]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu.c
allow callers to allocate and provide the abd_t struct
[mirror_zfs.git] / module / zfs / dmu.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
196bee4c 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
bc77ba73 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
a08abc1b 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
5475aada 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
65282ee9 28 * Copyright (c) 2019 Datto Inc.
10b3c7f5
MN
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
34dc7c2f
BB
31 */
32
34dc7c2f
BB
33#include <sys/dmu.h>
34#include <sys/dmu_impl.h>
35#include <sys/dmu_tx.h>
36#include <sys/dbuf.h>
37#include <sys/dnode.h>
38#include <sys/zfs_context.h>
39#include <sys/dmu_objset.h>
40#include <sys/dmu_traverse.h>
41#include <sys/dsl_dataset.h>
42#include <sys/dsl_dir.h>
43#include <sys/dsl_pool.h>
44#include <sys/dsl_synctask.h>
45#include <sys/dsl_prop.h>
46#include <sys/dmu_zfetch.h>
47#include <sys/zfs_ioctl.h>
48#include <sys/zap.h>
49#include <sys/zio_checksum.h>
03c6040b 50#include <sys/zio_compress.h>
428870ff 51#include <sys/sa.h>
62bdd5eb 52#include <sys/zfeature.h>
a6255b7f 53#include <sys/abd.h>
e5d1c27e 54#include <sys/trace_zfs.h>
f763c3d1 55#include <sys/zfs_rlock.h>
34dc7c2f
BB
56#ifdef _KERNEL
57#include <sys/vmsystm.h>
b128c09f 58#include <sys/zfs_znode.h>
34dc7c2f
BB
59#endif
60
03c6040b
GW
61/*
62 * Enable/disable nopwrite feature.
63 */
64int zfs_nopwrite_enabled = 1;
65
539d33c7 66/*
65282ee9
AP
67 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
68 * one TXG. After this threshold is crossed, additional dirty blocks from frees
69 * will wait until the next TXG.
539d33c7
GM
70 * A value of zero will disable this throttle.
71 */
65282ee9 72unsigned long zfs_per_txg_dirty_frees_percent = 5;
539d33c7 73
66aca247
DB
74/*
75 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
76 */
77int zfs_dmu_offset_next_sync = 0;
78
d9b4bf06
MA
79/*
80 * Limit the amount we can prefetch with one call to this amount. This
81 * helps to limit the amount of memory that can be used by prefetching.
82 * Larger objects should be prefetched a bit at a time.
83 */
84int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
85
34dc7c2f 86const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
2e5dc449
MA
87 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
88 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
89 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
90 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
91 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
92 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
93 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
94 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
95 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
96 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
97 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
98 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
99 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
100 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
101 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
102 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
103 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
104 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
105 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
106 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
107 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
108 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
109 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
110 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
111 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
112 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
113 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
114 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
115 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
116 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
117 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
118 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
119 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
120 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
121 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
122 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
123 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
124 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
125 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
126 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
127 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
128 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
129 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
130 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
131 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
132 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
133 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
134 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
135 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
136 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
137 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
138 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
139 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
140 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
9ae529ec
CS
141};
142
143const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
144 { byteswap_uint8_array, "uint8" },
145 { byteswap_uint16_array, "uint16" },
146 { byteswap_uint32_array, "uint32" },
147 { byteswap_uint64_array, "uint64" },
148 { zap_byteswap, "zap" },
149 { dnode_buf_byteswap, "dnode" },
150 { dmu_objset_byteswap, "objset" },
151 { zfs_znode_byteswap, "znode" },
152 { zfs_oldacl_byteswap, "oldacl" },
153 { zfs_acl_byteswap, "acl" }
34dc7c2f
BB
154};
155
65c7cc49 156static int
2bce8049
MA
157dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
158 void *tag, dmu_buf_t **dbp)
159{
160 uint64_t blkid;
161 dmu_buf_impl_t *db;
162
2bce8049 163 rw_enter(&dn->dn_struct_rwlock, RW_READER);
f664f1ee 164 blkid = dbuf_whichblock(dn, 0, offset);
2bce8049
MA
165 db = dbuf_hold(dn, blkid, tag);
166 rw_exit(&dn->dn_struct_rwlock);
167
168 if (db == NULL) {
169 *dbp = NULL;
170 return (SET_ERROR(EIO));
171 }
172
173 *dbp = &db->db;
174 return (0);
175}
34dc7c2f 176int
9b67f605
MA
177dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
178 void *tag, dmu_buf_t **dbp)
34dc7c2f
BB
179{
180 dnode_t *dn;
181 uint64_t blkid;
182 dmu_buf_impl_t *db;
183 int err;
428870ff
BB
184
185 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
186 if (err)
187 return (err);
34dc7c2f 188 rw_enter(&dn->dn_struct_rwlock, RW_READER);
f664f1ee 189 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f
BB
190 db = dbuf_hold(dn, blkid, tag);
191 rw_exit(&dn->dn_struct_rwlock);
9b67f605
MA
192 dnode_rele(dn, FTAG);
193
34dc7c2f 194 if (db == NULL) {
9b67f605
MA
195 *dbp = NULL;
196 return (SET_ERROR(EIO));
197 }
198
199 *dbp = &db->db;
200 return (err);
201}
202
2bce8049
MA
203int
204dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
205 void *tag, dmu_buf_t **dbp, int flags)
206{
207 int err;
208 int db_flags = DB_RF_CANFAIL;
209
210 if (flags & DMU_READ_NO_PREFETCH)
211 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
212 if (flags & DMU_READ_NO_DECRYPT)
213 db_flags |= DB_RF_NO_DECRYPT;
2bce8049
MA
214
215 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
216 if (err == 0) {
217 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
218 err = dbuf_read(db, NULL, db_flags);
219 if (err != 0) {
220 dbuf_rele(db, tag);
221 *dbp = NULL;
222 }
223 }
224
225 return (err);
226}
227
9b67f605
MA
228int
229dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
230 void *tag, dmu_buf_t **dbp, int flags)
231{
232 int err;
233 int db_flags = DB_RF_CANFAIL;
234
235 if (flags & DMU_READ_NO_PREFETCH)
236 db_flags |= DB_RF_NOPREFETCH;
b5256303
TC
237 if (flags & DMU_READ_NO_DECRYPT)
238 db_flags |= DB_RF_NO_DECRYPT;
9b67f605
MA
239
240 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
241 if (err == 0) {
242 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
428870ff 243 err = dbuf_read(db, NULL, db_flags);
9b67f605 244 if (err != 0) {
34dc7c2f 245 dbuf_rele(db, tag);
9b67f605 246 *dbp = NULL;
34dc7c2f
BB
247 }
248 }
249
34dc7c2f
BB
250 return (err);
251}
252
253int
254dmu_bonus_max(void)
255{
50c957f7 256 return (DN_OLD_MAX_BONUSLEN);
34dc7c2f
BB
257}
258
259int
572e2857 260dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
34dc7c2f 261{
572e2857
BB
262 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
263 dnode_t *dn;
264 int error;
34dc7c2f 265
572e2857
BB
266 DB_DNODE_ENTER(db);
267 dn = DB_DNODE(db);
268
269 if (dn->dn_bonus != db) {
2e528b49 270 error = SET_ERROR(EINVAL);
572e2857 271 } else if (newsize < 0 || newsize > db_fake->db_size) {
2e528b49 272 error = SET_ERROR(EINVAL);
572e2857
BB
273 } else {
274 dnode_setbonuslen(dn, newsize, tx);
275 error = 0;
276 }
277
278 DB_DNODE_EXIT(db);
279 return (error);
34dc7c2f
BB
280}
281
428870ff 282int
572e2857 283dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
428870ff 284{
572e2857
BB
285 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
286 dnode_t *dn;
287 int error;
428870ff 288
572e2857
BB
289 DB_DNODE_ENTER(db);
290 dn = DB_DNODE(db);
428870ff 291
9ae529ec 292 if (!DMU_OT_IS_VALID(type)) {
2e528b49 293 error = SET_ERROR(EINVAL);
572e2857 294 } else if (dn->dn_bonus != db) {
2e528b49 295 error = SET_ERROR(EINVAL);
572e2857
BB
296 } else {
297 dnode_setbonus_type(dn, type, tx);
298 error = 0;
299 }
428870ff 300
572e2857
BB
301 DB_DNODE_EXIT(db);
302 return (error);
303}
304
305dmu_object_type_t
306dmu_get_bonustype(dmu_buf_t *db_fake)
307{
308 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
309 dnode_t *dn;
310 dmu_object_type_t type;
311
312 DB_DNODE_ENTER(db);
313 dn = DB_DNODE(db);
314 type = dn->dn_bonustype;
315 DB_DNODE_EXIT(db);
316
317 return (type);
428870ff
BB
318}
319
320int
321dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
322{
323 dnode_t *dn;
324 int error;
325
326 error = dnode_hold(os, object, FTAG, &dn);
327 dbuf_rm_spill(dn, tx);
328 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
329 dnode_rm_spill(dn, tx);
330 rw_exit(&dn->dn_struct_rwlock);
331 dnode_rele(dn, FTAG);
332 return (error);
333}
334
34dc7c2f 335/*
6955b401
BB
336 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
337 * has not yet been allocated a new bonus dbuf a will be allocated.
338 * Returns ENOENT, EIO, or 0.
34dc7c2f 339 */
6955b401
BB
340int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
341 uint32_t flags)
34dc7c2f 342{
34dc7c2f
BB
343 dmu_buf_impl_t *db;
344 int error;
b5256303
TC
345 uint32_t db_flags = DB_RF_MUST_SUCCEED;
346
347 if (flags & DMU_READ_NO_PREFETCH)
348 db_flags |= DB_RF_NOPREFETCH;
349 if (flags & DMU_READ_NO_DECRYPT)
350 db_flags |= DB_RF_NO_DECRYPT;
34dc7c2f 351
34dc7c2f
BB
352 rw_enter(&dn->dn_struct_rwlock, RW_READER);
353 if (dn->dn_bonus == NULL) {
354 rw_exit(&dn->dn_struct_rwlock);
355 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
356 if (dn->dn_bonus == NULL)
357 dbuf_create_bonus(dn);
358 }
359 db = dn->dn_bonus;
34dc7c2f
BB
360
361 /* as long as the bonus buf is held, the dnode will be held */
c13060e4 362 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
34dc7c2f 363 VERIFY(dnode_add_ref(dn, db));
73ad4a9f 364 atomic_inc_32(&dn->dn_dbufs_count);
572e2857
BB
365 }
366
367 /*
368 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
369 * hold and incrementing the dbuf count to ensure that dnode_move() sees
370 * a dnode hold for every dbuf.
371 */
372 rw_exit(&dn->dn_struct_rwlock);
34dc7c2f 373
b5256303
TC
374 error = dbuf_read(db, NULL, db_flags);
375 if (error) {
376 dnode_evict_bonus(dn);
377 dbuf_rele(db, tag);
378 *dbp = NULL;
379 return (error);
380 }
34dc7c2f
BB
381
382 *dbp = &db->db;
383 return (0);
384}
385
b5256303 386int
6955b401 387dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
b5256303 388{
6955b401
BB
389 dnode_t *dn;
390 int error;
391
392 error = dnode_hold(os, object, FTAG, &dn);
393 if (error)
394 return (error);
395
396 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
397 dnode_rele(dn, FTAG);
398
399 return (error);
b5256303
TC
400}
401
428870ff
BB
402/*
403 * returns ENOENT, EIO, or 0.
404 *
405 * This interface will allocate a blank spill dbuf when a spill blk
406 * doesn't already exist on the dnode.
407 *
408 * if you only want to find an already existing spill db, then
409 * dmu_spill_hold_existing() should be used.
410 */
411int
412dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
413{
414 dmu_buf_impl_t *db = NULL;
415 int err;
416
417 if ((flags & DB_RF_HAVESTRUCT) == 0)
418 rw_enter(&dn->dn_struct_rwlock, RW_READER);
419
420 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
421
422 if ((flags & DB_RF_HAVESTRUCT) == 0)
423 rw_exit(&dn->dn_struct_rwlock);
424
b182ac00 425 if (db == NULL) {
426 *dbp = NULL;
427 return (SET_ERROR(EIO));
428 }
572e2857
BB
429 err = dbuf_read(db, NULL, flags);
430 if (err == 0)
431 *dbp = &db->db;
b182ac00 432 else {
572e2857 433 dbuf_rele(db, tag);
b182ac00 434 *dbp = NULL;
435 }
428870ff
BB
436 return (err);
437}
438
439int
440dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
441{
572e2857
BB
442 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
443 dnode_t *dn;
428870ff
BB
444 int err;
445
572e2857
BB
446 DB_DNODE_ENTER(db);
447 dn = DB_DNODE(db);
448
449 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
2e528b49 450 err = SET_ERROR(EINVAL);
572e2857
BB
451 } else {
452 rw_enter(&dn->dn_struct_rwlock, RW_READER);
453
454 if (!dn->dn_have_spill) {
2e528b49 455 err = SET_ERROR(ENOENT);
572e2857
BB
456 } else {
457 err = dmu_spill_hold_by_dnode(dn,
458 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
459 }
428870ff 460
428870ff 461 rw_exit(&dn->dn_struct_rwlock);
428870ff 462 }
572e2857
BB
463
464 DB_DNODE_EXIT(db);
428870ff
BB
465 return (err);
466}
467
468int
e7504d7a
TC
469dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
470 dmu_buf_t **dbp)
428870ff 471{
572e2857
BB
472 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
473 dnode_t *dn;
474 int err;
e7504d7a
TC
475 uint32_t db_flags = DB_RF_CANFAIL;
476
477 if (flags & DMU_READ_NO_DECRYPT)
478 db_flags |= DB_RF_NO_DECRYPT;
572e2857
BB
479
480 DB_DNODE_ENTER(db);
481 dn = DB_DNODE(db);
e7504d7a 482 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
572e2857
BB
483 DB_DNODE_EXIT(db);
484
485 return (err);
428870ff
BB
486}
487
34dc7c2f
BB
488/*
489 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
490 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
491 * and can induce severe lock contention when writing to several files
492 * whose dnodes are in the same block.
493 */
af1698f5 494int
9babb374 495dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
7f60329a 496 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
34dc7c2f
BB
497{
498 dmu_buf_t **dbp;
499 uint64_t blkid, nblks, i;
9babb374 500 uint32_t dbuf_flags;
34dc7c2f 501 int err;
ec50cd24 502 zio_t *zio = NULL;
34dc7c2f
BB
503
504 ASSERT(length <= DMU_MAX_ACCESS);
505
7f60329a
MA
506 /*
507 * Note: We directly notify the prefetch code of this read, so that
508 * we can tell it about the multi-block read. dbuf_read() only knows
509 * about the one block it is accessing.
510 */
511 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
512 DB_RF_NOPREFETCH;
34dc7c2f
BB
513
514 rw_enter(&dn->dn_struct_rwlock, RW_READER);
515 if (dn->dn_datablkshift) {
516 int blkshift = dn->dn_datablkshift;
7f60329a
MA
517 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
518 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
34dc7c2f
BB
519 } else {
520 if (offset + length > dn->dn_datablksz) {
521 zfs_panic_recover("zfs: accessing past end of object "
522 "%llx/%llx (size=%u access=%llu+%llu)",
523 (longlong_t)dn->dn_objset->
524 os_dsl_dataset->ds_object,
525 (longlong_t)dn->dn_object, dn->dn_datablksz,
526 (longlong_t)offset, (longlong_t)length);
45d1cae3 527 rw_exit(&dn->dn_struct_rwlock);
2e528b49 528 return (SET_ERROR(EIO));
34dc7c2f
BB
529 }
530 nblks = 1;
531 }
79c76d5b 532 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
34dc7c2f 533
ec50cd24
FY
534 if (read)
535 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
536 ZIO_FLAG_CANFAIL);
fcff0f35 537 blkid = dbuf_whichblock(dn, 0, offset);
34dc7c2f 538 for (i = 0; i < nblks; i++) {
7f60329a 539 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
34dc7c2f
BB
540 if (db == NULL) {
541 rw_exit(&dn->dn_struct_rwlock);
542 dmu_buf_rele_array(dbp, nblks, tag);
ec50cd24
FY
543 if (read)
544 zio_nowait(zio);
2e528b49 545 return (SET_ERROR(EIO));
34dc7c2f 546 }
7f60329a 547
34dc7c2f 548 /* initiate async i/o */
7f60329a 549 if (read)
9babb374 550 (void) dbuf_read(db, zio, dbuf_flags);
34dc7c2f
BB
551 dbp[i] = &db->db;
552 }
7f60329a 553
755065f3
AM
554 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
555 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
556 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
f664f1ee 557 read && DNODE_IS_CACHEABLE(dn), B_TRUE);
7f60329a 558 }
34dc7c2f
BB
559 rw_exit(&dn->dn_struct_rwlock);
560
34dc7c2f 561 if (read) {
ec50cd24
FY
562 /* wait for async read i/o */
563 err = zio_wait(zio);
564 if (err) {
565 dmu_buf_rele_array(dbp, nblks, tag);
566 return (err);
567 }
568
569 /* wait for other io to complete */
34dc7c2f
BB
570 for (i = 0; i < nblks; i++) {
571 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
572 mutex_enter(&db->db_mtx);
573 while (db->db_state == DB_READ ||
574 db->db_state == DB_FILL)
575 cv_wait(&db->db_changed, &db->db_mtx);
576 if (db->db_state == DB_UNCACHED)
2e528b49 577 err = SET_ERROR(EIO);
34dc7c2f
BB
578 mutex_exit(&db->db_mtx);
579 if (err) {
580 dmu_buf_rele_array(dbp, nblks, tag);
581 return (err);
582 }
583 }
584 }
585
586 *numbufsp = nblks;
587 *dbpp = dbp;
588 return (0);
589}
590
591static int
592dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
593 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
594{
595 dnode_t *dn;
596 int err;
597
428870ff 598 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
599 if (err)
600 return (err);
601
602 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 603 numbufsp, dbpp, DMU_READ_PREFETCH);
34dc7c2f
BB
604
605 dnode_rele(dn, FTAG);
606
607 return (err);
608}
609
610int
572e2857 611dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
7f60329a
MA
612 uint64_t length, boolean_t read, void *tag, int *numbufsp,
613 dmu_buf_t ***dbpp)
34dc7c2f 614{
572e2857
BB
615 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
616 dnode_t *dn;
34dc7c2f
BB
617 int err;
618
572e2857
BB
619 DB_DNODE_ENTER(db);
620 dn = DB_DNODE(db);
34dc7c2f 621 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
9babb374 622 numbufsp, dbpp, DMU_READ_PREFETCH);
572e2857 623 DB_DNODE_EXIT(db);
34dc7c2f
BB
624
625 return (err);
626}
627
628void
629dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
630{
631 int i;
632 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
633
634 if (numbufs == 0)
635 return;
636
637 for (i = 0; i < numbufs; i++) {
638 if (dbp[i])
639 dbuf_rele(dbp[i], tag);
640 }
641
642 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
643}
644
e8b96c60 645/*
fcff0f35 646 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
e1cfd73f 647 * indirect blocks prefetched will be those that point to the blocks containing
fcff0f35 648 * the data starting at offset, and continuing to offset + len.
e8b96c60 649 *
b5256303 650 * Note that if the indirect blocks above the blocks being prefetched are not
e1cfd73f 651 * in cache, they will be asynchronously read in.
e8b96c60 652 */
34dc7c2f 653void
fcff0f35
PD
654dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
655 uint64_t len, zio_priority_t pri)
34dc7c2f
BB
656{
657 dnode_t *dn;
658 uint64_t blkid;
e8b96c60 659 int nblks, err;
34dc7c2f 660
34dc7c2f 661 if (len == 0) { /* they're interested in the bonus buffer */
572e2857 662 dn = DMU_META_DNODE(os);
34dc7c2f
BB
663
664 if (object == 0 || object >= DN_MAX_OBJECT)
665 return;
666
667 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
668 blkid = dbuf_whichblock(dn, level,
669 object * sizeof (dnode_phys_t));
670 dbuf_prefetch(dn, level, blkid, pri, 0);
34dc7c2f
BB
671 rw_exit(&dn->dn_struct_rwlock);
672 return;
673 }
674
d9b4bf06
MA
675 /*
676 * See comment before the definition of dmu_prefetch_max.
677 */
678 len = MIN(len, dmu_prefetch_max);
679
34dc7c2f
BB
680 /*
681 * XXX - Note, if the dnode for the requested object is not
682 * already cached, we will do a *synchronous* read in the
683 * dnode_hold() call. The same is true for any indirects.
684 */
428870ff 685 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
686 if (err != 0)
687 return;
688
fcff0f35
PD
689 /*
690 * offset + len - 1 is the last byte we want to prefetch for, and offset
691 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
692 * last block we want to prefetch, and dbuf_whichblock(dn, level,
693 * offset) is the first. Then the number we need to prefetch is the
694 * last - first + 1.
695 */
f664f1ee 696 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
697 if (level > 0 || dn->dn_datablkshift != 0) {
698 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
699 dbuf_whichblock(dn, level, offset) + 1;
34dc7c2f
BB
700 } else {
701 nblks = (offset < dn->dn_datablksz);
702 }
703
704 if (nblks != 0) {
fcff0f35 705 blkid = dbuf_whichblock(dn, level, offset);
1c27024e 706 for (int i = 0; i < nblks; i++)
fcff0f35 707 dbuf_prefetch(dn, level, blkid + i, pri, 0);
34dc7c2f 708 }
34dc7c2f
BB
709 rw_exit(&dn->dn_struct_rwlock);
710
711 dnode_rele(dn, FTAG);
712}
713
45d1cae3
BB
714/*
715 * Get the next "chunk" of file data to free. We traverse the file from
716 * the end so that the file gets shorter over time (if we crashes in the
717 * middle, this will leave us in a better state). We find allocated file
718 * data by simply searching the allocated level 1 indirects.
b663a23d
MA
719 *
720 * On input, *start should be the first offset that does not need to be
721 * freed (e.g. "offset + length"). On return, *start will be the first
65282ee9
AP
722 * offset that should be freed and l1blks is set to the number of level 1
723 * indirect blocks found within the chunk.
45d1cae3 724 */
b128c09f 725static int
65282ee9 726get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
b128c09f 727{
65282ee9 728 uint64_t blks;
b663a23d
MA
729 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
730 /* bytes of data covered by a level-1 indirect block */
ec4afd27
OM
731 uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
732 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
b128c09f 733
b663a23d 734 ASSERT3U(minimum, <=, *start);
b128c09f 735
f4c594da
TC
736 /*
737 * Check if we can free the entire range assuming that all of the
738 * L1 blocks in this range have data. If we can, we use this
739 * worst case value as an estimate so we can avoid having to look
740 * at the object's actual data.
741 */
742 uint64_t total_l1blks =
743 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
744 iblkrange;
745 if (total_l1blks <= maxblks) {
746 *l1blks = total_l1blks;
b663a23d 747 *start = minimum;
b128c09f
BB
748 return (0);
749 }
45d1cae3 750 ASSERT(ISP2(iblkrange));
b128c09f 751
65282ee9 752 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
b128c09f
BB
753 int err;
754
b663a23d
MA
755 /*
756 * dnode_next_offset(BACKWARDS) will find an allocated L1
757 * indirect block at or before the input offset. We must
758 * decrement *start so that it is at the end of the region
759 * to search.
760 */
761 (*start)--;
f4c594da 762
b128c09f 763 err = dnode_next_offset(dn,
45d1cae3 764 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
b128c09f 765
b663a23d 766 /* if there are no indirect blocks before start, we are done */
45d1cae3 767 if (err == ESRCH) {
b663a23d
MA
768 *start = minimum;
769 break;
770 } else if (err != 0) {
65282ee9 771 *l1blks = blks;
b128c09f 772 return (err);
45d1cae3 773 }
b128c09f 774
b663a23d 775 /* set start to the beginning of this L1 indirect */
45d1cae3 776 *start = P2ALIGN(*start, iblkrange);
b128c09f 777 }
b663a23d
MA
778 if (*start < minimum)
779 *start = minimum;
65282ee9 780 *l1blks = blks;
f4c594da 781
b128c09f
BB
782 return (0);
783}
784
a08abc1b
GM
785/*
786 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
787 * otherwise return false.
788 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
789 */
790/*ARGSUSED*/
791static boolean_t
792dmu_objset_zfs_unmounting(objset_t *os)
793{
794#ifdef _KERNEL
795 if (dmu_objset_type(os) == DMU_OST_ZFS)
796 return (zfs_get_vfs_flag_unmounted(os));
797#endif
798 return (B_FALSE);
799}
800
b128c09f
BB
801static int
802dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
0c03d21a 803 uint64_t length)
b128c09f 804{
c97d3069 805 uint64_t object_size;
b663a23d 806 int err;
539d33c7
GM
807 uint64_t dirty_frees_threshold;
808 dsl_pool_t *dp = dmu_objset_pool(os);
b663a23d 809
c97d3069
BB
810 if (dn == NULL)
811 return (SET_ERROR(EINVAL));
812
813 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
b663a23d 814 if (offset >= object_size)
b128c09f 815 return (0);
b128c09f 816
539d33c7
GM
817 if (zfs_per_txg_dirty_frees_percent <= 100)
818 dirty_frees_threshold =
819 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
820 else
65282ee9 821 dirty_frees_threshold = zfs_dirty_data_max / 20;
539d33c7 822
b663a23d
MA
823 if (length == DMU_OBJECT_END || offset + length > object_size)
824 length = object_size - offset;
825
826 while (length != 0) {
539d33c7 827 uint64_t chunk_end, chunk_begin, chunk_len;
65282ee9 828 uint64_t l1blks;
b663a23d
MA
829 dmu_tx_t *tx;
830
a08abc1b
GM
831 if (dmu_objset_zfs_unmounting(dn->dn_objset))
832 return (SET_ERROR(EINTR));
833
b663a23d
MA
834 chunk_end = chunk_begin = offset + length;
835
836 /* move chunk_begin backwards to the beginning of this chunk */
65282ee9 837 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
b128c09f
BB
838 if (err)
839 return (err);
b663a23d
MA
840 ASSERT3U(chunk_begin, >=, offset);
841 ASSERT3U(chunk_begin, <=, chunk_end);
b128c09f 842
539d33c7
GM
843 chunk_len = chunk_end - chunk_begin;
844
b128c09f 845 tx = dmu_tx_create(os);
539d33c7 846 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
19d55079
MA
847
848 /*
849 * Mark this transaction as typically resulting in a net
850 * reduction in space used.
851 */
852 dmu_tx_mark_netfree(tx);
b128c09f
BB
853 err = dmu_tx_assign(tx, TXG_WAIT);
854 if (err) {
855 dmu_tx_abort(tx);
856 return (err);
857 }
539d33c7 858
f4c594da
TC
859 uint64_t txg = dmu_tx_get_txg(tx);
860
861 mutex_enter(&dp->dp_lock);
862 uint64_t long_free_dirty =
863 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
864 mutex_exit(&dp->dp_lock);
865
866 /*
867 * To avoid filling up a TXG with just frees, wait for
868 * the next TXG to open before freeing more chunks if
869 * we have reached the threshold of frees.
870 */
871 if (dirty_frees_threshold != 0 &&
872 long_free_dirty >= dirty_frees_threshold) {
873 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
874 dmu_tx_commit(tx);
875 txg_wait_open(dp, 0, B_TRUE);
876 continue;
877 }
878
65282ee9
AP
879 /*
880 * In order to prevent unnecessary write throttling, for each
881 * TXG, we track the cumulative size of L1 blocks being dirtied
882 * in dnode_free_range() below. We compare this number to a
883 * tunable threshold, past which we prevent new L1 dirty freeing
884 * blocks from being added into the open TXG. See
885 * dmu_free_long_range_impl() for details. The threshold
886 * prevents write throttle activation due to dirty freeing L1
887 * blocks taking up a large percentage of zfs_dirty_data_max.
888 */
539d33c7 889 mutex_enter(&dp->dp_lock);
f4c594da 890 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
65282ee9 891 l1blks << dn->dn_indblkshift;
539d33c7
GM
892 mutex_exit(&dp->dp_lock);
893 DTRACE_PROBE3(free__long__range,
f4c594da
TC
894 uint64_t, long_free_dirty, uint64_t, chunk_len,
895 uint64_t, txg);
539d33c7 896 dnode_free_range(dn, chunk_begin, chunk_len, tx);
440a3eb9 897
b128c09f 898 dmu_tx_commit(tx);
b663a23d 899
539d33c7 900 length -= chunk_len;
b128c09f
BB
901 }
902 return (0);
903}
904
905int
906dmu_free_long_range(objset_t *os, uint64_t object,
907 uint64_t offset, uint64_t length)
908{
909 dnode_t *dn;
910 int err;
911
428870ff 912 err = dnode_hold(os, object, FTAG, &dn);
b128c09f
BB
913 if (err != 0)
914 return (err);
0c03d21a 915 err = dmu_free_long_range_impl(os, dn, offset, length);
92bc214c
MA
916
917 /*
918 * It is important to zero out the maxblkid when freeing the entire
919 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
920 * will take the fast path, and (b) dnode_reallocate() can verify
921 * that the entire file has been freed.
922 */
b0bc7a84 923 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
92bc214c
MA
924 dn->dn_maxblkid = 0;
925
b128c09f
BB
926 dnode_rele(dn, FTAG);
927 return (err);
928}
929
930int
0c03d21a 931dmu_free_long_object(objset_t *os, uint64_t object)
b128c09f 932{
b128c09f
BB
933 dmu_tx_t *tx;
934 int err;
935
b663a23d 936 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
b128c09f
BB
937 if (err != 0)
938 return (err);
b663a23d
MA
939
940 tx = dmu_tx_create(os);
941 dmu_tx_hold_bonus(tx, object);
942 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
19d55079 943 dmu_tx_mark_netfree(tx);
b663a23d
MA
944 err = dmu_tx_assign(tx, TXG_WAIT);
945 if (err == 0) {
35df0bb5
TC
946 if (err == 0)
947 err = dmu_object_free(os, object, tx);
440a3eb9 948
b663a23d 949 dmu_tx_commit(tx);
b128c09f 950 } else {
b663a23d 951 dmu_tx_abort(tx);
b128c09f 952 }
b663a23d 953
b128c09f
BB
954 return (err);
955}
956
34dc7c2f
BB
957int
958dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
959 uint64_t size, dmu_tx_t *tx)
960{
961 dnode_t *dn;
428870ff 962 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
963 if (err)
964 return (err);
965 ASSERT(offset < UINT64_MAX);
ee45fbd8 966 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
34dc7c2f
BB
967 dnode_free_range(dn, offset, size, tx);
968 dnode_rele(dn, FTAG);
969 return (0);
970}
971
0eef1bde 972static int
973dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
9babb374 974 void *buf, uint32_t flags)
34dc7c2f 975{
34dc7c2f 976 dmu_buf_t **dbp;
0eef1bde 977 int numbufs, err = 0;
34dc7c2f
BB
978
979 /*
980 * Deal with odd block sizes, where there can't be data past the first
981 * block. If we ever do the tail block optimization, we will need to
982 * handle that here as well.
983 */
45d1cae3 984 if (dn->dn_maxblkid == 0) {
c9520ecc 985 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
34dc7c2f
BB
986 MIN(size, dn->dn_datablksz - offset);
987 bzero((char *)buf + newsz, size - newsz);
988 size = newsz;
989 }
990
991 while (size > 0) {
992 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
45d1cae3 993 int i;
34dc7c2f
BB
994
995 /*
996 * NB: we could do this block-at-a-time, but it's nice
997 * to be reading in parallel.
998 */
999 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
9babb374 1000 TRUE, FTAG, &numbufs, &dbp, flags);
34dc7c2f
BB
1001 if (err)
1002 break;
1003
1004 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1005 uint64_t tocpy;
1006 int64_t bufoff;
34dc7c2f
BB
1007 dmu_buf_t *db = dbp[i];
1008
1009 ASSERT(size > 0);
1010
1011 bufoff = offset - db->db_offset;
c9520ecc 1012 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f 1013
c9520ecc 1014 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
34dc7c2f
BB
1015
1016 offset += tocpy;
1017 size -= tocpy;
1018 buf = (char *)buf + tocpy;
1019 }
1020 dmu_buf_rele_array(dbp, numbufs, FTAG);
1021 }
34dc7c2f
BB
1022 return (err);
1023}
1024
0eef1bde 1025int
1026dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1027 void *buf, uint32_t flags)
34dc7c2f 1028{
0eef1bde 1029 dnode_t *dn;
1030 int err;
34dc7c2f 1031
0eef1bde 1032 err = dnode_hold(os, object, FTAG, &dn);
1033 if (err != 0)
1034 return (err);
34dc7c2f 1035
0eef1bde 1036 err = dmu_read_impl(dn, offset, size, buf, flags);
1037 dnode_rele(dn, FTAG);
1038 return (err);
1039}
1040
1041int
1042dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1043 uint32_t flags)
1044{
1045 return (dmu_read_impl(dn, offset, size, buf, flags));
1046}
1047
1048static void
1049dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1050 const void *buf, dmu_tx_t *tx)
1051{
1052 int i;
34dc7c2f
BB
1053
1054 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1055 uint64_t tocpy;
1056 int64_t bufoff;
34dc7c2f
BB
1057 dmu_buf_t *db = dbp[i];
1058
1059 ASSERT(size > 0);
1060
1061 bufoff = offset - db->db_offset;
c9520ecc 1062 tocpy = MIN(db->db_size - bufoff, size);
34dc7c2f
BB
1063
1064 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1065
1066 if (tocpy == db->db_size)
1067 dmu_buf_will_fill(db, tx);
1068 else
1069 dmu_buf_will_dirty(db, tx);
1070
60101509 1071 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
34dc7c2f
BB
1072
1073 if (tocpy == db->db_size)
1074 dmu_buf_fill_done(db, tx);
1075
1076 offset += tocpy;
1077 size -= tocpy;
1078 buf = (char *)buf + tocpy;
1079 }
0eef1bde 1080}
1081
1082void
1083dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1084 const void *buf, dmu_tx_t *tx)
1085{
1086 dmu_buf_t **dbp;
1087 int numbufs;
1088
1089 if (size == 0)
1090 return;
1091
1092 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1093 FALSE, FTAG, &numbufs, &dbp));
1094 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1095 dmu_buf_rele_array(dbp, numbufs, FTAG);
1096}
1097
0f8ff49e
SD
1098/*
1099 * Note: Lustre is an external consumer of this interface.
1100 */
0eef1bde 1101void
1102dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1103 const void *buf, dmu_tx_t *tx)
1104{
1105 dmu_buf_t **dbp;
1106 int numbufs;
1107
1108 if (size == 0)
1109 return;
1110
1111 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1112 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1113 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
34dc7c2f
BB
1114 dmu_buf_rele_array(dbp, numbufs, FTAG);
1115}
1116
b128c09f
BB
1117void
1118dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1119 dmu_tx_t *tx)
1120{
1121 dmu_buf_t **dbp;
1122 int numbufs, i;
1123
1124 if (size == 0)
1125 return;
1126
1127 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1128 FALSE, FTAG, &numbufs, &dbp));
1129
1130 for (i = 0; i < numbufs; i++) {
1131 dmu_buf_t *db = dbp[i];
1132
1133 dmu_buf_will_not_fill(db, tx);
1134 }
1135 dmu_buf_rele_array(dbp, numbufs, FTAG);
1136}
1137
9b67f605
MA
1138void
1139dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1140 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1141 int compressed_size, int byteorder, dmu_tx_t *tx)
1142{
1143 dmu_buf_t *db;
1144
1145 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1146 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1147 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1148 FTAG, &db));
1149
1150 dmu_buf_write_embedded(db,
1151 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1152 uncompressed_size, compressed_size, byteorder, tx);
1153
1154 dmu_buf_rele(db, FTAG);
1155}
1156
30af21b0
PD
1157void
1158dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1159 dmu_tx_t *tx)
1160{
1161 int numbufs, i;
1162 dmu_buf_t **dbp;
1163
1164 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1165 &numbufs, &dbp));
1166 for (i = 0; i < numbufs; i++)
1167 dmu_buf_redact(dbp[i], tx);
1168 dmu_buf_rele_array(dbp, numbufs, FTAG);
1169}
1170
34dc7c2f 1171#ifdef _KERNEL
5228cf01 1172int
804e0504 1173dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
872e8d26
BB
1174{
1175 dmu_buf_t **dbp;
1176 int numbufs, i, err;
872e8d26
BB
1177
1178 /*
1179 * NB: we could do this block-at-a-time, but it's nice
1180 * to be reading in parallel.
1181 */
883a40ff 1182 err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size,
804e0504 1183 TRUE, FTAG, &numbufs, &dbp, 0);
872e8d26
BB
1184 if (err)
1185 return (err);
1186
1187 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1188 uint64_t tocpy;
1189 int64_t bufoff;
872e8d26
BB
1190 dmu_buf_t *db = dbp[i];
1191
1192 ASSERT(size > 0);
1193
883a40ff 1194 bufoff = uio_offset(uio) - db->db_offset;
c9520ecc 1195 tocpy = MIN(db->db_size - bufoff, size);
872e8d26 1196
01c4f2bf
MM
1197#ifdef __FreeBSD__
1198 err = vn_io_fault_uiomove((char *)db->db_data + bufoff,
1199 tocpy, uio);
1200#else
872e8d26
BB
1201 err = uiomove((char *)db->db_data + bufoff, tocpy,
1202 UIO_READ, uio);
01c4f2bf 1203#endif
872e8d26
BB
1204 if (err)
1205 break;
1206
1207 size -= tocpy;
1208 }
1209 dmu_buf_rele_array(dbp, numbufs, FTAG);
1210
1211 return (err);
1212}
1213
804e0504
MA
1214/*
1215 * Read 'size' bytes into the uio buffer.
1216 * From object zdb->db_object.
1217 * Starting at offset uio->uio_loffset.
1218 *
1219 * If the caller already has a dbuf in the target object
1220 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1221 * because we don't have to find the dnode_t for the object.
1222 */
1223int
1224dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1225{
1226 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1227 dnode_t *dn;
1228 int err;
1229
1230 if (size == 0)
1231 return (0);
1232
1233 DB_DNODE_ENTER(db);
1234 dn = DB_DNODE(db);
1235 err = dmu_read_uio_dnode(dn, uio, size);
1236 DB_DNODE_EXIT(db);
1237
1238 return (err);
1239}
1240
1241/*
1242 * Read 'size' bytes into the uio buffer.
1243 * From the specified object
1244 * Starting at offset uio->uio_loffset.
1245 */
1246int
1247dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1248{
1249 dnode_t *dn;
1250 int err;
1251
1252 if (size == 0)
1253 return (0);
1254
1255 err = dnode_hold(os, object, FTAG, &dn);
1256 if (err)
1257 return (err);
1258
1259 err = dmu_read_uio_dnode(dn, uio, size);
1260
1261 dnode_rele(dn, FTAG);
1262
1263 return (err);
1264}
1265
5228cf01 1266int
872e8d26
BB
1267dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1268{
1269 dmu_buf_t **dbp;
1270 int numbufs;
1271 int err = 0;
1272 int i;
1273
883a40ff 1274 err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size,
872e8d26
BB
1275 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1276 if (err)
1277 return (err);
1278
1279 for (i = 0; i < numbufs; i++) {
c9520ecc
JZ
1280 uint64_t tocpy;
1281 int64_t bufoff;
872e8d26
BB
1282 dmu_buf_t *db = dbp[i];
1283
1284 ASSERT(size > 0);
1285
883a40ff 1286 bufoff = uio_offset(uio) - db->db_offset;
c9520ecc 1287 tocpy = MIN(db->db_size - bufoff, size);
872e8d26
BB
1288
1289 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1290
1291 if (tocpy == db->db_size)
1292 dmu_buf_will_fill(db, tx);
1293 else
1294 dmu_buf_will_dirty(db, tx);
1295
1296 /*
1297 * XXX uiomove could block forever (eg.nfs-backed
1298 * pages). There needs to be a uiolockdown() function
1299 * to lock the pages in memory, so that uiomove won't
1300 * block.
1301 */
01c4f2bf
MM
1302#ifdef __FreeBSD__
1303 err = vn_io_fault_uiomove((char *)db->db_data + bufoff,
1304 tocpy, uio);
1305#else
872e8d26
BB
1306 err = uiomove((char *)db->db_data + bufoff, tocpy,
1307 UIO_WRITE, uio);
01c4f2bf 1308#endif
872e8d26
BB
1309 if (tocpy == db->db_size)
1310 dmu_buf_fill_done(db, tx);
1311
1312 if (err)
1313 break;
1314
1315 size -= tocpy;
1316 }
1317
1318 dmu_buf_rele_array(dbp, numbufs, FTAG);
1319 return (err);
1320}
1321
804e0504
MA
1322/*
1323 * Write 'size' bytes from the uio buffer.
1324 * To object zdb->db_object.
1325 * Starting at offset uio->uio_loffset.
1326 *
1327 * If the caller already has a dbuf in the target object
1328 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1329 * because we don't have to find the dnode_t for the object.
1330 */
428870ff
BB
1331int
1332dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1333 dmu_tx_t *tx)
1334{
572e2857
BB
1335 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1336 dnode_t *dn;
1337 int err;
1338
428870ff
BB
1339 if (size == 0)
1340 return (0);
1341
572e2857
BB
1342 DB_DNODE_ENTER(db);
1343 dn = DB_DNODE(db);
1344 err = dmu_write_uio_dnode(dn, uio, size, tx);
1345 DB_DNODE_EXIT(db);
1346
1347 return (err);
428870ff
BB
1348}
1349
804e0504
MA
1350/*
1351 * Write 'size' bytes from the uio buffer.
1352 * To the specified object.
1353 * Starting at offset uio->uio_loffset.
1354 */
428870ff
BB
1355int
1356dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1357 dmu_tx_t *tx)
1358{
1359 dnode_t *dn;
1360 int err;
1361
1362 if (size == 0)
1363 return (0);
1364
1365 err = dnode_hold(os, object, FTAG, &dn);
1366 if (err)
1367 return (err);
1368
1369 err = dmu_write_uio_dnode(dn, uio, size, tx);
1370
1371 dnode_rele(dn, FTAG);
1372
1373 return (err);
1374}
872e8d26 1375#endif /* _KERNEL */
34dc7c2f 1376
9babb374
BB
1377/*
1378 * Allocate a loaned anonymous arc buffer.
1379 */
1380arc_buf_t *
1381dmu_request_arcbuf(dmu_buf_t *handle, int size)
1382{
572e2857 1383 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
9babb374 1384
2aa34383 1385 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
9babb374
BB
1386}
1387
1388/*
1389 * Free a loaned arc buffer.
1390 */
1391void
1392dmu_return_arcbuf(arc_buf_t *buf)
1393{
1394 arc_return_buf(buf, FTAG);
d3c2ae1c 1395 arc_buf_destroy(buf, FTAG);
9babb374
BB
1396}
1397
ba67d821
MA
1398/*
1399 * A "lightweight" write is faster than a regular write (e.g.
1400 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1401 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1402 * data can not be read or overwritten until the transaction's txg has been
1403 * synced. This makes it appropriate for workloads that are known to be
1404 * (temporarily) write-only, like "zfs receive".
1405 *
1406 * A single block is written, starting at the specified offset in bytes. If
1407 * the call is successful, it returns 0 and the provided abd has been
1408 * consumed (the caller should not free it).
1409 */
1410int
1411dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1412 const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx)
1413{
1414 dbuf_dirty_record_t *dr =
1415 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1416 if (dr == NULL)
1417 return (SET_ERROR(EIO));
1418 dr->dt.dll.dr_abd = abd;
1419 dr->dt.dll.dr_props = *zp;
1420 dr->dt.dll.dr_flags = flags;
1421 return (0);
1422}
1423
9babb374
BB
1424/*
1425 * When possible directly assign passed loaned arc buffer to a dbuf.
1426 * If this is not possible copy the contents of passed arc buf via
1427 * dmu_write().
1428 */
305781da 1429int
440a3eb9 1430dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
9babb374
BB
1431 dmu_tx_t *tx)
1432{
9babb374 1433 dmu_buf_impl_t *db;
440a3eb9
TC
1434 objset_t *os = dn->dn_objset;
1435 uint64_t object = dn->dn_object;
2aa34383 1436 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
9babb374
BB
1437 uint64_t blkid;
1438
1439 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35 1440 blkid = dbuf_whichblock(dn, 0, offset);
305781da
TC
1441 db = dbuf_hold(dn, blkid, FTAG);
1442 if (db == NULL)
1443 return (SET_ERROR(EIO));
9babb374
BB
1444 rw_exit(&dn->dn_struct_rwlock);
1445
88904bb3 1446 /*
ba67d821
MA
1447 * We can only assign if the offset is aligned and the arc buf is the
1448 * same size as the dbuf.
88904bb3 1449 */
2aa34383 1450 if (offset == db->db.db_offset && blksz == db->db.db_size) {
9babb374
BB
1451 dbuf_assign_arcbuf(db, buf, tx);
1452 dbuf_rele(db, FTAG);
1453 } else {
2aa34383
DK
1454 /* compressed bufs must always be assignable to their dbuf */
1455 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
524b4217 1456 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
2aa34383 1457
9babb374 1458 dbuf_rele(db, FTAG);
572e2857 1459 dmu_write(os, object, offset, blksz, buf->b_data, tx);
9babb374
BB
1460 dmu_return_arcbuf(buf);
1461 }
305781da
TC
1462
1463 return (0);
9babb374
BB
1464}
1465
305781da 1466int
440a3eb9
TC
1467dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1468 dmu_tx_t *tx)
1469{
305781da 1470 int err;
440a3eb9
TC
1471 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1472
1473 DB_DNODE_ENTER(dbuf);
305781da 1474 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
440a3eb9 1475 DB_DNODE_EXIT(dbuf);
305781da
TC
1476
1477 return (err);
440a3eb9
TC
1478}
1479
34dc7c2f 1480typedef struct {
428870ff
BB
1481 dbuf_dirty_record_t *dsa_dr;
1482 dmu_sync_cb_t *dsa_done;
1483 zgd_t *dsa_zgd;
1484 dmu_tx_t *dsa_tx;
34dc7c2f
BB
1485} dmu_sync_arg_t;
1486
b128c09f
BB
1487/* ARGSUSED */
1488static void
1489dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1490{
428870ff
BB
1491 dmu_sync_arg_t *dsa = varg;
1492 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
b128c09f
BB
1493 blkptr_t *bp = zio->io_bp;
1494
428870ff
BB
1495 if (zio->io_error == 0) {
1496 if (BP_IS_HOLE(bp)) {
1497 /*
1498 * A block of zeros may compress to a hole, but the
1499 * block size still needs to be known for replay.
1500 */
1501 BP_SET_LSIZE(bp, db->db_size);
9b67f605 1502 } else if (!BP_IS_EMBEDDED(bp)) {
428870ff 1503 ASSERT(BP_GET_LEVEL(bp) == 0);
b5256303 1504 BP_SET_FILL(bp, 1);
428870ff 1505 }
b128c09f
BB
1506 }
1507}
1508
428870ff
BB
1509static void
1510dmu_sync_late_arrival_ready(zio_t *zio)
1511{
1512 dmu_sync_ready(zio, NULL, zio->io_private);
1513}
1514
34dc7c2f
BB
1515/* ARGSUSED */
1516static void
1517dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1518{
428870ff
BB
1519 dmu_sync_arg_t *dsa = varg;
1520 dbuf_dirty_record_t *dr = dsa->dsa_dr;
34dc7c2f 1521 dmu_buf_impl_t *db = dr->dr_dbuf;
900d09b2
PS
1522 zgd_t *zgd = dsa->dsa_zgd;
1523
1524 /*
1525 * Record the vdev(s) backing this blkptr so they can be flushed after
1526 * the writes for the lwb have completed.
1527 */
1528 if (zio->io_error == 0) {
1529 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1530 }
34dc7c2f 1531
34dc7c2f
BB
1532 mutex_enter(&db->db_mtx);
1533 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
428870ff 1534 if (zio->io_error == 0) {
03c6040b
GW
1535 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1536 if (dr->dt.dl.dr_nopwrite) {
02dc43bc
MA
1537 blkptr_t *bp = zio->io_bp;
1538 blkptr_t *bp_orig = &zio->io_bp_orig;
1539 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
03c6040b
GW
1540
1541 ASSERT(BP_EQUAL(bp, bp_orig));
02dc43bc 1542 VERIFY(BP_EQUAL(bp, db->db_blkptr));
03c6040b 1543 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
02dc43bc 1544 VERIFY(zio_checksum_table[chksum].ci_flags &
3c67d83a 1545 ZCHECKSUM_FLAG_NOPWRITE);
03c6040b 1546 }
428870ff
BB
1547 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1548 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1549 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
a4069eef
PS
1550
1551 /*
1552 * Old style holes are filled with all zeros, whereas
1553 * new-style holes maintain their lsize, type, level,
1554 * and birth time (see zio_write_compress). While we
1555 * need to reset the BP_SET_LSIZE() call that happened
1556 * in dmu_sync_ready for old style holes, we do *not*
1557 * want to wipe out the information contained in new
1558 * style holes. Thus, only zero out the block pointer if
1559 * it's an old style hole.
1560 */
1561 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1562 dr->dt.dl.dr_overridden_by.blk_birth == 0)
428870ff
BB
1563 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1564 } else {
1565 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1566 }
34dc7c2f
BB
1567 cv_broadcast(&db->db_changed);
1568 mutex_exit(&db->db_mtx);
1569
428870ff 1570 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
34dc7c2f 1571
428870ff
BB
1572 kmem_free(dsa, sizeof (*dsa));
1573}
1574
1575static void
1576dmu_sync_late_arrival_done(zio_t *zio)
1577{
1578 blkptr_t *bp = zio->io_bp;
1579 dmu_sync_arg_t *dsa = zio->io_private;
900d09b2
PS
1580 zgd_t *zgd = dsa->dsa_zgd;
1581
1582 if (zio->io_error == 0) {
1583 /*
1584 * Record the vdev(s) backing this blkptr so they can be
1585 * flushed after the writes for the lwb have completed.
1586 */
1587 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1588
1589 if (!BP_IS_HOLE(bp)) {
2a8ba608 1590 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
900d09b2
PS
1591 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1592 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1593 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1594 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1595 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1596 }
428870ff
BB
1597 }
1598
1599 dmu_tx_commit(dsa->dsa_tx);
1600
1601 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1602
e2af2acc 1603 abd_free(zio->io_abd);
428870ff
BB
1604 kmem_free(dsa, sizeof (*dsa));
1605}
1606
1607static int
1608dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
5dbd68a3 1609 zio_prop_t *zp, zbookmark_phys_t *zb)
428870ff
BB
1610{
1611 dmu_sync_arg_t *dsa;
1612 dmu_tx_t *tx;
1613
1614 tx = dmu_tx_create(os);
1615 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1616 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1617 dmu_tx_abort(tx);
2e528b49
MA
1618 /* Make zl_get_data do txg_waited_synced() */
1619 return (SET_ERROR(EIO));
428870ff
BB
1620 }
1621
1ce23dca
PS
1622 /*
1623 * In order to prevent the zgd's lwb from being free'd prior to
1624 * dmu_sync_late_arrival_done() being called, we have to ensure
1625 * the lwb's "max txg" takes this tx's txg into account.
1626 */
1627 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1628
79c76d5b 1629 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1630 dsa->dsa_dr = NULL;
1631 dsa->dsa_done = done;
1632 dsa->dsa_zgd = zgd;
1633 dsa->dsa_tx = tx;
1634
02dc43bc
MA
1635 /*
1636 * Since we are currently syncing this txg, it's nontrivial to
1637 * determine what BP to nopwrite against, so we disable nopwrite.
1638 *
1639 * When syncing, the db_blkptr is initially the BP of the previous
1640 * txg. We can not nopwrite against it because it will be changed
1641 * (this is similar to the non-late-arrival case where the dbuf is
1642 * dirty in a future txg).
1643 *
1644 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1645 * We can not nopwrite against it because although the BP will not
1646 * (typically) be changed, the data has not yet been persisted to this
1647 * location.
1648 *
1649 * Finally, when dbuf_write_done() is called, it is theoretically
1650 * possible to always nopwrite, because the data that was written in
1651 * this txg is the same data that we are trying to write. However we
1652 * would need to check that this dbuf is not dirty in any future
1653 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1654 * don't nopwrite in this case.
1655 */
1656 zp->zp_nopwrite = B_FALSE;
1657
a6255b7f
DQ
1658 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1659 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1660 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1661 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1662 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
428870ff
BB
1663
1664 return (0);
34dc7c2f
BB
1665}
1666
1667/*
1668 * Intent log support: sync the block associated with db to disk.
1669 * N.B. and XXX: the caller is responsible for making sure that the
1670 * data isn't changing while dmu_sync() is writing it.
1671 *
1672 * Return values:
1673 *
03c6040b 1674 * EEXIST: this txg has already been synced, so there's nothing to do.
34dc7c2f
BB
1675 * The caller should not log the write.
1676 *
1677 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1678 * The caller should not log the write.
1679 *
1680 * EALREADY: this block is already in the process of being synced.
1681 * The caller should track its progress (somehow).
1682 *
428870ff
BB
1683 * EIO: could not do the I/O.
1684 * The caller should do a txg_wait_synced().
34dc7c2f 1685 *
428870ff
BB
1686 * 0: the I/O has been initiated.
1687 * The caller should log this blkptr in the done callback.
1688 * It is possible that the I/O will fail, in which case
1689 * the error will be reported to the done callback and
1690 * propagated to pio from zio_done().
34dc7c2f
BB
1691 */
1692int
428870ff 1693dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
34dc7c2f 1694{
428870ff
BB
1695 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1696 objset_t *os = db->db_objset;
1697 dsl_dataset_t *ds = os->os_dsl_dataset;
cccbed9f 1698 dbuf_dirty_record_t *dr, *dr_next;
428870ff 1699 dmu_sync_arg_t *dsa;
5dbd68a3 1700 zbookmark_phys_t zb;
428870ff 1701 zio_prop_t zp;
572e2857 1702 dnode_t *dn;
34dc7c2f 1703
428870ff 1704 ASSERT(pio != NULL);
34dc7c2f
BB
1705 ASSERT(txg != 0);
1706
428870ff
BB
1707 SET_BOOKMARK(&zb, ds->ds_object,
1708 db->db.db_object, db->db_level, db->db_blkid);
1709
572e2857
BB
1710 DB_DNODE_ENTER(db);
1711 dn = DB_DNODE(db);
82644107 1712 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
572e2857 1713 DB_DNODE_EXIT(db);
34dc7c2f
BB
1714
1715 /*
428870ff 1716 * If we're frozen (running ziltest), we always need to generate a bp.
34dc7c2f 1717 */
428870ff
BB
1718 if (txg > spa_freeze_txg(os->os_spa))
1719 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1720
1721 /*
428870ff
BB
1722 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1723 * and us. If we determine that this txg is not yet syncing,
1724 * but it begins to sync a moment later, that's OK because the
1725 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
34dc7c2f 1726 */
428870ff
BB
1727 mutex_enter(&db->db_mtx);
1728
1729 if (txg <= spa_last_synced_txg(os->os_spa)) {
34dc7c2f 1730 /*
428870ff 1731 * This txg has already synced. There's nothing to do.
34dc7c2f 1732 */
428870ff 1733 mutex_exit(&db->db_mtx);
2e528b49 1734 return (SET_ERROR(EEXIST));
34dc7c2f
BB
1735 }
1736
428870ff
BB
1737 if (txg <= spa_syncing_txg(os->os_spa)) {
1738 /*
1739 * This txg is currently syncing, so we can't mess with
1740 * the dirty record anymore; just write a new log block.
1741 */
1742 mutex_exit(&db->db_mtx);
1743 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
34dc7c2f
BB
1744 }
1745
cccbed9f 1746 dr = dbuf_find_dirty_eq(db, txg);
428870ff
BB
1747
1748 if (dr == NULL) {
34dc7c2f 1749 /*
428870ff 1750 * There's no dr for this dbuf, so it must have been freed.
34dc7c2f
BB
1751 * There's no need to log writes to freed blocks, so we're done.
1752 */
1753 mutex_exit(&db->db_mtx);
2e528b49 1754 return (SET_ERROR(ENOENT));
34dc7c2f
BB
1755 }
1756
cccbed9f
MM
1757 dr_next = list_next(&db->db_dirty_records, dr);
1758 ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
03c6040b 1759
02dc43bc
MA
1760 if (db->db_blkptr != NULL) {
1761 /*
1762 * We need to fill in zgd_bp with the current blkptr so that
1763 * the nopwrite code can check if we're writing the same
1764 * data that's already on disk. We can only nopwrite if we
1765 * are sure that after making the copy, db_blkptr will not
1766 * change until our i/o completes. We ensure this by
1767 * holding the db_mtx, and only allowing nopwrite if the
1768 * block is not already dirty (see below). This is verified
1769 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1770 * not changed.
1771 */
1772 *zgd->zgd_bp = *db->db_blkptr;
1773 }
1774
03c6040b 1775 /*
f3c517d8
MA
1776 * Assume the on-disk data is X, the current syncing data (in
1777 * txg - 1) is Y, and the current in-memory data is Z (currently
1778 * in dmu_sync).
1779 *
1780 * We usually want to perform a nopwrite if X and Z are the
1781 * same. However, if Y is different (i.e. the BP is going to
1782 * change before this write takes effect), then a nopwrite will
1783 * be incorrect - we would override with X, which could have
1784 * been freed when Y was written.
1785 *
1786 * (Note that this is not a concern when we are nop-writing from
1787 * syncing context, because X and Y must be identical, because
1788 * all previous txgs have been synced.)
1789 *
1790 * Therefore, we disable nopwrite if the current BP could change
1791 * before this TXG. There are two ways it could change: by
1792 * being dirty (dr_next is non-NULL), or by being freed
1793 * (dnode_block_freed()). This behavior is verified by
1794 * zio_done(), which VERIFYs that the override BP is identical
1795 * to the on-disk BP.
03c6040b 1796 */
f3c517d8
MA
1797 DB_DNODE_ENTER(db);
1798 dn = DB_DNODE(db);
cccbed9f 1799 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
03c6040b 1800 zp.zp_nopwrite = B_FALSE;
f3c517d8 1801 DB_DNODE_EXIT(db);
03c6040b 1802
34dc7c2f 1803 ASSERT(dr->dr_txg == txg);
428870ff
BB
1804 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1805 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
34dc7c2f 1806 /*
428870ff
BB
1807 * We have already issued a sync write for this buffer,
1808 * or this buffer has already been synced. It could not
34dc7c2f
BB
1809 * have been dirtied since, or we would have cleared the state.
1810 */
34dc7c2f 1811 mutex_exit(&db->db_mtx);
2e528b49 1812 return (SET_ERROR(EALREADY));
34dc7c2f
BB
1813 }
1814
428870ff 1815 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
34dc7c2f 1816 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
34dc7c2f 1817 mutex_exit(&db->db_mtx);
34dc7c2f 1818
79c76d5b 1819 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
428870ff
BB
1820 dsa->dsa_dr = dr;
1821 dsa->dsa_done = done;
1822 dsa->dsa_zgd = zgd;
1823 dsa->dsa_tx = NULL;
b128c09f 1824
428870ff 1825 zio_nowait(arc_write(pio, os->os_spa, txg,
02dc43bc 1826 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
d3c2ae1c 1827 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
bc77ba73 1828 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
b128c09f 1829
428870ff 1830 return (0);
34dc7c2f
BB
1831}
1832
b5256303
TC
1833int
1834dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1835{
1836 dnode_t *dn;
1837 int err;
1838
1839 err = dnode_hold(os, object, FTAG, &dn);
1840 if (err)
1841 return (err);
1842 err = dnode_set_nlevels(dn, nlevels, tx);
1843 dnode_rele(dn, FTAG);
1844 return (err);
1845}
1846
34dc7c2f
BB
1847int
1848dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
4ea3f864 1849 dmu_tx_t *tx)
34dc7c2f
BB
1850{
1851 dnode_t *dn;
1852 int err;
1853
428870ff 1854 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
1855 if (err)
1856 return (err);
1857 err = dnode_set_blksz(dn, size, ibs, tx);
1858 dnode_rele(dn, FTAG);
1859 return (err);
1860}
1861
ae76f45c
TC
1862int
1863dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1864 dmu_tx_t *tx)
1865{
1866 dnode_t *dn;
1867 int err;
1868
1869 err = dnode_hold(os, object, FTAG, &dn);
1870 if (err)
1871 return (err);
1872 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
369aa501 1873 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
ae76f45c
TC
1874 rw_exit(&dn->dn_struct_rwlock);
1875 dnode_rele(dn, FTAG);
1876 return (0);
1877}
1878
34dc7c2f
BB
1879void
1880dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
4ea3f864 1881 dmu_tx_t *tx)
34dc7c2f
BB
1882{
1883 dnode_t *dn;
1884
9b67f605
MA
1885 /*
1886 * Send streams include each object's checksum function. This
1887 * check ensures that the receiving system can understand the
1888 * checksum function transmitted.
1889 */
1890 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1891
1892 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1893 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
34dc7c2f
BB
1894 dn->dn_checksum = checksum;
1895 dnode_setdirty(dn, tx);
1896 dnode_rele(dn, FTAG);
1897}
1898
1899void
1900dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
4ea3f864 1901 dmu_tx_t *tx)
34dc7c2f
BB
1902{
1903 dnode_t *dn;
1904
9b67f605
MA
1905 /*
1906 * Send streams include each object's compression function. This
1907 * check ensures that the receiving system can understand the
1908 * compression function transmitted.
1909 */
1910 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1911
1912 VERIFY0(dnode_hold(os, object, FTAG, &dn));
34dc7c2f
BB
1913 dn->dn_compress = compress;
1914 dnode_setdirty(dn, tx);
1915 dnode_rele(dn, FTAG);
1916}
1917
faf0f58c
MA
1918/*
1919 * When the "redundant_metadata" property is set to "most", only indirect
1920 * blocks of this level and higher will have an additional ditto block.
1921 */
1922int zfs_redundant_metadata_most_ditto_level = 2;
1923
428870ff 1924void
82644107 1925dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
428870ff
BB
1926{
1927 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
9ae529ec 1928 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
572e2857 1929 (wp & WP_SPILL));
428870ff
BB
1930 enum zio_checksum checksum = os->os_checksum;
1931 enum zio_compress compress = os->os_compress;
10b3c7f5 1932 uint8_t complevel = os->os_complevel;
428870ff 1933 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
03c6040b
GW
1934 boolean_t dedup = B_FALSE;
1935 boolean_t nopwrite = B_FALSE;
428870ff 1936 boolean_t dedup_verify = os->os_dedup_verify;
b5256303 1937 boolean_t encrypt = B_FALSE;
428870ff 1938 int copies = os->os_copies;
a7004725 1939
428870ff 1940 /*
03c6040b
GW
1941 * We maintain different write policies for each of the following
1942 * types of data:
1943 * 1. metadata
1944 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1945 * 3. all other level 0 blocks
428870ff
BB
1946 */
1947 if (ismd) {
b1d21733
TC
1948 /*
1949 * XXX -- we should design a compression algorithm
1950 * that specializes in arrays of bps.
1951 */
1952 compress = zio_compress_select(os->os_spa,
1953 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
03c6040b 1954
428870ff
BB
1955 /*
1956 * Metadata always gets checksummed. If the data
1957 * checksum is multi-bit correctable, and it's not a
1958 * ZBT-style checksum, then it's suitable for metadata
1959 * as well. Otherwise, the metadata checksum defaults
1960 * to fletcher4.
1961 */
3c67d83a
TH
1962 if (!(zio_checksum_table[checksum].ci_flags &
1963 ZCHECKSUM_FLAG_METADATA) ||
1964 (zio_checksum_table[checksum].ci_flags &
1965 ZCHECKSUM_FLAG_EMBEDDED))
428870ff 1966 checksum = ZIO_CHECKSUM_FLETCHER_4;
faf0f58c
MA
1967
1968 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1969 (os->os_redundant_metadata ==
1970 ZFS_REDUNDANT_METADATA_MOST &&
1971 (level >= zfs_redundant_metadata_most_ditto_level ||
1972 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1973 copies++;
03c6040b
GW
1974 } else if (wp & WP_NOFILL) {
1975 ASSERT(level == 0);
428870ff 1976
428870ff 1977 /*
03c6040b
GW
1978 * If we're writing preallocated blocks, we aren't actually
1979 * writing them so don't set any policy properties. These
1980 * blocks are currently only used by an external subsystem
1981 * outside of zfs (i.e. dump) and not written by the zio
1982 * pipeline.
428870ff 1983 */
03c6040b
GW
1984 compress = ZIO_COMPRESS_OFF;
1985 checksum = ZIO_CHECKSUM_OFF;
428870ff 1986 } else {
99197f03
JG
1987 compress = zio_compress_select(os->os_spa, dn->dn_compress,
1988 compress);
10b3c7f5
MN
1989 complevel = zio_complevel_select(os->os_spa, compress,
1990 complevel, complevel);
428870ff 1991
03c6040b
GW
1992 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1993 zio_checksum_select(dn->dn_checksum, checksum) :
1994 dedup_checksum;
428870ff 1995
03c6040b
GW
1996 /*
1997 * Determine dedup setting. If we are in dmu_sync(),
1998 * we won't actually dedup now because that's all
1999 * done in syncing context; but we do want to use the
e1cfd73f 2000 * dedup checksum. If the checksum is not strong
03c6040b
GW
2001 * enough to ensure unique signatures, force
2002 * dedup_verify.
2003 */
2004 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2005 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
3c67d83a
TH
2006 if (!(zio_checksum_table[checksum].ci_flags &
2007 ZCHECKSUM_FLAG_DEDUP))
03c6040b
GW
2008 dedup_verify = B_TRUE;
2009 }
428870ff 2010
03c6040b 2011 /*
3c67d83a
TH
2012 * Enable nopwrite if we have secure enough checksum
2013 * algorithm (see comment in zio_nop_write) and
2014 * compression is enabled. We don't enable nopwrite if
2015 * dedup is enabled as the two features are mutually
2016 * exclusive.
03c6040b 2017 */
3c67d83a
TH
2018 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2019 ZCHECKSUM_FLAG_NOPWRITE) &&
03c6040b 2020 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
428870ff
BB
2021 }
2022
b5256303
TC
2023 /*
2024 * All objects in an encrypted objset are protected from modification
2025 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2026 * in the bp, so we cannot use all copies. Encrypted objects are also
2027 * not subject to nopwrite since writing the same data will still
2028 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2029 * to avoid ambiguity in the dedup code since the DDT does not store
2030 * object types.
2031 */
2032 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2033 encrypt = B_TRUE;
2034
2035 if (DMU_OT_IS_ENCRYPTED(type)) {
2036 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2037 nopwrite = B_FALSE;
2038 } else {
2039 dedup = B_FALSE;
2040 }
2041
ae76f45c
TC
2042 if (level <= 0 &&
2043 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
b5256303 2044 compress = ZIO_COMPRESS_EMPTY;
ae76f45c 2045 }
b5256303 2046 }
2aa34383 2047
b5256303 2048 zp->zp_compress = compress;
10b3c7f5 2049 zp->zp_complevel = complevel;
b5256303 2050 zp->zp_checksum = checksum;
428870ff
BB
2051 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2052 zp->zp_level = level;
faf0f58c 2053 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
428870ff
BB
2054 zp->zp_dedup = dedup;
2055 zp->zp_dedup_verify = dedup && dedup_verify;
03c6040b 2056 zp->zp_nopwrite = nopwrite;
b5256303
TC
2057 zp->zp_encrypt = encrypt;
2058 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2059 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2060 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2061 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
cc99f275
DB
2062 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2063 os->os_zpl_special_smallblock : 0;
b5256303
TC
2064
2065 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
428870ff
BB
2066}
2067
66aca247
DB
2068/*
2069 * This function is only called from zfs_holey_common() for zpl_llseek()
2070 * in order to determine the location of holes. In order to accurately
2071 * report holes all dirty data must be synced to disk. This causes extremely
2072 * poor performance when seeking for holes in a dirty file. As a compromise,
2073 * only provide hole data when the dnode is clean. When a dnode is dirty
2074 * report the dnode as having no holes which is always a safe thing to do.
2075 */
34dc7c2f
BB
2076int
2077dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2078{
2079 dnode_t *dn;
2080 int i, err;
66aca247 2081 boolean_t clean = B_TRUE;
34dc7c2f 2082
428870ff 2083 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2084 if (err)
2085 return (err);
66aca247 2086
34dc7c2f 2087 /*
2531ce37 2088 * Check if dnode is dirty
34dc7c2f 2089 */
454365bb 2090 for (i = 0; i < TXG_SIZE; i++) {
edc1e713 2091 if (multilist_link_active(&dn->dn_dirty_link[i])) {
2531ce37 2092 clean = B_FALSE;
ec4f9b8f 2093 break;
2531ce37 2094 }
34dc7c2f 2095 }
66aca247
DB
2096
2097 /*
2098 * If compatibility option is on, sync any current changes before
2099 * we go trundling through the block pointers.
2100 */
2101 if (!clean && zfs_dmu_offset_next_sync) {
2102 clean = B_TRUE;
34dc7c2f
BB
2103 dnode_rele(dn, FTAG);
2104 txg_wait_synced(dmu_objset_pool(os), 0);
428870ff 2105 err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2106 if (err)
2107 return (err);
2108 }
2109
66aca247
DB
2110 if (clean)
2111 err = dnode_next_offset(dn,
2112 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2113 else
2114 err = SET_ERROR(EBUSY);
2115
34dc7c2f
BB
2116 dnode_rele(dn, FTAG);
2117
2118 return (err);
2119}
2120
2121void
e0b0ca98 2122__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
34dc7c2f 2123{
e0b0ca98 2124 dnode_phys_t *dnp = dn->dn_phys;
428870ff 2125
34dc7c2f
BB
2126 doi->doi_data_block_size = dn->dn_datablksz;
2127 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2128 1ULL << dn->dn_indblkshift : 0;
428870ff
BB
2129 doi->doi_type = dn->dn_type;
2130 doi->doi_bonus_type = dn->dn_bonustype;
2131 doi->doi_bonus_size = dn->dn_bonuslen;
50c957f7 2132 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
34dc7c2f
BB
2133 doi->doi_indirection = dn->dn_nlevels;
2134 doi->doi_checksum = dn->dn_checksum;
2135 doi->doi_compress = dn->dn_compress;
6c59307a 2136 doi->doi_nblkptr = dn->dn_nblkptr;
428870ff 2137 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
d1fada1e 2138 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
428870ff 2139 doi->doi_fill_count = 0;
1c27024e 2140 for (int i = 0; i < dnp->dn_nblkptr; i++)
9b67f605 2141 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
e0b0ca98
BB
2142}
2143
2144void
2145dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2146{
2147 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2148 mutex_enter(&dn->dn_mtx);
2149
2150 __dmu_object_info_from_dnode(dn, doi);
34dc7c2f
BB
2151
2152 mutex_exit(&dn->dn_mtx);
2153 rw_exit(&dn->dn_struct_rwlock);
2154}
2155
2156/*
2157 * Get information on a DMU object.
2158 * If doi is NULL, just indicates whether the object exists.
2159 */
2160int
2161dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2162{
2163 dnode_t *dn;
428870ff 2164 int err = dnode_hold(os, object, FTAG, &dn);
34dc7c2f
BB
2165
2166 if (err)
2167 return (err);
2168
2169 if (doi != NULL)
2170 dmu_object_info_from_dnode(dn, doi);
2171
2172 dnode_rele(dn, FTAG);
2173 return (0);
2174}
2175
2176/*
2177 * As above, but faster; can be used when you have a held dbuf in hand.
2178 */
2179void
572e2857 2180dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
34dc7c2f 2181{
572e2857
BB
2182 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2183
2184 DB_DNODE_ENTER(db);
2185 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2186 DB_DNODE_EXIT(db);
34dc7c2f
BB
2187}
2188
2189/*
2190 * Faster still when you only care about the size.
34dc7c2f
BB
2191 */
2192void
572e2857
BB
2193dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2194 u_longlong_t *nblk512)
34dc7c2f 2195{
572e2857
BB
2196 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2197 dnode_t *dn;
2198
2199 DB_DNODE_ENTER(db);
2200 dn = DB_DNODE(db);
34dc7c2f
BB
2201
2202 *blksize = dn->dn_datablksz;
50c957f7 2203 /* add in number of slots used for the dnode itself */
34dc7c2f 2204 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
50c957f7
NB
2205 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2206 DB_DNODE_EXIT(db);
2207}
2208
2209void
2210dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2211{
2212 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2213 dnode_t *dn;
2214
2215 DB_DNODE_ENTER(db);
2216 dn = DB_DNODE(db);
2217 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
572e2857 2218 DB_DNODE_EXIT(db);
34dc7c2f
BB
2219}
2220
2221void
2222byteswap_uint64_array(void *vbuf, size_t size)
2223{
2224 uint64_t *buf = vbuf;
2225 size_t count = size >> 3;
2226 int i;
2227
2228 ASSERT((size & 7) == 0);
2229
2230 for (i = 0; i < count; i++)
2231 buf[i] = BSWAP_64(buf[i]);
2232}
2233
2234void
2235byteswap_uint32_array(void *vbuf, size_t size)
2236{
2237 uint32_t *buf = vbuf;
2238 size_t count = size >> 2;
2239 int i;
2240
2241 ASSERT((size & 3) == 0);
2242
2243 for (i = 0; i < count; i++)
2244 buf[i] = BSWAP_32(buf[i]);
2245}
2246
2247void
2248byteswap_uint16_array(void *vbuf, size_t size)
2249{
2250 uint16_t *buf = vbuf;
2251 size_t count = size >> 1;
2252 int i;
2253
2254 ASSERT((size & 1) == 0);
2255
2256 for (i = 0; i < count; i++)
2257 buf[i] = BSWAP_16(buf[i]);
2258}
2259
2260/* ARGSUSED */
2261void
2262byteswap_uint8_array(void *vbuf, size_t size)
2263{
2264}
2265
2266void
2267dmu_init(void)
2268{
a6255b7f 2269 abd_init();
428870ff 2270 zfs_dbgmsg_init();
572e2857 2271 sa_cache_init();
572e2857 2272 dmu_objset_init();
34dc7c2f 2273 dnode_init();
428870ff 2274 zfetch_init();
570827e1 2275 dmu_tx_init();
34dc7c2f 2276 l2arc_init();
29809a6c 2277 arc_init();
d3c2ae1c 2278 dbuf_init();
34dc7c2f
BB
2279}
2280
2281void
2282dmu_fini(void)
2283{
e49f1e20 2284 arc_fini(); /* arc depends on l2arc, so arc must go first */
29809a6c 2285 l2arc_fini();
570827e1 2286 dmu_tx_fini();
428870ff 2287 zfetch_fini();
34dc7c2f 2288 dbuf_fini();
572e2857
BB
2289 dnode_fini();
2290 dmu_objset_fini();
428870ff
BB
2291 sa_cache_fini();
2292 zfs_dbgmsg_fini();
a6255b7f 2293 abd_fini();
34dc7c2f 2294}
c28b2279 2295
c28b2279 2296EXPORT_SYMBOL(dmu_bonus_hold);
6955b401 2297EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
a473d90c
AZ
2298EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2299EXPORT_SYMBOL(dmu_buf_rele_array);
57b650b8 2300EXPORT_SYMBOL(dmu_prefetch);
c28b2279 2301EXPORT_SYMBOL(dmu_free_range);
57b650b8 2302EXPORT_SYMBOL(dmu_free_long_range);
b663a23d 2303EXPORT_SYMBOL(dmu_free_long_object);
c28b2279 2304EXPORT_SYMBOL(dmu_read);
0eef1bde 2305EXPORT_SYMBOL(dmu_read_by_dnode);
c28b2279 2306EXPORT_SYMBOL(dmu_write);
0eef1bde 2307EXPORT_SYMBOL(dmu_write_by_dnode);
57b650b8 2308EXPORT_SYMBOL(dmu_prealloc);
c28b2279
BB
2309EXPORT_SYMBOL(dmu_object_info);
2310EXPORT_SYMBOL(dmu_object_info_from_dnode);
2311EXPORT_SYMBOL(dmu_object_info_from_db);
2312EXPORT_SYMBOL(dmu_object_size_from_db);
50c957f7 2313EXPORT_SYMBOL(dmu_object_dnsize_from_db);
b5256303 2314EXPORT_SYMBOL(dmu_object_set_nlevels);
c28b2279 2315EXPORT_SYMBOL(dmu_object_set_blocksize);
ae76f45c 2316EXPORT_SYMBOL(dmu_object_set_maxblkid);
c28b2279
BB
2317EXPORT_SYMBOL(dmu_object_set_checksum);
2318EXPORT_SYMBOL(dmu_object_set_compress);
94dac3e8 2319EXPORT_SYMBOL(dmu_offset_next);
57b650b8
BB
2320EXPORT_SYMBOL(dmu_write_policy);
2321EXPORT_SYMBOL(dmu_sync);
b10c77f7
BB
2322EXPORT_SYMBOL(dmu_request_arcbuf);
2323EXPORT_SYMBOL(dmu_return_arcbuf);
440a3eb9
TC
2324EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2325EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
b10c77f7 2326EXPORT_SYMBOL(dmu_buf_hold);
c28b2279 2327EXPORT_SYMBOL(dmu_ot);
afec56b4 2328
bef78122 2329/* BEGIN CSTYLED */
03fdcb9a
MM
2330ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2331 "Enable NOP writes");
03c6040b 2332
03fdcb9a
MM
2333ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW,
2334 "Percentage of dirtied blocks from frees in one TXG");
66aca247 2335
03fdcb9a 2336ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
66aca247
DB
2337 "Enable forcing txg sync to find holes");
2338
03fdcb9a 2339ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW,
d9b4bf06 2340 "Limit one prefetch call to this size");
bef78122 2341/* END CSTYLED */