]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu_recv.c
Add zstd support to zfs
[mirror_zfs.git] / module / zfs / dmu_recv.c
CommitLineData
03916905
PD
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
196bee4c 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
03916905
PD
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
d8d418ff 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
10b3c7f5
MN
28 * Copyright (c) 2019, Klara Inc.
29 * Copyright (c) 2019, Allan Jude
03916905
PD
30 */
31
32#include <sys/dmu.h>
33#include <sys/dmu_impl.h>
30af21b0
PD
34#include <sys/dmu_send.h>
35#include <sys/dmu_recv.h>
03916905
PD
36#include <sys/dmu_tx.h>
37#include <sys/dbuf.h>
38#include <sys/dnode.h>
39#include <sys/zfs_context.h>
40#include <sys/dmu_objset.h>
41#include <sys/dmu_traverse.h>
42#include <sys/dsl_dataset.h>
43#include <sys/dsl_dir.h>
44#include <sys/dsl_prop.h>
45#include <sys/dsl_pool.h>
46#include <sys/dsl_synctask.h>
03916905
PD
47#include <sys/zfs_ioctl.h>
48#include <sys/zap.h>
30af21b0 49#include <sys/zvol.h>
03916905
PD
50#include <sys/zio_checksum.h>
51#include <sys/zfs_znode.h>
52#include <zfs_fletcher.h>
53#include <sys/avl.h>
54#include <sys/ddt.h>
55#include <sys/zfs_onexit.h>
30af21b0 56#include <sys/dmu_send.h>
03916905
PD
57#include <sys/dsl_destroy.h>
58#include <sys/blkptr.h>
59#include <sys/dsl_bookmark.h>
60#include <sys/zfeature.h>
61#include <sys/bqueue.h>
30af21b0
PD
62#include <sys/objlist.h>
63#ifdef _KERNEL
64#include <sys/zfs_vfsops.h>
65#endif
da92d5cb 66#include <sys/zfs_file.h>
03916905
PD
67
68int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
30af21b0 69int zfs_recv_queue_ff = 20;
7261fc2e 70int zfs_recv_write_batch_size = 1024 * 1024;
03916905
PD
71
72static char *dmu_recv_tag = "dmu_recv_tag";
73const char *recv_clone_name = "%recv";
74
30af21b0
PD
75static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
76 void *buf);
77
78struct receive_record_arg {
79 dmu_replay_record_t header;
80 void *payload; /* Pointer to a buffer containing the payload */
81 /*
82 * If the record is a write, pointer to the arc_buf_t containing the
83 * payload.
84 */
85 arc_buf_t *arc_buf;
86 int payload_size;
87 uint64_t bytes_read; /* bytes read from stream when record created */
88 boolean_t eos_marker; /* Marks the end of the stream */
89 bqueue_node_t node;
90};
91
92struct receive_writer_arg {
93 objset_t *os;
94 boolean_t byteswap;
95 bqueue_t q;
96
97 /*
98 * These three args are used to signal to the main thread that we're
99 * done.
100 */
101 kmutex_t mutex;
102 kcondvar_t cv;
103 boolean_t done;
104
105 int err;
30af21b0
PD
106 boolean_t resumable;
107 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */
108 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
7bcb7f08 109 boolean_t full; /* this is a full send stream */
30af21b0
PD
110 uint64_t last_object;
111 uint64_t last_offset;
112 uint64_t max_object; /* highest object ID referenced in stream */
113 uint64_t bytes_read; /* bytes read when current record created */
114
7261fc2e
MA
115 list_t write_batch;
116
30af21b0
PD
117 /* Encryption parameters for the last received DRR_OBJECT_RANGE */
118 boolean_t or_crypt_params_present;
119 uint64_t or_firstobj;
120 uint64_t or_numslots;
121 uint8_t or_salt[ZIO_DATA_SALT_LEN];
122 uint8_t or_iv[ZIO_DATA_IV_LEN];
123 uint8_t or_mac[ZIO_DATA_MAC_LEN];
124 boolean_t or_byteorder;
125};
126
03916905
PD
127typedef struct dmu_recv_begin_arg {
128 const char *drba_origin;
129 dmu_recv_cookie_t *drba_cookie;
130 cred_t *drba_cred;
e59a377a 131 proc_t *drba_proc;
03916905 132 dsl_crypto_params_t *drba_dcp;
03916905
PD
133} dmu_recv_begin_arg_t;
134
30af21b0
PD
135static void
136byteswap_record(dmu_replay_record_t *drr)
137{
138#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
139#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
140 drr->drr_type = BSWAP_32(drr->drr_type);
141 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
142
143 switch (drr->drr_type) {
144 case DRR_BEGIN:
145 DO64(drr_begin.drr_magic);
146 DO64(drr_begin.drr_versioninfo);
147 DO64(drr_begin.drr_creation_time);
148 DO32(drr_begin.drr_type);
149 DO32(drr_begin.drr_flags);
150 DO64(drr_begin.drr_toguid);
151 DO64(drr_begin.drr_fromguid);
152 break;
153 case DRR_OBJECT:
154 DO64(drr_object.drr_object);
155 DO32(drr_object.drr_type);
156 DO32(drr_object.drr_bonustype);
157 DO32(drr_object.drr_blksz);
158 DO32(drr_object.drr_bonuslen);
159 DO32(drr_object.drr_raw_bonuslen);
160 DO64(drr_object.drr_toguid);
161 DO64(drr_object.drr_maxblkid);
162 break;
163 case DRR_FREEOBJECTS:
164 DO64(drr_freeobjects.drr_firstobj);
165 DO64(drr_freeobjects.drr_numobjs);
166 DO64(drr_freeobjects.drr_toguid);
167 break;
168 case DRR_WRITE:
169 DO64(drr_write.drr_object);
170 DO32(drr_write.drr_type);
171 DO64(drr_write.drr_offset);
172 DO64(drr_write.drr_logical_size);
173 DO64(drr_write.drr_toguid);
174 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
175 DO64(drr_write.drr_key.ddk_prop);
176 DO64(drr_write.drr_compressed_size);
177 break;
178 case DRR_WRITE_BYREF:
179 DO64(drr_write_byref.drr_object);
180 DO64(drr_write_byref.drr_offset);
181 DO64(drr_write_byref.drr_length);
182 DO64(drr_write_byref.drr_toguid);
183 DO64(drr_write_byref.drr_refguid);
184 DO64(drr_write_byref.drr_refobject);
185 DO64(drr_write_byref.drr_refoffset);
186 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
187 drr_key.ddk_cksum);
188 DO64(drr_write_byref.drr_key.ddk_prop);
189 break;
190 case DRR_WRITE_EMBEDDED:
191 DO64(drr_write_embedded.drr_object);
192 DO64(drr_write_embedded.drr_offset);
193 DO64(drr_write_embedded.drr_length);
194 DO64(drr_write_embedded.drr_toguid);
195 DO32(drr_write_embedded.drr_lsize);
196 DO32(drr_write_embedded.drr_psize);
197 break;
198 case DRR_FREE:
199 DO64(drr_free.drr_object);
200 DO64(drr_free.drr_offset);
201 DO64(drr_free.drr_length);
202 DO64(drr_free.drr_toguid);
203 break;
204 case DRR_SPILL:
205 DO64(drr_spill.drr_object);
206 DO64(drr_spill.drr_length);
207 DO64(drr_spill.drr_toguid);
208 DO64(drr_spill.drr_compressed_size);
209 DO32(drr_spill.drr_type);
210 break;
211 case DRR_OBJECT_RANGE:
212 DO64(drr_object_range.drr_firstobj);
213 DO64(drr_object_range.drr_numslots);
214 DO64(drr_object_range.drr_toguid);
215 break;
216 case DRR_REDACT:
217 DO64(drr_redact.drr_object);
218 DO64(drr_redact.drr_offset);
219 DO64(drr_redact.drr_length);
220 DO64(drr_redact.drr_toguid);
221 break;
222 case DRR_END:
223 DO64(drr_end.drr_toguid);
224 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
225 break;
226 default:
227 break;
228 }
229
230 if (drr->drr_type != DRR_BEGIN) {
231 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
232 }
233
234#undef DO64
235#undef DO32
236}
237
238static boolean_t
239redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
240{
241 for (int i = 0; i < num_snaps; i++) {
242 if (snaps[i] == guid)
243 return (B_TRUE);
244 }
245 return (B_FALSE);
246}
247
248/*
249 * Check that the new stream we're trying to receive is redacted with respect to
250 * a subset of the snapshots that the origin was redacted with respect to. For
251 * the reasons behind this, see the man page on redacted zfs sends and receives.
252 */
253static boolean_t
254compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
255 uint64_t *redact_snaps, uint64_t num_redact_snaps)
256{
257 /*
258 * Short circuit the comparison; if we are redacted with respect to
259 * more snapshots than the origin, we can't be redacted with respect
260 * to a subset.
261 */
262 if (num_redact_snaps > origin_num_snaps) {
263 return (B_FALSE);
264 }
265
266 for (int i = 0; i < num_redact_snaps; i++) {
267 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
268 redact_snaps[i])) {
269 return (B_FALSE);
270 }
271 }
272 return (B_TRUE);
273}
274
275static boolean_t
276redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
277{
278 uint64_t *origin_snaps;
279 uint64_t origin_num_snaps;
280 dmu_recv_cookie_t *drc = drba->drba_cookie;
281 struct drr_begin *drrb = drc->drc_drrb;
282 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
283 int err = 0;
284 boolean_t ret = B_TRUE;
285 uint64_t *redact_snaps;
286 uint_t numredactsnaps;
287
288 /*
289 * If this is a full send stream, we're safe no matter what.
290 */
291 if (drrb->drr_fromguid == 0)
292 return (ret);
293
294 VERIFY(dsl_dataset_get_uint64_array_feature(origin,
295 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
296
297 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
298 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
299 0) {
300 /*
301 * If the send stream was sent from the redaction bookmark or
302 * the redacted version of the dataset, then we're safe. Verify
303 * that this is from the a compatible redaction bookmark or
304 * redacted dataset.
305 */
306 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
307 redact_snaps, numredactsnaps)) {
308 err = EINVAL;
309 }
310 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
311 /*
312 * If the stream is redacted, it must be redacted with respect
313 * to a subset of what the origin is redacted with respect to.
314 * See case number 2 in the zfs man page section on redacted zfs
315 * send.
316 */
317 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
318 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
319
320 if (err != 0 || !compatible_redact_snaps(origin_snaps,
321 origin_num_snaps, redact_snaps, numredactsnaps)) {
322 err = EINVAL;
323 }
324 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
325 drrb->drr_toguid)) {
326 /*
327 * If the stream isn't redacted but the origin is, this must be
328 * one of the snapshots the origin is redacted with respect to.
329 * See case number 1 in the zfs man page section on redacted zfs
330 * send.
331 */
332 err = EINVAL;
333 }
334
335 if (err != 0)
336 ret = B_FALSE;
337 return (ret);
338}
339
7bcb7f08
MA
340/*
341 * If we previously received a stream with --large-block, we don't support
342 * receiving an incremental on top of it without --large-block. This avoids
343 * forcing a read-modify-write or trying to re-aggregate a string of WRITE
344 * records.
345 */
346static int
347recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
348{
349 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
350 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
351 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
352 return (0);
353}
354
03916905
PD
355static int
356recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
357 uint64_t fromguid, uint64_t featureflags)
358{
359 uint64_t val;
d8d418ff 360 uint64_t children;
03916905
PD
361 int error;
362 dsl_pool_t *dp = ds->ds_dir->dd_pool;
363 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
364 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
365 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
366
ebeb6f23 367 /* Temporary clone name must not exist. */
03916905
PD
368 error = zap_lookup(dp->dp_meta_objset,
369 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
370 8, 1, &val);
371 if (error != ENOENT)
30af21b0 372 return (error == 0 ? SET_ERROR(EBUSY) : error);
03916905 373
ebeb6f23
AG
374 /* Resume state must not be set. */
375 if (dsl_dataset_has_resume_receive_state(ds))
376 return (SET_ERROR(EBUSY));
377
378 /* New snapshot name must not exist. */
03916905
PD
379 error = zap_lookup(dp->dp_meta_objset,
380 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
381 drba->drba_cookie->drc_tosnap, 8, 1, &val);
382 if (error != ENOENT)
30af21b0 383 return (error == 0 ? SET_ERROR(EEXIST) : error);
03916905 384
ebeb6f23 385 /* Must not have children if receiving a ZVOL. */
d8d418ff 386 error = zap_count(dp->dp_meta_objset,
387 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
388 if (error != 0)
389 return (error);
390 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
391 children > 0)
392 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
393
03916905
PD
394 /*
395 * Check snapshot limit before receiving. We'll recheck again at the
396 * end, but might as well abort before receiving if we're already over
397 * the limit.
398 *
399 * Note that we do not check the file system limit with
400 * dsl_dir_fscount_check because the temporary %clones don't count
401 * against that limit.
402 */
403 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
e59a377a 404 NULL, drba->drba_cred, drba->drba_proc);
03916905
PD
405 if (error != 0)
406 return (error);
407
408 if (fromguid != 0) {
409 dsl_dataset_t *snap;
410 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
411
30af21b0 412 /* Can't perform a raw receive on top of a non-raw receive */
03916905
PD
413 if (!encrypted && raw)
414 return (SET_ERROR(EINVAL));
415
416 /* Encryption is incompatible with embedded data */
417 if (encrypted && embed)
418 return (SET_ERROR(EINVAL));
419
420 /* Find snapshot in this dir that matches fromguid. */
421 while (obj != 0) {
422 error = dsl_dataset_hold_obj(dp, obj, FTAG,
423 &snap);
424 if (error != 0)
425 return (SET_ERROR(ENODEV));
426 if (snap->ds_dir != ds->ds_dir) {
427 dsl_dataset_rele(snap, FTAG);
428 return (SET_ERROR(ENODEV));
429 }
430 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
431 break;
432 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
433 dsl_dataset_rele(snap, FTAG);
434 }
435 if (obj == 0)
436 return (SET_ERROR(ENODEV));
437
438 if (drba->drba_cookie->drc_force) {
f00ab3f2 439 drba->drba_cookie->drc_fromsnapobj = obj;
03916905
PD
440 } else {
441 /*
442 * If we are not forcing, there must be no
c08c30ed
TC
443 * changes since fromsnap. Raw sends have an
444 * additional constraint that requires that
445 * no "noop" snapshots exist between fromsnap
446 * and tosnap for the IVset checking code to
447 * work properly.
03916905 448 */
c08c30ed
TC
449 if (dsl_dataset_modified_since_snap(ds, snap) ||
450 (raw &&
451 dsl_dataset_phys(ds)->ds_prev_snap_obj !=
452 snap->ds_object)) {
03916905
PD
453 dsl_dataset_rele(snap, FTAG);
454 return (SET_ERROR(ETXTBSY));
455 }
f00ab3f2
TC
456 drba->drba_cookie->drc_fromsnapobj =
457 ds->ds_prev->ds_object;
03916905
PD
458 }
459
30af21b0
PD
460 if (dsl_dataset_feature_is_active(snap,
461 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
462 snap)) {
463 dsl_dataset_rele(snap, FTAG);
464 return (SET_ERROR(EINVAL));
465 }
466
7bcb7f08
MA
467 error = recv_check_large_blocks(snap, featureflags);
468 if (error != 0) {
469 dsl_dataset_rele(snap, FTAG);
470 return (error);
471 }
472
03916905
PD
473 dsl_dataset_rele(snap, FTAG);
474 } else {
475 /* if full, then must be forced */
476 if (!drba->drba_cookie->drc_force)
477 return (SET_ERROR(EEXIST));
478
479 /*
480 * We don't support using zfs recv -F to blow away
481 * encrypted filesystems. This would require the
482 * dsl dir to point to the old encryption key and
483 * the new one at the same time during the receive.
484 */
485 if ((!encrypted && raw) || encrypted)
486 return (SET_ERROR(EINVAL));
487
488 /*
489 * Perform the same encryption checks we would if
490 * we were creating a new dataset from scratch.
491 */
492 if (!raw) {
493 boolean_t will_encrypt;
494
495 error = dmu_objset_create_crypt_check(
496 ds->ds_dir->dd_parent, drba->drba_dcp,
497 &will_encrypt);
498 if (error != 0)
499 return (error);
500
501 if (will_encrypt && embed)
502 return (SET_ERROR(EINVAL));
503 }
03916905
PD
504 }
505
506 return (0);
03916905
PD
507}
508
30af21b0
PD
509/*
510 * Check that any feature flags used in the data stream we're receiving are
511 * supported by the pool we are receiving into.
512 *
513 * Note that some of the features we explicitly check here have additional
514 * (implicit) features they depend on, but those dependencies are enforced
515 * through the zfeature_register() calls declaring the features that we
516 * explicitly check.
517 */
518static int
519recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
520{
521 /*
522 * Check if there are any unsupported feature flags.
523 */
524 if (!DMU_STREAM_SUPPORTED(featureflags)) {
525 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
526 }
527
528 /* Verify pool version supports SA if SA_SPILL feature set */
529 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
530 spa_version(spa) < SPA_VERSION_SA)
531 return (SET_ERROR(ENOTSUP));
532
533 /*
10b3c7f5
MN
534 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
535 * and large_dnodes in the stream can only be used if those pool
536 * features are enabled because we don't attempt to decompress /
537 * un-embed / un-mooch / split up the blocks / dnodes during the
538 * receive process.
30af21b0
PD
539 */
540 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
541 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
542 return (SET_ERROR(ENOTSUP));
10b3c7f5
MN
543 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
544 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
545 return (SET_ERROR(ENOTSUP));
30af21b0
PD
546 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
547 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
548 return (SET_ERROR(ENOTSUP));
549 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
550 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
551 return (SET_ERROR(ENOTSUP));
552 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
553 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
554 return (SET_ERROR(ENOTSUP));
555
556 /*
557 * Receiving redacted streams requires that redacted datasets are
558 * enabled.
559 */
560 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
561 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
562 return (SET_ERROR(ENOTSUP));
563
564 return (0);
565}
566
03916905
PD
567static int
568dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
569{
570 dmu_recv_begin_arg_t *drba = arg;
571 dsl_pool_t *dp = dmu_tx_pool(tx);
572 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
573 uint64_t fromguid = drrb->drr_fromguid;
574 int flags = drrb->drr_flags;
575 ds_hold_flags_t dsflags = 0;
576 int error;
30af21b0 577 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
03916905
PD
578 dsl_dataset_t *ds;
579 const char *tofs = drba->drba_cookie->drc_tofs;
580
581 /* already checked */
582 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
583 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
584
585 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
586 DMU_COMPOUNDSTREAM ||
587 drrb->drr_type >= DMU_OST_NUMTYPES ||
588 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
589 return (SET_ERROR(EINVAL));
590
30af21b0
PD
591 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
592 if (error != 0)
593 return (error);
03916905 594
30af21b0 595 /* Resumable receives require extensible datasets */
03916905
PD
596 if (drba->drba_cookie->drc_resumable &&
597 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
598 return (SET_ERROR(ENOTSUP));
599
03916905
PD
600 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
601 /* raw receives require the encryption feature */
602 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
603 return (SET_ERROR(ENOTSUP));
604
605 /* embedded data is incompatible with encryption and raw recv */
606 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
607 return (SET_ERROR(EINVAL));
caf9dd20
BB
608
609 /* raw receives require spill block allocation flag */
610 if (!(flags & DRR_FLAG_SPILL_BLOCK))
611 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
03916905
PD
612 } else {
613 dsflags |= DS_HOLD_FLAG_DECRYPT;
614 }
615
616 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
617 if (error == 0) {
618 /* target fs already exists; recv into temp clone */
619
620 /* Can't recv a clone into an existing fs */
621 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
622 dsl_dataset_rele_flags(ds, dsflags, FTAG);
623 return (SET_ERROR(EINVAL));
624 }
625
626 error = recv_begin_check_existing_impl(drba, ds, fromguid,
627 featureflags);
628 dsl_dataset_rele_flags(ds, dsflags, FTAG);
629 } else if (error == ENOENT) {
630 /* target fs does not exist; must be a full backup or clone */
631 char buf[ZFS_MAX_DATASET_NAME_LEN];
d8d418ff 632 objset_t *os;
03916905
PD
633
634 /*
635 * If it's a non-clone incremental, we are missing the
636 * target fs, so fail the recv.
637 */
30af21b0 638 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
03916905
PD
639 drba->drba_origin))
640 return (SET_ERROR(ENOENT));
641
642 /*
643 * If we're receiving a full send as a clone, and it doesn't
644 * contain all the necessary free records and freeobject
645 * records, reject it.
646 */
30af21b0 647 if (fromguid == 0 && drba->drba_origin != NULL &&
03916905
PD
648 !(flags & DRR_FLAG_FREERECORDS))
649 return (SET_ERROR(EINVAL));
650
651 /* Open the parent of tofs */
652 ASSERT3U(strlen(tofs), <, sizeof (buf));
653 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
da689887 654 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
03916905
PD
655 if (error != 0)
656 return (error);
657
658 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
659 drba->drba_origin == NULL) {
660 boolean_t will_encrypt;
661
662 /*
663 * Check that we aren't breaking any encryption rules
664 * and that we have all the parameters we need to
665 * create an encrypted dataset if necessary. If we are
666 * making an encrypted dataset the stream can't have
667 * embedded data.
668 */
669 error = dmu_objset_create_crypt_check(ds->ds_dir,
670 drba->drba_dcp, &will_encrypt);
671 if (error != 0) {
da689887 672 dsl_dataset_rele(ds, FTAG);
03916905
PD
673 return (error);
674 }
675
676 if (will_encrypt &&
677 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
da689887 678 dsl_dataset_rele(ds, FTAG);
03916905
PD
679 return (SET_ERROR(EINVAL));
680 }
681 }
682
683 /*
684 * Check filesystem and snapshot limits before receiving. We'll
685 * recheck snapshot limits again at the end (we create the
686 * filesystems and increment those counts during begin_sync).
687 */
688 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
e59a377a
MA
689 ZFS_PROP_FILESYSTEM_LIMIT, NULL,
690 drba->drba_cred, drba->drba_proc);
03916905 691 if (error != 0) {
da689887 692 dsl_dataset_rele(ds, FTAG);
03916905
PD
693 return (error);
694 }
695
696 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
e59a377a
MA
697 ZFS_PROP_SNAPSHOT_LIMIT, NULL,
698 drba->drba_cred, drba->drba_proc);
03916905 699 if (error != 0) {
da689887 700 dsl_dataset_rele(ds, FTAG);
03916905
PD
701 return (error);
702 }
703
d8d418ff 704 /* can't recv below anything but filesystems (eg. no ZVOLs) */
705 error = dmu_objset_from_ds(ds, &os);
706 if (error != 0) {
da689887 707 dsl_dataset_rele(ds, FTAG);
d8d418ff 708 return (error);
709 }
710 if (dmu_objset_type(os) != DMU_OST_ZFS) {
da689887 711 dsl_dataset_rele(ds, FTAG);
d8d418ff 712 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
713 }
714
03916905
PD
715 if (drba->drba_origin != NULL) {
716 dsl_dataset_t *origin;
03916905
PD
717 error = dsl_dataset_hold_flags(dp, drba->drba_origin,
718 dsflags, FTAG, &origin);
719 if (error != 0) {
da689887 720 dsl_dataset_rele(ds, FTAG);
03916905
PD
721 return (error);
722 }
723 if (!origin->ds_is_snapshot) {
724 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 725 dsl_dataset_rele(ds, FTAG);
03916905
PD
726 return (SET_ERROR(EINVAL));
727 }
728 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
729 fromguid != 0) {
730 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 731 dsl_dataset_rele(ds, FTAG);
03916905
PD
732 return (SET_ERROR(ENODEV));
733 }
30af21b0 734
03916905
PD
735 if (origin->ds_dir->dd_crypto_obj != 0 &&
736 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
737 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 738 dsl_dataset_rele(ds, FTAG);
03916905
PD
739 return (SET_ERROR(EINVAL));
740 }
30af21b0
PD
741
742 /*
743 * If the origin is redacted we need to verify that this
744 * send stream can safely be received on top of the
745 * origin.
746 */
747 if (dsl_dataset_feature_is_active(origin,
748 SPA_FEATURE_REDACTED_DATASETS)) {
749 if (!redact_check(drba, origin)) {
750 dsl_dataset_rele_flags(origin, dsflags,
751 FTAG);
752 dsl_dataset_rele_flags(ds, dsflags,
753 FTAG);
754 return (SET_ERROR(EINVAL));
755 }
756 }
757
7bcb7f08
MA
758 error = recv_check_large_blocks(ds, featureflags);
759 if (error != 0) {
760 dsl_dataset_rele_flags(origin, dsflags, FTAG);
761 dsl_dataset_rele_flags(ds, dsflags, FTAG);
762 return (error);
763 }
764
30af21b0 765 dsl_dataset_rele_flags(origin, dsflags, FTAG);
03916905 766 }
d8d418ff 767
da689887 768 dsl_dataset_rele(ds, FTAG);
03916905
PD
769 error = 0;
770 }
771 return (error);
772}
773
774static void
775dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
776{
777 dmu_recv_begin_arg_t *drba = arg;
778 dsl_pool_t *dp = dmu_tx_pool(tx);
779 objset_t *mos = dp->dp_meta_objset;
30af21b0
PD
780 dmu_recv_cookie_t *drc = drba->drba_cookie;
781 struct drr_begin *drrb = drc->drc_drrb;
782 const char *tofs = drc->drc_tofs;
783 uint64_t featureflags = drc->drc_featureflags;
03916905
PD
784 dsl_dataset_t *ds, *newds;
785 objset_t *os;
786 uint64_t dsobj;
787 ds_hold_flags_t dsflags = 0;
788 int error;
789 uint64_t crflags = 0;
790 dsl_crypto_params_t dummy_dcp = { 0 };
791 dsl_crypto_params_t *dcp = drba->drba_dcp;
792
793 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
794 crflags |= DS_FLAG_CI_DATASET;
795
796 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
797 dsflags |= DS_HOLD_FLAG_DECRYPT;
798
799 /*
800 * Raw, non-incremental recvs always use a dummy dcp with
801 * the raw cmd set. Raw incremental recvs do not use a dcp
802 * since the encryption parameters are already set in stone.
803 */
30af21b0 804 if (dcp == NULL && drrb->drr_fromguid == 0 &&
03916905
PD
805 drba->drba_origin == NULL) {
806 ASSERT3P(dcp, ==, NULL);
807 dcp = &dummy_dcp;
808
809 if (featureflags & DMU_BACKUP_FEATURE_RAW)
810 dcp->cp_cmd = DCP_CMD_RAW_RECV;
811 }
812
813 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
814 if (error == 0) {
815 /* create temporary clone */
816 dsl_dataset_t *snap = NULL;
817
f00ab3f2 818 if (drba->drba_cookie->drc_fromsnapobj != 0) {
03916905 819 VERIFY0(dsl_dataset_hold_obj(dp,
f00ab3f2 820 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
03916905
PD
821 ASSERT3P(dcp, ==, NULL);
822 }
03916905
PD
823 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
824 snap, crflags, drba->drba_cred, dcp, tx);
f00ab3f2 825 if (drba->drba_cookie->drc_fromsnapobj != 0)
03916905
PD
826 dsl_dataset_rele(snap, FTAG);
827 dsl_dataset_rele_flags(ds, dsflags, FTAG);
828 } else {
829 dsl_dir_t *dd;
830 const char *tail;
831 dsl_dataset_t *origin = NULL;
832
833 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
834
835 if (drba->drba_origin != NULL) {
836 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
837 FTAG, &origin));
838 ASSERT3P(dcp, ==, NULL);
839 }
840
841 /* Create new dataset. */
842 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
843 origin, crflags, drba->drba_cred, dcp, tx);
844 if (origin != NULL)
845 dsl_dataset_rele(origin, FTAG);
846 dsl_dir_rele(dd, FTAG);
30af21b0
PD
847 drc->drc_newfs = B_TRUE;
848 }
849 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
850 &newds));
851 if (dsl_dataset_feature_is_active(newds,
852 SPA_FEATURE_REDACTED_DATASETS)) {
853 /*
854 * If the origin dataset is redacted, the child will be redacted
855 * when we create it. We clear the new dataset's
856 * redaction info; if it should be redacted, we'll fill
857 * in its information later.
858 */
859 dsl_dataset_deactivate_feature(newds,
860 SPA_FEATURE_REDACTED_DATASETS, tx);
03916905 861 }
03916905
PD
862 VERIFY0(dmu_objset_from_ds(newds, &os));
863
30af21b0 864 if (drc->drc_resumable) {
03916905
PD
865 dsl_dataset_zapify(newds, tx);
866 if (drrb->drr_fromguid != 0) {
867 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
868 8, 1, &drrb->drr_fromguid, tx));
869 }
870 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
871 8, 1, &drrb->drr_toguid, tx));
872 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
873 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
874 uint64_t one = 1;
875 uint64_t zero = 0;
876 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
877 8, 1, &one, tx));
878 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
879 8, 1, &zero, tx));
880 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
881 8, 1, &zero, tx));
882 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
883 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
884 8, 1, &one, tx));
885 }
886 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
887 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
888 8, 1, &one, tx));
889 }
890 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
891 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
892 8, 1, &one, tx));
893 }
894 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
895 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
896 8, 1, &one, tx));
897 }
30af21b0
PD
898
899 uint64_t *redact_snaps;
900 uint_t numredactsnaps;
901 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
902 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
903 &numredactsnaps) == 0) {
904 VERIFY0(zap_add(mos, dsobj,
905 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
906 sizeof (*redact_snaps), numredactsnaps,
907 redact_snaps, tx));
908 }
03916905
PD
909 }
910
911 /*
912 * Usually the os->os_encrypted value is tied to the presence of a
913 * DSL Crypto Key object in the dd. However, that will not be received
914 * until dmu_recv_stream(), so we set the value manually for now.
915 */
916 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
917 os->os_encrypted = B_TRUE;
918 drba->drba_cookie->drc_raw = B_TRUE;
919 }
920
30af21b0
PD
921 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
922 uint64_t *redact_snaps;
923 uint_t numredactsnaps;
924 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
925 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
926 dsl_dataset_activate_redaction(newds, redact_snaps,
927 numredactsnaps, tx);
928 }
929
03916905
PD
930 dmu_buf_will_dirty(newds->ds_dbuf, tx);
931 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
932
933 /*
934 * If we actually created a non-clone, we need to create the objset
935 * in our new dataset. If this is a raw send we postpone this until
936 * dmu_recv_stream() so that we can allocate the metadnode with the
937 * properties from the DRR_BEGIN payload.
938 */
939 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
940 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
941 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
942 (void) dmu_objset_create_impl(dp->dp_spa,
943 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
944 }
945 rrw_exit(&newds->ds_bp_rwlock, FTAG);
946
947 drba->drba_cookie->drc_ds = newds;
0fdd6106 948 drba->drba_cookie->drc_os = os;
03916905 949
74756182 950 spa_history_log_internal_ds(newds, "receive", tx, " ");
03916905
PD
951}
952
953static int
954dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
955{
956 dmu_recv_begin_arg_t *drba = arg;
30af21b0 957 dmu_recv_cookie_t *drc = drba->drba_cookie;
03916905 958 dsl_pool_t *dp = dmu_tx_pool(tx);
30af21b0 959 struct drr_begin *drrb = drc->drc_drrb;
03916905
PD
960 int error;
961 ds_hold_flags_t dsflags = 0;
03916905 962 dsl_dataset_t *ds;
30af21b0 963 const char *tofs = drc->drc_tofs;
03916905
PD
964
965 /* already checked */
966 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
30af21b0 967 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
03916905
PD
968
969 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
970 DMU_COMPOUNDSTREAM ||
971 drrb->drr_type >= DMU_OST_NUMTYPES)
972 return (SET_ERROR(EINVAL));
973
03916905 974 /*
30af21b0
PD
975 * This is mostly a sanity check since we should have already done these
976 * checks during a previous attempt to receive the data.
03916905 977 */
30af21b0
PD
978 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
979 dp->dp_spa);
980 if (error != 0)
981 return (error);
03916905
PD
982
983 /* 6 extra bytes for /%recv */
984 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
30af21b0 985
03916905
PD
986 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
987 tofs, recv_clone_name);
988
30af21b0 989 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
caf9dd20
BB
990 /* raw receives require spill block allocation flag */
991 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
992 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
993 } else {
03916905 994 dsflags |= DS_HOLD_FLAG_DECRYPT;
caf9dd20 995 }
03916905
PD
996
997 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
998 /* %recv does not exist; continue in tofs */
999 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1000 if (error != 0)
1001 return (error);
1002 }
1003
1004 /* check that ds is marked inconsistent */
1005 if (!DS_IS_INCONSISTENT(ds)) {
1006 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1007 return (SET_ERROR(EINVAL));
1008 }
1009
1010 /* check that there is resuming data, and that the toguid matches */
1011 if (!dsl_dataset_is_zapified(ds)) {
1012 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1013 return (SET_ERROR(EINVAL));
1014 }
1015 uint64_t val;
1016 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1017 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1018 if (error != 0 || drrb->drr_toguid != val) {
1019 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1020 return (SET_ERROR(EINVAL));
1021 }
1022
1023 /*
1024 * Check if the receive is still running. If so, it will be owned.
1025 * Note that nothing else can own the dataset (e.g. after the receive
1026 * fails) because it will be marked inconsistent.
1027 */
1028 if (dsl_dataset_has_owner(ds)) {
1029 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1030 return (SET_ERROR(EBUSY));
1031 }
1032
1033 /* There should not be any snapshots of this fs yet. */
1034 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1035 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1036 return (SET_ERROR(EINVAL));
1037 }
1038
1039 /*
1040 * Note: resume point will be checked when we process the first WRITE
1041 * record.
1042 */
1043
1044 /* check that the origin matches */
1045 val = 0;
1046 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1047 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1048 if (drrb->drr_fromguid != val) {
1049 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1050 return (SET_ERROR(EINVAL));
1051 }
1052
aa646323 1053 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
61152d10
TC
1054 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1055
30af21b0
PD
1056 /*
1057 * If we're resuming, and the send is redacted, then the original send
1058 * must have been redacted, and must have been redacted with respect to
1059 * the same snapshots.
1060 */
1061 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1062 uint64_t num_ds_redact_snaps;
1063 uint64_t *ds_redact_snaps;
1064
1065 uint_t num_stream_redact_snaps;
1066 uint64_t *stream_redact_snaps;
1067
1068 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1069 BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1070 &num_stream_redact_snaps) != 0) {
1071 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1072 return (SET_ERROR(EINVAL));
1073 }
1074
1075 if (!dsl_dataset_get_uint64_array_feature(ds,
1076 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1077 &ds_redact_snaps)) {
1078 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1079 return (SET_ERROR(EINVAL));
1080 }
1081
1082 for (int i = 0; i < num_ds_redact_snaps; i++) {
1083 if (!redact_snaps_contains(ds_redact_snaps,
1084 num_ds_redact_snaps, stream_redact_snaps[i])) {
1085 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1086 return (SET_ERROR(EINVAL));
1087 }
1088 }
1089 }
7bcb7f08
MA
1090
1091 error = recv_check_large_blocks(ds, drc->drc_featureflags);
1092 if (error != 0) {
1093 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1094 return (error);
1095 }
1096
03916905
PD
1097 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1098 return (0);
1099}
1100
1101static void
1102dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1103{
1104 dmu_recv_begin_arg_t *drba = arg;
1105 dsl_pool_t *dp = dmu_tx_pool(tx);
1106 const char *tofs = drba->drba_cookie->drc_tofs;
30af21b0 1107 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
03916905 1108 dsl_dataset_t *ds;
03916905 1109 ds_hold_flags_t dsflags = 0;
03916905
PD
1110 /* 6 extra bytes for /%recv */
1111 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1112
30af21b0
PD
1113 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1114 recv_clone_name);
03916905
PD
1115
1116 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1117 drba->drba_cookie->drc_raw = B_TRUE;
1118 } else {
1119 dsflags |= DS_HOLD_FLAG_DECRYPT;
1120 }
1121
30af21b0
PD
1122 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1123 != 0) {
03916905 1124 /* %recv does not exist; continue in tofs */
30af21b0
PD
1125 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1126 &ds));
03916905
PD
1127 drba->drba_cookie->drc_newfs = B_TRUE;
1128 }
1129
03916905 1130 ASSERT(DS_IS_INCONSISTENT(ds));
03916905
PD
1131 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1132 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1133 drba->drba_cookie->drc_raw);
1134 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1135
1136 drba->drba_cookie->drc_ds = ds;
0fdd6106 1137 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
61152d10 1138 drba->drba_cookie->drc_should_save = B_TRUE;
03916905 1139
74756182 1140 spa_history_log_internal_ds(ds, "resume receive", tx, " ");
03916905
PD
1141}
1142
1143/*
1144 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1145 * succeeds; otherwise we will leak the holds on the datasets.
1146 */
1147int
1148dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1149 boolean_t force, boolean_t resumable, nvlist_t *localprops,
da92d5cb
MM
1150 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1151 zfs_file_t *fp, offset_t *voffp)
03916905
PD
1152{
1153 dmu_recv_begin_arg_t drba = { 0 };
30af21b0 1154 int err;
03916905
PD
1155
1156 bzero(drc, sizeof (dmu_recv_cookie_t));
1157 drc->drc_drr_begin = drr_begin;
1158 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1159 drc->drc_tosnap = tosnap;
1160 drc->drc_tofs = tofs;
1161 drc->drc_force = force;
1162 drc->drc_resumable = resumable;
1163 drc->drc_cred = CRED();
e59a377a 1164 drc->drc_proc = curproc;
03916905
PD
1165 drc->drc_clone = (origin != NULL);
1166
1167 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1168 drc->drc_byteswap = B_TRUE;
1169 (void) fletcher_4_incremental_byteswap(drr_begin,
1170 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1171 byteswap_record(drr_begin);
1172 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1173 (void) fletcher_4_incremental_native(drr_begin,
1174 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1175 } else {
1176 return (SET_ERROR(EINVAL));
1177 }
1178
da92d5cb 1179 drc->drc_fp = fp;
30af21b0
PD
1180 drc->drc_voff = *voffp;
1181 drc->drc_featureflags =
1182 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1183
1184 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1185 void *payload = NULL;
1186 if (payloadlen != 0)
1187 payload = kmem_alloc(payloadlen, KM_SLEEP);
1188
1189 err = receive_read_payload_and_next_header(drc, payloadlen,
1190 payload);
1191 if (err != 0) {
1192 kmem_free(payload, payloadlen);
1193 return (err);
1194 }
1195 if (payloadlen != 0) {
1196 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1197 KM_SLEEP);
1198 kmem_free(payload, payloadlen);
1199 if (err != 0) {
1200 kmem_free(drc->drc_next_rrd,
1201 sizeof (*drc->drc_next_rrd));
1202 return (err);
1203 }
1204 }
1205
caf9dd20
BB
1206 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1207 drc->drc_spill = B_TRUE;
1208
03916905
PD
1209 drba.drba_origin = origin;
1210 drba.drba_cookie = drc;
1211 drba.drba_cred = CRED();
e59a377a 1212 drba.drba_proc = curproc;
03916905 1213
30af21b0
PD
1214 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1215 err = dsl_sync_task(tofs,
03916905 1216 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
30af21b0
PD
1217 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1218 } else {
03916905
PD
1219
1220 /*
1221 * For non-raw, non-incremental, non-resuming receives the
1222 * user can specify encryption parameters on the command line
1223 * with "zfs recv -o". For these receives we create a dcp and
1224 * pass it to the sync task. Creating the dcp will implicitly
1225 * remove the encryption params from the localprops nvlist,
1226 * which avoids errors when trying to set these normally
1227 * read-only properties. Any other kind of receive that
1228 * attempts to set these properties will fail as a result.
1229 */
1230 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1231 DMU_BACKUP_FEATURE_RAW) == 0 &&
1232 origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1233 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1234 localprops, hidden_args, &drba.drba_dcp);
03916905
PD
1235 }
1236
30af21b0
PD
1237 if (err == 0) {
1238 err = dsl_sync_task(tofs,
1239 dmu_recv_begin_check, dmu_recv_begin_sync,
1240 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1241 dsl_crypto_params_free(drba.drba_dcp, !!err);
1242 }
1243 }
03916905 1244
30af21b0
PD
1245 if (err != 0) {
1246 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1247 nvlist_free(drc->drc_begin_nvl);
03916905 1248 }
30af21b0 1249 return (err);
03916905
PD
1250}
1251
03916905 1252static int
30af21b0 1253receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
03916905
PD
1254{
1255 int done = 0;
1256
1257 /*
1258 * The code doesn't rely on this (lengths being multiples of 8). See
1259 * comment in dump_bytes.
1260 */
1261 ASSERT(len % 8 == 0 ||
30af21b0 1262 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
03916905
PD
1263
1264 while (done < len) {
1265 ssize_t resid;
8b240f14
MA
1266 zfs_file_t *fp = drc->drc_fp;
1267 int err = zfs_file_read(fp, (char *)buf + done,
da92d5cb 1268 len - done, &resid);
03916905
PD
1269 if (resid == len - done) {
1270 /*
7145123b
PD
1271 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1272 * that the receive was interrupted and can
1273 * potentially be resumed.
03916905 1274 */
8b240f14 1275 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
03916905 1276 }
30af21b0 1277 drc->drc_voff += len - done - resid;
03916905 1278 done = len - resid;
8b240f14
MA
1279 if (err != 0)
1280 return (err);
03916905
PD
1281 }
1282
30af21b0 1283 drc->drc_bytes_read += len;
03916905
PD
1284
1285 ASSERT3U(done, ==, len);
1286 return (0);
1287}
1288
03916905
PD
1289static inline uint8_t
1290deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1291{
1292 if (bonus_type == DMU_OT_SA) {
1293 return (1);
1294 } else {
1295 return (1 +
1296 ((DN_OLD_MAX_BONUSLEN -
1297 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1298 }
1299}
1300
1301static void
1302save_resume_state(struct receive_writer_arg *rwa,
1303 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1304{
1305 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1306
1307 if (!rwa->resumable)
1308 return;
1309
1310 /*
1311 * We use ds_resume_bytes[] != 0 to indicate that we need to
1312 * update this on disk, so it must not be 0.
1313 */
1314 ASSERT(rwa->bytes_read != 0);
1315
1316 /*
1317 * We only resume from write records, which have a valid
1318 * (non-meta-dnode) object number.
1319 */
1320 ASSERT(object != 0);
1321
1322 /*
1323 * For resuming to work correctly, we must receive records in order,
1324 * sorted by object,offset. This is checked by the callers, but
1325 * assert it here for good measure.
1326 */
1327 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1328 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1329 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1330 ASSERT3U(rwa->bytes_read, >=,
1331 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1332
1333 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1334 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1335 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1336}
1337
7bcb7f08
MA
1338static int
1339receive_object_is_same_generation(objset_t *os, uint64_t object,
1340 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1341 const void *new_bonus, boolean_t *samegenp)
1342{
1343 zfs_file_info_t zoi;
1344 int err;
1345
1346 dmu_buf_t *old_bonus_dbuf;
1347 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1348 if (err != 0)
1349 return (err);
1350 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1351 &zoi);
1352 dmu_buf_rele(old_bonus_dbuf, FTAG);
1353 if (err != 0)
1354 return (err);
1355 uint64_t old_gen = zoi.zfi_generation;
1356
1357 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1358 if (err != 0)
1359 return (err);
1360 uint64_t new_gen = zoi.zfi_generation;
1361
1362 *samegenp = (old_gen == new_gen);
1363 return (0);
1364}
1365
1366static int
1367receive_handle_existing_object(const struct receive_writer_arg *rwa,
1368 const struct drr_object *drro, const dmu_object_info_t *doi,
1369 const void *bonus_data,
1370 uint64_t *object_to_hold, uint32_t *new_blksz)
1371{
1372 uint32_t indblksz = drro->drr_indblkshift ?
1373 1ULL << drro->drr_indblkshift : 0;
1374 int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1375 drro->drr_bonuslen);
1376 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1377 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1378 boolean_t do_free_range = B_FALSE;
1379 int err;
1380
1381 *object_to_hold = drro->drr_object;
1382
1383 /* nblkptr should be bounded by the bonus size and type */
1384 if (rwa->raw && nblkptr != drro->drr_nblkptr)
1385 return (SET_ERROR(EINVAL));
1386
1387 /*
1388 * After the previous send stream, the sending system may
1389 * have freed this object, and then happened to re-allocate
1390 * this object number in a later txg. In this case, we are
1391 * receiving a different logical file, and the block size may
1392 * appear to be different. i.e. we may have a different
1393 * block size for this object than what the send stream says.
1394 * In this case we need to remove the object's contents,
1395 * so that its structure can be changed and then its contents
1396 * entirely replaced by subsequent WRITE records.
1397 *
1398 * If this is a -L (--large-block) incremental stream, and
1399 * the previous stream was not -L, the block size may appear
1400 * to increase. i.e. we may have a smaller block size for
1401 * this object than what the send stream says. In this case
1402 * we need to keep the object's contents and block size
1403 * intact, so that we don't lose parts of the object's
1404 * contents that are not changed by this incremental send
1405 * stream.
1406 *
1407 * We can distinguish between the two above cases by using
1408 * the ZPL's generation number (see
1409 * receive_object_is_same_generation()). However, we only
1410 * want to rely on the generation number when absolutely
1411 * necessary, because with raw receives, the generation is
1412 * encrypted. We also want to minimize dependence on the
1413 * ZPL, so that other types of datasets can also be received
1414 * (e.g. ZVOLs, although note that ZVOLS currently do not
1415 * reallocate their objects or change their structure).
1416 * Therefore, we check a number of different cases where we
1417 * know it is safe to discard the object's contents, before
1418 * using the ZPL's generation number to make the above
1419 * distinction.
1420 */
1421 if (drro->drr_blksz != doi->doi_data_block_size) {
1422 if (rwa->raw) {
1423 /*
1424 * RAW streams always have large blocks, so
1425 * we are sure that the data is not needed
1426 * due to changing --large-block to be on.
1427 * Which is fortunate since the bonus buffer
1428 * (which contains the ZPL generation) is
1429 * encrypted, and the key might not be
1430 * loaded.
1431 */
1432 do_free_range = B_TRUE;
1433 } else if (rwa->full) {
1434 /*
1435 * This is a full send stream, so it always
1436 * replaces what we have. Even if the
1437 * generation numbers happen to match, this
1438 * can not actually be the same logical file.
1439 * This is relevant when receiving a full
1440 * send as a clone.
1441 */
1442 do_free_range = B_TRUE;
1443 } else if (drro->drr_type !=
1444 DMU_OT_PLAIN_FILE_CONTENTS ||
1445 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1446 /*
1447 * PLAIN_FILE_CONTENTS are the only type of
1448 * objects that have ever been stored with
1449 * large blocks, so we don't need the special
1450 * logic below. ZAP blocks can shrink (when
1451 * there's only one block), so we don't want
1452 * to hit the error below about block size
1453 * only increasing.
1454 */
1455 do_free_range = B_TRUE;
1456 } else if (doi->doi_max_offset <=
1457 doi->doi_data_block_size) {
1458 /*
1459 * There is only one block. We can free it,
1460 * because its contents will be replaced by a
1461 * WRITE record. This can not be the no-L ->
1462 * -L case, because the no-L case would have
1463 * resulted in multiple blocks. If we
1464 * supported -L -> no-L, it would not be safe
1465 * to free the file's contents. Fortunately,
1466 * that is not allowed (see
1467 * recv_check_large_blocks()).
1468 */
1469 do_free_range = B_TRUE;
1470 } else {
1471 boolean_t is_same_gen;
1472 err = receive_object_is_same_generation(rwa->os,
1473 drro->drr_object, doi->doi_bonus_type,
1474 drro->drr_bonustype, bonus_data, &is_same_gen);
1475 if (err != 0)
1476 return (SET_ERROR(EINVAL));
1477
1478 if (is_same_gen) {
1479 /*
1480 * This is the same logical file, and
1481 * the block size must be increasing.
1482 * It could only decrease if
1483 * --large-block was changed to be
1484 * off, which is checked in
1485 * recv_check_large_blocks().
1486 */
1487 if (drro->drr_blksz <=
1488 doi->doi_data_block_size)
1489 return (SET_ERROR(EINVAL));
1490 /*
1491 * We keep the existing blocksize and
1492 * contents.
1493 */
1494 *new_blksz =
1495 doi->doi_data_block_size;
1496 } else {
1497 do_free_range = B_TRUE;
1498 }
1499 }
1500 }
1501
1502 /* nblkptr can only decrease if the object was reallocated */
1503 if (nblkptr < doi->doi_nblkptr)
1504 do_free_range = B_TRUE;
1505
1506 /* number of slots can only change on reallocation */
1507 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1508 do_free_range = B_TRUE;
1509
1510 /*
1511 * For raw sends we also check a few other fields to
1512 * ensure we are preserving the objset structure exactly
1513 * as it was on the receive side:
1514 * - A changed indirect block size
1515 * - A smaller nlevels
1516 */
1517 if (rwa->raw) {
1518 if (indblksz != doi->doi_metadata_block_size)
1519 do_free_range = B_TRUE;
1520 if (drro->drr_nlevels < doi->doi_indirection)
1521 do_free_range = B_TRUE;
1522 }
1523
1524 if (do_free_range) {
1525 err = dmu_free_long_range(rwa->os, drro->drr_object,
1526 0, DMU_OBJECT_END);
1527 if (err != 0)
1528 return (SET_ERROR(EINVAL));
1529 }
1530
1531 /*
1532 * The dmu does not currently support decreasing nlevels
1533 * or changing the number of dnode slots on an object. For
1534 * non-raw sends, this does not matter and the new object
1535 * can just use the previous one's nlevels. For raw sends,
1536 * however, the structure of the received dnode (including
1537 * nlevels and dnode slots) must match that of the send
1538 * side. Therefore, instead of using dmu_object_reclaim(),
1539 * we must free the object completely and call
1540 * dmu_object_claim_dnsize() instead.
1541 */
1542 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1543 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1544 err = dmu_free_long_object(rwa->os, drro->drr_object);
1545 if (err != 0)
1546 return (SET_ERROR(EINVAL));
1547
1548 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1549 *object_to_hold = DMU_NEW_OBJECT;
1550 }
1551
1552 /*
1553 * For raw receives, free everything beyond the new incoming
1554 * maxblkid. Normally this would be done with a DRR_FREE
1555 * record that would come after this DRR_OBJECT record is
1556 * processed. However, for raw receives we manually set the
1557 * maxblkid from the drr_maxblkid and so we must first free
1558 * everything above that blkid to ensure the DMU is always
1559 * consistent with itself. We will never free the first block
1560 * of the object here because a maxblkid of 0 could indicate
1561 * an object with a single block or one with no blocks. This
1562 * free may be skipped when dmu_free_long_range() was called
1563 * above since it covers the entire object's contents.
1564 */
1565 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1566 err = dmu_free_long_range(rwa->os, drro->drr_object,
1567 (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1568 DMU_OBJECT_END);
1569 if (err != 0)
1570 return (SET_ERROR(EINVAL));
1571 }
1572 return (0);
1573}
1574
03916905
PD
1575noinline static int
1576receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1577 void *data)
1578{
1579 dmu_object_info_t doi;
1580 dmu_tx_t *tx;
03916905 1581 int err;
7bcb7f08 1582 uint32_t new_blksz = drro->drr_blksz;
03916905
PD
1583 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1584 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1585
1586 if (drro->drr_type == DMU_OT_NONE ||
1587 !DMU_OT_IS_VALID(drro->drr_type) ||
1588 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1589 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1590 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1591 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1592 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1593 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1594 drro->drr_bonuslen >
1595 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1596 dn_slots >
30af21b0 1597 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
03916905
PD
1598 return (SET_ERROR(EINVAL));
1599 }
1600
1601 if (rwa->raw) {
1602 /*
1603 * We should have received a DRR_OBJECT_RANGE record
1604 * containing this block and stored it in rwa.
1605 */
1606 if (drro->drr_object < rwa->or_firstobj ||
1607 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1608 drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1609 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1610 drro->drr_nlevels > DN_MAX_LEVELS ||
1611 drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1612 DN_SLOTS_TO_BONUSLEN(dn_slots) <
1613 drro->drr_raw_bonuslen)
1614 return (SET_ERROR(EINVAL));
1615 } else {
caf9dd20
BB
1616 /*
1617 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1618 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1619 */
1620 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1621 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1622 return (SET_ERROR(EINVAL));
1623 }
1624
1625 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1626 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
03916905 1627 return (SET_ERROR(EINVAL));
caf9dd20 1628 }
03916905
PD
1629 }
1630
1631 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
30af21b0 1632
03916905
PD
1633 if (err != 0 && err != ENOENT && err != EEXIST)
1634 return (SET_ERROR(EINVAL));
1635
1636 if (drro->drr_object > rwa->max_object)
1637 rwa->max_object = drro->drr_object;
1638
1639 /*
1640 * If we are losing blkptrs or changing the block size this must
1641 * be a new file instance. We must clear out the previous file
1642 * contents before we can change this type of metadata in the dnode.
1643 * Raw receives will also check that the indirect structure of the
1644 * dnode hasn't changed.
1645 */
7bcb7f08 1646 uint64_t object_to_hold;
03916905 1647 if (err == 0) {
7bcb7f08
MA
1648 err = receive_handle_existing_object(rwa, drro, &doi, data,
1649 &object_to_hold, &new_blksz);
03916905
PD
1650 } else if (err == EEXIST) {
1651 /*
1652 * The object requested is currently an interior slot of a
1653 * multi-slot dnode. This will be resolved when the next txg
1654 * is synced out, since the send stream will have told us
1655 * to free this slot when we freed the associated dnode
1656 * earlier in the stream.
1657 */
1658 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
b92f5d9f
BB
1659
1660 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1661 return (SET_ERROR(EINVAL));
1662
1663 /* object was freed and we are about to allocate a new one */
7bcb7f08 1664 object_to_hold = DMU_NEW_OBJECT;
03916905
PD
1665 } else {
1666 /* object is free and we are about to allocate a new one */
7bcb7f08 1667 object_to_hold = DMU_NEW_OBJECT;
03916905
PD
1668 }
1669
1670 /*
1671 * If this is a multi-slot dnode there is a chance that this
1672 * object will expand into a slot that is already used by
1673 * another object from the previous snapshot. We must free
1674 * these objects before we attempt to allocate the new dnode.
1675 */
1676 if (dn_slots > 1) {
1677 boolean_t need_sync = B_FALSE;
1678
1679 for (uint64_t slot = drro->drr_object + 1;
1680 slot < drro->drr_object + dn_slots;
1681 slot++) {
1682 dmu_object_info_t slot_doi;
1683
1684 err = dmu_object_info(rwa->os, slot, &slot_doi);
1685 if (err == ENOENT || err == EEXIST)
1686 continue;
1687 else if (err != 0)
1688 return (err);
1689
1690 err = dmu_free_long_object(rwa->os, slot);
03916905
PD
1691 if (err != 0)
1692 return (err);
1693
1694 need_sync = B_TRUE;
1695 }
1696
1697 if (need_sync)
1698 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1699 }
1700
1701 tx = dmu_tx_create(rwa->os);
7bcb7f08
MA
1702 dmu_tx_hold_bonus(tx, object_to_hold);
1703 dmu_tx_hold_write(tx, object_to_hold, 0, 0);
03916905
PD
1704 err = dmu_tx_assign(tx, TXG_WAIT);
1705 if (err != 0) {
1706 dmu_tx_abort(tx);
1707 return (err);
1708 }
1709
7bcb7f08 1710 if (object_to_hold == DMU_NEW_OBJECT) {
caf9dd20 1711 /* Currently free, wants to be allocated */
03916905 1712 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
7bcb7f08 1713 drro->drr_type, new_blksz,
03916905
PD
1714 drro->drr_bonustype, drro->drr_bonuslen,
1715 dn_slots << DNODE_SHIFT, tx);
1716 } else if (drro->drr_type != doi.doi_type ||
7bcb7f08 1717 new_blksz != doi.doi_data_block_size ||
03916905
PD
1718 drro->drr_bonustype != doi.doi_bonus_type ||
1719 drro->drr_bonuslen != doi.doi_bonus_size) {
caf9dd20 1720 /* Currently allocated, but with different properties */
03916905 1721 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
7bcb7f08 1722 drro->drr_type, new_blksz,
03916905 1723 drro->drr_bonustype, drro->drr_bonuslen,
caf9dd20
BB
1724 dn_slots << DNODE_SHIFT, rwa->spill ?
1725 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1726 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1727 /*
1728 * Currently allocated, the existing version of this object
1729 * may reference a spill block that is no longer allocated
1730 * at the source and needs to be freed.
1731 */
1732 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
03916905 1733 }
3fa93bb8 1734
03916905
PD
1735 if (err != 0) {
1736 dmu_tx_commit(tx);
1737 return (SET_ERROR(EINVAL));
1738 }
1739
1740 if (rwa->or_crypt_params_present) {
1741 /*
1742 * Set the crypt params for the buffer associated with this
1743 * range of dnodes. This causes the blkptr_t to have the
1744 * same crypt params (byteorder, salt, iv, mac) as on the
1745 * sending side.
1746 *
1747 * Since we are committing this tx now, it is possible for
1748 * the dnode block to end up on-disk with the incorrect MAC,
1749 * if subsequent objects in this block are received in a
1750 * different txg. However, since the dataset is marked as
1751 * inconsistent, no code paths will do a non-raw read (or
1752 * decrypt the block / verify the MAC). The receive code and
1753 * scrub code can safely do raw reads and verify the
1754 * checksum. They don't need to verify the MAC.
1755 */
1756 dmu_buf_t *db = NULL;
1757 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1758
1759 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1760 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1761 if (err != 0) {
1762 dmu_tx_commit(tx);
1763 return (SET_ERROR(EINVAL));
1764 }
1765
1766 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1767 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1768
1769 dmu_buf_rele(db, FTAG);
1770
1771 rwa->or_crypt_params_present = B_FALSE;
1772 }
1773
1774 dmu_object_set_checksum(rwa->os, drro->drr_object,
1775 drro->drr_checksumtype, tx);
1776 dmu_object_set_compress(rwa->os, drro->drr_object,
1777 drro->drr_compress, tx);
1778
1779 /* handle more restrictive dnode structuring for raw recvs */
1780 if (rwa->raw) {
1781 /*
369aa501
TC
1782 * Set the indirect block size, block shift, nlevels.
1783 * This will not fail because we ensured all of the
1784 * blocks were freed earlier if this is a new object.
1785 * For non-new objects block size and indirect block
1786 * shift cannot change and nlevels can only increase.
03916905 1787 */
7bcb7f08 1788 ASSERT3U(new_blksz, ==, drro->drr_blksz);
03916905
PD
1789 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
1790 drro->drr_blksz, drro->drr_indblkshift, tx));
1791 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
1792 drro->drr_nlevels, tx));
369aa501
TC
1793
1794 /*
c2c6eadf
TC
1795 * Set the maxblkid. This will always succeed because
1796 * we freed all blocks beyond the new maxblkid above.
369aa501 1797 */
03916905
PD
1798 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
1799 drro->drr_maxblkid, tx));
1800 }
1801
1802 if (data != NULL) {
1803 dmu_buf_t *db;
6955b401 1804 dnode_t *dn;
03916905
PD
1805 uint32_t flags = DMU_READ_NO_PREFETCH;
1806
1807 if (rwa->raw)
1808 flags |= DMU_READ_NO_DECRYPT;
1809
6955b401
BB
1810 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
1811 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
1812
03916905
PD
1813 dmu_buf_will_dirty(db, tx);
1814
1815 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1816 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
1817
1818 /*
1819 * Raw bonus buffers have their byteorder determined by the
1820 * DRR_OBJECT_RANGE record.
1821 */
1822 if (rwa->byteswap && !rwa->raw) {
1823 dmu_object_byteswap_t byteswap =
1824 DMU_OT_BYTESWAP(drro->drr_bonustype);
1825 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1826 DRR_OBJECT_PAYLOAD_SIZE(drro));
1827 }
1828 dmu_buf_rele(db, FTAG);
6955b401 1829 dnode_rele(dn, FTAG);
03916905
PD
1830 }
1831 dmu_tx_commit(tx);
1832
1833 return (0);
1834}
1835
1836/* ARGSUSED */
1837noinline static int
1838receive_freeobjects(struct receive_writer_arg *rwa,
1839 struct drr_freeobjects *drrfo)
1840{
1841 uint64_t obj;
1842 int next_err = 0;
1843
1844 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
1845 return (SET_ERROR(EINVAL));
1846
1847 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
30af21b0
PD
1848 obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
1849 obj < DN_MAX_OBJECT && next_err == 0;
03916905
PD
1850 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
1851 dmu_object_info_t doi;
1852 int err;
1853
1854 err = dmu_object_info(rwa->os, obj, &doi);
1855 if (err == ENOENT)
1856 continue;
1857 else if (err != 0)
1858 return (err);
1859
1860 err = dmu_free_long_object(rwa->os, obj);
1861
1862 if (err != 0)
1863 return (err);
03916905
PD
1864 }
1865 if (next_err != ESRCH)
1866 return (next_err);
1867 return (0);
1868}
1869
7261fc2e
MA
1870/*
1871 * Note: if this fails, the caller will clean up any records left on the
1872 * rwa->write_batch list.
1873 */
1874static int
1875flush_write_batch_impl(struct receive_writer_arg *rwa)
03916905 1876{
03916905 1877 dnode_t *dn;
7261fc2e
MA
1878 int err;
1879
1880 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
1881 return (SET_ERROR(EINVAL));
1882
1883 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
1884 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
1885
1886 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
1887 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
1888
1889 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
1890 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
1891
1892 dmu_tx_t *tx = dmu_tx_create(rwa->os);
1893 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
1894 last_drrw->drr_offset - first_drrw->drr_offset +
1895 last_drrw->drr_logical_size);
1896 err = dmu_tx_assign(tx, TXG_WAIT);
1897 if (err != 0) {
1898 dmu_tx_abort(tx);
1899 dnode_rele(dn, FTAG);
1900 return (err);
1901 }
1902
1903 struct receive_record_arg *rrd;
1904 while ((rrd = list_head(&rwa->write_batch)) != NULL) {
1905 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
1906 arc_buf_t *abuf = rrd->arc_buf;
1907
1908 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
1909
1910 if (rwa->byteswap && !arc_is_encrypted(abuf) &&
1911 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
1912 dmu_object_byteswap_t byteswap =
1913 DMU_OT_BYTESWAP(drrw->drr_type);
1914 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
1915 DRR_WRITE_PAYLOAD_SIZE(drrw));
1916 }
1917
7bcb7f08
MA
1918 /*
1919 * If we are receiving an incremental large-block stream into
1920 * a dataset that previously did a non-large-block receive,
1921 * the WRITE record may be larger than the object's block
1922 * size. dmu_assign_arcbuf_by_dnode() handles this as long
1923 * as the arcbuf is not compressed, so decompress it here if
1924 * necessary.
1925 */
1926 if (drrw->drr_logical_size != dn->dn_datablksz &&
1927 arc_get_compression(abuf) != ZIO_COMPRESS_OFF) {
1928 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
1929 zbookmark_phys_t zb = {
1930 .zb_objset = dmu_objset_id(rwa->os),
1931 .zb_object = rwa->last_object,
1932 .zb_level = 0,
1933 .zb_blkid =
1934 drrw->drr_offset >> dn->dn_datablkshift,
1935 };
1936
1937 /*
1938 * The size of loaned arc bufs is counted in
1939 * arc_loaned_bytes. When we untransform
1940 * (decompress) the buf, its size increases. To
1941 * ensure that arc_loaned_bytes remains accurate, we
1942 * need to return (un-loan) the buf (with its
1943 * compressed size) and then re-loan it (with its
1944 * new, uncompressed size).
1945 */
1946 arc_return_buf(abuf, FTAG);
1947 VERIFY0(arc_untransform(abuf, dmu_objset_spa(rwa->os),
1948 &zb, B_FALSE));
1949 arc_loan_inuse_buf(abuf, FTAG);
1950 }
1951
7261fc2e
MA
1952 err = dmu_assign_arcbuf_by_dnode(dn,
1953 drrw->drr_offset, abuf, tx);
1954 if (err != 0) {
1955 /*
1956 * This rrd is left on the list, so the caller will
1957 * free it (and the arc_buf).
1958 */
1959 break;
1960 }
1961
1962 /*
1963 * Note: If the receive fails, we want the resume stream to
1964 * start with the same record that we last successfully
1965 * received (as opposed to the next record), so that we can
1966 * verify that we are resuming from the correct location.
1967 */
1968 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
1969
1970 list_remove(&rwa->write_batch, rrd);
1971 kmem_free(rrd, sizeof (*rrd));
1972 }
1973
1974 dmu_tx_commit(tx);
1975 dnode_rele(dn, FTAG);
1976 return (err);
1977}
1978
1979noinline static int
1980flush_write_batch(struct receive_writer_arg *rwa)
1981{
1982 if (list_is_empty(&rwa->write_batch))
1983 return (0);
1984 int err = rwa->err;
1985 if (err == 0)
1986 err = flush_write_batch_impl(rwa);
1987 if (err != 0) {
1988 struct receive_record_arg *rrd;
1989 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
1990 dmu_return_arcbuf(rrd->arc_buf);
1991 kmem_free(rrd, sizeof (*rrd));
1992 }
1993 }
1994 ASSERT(list_is_empty(&rwa->write_batch));
1995 return (err);
1996}
1997
1998noinline static int
1999receive_process_write_record(struct receive_writer_arg *rwa,
2000 struct receive_record_arg *rrd)
2001{
2002 int err = 0;
2003
2004 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2005 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
03916905
PD
2006
2007 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2008 !DMU_OT_IS_VALID(drrw->drr_type))
2009 return (SET_ERROR(EINVAL));
2010
2011 /*
2012 * For resuming to work, records must be in increasing order
2013 * by (object, offset).
2014 */
2015 if (drrw->drr_object < rwa->last_object ||
2016 (drrw->drr_object == rwa->last_object &&
2017 drrw->drr_offset < rwa->last_offset)) {
2018 return (SET_ERROR(EINVAL));
2019 }
7261fc2e
MA
2020
2021 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2022 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2023 uint64_t batch_size =
2024 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2025 if (first_rrd != NULL &&
2026 (drrw->drr_object != first_drrw->drr_object ||
2027 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2028 err = flush_write_batch(rwa);
2029 if (err != 0)
2030 return (err);
2031 }
2032
03916905
PD
2033 rwa->last_object = drrw->drr_object;
2034 rwa->last_offset = drrw->drr_offset;
2035
2036 if (rwa->last_object > rwa->max_object)
2037 rwa->max_object = rwa->last_object;
2038
7261fc2e 2039 list_insert_tail(&rwa->write_batch, rrd);
03916905 2040 /*
7261fc2e
MA
2041 * Return EAGAIN to indicate that we will use this rrd again,
2042 * so the caller should not free it
03916905 2043 */
7261fc2e 2044 return (EAGAIN);
03916905
PD
2045}
2046
03916905
PD
2047static int
2048receive_write_embedded(struct receive_writer_arg *rwa,
2049 struct drr_write_embedded *drrwe, void *data)
2050{
2051 dmu_tx_t *tx;
2052 int err;
2053
2054 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2055 return (SET_ERROR(EINVAL));
2056
2057 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2058 return (SET_ERROR(EINVAL));
2059
2060 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2061 return (SET_ERROR(EINVAL));
2062 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2063 return (SET_ERROR(EINVAL));
2064 if (rwa->raw)
2065 return (SET_ERROR(EINVAL));
2066
2067 if (drrwe->drr_object > rwa->max_object)
2068 rwa->max_object = drrwe->drr_object;
2069
2070 tx = dmu_tx_create(rwa->os);
2071
2072 dmu_tx_hold_write(tx, drrwe->drr_object,
2073 drrwe->drr_offset, drrwe->drr_length);
2074 err = dmu_tx_assign(tx, TXG_WAIT);
2075 if (err != 0) {
2076 dmu_tx_abort(tx);
2077 return (err);
2078 }
2079
2080 dmu_write_embedded(rwa->os, drrwe->drr_object,
2081 drrwe->drr_offset, data, drrwe->drr_etype,
2082 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2083 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2084
2085 /* See comment in restore_write. */
2086 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2087 dmu_tx_commit(tx);
2088 return (0);
2089}
2090
2091static int
2092receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2093 arc_buf_t *abuf)
2094{
2095 dmu_tx_t *tx;
2096 dmu_buf_t *db, *db_spill;
2097 int err;
03916905
PD
2098
2099 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2100 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2101 return (SET_ERROR(EINVAL));
2102
caf9dd20
BB
2103 /*
2104 * This is an unmodified spill block which was added to the stream
2105 * to resolve an issue with incorrectly removing spill blocks. It
2106 * should be ignored by current versions of the code which support
2107 * the DRR_FLAG_SPILL_BLOCK flag.
2108 */
2109 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2110 dmu_return_arcbuf(abuf);
2111 return (0);
2112 }
2113
03916905
PD
2114 if (rwa->raw) {
2115 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2116 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2117 drrs->drr_compressed_size == 0)
2118 return (SET_ERROR(EINVAL));
03916905
PD
2119 }
2120
2121 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2122 return (SET_ERROR(EINVAL));
2123
2124 if (drrs->drr_object > rwa->max_object)
2125 rwa->max_object = drrs->drr_object;
2126
2127 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2128 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2129 &db_spill)) != 0) {
2130 dmu_buf_rele(db, FTAG);
2131 return (err);
2132 }
2133
2134 tx = dmu_tx_create(rwa->os);
2135
2136 dmu_tx_hold_spill(tx, db->db_object);
2137
2138 err = dmu_tx_assign(tx, TXG_WAIT);
2139 if (err != 0) {
2140 dmu_buf_rele(db, FTAG);
2141 dmu_buf_rele(db_spill, FTAG);
2142 dmu_tx_abort(tx);
2143 return (err);
2144 }
2145
caf9dd20
BB
2146 /*
2147 * Spill blocks may both grow and shrink. When a change in size
2148 * occurs any existing dbuf must be updated to match the logical
2149 * size of the provided arc_buf_t.
2150 */
2151 if (db_spill->db_size != drrs->drr_length) {
2152 dmu_buf_will_fill(db_spill, tx);
03916905
PD
2153 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2154 drrs->drr_length, tx));
caf9dd20 2155 }
03916905
PD
2156
2157 if (rwa->byteswap && !arc_is_encrypted(abuf) &&
2158 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
2159 dmu_object_byteswap_t byteswap =
2160 DMU_OT_BYTESWAP(drrs->drr_type);
2161 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2162 DRR_SPILL_PAYLOAD_SIZE(drrs));
2163 }
2164
2165 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2166
2167 dmu_buf_rele(db, FTAG);
2168 dmu_buf_rele(db_spill, FTAG);
2169
2170 dmu_tx_commit(tx);
2171 return (0);
2172}
2173
2174/* ARGSUSED */
2175noinline static int
2176receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2177{
2178 int err;
2179
30af21b0 2180 if (drrf->drr_length != -1ULL &&
03916905
PD
2181 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2182 return (SET_ERROR(EINVAL));
2183
2184 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2185 return (SET_ERROR(EINVAL));
2186
2187 if (drrf->drr_object > rwa->max_object)
2188 rwa->max_object = drrf->drr_object;
2189
2190 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2191 drrf->drr_offset, drrf->drr_length);
2192
2193 return (err);
2194}
2195
2196static int
2197receive_object_range(struct receive_writer_arg *rwa,
2198 struct drr_object_range *drror)
2199{
2200 /*
2201 * By default, we assume this block is in our native format
2202 * (ZFS_HOST_BYTEORDER). We then take into account whether
2203 * the send stream is byteswapped (rwa->byteswap). Finally,
2204 * we need to byteswap again if this particular block was
2205 * in non-native format on the send side.
2206 */
2207 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2208 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2209
2210 /*
2211 * Since dnode block sizes are constant, we should not need to worry
2212 * about making sure that the dnode block size is the same on the
2213 * sending and receiving sides for the time being. For non-raw sends,
2214 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2215 * record at all). Raw sends require this record type because the
2216 * encryption parameters are used to protect an entire block of bonus
2217 * buffers. If the size of dnode blocks ever becomes variable,
2218 * handling will need to be added to ensure that dnode block sizes
2219 * match on the sending and receiving side.
2220 */
2221 if (drror->drr_numslots != DNODES_PER_BLOCK ||
2222 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2223 !rwa->raw)
2224 return (SET_ERROR(EINVAL));
2225
2226 if (drror->drr_firstobj > rwa->max_object)
2227 rwa->max_object = drror->drr_firstobj;
2228
2229 /*
2230 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2231 * so that the block of dnodes is not written out when it's empty,
2232 * and converted to a HOLE BP.
2233 */
2234 rwa->or_crypt_params_present = B_TRUE;
2235 rwa->or_firstobj = drror->drr_firstobj;
2236 rwa->or_numslots = drror->drr_numslots;
2237 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
2238 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
2239 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
2240 rwa->or_byteorder = byteorder;
2241
2242 return (0);
2243}
2244
30af21b0
PD
2245/*
2246 * Until we have the ability to redact large ranges of data efficiently, we
2247 * process these records as frees.
2248 */
2249/* ARGSUSED */
2250noinline static int
2251receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2252{
2253 struct drr_free drrf = {0};
2254 drrf.drr_length = drrr->drr_length;
2255 drrf.drr_object = drrr->drr_object;
2256 drrf.drr_offset = drrr->drr_offset;
2257 drrf.drr_toguid = drrr->drr_toguid;
2258 return (receive_free(rwa, &drrf));
2259}
2260
03916905
PD
2261/* used to destroy the drc_ds on error */
2262static void
2263dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2264{
2265 dsl_dataset_t *ds = drc->drc_ds;
2266 ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
2267
2268 /*
2269 * Wait for the txg sync before cleaning up the receive. For
2270 * resumable receives, this ensures that our resume state has
2271 * been written out to disk. For raw receives, this ensures
2272 * that the user accounting code will not attempt to do anything
2273 * after we stopped receiving the dataset.
2274 */
2275 txg_wait_synced(ds->ds_dir->dd_pool, 0);
2276 ds->ds_objset->os_raw_receive = B_FALSE;
2277
2278 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
61152d10
TC
2279 if (drc->drc_resumable && drc->drc_should_save &&
2280 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
03916905
PD
2281 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2282 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2283 } else {
2284 char name[ZFS_MAX_DATASET_NAME_LEN];
2285 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2286 dsl_dataset_name(ds, name);
2287 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2288 (void) dsl_destroy_head(name);
2289 }
2290}
2291
2292static void
30af21b0 2293receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
03916905 2294{
30af21b0
PD
2295 if (drc->drc_byteswap) {
2296 (void) fletcher_4_incremental_byteswap(buf, len,
2297 &drc->drc_cksum);
03916905 2298 } else {
30af21b0 2299 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
03916905
PD
2300 }
2301}
2302
2303/*
2304 * Read the payload into a buffer of size len, and update the current record's
2305 * payload field.
30af21b0
PD
2306 * Allocate drc->drc_next_rrd and read the next record's header into
2307 * drc->drc_next_rrd->header.
03916905
PD
2308 * Verify checksum of payload and next record.
2309 */
2310static int
30af21b0 2311receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
03916905
PD
2312{
2313 int err;
03916905
PD
2314
2315 if (len != 0) {
2316 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
30af21b0 2317 err = receive_read(drc, len, buf);
03916905
PD
2318 if (err != 0)
2319 return (err);
30af21b0 2320 receive_cksum(drc, len, buf);
03916905
PD
2321
2322 /* note: rrd is NULL when reading the begin record's payload */
30af21b0
PD
2323 if (drc->drc_rrd != NULL) {
2324 drc->drc_rrd->payload = buf;
2325 drc->drc_rrd->payload_size = len;
2326 drc->drc_rrd->bytes_read = drc->drc_bytes_read;
03916905 2327 }
960347d3
TC
2328 } else {
2329 ASSERT3P(buf, ==, NULL);
03916905
PD
2330 }
2331
30af21b0 2332 drc->drc_prev_cksum = drc->drc_cksum;
03916905 2333
30af21b0
PD
2334 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2335 err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2336 &drc->drc_next_rrd->header);
2337 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
03916905
PD
2338
2339 if (err != 0) {
30af21b0
PD
2340 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2341 drc->drc_next_rrd = NULL;
03916905
PD
2342 return (err);
2343 }
30af21b0
PD
2344 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2345 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2346 drc->drc_next_rrd = NULL;
03916905
PD
2347 return (SET_ERROR(EINVAL));
2348 }
2349
2350 /*
2351 * Note: checksum is of everything up to but not including the
2352 * checksum itself.
2353 */
2354 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2355 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
30af21b0 2356 receive_cksum(drc,
03916905 2357 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
30af21b0 2358 &drc->drc_next_rrd->header);
03916905 2359
30af21b0
PD
2360 zio_cksum_t cksum_orig =
2361 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2362 zio_cksum_t *cksump =
2363 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
03916905 2364
30af21b0
PD
2365 if (drc->drc_byteswap)
2366 byteswap_record(&drc->drc_next_rrd->header);
03916905
PD
2367
2368 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
30af21b0
PD
2369 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2370 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2371 drc->drc_next_rrd = NULL;
03916905
PD
2372 return (SET_ERROR(ECKSUM));
2373 }
2374
30af21b0 2375 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
03916905
PD
2376
2377 return (0);
2378}
2379
03916905
PD
2380/*
2381 * Issue the prefetch reads for any necessary indirect blocks.
2382 *
2383 * We use the object ignore list to tell us whether or not to issue prefetches
2384 * for a given object. We do this for both correctness (in case the blocksize
2385 * of an object has changed) and performance (if the object doesn't exist, don't
2386 * needlessly try to issue prefetches). We also trim the list as we go through
2387 * the stream to prevent it from growing to an unbounded size.
2388 *
2389 * The object numbers within will always be in sorted order, and any write
2390 * records we see will also be in sorted order, but they're not sorted with
2391 * respect to each other (i.e. we can get several object records before
2392 * receiving each object's write records). As a result, once we've reached a
2393 * given object number, we can safely remove any reference to lower object
2394 * numbers in the ignore list. In practice, we receive up to 32 object records
2395 * before receiving write records, so the list can have up to 32 nodes in it.
2396 */
2397/* ARGSUSED */
2398static void
30af21b0
PD
2399receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2400 uint64_t length)
03916905 2401{
30af21b0
PD
2402 if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2403 dmu_prefetch(drc->drc_os, object, 1, offset, length,
03916905
PD
2404 ZIO_PRIORITY_SYNC_READ);
2405 }
2406}
2407
2408/*
2409 * Read records off the stream, issuing any necessary prefetches.
2410 */
2411static int
30af21b0 2412receive_read_record(dmu_recv_cookie_t *drc)
03916905
PD
2413{
2414 int err;
2415
30af21b0 2416 switch (drc->drc_rrd->header.drr_type) {
03916905
PD
2417 case DRR_OBJECT:
2418 {
30af21b0
PD
2419 struct drr_object *drro =
2420 &drc->drc_rrd->header.drr_u.drr_object;
03916905 2421 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
960347d3 2422 void *buf = NULL;
03916905
PD
2423 dmu_object_info_t doi;
2424
960347d3
TC
2425 if (size != 0)
2426 buf = kmem_zalloc(size, KM_SLEEP);
2427
30af21b0 2428 err = receive_read_payload_and_next_header(drc, size, buf);
03916905
PD
2429 if (err != 0) {
2430 kmem_free(buf, size);
2431 return (err);
2432 }
30af21b0 2433 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
03916905
PD
2434 /*
2435 * See receive_read_prefetch for an explanation why we're
2436 * storing this object in the ignore_obj_list.
2437 */
2438 if (err == ENOENT || err == EEXIST ||
2439 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
30af21b0
PD
2440 objlist_insert(drc->drc_ignore_objlist,
2441 drro->drr_object);
03916905
PD
2442 err = 0;
2443 }
2444 return (err);
2445 }
2446 case DRR_FREEOBJECTS:
2447 {
30af21b0 2448 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905
PD
2449 return (err);
2450 }
2451 case DRR_WRITE:
2452 {
30af21b0 2453 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
03916905
PD
2454 arc_buf_t *abuf;
2455 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
2456
30af21b0 2457 if (drc->drc_raw) {
03916905
PD
2458 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2459 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
30af21b0 2460 drc->drc_byteswap;
03916905 2461
30af21b0 2462 abuf = arc_loan_raw_buf(dmu_objset_spa(drc->drc_os),
03916905
PD
2463 drrw->drr_object, byteorder, drrw->drr_salt,
2464 drrw->drr_iv, drrw->drr_mac, drrw->drr_type,
2465 drrw->drr_compressed_size, drrw->drr_logical_size,
10b3c7f5 2466 drrw->drr_compressiontype, 0);
03916905
PD
2467 } else if (DRR_WRITE_COMPRESSED(drrw)) {
2468 ASSERT3U(drrw->drr_compressed_size, >, 0);
2469 ASSERT3U(drrw->drr_logical_size, >=,
2470 drrw->drr_compressed_size);
2471 ASSERT(!is_meta);
2472 abuf = arc_loan_compressed_buf(
30af21b0 2473 dmu_objset_spa(drc->drc_os),
03916905 2474 drrw->drr_compressed_size, drrw->drr_logical_size,
10b3c7f5 2475 drrw->drr_compressiontype, 0);
03916905 2476 } else {
30af21b0 2477 abuf = arc_loan_buf(dmu_objset_spa(drc->drc_os),
03916905
PD
2478 is_meta, drrw->drr_logical_size);
2479 }
2480
30af21b0 2481 err = receive_read_payload_and_next_header(drc,
03916905
PD
2482 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
2483 if (err != 0) {
2484 dmu_return_arcbuf(abuf);
2485 return (err);
2486 }
30af21b0
PD
2487 drc->drc_rrd->arc_buf = abuf;
2488 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
03916905
PD
2489 drrw->drr_logical_size);
2490 return (err);
2491 }
2492 case DRR_WRITE_BYREF:
2493 {
2494 struct drr_write_byref *drrwb =
30af21b0
PD
2495 &drc->drc_rrd->header.drr_u.drr_write_byref;
2496 err = receive_read_payload_and_next_header(drc, 0, NULL);
2497 receive_read_prefetch(drc, drrwb->drr_object, drrwb->drr_offset,
03916905
PD
2498 drrwb->drr_length);
2499 return (err);
2500 }
2501 case DRR_WRITE_EMBEDDED:
2502 {
2503 struct drr_write_embedded *drrwe =
30af21b0 2504 &drc->drc_rrd->header.drr_u.drr_write_embedded;
03916905
PD
2505 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2506 void *buf = kmem_zalloc(size, KM_SLEEP);
2507
30af21b0 2508 err = receive_read_payload_and_next_header(drc, size, buf);
03916905
PD
2509 if (err != 0) {
2510 kmem_free(buf, size);
2511 return (err);
2512 }
2513
30af21b0 2514 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
03916905
PD
2515 drrwe->drr_length);
2516 return (err);
2517 }
2518 case DRR_FREE:
30af21b0 2519 case DRR_REDACT:
03916905
PD
2520 {
2521 /*
2522 * It might be beneficial to prefetch indirect blocks here, but
2523 * we don't really have the data to decide for sure.
2524 */
30af21b0 2525 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905
PD
2526 return (err);
2527 }
2528 case DRR_END:
2529 {
30af21b0
PD
2530 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2531 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2532 drre->drr_checksum))
03916905
PD
2533 return (SET_ERROR(ECKSUM));
2534 return (0);
2535 }
2536 case DRR_SPILL:
2537 {
30af21b0 2538 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
03916905 2539 arc_buf_t *abuf;
03916905 2540 /* DRR_SPILL records are either raw or uncompressed */
30af21b0 2541 if (drc->drc_raw) {
03916905
PD
2542 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2543 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
30af21b0 2544 drc->drc_byteswap;
03916905 2545
30af21b0
PD
2546 abuf = arc_loan_raw_buf(dmu_objset_spa(drc->drc_os),
2547 drrs->drr_object, byteorder, drrs->drr_salt,
03916905
PD
2548 drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2549 drrs->drr_compressed_size, drrs->drr_length,
10b3c7f5 2550 drrs->drr_compressiontype, 0);
03916905 2551 } else {
30af21b0 2552 abuf = arc_loan_buf(dmu_objset_spa(drc->drc_os),
03916905
PD
2553 DMU_OT_IS_METADATA(drrs->drr_type),
2554 drrs->drr_length);
2555 }
30af21b0
PD
2556 err = receive_read_payload_and_next_header(drc,
2557 DRR_SPILL_PAYLOAD_SIZE(drrs), abuf->b_data);
2558 if (err != 0)
03916905 2559 dmu_return_arcbuf(abuf);
30af21b0
PD
2560 else
2561 drc->drc_rrd->arc_buf = abuf;
03916905
PD
2562 return (err);
2563 }
2564 case DRR_OBJECT_RANGE:
2565 {
30af21b0 2566 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905 2567 return (err);
30af21b0 2568
03916905
PD
2569 }
2570 default:
2571 return (SET_ERROR(EINVAL));
2572 }
2573}
2574
30af21b0
PD
2575
2576
03916905
PD
2577static void
2578dprintf_drr(struct receive_record_arg *rrd, int err)
2579{
2580#ifdef ZFS_DEBUG
2581 switch (rrd->header.drr_type) {
2582 case DRR_OBJECT:
2583 {
2584 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2585 dprintf("drr_type = OBJECT obj = %llu type = %u "
2586 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2587 "compress = %u dn_slots = %u err = %d\n",
2588 drro->drr_object, drro->drr_type, drro->drr_bonustype,
2589 drro->drr_blksz, drro->drr_bonuslen,
2590 drro->drr_checksumtype, drro->drr_compress,
2591 drro->drr_dn_slots, err);
2592 break;
2593 }
2594 case DRR_FREEOBJECTS:
2595 {
2596 struct drr_freeobjects *drrfo =
2597 &rrd->header.drr_u.drr_freeobjects;
2598 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2599 "numobjs = %llu err = %d\n",
2600 drrfo->drr_firstobj, drrfo->drr_numobjs, err);
2601 break;
2602 }
2603 case DRR_WRITE:
2604 {
2605 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2606 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
5dbf8b4e 2607 "lsize = %llu cksumtype = %u flags = %u "
03916905
PD
2608 "compress = %u psize = %llu err = %d\n",
2609 drrw->drr_object, drrw->drr_type, drrw->drr_offset,
2610 drrw->drr_logical_size, drrw->drr_checksumtype,
2611 drrw->drr_flags, drrw->drr_compressiontype,
2612 drrw->drr_compressed_size, err);
2613 break;
2614 }
2615 case DRR_WRITE_BYREF:
2616 {
2617 struct drr_write_byref *drrwbr =
2618 &rrd->header.drr_u.drr_write_byref;
2619 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2620 "length = %llu toguid = %llx refguid = %llx "
2621 "refobject = %llu refoffset = %llu cksumtype = %u "
5dbf8b4e 2622 "flags = %u err = %d\n",
03916905
PD
2623 drrwbr->drr_object, drrwbr->drr_offset,
2624 drrwbr->drr_length, drrwbr->drr_toguid,
2625 drrwbr->drr_refguid, drrwbr->drr_refobject,
2626 drrwbr->drr_refoffset, drrwbr->drr_checksumtype,
2627 drrwbr->drr_flags, err);
2628 break;
2629 }
2630 case DRR_WRITE_EMBEDDED:
2631 {
2632 struct drr_write_embedded *drrwe =
2633 &rrd->header.drr_u.drr_write_embedded;
2634 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2635 "length = %llu compress = %u etype = %u lsize = %u "
2636 "psize = %u err = %d\n",
2637 drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length,
2638 drrwe->drr_compression, drrwe->drr_etype,
2639 drrwe->drr_lsize, drrwe->drr_psize, err);
2640 break;
2641 }
2642 case DRR_FREE:
2643 {
2644 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2645 dprintf("drr_type = FREE obj = %llu offset = %llu "
2646 "length = %lld err = %d\n",
2647 drrf->drr_object, drrf->drr_offset, drrf->drr_length,
2648 err);
2649 break;
2650 }
2651 case DRR_SPILL:
2652 {
2653 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2654 dprintf("drr_type = SPILL obj = %llu length = %llu "
2655 "err = %d\n", drrs->drr_object, drrs->drr_length, err);
2656 break;
2657 }
5dbf8b4e
TC
2658 case DRR_OBJECT_RANGE:
2659 {
2660 struct drr_object_range *drror =
2661 &rrd->header.drr_u.drr_object_range;
2662 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2663 "numslots = %llu flags = %u err = %d\n",
2664 drror->drr_firstobj, drror->drr_numslots,
2665 drror->drr_flags, err);
2666 break;
2667 }
03916905
PD
2668 default:
2669 return;
2670 }
2671#endif
2672}
2673
2674/*
2675 * Commit the records to the pool.
2676 */
2677static int
2678receive_process_record(struct receive_writer_arg *rwa,
2679 struct receive_record_arg *rrd)
2680{
2681 int err;
2682
2683 /* Processing in order, therefore bytes_read should be increasing. */
2684 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2685 rwa->bytes_read = rrd->bytes_read;
2686
7261fc2e
MA
2687 if (rrd->header.drr_type != DRR_WRITE) {
2688 err = flush_write_batch(rwa);
2689 if (err != 0) {
2690 if (rrd->arc_buf != NULL) {
2691 dmu_return_arcbuf(rrd->arc_buf);
2692 rrd->arc_buf = NULL;
2693 rrd->payload = NULL;
2694 } else if (rrd->payload != NULL) {
2695 kmem_free(rrd->payload, rrd->payload_size);
2696 rrd->payload = NULL;
2697 }
2698
2699 return (err);
2700 }
2701 }
2702
03916905
PD
2703 switch (rrd->header.drr_type) {
2704 case DRR_OBJECT:
2705 {
2706 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2707 err = receive_object(rwa, drro, rrd->payload);
2708 kmem_free(rrd->payload, rrd->payload_size);
2709 rrd->payload = NULL;
2710 break;
2711 }
2712 case DRR_FREEOBJECTS:
2713 {
2714 struct drr_freeobjects *drrfo =
2715 &rrd->header.drr_u.drr_freeobjects;
2716 err = receive_freeobjects(rwa, drrfo);
2717 break;
2718 }
2719 case DRR_WRITE:
2720 {
7261fc2e
MA
2721 err = receive_process_write_record(rwa, rrd);
2722 if (err != EAGAIN) {
2723 /*
2724 * On success, receive_process_write_record() returns
2725 * EAGAIN to indicate that we do not want to free
2726 * the rrd or arc_buf.
2727 */
2728 ASSERT(err != 0);
03916905 2729 dmu_return_arcbuf(rrd->arc_buf);
7261fc2e
MA
2730 rrd->arc_buf = NULL;
2731 }
03916905
PD
2732 break;
2733 }
03916905
PD
2734 case DRR_WRITE_EMBEDDED:
2735 {
2736 struct drr_write_embedded *drrwe =
2737 &rrd->header.drr_u.drr_write_embedded;
2738 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2739 kmem_free(rrd->payload, rrd->payload_size);
2740 rrd->payload = NULL;
2741 break;
2742 }
2743 case DRR_FREE:
2744 {
2745 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2746 err = receive_free(rwa, drrf);
2747 break;
2748 }
2749 case DRR_SPILL:
2750 {
2751 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2752 err = receive_spill(rwa, drrs, rrd->arc_buf);
03916905
PD
2753 if (err != 0)
2754 dmu_return_arcbuf(rrd->arc_buf);
2755 rrd->arc_buf = NULL;
2756 rrd->payload = NULL;
2757 break;
2758 }
2759 case DRR_OBJECT_RANGE:
2760 {
2761 struct drr_object_range *drror =
2762 &rrd->header.drr_u.drr_object_range;
5dbf8b4e
TC
2763 err = receive_object_range(rwa, drror);
2764 break;
03916905 2765 }
30af21b0
PD
2766 case DRR_REDACT:
2767 {
2768 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
2769 err = receive_redact(rwa, drrr);
2770 break;
2771 }
03916905 2772 default:
5dbf8b4e 2773 err = (SET_ERROR(EINVAL));
03916905
PD
2774 }
2775
2776 if (err != 0)
2777 dprintf_drr(rrd, err);
2778
2779 return (err);
2780}
2781
2782/*
2783 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2784 * receive_process_record When we're done, signal the main thread and exit.
2785 */
2786static void
2787receive_writer_thread(void *arg)
2788{
2789 struct receive_writer_arg *rwa = arg;
2790 struct receive_record_arg *rrd;
2791 fstrans_cookie_t cookie = spl_fstrans_mark();
2792
2793 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2794 rrd = bqueue_dequeue(&rwa->q)) {
2795 /*
2796 * If there's an error, the main thread will stop putting things
2797 * on the queue, but we need to clear everything in it before we
2798 * can exit.
2799 */
7261fc2e 2800 int err = 0;
03916905 2801 if (rwa->err == 0) {
7261fc2e 2802 err = receive_process_record(rwa, rrd);
03916905
PD
2803 } else if (rrd->arc_buf != NULL) {
2804 dmu_return_arcbuf(rrd->arc_buf);
2805 rrd->arc_buf = NULL;
2806 rrd->payload = NULL;
2807 } else if (rrd->payload != NULL) {
2808 kmem_free(rrd->payload, rrd->payload_size);
2809 rrd->payload = NULL;
2810 }
7261fc2e
MA
2811 /*
2812 * EAGAIN indicates that this record has been saved (on
2813 * raw->write_batch), and will be used again, so we don't
2814 * free it.
2815 */
2816 if (err != EAGAIN) {
1b9cd1a9
MA
2817 if (rwa->err == 0)
2818 rwa->err = err;
7261fc2e
MA
2819 kmem_free(rrd, sizeof (*rrd));
2820 }
03916905
PD
2821 }
2822 kmem_free(rrd, sizeof (*rrd));
7261fc2e
MA
2823
2824 int err = flush_write_batch(rwa);
2825 if (rwa->err == 0)
2826 rwa->err = err;
2827
03916905
PD
2828 mutex_enter(&rwa->mutex);
2829 rwa->done = B_TRUE;
2830 cv_signal(&rwa->cv);
2831 mutex_exit(&rwa->mutex);
2832 spl_fstrans_unmark(cookie);
2833 thread_exit();
2834}
2835
2836static int
30af21b0 2837resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
03916905
PD
2838{
2839 uint64_t val;
30af21b0
PD
2840 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
2841 uint64_t dsobj = dmu_objset_id(drc->drc_os);
03916905
PD
2842 uint64_t resume_obj, resume_off;
2843
2844 if (nvlist_lookup_uint64(begin_nvl,
2845 "resume_object", &resume_obj) != 0 ||
2846 nvlist_lookup_uint64(begin_nvl,
2847 "resume_offset", &resume_off) != 0) {
2848 return (SET_ERROR(EINVAL));
2849 }
2850 VERIFY0(zap_lookup(mos, dsobj,
2851 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2852 if (resume_obj != val)
2853 return (SET_ERROR(EINVAL));
2854 VERIFY0(zap_lookup(mos, dsobj,
2855 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2856 if (resume_off != val)
2857 return (SET_ERROR(EINVAL));
2858
2859 return (0);
2860}
2861
2862/*
2863 * Read in the stream's records, one by one, and apply them to the pool. There
2864 * are two threads involved; the thread that calls this function will spin up a
2865 * worker thread, read the records off the stream one by one, and issue
2866 * prefetches for any necessary indirect blocks. It will then push the records
2867 * onto an internal blocking queue. The worker thread will pull the records off
2868 * the queue, and actually write the data into the DMU. This way, the worker
2869 * thread doesn't have to wait for reads to complete, since everything it needs
2870 * (the indirect blocks) will be prefetched.
2871 *
2872 * NB: callers *must* call dmu_recv_end() if this succeeds.
2873 */
2874int
196bee4c 2875dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
03916905
PD
2876{
2877 int err = 0;
30af21b0 2878 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
03916905
PD
2879
2880 if (dsl_dataset_is_zapified(drc->drc_ds)) {
30af21b0 2881 uint64_t bytes;
03916905
PD
2882 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2883 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
30af21b0
PD
2884 sizeof (bytes), 1, &bytes);
2885 drc->drc_bytes_read += bytes;
03916905
PD
2886 }
2887
30af21b0 2888 drc->drc_ignore_objlist = objlist_create();
03916905
PD
2889
2890 /* these were verified in dmu_recv_begin */
2891 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2892 DMU_SUBSTREAM);
2893 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2894
03916905 2895 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
30af21b0
PD
2896 ASSERT0(drc->drc_os->os_encrypted &&
2897 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
03916905 2898
03916905 2899 /* handle DSL encryption key payload */
30af21b0 2900 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
03916905
PD
2901 nvlist_t *keynvl = NULL;
2902
30af21b0 2903 ASSERT(drc->drc_os->os_encrypted);
03916905
PD
2904 ASSERT(drc->drc_raw);
2905
30af21b0
PD
2906 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
2907 &keynvl);
03916905
PD
2908 if (err != 0)
2909 goto out;
2910
2911 /*
2912 * If this is a new dataset we set the key immediately.
2913 * Otherwise we don't want to change the key until we
2914 * are sure the rest of the receive succeeded so we stash
2915 * the keynvl away until then.
2916 */
30af21b0 2917 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
f00ab3f2
TC
2918 drc->drc_ds->ds_object, drc->drc_fromsnapobj,
2919 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
03916905
PD
2920 if (err != 0)
2921 goto out;
2922
f00ab3f2
TC
2923 /* see comment in dmu_recv_end_sync() */
2924 drc->drc_ivset_guid = 0;
2925 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
2926 &drc->drc_ivset_guid);
2927
03916905
PD
2928 if (!drc->drc_newfs)
2929 drc->drc_keynvl = fnvlist_dup(keynvl);
2930 }
2931
30af21b0
PD
2932 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2933 err = resume_check(drc, drc->drc_begin_nvl);
03916905
PD
2934 if (err != 0)
2935 goto out;
2936 }
2937
61152d10
TC
2938 /*
2939 * If we failed before this point we will clean up any new resume
2940 * state that was created. Now that we've gotten past the initial
2941 * checks we are ok to retain that resume state.
2942 */
2943 drc->drc_should_save = B_TRUE;
2944
30af21b0 2945 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
03916905
PD
2946 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
2947 offsetof(struct receive_record_arg, node));
2948 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
2949 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
30af21b0 2950 rwa->os = drc->drc_os;
03916905
PD
2951 rwa->byteswap = drc->drc_byteswap;
2952 rwa->resumable = drc->drc_resumable;
2953 rwa->raw = drc->drc_raw;
caf9dd20 2954 rwa->spill = drc->drc_spill;
7bcb7f08 2955 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
03916905 2956 rwa->os->os_raw_receive = drc->drc_raw;
7261fc2e
MA
2957 list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
2958 offsetof(struct receive_record_arg, node.bqn_node));
03916905
PD
2959
2960 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
2961 TS_RUN, minclsyspri);
2962 /*
2963 * We're reading rwa->err without locks, which is safe since we are the
2964 * only reader, and the worker thread is the only writer. It's ok if we
2965 * miss a write for an iteration or two of the loop, since the writer
2966 * thread will keep freeing records we send it until we send it an eos
2967 * marker.
2968 *
2969 * We can leave this loop in 3 ways: First, if rwa->err is
2970 * non-zero. In that case, the writer thread will free the rrd we just
2971 * pushed. Second, if we're interrupted; in that case, either it's the
30af21b0
PD
2972 * first loop and drc->drc_rrd was never allocated, or it's later, and
2973 * drc->drc_rrd has been handed off to the writer thread who will free
2974 * it. Finally, if receive_read_record fails or we're at the end of the
2975 * stream, then we free drc->drc_rrd and exit.
03916905
PD
2976 */
2977 while (rwa->err == 0) {
2978 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2979 err = SET_ERROR(EINTR);
2980 break;
2981 }
2982
30af21b0
PD
2983 ASSERT3P(drc->drc_rrd, ==, NULL);
2984 drc->drc_rrd = drc->drc_next_rrd;
2985 drc->drc_next_rrd = NULL;
2986 /* Allocates and loads header into drc->drc_next_rrd */
2987 err = receive_read_record(drc);
03916905 2988
30af21b0
PD
2989 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
2990 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
2991 drc->drc_rrd = NULL;
03916905
PD
2992 break;
2993 }
2994
30af21b0
PD
2995 bqueue_enqueue(&rwa->q, drc->drc_rrd,
2996 sizeof (struct receive_record_arg) +
2997 drc->drc_rrd->payload_size);
2998 drc->drc_rrd = NULL;
03916905 2999 }
30af21b0
PD
3000
3001 ASSERT3P(drc->drc_rrd, ==, NULL);
3002 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3003 drc->drc_rrd->eos_marker = B_TRUE;
3004 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
03916905
PD
3005
3006 mutex_enter(&rwa->mutex);
3007 while (!rwa->done) {
30af21b0
PD
3008 /*
3009 * We need to use cv_wait_sig() so that any process that may
3010 * be sleeping here can still fork.
3011 */
3012 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
03916905
PD
3013 }
3014 mutex_exit(&rwa->mutex);
3015
3016 /*
3017 * If we are receiving a full stream as a clone, all object IDs which
3018 * are greater than the maximum ID referenced in the stream are
3019 * by definition unused and must be freed.
3020 */
3021 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3022 uint64_t obj = rwa->max_object + 1;
3023 int free_err = 0;
3024 int next_err = 0;
3025
3026 while (next_err == 0) {
3027 free_err = dmu_free_long_object(rwa->os, obj);
3028 if (free_err != 0 && free_err != ENOENT)
3029 break;
3030
3031 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3032 }
3033
3034 if (err == 0) {
3035 if (free_err != 0 && free_err != ENOENT)
3036 err = free_err;
3037 else if (next_err != ESRCH)
3038 err = next_err;
3039 }
3040 }
3041
3042 cv_destroy(&rwa->cv);
3043 mutex_destroy(&rwa->mutex);
3044 bqueue_destroy(&rwa->q);
7261fc2e 3045 list_destroy(&rwa->write_batch);
03916905
PD
3046 if (err == 0)
3047 err = rwa->err;
3048
3049out:
f00ab3f2
TC
3050 /*
3051 * If we hit an error before we started the receive_writer_thread
3052 * we need to clean up the next_rrd we create by processing the
3053 * DRR_BEGIN record.
3054 */
30af21b0
PD
3055 if (drc->drc_next_rrd != NULL)
3056 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
f00ab3f2 3057
ec213971
MA
3058 /*
3059 * The objset will be invalidated by dmu_recv_end() when we do
3060 * dsl_dataset_clone_swap_sync_impl().
3061 */
3062 drc->drc_os = NULL;
3063
30af21b0
PD
3064 kmem_free(rwa, sizeof (*rwa));
3065 nvlist_free(drc->drc_begin_nvl);
03916905
PD
3066
3067 if (err != 0) {
3068 /*
3069 * Clean up references. If receive is not resumable,
3070 * destroy what we created, so we don't leave it in
3071 * the inconsistent state.
3072 */
3073 dmu_recv_cleanup_ds(drc);
3074 nvlist_free(drc->drc_keynvl);
3075 }
3076
30af21b0
PD
3077 objlist_destroy(drc->drc_ignore_objlist);
3078 drc->drc_ignore_objlist = NULL;
3079 *voffp = drc->drc_voff;
03916905
PD
3080 return (err);
3081}
3082
3083static int
3084dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3085{
3086 dmu_recv_cookie_t *drc = arg;
3087 dsl_pool_t *dp = dmu_tx_pool(tx);
3088 int error;
3089
3090 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3091
3092 if (!drc->drc_newfs) {
3093 dsl_dataset_t *origin_head;
3094
3095 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3096 if (error != 0)
3097 return (error);
3098 if (drc->drc_force) {
3099 /*
3100 * We will destroy any snapshots in tofs (i.e. before
3101 * origin_head) that are after the origin (which is
3102 * the snap before drc_ds, because drc_ds can not
3103 * have any snaps of its own).
3104 */
3105 uint64_t obj;
3106
3107 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3108 while (obj !=
3109 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3110 dsl_dataset_t *snap;
3111 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3112 &snap);
3113 if (error != 0)
3114 break;
3115 if (snap->ds_dir != origin_head->ds_dir)
3116 error = SET_ERROR(EINVAL);
3117 if (error == 0) {
3118 error = dsl_destroy_snapshot_check_impl(
3119 snap, B_FALSE);
3120 }
3121 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3122 dsl_dataset_rele(snap, FTAG);
3123 if (error != 0)
3124 break;
3125 }
3126 if (error != 0) {
3127 dsl_dataset_rele(origin_head, FTAG);
3128 return (error);
3129 }
3130 }
3131 if (drc->drc_keynvl != NULL) {
3132 error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3133 drc->drc_keynvl, tx);
3134 if (error != 0) {
3135 dsl_dataset_rele(origin_head, FTAG);
3136 return (error);
3137 }
3138 }
3139
3140 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3141 origin_head, drc->drc_force, drc->drc_owner, tx);
3142 if (error != 0) {
3143 dsl_dataset_rele(origin_head, FTAG);
3144 return (error);
3145 }
3146 error = dsl_dataset_snapshot_check_impl(origin_head,
e59a377a
MA
3147 drc->drc_tosnap, tx, B_TRUE, 1,
3148 drc->drc_cred, drc->drc_proc);
03916905
PD
3149 dsl_dataset_rele(origin_head, FTAG);
3150 if (error != 0)
3151 return (error);
3152
3153 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3154 } else {
3155 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
e59a377a
MA
3156 drc->drc_tosnap, tx, B_TRUE, 1,
3157 drc->drc_cred, drc->drc_proc);
03916905
PD
3158 }
3159 return (error);
3160}
3161
3162static void
3163dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3164{
3165 dmu_recv_cookie_t *drc = arg;
3166 dsl_pool_t *dp = dmu_tx_pool(tx);
3167 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
196bee4c 3168 uint64_t newsnapobj;
03916905
PD
3169
3170 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3171 tx, "snap=%s", drc->drc_tosnap);
3172 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3173
3174 if (!drc->drc_newfs) {
3175 dsl_dataset_t *origin_head;
3176
3177 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3178 &origin_head));
3179
3180 if (drc->drc_force) {
3181 /*
3182 * Destroy any snapshots of drc_tofs (origin_head)
3183 * after the origin (the snap before drc_ds).
3184 */
3185 uint64_t obj;
3186
3187 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3188 while (obj !=
3189 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3190 dsl_dataset_t *snap;
3191 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3192 &snap));
3193 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3194 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3195 dsl_destroy_snapshot_sync_impl(snap,
3196 B_FALSE, tx);
3197 dsl_dataset_rele(snap, FTAG);
3198 }
3199 }
3200 if (drc->drc_keynvl != NULL) {
3201 dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3202 drc->drc_keynvl, tx);
3203 nvlist_free(drc->drc_keynvl);
3204 drc->drc_keynvl = NULL;
3205 }
3206
30af21b0
PD
3207 VERIFY3P(drc->drc_ds->ds_prev, ==,
3208 origin_head->ds_prev);
03916905
PD
3209
3210 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3211 origin_head, tx);
0fdd6106
MA
3212 /*
3213 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3214 * so drc_os is no longer valid.
3215 */
3216 drc->drc_os = NULL;
3217
03916905
PD
3218 dsl_dataset_snapshot_sync_impl(origin_head,
3219 drc->drc_tosnap, tx);
3220
3221 /* set snapshot's creation time and guid */
3222 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3223 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3224 drc->drc_drrb->drr_creation_time;
3225 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3226 drc->drc_drrb->drr_toguid;
3227 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3228 ~DS_FLAG_INCONSISTENT;
3229
3230 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3231 dsl_dataset_phys(origin_head)->ds_flags &=
3232 ~DS_FLAG_INCONSISTENT;
3233
196bee4c 3234 newsnapobj =
03916905
PD
3235 dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3236
3237 dsl_dataset_rele(origin_head, FTAG);
3238 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3239
3240 if (drc->drc_owner != NULL)
3241 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3242 } else {
3243 dsl_dataset_t *ds = drc->drc_ds;
3244
3245 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3246
3247 /* set snapshot's creation time and guid */
3248 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3249 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3250 drc->drc_drrb->drr_creation_time;
3251 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3252 drc->drc_drrb->drr_toguid;
3253 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3254 ~DS_FLAG_INCONSISTENT;
3255
3256 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3257 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3258 if (dsl_dataset_has_resume_receive_state(ds)) {
3259 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3260 DS_FIELD_RESUME_FROMGUID, tx);
3261 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3262 DS_FIELD_RESUME_OBJECT, tx);
3263 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3264 DS_FIELD_RESUME_OFFSET, tx);
3265 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3266 DS_FIELD_RESUME_BYTES, tx);
3267 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3268 DS_FIELD_RESUME_TOGUID, tx);
3269 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3270 DS_FIELD_RESUME_TONAME, tx);
30af21b0
PD
3271 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3272 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
03916905 3273 }
196bee4c 3274 newsnapobj =
03916905
PD
3275 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3276 }
f00ab3f2
TC
3277
3278 /*
3279 * If this is a raw receive, the crypt_keydata nvlist will include
3280 * a to_ivset_guid for us to set on the new snapshot. This value
3281 * will override the value generated by the snapshot code. However,
3282 * this value may not be present, because older implementations of
3283 * the raw send code did not include this value, and we are still
3284 * allowed to receive them if the zfs_disable_ivset_guid_check
3285 * tunable is set, in which case we will leave the newly-generated
3286 * value.
3287 */
3288 if (drc->drc_raw && drc->drc_ivset_guid != 0) {
196bee4c 3289 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
f00ab3f2 3290 DMU_OT_DSL_DATASET, tx);
196bee4c 3291 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
f00ab3f2
TC
3292 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3293 &drc->drc_ivset_guid, tx));
3294 }
3295
03916905
PD
3296 /*
3297 * Release the hold from dmu_recv_begin. This must be done before
3298 * we return to open context, so that when we free the dataset's dnode
3299 * we can evict its bonus buffer. Since the dataset may be destroyed
3300 * at this point (and therefore won't have a valid pointer to the spa)
3301 * we release the key mapping manually here while we do have a valid
3302 * pointer, if it exists.
3303 */
3304 if (!drc->drc_raw && encrypted) {
3305 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3306 drc->drc_ds->ds_object, drc->drc_ds);
3307 }
3308 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3309 drc->drc_ds = NULL;
3310}
3311
03916905
PD
3312static int dmu_recv_end_modified_blocks = 3;
3313
3314static int
3315dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3316{
3317#ifdef _KERNEL
3318 /*
3319 * We will be destroying the ds; make sure its origin is unmounted if
3320 * necessary.
3321 */
3322 char name[ZFS_MAX_DATASET_NAME_LEN];
3323 dsl_dataset_name(drc->drc_ds, name);
3324 zfs_destroy_unmount_origin(name);
3325#endif
3326
3327 return (dsl_sync_task(drc->drc_tofs,
3328 dmu_recv_end_check, dmu_recv_end_sync, drc,
3329 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3330}
3331
3332static int
3333dmu_recv_new_end(dmu_recv_cookie_t *drc)
3334{
3335 return (dsl_sync_task(drc->drc_tofs,
3336 dmu_recv_end_check, dmu_recv_end_sync, drc,
3337 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3338}
3339
3340int
3341dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3342{
3343 int error;
3344
3345 drc->drc_owner = owner;
3346
3347 if (drc->drc_newfs)
3348 error = dmu_recv_new_end(drc);
3349 else
3350 error = dmu_recv_existing_end(drc);
3351
3352 if (error != 0) {
3353 dmu_recv_cleanup_ds(drc);
3354 nvlist_free(drc->drc_keynvl);
ec213971
MA
3355 } else {
3356 if (drc->drc_newfs) {
3357 zvol_create_minor(drc->drc_tofs);
3358 }
3359 char *snapname = kmem_asprintf("%s@%s",
3360 drc->drc_tofs, drc->drc_tosnap);
3361 zvol_create_minor(snapname);
3362 kmem_strfree(snapname);
03916905
PD
3363 }
3364 return (error);
3365}
3366
3367/*
3368 * Return TRUE if this objset is currently being received into.
3369 */
3370boolean_t
3371dmu_objset_is_receiving(objset_t *os)
3372{
3373 return (os->os_dsl_dataset != NULL &&
3374 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3375}
3376
03fdcb9a
MM
3377/* BEGIN CSTYLED */
3378ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW,
3379 "Maximum receive queue length");
30af21b0 3380
03fdcb9a
MM
3381ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW,
3382 "Receive queue fill fraction");
7261fc2e
MA
3383
3384ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW,
3385 "Maximum amount of writes to batch into one transaction");
03fdcb9a 3386/* END CSTYLED */