]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu_recv.c
libspl: include: sys/vtoc.h: reduce to absolute barest minimum
[mirror_zfs.git] / module / zfs / dmu_recv.c
CommitLineData
03916905
PD
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
196bee4c 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
03916905
PD
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
d8d418ff 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
10b3c7f5
MN
28 * Copyright (c) 2019, Klara Inc.
29 * Copyright (c) 2019, Allan Jude
03916905
PD
30 */
31
32#include <sys/dmu.h>
33#include <sys/dmu_impl.h>
30af21b0
PD
34#include <sys/dmu_send.h>
35#include <sys/dmu_recv.h>
03916905
PD
36#include <sys/dmu_tx.h>
37#include <sys/dbuf.h>
38#include <sys/dnode.h>
39#include <sys/zfs_context.h>
40#include <sys/dmu_objset.h>
41#include <sys/dmu_traverse.h>
42#include <sys/dsl_dataset.h>
43#include <sys/dsl_dir.h>
44#include <sys/dsl_prop.h>
45#include <sys/dsl_pool.h>
46#include <sys/dsl_synctask.h>
03916905
PD
47#include <sys/zfs_ioctl.h>
48#include <sys/zap.h>
30af21b0 49#include <sys/zvol.h>
03916905
PD
50#include <sys/zio_checksum.h>
51#include <sys/zfs_znode.h>
52#include <zfs_fletcher.h>
53#include <sys/avl.h>
54#include <sys/ddt.h>
55#include <sys/zfs_onexit.h>
03916905
PD
56#include <sys/dsl_destroy.h>
57#include <sys/blkptr.h>
58#include <sys/dsl_bookmark.h>
59#include <sys/zfeature.h>
60#include <sys/bqueue.h>
30af21b0
PD
61#include <sys/objlist.h>
62#ifdef _KERNEL
63#include <sys/zfs_vfsops.h>
64#endif
da92d5cb 65#include <sys/zfs_file.h>
03916905 66
18168da7
AZ
67static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
68static int zfs_recv_queue_ff = 20;
69static int zfs_recv_write_batch_size = 1024 * 1024;
03916905 70
18168da7
AZ
71static void *const dmu_recv_tag = "dmu_recv_tag";
72const char *const recv_clone_name = "%recv";
03916905 73
30af21b0
PD
74static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
75 void *buf);
76
77struct receive_record_arg {
78 dmu_replay_record_t header;
79 void *payload; /* Pointer to a buffer containing the payload */
80 /*
ba67d821 81 * If the record is a WRITE or SPILL, pointer to the abd containing the
30af21b0
PD
82 * payload.
83 */
ba67d821 84 abd_t *abd;
30af21b0
PD
85 int payload_size;
86 uint64_t bytes_read; /* bytes read from stream when record created */
87 boolean_t eos_marker; /* Marks the end of the stream */
88 bqueue_node_t node;
89};
90
91struct receive_writer_arg {
92 objset_t *os;
93 boolean_t byteswap;
94 bqueue_t q;
95
96 /*
ba67d821
MA
97 * These three members are used to signal to the main thread when
98 * we're done.
30af21b0
PD
99 */
100 kmutex_t mutex;
101 kcondvar_t cv;
102 boolean_t done;
103
104 int err;
30af21b0
PD
105 boolean_t resumable;
106 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */
107 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
7bcb7f08 108 boolean_t full; /* this is a full send stream */
30af21b0
PD
109 uint64_t last_object;
110 uint64_t last_offset;
111 uint64_t max_object; /* highest object ID referenced in stream */
112 uint64_t bytes_read; /* bytes read when current record created */
113
7261fc2e
MA
114 list_t write_batch;
115
30af21b0
PD
116 /* Encryption parameters for the last received DRR_OBJECT_RANGE */
117 boolean_t or_crypt_params_present;
118 uint64_t or_firstobj;
119 uint64_t or_numslots;
120 uint8_t or_salt[ZIO_DATA_SALT_LEN];
121 uint8_t or_iv[ZIO_DATA_IV_LEN];
122 uint8_t or_mac[ZIO_DATA_MAC_LEN];
123 boolean_t or_byteorder;
124};
125
03916905
PD
126typedef struct dmu_recv_begin_arg {
127 const char *drba_origin;
128 dmu_recv_cookie_t *drba_cookie;
129 cred_t *drba_cred;
e59a377a 130 proc_t *drba_proc;
03916905 131 dsl_crypto_params_t *drba_dcp;
03916905
PD
132} dmu_recv_begin_arg_t;
133
30af21b0
PD
134static void
135byteswap_record(dmu_replay_record_t *drr)
136{
137#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
138#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
139 drr->drr_type = BSWAP_32(drr->drr_type);
140 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
141
142 switch (drr->drr_type) {
143 case DRR_BEGIN:
144 DO64(drr_begin.drr_magic);
145 DO64(drr_begin.drr_versioninfo);
146 DO64(drr_begin.drr_creation_time);
147 DO32(drr_begin.drr_type);
148 DO32(drr_begin.drr_flags);
149 DO64(drr_begin.drr_toguid);
150 DO64(drr_begin.drr_fromguid);
151 break;
152 case DRR_OBJECT:
153 DO64(drr_object.drr_object);
154 DO32(drr_object.drr_type);
155 DO32(drr_object.drr_bonustype);
156 DO32(drr_object.drr_blksz);
157 DO32(drr_object.drr_bonuslen);
158 DO32(drr_object.drr_raw_bonuslen);
159 DO64(drr_object.drr_toguid);
160 DO64(drr_object.drr_maxblkid);
161 break;
162 case DRR_FREEOBJECTS:
163 DO64(drr_freeobjects.drr_firstobj);
164 DO64(drr_freeobjects.drr_numobjs);
165 DO64(drr_freeobjects.drr_toguid);
166 break;
167 case DRR_WRITE:
168 DO64(drr_write.drr_object);
169 DO32(drr_write.drr_type);
170 DO64(drr_write.drr_offset);
171 DO64(drr_write.drr_logical_size);
172 DO64(drr_write.drr_toguid);
173 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
174 DO64(drr_write.drr_key.ddk_prop);
175 DO64(drr_write.drr_compressed_size);
176 break;
30af21b0
PD
177 case DRR_WRITE_EMBEDDED:
178 DO64(drr_write_embedded.drr_object);
179 DO64(drr_write_embedded.drr_offset);
180 DO64(drr_write_embedded.drr_length);
181 DO64(drr_write_embedded.drr_toguid);
182 DO32(drr_write_embedded.drr_lsize);
183 DO32(drr_write_embedded.drr_psize);
184 break;
185 case DRR_FREE:
186 DO64(drr_free.drr_object);
187 DO64(drr_free.drr_offset);
188 DO64(drr_free.drr_length);
189 DO64(drr_free.drr_toguid);
190 break;
191 case DRR_SPILL:
192 DO64(drr_spill.drr_object);
193 DO64(drr_spill.drr_length);
194 DO64(drr_spill.drr_toguid);
195 DO64(drr_spill.drr_compressed_size);
196 DO32(drr_spill.drr_type);
197 break;
198 case DRR_OBJECT_RANGE:
199 DO64(drr_object_range.drr_firstobj);
200 DO64(drr_object_range.drr_numslots);
201 DO64(drr_object_range.drr_toguid);
202 break;
203 case DRR_REDACT:
204 DO64(drr_redact.drr_object);
205 DO64(drr_redact.drr_offset);
206 DO64(drr_redact.drr_length);
207 DO64(drr_redact.drr_toguid);
208 break;
209 case DRR_END:
210 DO64(drr_end.drr_toguid);
211 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
212 break;
213 default:
214 break;
215 }
216
217 if (drr->drr_type != DRR_BEGIN) {
218 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
219 }
220
221#undef DO64
222#undef DO32
223}
224
225static boolean_t
226redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
227{
228 for (int i = 0; i < num_snaps; i++) {
229 if (snaps[i] == guid)
230 return (B_TRUE);
231 }
232 return (B_FALSE);
233}
234
235/*
236 * Check that the new stream we're trying to receive is redacted with respect to
237 * a subset of the snapshots that the origin was redacted with respect to. For
238 * the reasons behind this, see the man page on redacted zfs sends and receives.
239 */
240static boolean_t
241compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
242 uint64_t *redact_snaps, uint64_t num_redact_snaps)
243{
244 /*
245 * Short circuit the comparison; if we are redacted with respect to
246 * more snapshots than the origin, we can't be redacted with respect
247 * to a subset.
248 */
249 if (num_redact_snaps > origin_num_snaps) {
250 return (B_FALSE);
251 }
252
253 for (int i = 0; i < num_redact_snaps; i++) {
254 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
255 redact_snaps[i])) {
256 return (B_FALSE);
257 }
258 }
259 return (B_TRUE);
260}
261
262static boolean_t
263redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
264{
265 uint64_t *origin_snaps;
266 uint64_t origin_num_snaps;
267 dmu_recv_cookie_t *drc = drba->drba_cookie;
268 struct drr_begin *drrb = drc->drc_drrb;
269 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
270 int err = 0;
271 boolean_t ret = B_TRUE;
272 uint64_t *redact_snaps;
273 uint_t numredactsnaps;
274
275 /*
276 * If this is a full send stream, we're safe no matter what.
277 */
278 if (drrb->drr_fromguid == 0)
279 return (ret);
280
281 VERIFY(dsl_dataset_get_uint64_array_feature(origin,
282 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
283
284 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
285 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
286 0) {
287 /*
288 * If the send stream was sent from the redaction bookmark or
289 * the redacted version of the dataset, then we're safe. Verify
290 * that this is from the a compatible redaction bookmark or
291 * redacted dataset.
292 */
293 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
294 redact_snaps, numredactsnaps)) {
295 err = EINVAL;
296 }
297 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
298 /*
299 * If the stream is redacted, it must be redacted with respect
300 * to a subset of what the origin is redacted with respect to.
301 * See case number 2 in the zfs man page section on redacted zfs
302 * send.
303 */
304 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
305 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
306
307 if (err != 0 || !compatible_redact_snaps(origin_snaps,
308 origin_num_snaps, redact_snaps, numredactsnaps)) {
309 err = EINVAL;
310 }
311 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
312 drrb->drr_toguid)) {
313 /*
314 * If the stream isn't redacted but the origin is, this must be
315 * one of the snapshots the origin is redacted with respect to.
316 * See case number 1 in the zfs man page section on redacted zfs
317 * send.
318 */
319 err = EINVAL;
320 }
321
322 if (err != 0)
323 ret = B_FALSE;
324 return (ret);
325}
326
7bcb7f08
MA
327/*
328 * If we previously received a stream with --large-block, we don't support
329 * receiving an incremental on top of it without --large-block. This avoids
330 * forcing a read-modify-write or trying to re-aggregate a string of WRITE
331 * records.
332 */
333static int
334recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
335{
336 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
337 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
338 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
339 return (0);
340}
341
03916905
PD
342static int
343recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
344 uint64_t fromguid, uint64_t featureflags)
345{
346 uint64_t val;
d8d418ff 347 uint64_t children;
03916905
PD
348 int error;
349 dsl_pool_t *dp = ds->ds_dir->dd_pool;
350 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
351 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
352 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
353
ebeb6f23 354 /* Temporary clone name must not exist. */
03916905
PD
355 error = zap_lookup(dp->dp_meta_objset,
356 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
357 8, 1, &val);
358 if (error != ENOENT)
30af21b0 359 return (error == 0 ? SET_ERROR(EBUSY) : error);
03916905 360
ebeb6f23
AG
361 /* Resume state must not be set. */
362 if (dsl_dataset_has_resume_receive_state(ds))
363 return (SET_ERROR(EBUSY));
364
365 /* New snapshot name must not exist. */
03916905
PD
366 error = zap_lookup(dp->dp_meta_objset,
367 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
368 drba->drba_cookie->drc_tosnap, 8, 1, &val);
369 if (error != ENOENT)
30af21b0 370 return (error == 0 ? SET_ERROR(EEXIST) : error);
03916905 371
ebeb6f23 372 /* Must not have children if receiving a ZVOL. */
d8d418ff 373 error = zap_count(dp->dp_meta_objset,
374 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
375 if (error != 0)
376 return (error);
377 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
378 children > 0)
379 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
380
03916905
PD
381 /*
382 * Check snapshot limit before receiving. We'll recheck again at the
383 * end, but might as well abort before receiving if we're already over
384 * the limit.
385 *
386 * Note that we do not check the file system limit with
387 * dsl_dir_fscount_check because the temporary %clones don't count
388 * against that limit.
389 */
390 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
e59a377a 391 NULL, drba->drba_cred, drba->drba_proc);
03916905
PD
392 if (error != 0)
393 return (error);
394
395 if (fromguid != 0) {
396 dsl_dataset_t *snap;
397 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
398
30af21b0 399 /* Can't perform a raw receive on top of a non-raw receive */
03916905
PD
400 if (!encrypted && raw)
401 return (SET_ERROR(EINVAL));
402
403 /* Encryption is incompatible with embedded data */
404 if (encrypted && embed)
405 return (SET_ERROR(EINVAL));
406
407 /* Find snapshot in this dir that matches fromguid. */
408 while (obj != 0) {
409 error = dsl_dataset_hold_obj(dp, obj, FTAG,
410 &snap);
411 if (error != 0)
412 return (SET_ERROR(ENODEV));
413 if (snap->ds_dir != ds->ds_dir) {
414 dsl_dataset_rele(snap, FTAG);
415 return (SET_ERROR(ENODEV));
416 }
417 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
418 break;
419 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
420 dsl_dataset_rele(snap, FTAG);
421 }
422 if (obj == 0)
423 return (SET_ERROR(ENODEV));
424
425 if (drba->drba_cookie->drc_force) {
f00ab3f2 426 drba->drba_cookie->drc_fromsnapobj = obj;
03916905
PD
427 } else {
428 /*
429 * If we are not forcing, there must be no
c08c30ed
TC
430 * changes since fromsnap. Raw sends have an
431 * additional constraint that requires that
432 * no "noop" snapshots exist between fromsnap
433 * and tosnap for the IVset checking code to
434 * work properly.
03916905 435 */
c08c30ed
TC
436 if (dsl_dataset_modified_since_snap(ds, snap) ||
437 (raw &&
438 dsl_dataset_phys(ds)->ds_prev_snap_obj !=
439 snap->ds_object)) {
03916905
PD
440 dsl_dataset_rele(snap, FTAG);
441 return (SET_ERROR(ETXTBSY));
442 }
f00ab3f2
TC
443 drba->drba_cookie->drc_fromsnapobj =
444 ds->ds_prev->ds_object;
03916905
PD
445 }
446
30af21b0
PD
447 if (dsl_dataset_feature_is_active(snap,
448 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
449 snap)) {
450 dsl_dataset_rele(snap, FTAG);
451 return (SET_ERROR(EINVAL));
452 }
453
7bcb7f08
MA
454 error = recv_check_large_blocks(snap, featureflags);
455 if (error != 0) {
456 dsl_dataset_rele(snap, FTAG);
457 return (error);
458 }
459
03916905
PD
460 dsl_dataset_rele(snap, FTAG);
461 } else {
462 /* if full, then must be forced */
463 if (!drba->drba_cookie->drc_force)
464 return (SET_ERROR(EEXIST));
465
466 /*
467 * We don't support using zfs recv -F to blow away
468 * encrypted filesystems. This would require the
469 * dsl dir to point to the old encryption key and
470 * the new one at the same time during the receive.
471 */
472 if ((!encrypted && raw) || encrypted)
473 return (SET_ERROR(EINVAL));
474
475 /*
476 * Perform the same encryption checks we would if
477 * we were creating a new dataset from scratch.
478 */
479 if (!raw) {
480 boolean_t will_encrypt;
481
482 error = dmu_objset_create_crypt_check(
483 ds->ds_dir->dd_parent, drba->drba_dcp,
484 &will_encrypt);
485 if (error != 0)
486 return (error);
487
488 if (will_encrypt && embed)
489 return (SET_ERROR(EINVAL));
490 }
03916905
PD
491 }
492
493 return (0);
03916905
PD
494}
495
30af21b0
PD
496/*
497 * Check that any feature flags used in the data stream we're receiving are
498 * supported by the pool we are receiving into.
499 *
500 * Note that some of the features we explicitly check here have additional
501 * (implicit) features they depend on, but those dependencies are enforced
502 * through the zfeature_register() calls declaring the features that we
503 * explicitly check.
504 */
505static int
506recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
507{
508 /*
509 * Check if there are any unsupported feature flags.
510 */
511 if (!DMU_STREAM_SUPPORTED(featureflags)) {
512 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
513 }
514
515 /* Verify pool version supports SA if SA_SPILL feature set */
516 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
517 spa_version(spa) < SPA_VERSION_SA)
518 return (SET_ERROR(ENOTSUP));
519
520 /*
10b3c7f5
MN
521 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
522 * and large_dnodes in the stream can only be used if those pool
523 * features are enabled because we don't attempt to decompress /
524 * un-embed / un-mooch / split up the blocks / dnodes during the
525 * receive process.
30af21b0
PD
526 */
527 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
528 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
529 return (SET_ERROR(ENOTSUP));
10b3c7f5
MN
530 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
531 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
532 return (SET_ERROR(ENOTSUP));
30af21b0
PD
533 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
534 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
535 return (SET_ERROR(ENOTSUP));
536 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
537 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
538 return (SET_ERROR(ENOTSUP));
539 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
540 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
541 return (SET_ERROR(ENOTSUP));
542
543 /*
544 * Receiving redacted streams requires that redacted datasets are
545 * enabled.
546 */
547 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
548 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
549 return (SET_ERROR(ENOTSUP));
550
551 return (0);
552}
553
03916905
PD
554static int
555dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
556{
557 dmu_recv_begin_arg_t *drba = arg;
558 dsl_pool_t *dp = dmu_tx_pool(tx);
559 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
560 uint64_t fromguid = drrb->drr_fromguid;
561 int flags = drrb->drr_flags;
40ab927a 562 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905 563 int error;
30af21b0 564 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
03916905
PD
565 dsl_dataset_t *ds;
566 const char *tofs = drba->drba_cookie->drc_tofs;
567
568 /* already checked */
569 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
570 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
571
572 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
573 DMU_COMPOUNDSTREAM ||
574 drrb->drr_type >= DMU_OST_NUMTYPES ||
575 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
576 return (SET_ERROR(EINVAL));
577
30af21b0
PD
578 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
579 if (error != 0)
580 return (error);
03916905 581
30af21b0 582 /* Resumable receives require extensible datasets */
03916905
PD
583 if (drba->drba_cookie->drc_resumable &&
584 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
585 return (SET_ERROR(ENOTSUP));
586
03916905
PD
587 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
588 /* raw receives require the encryption feature */
589 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
590 return (SET_ERROR(ENOTSUP));
591
592 /* embedded data is incompatible with encryption and raw recv */
593 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
594 return (SET_ERROR(EINVAL));
caf9dd20
BB
595
596 /* raw receives require spill block allocation flag */
597 if (!(flags & DRR_FLAG_SPILL_BLOCK))
598 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
03916905 599 } else {
68ddc06b
AF
600 /*
601 * We support unencrypted datasets below encrypted ones now,
602 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
603 * with a dataset we may encrypt.
604 */
605 if (drba->drba_dcp != NULL &&
606 drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
607 dsflags |= DS_HOLD_FLAG_DECRYPT;
608 }
03916905
PD
609 }
610
611 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
612 if (error == 0) {
613 /* target fs already exists; recv into temp clone */
614
615 /* Can't recv a clone into an existing fs */
616 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
617 dsl_dataset_rele_flags(ds, dsflags, FTAG);
618 return (SET_ERROR(EINVAL));
619 }
620
621 error = recv_begin_check_existing_impl(drba, ds, fromguid,
622 featureflags);
623 dsl_dataset_rele_flags(ds, dsflags, FTAG);
624 } else if (error == ENOENT) {
625 /* target fs does not exist; must be a full backup or clone */
626 char buf[ZFS_MAX_DATASET_NAME_LEN];
d8d418ff 627 objset_t *os;
03916905
PD
628
629 /*
630 * If it's a non-clone incremental, we are missing the
631 * target fs, so fail the recv.
632 */
30af21b0 633 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
03916905
PD
634 drba->drba_origin))
635 return (SET_ERROR(ENOENT));
636
637 /*
638 * If we're receiving a full send as a clone, and it doesn't
639 * contain all the necessary free records and freeobject
640 * records, reject it.
641 */
30af21b0 642 if (fromguid == 0 && drba->drba_origin != NULL &&
03916905
PD
643 !(flags & DRR_FLAG_FREERECORDS))
644 return (SET_ERROR(EINVAL));
645
646 /* Open the parent of tofs */
647 ASSERT3U(strlen(tofs), <, sizeof (buf));
648 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
da689887 649 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
03916905
PD
650 if (error != 0)
651 return (error);
652
653 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
654 drba->drba_origin == NULL) {
655 boolean_t will_encrypt;
656
657 /*
658 * Check that we aren't breaking any encryption rules
659 * and that we have all the parameters we need to
660 * create an encrypted dataset if necessary. If we are
661 * making an encrypted dataset the stream can't have
662 * embedded data.
663 */
664 error = dmu_objset_create_crypt_check(ds->ds_dir,
665 drba->drba_dcp, &will_encrypt);
666 if (error != 0) {
da689887 667 dsl_dataset_rele(ds, FTAG);
03916905
PD
668 return (error);
669 }
670
671 if (will_encrypt &&
672 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
da689887 673 dsl_dataset_rele(ds, FTAG);
03916905
PD
674 return (SET_ERROR(EINVAL));
675 }
676 }
677
678 /*
679 * Check filesystem and snapshot limits before receiving. We'll
680 * recheck snapshot limits again at the end (we create the
681 * filesystems and increment those counts during begin_sync).
682 */
683 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
e59a377a
MA
684 ZFS_PROP_FILESYSTEM_LIMIT, NULL,
685 drba->drba_cred, drba->drba_proc);
03916905 686 if (error != 0) {
da689887 687 dsl_dataset_rele(ds, FTAG);
03916905
PD
688 return (error);
689 }
690
691 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
e59a377a
MA
692 ZFS_PROP_SNAPSHOT_LIMIT, NULL,
693 drba->drba_cred, drba->drba_proc);
03916905 694 if (error != 0) {
da689887 695 dsl_dataset_rele(ds, FTAG);
03916905
PD
696 return (error);
697 }
698
d8d418ff 699 /* can't recv below anything but filesystems (eg. no ZVOLs) */
700 error = dmu_objset_from_ds(ds, &os);
701 if (error != 0) {
da689887 702 dsl_dataset_rele(ds, FTAG);
d8d418ff 703 return (error);
704 }
705 if (dmu_objset_type(os) != DMU_OST_ZFS) {
da689887 706 dsl_dataset_rele(ds, FTAG);
d8d418ff 707 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
708 }
709
03916905
PD
710 if (drba->drba_origin != NULL) {
711 dsl_dataset_t *origin;
03916905
PD
712 error = dsl_dataset_hold_flags(dp, drba->drba_origin,
713 dsflags, FTAG, &origin);
714 if (error != 0) {
da689887 715 dsl_dataset_rele(ds, FTAG);
03916905
PD
716 return (error);
717 }
718 if (!origin->ds_is_snapshot) {
719 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 720 dsl_dataset_rele(ds, FTAG);
03916905
PD
721 return (SET_ERROR(EINVAL));
722 }
723 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
724 fromguid != 0) {
725 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 726 dsl_dataset_rele(ds, FTAG);
03916905
PD
727 return (SET_ERROR(ENODEV));
728 }
30af21b0 729
03916905
PD
730 if (origin->ds_dir->dd_crypto_obj != 0 &&
731 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
732 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 733 dsl_dataset_rele(ds, FTAG);
03916905
PD
734 return (SET_ERROR(EINVAL));
735 }
30af21b0
PD
736
737 /*
738 * If the origin is redacted we need to verify that this
739 * send stream can safely be received on top of the
740 * origin.
741 */
742 if (dsl_dataset_feature_is_active(origin,
743 SPA_FEATURE_REDACTED_DATASETS)) {
744 if (!redact_check(drba, origin)) {
745 dsl_dataset_rele_flags(origin, dsflags,
746 FTAG);
747 dsl_dataset_rele_flags(ds, dsflags,
748 FTAG);
749 return (SET_ERROR(EINVAL));
750 }
751 }
752
7bcb7f08
MA
753 error = recv_check_large_blocks(ds, featureflags);
754 if (error != 0) {
755 dsl_dataset_rele_flags(origin, dsflags, FTAG);
756 dsl_dataset_rele_flags(ds, dsflags, FTAG);
757 return (error);
758 }
759
30af21b0 760 dsl_dataset_rele_flags(origin, dsflags, FTAG);
03916905 761 }
d8d418ff 762
da689887 763 dsl_dataset_rele(ds, FTAG);
03916905
PD
764 error = 0;
765 }
766 return (error);
767}
768
769static void
770dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
771{
772 dmu_recv_begin_arg_t *drba = arg;
773 dsl_pool_t *dp = dmu_tx_pool(tx);
774 objset_t *mos = dp->dp_meta_objset;
30af21b0
PD
775 dmu_recv_cookie_t *drc = drba->drba_cookie;
776 struct drr_begin *drrb = drc->drc_drrb;
777 const char *tofs = drc->drc_tofs;
778 uint64_t featureflags = drc->drc_featureflags;
03916905
PD
779 dsl_dataset_t *ds, *newds;
780 objset_t *os;
781 uint64_t dsobj;
40ab927a 782 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905
PD
783 int error;
784 uint64_t crflags = 0;
785 dsl_crypto_params_t dummy_dcp = { 0 };
786 dsl_crypto_params_t *dcp = drba->drba_dcp;
787
788 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
789 crflags |= DS_FLAG_CI_DATASET;
790
791 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
792 dsflags |= DS_HOLD_FLAG_DECRYPT;
793
794 /*
795 * Raw, non-incremental recvs always use a dummy dcp with
796 * the raw cmd set. Raw incremental recvs do not use a dcp
797 * since the encryption parameters are already set in stone.
798 */
30af21b0 799 if (dcp == NULL && drrb->drr_fromguid == 0 &&
03916905
PD
800 drba->drba_origin == NULL) {
801 ASSERT3P(dcp, ==, NULL);
802 dcp = &dummy_dcp;
803
804 if (featureflags & DMU_BACKUP_FEATURE_RAW)
805 dcp->cp_cmd = DCP_CMD_RAW_RECV;
806 }
807
808 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
809 if (error == 0) {
810 /* create temporary clone */
811 dsl_dataset_t *snap = NULL;
812
f00ab3f2 813 if (drba->drba_cookie->drc_fromsnapobj != 0) {
03916905 814 VERIFY0(dsl_dataset_hold_obj(dp,
f00ab3f2 815 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
03916905
PD
816 ASSERT3P(dcp, ==, NULL);
817 }
03916905
PD
818 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
819 snap, crflags, drba->drba_cred, dcp, tx);
f00ab3f2 820 if (drba->drba_cookie->drc_fromsnapobj != 0)
03916905
PD
821 dsl_dataset_rele(snap, FTAG);
822 dsl_dataset_rele_flags(ds, dsflags, FTAG);
823 } else {
824 dsl_dir_t *dd;
825 const char *tail;
826 dsl_dataset_t *origin = NULL;
827
828 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
829
830 if (drba->drba_origin != NULL) {
831 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
832 FTAG, &origin));
833 ASSERT3P(dcp, ==, NULL);
834 }
835
836 /* Create new dataset. */
837 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
838 origin, crflags, drba->drba_cred, dcp, tx);
839 if (origin != NULL)
840 dsl_dataset_rele(origin, FTAG);
841 dsl_dir_rele(dd, FTAG);
30af21b0
PD
842 drc->drc_newfs = B_TRUE;
843 }
844 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
845 &newds));
846 if (dsl_dataset_feature_is_active(newds,
847 SPA_FEATURE_REDACTED_DATASETS)) {
848 /*
849 * If the origin dataset is redacted, the child will be redacted
850 * when we create it. We clear the new dataset's
851 * redaction info; if it should be redacted, we'll fill
852 * in its information later.
853 */
854 dsl_dataset_deactivate_feature(newds,
855 SPA_FEATURE_REDACTED_DATASETS, tx);
03916905 856 }
03916905
PD
857 VERIFY0(dmu_objset_from_ds(newds, &os));
858
30af21b0 859 if (drc->drc_resumable) {
03916905
PD
860 dsl_dataset_zapify(newds, tx);
861 if (drrb->drr_fromguid != 0) {
862 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
863 8, 1, &drrb->drr_fromguid, tx));
864 }
865 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
866 8, 1, &drrb->drr_toguid, tx));
867 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
868 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
869 uint64_t one = 1;
870 uint64_t zero = 0;
871 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
872 8, 1, &one, tx));
873 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
874 8, 1, &zero, tx));
875 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
876 8, 1, &zero, tx));
877 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
878 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
879 8, 1, &one, tx));
880 }
881 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
882 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
883 8, 1, &one, tx));
884 }
885 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
886 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
887 8, 1, &one, tx));
888 }
889 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
890 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
891 8, 1, &one, tx));
892 }
30af21b0
PD
893
894 uint64_t *redact_snaps;
895 uint_t numredactsnaps;
896 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
897 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
898 &numredactsnaps) == 0) {
899 VERIFY0(zap_add(mos, dsobj,
900 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
901 sizeof (*redact_snaps), numredactsnaps,
902 redact_snaps, tx));
903 }
03916905
PD
904 }
905
906 /*
907 * Usually the os->os_encrypted value is tied to the presence of a
908 * DSL Crypto Key object in the dd. However, that will not be received
909 * until dmu_recv_stream(), so we set the value manually for now.
910 */
911 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
912 os->os_encrypted = B_TRUE;
913 drba->drba_cookie->drc_raw = B_TRUE;
914 }
915
30af21b0
PD
916 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
917 uint64_t *redact_snaps;
918 uint_t numredactsnaps;
919 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
920 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
921 dsl_dataset_activate_redaction(newds, redact_snaps,
922 numredactsnaps, tx);
923 }
924
03916905
PD
925 dmu_buf_will_dirty(newds->ds_dbuf, tx);
926 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
927
928 /*
929 * If we actually created a non-clone, we need to create the objset
930 * in our new dataset. If this is a raw send we postpone this until
931 * dmu_recv_stream() so that we can allocate the metadnode with the
932 * properties from the DRR_BEGIN payload.
933 */
934 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
935 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
936 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
937 (void) dmu_objset_create_impl(dp->dp_spa,
938 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
939 }
940 rrw_exit(&newds->ds_bp_rwlock, FTAG);
941
942 drba->drba_cookie->drc_ds = newds;
0fdd6106 943 drba->drba_cookie->drc_os = os;
03916905 944
74756182 945 spa_history_log_internal_ds(newds, "receive", tx, " ");
03916905
PD
946}
947
948static int
949dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
950{
951 dmu_recv_begin_arg_t *drba = arg;
30af21b0 952 dmu_recv_cookie_t *drc = drba->drba_cookie;
03916905 953 dsl_pool_t *dp = dmu_tx_pool(tx);
30af21b0 954 struct drr_begin *drrb = drc->drc_drrb;
03916905 955 int error;
40ab927a 956 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905 957 dsl_dataset_t *ds;
30af21b0 958 const char *tofs = drc->drc_tofs;
03916905
PD
959
960 /* already checked */
961 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
30af21b0 962 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
03916905
PD
963
964 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
965 DMU_COMPOUNDSTREAM ||
966 drrb->drr_type >= DMU_OST_NUMTYPES)
967 return (SET_ERROR(EINVAL));
968
03916905 969 /*
30af21b0
PD
970 * This is mostly a sanity check since we should have already done these
971 * checks during a previous attempt to receive the data.
03916905 972 */
30af21b0
PD
973 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
974 dp->dp_spa);
975 if (error != 0)
976 return (error);
03916905
PD
977
978 /* 6 extra bytes for /%recv */
979 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
30af21b0 980
03916905
PD
981 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
982 tofs, recv_clone_name);
983
30af21b0 984 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
caf9dd20
BB
985 /* raw receives require spill block allocation flag */
986 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
987 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
988 } else {
03916905 989 dsflags |= DS_HOLD_FLAG_DECRYPT;
caf9dd20 990 }
03916905
PD
991
992 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
993 /* %recv does not exist; continue in tofs */
994 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
995 if (error != 0)
996 return (error);
997 }
998
999 /* check that ds is marked inconsistent */
1000 if (!DS_IS_INCONSISTENT(ds)) {
1001 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1002 return (SET_ERROR(EINVAL));
1003 }
1004
1005 /* check that there is resuming data, and that the toguid matches */
1006 if (!dsl_dataset_is_zapified(ds)) {
1007 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1008 return (SET_ERROR(EINVAL));
1009 }
1010 uint64_t val;
1011 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1012 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1013 if (error != 0 || drrb->drr_toguid != val) {
1014 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1015 return (SET_ERROR(EINVAL));
1016 }
1017
1018 /*
1019 * Check if the receive is still running. If so, it will be owned.
1020 * Note that nothing else can own the dataset (e.g. after the receive
1021 * fails) because it will be marked inconsistent.
1022 */
1023 if (dsl_dataset_has_owner(ds)) {
1024 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1025 return (SET_ERROR(EBUSY));
1026 }
1027
1028 /* There should not be any snapshots of this fs yet. */
1029 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1030 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1031 return (SET_ERROR(EINVAL));
1032 }
1033
1034 /*
1035 * Note: resume point will be checked when we process the first WRITE
1036 * record.
1037 */
1038
1039 /* check that the origin matches */
1040 val = 0;
1041 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1042 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1043 if (drrb->drr_fromguid != val) {
1044 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1045 return (SET_ERROR(EINVAL));
1046 }
1047
aa646323 1048 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
61152d10
TC
1049 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1050
30af21b0
PD
1051 /*
1052 * If we're resuming, and the send is redacted, then the original send
1053 * must have been redacted, and must have been redacted with respect to
1054 * the same snapshots.
1055 */
1056 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1057 uint64_t num_ds_redact_snaps;
1058 uint64_t *ds_redact_snaps;
1059
1060 uint_t num_stream_redact_snaps;
1061 uint64_t *stream_redact_snaps;
1062
1063 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1064 BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1065 &num_stream_redact_snaps) != 0) {
1066 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1067 return (SET_ERROR(EINVAL));
1068 }
1069
1070 if (!dsl_dataset_get_uint64_array_feature(ds,
1071 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1072 &ds_redact_snaps)) {
1073 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1074 return (SET_ERROR(EINVAL));
1075 }
1076
1077 for (int i = 0; i < num_ds_redact_snaps; i++) {
1078 if (!redact_snaps_contains(ds_redact_snaps,
1079 num_ds_redact_snaps, stream_redact_snaps[i])) {
1080 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1081 return (SET_ERROR(EINVAL));
1082 }
1083 }
1084 }
7bcb7f08
MA
1085
1086 error = recv_check_large_blocks(ds, drc->drc_featureflags);
1087 if (error != 0) {
1088 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1089 return (error);
1090 }
1091
03916905
PD
1092 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1093 return (0);
1094}
1095
1096static void
1097dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1098{
1099 dmu_recv_begin_arg_t *drba = arg;
1100 dsl_pool_t *dp = dmu_tx_pool(tx);
1101 const char *tofs = drba->drba_cookie->drc_tofs;
30af21b0 1102 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
03916905 1103 dsl_dataset_t *ds;
40ab927a 1104 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905
PD
1105 /* 6 extra bytes for /%recv */
1106 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1107
30af21b0
PD
1108 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1109 recv_clone_name);
03916905
PD
1110
1111 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1112 drba->drba_cookie->drc_raw = B_TRUE;
1113 } else {
1114 dsflags |= DS_HOLD_FLAG_DECRYPT;
1115 }
1116
30af21b0
PD
1117 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1118 != 0) {
03916905 1119 /* %recv does not exist; continue in tofs */
30af21b0
PD
1120 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1121 &ds));
03916905
PD
1122 drba->drba_cookie->drc_newfs = B_TRUE;
1123 }
1124
03916905 1125 ASSERT(DS_IS_INCONSISTENT(ds));
03916905
PD
1126 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1127 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1128 drba->drba_cookie->drc_raw);
1129 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1130
1131 drba->drba_cookie->drc_ds = ds;
0fdd6106 1132 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
61152d10 1133 drba->drba_cookie->drc_should_save = B_TRUE;
03916905 1134
74756182 1135 spa_history_log_internal_ds(ds, "resume receive", tx, " ");
03916905
PD
1136}
1137
1138/*
1139 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1140 * succeeds; otherwise we will leak the holds on the datasets.
1141 */
1142int
1143dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1144 boolean_t force, boolean_t resumable, nvlist_t *localprops,
da92d5cb
MM
1145 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1146 zfs_file_t *fp, offset_t *voffp)
03916905
PD
1147{
1148 dmu_recv_begin_arg_t drba = { 0 };
30af21b0 1149 int err;
03916905
PD
1150
1151 bzero(drc, sizeof (dmu_recv_cookie_t));
1152 drc->drc_drr_begin = drr_begin;
1153 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1154 drc->drc_tosnap = tosnap;
1155 drc->drc_tofs = tofs;
1156 drc->drc_force = force;
1157 drc->drc_resumable = resumable;
1158 drc->drc_cred = CRED();
e59a377a 1159 drc->drc_proc = curproc;
03916905
PD
1160 drc->drc_clone = (origin != NULL);
1161
1162 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1163 drc->drc_byteswap = B_TRUE;
1164 (void) fletcher_4_incremental_byteswap(drr_begin,
1165 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1166 byteswap_record(drr_begin);
1167 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1168 (void) fletcher_4_incremental_native(drr_begin,
1169 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1170 } else {
1171 return (SET_ERROR(EINVAL));
1172 }
1173
da92d5cb 1174 drc->drc_fp = fp;
30af21b0
PD
1175 drc->drc_voff = *voffp;
1176 drc->drc_featureflags =
1177 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1178
1179 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1180 void *payload = NULL;
1181 if (payloadlen != 0)
1182 payload = kmem_alloc(payloadlen, KM_SLEEP);
1183
1184 err = receive_read_payload_and_next_header(drc, payloadlen,
1185 payload);
1186 if (err != 0) {
1187 kmem_free(payload, payloadlen);
1188 return (err);
1189 }
1190 if (payloadlen != 0) {
1191 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1192 KM_SLEEP);
1193 kmem_free(payload, payloadlen);
1194 if (err != 0) {
1195 kmem_free(drc->drc_next_rrd,
1196 sizeof (*drc->drc_next_rrd));
1197 return (err);
1198 }
1199 }
1200
caf9dd20
BB
1201 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1202 drc->drc_spill = B_TRUE;
1203
03916905
PD
1204 drba.drba_origin = origin;
1205 drba.drba_cookie = drc;
1206 drba.drba_cred = CRED();
e59a377a 1207 drba.drba_proc = curproc;
03916905 1208
30af21b0
PD
1209 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1210 err = dsl_sync_task(tofs,
03916905 1211 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
30af21b0
PD
1212 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1213 } else {
03916905
PD
1214
1215 /*
1216 * For non-raw, non-incremental, non-resuming receives the
1217 * user can specify encryption parameters on the command line
1218 * with "zfs recv -o". For these receives we create a dcp and
1219 * pass it to the sync task. Creating the dcp will implicitly
1220 * remove the encryption params from the localprops nvlist,
1221 * which avoids errors when trying to set these normally
1222 * read-only properties. Any other kind of receive that
1223 * attempts to set these properties will fail as a result.
1224 */
1225 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1226 DMU_BACKUP_FEATURE_RAW) == 0 &&
1227 origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1228 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1229 localprops, hidden_args, &drba.drba_dcp);
03916905
PD
1230 }
1231
30af21b0
PD
1232 if (err == 0) {
1233 err = dsl_sync_task(tofs,
1234 dmu_recv_begin_check, dmu_recv_begin_sync,
1235 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1236 dsl_crypto_params_free(drba.drba_dcp, !!err);
1237 }
1238 }
03916905 1239
30af21b0
PD
1240 if (err != 0) {
1241 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1242 nvlist_free(drc->drc_begin_nvl);
03916905 1243 }
30af21b0 1244 return (err);
03916905
PD
1245}
1246
03916905 1247static int
30af21b0 1248receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
03916905
PD
1249{
1250 int done = 0;
1251
1252 /*
1253 * The code doesn't rely on this (lengths being multiples of 8). See
1254 * comment in dump_bytes.
1255 */
1256 ASSERT(len % 8 == 0 ||
30af21b0 1257 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
03916905
PD
1258
1259 while (done < len) {
1260 ssize_t resid;
8b240f14
MA
1261 zfs_file_t *fp = drc->drc_fp;
1262 int err = zfs_file_read(fp, (char *)buf + done,
da92d5cb 1263 len - done, &resid);
03916905
PD
1264 if (resid == len - done) {
1265 /*
7145123b
PD
1266 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1267 * that the receive was interrupted and can
1268 * potentially be resumed.
03916905 1269 */
8b240f14 1270 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
03916905 1271 }
30af21b0 1272 drc->drc_voff += len - done - resid;
03916905 1273 done = len - resid;
8b240f14
MA
1274 if (err != 0)
1275 return (err);
03916905
PD
1276 }
1277
30af21b0 1278 drc->drc_bytes_read += len;
03916905
PD
1279
1280 ASSERT3U(done, ==, len);
1281 return (0);
1282}
1283
03916905
PD
1284static inline uint8_t
1285deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1286{
1287 if (bonus_type == DMU_OT_SA) {
1288 return (1);
1289 } else {
1290 return (1 +
1291 ((DN_OLD_MAX_BONUSLEN -
1292 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1293 }
1294}
1295
1296static void
1297save_resume_state(struct receive_writer_arg *rwa,
1298 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1299{
1300 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1301
1302 if (!rwa->resumable)
1303 return;
1304
1305 /*
1306 * We use ds_resume_bytes[] != 0 to indicate that we need to
1307 * update this on disk, so it must not be 0.
1308 */
1309 ASSERT(rwa->bytes_read != 0);
1310
1311 /*
1312 * We only resume from write records, which have a valid
1313 * (non-meta-dnode) object number.
1314 */
1315 ASSERT(object != 0);
1316
1317 /*
1318 * For resuming to work correctly, we must receive records in order,
1319 * sorted by object,offset. This is checked by the callers, but
1320 * assert it here for good measure.
1321 */
1322 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1323 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1324 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1325 ASSERT3U(rwa->bytes_read, >=,
1326 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1327
1328 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1329 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1330 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1331}
1332
7bcb7f08
MA
1333static int
1334receive_object_is_same_generation(objset_t *os, uint64_t object,
1335 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1336 const void *new_bonus, boolean_t *samegenp)
1337{
1338 zfs_file_info_t zoi;
1339 int err;
1340
1341 dmu_buf_t *old_bonus_dbuf;
1342 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1343 if (err != 0)
1344 return (err);
1345 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1346 &zoi);
1347 dmu_buf_rele(old_bonus_dbuf, FTAG);
1348 if (err != 0)
1349 return (err);
1350 uint64_t old_gen = zoi.zfi_generation;
1351
1352 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1353 if (err != 0)
1354 return (err);
1355 uint64_t new_gen = zoi.zfi_generation;
1356
1357 *samegenp = (old_gen == new_gen);
1358 return (0);
1359}
1360
1361static int
1362receive_handle_existing_object(const struct receive_writer_arg *rwa,
1363 const struct drr_object *drro, const dmu_object_info_t *doi,
1364 const void *bonus_data,
1365 uint64_t *object_to_hold, uint32_t *new_blksz)
1366{
1367 uint32_t indblksz = drro->drr_indblkshift ?
1368 1ULL << drro->drr_indblkshift : 0;
1369 int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1370 drro->drr_bonuslen);
1371 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1372 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1373 boolean_t do_free_range = B_FALSE;
1374 int err;
1375
1376 *object_to_hold = drro->drr_object;
1377
1378 /* nblkptr should be bounded by the bonus size and type */
1379 if (rwa->raw && nblkptr != drro->drr_nblkptr)
1380 return (SET_ERROR(EINVAL));
1381
1382 /*
1383 * After the previous send stream, the sending system may
1384 * have freed this object, and then happened to re-allocate
1385 * this object number in a later txg. In this case, we are
1386 * receiving a different logical file, and the block size may
1387 * appear to be different. i.e. we may have a different
1388 * block size for this object than what the send stream says.
1389 * In this case we need to remove the object's contents,
1390 * so that its structure can be changed and then its contents
1391 * entirely replaced by subsequent WRITE records.
1392 *
1393 * If this is a -L (--large-block) incremental stream, and
1394 * the previous stream was not -L, the block size may appear
1395 * to increase. i.e. we may have a smaller block size for
1396 * this object than what the send stream says. In this case
1397 * we need to keep the object's contents and block size
1398 * intact, so that we don't lose parts of the object's
1399 * contents that are not changed by this incremental send
1400 * stream.
1401 *
1402 * We can distinguish between the two above cases by using
1403 * the ZPL's generation number (see
1404 * receive_object_is_same_generation()). However, we only
1405 * want to rely on the generation number when absolutely
1406 * necessary, because with raw receives, the generation is
1407 * encrypted. We also want to minimize dependence on the
1408 * ZPL, so that other types of datasets can also be received
1409 * (e.g. ZVOLs, although note that ZVOLS currently do not
1410 * reallocate their objects or change their structure).
1411 * Therefore, we check a number of different cases where we
1412 * know it is safe to discard the object's contents, before
1413 * using the ZPL's generation number to make the above
1414 * distinction.
1415 */
1416 if (drro->drr_blksz != doi->doi_data_block_size) {
1417 if (rwa->raw) {
1418 /*
1419 * RAW streams always have large blocks, so
1420 * we are sure that the data is not needed
1421 * due to changing --large-block to be on.
1422 * Which is fortunate since the bonus buffer
1423 * (which contains the ZPL generation) is
1424 * encrypted, and the key might not be
1425 * loaded.
1426 */
1427 do_free_range = B_TRUE;
1428 } else if (rwa->full) {
1429 /*
1430 * This is a full send stream, so it always
1431 * replaces what we have. Even if the
1432 * generation numbers happen to match, this
1433 * can not actually be the same logical file.
1434 * This is relevant when receiving a full
1435 * send as a clone.
1436 */
1437 do_free_range = B_TRUE;
1438 } else if (drro->drr_type !=
1439 DMU_OT_PLAIN_FILE_CONTENTS ||
1440 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1441 /*
1442 * PLAIN_FILE_CONTENTS are the only type of
1443 * objects that have ever been stored with
1444 * large blocks, so we don't need the special
1445 * logic below. ZAP blocks can shrink (when
1446 * there's only one block), so we don't want
1447 * to hit the error below about block size
1448 * only increasing.
1449 */
1450 do_free_range = B_TRUE;
1451 } else if (doi->doi_max_offset <=
1452 doi->doi_data_block_size) {
1453 /*
1454 * There is only one block. We can free it,
1455 * because its contents will be replaced by a
1456 * WRITE record. This can not be the no-L ->
1457 * -L case, because the no-L case would have
1458 * resulted in multiple blocks. If we
1459 * supported -L -> no-L, it would not be safe
1460 * to free the file's contents. Fortunately,
1461 * that is not allowed (see
1462 * recv_check_large_blocks()).
1463 */
1464 do_free_range = B_TRUE;
1465 } else {
1466 boolean_t is_same_gen;
1467 err = receive_object_is_same_generation(rwa->os,
1468 drro->drr_object, doi->doi_bonus_type,
1469 drro->drr_bonustype, bonus_data, &is_same_gen);
1470 if (err != 0)
1471 return (SET_ERROR(EINVAL));
1472
1473 if (is_same_gen) {
1474 /*
1475 * This is the same logical file, and
1476 * the block size must be increasing.
1477 * It could only decrease if
1478 * --large-block was changed to be
1479 * off, which is checked in
1480 * recv_check_large_blocks().
1481 */
1482 if (drro->drr_blksz <=
1483 doi->doi_data_block_size)
1484 return (SET_ERROR(EINVAL));
1485 /*
1486 * We keep the existing blocksize and
1487 * contents.
1488 */
1489 *new_blksz =
1490 doi->doi_data_block_size;
1491 } else {
1492 do_free_range = B_TRUE;
1493 }
1494 }
1495 }
1496
1497 /* nblkptr can only decrease if the object was reallocated */
1498 if (nblkptr < doi->doi_nblkptr)
1499 do_free_range = B_TRUE;
1500
1501 /* number of slots can only change on reallocation */
1502 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1503 do_free_range = B_TRUE;
1504
1505 /*
1506 * For raw sends we also check a few other fields to
1507 * ensure we are preserving the objset structure exactly
1508 * as it was on the receive side:
1509 * - A changed indirect block size
1510 * - A smaller nlevels
1511 */
1512 if (rwa->raw) {
1513 if (indblksz != doi->doi_metadata_block_size)
1514 do_free_range = B_TRUE;
1515 if (drro->drr_nlevels < doi->doi_indirection)
1516 do_free_range = B_TRUE;
1517 }
1518
1519 if (do_free_range) {
1520 err = dmu_free_long_range(rwa->os, drro->drr_object,
1521 0, DMU_OBJECT_END);
1522 if (err != 0)
1523 return (SET_ERROR(EINVAL));
1524 }
1525
1526 /*
1527 * The dmu does not currently support decreasing nlevels
1528 * or changing the number of dnode slots on an object. For
1529 * non-raw sends, this does not matter and the new object
1530 * can just use the previous one's nlevels. For raw sends,
1531 * however, the structure of the received dnode (including
1532 * nlevels and dnode slots) must match that of the send
1533 * side. Therefore, instead of using dmu_object_reclaim(),
1534 * we must free the object completely and call
1535 * dmu_object_claim_dnsize() instead.
1536 */
1537 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1538 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1539 err = dmu_free_long_object(rwa->os, drro->drr_object);
1540 if (err != 0)
1541 return (SET_ERROR(EINVAL));
1542
1543 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1544 *object_to_hold = DMU_NEW_OBJECT;
1545 }
1546
1547 /*
1548 * For raw receives, free everything beyond the new incoming
1549 * maxblkid. Normally this would be done with a DRR_FREE
1550 * record that would come after this DRR_OBJECT record is
1551 * processed. However, for raw receives we manually set the
1552 * maxblkid from the drr_maxblkid and so we must first free
1553 * everything above that blkid to ensure the DMU is always
1554 * consistent with itself. We will never free the first block
1555 * of the object here because a maxblkid of 0 could indicate
1556 * an object with a single block or one with no blocks. This
1557 * free may be skipped when dmu_free_long_range() was called
1558 * above since it covers the entire object's contents.
1559 */
1560 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1561 err = dmu_free_long_range(rwa->os, drro->drr_object,
1562 (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1563 DMU_OBJECT_END);
1564 if (err != 0)
1565 return (SET_ERROR(EINVAL));
1566 }
1567 return (0);
1568}
1569
03916905
PD
1570noinline static int
1571receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1572 void *data)
1573{
1574 dmu_object_info_t doi;
1575 dmu_tx_t *tx;
03916905 1576 int err;
7bcb7f08 1577 uint32_t new_blksz = drro->drr_blksz;
03916905
PD
1578 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1579 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1580
1581 if (drro->drr_type == DMU_OT_NONE ||
1582 !DMU_OT_IS_VALID(drro->drr_type) ||
1583 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1584 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1585 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1586 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1587 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1588 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1589 drro->drr_bonuslen >
1590 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1591 dn_slots >
30af21b0 1592 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
03916905
PD
1593 return (SET_ERROR(EINVAL));
1594 }
1595
1596 if (rwa->raw) {
1597 /*
1598 * We should have received a DRR_OBJECT_RANGE record
1599 * containing this block and stored it in rwa.
1600 */
1601 if (drro->drr_object < rwa->or_firstobj ||
1602 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1603 drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1604 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1605 drro->drr_nlevels > DN_MAX_LEVELS ||
1606 drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1607 DN_SLOTS_TO_BONUSLEN(dn_slots) <
1608 drro->drr_raw_bonuslen)
1609 return (SET_ERROR(EINVAL));
1610 } else {
caf9dd20
BB
1611 /*
1612 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1613 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1614 */
1615 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1616 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1617 return (SET_ERROR(EINVAL));
1618 }
1619
1620 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1621 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
03916905 1622 return (SET_ERROR(EINVAL));
caf9dd20 1623 }
03916905
PD
1624 }
1625
1626 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
30af21b0 1627
03916905
PD
1628 if (err != 0 && err != ENOENT && err != EEXIST)
1629 return (SET_ERROR(EINVAL));
1630
1631 if (drro->drr_object > rwa->max_object)
1632 rwa->max_object = drro->drr_object;
1633
1634 /*
1635 * If we are losing blkptrs or changing the block size this must
1636 * be a new file instance. We must clear out the previous file
1637 * contents before we can change this type of metadata in the dnode.
1638 * Raw receives will also check that the indirect structure of the
1639 * dnode hasn't changed.
1640 */
7bcb7f08 1641 uint64_t object_to_hold;
03916905 1642 if (err == 0) {
7bcb7f08
MA
1643 err = receive_handle_existing_object(rwa, drro, &doi, data,
1644 &object_to_hold, &new_blksz);
03916905
PD
1645 } else if (err == EEXIST) {
1646 /*
1647 * The object requested is currently an interior slot of a
1648 * multi-slot dnode. This will be resolved when the next txg
1649 * is synced out, since the send stream will have told us
1650 * to free this slot when we freed the associated dnode
1651 * earlier in the stream.
1652 */
1653 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
b92f5d9f
BB
1654
1655 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1656 return (SET_ERROR(EINVAL));
1657
1658 /* object was freed and we are about to allocate a new one */
7bcb7f08 1659 object_to_hold = DMU_NEW_OBJECT;
03916905
PD
1660 } else {
1661 /* object is free and we are about to allocate a new one */
7bcb7f08 1662 object_to_hold = DMU_NEW_OBJECT;
03916905
PD
1663 }
1664
1665 /*
1666 * If this is a multi-slot dnode there is a chance that this
1667 * object will expand into a slot that is already used by
1668 * another object from the previous snapshot. We must free
1669 * these objects before we attempt to allocate the new dnode.
1670 */
1671 if (dn_slots > 1) {
1672 boolean_t need_sync = B_FALSE;
1673
1674 for (uint64_t slot = drro->drr_object + 1;
1675 slot < drro->drr_object + dn_slots;
1676 slot++) {
1677 dmu_object_info_t slot_doi;
1678
1679 err = dmu_object_info(rwa->os, slot, &slot_doi);
1680 if (err == ENOENT || err == EEXIST)
1681 continue;
1682 else if (err != 0)
1683 return (err);
1684
1685 err = dmu_free_long_object(rwa->os, slot);
03916905
PD
1686 if (err != 0)
1687 return (err);
1688
1689 need_sync = B_TRUE;
1690 }
1691
1692 if (need_sync)
1693 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1694 }
1695
1696 tx = dmu_tx_create(rwa->os);
7bcb7f08
MA
1697 dmu_tx_hold_bonus(tx, object_to_hold);
1698 dmu_tx_hold_write(tx, object_to_hold, 0, 0);
03916905
PD
1699 err = dmu_tx_assign(tx, TXG_WAIT);
1700 if (err != 0) {
1701 dmu_tx_abort(tx);
1702 return (err);
1703 }
1704
7bcb7f08 1705 if (object_to_hold == DMU_NEW_OBJECT) {
caf9dd20 1706 /* Currently free, wants to be allocated */
03916905 1707 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
7bcb7f08 1708 drro->drr_type, new_blksz,
03916905
PD
1709 drro->drr_bonustype, drro->drr_bonuslen,
1710 dn_slots << DNODE_SHIFT, tx);
1711 } else if (drro->drr_type != doi.doi_type ||
7bcb7f08 1712 new_blksz != doi.doi_data_block_size ||
03916905
PD
1713 drro->drr_bonustype != doi.doi_bonus_type ||
1714 drro->drr_bonuslen != doi.doi_bonus_size) {
caf9dd20 1715 /* Currently allocated, but with different properties */
03916905 1716 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
7bcb7f08 1717 drro->drr_type, new_blksz,
03916905 1718 drro->drr_bonustype, drro->drr_bonuslen,
caf9dd20
BB
1719 dn_slots << DNODE_SHIFT, rwa->spill ?
1720 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1721 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1722 /*
1723 * Currently allocated, the existing version of this object
1724 * may reference a spill block that is no longer allocated
1725 * at the source and needs to be freed.
1726 */
1727 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
03916905 1728 }
3fa93bb8 1729
03916905
PD
1730 if (err != 0) {
1731 dmu_tx_commit(tx);
1732 return (SET_ERROR(EINVAL));
1733 }
1734
1735 if (rwa->or_crypt_params_present) {
1736 /*
1737 * Set the crypt params for the buffer associated with this
1738 * range of dnodes. This causes the blkptr_t to have the
1739 * same crypt params (byteorder, salt, iv, mac) as on the
1740 * sending side.
1741 *
1742 * Since we are committing this tx now, it is possible for
1743 * the dnode block to end up on-disk with the incorrect MAC,
1744 * if subsequent objects in this block are received in a
1745 * different txg. However, since the dataset is marked as
1746 * inconsistent, no code paths will do a non-raw read (or
1747 * decrypt the block / verify the MAC). The receive code and
1748 * scrub code can safely do raw reads and verify the
1749 * checksum. They don't need to verify the MAC.
1750 */
1751 dmu_buf_t *db = NULL;
1752 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1753
1754 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1755 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1756 if (err != 0) {
1757 dmu_tx_commit(tx);
1758 return (SET_ERROR(EINVAL));
1759 }
1760
1761 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1762 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1763
1764 dmu_buf_rele(db, FTAG);
1765
1766 rwa->or_crypt_params_present = B_FALSE;
1767 }
1768
1769 dmu_object_set_checksum(rwa->os, drro->drr_object,
1770 drro->drr_checksumtype, tx);
1771 dmu_object_set_compress(rwa->os, drro->drr_object,
1772 drro->drr_compress, tx);
1773
1774 /* handle more restrictive dnode structuring for raw recvs */
1775 if (rwa->raw) {
1776 /*
369aa501
TC
1777 * Set the indirect block size, block shift, nlevels.
1778 * This will not fail because we ensured all of the
1779 * blocks were freed earlier if this is a new object.
1780 * For non-new objects block size and indirect block
1781 * shift cannot change and nlevels can only increase.
03916905 1782 */
7bcb7f08 1783 ASSERT3U(new_blksz, ==, drro->drr_blksz);
03916905
PD
1784 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
1785 drro->drr_blksz, drro->drr_indblkshift, tx));
1786 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
1787 drro->drr_nlevels, tx));
369aa501
TC
1788
1789 /*
c2c6eadf
TC
1790 * Set the maxblkid. This will always succeed because
1791 * we freed all blocks beyond the new maxblkid above.
369aa501 1792 */
03916905
PD
1793 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
1794 drro->drr_maxblkid, tx));
1795 }
1796
1797 if (data != NULL) {
1798 dmu_buf_t *db;
6955b401 1799 dnode_t *dn;
03916905
PD
1800 uint32_t flags = DMU_READ_NO_PREFETCH;
1801
1802 if (rwa->raw)
1803 flags |= DMU_READ_NO_DECRYPT;
1804
6955b401
BB
1805 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
1806 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
1807
03916905
PD
1808 dmu_buf_will_dirty(db, tx);
1809
1810 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1811 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
1812
1813 /*
1814 * Raw bonus buffers have their byteorder determined by the
1815 * DRR_OBJECT_RANGE record.
1816 */
1817 if (rwa->byteswap && !rwa->raw) {
1818 dmu_object_byteswap_t byteswap =
1819 DMU_OT_BYTESWAP(drro->drr_bonustype);
1820 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1821 DRR_OBJECT_PAYLOAD_SIZE(drro));
1822 }
1823 dmu_buf_rele(db, FTAG);
6955b401 1824 dnode_rele(dn, FTAG);
03916905
PD
1825 }
1826 dmu_tx_commit(tx);
1827
1828 return (0);
1829}
1830
03916905
PD
1831noinline static int
1832receive_freeobjects(struct receive_writer_arg *rwa,
1833 struct drr_freeobjects *drrfo)
1834{
1835 uint64_t obj;
1836 int next_err = 0;
1837
1838 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
1839 return (SET_ERROR(EINVAL));
1840
1841 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
30af21b0
PD
1842 obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
1843 obj < DN_MAX_OBJECT && next_err == 0;
03916905
PD
1844 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
1845 dmu_object_info_t doi;
1846 int err;
1847
1848 err = dmu_object_info(rwa->os, obj, &doi);
1849 if (err == ENOENT)
1850 continue;
1851 else if (err != 0)
1852 return (err);
1853
1854 err = dmu_free_long_object(rwa->os, obj);
1855
1856 if (err != 0)
1857 return (err);
03916905
PD
1858 }
1859 if (next_err != ESRCH)
1860 return (next_err);
1861 return (0);
1862}
1863
7261fc2e
MA
1864/*
1865 * Note: if this fails, the caller will clean up any records left on the
1866 * rwa->write_batch list.
1867 */
1868static int
1869flush_write_batch_impl(struct receive_writer_arg *rwa)
03916905 1870{
03916905 1871 dnode_t *dn;
7261fc2e
MA
1872 int err;
1873
1874 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
1875 return (SET_ERROR(EINVAL));
1876
1877 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
1878 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
1879
1880 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
1881 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
1882
1883 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
1884 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
1885
1886 dmu_tx_t *tx = dmu_tx_create(rwa->os);
1887 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
1888 last_drrw->drr_offset - first_drrw->drr_offset +
1889 last_drrw->drr_logical_size);
1890 err = dmu_tx_assign(tx, TXG_WAIT);
1891 if (err != 0) {
1892 dmu_tx_abort(tx);
1893 dnode_rele(dn, FTAG);
1894 return (err);
1895 }
1896
1897 struct receive_record_arg *rrd;
1898 while ((rrd = list_head(&rwa->write_batch)) != NULL) {
1899 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
ba67d821 1900 abd_t *abd = rrd->abd;
7261fc2e
MA
1901
1902 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
1903
ba67d821
MA
1904 if (drrw->drr_logical_size != dn->dn_datablksz) {
1905 /*
1906 * The WRITE record is larger than the object's block
1907 * size. We must be receiving an incremental
1908 * large-block stream into a dataset that previously did
1909 * a non-large-block receive. Lightweight writes must
1910 * be exactly one block, so we need to decompress the
1911 * data (if compressed) and do a normal dmu_write().
1912 */
7bcb7f08 1913 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
ba67d821
MA
1914 if (DRR_WRITE_COMPRESSED(drrw)) {
1915 abd_t *decomp_abd =
1916 abd_alloc_linear(drrw->drr_logical_size,
1917 B_FALSE);
1918
1919 err = zio_decompress_data(
1920 drrw->drr_compressiontype,
1921 abd, abd_to_buf(decomp_abd),
1922 abd_get_size(abd),
1923 abd_get_size(decomp_abd), NULL);
1924
1925 if (err == 0) {
1926 dmu_write_by_dnode(dn,
1927 drrw->drr_offset,
1928 drrw->drr_logical_size,
1929 abd_to_buf(decomp_abd), tx);
1930 }
1931 abd_free(decomp_abd);
1932 } else {
1933 dmu_write_by_dnode(dn,
1934 drrw->drr_offset,
1935 drrw->drr_logical_size,
1936 abd_to_buf(abd), tx);
1937 }
1938 if (err == 0)
1939 abd_free(abd);
1940 } else {
1941 zio_prop_t zp;
1942 dmu_write_policy(rwa->os, dn, 0, 0, &zp);
1943
1944 enum zio_flag zio_flags = 0;
1945
1946 if (rwa->raw) {
1947 zp.zp_encrypt = B_TRUE;
1948 zp.zp_compress = drrw->drr_compressiontype;
1949 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
1950 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
1951 rwa->byteswap;
1952 bcopy(drrw->drr_salt, zp.zp_salt,
1953 ZIO_DATA_SALT_LEN);
1954 bcopy(drrw->drr_iv, zp.zp_iv,
1955 ZIO_DATA_IV_LEN);
1956 bcopy(drrw->drr_mac, zp.zp_mac,
1957 ZIO_DATA_MAC_LEN);
1958 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
1959 zp.zp_nopwrite = B_FALSE;
1960 zp.zp_copies = MIN(zp.zp_copies,
1961 SPA_DVAS_PER_BP - 1);
1962 }
1963 zio_flags |= ZIO_FLAG_RAW;
1964 } else if (DRR_WRITE_COMPRESSED(drrw)) {
1965 ASSERT3U(drrw->drr_compressed_size, >, 0);
1966 ASSERT3U(drrw->drr_logical_size, >=,
1967 drrw->drr_compressed_size);
1968 zp.zp_compress = drrw->drr_compressiontype;
1969 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
1970 } else if (rwa->byteswap) {
1971 /*
1972 * Note: compressed blocks never need to be
1973 * byteswapped, because WRITE records for
1974 * metadata blocks are never compressed. The
1975 * exception is raw streams, which are written
1976 * in the original byteorder, and the byteorder
1977 * bit is preserved in the BP by setting
1978 * zp_byteorder above.
1979 */
1980 dmu_object_byteswap_t byteswap =
1981 DMU_OT_BYTESWAP(drrw->drr_type);
1982 dmu_ot_byteswap[byteswap].ob_func(
1983 abd_to_buf(abd),
1984 DRR_WRITE_PAYLOAD_SIZE(drrw));
1985 }
7bcb7f08
MA
1986
1987 /*
ba67d821
MA
1988 * Since this data can't be read until the receive
1989 * completes, we can do a "lightweight" write for
1990 * improved performance.
7bcb7f08 1991 */
ba67d821
MA
1992 err = dmu_lightweight_write_by_dnode(dn,
1993 drrw->drr_offset, abd, &zp, zio_flags, tx);
7bcb7f08
MA
1994 }
1995
7261fc2e
MA
1996 if (err != 0) {
1997 /*
1998 * This rrd is left on the list, so the caller will
ba67d821 1999 * free it (and the abd).
7261fc2e
MA
2000 */
2001 break;
2002 }
2003
2004 /*
2005 * Note: If the receive fails, we want the resume stream to
2006 * start with the same record that we last successfully
2007 * received (as opposed to the next record), so that we can
2008 * verify that we are resuming from the correct location.
2009 */
2010 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2011
2012 list_remove(&rwa->write_batch, rrd);
2013 kmem_free(rrd, sizeof (*rrd));
2014 }
2015
2016 dmu_tx_commit(tx);
2017 dnode_rele(dn, FTAG);
2018 return (err);
2019}
2020
2021noinline static int
2022flush_write_batch(struct receive_writer_arg *rwa)
2023{
2024 if (list_is_empty(&rwa->write_batch))
2025 return (0);
2026 int err = rwa->err;
2027 if (err == 0)
2028 err = flush_write_batch_impl(rwa);
2029 if (err != 0) {
2030 struct receive_record_arg *rrd;
2031 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
ba67d821 2032 abd_free(rrd->abd);
7261fc2e
MA
2033 kmem_free(rrd, sizeof (*rrd));
2034 }
2035 }
2036 ASSERT(list_is_empty(&rwa->write_batch));
2037 return (err);
2038}
2039
2040noinline static int
2041receive_process_write_record(struct receive_writer_arg *rwa,
2042 struct receive_record_arg *rrd)
2043{
2044 int err = 0;
2045
2046 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2047 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
03916905
PD
2048
2049 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2050 !DMU_OT_IS_VALID(drrw->drr_type))
2051 return (SET_ERROR(EINVAL));
2052
2053 /*
2054 * For resuming to work, records must be in increasing order
2055 * by (object, offset).
2056 */
2057 if (drrw->drr_object < rwa->last_object ||
2058 (drrw->drr_object == rwa->last_object &&
2059 drrw->drr_offset < rwa->last_offset)) {
2060 return (SET_ERROR(EINVAL));
2061 }
7261fc2e
MA
2062
2063 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2064 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2065 uint64_t batch_size =
2066 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2067 if (first_rrd != NULL &&
2068 (drrw->drr_object != first_drrw->drr_object ||
2069 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2070 err = flush_write_batch(rwa);
2071 if (err != 0)
2072 return (err);
2073 }
2074
03916905
PD
2075 rwa->last_object = drrw->drr_object;
2076 rwa->last_offset = drrw->drr_offset;
2077
2078 if (rwa->last_object > rwa->max_object)
2079 rwa->max_object = rwa->last_object;
2080
7261fc2e 2081 list_insert_tail(&rwa->write_batch, rrd);
03916905 2082 /*
7261fc2e
MA
2083 * Return EAGAIN to indicate that we will use this rrd again,
2084 * so the caller should not free it
03916905 2085 */
7261fc2e 2086 return (EAGAIN);
03916905
PD
2087}
2088
03916905
PD
2089static int
2090receive_write_embedded(struct receive_writer_arg *rwa,
2091 struct drr_write_embedded *drrwe, void *data)
2092{
2093 dmu_tx_t *tx;
2094 int err;
2095
2096 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2097 return (SET_ERROR(EINVAL));
2098
2099 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2100 return (SET_ERROR(EINVAL));
2101
2102 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2103 return (SET_ERROR(EINVAL));
2104 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2105 return (SET_ERROR(EINVAL));
2106 if (rwa->raw)
2107 return (SET_ERROR(EINVAL));
2108
2109 if (drrwe->drr_object > rwa->max_object)
2110 rwa->max_object = drrwe->drr_object;
2111
2112 tx = dmu_tx_create(rwa->os);
2113
2114 dmu_tx_hold_write(tx, drrwe->drr_object,
2115 drrwe->drr_offset, drrwe->drr_length);
2116 err = dmu_tx_assign(tx, TXG_WAIT);
2117 if (err != 0) {
2118 dmu_tx_abort(tx);
2119 return (err);
2120 }
2121
2122 dmu_write_embedded(rwa->os, drrwe->drr_object,
2123 drrwe->drr_offset, data, drrwe->drr_etype,
2124 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2125 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2126
2127 /* See comment in restore_write. */
2128 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2129 dmu_tx_commit(tx);
2130 return (0);
2131}
2132
2133static int
2134receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
ba67d821 2135 abd_t *abd)
03916905 2136{
03916905
PD
2137 dmu_buf_t *db, *db_spill;
2138 int err;
03916905
PD
2139
2140 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2141 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2142 return (SET_ERROR(EINVAL));
2143
caf9dd20
BB
2144 /*
2145 * This is an unmodified spill block which was added to the stream
2146 * to resolve an issue with incorrectly removing spill blocks. It
2147 * should be ignored by current versions of the code which support
2148 * the DRR_FLAG_SPILL_BLOCK flag.
2149 */
2150 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
ba67d821 2151 abd_free(abd);
caf9dd20
BB
2152 return (0);
2153 }
2154
03916905
PD
2155 if (rwa->raw) {
2156 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2157 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2158 drrs->drr_compressed_size == 0)
2159 return (SET_ERROR(EINVAL));
03916905
PD
2160 }
2161
2162 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2163 return (SET_ERROR(EINVAL));
2164
2165 if (drrs->drr_object > rwa->max_object)
2166 rwa->max_object = drrs->drr_object;
2167
2168 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2169 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2170 &db_spill)) != 0) {
2171 dmu_buf_rele(db, FTAG);
2172 return (err);
2173 }
2174
ba67d821 2175 dmu_tx_t *tx = dmu_tx_create(rwa->os);
03916905
PD
2176
2177 dmu_tx_hold_spill(tx, db->db_object);
2178
2179 err = dmu_tx_assign(tx, TXG_WAIT);
2180 if (err != 0) {
2181 dmu_buf_rele(db, FTAG);
2182 dmu_buf_rele(db_spill, FTAG);
2183 dmu_tx_abort(tx);
2184 return (err);
2185 }
2186
caf9dd20
BB
2187 /*
2188 * Spill blocks may both grow and shrink. When a change in size
2189 * occurs any existing dbuf must be updated to match the logical
2190 * size of the provided arc_buf_t.
2191 */
2192 if (db_spill->db_size != drrs->drr_length) {
2193 dmu_buf_will_fill(db_spill, tx);
ba67d821 2194 VERIFY0(dbuf_spill_set_blksz(db_spill,
03916905 2195 drrs->drr_length, tx));
caf9dd20 2196 }
03916905 2197
ba67d821
MA
2198 arc_buf_t *abuf;
2199 if (rwa->raw) {
2200 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2201 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2202 rwa->byteswap;
2203
2204 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2205 drrs->drr_object, byteorder, drrs->drr_salt,
2206 drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2207 drrs->drr_compressed_size, drrs->drr_length,
2208 drrs->drr_compressiontype, 0);
2209 } else {
2210 abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2211 DMU_OT_IS_METADATA(drrs->drr_type),
2212 drrs->drr_length);
2213 if (rwa->byteswap) {
2214 dmu_object_byteswap_t byteswap =
2215 DMU_OT_BYTESWAP(drrs->drr_type);
2216 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2217 DRR_SPILL_PAYLOAD_SIZE(drrs));
2218 }
03916905
PD
2219 }
2220
ba67d821
MA
2221 bcopy(abd_to_buf(abd), abuf->b_data, DRR_SPILL_PAYLOAD_SIZE(drrs));
2222 abd_free(abd);
03916905
PD
2223 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2224
2225 dmu_buf_rele(db, FTAG);
2226 dmu_buf_rele(db_spill, FTAG);
2227
2228 dmu_tx_commit(tx);
2229 return (0);
2230}
2231
03916905
PD
2232noinline static int
2233receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2234{
2235 int err;
2236
30af21b0 2237 if (drrf->drr_length != -1ULL &&
03916905
PD
2238 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2239 return (SET_ERROR(EINVAL));
2240
2241 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2242 return (SET_ERROR(EINVAL));
2243
2244 if (drrf->drr_object > rwa->max_object)
2245 rwa->max_object = drrf->drr_object;
2246
2247 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2248 drrf->drr_offset, drrf->drr_length);
2249
2250 return (err);
2251}
2252
2253static int
2254receive_object_range(struct receive_writer_arg *rwa,
2255 struct drr_object_range *drror)
2256{
2257 /*
2258 * By default, we assume this block is in our native format
2259 * (ZFS_HOST_BYTEORDER). We then take into account whether
2260 * the send stream is byteswapped (rwa->byteswap). Finally,
2261 * we need to byteswap again if this particular block was
2262 * in non-native format on the send side.
2263 */
2264 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2265 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2266
2267 /*
2268 * Since dnode block sizes are constant, we should not need to worry
2269 * about making sure that the dnode block size is the same on the
2270 * sending and receiving sides for the time being. For non-raw sends,
2271 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2272 * record at all). Raw sends require this record type because the
2273 * encryption parameters are used to protect an entire block of bonus
2274 * buffers. If the size of dnode blocks ever becomes variable,
2275 * handling will need to be added to ensure that dnode block sizes
2276 * match on the sending and receiving side.
2277 */
2278 if (drror->drr_numslots != DNODES_PER_BLOCK ||
2279 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2280 !rwa->raw)
2281 return (SET_ERROR(EINVAL));
2282
2283 if (drror->drr_firstobj > rwa->max_object)
2284 rwa->max_object = drror->drr_firstobj;
2285
2286 /*
2287 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2288 * so that the block of dnodes is not written out when it's empty,
2289 * and converted to a HOLE BP.
2290 */
2291 rwa->or_crypt_params_present = B_TRUE;
2292 rwa->or_firstobj = drror->drr_firstobj;
2293 rwa->or_numslots = drror->drr_numslots;
2294 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
2295 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
2296 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
2297 rwa->or_byteorder = byteorder;
2298
2299 return (0);
2300}
2301
30af21b0
PD
2302/*
2303 * Until we have the ability to redact large ranges of data efficiently, we
2304 * process these records as frees.
2305 */
30af21b0
PD
2306noinline static int
2307receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2308{
2309 struct drr_free drrf = {0};
2310 drrf.drr_length = drrr->drr_length;
2311 drrf.drr_object = drrr->drr_object;
2312 drrf.drr_offset = drrr->drr_offset;
2313 drrf.drr_toguid = drrr->drr_toguid;
2314 return (receive_free(rwa, &drrf));
2315}
2316
03916905
PD
2317/* used to destroy the drc_ds on error */
2318static void
2319dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2320{
2321 dsl_dataset_t *ds = drc->drc_ds;
40ab927a 2322 ds_hold_flags_t dsflags;
03916905 2323
40ab927a 2324 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
03916905
PD
2325 /*
2326 * Wait for the txg sync before cleaning up the receive. For
2327 * resumable receives, this ensures that our resume state has
2328 * been written out to disk. For raw receives, this ensures
2329 * that the user accounting code will not attempt to do anything
2330 * after we stopped receiving the dataset.
2331 */
2332 txg_wait_synced(ds->ds_dir->dd_pool, 0);
2333 ds->ds_objset->os_raw_receive = B_FALSE;
2334
2335 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
61152d10
TC
2336 if (drc->drc_resumable && drc->drc_should_save &&
2337 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
03916905
PD
2338 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2339 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2340 } else {
2341 char name[ZFS_MAX_DATASET_NAME_LEN];
2342 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2343 dsl_dataset_name(ds, name);
2344 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2345 (void) dsl_destroy_head(name);
2346 }
2347}
2348
2349static void
30af21b0 2350receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
03916905 2351{
30af21b0
PD
2352 if (drc->drc_byteswap) {
2353 (void) fletcher_4_incremental_byteswap(buf, len,
2354 &drc->drc_cksum);
03916905 2355 } else {
30af21b0 2356 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
03916905
PD
2357 }
2358}
2359
2360/*
2361 * Read the payload into a buffer of size len, and update the current record's
2362 * payload field.
30af21b0
PD
2363 * Allocate drc->drc_next_rrd and read the next record's header into
2364 * drc->drc_next_rrd->header.
03916905
PD
2365 * Verify checksum of payload and next record.
2366 */
2367static int
30af21b0 2368receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
03916905
PD
2369{
2370 int err;
03916905
PD
2371
2372 if (len != 0) {
2373 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
30af21b0 2374 err = receive_read(drc, len, buf);
03916905
PD
2375 if (err != 0)
2376 return (err);
30af21b0 2377 receive_cksum(drc, len, buf);
03916905
PD
2378
2379 /* note: rrd is NULL when reading the begin record's payload */
30af21b0
PD
2380 if (drc->drc_rrd != NULL) {
2381 drc->drc_rrd->payload = buf;
2382 drc->drc_rrd->payload_size = len;
2383 drc->drc_rrd->bytes_read = drc->drc_bytes_read;
03916905 2384 }
960347d3
TC
2385 } else {
2386 ASSERT3P(buf, ==, NULL);
03916905
PD
2387 }
2388
30af21b0 2389 drc->drc_prev_cksum = drc->drc_cksum;
03916905 2390
30af21b0
PD
2391 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2392 err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2393 &drc->drc_next_rrd->header);
2394 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
03916905
PD
2395
2396 if (err != 0) {
30af21b0
PD
2397 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2398 drc->drc_next_rrd = NULL;
03916905
PD
2399 return (err);
2400 }
30af21b0
PD
2401 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2402 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2403 drc->drc_next_rrd = NULL;
03916905
PD
2404 return (SET_ERROR(EINVAL));
2405 }
2406
2407 /*
2408 * Note: checksum is of everything up to but not including the
2409 * checksum itself.
2410 */
2411 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2412 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
30af21b0 2413 receive_cksum(drc,
03916905 2414 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
30af21b0 2415 &drc->drc_next_rrd->header);
03916905 2416
30af21b0
PD
2417 zio_cksum_t cksum_orig =
2418 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2419 zio_cksum_t *cksump =
2420 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
03916905 2421
30af21b0
PD
2422 if (drc->drc_byteswap)
2423 byteswap_record(&drc->drc_next_rrd->header);
03916905
PD
2424
2425 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
30af21b0
PD
2426 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2427 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2428 drc->drc_next_rrd = NULL;
03916905
PD
2429 return (SET_ERROR(ECKSUM));
2430 }
2431
30af21b0 2432 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
03916905
PD
2433
2434 return (0);
2435}
2436
03916905
PD
2437/*
2438 * Issue the prefetch reads for any necessary indirect blocks.
2439 *
2440 * We use the object ignore list to tell us whether or not to issue prefetches
2441 * for a given object. We do this for both correctness (in case the blocksize
2442 * of an object has changed) and performance (if the object doesn't exist, don't
2443 * needlessly try to issue prefetches). We also trim the list as we go through
2444 * the stream to prevent it from growing to an unbounded size.
2445 *
2446 * The object numbers within will always be in sorted order, and any write
2447 * records we see will also be in sorted order, but they're not sorted with
2448 * respect to each other (i.e. we can get several object records before
2449 * receiving each object's write records). As a result, once we've reached a
2450 * given object number, we can safely remove any reference to lower object
2451 * numbers in the ignore list. In practice, we receive up to 32 object records
2452 * before receiving write records, so the list can have up to 32 nodes in it.
2453 */
03916905 2454static void
30af21b0
PD
2455receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2456 uint64_t length)
03916905 2457{
30af21b0
PD
2458 if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2459 dmu_prefetch(drc->drc_os, object, 1, offset, length,
03916905
PD
2460 ZIO_PRIORITY_SYNC_READ);
2461 }
2462}
2463
2464/*
2465 * Read records off the stream, issuing any necessary prefetches.
2466 */
2467static int
30af21b0 2468receive_read_record(dmu_recv_cookie_t *drc)
03916905
PD
2469{
2470 int err;
2471
30af21b0 2472 switch (drc->drc_rrd->header.drr_type) {
03916905
PD
2473 case DRR_OBJECT:
2474 {
30af21b0
PD
2475 struct drr_object *drro =
2476 &drc->drc_rrd->header.drr_u.drr_object;
03916905 2477 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
960347d3 2478 void *buf = NULL;
03916905
PD
2479 dmu_object_info_t doi;
2480
960347d3
TC
2481 if (size != 0)
2482 buf = kmem_zalloc(size, KM_SLEEP);
2483
30af21b0 2484 err = receive_read_payload_and_next_header(drc, size, buf);
03916905
PD
2485 if (err != 0) {
2486 kmem_free(buf, size);
2487 return (err);
2488 }
30af21b0 2489 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
03916905
PD
2490 /*
2491 * See receive_read_prefetch for an explanation why we're
2492 * storing this object in the ignore_obj_list.
2493 */
2494 if (err == ENOENT || err == EEXIST ||
2495 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
30af21b0
PD
2496 objlist_insert(drc->drc_ignore_objlist,
2497 drro->drr_object);
03916905
PD
2498 err = 0;
2499 }
2500 return (err);
2501 }
2502 case DRR_FREEOBJECTS:
2503 {
30af21b0 2504 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905
PD
2505 return (err);
2506 }
2507 case DRR_WRITE:
2508 {
30af21b0 2509 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
ba67d821
MA
2510 int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2511 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2512 err = receive_read_payload_and_next_header(drc, size,
2513 abd_to_buf(abd));
03916905 2514 if (err != 0) {
ba67d821 2515 abd_free(abd);
03916905
PD
2516 return (err);
2517 }
ba67d821 2518 drc->drc_rrd->abd = abd;
30af21b0 2519 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
03916905
PD
2520 drrw->drr_logical_size);
2521 return (err);
2522 }
03916905
PD
2523 case DRR_WRITE_EMBEDDED:
2524 {
2525 struct drr_write_embedded *drrwe =
30af21b0 2526 &drc->drc_rrd->header.drr_u.drr_write_embedded;
03916905
PD
2527 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2528 void *buf = kmem_zalloc(size, KM_SLEEP);
2529
30af21b0 2530 err = receive_read_payload_and_next_header(drc, size, buf);
03916905
PD
2531 if (err != 0) {
2532 kmem_free(buf, size);
2533 return (err);
2534 }
2535
30af21b0 2536 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
03916905
PD
2537 drrwe->drr_length);
2538 return (err);
2539 }
2540 case DRR_FREE:
30af21b0 2541 case DRR_REDACT:
03916905
PD
2542 {
2543 /*
2544 * It might be beneficial to prefetch indirect blocks here, but
2545 * we don't really have the data to decide for sure.
2546 */
30af21b0 2547 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905
PD
2548 return (err);
2549 }
2550 case DRR_END:
2551 {
30af21b0
PD
2552 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2553 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2554 drre->drr_checksum))
03916905
PD
2555 return (SET_ERROR(ECKSUM));
2556 return (0);
2557 }
2558 case DRR_SPILL:
2559 {
30af21b0 2560 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
ba67d821
MA
2561 int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2562 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2563 err = receive_read_payload_and_next_header(drc, size,
2564 abd_to_buf(abd));
30af21b0 2565 if (err != 0)
ba67d821 2566 abd_free(abd);
30af21b0 2567 else
ba67d821 2568 drc->drc_rrd->abd = abd;
03916905
PD
2569 return (err);
2570 }
2571 case DRR_OBJECT_RANGE:
2572 {
30af21b0 2573 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905 2574 return (err);
30af21b0 2575
03916905
PD
2576 }
2577 default:
2578 return (SET_ERROR(EINVAL));
2579 }
2580}
2581
30af21b0
PD
2582
2583
03916905
PD
2584static void
2585dprintf_drr(struct receive_record_arg *rrd, int err)
2586{
2587#ifdef ZFS_DEBUG
2588 switch (rrd->header.drr_type) {
2589 case DRR_OBJECT:
2590 {
2591 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2592 dprintf("drr_type = OBJECT obj = %llu type = %u "
2593 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2594 "compress = %u dn_slots = %u err = %d\n",
8e739b2c
RE
2595 (u_longlong_t)drro->drr_object, drro->drr_type,
2596 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
03916905
PD
2597 drro->drr_checksumtype, drro->drr_compress,
2598 drro->drr_dn_slots, err);
2599 break;
2600 }
2601 case DRR_FREEOBJECTS:
2602 {
2603 struct drr_freeobjects *drrfo =
2604 &rrd->header.drr_u.drr_freeobjects;
2605 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2606 "numobjs = %llu err = %d\n",
8e739b2c
RE
2607 (u_longlong_t)drrfo->drr_firstobj,
2608 (u_longlong_t)drrfo->drr_numobjs, err);
03916905
PD
2609 break;
2610 }
2611 case DRR_WRITE:
2612 {
2613 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2614 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
5dbf8b4e 2615 "lsize = %llu cksumtype = %u flags = %u "
03916905 2616 "compress = %u psize = %llu err = %d\n",
8e739b2c
RE
2617 (u_longlong_t)drrw->drr_object, drrw->drr_type,
2618 (u_longlong_t)drrw->drr_offset,
2619 (u_longlong_t)drrw->drr_logical_size,
2620 drrw->drr_checksumtype, drrw->drr_flags,
2621 drrw->drr_compressiontype,
2622 (u_longlong_t)drrw->drr_compressed_size, err);
03916905
PD
2623 break;
2624 }
2625 case DRR_WRITE_BYREF:
2626 {
2627 struct drr_write_byref *drrwbr =
2628 &rrd->header.drr_u.drr_write_byref;
2629 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2630 "length = %llu toguid = %llx refguid = %llx "
2631 "refobject = %llu refoffset = %llu cksumtype = %u "
5dbf8b4e 2632 "flags = %u err = %d\n",
8e739b2c
RE
2633 (u_longlong_t)drrwbr->drr_object,
2634 (u_longlong_t)drrwbr->drr_offset,
2635 (u_longlong_t)drrwbr->drr_length,
2636 (u_longlong_t)drrwbr->drr_toguid,
2637 (u_longlong_t)drrwbr->drr_refguid,
2638 (u_longlong_t)drrwbr->drr_refobject,
2639 (u_longlong_t)drrwbr->drr_refoffset,
2640 drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
03916905
PD
2641 break;
2642 }
2643 case DRR_WRITE_EMBEDDED:
2644 {
2645 struct drr_write_embedded *drrwe =
2646 &rrd->header.drr_u.drr_write_embedded;
2647 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2648 "length = %llu compress = %u etype = %u lsize = %u "
2649 "psize = %u err = %d\n",
8e739b2c
RE
2650 (u_longlong_t)drrwe->drr_object,
2651 (u_longlong_t)drrwe->drr_offset,
2652 (u_longlong_t)drrwe->drr_length,
03916905
PD
2653 drrwe->drr_compression, drrwe->drr_etype,
2654 drrwe->drr_lsize, drrwe->drr_psize, err);
2655 break;
2656 }
2657 case DRR_FREE:
2658 {
2659 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2660 dprintf("drr_type = FREE obj = %llu offset = %llu "
2661 "length = %lld err = %d\n",
8e739b2c
RE
2662 (u_longlong_t)drrf->drr_object,
2663 (u_longlong_t)drrf->drr_offset,
2664 (longlong_t)drrf->drr_length,
03916905
PD
2665 err);
2666 break;
2667 }
2668 case DRR_SPILL:
2669 {
2670 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2671 dprintf("drr_type = SPILL obj = %llu length = %llu "
8e739b2c
RE
2672 "err = %d\n", (u_longlong_t)drrs->drr_object,
2673 (u_longlong_t)drrs->drr_length, err);
03916905
PD
2674 break;
2675 }
5dbf8b4e
TC
2676 case DRR_OBJECT_RANGE:
2677 {
2678 struct drr_object_range *drror =
2679 &rrd->header.drr_u.drr_object_range;
2680 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2681 "numslots = %llu flags = %u err = %d\n",
8e739b2c
RE
2682 (u_longlong_t)drror->drr_firstobj,
2683 (u_longlong_t)drror->drr_numslots,
5dbf8b4e
TC
2684 drror->drr_flags, err);
2685 break;
2686 }
03916905
PD
2687 default:
2688 return;
2689 }
2690#endif
2691}
2692
2693/*
2694 * Commit the records to the pool.
2695 */
2696static int
2697receive_process_record(struct receive_writer_arg *rwa,
2698 struct receive_record_arg *rrd)
2699{
2700 int err;
2701
2702 /* Processing in order, therefore bytes_read should be increasing. */
2703 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2704 rwa->bytes_read = rrd->bytes_read;
2705
7261fc2e
MA
2706 if (rrd->header.drr_type != DRR_WRITE) {
2707 err = flush_write_batch(rwa);
2708 if (err != 0) {
ba67d821
MA
2709 if (rrd->abd != NULL) {
2710 abd_free(rrd->abd);
2711 rrd->abd = NULL;
7261fc2e
MA
2712 rrd->payload = NULL;
2713 } else if (rrd->payload != NULL) {
2714 kmem_free(rrd->payload, rrd->payload_size);
2715 rrd->payload = NULL;
2716 }
2717
2718 return (err);
2719 }
2720 }
2721
03916905
PD
2722 switch (rrd->header.drr_type) {
2723 case DRR_OBJECT:
2724 {
2725 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2726 err = receive_object(rwa, drro, rrd->payload);
2727 kmem_free(rrd->payload, rrd->payload_size);
2728 rrd->payload = NULL;
2729 break;
2730 }
2731 case DRR_FREEOBJECTS:
2732 {
2733 struct drr_freeobjects *drrfo =
2734 &rrd->header.drr_u.drr_freeobjects;
2735 err = receive_freeobjects(rwa, drrfo);
2736 break;
2737 }
2738 case DRR_WRITE:
2739 {
7261fc2e
MA
2740 err = receive_process_write_record(rwa, rrd);
2741 if (err != EAGAIN) {
2742 /*
2743 * On success, receive_process_write_record() returns
2744 * EAGAIN to indicate that we do not want to free
2745 * the rrd or arc_buf.
2746 */
2747 ASSERT(err != 0);
ba67d821
MA
2748 abd_free(rrd->abd);
2749 rrd->abd = NULL;
7261fc2e 2750 }
03916905
PD
2751 break;
2752 }
03916905
PD
2753 case DRR_WRITE_EMBEDDED:
2754 {
2755 struct drr_write_embedded *drrwe =
2756 &rrd->header.drr_u.drr_write_embedded;
2757 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2758 kmem_free(rrd->payload, rrd->payload_size);
2759 rrd->payload = NULL;
2760 break;
2761 }
2762 case DRR_FREE:
2763 {
2764 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2765 err = receive_free(rwa, drrf);
2766 break;
2767 }
2768 case DRR_SPILL:
2769 {
2770 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
ba67d821 2771 err = receive_spill(rwa, drrs, rrd->abd);
03916905 2772 if (err != 0)
ba67d821
MA
2773 abd_free(rrd->abd);
2774 rrd->abd = NULL;
03916905
PD
2775 rrd->payload = NULL;
2776 break;
2777 }
2778 case DRR_OBJECT_RANGE:
2779 {
2780 struct drr_object_range *drror =
2781 &rrd->header.drr_u.drr_object_range;
5dbf8b4e
TC
2782 err = receive_object_range(rwa, drror);
2783 break;
03916905 2784 }
30af21b0
PD
2785 case DRR_REDACT:
2786 {
2787 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
2788 err = receive_redact(rwa, drrr);
2789 break;
2790 }
03916905 2791 default:
5dbf8b4e 2792 err = (SET_ERROR(EINVAL));
03916905
PD
2793 }
2794
2795 if (err != 0)
2796 dprintf_drr(rrd, err);
2797
2798 return (err);
2799}
2800
2801/*
2802 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2803 * receive_process_record When we're done, signal the main thread and exit.
2804 */
db7f1a91 2805static _Noreturn void
03916905
PD
2806receive_writer_thread(void *arg)
2807{
2808 struct receive_writer_arg *rwa = arg;
2809 struct receive_record_arg *rrd;
2810 fstrans_cookie_t cookie = spl_fstrans_mark();
2811
2812 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2813 rrd = bqueue_dequeue(&rwa->q)) {
2814 /*
2815 * If there's an error, the main thread will stop putting things
2816 * on the queue, but we need to clear everything in it before we
2817 * can exit.
2818 */
7261fc2e 2819 int err = 0;
03916905 2820 if (rwa->err == 0) {
7261fc2e 2821 err = receive_process_record(rwa, rrd);
ba67d821
MA
2822 } else if (rrd->abd != NULL) {
2823 abd_free(rrd->abd);
2824 rrd->abd = NULL;
03916905
PD
2825 rrd->payload = NULL;
2826 } else if (rrd->payload != NULL) {
2827 kmem_free(rrd->payload, rrd->payload_size);
2828 rrd->payload = NULL;
2829 }
7261fc2e
MA
2830 /*
2831 * EAGAIN indicates that this record has been saved (on
2832 * raw->write_batch), and will be used again, so we don't
2833 * free it.
2834 */
2835 if (err != EAGAIN) {
1b9cd1a9
MA
2836 if (rwa->err == 0)
2837 rwa->err = err;
7261fc2e
MA
2838 kmem_free(rrd, sizeof (*rrd));
2839 }
03916905
PD
2840 }
2841 kmem_free(rrd, sizeof (*rrd));
7261fc2e
MA
2842
2843 int err = flush_write_batch(rwa);
2844 if (rwa->err == 0)
2845 rwa->err = err;
2846
03916905
PD
2847 mutex_enter(&rwa->mutex);
2848 rwa->done = B_TRUE;
2849 cv_signal(&rwa->cv);
2850 mutex_exit(&rwa->mutex);
2851 spl_fstrans_unmark(cookie);
2852 thread_exit();
2853}
2854
2855static int
30af21b0 2856resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
03916905
PD
2857{
2858 uint64_t val;
30af21b0
PD
2859 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
2860 uint64_t dsobj = dmu_objset_id(drc->drc_os);
03916905
PD
2861 uint64_t resume_obj, resume_off;
2862
2863 if (nvlist_lookup_uint64(begin_nvl,
2864 "resume_object", &resume_obj) != 0 ||
2865 nvlist_lookup_uint64(begin_nvl,
2866 "resume_offset", &resume_off) != 0) {
2867 return (SET_ERROR(EINVAL));
2868 }
2869 VERIFY0(zap_lookup(mos, dsobj,
2870 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2871 if (resume_obj != val)
2872 return (SET_ERROR(EINVAL));
2873 VERIFY0(zap_lookup(mos, dsobj,
2874 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2875 if (resume_off != val)
2876 return (SET_ERROR(EINVAL));
2877
2878 return (0);
2879}
2880
2881/*
2882 * Read in the stream's records, one by one, and apply them to the pool. There
2883 * are two threads involved; the thread that calls this function will spin up a
2884 * worker thread, read the records off the stream one by one, and issue
2885 * prefetches for any necessary indirect blocks. It will then push the records
2886 * onto an internal blocking queue. The worker thread will pull the records off
2887 * the queue, and actually write the data into the DMU. This way, the worker
2888 * thread doesn't have to wait for reads to complete, since everything it needs
2889 * (the indirect blocks) will be prefetched.
2890 *
2891 * NB: callers *must* call dmu_recv_end() if this succeeds.
2892 */
2893int
196bee4c 2894dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
03916905
PD
2895{
2896 int err = 0;
30af21b0 2897 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
03916905 2898
fce29d6a
PZ
2899 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
2900 uint64_t bytes = 0;
03916905
PD
2901 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2902 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
30af21b0
PD
2903 sizeof (bytes), 1, &bytes);
2904 drc->drc_bytes_read += bytes;
03916905
PD
2905 }
2906
30af21b0 2907 drc->drc_ignore_objlist = objlist_create();
03916905
PD
2908
2909 /* these were verified in dmu_recv_begin */
2910 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2911 DMU_SUBSTREAM);
2912 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2913
03916905 2914 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
30af21b0
PD
2915 ASSERT0(drc->drc_os->os_encrypted &&
2916 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
03916905 2917
03916905 2918 /* handle DSL encryption key payload */
30af21b0 2919 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
03916905
PD
2920 nvlist_t *keynvl = NULL;
2921
30af21b0 2922 ASSERT(drc->drc_os->os_encrypted);
03916905
PD
2923 ASSERT(drc->drc_raw);
2924
30af21b0
PD
2925 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
2926 &keynvl);
03916905
PD
2927 if (err != 0)
2928 goto out;
2929
2930 /*
2931 * If this is a new dataset we set the key immediately.
2932 * Otherwise we don't want to change the key until we
2933 * are sure the rest of the receive succeeded so we stash
2934 * the keynvl away until then.
2935 */
30af21b0 2936 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
f00ab3f2
TC
2937 drc->drc_ds->ds_object, drc->drc_fromsnapobj,
2938 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
03916905
PD
2939 if (err != 0)
2940 goto out;
2941
f00ab3f2
TC
2942 /* see comment in dmu_recv_end_sync() */
2943 drc->drc_ivset_guid = 0;
2944 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
2945 &drc->drc_ivset_guid);
2946
03916905
PD
2947 if (!drc->drc_newfs)
2948 drc->drc_keynvl = fnvlist_dup(keynvl);
2949 }
2950
30af21b0
PD
2951 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2952 err = resume_check(drc, drc->drc_begin_nvl);
03916905
PD
2953 if (err != 0)
2954 goto out;
2955 }
2956
61152d10
TC
2957 /*
2958 * If we failed before this point we will clean up any new resume
2959 * state that was created. Now that we've gotten past the initial
2960 * checks we are ok to retain that resume state.
2961 */
2962 drc->drc_should_save = B_TRUE;
2963
30af21b0 2964 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
03916905
PD
2965 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
2966 offsetof(struct receive_record_arg, node));
2967 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
2968 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
30af21b0 2969 rwa->os = drc->drc_os;
03916905
PD
2970 rwa->byteswap = drc->drc_byteswap;
2971 rwa->resumable = drc->drc_resumable;
2972 rwa->raw = drc->drc_raw;
caf9dd20 2973 rwa->spill = drc->drc_spill;
7bcb7f08 2974 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
03916905 2975 rwa->os->os_raw_receive = drc->drc_raw;
7261fc2e
MA
2976 list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
2977 offsetof(struct receive_record_arg, node.bqn_node));
03916905
PD
2978
2979 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
2980 TS_RUN, minclsyspri);
2981 /*
2982 * We're reading rwa->err without locks, which is safe since we are the
2983 * only reader, and the worker thread is the only writer. It's ok if we
2984 * miss a write for an iteration or two of the loop, since the writer
2985 * thread will keep freeing records we send it until we send it an eos
2986 * marker.
2987 *
2988 * We can leave this loop in 3 ways: First, if rwa->err is
2989 * non-zero. In that case, the writer thread will free the rrd we just
2990 * pushed. Second, if we're interrupted; in that case, either it's the
30af21b0
PD
2991 * first loop and drc->drc_rrd was never allocated, or it's later, and
2992 * drc->drc_rrd has been handed off to the writer thread who will free
2993 * it. Finally, if receive_read_record fails or we're at the end of the
2994 * stream, then we free drc->drc_rrd and exit.
03916905
PD
2995 */
2996 while (rwa->err == 0) {
2997 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2998 err = SET_ERROR(EINTR);
2999 break;
3000 }
3001
30af21b0
PD
3002 ASSERT3P(drc->drc_rrd, ==, NULL);
3003 drc->drc_rrd = drc->drc_next_rrd;
3004 drc->drc_next_rrd = NULL;
3005 /* Allocates and loads header into drc->drc_next_rrd */
3006 err = receive_read_record(drc);
03916905 3007
30af21b0
PD
3008 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3009 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3010 drc->drc_rrd = NULL;
03916905
PD
3011 break;
3012 }
3013
30af21b0
PD
3014 bqueue_enqueue(&rwa->q, drc->drc_rrd,
3015 sizeof (struct receive_record_arg) +
3016 drc->drc_rrd->payload_size);
3017 drc->drc_rrd = NULL;
03916905 3018 }
30af21b0
PD
3019
3020 ASSERT3P(drc->drc_rrd, ==, NULL);
3021 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3022 drc->drc_rrd->eos_marker = B_TRUE;
3023 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
03916905
PD
3024
3025 mutex_enter(&rwa->mutex);
3026 while (!rwa->done) {
30af21b0
PD
3027 /*
3028 * We need to use cv_wait_sig() so that any process that may
3029 * be sleeping here can still fork.
3030 */
3031 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
03916905
PD
3032 }
3033 mutex_exit(&rwa->mutex);
3034
3035 /*
3036 * If we are receiving a full stream as a clone, all object IDs which
3037 * are greater than the maximum ID referenced in the stream are
3038 * by definition unused and must be freed.
3039 */
3040 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3041 uint64_t obj = rwa->max_object + 1;
3042 int free_err = 0;
3043 int next_err = 0;
3044
3045 while (next_err == 0) {
3046 free_err = dmu_free_long_object(rwa->os, obj);
3047 if (free_err != 0 && free_err != ENOENT)
3048 break;
3049
3050 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3051 }
3052
3053 if (err == 0) {
3054 if (free_err != 0 && free_err != ENOENT)
3055 err = free_err;
3056 else if (next_err != ESRCH)
3057 err = next_err;
3058 }
3059 }
3060
3061 cv_destroy(&rwa->cv);
3062 mutex_destroy(&rwa->mutex);
3063 bqueue_destroy(&rwa->q);
7261fc2e 3064 list_destroy(&rwa->write_batch);
03916905
PD
3065 if (err == 0)
3066 err = rwa->err;
3067
3068out:
f00ab3f2
TC
3069 /*
3070 * If we hit an error before we started the receive_writer_thread
3071 * we need to clean up the next_rrd we create by processing the
3072 * DRR_BEGIN record.
3073 */
30af21b0
PD
3074 if (drc->drc_next_rrd != NULL)
3075 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
f00ab3f2 3076
ec213971
MA
3077 /*
3078 * The objset will be invalidated by dmu_recv_end() when we do
3079 * dsl_dataset_clone_swap_sync_impl().
3080 */
3081 drc->drc_os = NULL;
3082
30af21b0
PD
3083 kmem_free(rwa, sizeof (*rwa));
3084 nvlist_free(drc->drc_begin_nvl);
03916905
PD
3085
3086 if (err != 0) {
3087 /*
3088 * Clean up references. If receive is not resumable,
3089 * destroy what we created, so we don't leave it in
3090 * the inconsistent state.
3091 */
3092 dmu_recv_cleanup_ds(drc);
3093 nvlist_free(drc->drc_keynvl);
3094 }
3095
30af21b0
PD
3096 objlist_destroy(drc->drc_ignore_objlist);
3097 drc->drc_ignore_objlist = NULL;
3098 *voffp = drc->drc_voff;
03916905
PD
3099 return (err);
3100}
3101
3102static int
3103dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3104{
3105 dmu_recv_cookie_t *drc = arg;
3106 dsl_pool_t *dp = dmu_tx_pool(tx);
3107 int error;
3108
3109 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3110
3111 if (!drc->drc_newfs) {
3112 dsl_dataset_t *origin_head;
3113
3114 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3115 if (error != 0)
3116 return (error);
3117 if (drc->drc_force) {
3118 /*
3119 * We will destroy any snapshots in tofs (i.e. before
3120 * origin_head) that are after the origin (which is
3121 * the snap before drc_ds, because drc_ds can not
3122 * have any snaps of its own).
3123 */
3124 uint64_t obj;
3125
3126 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3127 while (obj !=
3128 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3129 dsl_dataset_t *snap;
3130 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3131 &snap);
3132 if (error != 0)
3133 break;
3134 if (snap->ds_dir != origin_head->ds_dir)
3135 error = SET_ERROR(EINVAL);
3136 if (error == 0) {
3137 error = dsl_destroy_snapshot_check_impl(
3138 snap, B_FALSE);
3139 }
3140 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3141 dsl_dataset_rele(snap, FTAG);
3142 if (error != 0)
3143 break;
3144 }
3145 if (error != 0) {
3146 dsl_dataset_rele(origin_head, FTAG);
3147 return (error);
3148 }
3149 }
3150 if (drc->drc_keynvl != NULL) {
3151 error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3152 drc->drc_keynvl, tx);
3153 if (error != 0) {
3154 dsl_dataset_rele(origin_head, FTAG);
3155 return (error);
3156 }
3157 }
3158
3159 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3160 origin_head, drc->drc_force, drc->drc_owner, tx);
3161 if (error != 0) {
3162 dsl_dataset_rele(origin_head, FTAG);
3163 return (error);
3164 }
3165 error = dsl_dataset_snapshot_check_impl(origin_head,
e59a377a
MA
3166 drc->drc_tosnap, tx, B_TRUE, 1,
3167 drc->drc_cred, drc->drc_proc);
03916905
PD
3168 dsl_dataset_rele(origin_head, FTAG);
3169 if (error != 0)
3170 return (error);
3171
3172 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3173 } else {
3174 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
e59a377a
MA
3175 drc->drc_tosnap, tx, B_TRUE, 1,
3176 drc->drc_cred, drc->drc_proc);
03916905
PD
3177 }
3178 return (error);
3179}
3180
3181static void
3182dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3183{
3184 dmu_recv_cookie_t *drc = arg;
3185 dsl_pool_t *dp = dmu_tx_pool(tx);
3186 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
196bee4c 3187 uint64_t newsnapobj;
03916905
PD
3188
3189 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3190 tx, "snap=%s", drc->drc_tosnap);
3191 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3192
3193 if (!drc->drc_newfs) {
3194 dsl_dataset_t *origin_head;
3195
3196 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3197 &origin_head));
3198
3199 if (drc->drc_force) {
3200 /*
3201 * Destroy any snapshots of drc_tofs (origin_head)
3202 * after the origin (the snap before drc_ds).
3203 */
3204 uint64_t obj;
3205
3206 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3207 while (obj !=
3208 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3209 dsl_dataset_t *snap;
3210 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3211 &snap));
3212 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3213 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3214 dsl_destroy_snapshot_sync_impl(snap,
3215 B_FALSE, tx);
3216 dsl_dataset_rele(snap, FTAG);
3217 }
3218 }
3219 if (drc->drc_keynvl != NULL) {
3220 dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3221 drc->drc_keynvl, tx);
3222 nvlist_free(drc->drc_keynvl);
3223 drc->drc_keynvl = NULL;
3224 }
3225
30af21b0
PD
3226 VERIFY3P(drc->drc_ds->ds_prev, ==,
3227 origin_head->ds_prev);
03916905
PD
3228
3229 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3230 origin_head, tx);
0fdd6106
MA
3231 /*
3232 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3233 * so drc_os is no longer valid.
3234 */
3235 drc->drc_os = NULL;
3236
03916905
PD
3237 dsl_dataset_snapshot_sync_impl(origin_head,
3238 drc->drc_tosnap, tx);
3239
3240 /* set snapshot's creation time and guid */
3241 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3242 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3243 drc->drc_drrb->drr_creation_time;
3244 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3245 drc->drc_drrb->drr_toguid;
3246 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3247 ~DS_FLAG_INCONSISTENT;
3248
3249 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3250 dsl_dataset_phys(origin_head)->ds_flags &=
3251 ~DS_FLAG_INCONSISTENT;
3252
196bee4c 3253 newsnapobj =
03916905
PD
3254 dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3255
3256 dsl_dataset_rele(origin_head, FTAG);
3257 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3258
3259 if (drc->drc_owner != NULL)
3260 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3261 } else {
3262 dsl_dataset_t *ds = drc->drc_ds;
3263
3264 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3265
3266 /* set snapshot's creation time and guid */
3267 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3268 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3269 drc->drc_drrb->drr_creation_time;
3270 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3271 drc->drc_drrb->drr_toguid;
3272 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3273 ~DS_FLAG_INCONSISTENT;
3274
3275 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3276 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3277 if (dsl_dataset_has_resume_receive_state(ds)) {
3278 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3279 DS_FIELD_RESUME_FROMGUID, tx);
3280 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3281 DS_FIELD_RESUME_OBJECT, tx);
3282 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3283 DS_FIELD_RESUME_OFFSET, tx);
3284 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3285 DS_FIELD_RESUME_BYTES, tx);
3286 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3287 DS_FIELD_RESUME_TOGUID, tx);
3288 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3289 DS_FIELD_RESUME_TONAME, tx);
30af21b0
PD
3290 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3291 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
03916905 3292 }
196bee4c 3293 newsnapobj =
03916905
PD
3294 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3295 }
f00ab3f2
TC
3296
3297 /*
3298 * If this is a raw receive, the crypt_keydata nvlist will include
3299 * a to_ivset_guid for us to set on the new snapshot. This value
3300 * will override the value generated by the snapshot code. However,
3301 * this value may not be present, because older implementations of
3302 * the raw send code did not include this value, and we are still
3303 * allowed to receive them if the zfs_disable_ivset_guid_check
3304 * tunable is set, in which case we will leave the newly-generated
3305 * value.
3306 */
3307 if (drc->drc_raw && drc->drc_ivset_guid != 0) {
196bee4c 3308 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
f00ab3f2 3309 DMU_OT_DSL_DATASET, tx);
196bee4c 3310 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
f00ab3f2
TC
3311 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3312 &drc->drc_ivset_guid, tx));
3313 }
3314
03916905
PD
3315 /*
3316 * Release the hold from dmu_recv_begin. This must be done before
3317 * we return to open context, so that when we free the dataset's dnode
3318 * we can evict its bonus buffer. Since the dataset may be destroyed
3319 * at this point (and therefore won't have a valid pointer to the spa)
3320 * we release the key mapping manually here while we do have a valid
3321 * pointer, if it exists.
3322 */
3323 if (!drc->drc_raw && encrypted) {
3324 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3325 drc->drc_ds->ds_object, drc->drc_ds);
3326 }
3327 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3328 drc->drc_ds = NULL;
3329}
3330
03916905
PD
3331static int dmu_recv_end_modified_blocks = 3;
3332
3333static int
3334dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3335{
3336#ifdef _KERNEL
3337 /*
3338 * We will be destroying the ds; make sure its origin is unmounted if
3339 * necessary.
3340 */
3341 char name[ZFS_MAX_DATASET_NAME_LEN];
3342 dsl_dataset_name(drc->drc_ds, name);
3343 zfs_destroy_unmount_origin(name);
3344#endif
3345
3346 return (dsl_sync_task(drc->drc_tofs,
3347 dmu_recv_end_check, dmu_recv_end_sync, drc,
3348 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3349}
3350
3351static int
3352dmu_recv_new_end(dmu_recv_cookie_t *drc)
3353{
3354 return (dsl_sync_task(drc->drc_tofs,
3355 dmu_recv_end_check, dmu_recv_end_sync, drc,
3356 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3357}
3358
3359int
3360dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3361{
3362 int error;
3363
3364 drc->drc_owner = owner;
3365
3366 if (drc->drc_newfs)
3367 error = dmu_recv_new_end(drc);
3368 else
3369 error = dmu_recv_existing_end(drc);
3370
3371 if (error != 0) {
3372 dmu_recv_cleanup_ds(drc);
3373 nvlist_free(drc->drc_keynvl);
ec213971
MA
3374 } else {
3375 if (drc->drc_newfs) {
3376 zvol_create_minor(drc->drc_tofs);
3377 }
3378 char *snapname = kmem_asprintf("%s@%s",
3379 drc->drc_tofs, drc->drc_tosnap);
3380 zvol_create_minor(snapname);
3381 kmem_strfree(snapname);
03916905
PD
3382 }
3383 return (error);
3384}
3385
3386/*
3387 * Return TRUE if this objset is currently being received into.
3388 */
3389boolean_t
3390dmu_objset_is_receiving(objset_t *os)
3391{
3392 return (os->os_dsl_dataset != NULL &&
3393 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3394}
3395
03fdcb9a
MM
3396ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW,
3397 "Maximum receive queue length");
30af21b0 3398
03fdcb9a
MM
3399ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW,
3400 "Receive queue fill fraction");
7261fc2e
MA
3401
3402ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW,
3403 "Maximum amount of writes to batch into one transaction");