b650b8 2482EXPORT_SYMBOL(dmu_prefetch);
c28b2279 2483EXPORT_SYMBOL(dmu_free_range);
57b650b8 2484EXPORT_SYMBOL(dmu_free_long_range);
b663a23d 2485EXPORT_SYMBOL(dmu_free_long_object);
c28b2279 2486EXPORT_SYMBOL(dmu_read);
0eef1bde 2487EXPORT_SYMBOL(dmu_read_by_dnode);
c28b2279 2488EXPORT_SYMBOL(dmu_write);
0eef1bde 2489EXPORT_SYMBOL(dmu_write_by_dnode);
57b650b8 2490EXPORT_SYMBOL(dmu_prealloc);
c28b2279
BB
2491EXPORT_SYMBOL(dmu_object_info);
2492EXPORT_SYMBOL(dmu_object_info_from_dnode);
2493EXPORT_SYMBOL(dmu_object_info_from_db);
2494EXPORT_SYMBOL(dmu_object_size_from_db);
50c957f7 2495EXPORT_SYMBOL(dmu_object_dnsize_from_db);
b5256303 2496EXPORT_SYMBOL(dmu_object_set_nlevels);
c28b2279 2497EXPORT_SYMBOL(dmu_object_set_blocksize);
ae76f45c 2498EXPORT_SYMBOL(dmu_object_set_maxblkid);
c28b2279
BB
2499EXPORT_SYMBOL(dmu_object_set_checksum);
2500EXPORT_SYMBOL(dmu_object_set_compress);
57b650b8
BB
2501EXPORT_SYMBOL(dmu_write_policy);
2502EXPORT_SYMBOL(dmu_sync);
b10c77f7
BB
2503EXPORT_SYMBOL(dmu_request_arcbuf);
2504EXPORT_SYMBOL(dmu_return_arcbuf);
440a3eb9
TC
2505EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2506EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
b10c77f7 2507EXPORT_SYMBOL(dmu_buf_hold);
c28b2279 2508EXPORT_SYMBOL(dmu_ot);
afec56b4 2509
bef78122 2510/* BEGIN CSTYLED */
03c6040b
GW
2511module_param(zfs_nopwrite_enabled, int, 0644);
2512MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
2513
bef78122
DQ
2514module_param(zfs_per_txg_dirty_frees_percent, ulong, 0644);
2515MODULE_PARM_DESC(zfs_per_txg_dirty_frees_percent,
2516 "percentage of dirtied blocks from frees in one TXG");
66aca247
DB
2517
2518module_param(zfs_dmu_offset_next_sync, int, 0644);
2519MODULE_PARM_DESC(zfs_dmu_offset_next_sync,
2520 "Enable forcing txg sync to find holes");
2521
d9b4bf06
MA
2522module_param(dmu_prefetch_max, int, 0644);
2523MODULE_PARM_DESC(dmu_prefetch_max,
2524 "Limit one prefetch call to this size");
2525
bef78122 2526/* END CSTYLED */
66aca247 2527
c28b2279 2528#endif