]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu_recv.c
zfs_receive_one: Check for the more likely error first
[mirror_zfs.git] / module / zfs / dmu_recv.c
CommitLineData
03916905
PD
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
03916905
PD
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
196bee4c 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
03916905
PD
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
d8d418ff 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
10b3c7f5
MN
28 * Copyright (c) 2019, Klara Inc.
29 * Copyright (c) 2019, Allan Jude
e8cf3a4f
AP
30 * Copyright (c) 2019 Datto Inc.
31 * Copyright (c) 2022 Axcient.
03916905
PD
32 */
33
e8cf3a4f 34#include <sys/spa_impl.h>
03916905
PD
35#include <sys/dmu.h>
36#include <sys/dmu_impl.h>
30af21b0
PD
37#include <sys/dmu_send.h>
38#include <sys/dmu_recv.h>
03916905
PD
39#include <sys/dmu_tx.h>
40#include <sys/dbuf.h>
41#include <sys/dnode.h>
42#include <sys/zfs_context.h>
43#include <sys/dmu_objset.h>
44#include <sys/dmu_traverse.h>
45#include <sys/dsl_dataset.h>
46#include <sys/dsl_dir.h>
47#include <sys/dsl_prop.h>
48#include <sys/dsl_pool.h>
49#include <sys/dsl_synctask.h>
03916905
PD
50#include <sys/zfs_ioctl.h>
51#include <sys/zap.h>
30af21b0 52#include <sys/zvol.h>
03916905
PD
53#include <sys/zio_checksum.h>
54#include <sys/zfs_znode.h>
55#include <zfs_fletcher.h>
56#include <sys/avl.h>
57#include <sys/ddt.h>
58#include <sys/zfs_onexit.h>
03916905
PD
59#include <sys/dsl_destroy.h>
60#include <sys/blkptr.h>
61#include <sys/dsl_bookmark.h>
62#include <sys/zfeature.h>
63#include <sys/bqueue.h>
30af21b0
PD
64#include <sys/objlist.h>
65#ifdef _KERNEL
66#include <sys/zfs_vfsops.h>
67#endif
da92d5cb 68#include <sys/zfs_file.h>
03916905 69
fdc2d303
RY
70static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
71static uint_t zfs_recv_queue_ff = 20;
72static uint_t zfs_recv_write_batch_size = 1024 * 1024;
e8cf3a4f 73static int zfs_recv_best_effort_corrective = 0;
03916905 74
a926aab9 75static const void *const dmu_recv_tag = "dmu_recv_tag";
18168da7 76const char *const recv_clone_name = "%recv";
03916905 77
30af21b0
PD
78static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
79 void *buf);
80
81struct receive_record_arg {
82 dmu_replay_record_t header;
83 void *payload; /* Pointer to a buffer containing the payload */
84 /*
ba67d821 85 * If the record is a WRITE or SPILL, pointer to the abd containing the
30af21b0
PD
86 * payload.
87 */
ba67d821 88 abd_t *abd;
30af21b0
PD
89 int payload_size;
90 uint64_t bytes_read; /* bytes read from stream when record created */
91 boolean_t eos_marker; /* Marks the end of the stream */
92 bqueue_node_t node;
93};
94
95struct receive_writer_arg {
96 objset_t *os;
97 boolean_t byteswap;
98 bqueue_t q;
99
100 /*
ba67d821
MA
101 * These three members are used to signal to the main thread when
102 * we're done.
30af21b0
PD
103 */
104 kmutex_t mutex;
105 kcondvar_t cv;
106 boolean_t done;
107
108 int err;
e8cf3a4f
AP
109 const char *tofs;
110 boolean_t heal;
30af21b0
PD
111 boolean_t resumable;
112 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */
113 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
7bcb7f08 114 boolean_t full; /* this is a full send stream */
30af21b0
PD
115 uint64_t last_object;
116 uint64_t last_offset;
117 uint64_t max_object; /* highest object ID referenced in stream */
118 uint64_t bytes_read; /* bytes read when current record created */
119
7261fc2e
MA
120 list_t write_batch;
121
30af21b0
PD
122 /* Encryption parameters for the last received DRR_OBJECT_RANGE */
123 boolean_t or_crypt_params_present;
124 uint64_t or_firstobj;
125 uint64_t or_numslots;
126 uint8_t or_salt[ZIO_DATA_SALT_LEN];
127 uint8_t or_iv[ZIO_DATA_IV_LEN];
128 uint8_t or_mac[ZIO_DATA_MAC_LEN];
129 boolean_t or_byteorder;
e8cf3a4f 130 zio_t *heal_pio;
30af21b0
PD
131};
132
03916905
PD
133typedef struct dmu_recv_begin_arg {
134 const char *drba_origin;
135 dmu_recv_cookie_t *drba_cookie;
136 cred_t *drba_cred;
e59a377a 137 proc_t *drba_proc;
03916905 138 dsl_crypto_params_t *drba_dcp;
03916905
PD
139} dmu_recv_begin_arg_t;
140
30af21b0
PD
141static void
142byteswap_record(dmu_replay_record_t *drr)
143{
144#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
145#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
146 drr->drr_type = BSWAP_32(drr->drr_type);
147 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
148
149 switch (drr->drr_type) {
150 case DRR_BEGIN:
151 DO64(drr_begin.drr_magic);
152 DO64(drr_begin.drr_versioninfo);
153 DO64(drr_begin.drr_creation_time);
154 DO32(drr_begin.drr_type);
155 DO32(drr_begin.drr_flags);
156 DO64(drr_begin.drr_toguid);
157 DO64(drr_begin.drr_fromguid);
158 break;
159 case DRR_OBJECT:
160 DO64(drr_object.drr_object);
161 DO32(drr_object.drr_type);
162 DO32(drr_object.drr_bonustype);
163 DO32(drr_object.drr_blksz);
164 DO32(drr_object.drr_bonuslen);
165 DO32(drr_object.drr_raw_bonuslen);
166 DO64(drr_object.drr_toguid);
167 DO64(drr_object.drr_maxblkid);
168 break;
169 case DRR_FREEOBJECTS:
170 DO64(drr_freeobjects.drr_firstobj);
171 DO64(drr_freeobjects.drr_numobjs);
172 DO64(drr_freeobjects.drr_toguid);
173 break;
174 case DRR_WRITE:
175 DO64(drr_write.drr_object);
176 DO32(drr_write.drr_type);
177 DO64(drr_write.drr_offset);
178 DO64(drr_write.drr_logical_size);
179 DO64(drr_write.drr_toguid);
180 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
181 DO64(drr_write.drr_key.ddk_prop);
182 DO64(drr_write.drr_compressed_size);
183 break;
30af21b0
PD
184 case DRR_WRITE_EMBEDDED:
185 DO64(drr_write_embedded.drr_object);
186 DO64(drr_write_embedded.drr_offset);
187 DO64(drr_write_embedded.drr_length);
188 DO64(drr_write_embedded.drr_toguid);
189 DO32(drr_write_embedded.drr_lsize);
190 DO32(drr_write_embedded.drr_psize);
191 break;
192 case DRR_FREE:
193 DO64(drr_free.drr_object);
194 DO64(drr_free.drr_offset);
195 DO64(drr_free.drr_length);
196 DO64(drr_free.drr_toguid);
197 break;
198 case DRR_SPILL:
199 DO64(drr_spill.drr_object);
200 DO64(drr_spill.drr_length);
201 DO64(drr_spill.drr_toguid);
202 DO64(drr_spill.drr_compressed_size);
203 DO32(drr_spill.drr_type);
204 break;
205 case DRR_OBJECT_RANGE:
206 DO64(drr_object_range.drr_firstobj);
207 DO64(drr_object_range.drr_numslots);
208 DO64(drr_object_range.drr_toguid);
209 break;
210 case DRR_REDACT:
211 DO64(drr_redact.drr_object);
212 DO64(drr_redact.drr_offset);
213 DO64(drr_redact.drr_length);
214 DO64(drr_redact.drr_toguid);
215 break;
216 case DRR_END:
217 DO64(drr_end.drr_toguid);
218 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
219 break;
220 default:
221 break;
222 }
223
224 if (drr->drr_type != DRR_BEGIN) {
225 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
226 }
227
228#undef DO64
229#undef DO32
230}
231
232static boolean_t
233redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
234{
235 for (int i = 0; i < num_snaps; i++) {
236 if (snaps[i] == guid)
237 return (B_TRUE);
238 }
239 return (B_FALSE);
240}
241
242/*
243 * Check that the new stream we're trying to receive is redacted with respect to
244 * a subset of the snapshots that the origin was redacted with respect to. For
245 * the reasons behind this, see the man page on redacted zfs sends and receives.
246 */
247static boolean_t
248compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
249 uint64_t *redact_snaps, uint64_t num_redact_snaps)
250{
251 /*
252 * Short circuit the comparison; if we are redacted with respect to
253 * more snapshots than the origin, we can't be redacted with respect
254 * to a subset.
255 */
256 if (num_redact_snaps > origin_num_snaps) {
257 return (B_FALSE);
258 }
259
260 for (int i = 0; i < num_redact_snaps; i++) {
261 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
262 redact_snaps[i])) {
263 return (B_FALSE);
264 }
265 }
266 return (B_TRUE);
267}
268
269static boolean_t
270redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
271{
272 uint64_t *origin_snaps;
273 uint64_t origin_num_snaps;
274 dmu_recv_cookie_t *drc = drba->drba_cookie;
275 struct drr_begin *drrb = drc->drc_drrb;
276 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
277 int err = 0;
278 boolean_t ret = B_TRUE;
279 uint64_t *redact_snaps;
280 uint_t numredactsnaps;
281
282 /*
283 * If this is a full send stream, we're safe no matter what.
284 */
285 if (drrb->drr_fromguid == 0)
286 return (ret);
287
288 VERIFY(dsl_dataset_get_uint64_array_feature(origin,
289 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
290
291 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
292 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
293 0) {
294 /*
295 * If the send stream was sent from the redaction bookmark or
296 * the redacted version of the dataset, then we're safe. Verify
297 * that this is from the a compatible redaction bookmark or
298 * redacted dataset.
299 */
300 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
301 redact_snaps, numredactsnaps)) {
302 err = EINVAL;
303 }
304 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
305 /*
306 * If the stream is redacted, it must be redacted with respect
307 * to a subset of what the origin is redacted with respect to.
308 * See case number 2 in the zfs man page section on redacted zfs
309 * send.
310 */
311 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
312 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
313
314 if (err != 0 || !compatible_redact_snaps(origin_snaps,
315 origin_num_snaps, redact_snaps, numredactsnaps)) {
316 err = EINVAL;
317 }
318 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
319 drrb->drr_toguid)) {
320 /*
321 * If the stream isn't redacted but the origin is, this must be
322 * one of the snapshots the origin is redacted with respect to.
323 * See case number 1 in the zfs man page section on redacted zfs
324 * send.
325 */
326 err = EINVAL;
327 }
328
329 if (err != 0)
330 ret = B_FALSE;
331 return (ret);
332}
333
7bcb7f08
MA
334/*
335 * If we previously received a stream with --large-block, we don't support
336 * receiving an incremental on top of it without --large-block. This avoids
337 * forcing a read-modify-write or trying to re-aggregate a string of WRITE
338 * records.
339 */
340static int
341recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
342{
343 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
344 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
345 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
346 return (0);
347}
348
03916905
PD
349static int
350recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
351 uint64_t fromguid, uint64_t featureflags)
352{
e8cf3a4f 353 uint64_t obj;
d8d418ff 354 uint64_t children;
03916905 355 int error;
e8cf3a4f 356 dsl_dataset_t *snap;
03916905
PD
357 dsl_pool_t *dp = ds->ds_dir->dd_pool;
358 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
359 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
360 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
361
ebeb6f23 362 /* Temporary clone name must not exist. */
03916905
PD
363 error = zap_lookup(dp->dp_meta_objset,
364 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
e8cf3a4f 365 8, 1, &obj);
03916905 366 if (error != ENOENT)
30af21b0 367 return (error == 0 ? SET_ERROR(EBUSY) : error);
03916905 368
ebeb6f23
AG
369 /* Resume state must not be set. */
370 if (dsl_dataset_has_resume_receive_state(ds))
371 return (SET_ERROR(EBUSY));
372
e8cf3a4f 373 /* New snapshot name must not exist if we're not healing it. */
03916905
PD
374 error = zap_lookup(dp->dp_meta_objset,
375 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
e8cf3a4f
AP
376 drba->drba_cookie->drc_tosnap, 8, 1, &obj);
377 if (drba->drba_cookie->drc_heal) {
378 if (error != 0)
379 return (error);
380 } else if (error != ENOENT) {
30af21b0 381 return (error == 0 ? SET_ERROR(EEXIST) : error);
e8cf3a4f 382 }
03916905 383
ebeb6f23 384 /* Must not have children if receiving a ZVOL. */
d8d418ff 385 error = zap_count(dp->dp_meta_objset,
386 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
387 if (error != 0)
388 return (error);
389 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
390 children > 0)
391 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
392
03916905
PD
393 /*
394 * Check snapshot limit before receiving. We'll recheck again at the
395 * end, but might as well abort before receiving if we're already over
396 * the limit.
397 *
398 * Note that we do not check the file system limit with
399 * dsl_dir_fscount_check because the temporary %clones don't count
400 * against that limit.
401 */
402 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
e59a377a 403 NULL, drba->drba_cred, drba->drba_proc);
03916905
PD
404 if (error != 0)
405 return (error);
406
e8cf3a4f
AP
407 if (drba->drba_cookie->drc_heal) {
408 /* Encryption is incompatible with embedded data. */
409 if (encrypted && embed)
410 return (SET_ERROR(EINVAL));
411
412 /* Healing is not supported when in 'force' mode. */
413 if (drba->drba_cookie->drc_force)
414 return (SET_ERROR(EINVAL));
415
416 /* Must have keys loaded if doing encrypted non-raw recv. */
417 if (encrypted && !raw) {
418 if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
419 NULL, NULL) != 0)
420 return (SET_ERROR(EACCES));
421 }
422
423 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
424 if (error != 0)
425 return (error);
426
427 /*
428 * When not doing best effort corrective recv healing can only
429 * be done if the send stream is for the same snapshot as the
430 * one we are trying to heal.
431 */
432 if (zfs_recv_best_effort_corrective == 0 &&
433 drba->drba_cookie->drc_drrb->drr_toguid !=
434 dsl_dataset_phys(snap)->ds_guid) {
435 dsl_dataset_rele(snap, FTAG);
436 return (SET_ERROR(ENOTSUP));
437 }
438 dsl_dataset_rele(snap, FTAG);
439 } else if (fromguid != 0) {
440 /* Sanity check the incremental recv */
03916905
PD
441 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
442
30af21b0 443 /* Can't perform a raw receive on top of a non-raw receive */
03916905
PD
444 if (!encrypted && raw)
445 return (SET_ERROR(EINVAL));
446
447 /* Encryption is incompatible with embedded data */
448 if (encrypted && embed)
449 return (SET_ERROR(EINVAL));
450
451 /* Find snapshot in this dir that matches fromguid. */
452 while (obj != 0) {
453 error = dsl_dataset_hold_obj(dp, obj, FTAG,
454 &snap);
455 if (error != 0)
456 return (SET_ERROR(ENODEV));
457 if (snap->ds_dir != ds->ds_dir) {
458 dsl_dataset_rele(snap, FTAG);
459 return (SET_ERROR(ENODEV));
460 }
461 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
462 break;
463 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
464 dsl_dataset_rele(snap, FTAG);
465 }
466 if (obj == 0)
467 return (SET_ERROR(ENODEV));
468
469 if (drba->drba_cookie->drc_force) {
f00ab3f2 470 drba->drba_cookie->drc_fromsnapobj = obj;
03916905
PD
471 } else {
472 /*
473 * If we are not forcing, there must be no
c08c30ed
TC
474 * changes since fromsnap. Raw sends have an
475 * additional constraint that requires that
476 * no "noop" snapshots exist between fromsnap
477 * and tosnap for the IVset checking code to
478 * work properly.
03916905 479 */
c08c30ed
TC
480 if (dsl_dataset_modified_since_snap(ds, snap) ||
481 (raw &&
482 dsl_dataset_phys(ds)->ds_prev_snap_obj !=
483 snap->ds_object)) {
03916905
PD
484 dsl_dataset_rele(snap, FTAG);
485 return (SET_ERROR(ETXTBSY));
486 }
f00ab3f2
TC
487 drba->drba_cookie->drc_fromsnapobj =
488 ds->ds_prev->ds_object;
03916905
PD
489 }
490
30af21b0
PD
491 if (dsl_dataset_feature_is_active(snap,
492 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
493 snap)) {
494 dsl_dataset_rele(snap, FTAG);
495 return (SET_ERROR(EINVAL));
496 }
497
7bcb7f08
MA
498 error = recv_check_large_blocks(snap, featureflags);
499 if (error != 0) {
500 dsl_dataset_rele(snap, FTAG);
501 return (error);
502 }
503
03916905
PD
504 dsl_dataset_rele(snap, FTAG);
505 } else {
e8cf3a4f 506 /* If full and not healing then must be forced. */
03916905
PD
507 if (!drba->drba_cookie->drc_force)
508 return (SET_ERROR(EEXIST));
509
510 /*
511 * We don't support using zfs recv -F to blow away
512 * encrypted filesystems. This would require the
513 * dsl dir to point to the old encryption key and
514 * the new one at the same time during the receive.
515 */
516 if ((!encrypted && raw) || encrypted)
517 return (SET_ERROR(EINVAL));
518
519 /*
520 * Perform the same encryption checks we would if
521 * we were creating a new dataset from scratch.
522 */
523 if (!raw) {
524 boolean_t will_encrypt;
525
526 error = dmu_objset_create_crypt_check(
527 ds->ds_dir->dd_parent, drba->drba_dcp,
528 &will_encrypt);
529 if (error != 0)
530 return (error);
531
532 if (will_encrypt && embed)
533 return (SET_ERROR(EINVAL));
534 }
03916905
PD
535 }
536
537 return (0);
03916905
PD
538}
539
30af21b0
PD
540/*
541 * Check that any feature flags used in the data stream we're receiving are
542 * supported by the pool we are receiving into.
543 *
544 * Note that some of the features we explicitly check here have additional
545 * (implicit) features they depend on, but those dependencies are enforced
546 * through the zfeature_register() calls declaring the features that we
547 * explicitly check.
548 */
549static int
550recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
551{
552 /*
553 * Check if there are any unsupported feature flags.
554 */
555 if (!DMU_STREAM_SUPPORTED(featureflags)) {
556 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
557 }
558
559 /* Verify pool version supports SA if SA_SPILL feature set */
560 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
561 spa_version(spa) < SPA_VERSION_SA)
562 return (SET_ERROR(ENOTSUP));
563
564 /*
10b3c7f5
MN
565 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
566 * and large_dnodes in the stream can only be used if those pool
567 * features are enabled because we don't attempt to decompress /
568 * un-embed / un-mooch / split up the blocks / dnodes during the
569 * receive process.
30af21b0
PD
570 */
571 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
572 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
573 return (SET_ERROR(ENOTSUP));
10b3c7f5
MN
574 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
575 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
576 return (SET_ERROR(ENOTSUP));
30af21b0
PD
577 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
578 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
579 return (SET_ERROR(ENOTSUP));
580 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
581 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
582 return (SET_ERROR(ENOTSUP));
583 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
584 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
585 return (SET_ERROR(ENOTSUP));
586
587 /*
588 * Receiving redacted streams requires that redacted datasets are
589 * enabled.
590 */
591 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
592 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
593 return (SET_ERROR(ENOTSUP));
594
595 return (0);
596}
597
03916905
PD
598static int
599dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
600{
601 dmu_recv_begin_arg_t *drba = arg;
602 dsl_pool_t *dp = dmu_tx_pool(tx);
603 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
604 uint64_t fromguid = drrb->drr_fromguid;
605 int flags = drrb->drr_flags;
40ab927a 606 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905 607 int error;
30af21b0 608 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
03916905
PD
609 dsl_dataset_t *ds;
610 const char *tofs = drba->drba_cookie->drc_tofs;
611
612 /* already checked */
613 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
614 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
615
616 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
617 DMU_COMPOUNDSTREAM ||
618 drrb->drr_type >= DMU_OST_NUMTYPES ||
619 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
620 return (SET_ERROR(EINVAL));
621
30af21b0
PD
622 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
623 if (error != 0)
624 return (error);
03916905 625
30af21b0 626 /* Resumable receives require extensible datasets */
03916905
PD
627 if (drba->drba_cookie->drc_resumable &&
628 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
629 return (SET_ERROR(ENOTSUP));
630
03916905
PD
631 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
632 /* raw receives require the encryption feature */
633 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
634 return (SET_ERROR(ENOTSUP));
635
636 /* embedded data is incompatible with encryption and raw recv */
637 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
638 return (SET_ERROR(EINVAL));
caf9dd20
BB
639
640 /* raw receives require spill block allocation flag */
641 if (!(flags & DRR_FLAG_SPILL_BLOCK))
642 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
03916905 643 } else {
68ddc06b
AF
644 /*
645 * We support unencrypted datasets below encrypted ones now,
646 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
647 * with a dataset we may encrypt.
648 */
211ec1b9 649 if (drba->drba_dcp == NULL ||
68ddc06b
AF
650 drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
651 dsflags |= DS_HOLD_FLAG_DECRYPT;
652 }
03916905
PD
653 }
654
655 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
656 if (error == 0) {
657 /* target fs already exists; recv into temp clone */
658
659 /* Can't recv a clone into an existing fs */
660 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
661 dsl_dataset_rele_flags(ds, dsflags, FTAG);
662 return (SET_ERROR(EINVAL));
663 }
664
665 error = recv_begin_check_existing_impl(drba, ds, fromguid,
666 featureflags);
667 dsl_dataset_rele_flags(ds, dsflags, FTAG);
668 } else if (error == ENOENT) {
669 /* target fs does not exist; must be a full backup or clone */
670 char buf[ZFS_MAX_DATASET_NAME_LEN];
d8d418ff 671 objset_t *os;
03916905 672
e8cf3a4f
AP
673 /* healing recv must be done "into" an existing snapshot */
674 if (drba->drba_cookie->drc_heal == B_TRUE)
675 return (SET_ERROR(ENOTSUP));
676
03916905
PD
677 /*
678 * If it's a non-clone incremental, we are missing the
679 * target fs, so fail the recv.
680 */
30af21b0 681 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
03916905
PD
682 drba->drba_origin))
683 return (SET_ERROR(ENOENT));
684
685 /*
686 * If we're receiving a full send as a clone, and it doesn't
687 * contain all the necessary free records and freeobject
688 * records, reject it.
689 */
30af21b0 690 if (fromguid == 0 && drba->drba_origin != NULL &&
03916905
PD
691 !(flags & DRR_FLAG_FREERECORDS))
692 return (SET_ERROR(EINVAL));
693
694 /* Open the parent of tofs */
695 ASSERT3U(strlen(tofs), <, sizeof (buf));
696 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
da689887 697 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
03916905
PD
698 if (error != 0)
699 return (error);
700
701 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
702 drba->drba_origin == NULL) {
703 boolean_t will_encrypt;
704
705 /*
706 * Check that we aren't breaking any encryption rules
707 * and that we have all the parameters we need to
708 * create an encrypted dataset if necessary. If we are
709 * making an encrypted dataset the stream can't have
710 * embedded data.
711 */
712 error = dmu_objset_create_crypt_check(ds->ds_dir,
713 drba->drba_dcp, &will_encrypt);
714 if (error != 0) {
da689887 715 dsl_dataset_rele(ds, FTAG);
03916905
PD
716 return (error);
717 }
718
719 if (will_encrypt &&
720 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
da689887 721 dsl_dataset_rele(ds, FTAG);
03916905
PD
722 return (SET_ERROR(EINVAL));
723 }
724 }
725
726 /*
727 * Check filesystem and snapshot limits before receiving. We'll
728 * recheck snapshot limits again at the end (we create the
729 * filesystems and increment those counts during begin_sync).
730 */
731 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
e59a377a
MA
732 ZFS_PROP_FILESYSTEM_LIMIT, NULL,
733 drba->drba_cred, drba->drba_proc);
03916905 734 if (error != 0) {
da689887 735 dsl_dataset_rele(ds, FTAG);
03916905
PD
736 return (error);
737 }
738
739 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
e59a377a
MA
740 ZFS_PROP_SNAPSHOT_LIMIT, NULL,
741 drba->drba_cred, drba->drba_proc);
03916905 742 if (error != 0) {
da689887 743 dsl_dataset_rele(ds, FTAG);
03916905
PD
744 return (error);
745 }
746
d8d418ff 747 /* can't recv below anything but filesystems (eg. no ZVOLs) */
748 error = dmu_objset_from_ds(ds, &os);
749 if (error != 0) {
da689887 750 dsl_dataset_rele(ds, FTAG);
d8d418ff 751 return (error);
752 }
753 if (dmu_objset_type(os) != DMU_OST_ZFS) {
da689887 754 dsl_dataset_rele(ds, FTAG);
d8d418ff 755 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
756 }
757
03916905
PD
758 if (drba->drba_origin != NULL) {
759 dsl_dataset_t *origin;
03916905
PD
760 error = dsl_dataset_hold_flags(dp, drba->drba_origin,
761 dsflags, FTAG, &origin);
762 if (error != 0) {
da689887 763 dsl_dataset_rele(ds, FTAG);
03916905
PD
764 return (error);
765 }
766 if (!origin->ds_is_snapshot) {
767 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 768 dsl_dataset_rele(ds, FTAG);
03916905
PD
769 return (SET_ERROR(EINVAL));
770 }
771 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
772 fromguid != 0) {
773 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 774 dsl_dataset_rele(ds, FTAG);
03916905
PD
775 return (SET_ERROR(ENODEV));
776 }
30af21b0 777
03916905
PD
778 if (origin->ds_dir->dd_crypto_obj != 0 &&
779 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
780 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 781 dsl_dataset_rele(ds, FTAG);
03916905
PD
782 return (SET_ERROR(EINVAL));
783 }
30af21b0
PD
784
785 /*
786 * If the origin is redacted we need to verify that this
787 * send stream can safely be received on top of the
788 * origin.
789 */
790 if (dsl_dataset_feature_is_active(origin,
791 SPA_FEATURE_REDACTED_DATASETS)) {
792 if (!redact_check(drba, origin)) {
793 dsl_dataset_rele_flags(origin, dsflags,
794 FTAG);
795 dsl_dataset_rele_flags(ds, dsflags,
796 FTAG);
797 return (SET_ERROR(EINVAL));
798 }
799 }
800
7bcb7f08
MA
801 error = recv_check_large_blocks(ds, featureflags);
802 if (error != 0) {
803 dsl_dataset_rele_flags(origin, dsflags, FTAG);
804 dsl_dataset_rele_flags(ds, dsflags, FTAG);
805 return (error);
806 }
807
30af21b0 808 dsl_dataset_rele_flags(origin, dsflags, FTAG);
03916905 809 }
d8d418ff 810
da689887 811 dsl_dataset_rele(ds, FTAG);
03916905
PD
812 error = 0;
813 }
814 return (error);
815}
816
817static void
818dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
819{
820 dmu_recv_begin_arg_t *drba = arg;
821 dsl_pool_t *dp = dmu_tx_pool(tx);
822 objset_t *mos = dp->dp_meta_objset;
30af21b0
PD
823 dmu_recv_cookie_t *drc = drba->drba_cookie;
824 struct drr_begin *drrb = drc->drc_drrb;
825 const char *tofs = drc->drc_tofs;
826 uint64_t featureflags = drc->drc_featureflags;
03916905
PD
827 dsl_dataset_t *ds, *newds;
828 objset_t *os;
829 uint64_t dsobj;
40ab927a 830 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905
PD
831 int error;
832 uint64_t crflags = 0;
833 dsl_crypto_params_t dummy_dcp = { 0 };
834 dsl_crypto_params_t *dcp = drba->drba_dcp;
835
836 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
837 crflags |= DS_FLAG_CI_DATASET;
838
839 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
840 dsflags |= DS_HOLD_FLAG_DECRYPT;
841
842 /*
843 * Raw, non-incremental recvs always use a dummy dcp with
844 * the raw cmd set. Raw incremental recvs do not use a dcp
845 * since the encryption parameters are already set in stone.
846 */
30af21b0 847 if (dcp == NULL && drrb->drr_fromguid == 0 &&
03916905
PD
848 drba->drba_origin == NULL) {
849 ASSERT3P(dcp, ==, NULL);
850 dcp = &dummy_dcp;
851
852 if (featureflags & DMU_BACKUP_FEATURE_RAW)
853 dcp->cp_cmd = DCP_CMD_RAW_RECV;
854 }
855
856 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
857 if (error == 0) {
e8cf3a4f 858 /* Create temporary clone unless we're doing corrective recv */
03916905
PD
859 dsl_dataset_t *snap = NULL;
860
f00ab3f2 861 if (drba->drba_cookie->drc_fromsnapobj != 0) {
03916905 862 VERIFY0(dsl_dataset_hold_obj(dp,
f00ab3f2 863 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
03916905
PD
864 ASSERT3P(dcp, ==, NULL);
865 }
e8cf3a4f
AP
866 if (drc->drc_heal) {
867 /* When healing we want to use the provided snapshot */
868 VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
869 &dsobj));
870 } else {
871 dsobj = dsl_dataset_create_sync(ds->ds_dir,
872 recv_clone_name, snap, crflags, drba->drba_cred,
873 dcp, tx);
874 }
f00ab3f2 875 if (drba->drba_cookie->drc_fromsnapobj != 0)
03916905
PD
876 dsl_dataset_rele(snap, FTAG);
877 dsl_dataset_rele_flags(ds, dsflags, FTAG);
878 } else {
879 dsl_dir_t *dd;
880 const char *tail;
881 dsl_dataset_t *origin = NULL;
882
883 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
884
885 if (drba->drba_origin != NULL) {
886 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
887 FTAG, &origin));
888 ASSERT3P(dcp, ==, NULL);
889 }
890
891 /* Create new dataset. */
892 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
893 origin, crflags, drba->drba_cred, dcp, tx);
894 if (origin != NULL)
895 dsl_dataset_rele(origin, FTAG);
896 dsl_dir_rele(dd, FTAG);
30af21b0
PD
897 drc->drc_newfs = B_TRUE;
898 }
899 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
900 &newds));
901 if (dsl_dataset_feature_is_active(newds,
902 SPA_FEATURE_REDACTED_DATASETS)) {
903 /*
904 * If the origin dataset is redacted, the child will be redacted
905 * when we create it. We clear the new dataset's
906 * redaction info; if it should be redacted, we'll fill
907 * in its information later.
908 */
909 dsl_dataset_deactivate_feature(newds,
910 SPA_FEATURE_REDACTED_DATASETS, tx);
03916905 911 }
03916905
PD
912 VERIFY0(dmu_objset_from_ds(newds, &os));
913
30af21b0 914 if (drc->drc_resumable) {
03916905
PD
915 dsl_dataset_zapify(newds, tx);
916 if (drrb->drr_fromguid != 0) {
917 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
918 8, 1, &drrb->drr_fromguid, tx));
919 }
920 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
921 8, 1, &drrb->drr_toguid, tx));
922 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
923 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
924 uint64_t one = 1;
925 uint64_t zero = 0;
926 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
927 8, 1, &one, tx));
928 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
929 8, 1, &zero, tx));
930 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
931 8, 1, &zero, tx));
932 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
933 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
934 8, 1, &one, tx));
935 }
936 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
937 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
938 8, 1, &one, tx));
939 }
940 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
941 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
942 8, 1, &one, tx));
943 }
944 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
945 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
946 8, 1, &one, tx));
947 }
30af21b0
PD
948
949 uint64_t *redact_snaps;
950 uint_t numredactsnaps;
951 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
952 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
953 &numredactsnaps) == 0) {
954 VERIFY0(zap_add(mos, dsobj,
955 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
956 sizeof (*redact_snaps), numredactsnaps,
957 redact_snaps, tx));
958 }
03916905
PD
959 }
960
961 /*
962 * Usually the os->os_encrypted value is tied to the presence of a
963 * DSL Crypto Key object in the dd. However, that will not be received
964 * until dmu_recv_stream(), so we set the value manually for now.
965 */
966 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
967 os->os_encrypted = B_TRUE;
968 drba->drba_cookie->drc_raw = B_TRUE;
969 }
970
30af21b0
PD
971 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
972 uint64_t *redact_snaps;
973 uint_t numredactsnaps;
974 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
975 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
976 dsl_dataset_activate_redaction(newds, redact_snaps,
977 numredactsnaps, tx);
978 }
979
03916905
PD
980 dmu_buf_will_dirty(newds->ds_dbuf, tx);
981 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
982
983 /*
984 * If we actually created a non-clone, we need to create the objset
985 * in our new dataset. If this is a raw send we postpone this until
986 * dmu_recv_stream() so that we can allocate the metadnode with the
987 * properties from the DRR_BEGIN payload.
988 */
989 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
990 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
e8cf3a4f
AP
991 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
992 !drc->drc_heal) {
03916905
PD
993 (void) dmu_objset_create_impl(dp->dp_spa,
994 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
995 }
996 rrw_exit(&newds->ds_bp_rwlock, FTAG);
997
998 drba->drba_cookie->drc_ds = newds;
0fdd6106 999 drba->drba_cookie->drc_os = os;
03916905 1000
74756182 1001 spa_history_log_internal_ds(newds, "receive", tx, " ");
03916905
PD
1002}
1003
1004static int
1005dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1006{
1007 dmu_recv_begin_arg_t *drba = arg;
30af21b0 1008 dmu_recv_cookie_t *drc = drba->drba_cookie;
03916905 1009 dsl_pool_t *dp = dmu_tx_pool(tx);
30af21b0 1010 struct drr_begin *drrb = drc->drc_drrb;
03916905 1011 int error;
40ab927a 1012 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905 1013 dsl_dataset_t *ds;
30af21b0 1014 const char *tofs = drc->drc_tofs;
03916905
PD
1015
1016 /* already checked */
1017 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
30af21b0 1018 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
03916905
PD
1019
1020 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1021 DMU_COMPOUNDSTREAM ||
1022 drrb->drr_type >= DMU_OST_NUMTYPES)
1023 return (SET_ERROR(EINVAL));
1024
03916905 1025 /*
30af21b0
PD
1026 * This is mostly a sanity check since we should have already done these
1027 * checks during a previous attempt to receive the data.
03916905 1028 */
30af21b0
PD
1029 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1030 dp->dp_spa);
1031 if (error != 0)
1032 return (error);
03916905
PD
1033
1034 /* 6 extra bytes for /%recv */
1035 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
30af21b0 1036
03916905
PD
1037 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1038 tofs, recv_clone_name);
1039
30af21b0 1040 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
caf9dd20
BB
1041 /* raw receives require spill block allocation flag */
1042 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1043 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1044 } else {
03916905 1045 dsflags |= DS_HOLD_FLAG_DECRYPT;
caf9dd20 1046 }
03916905 1047
3ed9d688 1048 boolean_t recvexist = B_TRUE;
03916905
PD
1049 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1050 /* %recv does not exist; continue in tofs */
3ed9d688 1051 recvexist = B_FALSE;
03916905
PD
1052 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1053 if (error != 0)
1054 return (error);
1055 }
1056
3ed9d688
JP
1057 /*
1058 * Resume of full/newfs recv on existing dataset should be done with
1059 * force flag
1060 */
1061 if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1062 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1063 return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1064 }
1065
03916905
PD
1066 /* check that ds is marked inconsistent */
1067 if (!DS_IS_INCONSISTENT(ds)) {
1068 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1069 return (SET_ERROR(EINVAL));
1070 }
1071
1072 /* check that there is resuming data, and that the toguid matches */
1073 if (!dsl_dataset_is_zapified(ds)) {
1074 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1075 return (SET_ERROR(EINVAL));
1076 }
1077 uint64_t val;
1078 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1079 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1080 if (error != 0 || drrb->drr_toguid != val) {
1081 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1082 return (SET_ERROR(EINVAL));
1083 }
1084
1085 /*
1086 * Check if the receive is still running. If so, it will be owned.
1087 * Note that nothing else can own the dataset (e.g. after the receive
1088 * fails) because it will be marked inconsistent.
1089 */
1090 if (dsl_dataset_has_owner(ds)) {
1091 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1092 return (SET_ERROR(EBUSY));
1093 }
1094
1095 /* There should not be any snapshots of this fs yet. */
1096 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1097 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1098 return (SET_ERROR(EINVAL));
1099 }
1100
1101 /*
1102 * Note: resume point will be checked when we process the first WRITE
1103 * record.
1104 */
1105
1106 /* check that the origin matches */
1107 val = 0;
1108 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1109 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1110 if (drrb->drr_fromguid != val) {
1111 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1112 return (SET_ERROR(EINVAL));
1113 }
1114
aa646323 1115 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
61152d10
TC
1116 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1117
30af21b0
PD
1118 /*
1119 * If we're resuming, and the send is redacted, then the original send
1120 * must have been redacted, and must have been redacted with respect to
1121 * the same snapshots.
1122 */
1123 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1124 uint64_t num_ds_redact_snaps;
1125 uint64_t *ds_redact_snaps;
1126
1127 uint_t num_stream_redact_snaps;
1128 uint64_t *stream_redact_snaps;
1129
1130 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1131 BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1132 &num_stream_redact_snaps) != 0) {
1133 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1134 return (SET_ERROR(EINVAL));
1135 }
1136
1137 if (!dsl_dataset_get_uint64_array_feature(ds,
1138 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1139 &ds_redact_snaps)) {
1140 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1141 return (SET_ERROR(EINVAL));
1142 }
1143
1144 for (int i = 0; i < num_ds_redact_snaps; i++) {
1145 if (!redact_snaps_contains(ds_redact_snaps,
1146 num_ds_redact_snaps, stream_redact_snaps[i])) {
1147 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1148 return (SET_ERROR(EINVAL));
1149 }
1150 }
1151 }
7bcb7f08
MA
1152
1153 error = recv_check_large_blocks(ds, drc->drc_featureflags);
1154 if (error != 0) {
1155 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1156 return (error);
1157 }
1158
03916905
PD
1159 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1160 return (0);
1161}
1162
1163static void
1164dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1165{
1166 dmu_recv_begin_arg_t *drba = arg;
1167 dsl_pool_t *dp = dmu_tx_pool(tx);
1168 const char *tofs = drba->drba_cookie->drc_tofs;
30af21b0 1169 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
03916905 1170 dsl_dataset_t *ds;
40ab927a 1171 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905
PD
1172 /* 6 extra bytes for /%recv */
1173 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1174
30af21b0
PD
1175 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1176 recv_clone_name);
03916905
PD
1177
1178 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1179 drba->drba_cookie->drc_raw = B_TRUE;
1180 } else {
1181 dsflags |= DS_HOLD_FLAG_DECRYPT;
1182 }
1183
30af21b0
PD
1184 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1185 != 0) {
03916905 1186 /* %recv does not exist; continue in tofs */
30af21b0
PD
1187 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1188 &ds));
03916905
PD
1189 drba->drba_cookie->drc_newfs = B_TRUE;
1190 }
1191
03916905 1192 ASSERT(DS_IS_INCONSISTENT(ds));
03916905
PD
1193 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1194 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1195 drba->drba_cookie->drc_raw);
1196 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1197
1198 drba->drba_cookie->drc_ds = ds;
0fdd6106 1199 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
61152d10 1200 drba->drba_cookie->drc_should_save = B_TRUE;
03916905 1201
74756182 1202 spa_history_log_internal_ds(ds, "resume receive", tx, " ");
03916905
PD
1203}
1204
1205/*
1206 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1207 * succeeds; otherwise we will leak the holds on the datasets.
1208 */
1209int
1210dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
e8cf3a4f 1211 boolean_t force, boolean_t heal, boolean_t resumable, nvlist_t *localprops,
da92d5cb
MM
1212 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1213 zfs_file_t *fp, offset_t *voffp)
03916905
PD
1214{
1215 dmu_recv_begin_arg_t drba = { 0 };
30af21b0 1216 int err;
03916905 1217
861166b0 1218 memset(drc, 0, sizeof (dmu_recv_cookie_t));
03916905
PD
1219 drc->drc_drr_begin = drr_begin;
1220 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1221 drc->drc_tosnap = tosnap;
1222 drc->drc_tofs = tofs;
1223 drc->drc_force = force;
e8cf3a4f 1224 drc->drc_heal = heal;
03916905
PD
1225 drc->drc_resumable = resumable;
1226 drc->drc_cred = CRED();
e59a377a 1227 drc->drc_proc = curproc;
03916905
PD
1228 drc->drc_clone = (origin != NULL);
1229
1230 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1231 drc->drc_byteswap = B_TRUE;
1232 (void) fletcher_4_incremental_byteswap(drr_begin,
1233 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1234 byteswap_record(drr_begin);
1235 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1236 (void) fletcher_4_incremental_native(drr_begin,
1237 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1238 } else {
1239 return (SET_ERROR(EINVAL));
1240 }
1241
da92d5cb 1242 drc->drc_fp = fp;
30af21b0
PD
1243 drc->drc_voff = *voffp;
1244 drc->drc_featureflags =
1245 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1246
1247 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1248 void *payload = NULL;
1249 if (payloadlen != 0)
1250 payload = kmem_alloc(payloadlen, KM_SLEEP);
1251
1252 err = receive_read_payload_and_next_header(drc, payloadlen,
1253 payload);
1254 if (err != 0) {
1255 kmem_free(payload, payloadlen);
1256 return (err);
1257 }
1258 if (payloadlen != 0) {
1259 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1260 KM_SLEEP);
1261 kmem_free(payload, payloadlen);
1262 if (err != 0) {
1263 kmem_free(drc->drc_next_rrd,
1264 sizeof (*drc->drc_next_rrd));
1265 return (err);
1266 }
1267 }
1268
caf9dd20
BB
1269 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1270 drc->drc_spill = B_TRUE;
1271
03916905
PD
1272 drba.drba_origin = origin;
1273 drba.drba_cookie = drc;
1274 drba.drba_cred = CRED();
e59a377a 1275 drba.drba_proc = curproc;
03916905 1276
30af21b0
PD
1277 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1278 err = dsl_sync_task(tofs,
03916905 1279 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
30af21b0
PD
1280 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1281 } else {
03916905
PD
1282 /*
1283 * For non-raw, non-incremental, non-resuming receives the
1284 * user can specify encryption parameters on the command line
1285 * with "zfs recv -o". For these receives we create a dcp and
1286 * pass it to the sync task. Creating the dcp will implicitly
1287 * remove the encryption params from the localprops nvlist,
1288 * which avoids errors when trying to set these normally
1289 * read-only properties. Any other kind of receive that
1290 * attempts to set these properties will fail as a result.
1291 */
1292 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1293 DMU_BACKUP_FEATURE_RAW) == 0 &&
1294 origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1295 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1296 localprops, hidden_args, &drba.drba_dcp);
03916905
PD
1297 }
1298
30af21b0
PD
1299 if (err == 0) {
1300 err = dsl_sync_task(tofs,
1301 dmu_recv_begin_check, dmu_recv_begin_sync,
1302 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1303 dsl_crypto_params_free(drba.drba_dcp, !!err);
1304 }
1305 }
03916905 1306
30af21b0
PD
1307 if (err != 0) {
1308 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1309 nvlist_free(drc->drc_begin_nvl);
03916905 1310 }
30af21b0 1311 return (err);
03916905
PD
1312}
1313
e8cf3a4f
AP
1314/*
1315 * Holds data need for corrective recv callback
1316 */
1317typedef struct cr_cb_data {
1318 uint64_t size;
1319 zbookmark_phys_t zb;
1320 spa_t *spa;
1321} cr_cb_data_t;
1322
1323static void
1324corrective_read_done(zio_t *zio)
1325{
1326 cr_cb_data_t *data = zio->io_private;
1327 /* Corruption corrected; update error log if needed */
1328 if (zio->io_error == 0)
1329 spa_remove_error(data->spa, &data->zb);
1330 kmem_free(data, sizeof (cr_cb_data_t));
1331 abd_free(zio->io_abd);
1332}
1333
1334/*
1335 * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1336 */
1337static int
1338do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1339 struct receive_record_arg *rrd, blkptr_t *bp)
1340{
1341 int err;
1342 zio_t *io;
1343 zbookmark_phys_t zb;
1344 dnode_t *dn;
1345 abd_t *abd = rrd->abd;
1346 zio_cksum_t bp_cksum = bp->blk_cksum;
4938d01d 1347 zio_flag_t flags = ZIO_FLAG_SPECULATIVE |
e8cf3a4f
AP
1348 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL;
1349
1350 if (rwa->raw)
1351 flags |= ZIO_FLAG_RAW;
1352
1353 err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1354 if (err != 0)
1355 return (err);
1356 SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1357 dbuf_whichblock(dn, 0, drrw->drr_offset));
1358 dnode_rele(dn, FTAG);
1359
1360 if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1361 /* Decompress the stream data */
1362 abd_t *dabd = abd_alloc_linear(
1363 drrw->drr_logical_size, B_FALSE);
1364 err = zio_decompress_data(drrw->drr_compressiontype,
1365 abd, abd_to_buf(dabd), abd_get_size(abd),
1366 abd_get_size(dabd), NULL);
1367
1368 if (err != 0) {
1369 abd_free(dabd);
1370 return (err);
1371 }
1372 /* Swap in the newly decompressed data into the abd */
1373 abd_free(abd);
1374 abd = dabd;
1375 }
1376
1377 if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1378 /* Recompress the data */
1379 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1380 B_FALSE);
1381 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1382 abd, abd_to_buf(cabd), abd_get_size(abd),
1383 rwa->os->os_complevel);
1384 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1385 /* Swap in newly compressed data into the abd */
1386 abd_free(abd);
1387 abd = cabd;
1388 flags |= ZIO_FLAG_RAW_COMPRESS;
1389 }
1390
1391 /*
1392 * The stream is not encrypted but the data on-disk is.
1393 * We need to re-encrypt the buf using the same
1394 * encryption type, salt, iv, and mac that was used to encrypt
1395 * the block previosly.
1396 */
1397 if (!rwa->raw && BP_USES_CRYPT(bp)) {
1398 dsl_dataset_t *ds;
1399 dsl_crypto_key_t *dck = NULL;
1400 uint8_t salt[ZIO_DATA_SALT_LEN];
1401 uint8_t iv[ZIO_DATA_IV_LEN];
1402 uint8_t mac[ZIO_DATA_MAC_LEN];
1403 boolean_t no_crypt = B_FALSE;
1404 dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1405 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1406
1407 zio_crypt_decode_params_bp(bp, salt, iv);
1408 zio_crypt_decode_mac_bp(bp, mac);
1409
1410 dsl_pool_config_enter(dp, FTAG);
1411 err = dsl_dataset_hold_flags(dp, rwa->tofs,
1412 DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1413 if (err != 0) {
1414 dsl_pool_config_exit(dp, FTAG);
1415 abd_free(eabd);
1416 return (SET_ERROR(EACCES));
1417 }
1418
1419 /* Look up the key from the spa's keystore */
1420 err = spa_keystore_lookup_key(rwa->os->os_spa,
1421 zb.zb_objset, FTAG, &dck);
1422 if (err != 0) {
1423 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1424 FTAG);
1425 dsl_pool_config_exit(dp, FTAG);
1426 abd_free(eabd);
1427 return (SET_ERROR(EACCES));
1428 }
1429
1430 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1431 BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1432 mac, abd_get_size(abd), abd, eabd, &no_crypt);
1433
1434 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1435 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1436 dsl_pool_config_exit(dp, FTAG);
1437
1438 ASSERT0(no_crypt);
1439 if (err != 0) {
1440 abd_free(eabd);
1441 return (err);
1442 }
1443 /* Swap in the newly encrypted data into the abd */
1444 abd_free(abd);
1445 abd = eabd;
1446
1447 /*
1448 * We want to prevent zio_rewrite() from trying to
1449 * encrypt the data again
1450 */
1451 flags |= ZIO_FLAG_RAW_ENCRYPT;
1452 }
1453 rrd->abd = abd;
1454
1455 io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd,
1456 BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb);
1457
1458 ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1459 abd_get_size(abd) == BP_GET_PSIZE(bp));
1460
1461 /* compute new bp checksum value and make sure it matches the old one */
1462 zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1463 if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1464 zio_destroy(io);
1465 if (zfs_recv_best_effort_corrective != 0)
1466 return (0);
1467 return (SET_ERROR(ECKSUM));
1468 }
1469
1470 /* Correct the corruption in place */
1471 err = zio_wait(io);
1472 if (err == 0) {
1473 cr_cb_data_t *cb_data =
1474 kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1475 cb_data->spa = rwa->os->os_spa;
1476 cb_data->size = drrw->drr_logical_size;
1477 cb_data->zb = zb;
1478 /* Test if healing worked by re-reading the bp */
1479 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1480 abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1481 drrw->drr_logical_size, corrective_read_done,
1482 cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1483 }
1484 if (err != 0 && zfs_recv_best_effort_corrective != 0)
1485 err = 0;
1486
1487 return (err);
1488}
1489
03916905 1490static int
30af21b0 1491receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
03916905
PD
1492{
1493 int done = 0;
1494
1495 /*
1496 * The code doesn't rely on this (lengths being multiples of 8). See
1497 * comment in dump_bytes.
1498 */
1499 ASSERT(len % 8 == 0 ||
30af21b0 1500 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
03916905
PD
1501
1502 while (done < len) {
1503 ssize_t resid;
8b240f14
MA
1504 zfs_file_t *fp = drc->drc_fp;
1505 int err = zfs_file_read(fp, (char *)buf + done,
da92d5cb 1506 len - done, &resid);
03916905
PD
1507 if (resid == len - done) {
1508 /*
7145123b
PD
1509 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1510 * that the receive was interrupted and can
1511 * potentially be resumed.
03916905 1512 */
8b240f14 1513 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
03916905 1514 }
30af21b0 1515 drc->drc_voff += len - done - resid;
03916905 1516 done = len - resid;
8b240f14
MA
1517 if (err != 0)
1518 return (err);
03916905
PD
1519 }
1520
30af21b0 1521 drc->drc_bytes_read += len;
03916905
PD
1522
1523 ASSERT3U(done, ==, len);
1524 return (0);
1525}
1526
03916905
PD
1527static inline uint8_t
1528deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1529{
1530 if (bonus_type == DMU_OT_SA) {
1531 return (1);
1532 } else {
1533 return (1 +
1534 ((DN_OLD_MAX_BONUSLEN -
1535 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1536 }
1537}
1538
1539static void
1540save_resume_state(struct receive_writer_arg *rwa,
1541 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1542{
1543 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1544
1545 if (!rwa->resumable)
1546 return;
1547
1548 /*
1549 * We use ds_resume_bytes[] != 0 to indicate that we need to
1550 * update this on disk, so it must not be 0.
1551 */
1552 ASSERT(rwa->bytes_read != 0);
1553
1554 /*
1555 * We only resume from write records, which have a valid
1556 * (non-meta-dnode) object number.
1557 */
1558 ASSERT(object != 0);
1559
1560 /*
1561 * For resuming to work correctly, we must receive records in order,
1562 * sorted by object,offset. This is checked by the callers, but
1563 * assert it here for good measure.
1564 */
1565 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1566 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1567 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1568 ASSERT3U(rwa->bytes_read, >=,
1569 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1570
1571 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1572 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1573 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1574}
1575
7bcb7f08
MA
1576static int
1577receive_object_is_same_generation(objset_t *os, uint64_t object,
1578 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1579 const void *new_bonus, boolean_t *samegenp)
1580{
1581 zfs_file_info_t zoi;
1582 int err;
1583
1584 dmu_buf_t *old_bonus_dbuf;
1585 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1586 if (err != 0)
1587 return (err);
1588 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1589 &zoi);
1590 dmu_buf_rele(old_bonus_dbuf, FTAG);
1591 if (err != 0)
1592 return (err);
1593 uint64_t old_gen = zoi.zfi_generation;
1594
1595 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1596 if (err != 0)
1597 return (err);
1598 uint64_t new_gen = zoi.zfi_generation;
1599
1600 *samegenp = (old_gen == new_gen);
1601 return (0);
1602}
1603
1604static int
1605receive_handle_existing_object(const struct receive_writer_arg *rwa,
1606 const struct drr_object *drro, const dmu_object_info_t *doi,
1607 const void *bonus_data,
1608 uint64_t *object_to_hold, uint32_t *new_blksz)
1609{
1610 uint32_t indblksz = drro->drr_indblkshift ?
1611 1ULL << drro->drr_indblkshift : 0;
1612 int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1613 drro->drr_bonuslen);
1614 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1615 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1616 boolean_t do_free_range = B_FALSE;
1617 int err;
1618
1619 *object_to_hold = drro->drr_object;
1620
1621 /* nblkptr should be bounded by the bonus size and type */
1622 if (rwa->raw && nblkptr != drro->drr_nblkptr)
1623 return (SET_ERROR(EINVAL));
1624
1625 /*
1626 * After the previous send stream, the sending system may
1627 * have freed this object, and then happened to re-allocate
1628 * this object number in a later txg. In this case, we are
1629 * receiving a different logical file, and the block size may
1630 * appear to be different. i.e. we may have a different
1631 * block size for this object than what the send stream says.
1632 * In this case we need to remove the object's contents,
1633 * so that its structure can be changed and then its contents
1634 * entirely replaced by subsequent WRITE records.
1635 *
1636 * If this is a -L (--large-block) incremental stream, and
1637 * the previous stream was not -L, the block size may appear
1638 * to increase. i.e. we may have a smaller block size for
1639 * this object than what the send stream says. In this case
1640 * we need to keep the object's contents and block size
1641 * intact, so that we don't lose parts of the object's
1642 * contents that are not changed by this incremental send
1643 * stream.
1644 *
1645 * We can distinguish between the two above cases by using
1646 * the ZPL's generation number (see
1647 * receive_object_is_same_generation()). However, we only
1648 * want to rely on the generation number when absolutely
1649 * necessary, because with raw receives, the generation is
1650 * encrypted. We also want to minimize dependence on the
1651 * ZPL, so that other types of datasets can also be received
1652 * (e.g. ZVOLs, although note that ZVOLS currently do not
1653 * reallocate their objects or change their structure).
1654 * Therefore, we check a number of different cases where we
1655 * know it is safe to discard the object's contents, before
1656 * using the ZPL's generation number to make the above
1657 * distinction.
1658 */
1659 if (drro->drr_blksz != doi->doi_data_block_size) {
1660 if (rwa->raw) {
1661 /*
1662 * RAW streams always have large blocks, so
1663 * we are sure that the data is not needed
1664 * due to changing --large-block to be on.
1665 * Which is fortunate since the bonus buffer
1666 * (which contains the ZPL generation) is
1667 * encrypted, and the key might not be
1668 * loaded.
1669 */
1670 do_free_range = B_TRUE;
1671 } else if (rwa->full) {
1672 /*
1673 * This is a full send stream, so it always
1674 * replaces what we have. Even if the
1675 * generation numbers happen to match, this
1676 * can not actually be the same logical file.
1677 * This is relevant when receiving a full
1678 * send as a clone.
1679 */
1680 do_free_range = B_TRUE;
1681 } else if (drro->drr_type !=
1682 DMU_OT_PLAIN_FILE_CONTENTS ||
1683 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1684 /*
1685 * PLAIN_FILE_CONTENTS are the only type of
1686 * objects that have ever been stored with
1687 * large blocks, so we don't need the special
1688 * logic below. ZAP blocks can shrink (when
1689 * there's only one block), so we don't want
1690 * to hit the error below about block size
1691 * only increasing.
1692 */
1693 do_free_range = B_TRUE;
1694 } else if (doi->doi_max_offset <=
1695 doi->doi_data_block_size) {
1696 /*
1697 * There is only one block. We can free it,
1698 * because its contents will be replaced by a
1699 * WRITE record. This can not be the no-L ->
1700 * -L case, because the no-L case would have
1701 * resulted in multiple blocks. If we
1702 * supported -L -> no-L, it would not be safe
1703 * to free the file's contents. Fortunately,
1704 * that is not allowed (see
1705 * recv_check_large_blocks()).
1706 */
1707 do_free_range = B_TRUE;
1708 } else {
1709 boolean_t is_same_gen;
1710 err = receive_object_is_same_generation(rwa->os,
1711 drro->drr_object, doi->doi_bonus_type,
1712 drro->drr_bonustype, bonus_data, &is_same_gen);
1713 if (err != 0)
1714 return (SET_ERROR(EINVAL));
1715
1716 if (is_same_gen) {
1717 /*
1718 * This is the same logical file, and
1719 * the block size must be increasing.
1720 * It could only decrease if
1721 * --large-block was changed to be
1722 * off, which is checked in
1723 * recv_check_large_blocks().
1724 */
1725 if (drro->drr_blksz <=
1726 doi->doi_data_block_size)
1727 return (SET_ERROR(EINVAL));
1728 /*
1729 * We keep the existing blocksize and
1730 * contents.
1731 */
1732 *new_blksz =
1733 doi->doi_data_block_size;
1734 } else {
1735 do_free_range = B_TRUE;
1736 }
1737 }
1738 }
1739
1740 /* nblkptr can only decrease if the object was reallocated */
1741 if (nblkptr < doi->doi_nblkptr)
1742 do_free_range = B_TRUE;
1743
1744 /* number of slots can only change on reallocation */
1745 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1746 do_free_range = B_TRUE;
1747
1748 /*
1749 * For raw sends we also check a few other fields to
1750 * ensure we are preserving the objset structure exactly
1751 * as it was on the receive side:
1752 * - A changed indirect block size
1753 * - A smaller nlevels
1754 */
1755 if (rwa->raw) {
1756 if (indblksz != doi->doi_metadata_block_size)
1757 do_free_range = B_TRUE;
1758 if (drro->drr_nlevels < doi->doi_indirection)
1759 do_free_range = B_TRUE;
1760 }
1761
1762 if (do_free_range) {
1763 err = dmu_free_long_range(rwa->os, drro->drr_object,
1764 0, DMU_OBJECT_END);
1765 if (err != 0)
1766 return (SET_ERROR(EINVAL));
1767 }
1768
1769 /*
1770 * The dmu does not currently support decreasing nlevels
1771 * or changing the number of dnode slots on an object. For
1772 * non-raw sends, this does not matter and the new object
1773 * can just use the previous one's nlevels. For raw sends,
1774 * however, the structure of the received dnode (including
1775 * nlevels and dnode slots) must match that of the send
1776 * side. Therefore, instead of using dmu_object_reclaim(),
1777 * we must free the object completely and call
1778 * dmu_object_claim_dnsize() instead.
1779 */
1780 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1781 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1782 err = dmu_free_long_object(rwa->os, drro->drr_object);
1783 if (err != 0)
1784 return (SET_ERROR(EINVAL));
1785
1786 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1787 *object_to_hold = DMU_NEW_OBJECT;
1788 }
1789
1790 /*
1791 * For raw receives, free everything beyond the new incoming
1792 * maxblkid. Normally this would be done with a DRR_FREE
1793 * record that would come after this DRR_OBJECT record is
1794 * processed. However, for raw receives we manually set the
1795 * maxblkid from the drr_maxblkid and so we must first free
1796 * everything above that blkid to ensure the DMU is always
1797 * consistent with itself. We will never free the first block
1798 * of the object here because a maxblkid of 0 could indicate
1799 * an object with a single block or one with no blocks. This
1800 * free may be skipped when dmu_free_long_range() was called
1801 * above since it covers the entire object's contents.
1802 */
1803 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1804 err = dmu_free_long_range(rwa->os, drro->drr_object,
1805 (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1806 DMU_OBJECT_END);
1807 if (err != 0)
1808 return (SET_ERROR(EINVAL));
1809 }
1810 return (0);
1811}
1812
03916905
PD
1813noinline static int
1814receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1815 void *data)
1816{
1817 dmu_object_info_t doi;
1818 dmu_tx_t *tx;
03916905 1819 int err;
7bcb7f08 1820 uint32_t new_blksz = drro->drr_blksz;
03916905
PD
1821 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1822 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1823
1824 if (drro->drr_type == DMU_OT_NONE ||
1825 !DMU_OT_IS_VALID(drro->drr_type) ||
1826 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1827 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1828 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1829 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1830 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1831 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1832 drro->drr_bonuslen >
1833 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1834 dn_slots >
30af21b0 1835 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
03916905
PD
1836 return (SET_ERROR(EINVAL));
1837 }
1838
1839 if (rwa->raw) {
1840 /*
1841 * We should have received a DRR_OBJECT_RANGE record
1842 * containing this block and stored it in rwa.
1843 */
1844 if (drro->drr_object < rwa->or_firstobj ||
1845 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1846 drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1847 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1848 drro->drr_nlevels > DN_MAX_LEVELS ||
1849 drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1850 DN_SLOTS_TO_BONUSLEN(dn_slots) <
1851 drro->drr_raw_bonuslen)
1852 return (SET_ERROR(EINVAL));
1853 } else {
caf9dd20
BB
1854 /*
1855 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1856 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1857 */
1858 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1859 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1860 return (SET_ERROR(EINVAL));
1861 }
1862
1863 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1864 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
03916905 1865 return (SET_ERROR(EINVAL));
caf9dd20 1866 }
03916905
PD
1867 }
1868
1869 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
30af21b0 1870
03916905
PD
1871 if (err != 0 && err != ENOENT && err != EEXIST)
1872 return (SET_ERROR(EINVAL));
1873
1874 if (drro->drr_object > rwa->max_object)
1875 rwa->max_object = drro->drr_object;
1876
1877 /*
1878 * If we are losing blkptrs or changing the block size this must
1879 * be a new file instance. We must clear out the previous file
1880 * contents before we can change this type of metadata in the dnode.
1881 * Raw receives will also check that the indirect structure of the
1882 * dnode hasn't changed.
1883 */
7bcb7f08 1884 uint64_t object_to_hold;
03916905 1885 if (err == 0) {
7bcb7f08
MA
1886 err = receive_handle_existing_object(rwa, drro, &doi, data,
1887 &object_to_hold, &new_blksz);
2a493a4c
RY
1888 if (err != 0)
1889 return (err);
03916905
PD
1890 } else if (err == EEXIST) {
1891 /*
1892 * The object requested is currently an interior slot of a
1893 * multi-slot dnode. This will be resolved when the next txg
1894 * is synced out, since the send stream will have told us
1895 * to free this slot when we freed the associated dnode
1896 * earlier in the stream.
1897 */
1898 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
b92f5d9f
BB
1899
1900 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1901 return (SET_ERROR(EINVAL));
1902
1903 /* object was freed and we are about to allocate a new one */
7bcb7f08 1904 object_to_hold = DMU_NEW_OBJECT;
03916905
PD
1905 } else {
1906 /* object is free and we are about to allocate a new one */
7bcb7f08 1907 object_to_hold = DMU_NEW_OBJECT;
03916905
PD
1908 }
1909
1910 /*
1911 * If this is a multi-slot dnode there is a chance that this
1912 * object will expand into a slot that is already used by
1913 * another object from the previous snapshot. We must free
1914 * these objects before we attempt to allocate the new dnode.
1915 */
1916 if (dn_slots > 1) {
1917 boolean_t need_sync = B_FALSE;
1918
1919 for (uint64_t slot = drro->drr_object + 1;
1920 slot < drro->drr_object + dn_slots;
1921 slot++) {
1922 dmu_object_info_t slot_doi;
1923
1924 err = dmu_object_info(rwa->os, slot, &slot_doi);
1925 if (err == ENOENT || err == EEXIST)
1926 continue;
1927 else if (err != 0)
1928 return (err);
1929
1930 err = dmu_free_long_object(rwa->os, slot);
03916905
PD
1931 if (err != 0)
1932 return (err);
1933
1934 need_sync = B_TRUE;
1935 }
1936
1937 if (need_sync)
1938 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1939 }
1940
1941 tx = dmu_tx_create(rwa->os);
7bcb7f08
MA
1942 dmu_tx_hold_bonus(tx, object_to_hold);
1943 dmu_tx_hold_write(tx, object_to_hold, 0, 0);
03916905
PD
1944 err = dmu_tx_assign(tx, TXG_WAIT);
1945 if (err != 0) {
1946 dmu_tx_abort(tx);
1947 return (err);
1948 }
1949
7bcb7f08 1950 if (object_to_hold == DMU_NEW_OBJECT) {
caf9dd20 1951 /* Currently free, wants to be allocated */
03916905 1952 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
7bcb7f08 1953 drro->drr_type, new_blksz,
03916905
PD
1954 drro->drr_bonustype, drro->drr_bonuslen,
1955 dn_slots << DNODE_SHIFT, tx);
1956 } else if (drro->drr_type != doi.doi_type ||
7bcb7f08 1957 new_blksz != doi.doi_data_block_size ||
03916905
PD
1958 drro->drr_bonustype != doi.doi_bonus_type ||
1959 drro->drr_bonuslen != doi.doi_bonus_size) {
caf9dd20 1960 /* Currently allocated, but with different properties */
03916905 1961 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
7bcb7f08 1962 drro->drr_type, new_blksz,
03916905 1963 drro->drr_bonustype, drro->drr_bonuslen,
caf9dd20
BB
1964 dn_slots << DNODE_SHIFT, rwa->spill ?
1965 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1966 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1967 /*
1968 * Currently allocated, the existing version of this object
1969 * may reference a spill block that is no longer allocated
1970 * at the source and needs to be freed.
1971 */
1972 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
03916905 1973 }
3fa93bb8 1974
03916905
PD
1975 if (err != 0) {
1976 dmu_tx_commit(tx);
1977 return (SET_ERROR(EINVAL));
1978 }
1979
1980 if (rwa->or_crypt_params_present) {
1981 /*
1982 * Set the crypt params for the buffer associated with this
1983 * range of dnodes. This causes the blkptr_t to have the
1984 * same crypt params (byteorder, salt, iv, mac) as on the
1985 * sending side.
1986 *
1987 * Since we are committing this tx now, it is possible for
1988 * the dnode block to end up on-disk with the incorrect MAC,
1989 * if subsequent objects in this block are received in a
1990 * different txg. However, since the dataset is marked as
1991 * inconsistent, no code paths will do a non-raw read (or
1992 * decrypt the block / verify the MAC). The receive code and
1993 * scrub code can safely do raw reads and verify the
1994 * checksum. They don't need to verify the MAC.
1995 */
1996 dmu_buf_t *db = NULL;
1997 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1998
1999 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2000 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2001 if (err != 0) {
2002 dmu_tx_commit(tx);
2003 return (SET_ERROR(EINVAL));
2004 }
2005
2006 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2007 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2008
2009 dmu_buf_rele(db, FTAG);
2010
2011 rwa->or_crypt_params_present = B_FALSE;
2012 }
2013
2014 dmu_object_set_checksum(rwa->os, drro->drr_object,
2015 drro->drr_checksumtype, tx);
2016 dmu_object_set_compress(rwa->os, drro->drr_object,
2017 drro->drr_compress, tx);
2018
2019 /* handle more restrictive dnode structuring for raw recvs */
2020 if (rwa->raw) {
2021 /*
369aa501
TC
2022 * Set the indirect block size, block shift, nlevels.
2023 * This will not fail because we ensured all of the
2024 * blocks were freed earlier if this is a new object.
2025 * For non-new objects block size and indirect block
2026 * shift cannot change and nlevels can only increase.
03916905 2027 */
7bcb7f08 2028 ASSERT3U(new_blksz, ==, drro->drr_blksz);
03916905
PD
2029 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2030 drro->drr_blksz, drro->drr_indblkshift, tx));
2031 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2032 drro->drr_nlevels, tx));
369aa501
TC
2033
2034 /*
c2c6eadf
TC
2035 * Set the maxblkid. This will always succeed because
2036 * we freed all blocks beyond the new maxblkid above.
369aa501 2037 */
03916905
PD
2038 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2039 drro->drr_maxblkid, tx));
2040 }
2041
2042 if (data != NULL) {
2043 dmu_buf_t *db;
6955b401 2044 dnode_t *dn;
03916905
PD
2045 uint32_t flags = DMU_READ_NO_PREFETCH;
2046
2047 if (rwa->raw)
2048 flags |= DMU_READ_NO_DECRYPT;
2049
6955b401
BB
2050 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2051 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2052
03916905
PD
2053 dmu_buf_will_dirty(db, tx);
2054
2055 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
861166b0 2056 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
03916905
PD
2057
2058 /*
2059 * Raw bonus buffers have their byteorder determined by the
2060 * DRR_OBJECT_RANGE record.
2061 */
2062 if (rwa->byteswap && !rwa->raw) {
2063 dmu_object_byteswap_t byteswap =
2064 DMU_OT_BYTESWAP(drro->drr_bonustype);
2065 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2066 DRR_OBJECT_PAYLOAD_SIZE(drro));
2067 }
2068 dmu_buf_rele(db, FTAG);
6955b401 2069 dnode_rele(dn, FTAG);
03916905
PD
2070 }
2071 dmu_tx_commit(tx);
2072
2073 return (0);
2074}
2075
03916905
PD
2076noinline static int
2077receive_freeobjects(struct receive_writer_arg *rwa,
2078 struct drr_freeobjects *drrfo)
2079{
2080 uint64_t obj;
2081 int next_err = 0;
2082
2083 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2084 return (SET_ERROR(EINVAL));
2085
2086 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
30af21b0
PD
2087 obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2088 obj < DN_MAX_OBJECT && next_err == 0;
03916905
PD
2089 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2090 dmu_object_info_t doi;
2091 int err;
2092
2093 err = dmu_object_info(rwa->os, obj, &doi);
2094 if (err == ENOENT)
2095 continue;
2096 else if (err != 0)
2097 return (err);
2098
2099 err = dmu_free_long_object(rwa->os, obj);
2100
2101 if (err != 0)
2102 return (err);
03916905
PD
2103 }
2104 if (next_err != ESRCH)
2105 return (next_err);
2106 return (0);
2107}
2108
7261fc2e
MA
2109/*
2110 * Note: if this fails, the caller will clean up any records left on the
2111 * rwa->write_batch list.
2112 */
2113static int
2114flush_write_batch_impl(struct receive_writer_arg *rwa)
03916905 2115{
03916905 2116 dnode_t *dn;
7261fc2e
MA
2117 int err;
2118
2119 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2120 return (SET_ERROR(EINVAL));
2121
2122 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2123 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2124
2125 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2126 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2127
2128 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2129 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2130
2131 dmu_tx_t *tx = dmu_tx_create(rwa->os);
2132 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2133 last_drrw->drr_offset - first_drrw->drr_offset +
2134 last_drrw->drr_logical_size);
2135 err = dmu_tx_assign(tx, TXG_WAIT);
2136 if (err != 0) {
2137 dmu_tx_abort(tx);
2138 dnode_rele(dn, FTAG);
2139 return (err);
2140 }
2141
2142 struct receive_record_arg *rrd;
2143 while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2144 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
ba67d821 2145 abd_t *abd = rrd->abd;
7261fc2e
MA
2146
2147 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2148
ba67d821
MA
2149 if (drrw->drr_logical_size != dn->dn_datablksz) {
2150 /*
2151 * The WRITE record is larger than the object's block
2152 * size. We must be receiving an incremental
2153 * large-block stream into a dataset that previously did
2154 * a non-large-block receive. Lightweight writes must
2155 * be exactly one block, so we need to decompress the
2156 * data (if compressed) and do a normal dmu_write().
2157 */
7bcb7f08 2158 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
ba67d821
MA
2159 if (DRR_WRITE_COMPRESSED(drrw)) {
2160 abd_t *decomp_abd =
2161 abd_alloc_linear(drrw->drr_logical_size,
2162 B_FALSE);
2163
2164 err = zio_decompress_data(
2165 drrw->drr_compressiontype,
2166 abd, abd_to_buf(decomp_abd),
2167 abd_get_size(abd),
2168 abd_get_size(decomp_abd), NULL);
2169
2170 if (err == 0) {
2171 dmu_write_by_dnode(dn,
2172 drrw->drr_offset,
2173 drrw->drr_logical_size,
2174 abd_to_buf(decomp_abd), tx);
2175 }
2176 abd_free(decomp_abd);
2177 } else {
2178 dmu_write_by_dnode(dn,
2179 drrw->drr_offset,
2180 drrw->drr_logical_size,
2181 abd_to_buf(abd), tx);
2182 }
2183 if (err == 0)
2184 abd_free(abd);
2185 } else {
2186 zio_prop_t zp;
2187 dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2188
4938d01d 2189 zio_flag_t zio_flags = 0;
ba67d821
MA
2190
2191 if (rwa->raw) {
2192 zp.zp_encrypt = B_TRUE;
2193 zp.zp_compress = drrw->drr_compressiontype;
2194 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2195 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2196 rwa->byteswap;
861166b0 2197 memcpy(zp.zp_salt, drrw->drr_salt,
ba67d821 2198 ZIO_DATA_SALT_LEN);
861166b0 2199 memcpy(zp.zp_iv, drrw->drr_iv,
ba67d821 2200 ZIO_DATA_IV_LEN);
861166b0 2201 memcpy(zp.zp_mac, drrw->drr_mac,
ba67d821
MA
2202 ZIO_DATA_MAC_LEN);
2203 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2204 zp.zp_nopwrite = B_FALSE;
2205 zp.zp_copies = MIN(zp.zp_copies,
2206 SPA_DVAS_PER_BP - 1);
2207 }
2208 zio_flags |= ZIO_FLAG_RAW;
2209 } else if (DRR_WRITE_COMPRESSED(drrw)) {
2210 ASSERT3U(drrw->drr_compressed_size, >, 0);
2211 ASSERT3U(drrw->drr_logical_size, >=,
2212 drrw->drr_compressed_size);
2213 zp.zp_compress = drrw->drr_compressiontype;
2214 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2215 } else if (rwa->byteswap) {
2216 /*
2217 * Note: compressed blocks never need to be
2218 * byteswapped, because WRITE records for
2219 * metadata blocks are never compressed. The
2220 * exception is raw streams, which are written
2221 * in the original byteorder, and the byteorder
2222 * bit is preserved in the BP by setting
2223 * zp_byteorder above.
2224 */
2225 dmu_object_byteswap_t byteswap =
2226 DMU_OT_BYTESWAP(drrw->drr_type);
2227 dmu_ot_byteswap[byteswap].ob_func(
2228 abd_to_buf(abd),
2229 DRR_WRITE_PAYLOAD_SIZE(drrw));
2230 }
7bcb7f08
MA
2231
2232 /*
ba67d821
MA
2233 * Since this data can't be read until the receive
2234 * completes, we can do a "lightweight" write for
2235 * improved performance.
7bcb7f08 2236 */
ba67d821
MA
2237 err = dmu_lightweight_write_by_dnode(dn,
2238 drrw->drr_offset, abd, &zp, zio_flags, tx);
7bcb7f08
MA
2239 }
2240
7261fc2e
MA
2241 if (err != 0) {
2242 /*
2243 * This rrd is left on the list, so the caller will
ba67d821 2244 * free it (and the abd).
7261fc2e
MA
2245 */
2246 break;
2247 }
2248
2249 /*
2250 * Note: If the receive fails, we want the resume stream to
2251 * start with the same record that we last successfully
2252 * received (as opposed to the next record), so that we can
2253 * verify that we are resuming from the correct location.
2254 */
2255 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2256
2257 list_remove(&rwa->write_batch, rrd);
2258 kmem_free(rrd, sizeof (*rrd));
2259 }
2260
2261 dmu_tx_commit(tx);
2262 dnode_rele(dn, FTAG);
2263 return (err);
2264}
2265
2266noinline static int
2267flush_write_batch(struct receive_writer_arg *rwa)
2268{
2269 if (list_is_empty(&rwa->write_batch))
2270 return (0);
2271 int err = rwa->err;
2272 if (err == 0)
2273 err = flush_write_batch_impl(rwa);
2274 if (err != 0) {
2275 struct receive_record_arg *rrd;
2276 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
ba67d821 2277 abd_free(rrd->abd);
7261fc2e
MA
2278 kmem_free(rrd, sizeof (*rrd));
2279 }
2280 }
2281 ASSERT(list_is_empty(&rwa->write_batch));
2282 return (err);
2283}
2284
2285noinline static int
2286receive_process_write_record(struct receive_writer_arg *rwa,
2287 struct receive_record_arg *rrd)
2288{
2289 int err = 0;
2290
2291 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2292 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
03916905
PD
2293
2294 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2295 !DMU_OT_IS_VALID(drrw->drr_type))
2296 return (SET_ERROR(EINVAL));
2297
e8cf3a4f
AP
2298 if (rwa->heal) {
2299 blkptr_t *bp;
2300 dmu_buf_t *dbp;
2301 dnode_t *dn;
2302 int flags = DB_RF_CANFAIL;
2303
2304 if (rwa->raw)
2305 flags |= DB_RF_NO_DECRYPT;
2306
2307 if (rwa->byteswap) {
2308 dmu_object_byteswap_t byteswap =
2309 DMU_OT_BYTESWAP(drrw->drr_type);
2310 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2311 DRR_WRITE_PAYLOAD_SIZE(drrw));
2312 }
2313
2314 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2315 drrw->drr_offset, FTAG, &dbp);
2316 if (err != 0)
2317 return (err);
2318
2319 /* Try to read the object to see if it needs healing */
2320 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2321 /*
2322 * We only try to heal when dbuf_read() returns a ECKSUMs.
2323 * Other errors (even EIO) get returned to caller.
2324 * EIO indicates that the device is not present/accessible,
2325 * so writing to it will likely fail.
2326 * If the block is healthy, we don't want to overwrite it
2327 * unnecessarily.
2328 */
2329 if (err != ECKSUM) {
2330 dmu_buf_rele(dbp, FTAG);
2331 return (err);
2332 }
2333 dn = dmu_buf_dnode_enter(dbp);
2334 /* Make sure the on-disk block and recv record sizes match */
2335 if (drrw->drr_logical_size !=
2336 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) {
2337 err = ENOTSUP;
2338 dmu_buf_dnode_exit(dbp);
2339 dmu_buf_rele(dbp, FTAG);
2340 return (err);
2341 }
2342 /* Get the block pointer for the corrupted block */
2343 bp = dmu_buf_get_blkptr(dbp);
2344 err = do_corrective_recv(rwa, drrw, rrd, bp);
2345 dmu_buf_dnode_exit(dbp);
2346 dmu_buf_rele(dbp, FTAG);
2347 return (err);
2348 }
2349
03916905
PD
2350 /*
2351 * For resuming to work, records must be in increasing order
2352 * by (object, offset).
2353 */
2354 if (drrw->drr_object < rwa->last_object ||
2355 (drrw->drr_object == rwa->last_object &&
2356 drrw->drr_offset < rwa->last_offset)) {
2357 return (SET_ERROR(EINVAL));
2358 }
7261fc2e
MA
2359
2360 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2361 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2362 uint64_t batch_size =
2363 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2364 if (first_rrd != NULL &&
2365 (drrw->drr_object != first_drrw->drr_object ||
2366 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2367 err = flush_write_batch(rwa);
2368 if (err != 0)
2369 return (err);
2370 }
2371
03916905
PD
2372 rwa->last_object = drrw->drr_object;
2373 rwa->last_offset = drrw->drr_offset;
2374
2375 if (rwa->last_object > rwa->max_object)
2376 rwa->max_object = rwa->last_object;
2377
7261fc2e 2378 list_insert_tail(&rwa->write_batch, rrd);
03916905 2379 /*
7261fc2e
MA
2380 * Return EAGAIN to indicate that we will use this rrd again,
2381 * so the caller should not free it
03916905 2382 */
7261fc2e 2383 return (EAGAIN);
03916905
PD
2384}
2385
03916905
PD
2386static int
2387receive_write_embedded(struct receive_writer_arg *rwa,
2388 struct drr_write_embedded *drrwe, void *data)
2389{
2390 dmu_tx_t *tx;
2391 int err;
2392
2393 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2394 return (SET_ERROR(EINVAL));
2395
2396 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2397 return (SET_ERROR(EINVAL));
2398
2399 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2400 return (SET_ERROR(EINVAL));
2401 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2402 return (SET_ERROR(EINVAL));
2403 if (rwa->raw)
2404 return (SET_ERROR(EINVAL));
2405
2406 if (drrwe->drr_object > rwa->max_object)
2407 rwa->max_object = drrwe->drr_object;
2408
2409 tx = dmu_tx_create(rwa->os);
2410
2411 dmu_tx_hold_write(tx, drrwe->drr_object,
2412 drrwe->drr_offset, drrwe->drr_length);
2413 err = dmu_tx_assign(tx, TXG_WAIT);
2414 if (err != 0) {
2415 dmu_tx_abort(tx);
2416 return (err);
2417 }
2418
2419 dmu_write_embedded(rwa->os, drrwe->drr_object,
2420 drrwe->drr_offset, data, drrwe->drr_etype,
2421 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2422 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2423
2424 /* See comment in restore_write. */
2425 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2426 dmu_tx_commit(tx);
2427 return (0);
2428}
2429
2430static int
2431receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
ba67d821 2432 abd_t *abd)
03916905 2433{
03916905
PD
2434 dmu_buf_t *db, *db_spill;
2435 int err;
03916905
PD
2436
2437 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2438 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2439 return (SET_ERROR(EINVAL));
2440
caf9dd20
BB
2441 /*
2442 * This is an unmodified spill block which was added to the stream
2443 * to resolve an issue with incorrectly removing spill blocks. It
2444 * should be ignored by current versions of the code which support
2445 * the DRR_FLAG_SPILL_BLOCK flag.
2446 */
2447 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
ba67d821 2448 abd_free(abd);
caf9dd20
BB
2449 return (0);
2450 }
2451
03916905
PD
2452 if (rwa->raw) {
2453 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2454 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2455 drrs->drr_compressed_size == 0)
2456 return (SET_ERROR(EINVAL));
03916905
PD
2457 }
2458
2459 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2460 return (SET_ERROR(EINVAL));
2461
2462 if (drrs->drr_object > rwa->max_object)
2463 rwa->max_object = drrs->drr_object;
2464
2465 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2466 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2467 &db_spill)) != 0) {
2468 dmu_buf_rele(db, FTAG);
2469 return (err);
2470 }
2471
ba67d821 2472 dmu_tx_t *tx = dmu_tx_create(rwa->os);
03916905
PD
2473
2474 dmu_tx_hold_spill(tx, db->db_object);
2475
2476 err = dmu_tx_assign(tx, TXG_WAIT);
2477 if (err != 0) {
2478 dmu_buf_rele(db, FTAG);
2479 dmu_buf_rele(db_spill, FTAG);
2480 dmu_tx_abort(tx);
2481 return (err);
2482 }
2483
caf9dd20
BB
2484 /*
2485 * Spill blocks may both grow and shrink. When a change in size
2486 * occurs any existing dbuf must be updated to match the logical
2487 * size of the provided arc_buf_t.
2488 */
2489 if (db_spill->db_size != drrs->drr_length) {
2490 dmu_buf_will_fill(db_spill, tx);
ba67d821 2491 VERIFY0(dbuf_spill_set_blksz(db_spill,
03916905 2492 drrs->drr_length, tx));
caf9dd20 2493 }
03916905 2494
ba67d821
MA
2495 arc_buf_t *abuf;
2496 if (rwa->raw) {
2497 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2498 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2499 rwa->byteswap;
2500
2501 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2502 drrs->drr_object, byteorder, drrs->drr_salt,
2503 drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2504 drrs->drr_compressed_size, drrs->drr_length,
2505 drrs->drr_compressiontype, 0);
2506 } else {
2507 abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2508 DMU_OT_IS_METADATA(drrs->drr_type),
2509 drrs->drr_length);
2510 if (rwa->byteswap) {
2511 dmu_object_byteswap_t byteswap =
2512 DMU_OT_BYTESWAP(drrs->drr_type);
2513 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2514 DRR_SPILL_PAYLOAD_SIZE(drrs));
2515 }
03916905
PD
2516 }
2517
861166b0 2518 memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
ba67d821 2519 abd_free(abd);
03916905
PD
2520 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2521
2522 dmu_buf_rele(db, FTAG);
2523 dmu_buf_rele(db_spill, FTAG);
2524
2525 dmu_tx_commit(tx);
2526 return (0);
2527}
2528
03916905
PD
2529noinline static int
2530receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2531{
2532 int err;
2533
30af21b0 2534 if (drrf->drr_length != -1ULL &&
03916905
PD
2535 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2536 return (SET_ERROR(EINVAL));
2537
2538 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2539 return (SET_ERROR(EINVAL));
2540
2541 if (drrf->drr_object > rwa->max_object)
2542 rwa->max_object = drrf->drr_object;
2543
2544 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2545 drrf->drr_offset, drrf->drr_length);
2546
2547 return (err);
2548}
2549
2550static int
2551receive_object_range(struct receive_writer_arg *rwa,
2552 struct drr_object_range *drror)
2553{
2554 /*
2555 * By default, we assume this block is in our native format
2556 * (ZFS_HOST_BYTEORDER). We then take into account whether
2557 * the send stream is byteswapped (rwa->byteswap). Finally,
2558 * we need to byteswap again if this particular block was
2559 * in non-native format on the send side.
2560 */
2561 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2562 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2563
2564 /*
2565 * Since dnode block sizes are constant, we should not need to worry
2566 * about making sure that the dnode block size is the same on the
2567 * sending and receiving sides for the time being. For non-raw sends,
2568 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2569 * record at all). Raw sends require this record type because the
2570 * encryption parameters are used to protect an entire block of bonus
2571 * buffers. If the size of dnode blocks ever becomes variable,
2572 * handling will need to be added to ensure that dnode block sizes
2573 * match on the sending and receiving side.
2574 */
2575 if (drror->drr_numslots != DNODES_PER_BLOCK ||
2576 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2577 !rwa->raw)
2578 return (SET_ERROR(EINVAL));
2579
2580 if (drror->drr_firstobj > rwa->max_object)
2581 rwa->max_object = drror->drr_firstobj;
2582
2583 /*
2584 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2585 * so that the block of dnodes is not written out when it's empty,
2586 * and converted to a HOLE BP.
2587 */
2588 rwa->or_crypt_params_present = B_TRUE;
2589 rwa->or_firstobj = drror->drr_firstobj;
2590 rwa->or_numslots = drror->drr_numslots;
861166b0
AZ
2591 memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2592 memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2593 memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
03916905
PD
2594 rwa->or_byteorder = byteorder;
2595
2596 return (0);
2597}
2598
30af21b0
PD
2599/*
2600 * Until we have the ability to redact large ranges of data efficiently, we
2601 * process these records as frees.
2602 */
30af21b0
PD
2603noinline static int
2604receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2605{
2606 struct drr_free drrf = {0};
2607 drrf.drr_length = drrr->drr_length;
2608 drrf.drr_object = drrr->drr_object;
2609 drrf.drr_offset = drrr->drr_offset;
2610 drrf.drr_toguid = drrr->drr_toguid;
2611 return (receive_free(rwa, &drrf));
2612}
2613
03916905
PD
2614/* used to destroy the drc_ds on error */
2615static void
2616dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2617{
2618 dsl_dataset_t *ds = drc->drc_ds;
40ab927a 2619 ds_hold_flags_t dsflags;
03916905 2620
40ab927a 2621 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
03916905
PD
2622 /*
2623 * Wait for the txg sync before cleaning up the receive. For
2624 * resumable receives, this ensures that our resume state has
2625 * been written out to disk. For raw receives, this ensures
2626 * that the user accounting code will not attempt to do anything
2627 * after we stopped receiving the dataset.
2628 */
2629 txg_wait_synced(ds->ds_dir->dd_pool, 0);
2630 ds->ds_objset->os_raw_receive = B_FALSE;
2631
2632 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
61152d10
TC
2633 if (drc->drc_resumable && drc->drc_should_save &&
2634 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
03916905
PD
2635 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2636 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2637 } else {
2638 char name[ZFS_MAX_DATASET_NAME_LEN];
2639 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2640 dsl_dataset_name(ds, name);
2641 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
e8cf3a4f
AP
2642 if (!drc->drc_heal)
2643 (void) dsl_destroy_head(name);
03916905
PD
2644 }
2645}
2646
2647static void
30af21b0 2648receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
03916905 2649{
30af21b0
PD
2650 if (drc->drc_byteswap) {
2651 (void) fletcher_4_incremental_byteswap(buf, len,
2652 &drc->drc_cksum);
03916905 2653 } else {
30af21b0 2654 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
03916905
PD
2655 }
2656}
2657
2658/*
2659 * Read the payload into a buffer of size len, and update the current record's
2660 * payload field.
30af21b0
PD
2661 * Allocate drc->drc_next_rrd and read the next record's header into
2662 * drc->drc_next_rrd->header.
03916905
PD
2663 * Verify checksum of payload and next record.
2664 */
2665static int
30af21b0 2666receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
03916905
PD
2667{
2668 int err;
03916905
PD
2669
2670 if (len != 0) {
2671 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
30af21b0 2672 err = receive_read(drc, len, buf);
03916905
PD
2673 if (err != 0)
2674 return (err);
30af21b0 2675 receive_cksum(drc, len, buf);
03916905
PD
2676
2677 /* note: rrd is NULL when reading the begin record's payload */
30af21b0
PD
2678 if (drc->drc_rrd != NULL) {
2679 drc->drc_rrd->payload = buf;
2680 drc->drc_rrd->payload_size = len;
2681 drc->drc_rrd->bytes_read = drc->drc_bytes_read;
03916905 2682 }
960347d3
TC
2683 } else {
2684 ASSERT3P(buf, ==, NULL);
03916905
PD
2685 }
2686
30af21b0 2687 drc->drc_prev_cksum = drc->drc_cksum;
03916905 2688
30af21b0
PD
2689 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2690 err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2691 &drc->drc_next_rrd->header);
2692 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
03916905
PD
2693
2694 if (err != 0) {
30af21b0
PD
2695 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2696 drc->drc_next_rrd = NULL;
03916905
PD
2697 return (err);
2698 }
30af21b0
PD
2699 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2700 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2701 drc->drc_next_rrd = NULL;
03916905
PD
2702 return (SET_ERROR(EINVAL));
2703 }
2704
2705 /*
2706 * Note: checksum is of everything up to but not including the
2707 * checksum itself.
2708 */
2709 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2710 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
30af21b0 2711 receive_cksum(drc,
03916905 2712 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
30af21b0 2713 &drc->drc_next_rrd->header);
03916905 2714
30af21b0
PD
2715 zio_cksum_t cksum_orig =
2716 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2717 zio_cksum_t *cksump =
2718 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
03916905 2719
30af21b0
PD
2720 if (drc->drc_byteswap)
2721 byteswap_record(&drc->drc_next_rrd->header);
03916905
PD
2722
2723 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
30af21b0
PD
2724 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2725 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2726 drc->drc_next_rrd = NULL;
03916905
PD
2727 return (SET_ERROR(ECKSUM));
2728 }
2729
30af21b0 2730 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
03916905
PD
2731
2732 return (0);
2733}
2734
03916905
PD
2735/*
2736 * Issue the prefetch reads for any necessary indirect blocks.
2737 *
2738 * We use the object ignore list to tell us whether or not to issue prefetches
2739 * for a given object. We do this for both correctness (in case the blocksize
2740 * of an object has changed) and performance (if the object doesn't exist, don't
2741 * needlessly try to issue prefetches). We also trim the list as we go through
2742 * the stream to prevent it from growing to an unbounded size.
2743 *
2744 * The object numbers within will always be in sorted order, and any write
2745 * records we see will also be in sorted order, but they're not sorted with
2746 * respect to each other (i.e. we can get several object records before
2747 * receiving each object's write records). As a result, once we've reached a
2748 * given object number, we can safely remove any reference to lower object
2749 * numbers in the ignore list. In practice, we receive up to 32 object records
2750 * before receiving write records, so the list can have up to 32 nodes in it.
2751 */
03916905 2752static void
30af21b0
PD
2753receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2754 uint64_t length)
03916905 2755{
30af21b0
PD
2756 if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2757 dmu_prefetch(drc->drc_os, object, 1, offset, length,
03916905
PD
2758 ZIO_PRIORITY_SYNC_READ);
2759 }
2760}
2761
2762/*
2763 * Read records off the stream, issuing any necessary prefetches.
2764 */
2765static int
30af21b0 2766receive_read_record(dmu_recv_cookie_t *drc)
03916905
PD
2767{
2768 int err;
2769
30af21b0 2770 switch (drc->drc_rrd->header.drr_type) {
03916905
PD
2771 case DRR_OBJECT:
2772 {
30af21b0
PD
2773 struct drr_object *drro =
2774 &drc->drc_rrd->header.drr_u.drr_object;
03916905 2775 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
960347d3 2776 void *buf = NULL;
03916905
PD
2777 dmu_object_info_t doi;
2778
960347d3
TC
2779 if (size != 0)
2780 buf = kmem_zalloc(size, KM_SLEEP);
2781
30af21b0 2782 err = receive_read_payload_and_next_header(drc, size, buf);
03916905
PD
2783 if (err != 0) {
2784 kmem_free(buf, size);
2785 return (err);
2786 }
30af21b0 2787 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
03916905
PD
2788 /*
2789 * See receive_read_prefetch for an explanation why we're
2790 * storing this object in the ignore_obj_list.
2791 */
2792 if (err == ENOENT || err == EEXIST ||
2793 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
30af21b0
PD
2794 objlist_insert(drc->drc_ignore_objlist,
2795 drro->drr_object);
03916905
PD
2796 err = 0;
2797 }
2798 return (err);
2799 }
2800 case DRR_FREEOBJECTS:
2801 {
30af21b0 2802 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905
PD
2803 return (err);
2804 }
2805 case DRR_WRITE:
2806 {
30af21b0 2807 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
ba67d821
MA
2808 int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2809 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2810 err = receive_read_payload_and_next_header(drc, size,
2811 abd_to_buf(abd));
03916905 2812 if (err != 0) {
ba67d821 2813 abd_free(abd);
03916905
PD
2814 return (err);
2815 }
ba67d821 2816 drc->drc_rrd->abd = abd;
30af21b0 2817 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
03916905
PD
2818 drrw->drr_logical_size);
2819 return (err);
2820 }
03916905
PD
2821 case DRR_WRITE_EMBEDDED:
2822 {
2823 struct drr_write_embedded *drrwe =
30af21b0 2824 &drc->drc_rrd->header.drr_u.drr_write_embedded;
03916905
PD
2825 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2826 void *buf = kmem_zalloc(size, KM_SLEEP);
2827
30af21b0 2828 err = receive_read_payload_and_next_header(drc, size, buf);
03916905
PD
2829 if (err != 0) {
2830 kmem_free(buf, size);
2831 return (err);
2832 }
2833
30af21b0 2834 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
03916905
PD
2835 drrwe->drr_length);
2836 return (err);
2837 }
2838 case DRR_FREE:
30af21b0 2839 case DRR_REDACT:
03916905
PD
2840 {
2841 /*
2842 * It might be beneficial to prefetch indirect blocks here, but
2843 * we don't really have the data to decide for sure.
2844 */
30af21b0 2845 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905
PD
2846 return (err);
2847 }
2848 case DRR_END:
2849 {
30af21b0
PD
2850 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2851 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2852 drre->drr_checksum))
03916905
PD
2853 return (SET_ERROR(ECKSUM));
2854 return (0);
2855 }
2856 case DRR_SPILL:
2857 {
30af21b0 2858 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
ba67d821
MA
2859 int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2860 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2861 err = receive_read_payload_and_next_header(drc, size,
2862 abd_to_buf(abd));
30af21b0 2863 if (err != 0)
ba67d821 2864 abd_free(abd);
30af21b0 2865 else
ba67d821 2866 drc->drc_rrd->abd = abd;
03916905
PD
2867 return (err);
2868 }
2869 case DRR_OBJECT_RANGE:
2870 {
30af21b0 2871 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905 2872 return (err);
30af21b0 2873
03916905
PD
2874 }
2875 default:
2876 return (SET_ERROR(EINVAL));
2877 }
2878}
2879
30af21b0
PD
2880
2881
03916905
PD
2882static void
2883dprintf_drr(struct receive_record_arg *rrd, int err)
2884{
2885#ifdef ZFS_DEBUG
2886 switch (rrd->header.drr_type) {
2887 case DRR_OBJECT:
2888 {
2889 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2890 dprintf("drr_type = OBJECT obj = %llu type = %u "
2891 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2892 "compress = %u dn_slots = %u err = %d\n",
8e739b2c
RE
2893 (u_longlong_t)drro->drr_object, drro->drr_type,
2894 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
03916905
PD
2895 drro->drr_checksumtype, drro->drr_compress,
2896 drro->drr_dn_slots, err);
2897 break;
2898 }
2899 case DRR_FREEOBJECTS:
2900 {
2901 struct drr_freeobjects *drrfo =
2902 &rrd->header.drr_u.drr_freeobjects;
2903 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2904 "numobjs = %llu err = %d\n",
8e739b2c
RE
2905 (u_longlong_t)drrfo->drr_firstobj,
2906 (u_longlong_t)drrfo->drr_numobjs, err);
03916905
PD
2907 break;
2908 }
2909 case DRR_WRITE:
2910 {
2911 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2912 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
5dbf8b4e 2913 "lsize = %llu cksumtype = %u flags = %u "
03916905 2914 "compress = %u psize = %llu err = %d\n",
8e739b2c
RE
2915 (u_longlong_t)drrw->drr_object, drrw->drr_type,
2916 (u_longlong_t)drrw->drr_offset,
2917 (u_longlong_t)drrw->drr_logical_size,
2918 drrw->drr_checksumtype, drrw->drr_flags,
2919 drrw->drr_compressiontype,
2920 (u_longlong_t)drrw->drr_compressed_size, err);
03916905
PD
2921 break;
2922 }
2923 case DRR_WRITE_BYREF:
2924 {
2925 struct drr_write_byref *drrwbr =
2926 &rrd->header.drr_u.drr_write_byref;
2927 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2928 "length = %llu toguid = %llx refguid = %llx "
2929 "refobject = %llu refoffset = %llu cksumtype = %u "
5dbf8b4e 2930 "flags = %u err = %d\n",
8e739b2c
RE
2931 (u_longlong_t)drrwbr->drr_object,
2932 (u_longlong_t)drrwbr->drr_offset,
2933 (u_longlong_t)drrwbr->drr_length,
2934 (u_longlong_t)drrwbr->drr_toguid,
2935 (u_longlong_t)drrwbr->drr_refguid,
2936 (u_longlong_t)drrwbr->drr_refobject,
2937 (u_longlong_t)drrwbr->drr_refoffset,
2938 drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
03916905
PD
2939 break;
2940 }
2941 case DRR_WRITE_EMBEDDED:
2942 {
2943 struct drr_write_embedded *drrwe =
2944 &rrd->header.drr_u.drr_write_embedded;
2945 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2946 "length = %llu compress = %u etype = %u lsize = %u "
2947 "psize = %u err = %d\n",
8e739b2c
RE
2948 (u_longlong_t)drrwe->drr_object,
2949 (u_longlong_t)drrwe->drr_offset,
2950 (u_longlong_t)drrwe->drr_length,
03916905
PD
2951 drrwe->drr_compression, drrwe->drr_etype,
2952 drrwe->drr_lsize, drrwe->drr_psize, err);
2953 break;
2954 }
2955 case DRR_FREE:
2956 {
2957 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2958 dprintf("drr_type = FREE obj = %llu offset = %llu "
2959 "length = %lld err = %d\n",
8e739b2c
RE
2960 (u_longlong_t)drrf->drr_object,
2961 (u_longlong_t)drrf->drr_offset,
2962 (longlong_t)drrf->drr_length,
03916905
PD
2963 err);
2964 break;
2965 }
2966 case DRR_SPILL:
2967 {
2968 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2969 dprintf("drr_type = SPILL obj = %llu length = %llu "
8e739b2c
RE
2970 "err = %d\n", (u_longlong_t)drrs->drr_object,
2971 (u_longlong_t)drrs->drr_length, err);
03916905
PD
2972 break;
2973 }
5dbf8b4e
TC
2974 case DRR_OBJECT_RANGE:
2975 {
2976 struct drr_object_range *drror =
2977 &rrd->header.drr_u.drr_object_range;
2978 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2979 "numslots = %llu flags = %u err = %d\n",
8e739b2c
RE
2980 (u_longlong_t)drror->drr_firstobj,
2981 (u_longlong_t)drror->drr_numslots,
5dbf8b4e
TC
2982 drror->drr_flags, err);
2983 break;
2984 }
03916905
PD
2985 default:
2986 return;
2987 }
2988#endif
2989}
2990
2991/*
2992 * Commit the records to the pool.
2993 */
2994static int
2995receive_process_record(struct receive_writer_arg *rwa,
2996 struct receive_record_arg *rrd)
2997{
2998 int err;
2999
3000 /* Processing in order, therefore bytes_read should be increasing. */
3001 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3002 rwa->bytes_read = rrd->bytes_read;
3003
e8cf3a4f
AP
3004 /* We can only heal write records; other ones get ignored */
3005 if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3006 if (rrd->abd != NULL) {
3007 abd_free(rrd->abd);
3008 rrd->abd = NULL;
3009 } else if (rrd->payload != NULL) {
3010 kmem_free(rrd->payload, rrd->payload_size);
3011 rrd->payload = NULL;
3012 }
3013 return (0);
3014 }
3015
3016 if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
7261fc2e
MA
3017 err = flush_write_batch(rwa);
3018 if (err != 0) {
ba67d821
MA
3019 if (rrd->abd != NULL) {
3020 abd_free(rrd->abd);
3021 rrd->abd = NULL;
7261fc2e
MA
3022 rrd->payload = NULL;
3023 } else if (rrd->payload != NULL) {
3024 kmem_free(rrd->payload, rrd->payload_size);
3025 rrd->payload = NULL;
3026 }
3027
3028 return (err);
3029 }
3030 }
3031
03916905
PD
3032 switch (rrd->header.drr_type) {
3033 case DRR_OBJECT:
3034 {
3035 struct drr_object *drro = &rrd->header.drr_u.drr_object;
3036 err = receive_object(rwa, drro, rrd->payload);
3037 kmem_free(rrd->payload, rrd->payload_size);
3038 rrd->payload = NULL;
3039 break;
3040 }
3041 case DRR_FREEOBJECTS:
3042 {
3043 struct drr_freeobjects *drrfo =
3044 &rrd->header.drr_u.drr_freeobjects;
3045 err = receive_freeobjects(rwa, drrfo);
3046 break;
3047 }
3048 case DRR_WRITE:
3049 {
7261fc2e 3050 err = receive_process_write_record(rwa, rrd);
e8cf3a4f
AP
3051 if (rwa->heal) {
3052 /*
3053 * If healing - always free the abd after processing
3054 */
3055 abd_free(rrd->abd);
3056 rrd->abd = NULL;
3057 } else if (err != EAGAIN) {
7261fc2e 3058 /*
e8cf3a4f
AP
3059 * On success, a non-healing
3060 * receive_process_write_record() returns
7261fc2e
MA
3061 * EAGAIN to indicate that we do not want to free
3062 * the rrd or arc_buf.
3063 */
3064 ASSERT(err != 0);
ba67d821
MA
3065 abd_free(rrd->abd);
3066 rrd->abd = NULL;
7261fc2e 3067 }
03916905
PD
3068 break;
3069 }
03916905
PD
3070 case DRR_WRITE_EMBEDDED:
3071 {
3072 struct drr_write_embedded *drrwe =
3073 &rrd->header.drr_u.drr_write_embedded;
3074 err = receive_write_embedded(rwa, drrwe, rrd->payload);
3075 kmem_free(rrd->payload, rrd->payload_size);
3076 rrd->payload = NULL;
3077 break;
3078 }
3079 case DRR_FREE:
3080 {
3081 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3082 err = receive_free(rwa, drrf);
3083 break;
3084 }
3085 case DRR_SPILL:
3086 {
3087 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
ba67d821 3088 err = receive_spill(rwa, drrs, rrd->abd);
03916905 3089 if (err != 0)
ba67d821
MA
3090 abd_free(rrd->abd);
3091 rrd->abd = NULL;
03916905
PD
3092 rrd->payload = NULL;
3093 break;
3094 }
3095 case DRR_OBJECT_RANGE:
3096 {
3097 struct drr_object_range *drror =
3098 &rrd->header.drr_u.drr_object_range;
5dbf8b4e
TC
3099 err = receive_object_range(rwa, drror);
3100 break;
03916905 3101 }
30af21b0
PD
3102 case DRR_REDACT:
3103 {
3104 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3105 err = receive_redact(rwa, drrr);
3106 break;
3107 }
03916905 3108 default:
5dbf8b4e 3109 err = (SET_ERROR(EINVAL));
03916905
PD
3110 }
3111
3112 if (err != 0)
3113 dprintf_drr(rrd, err);
3114
3115 return (err);
3116}
3117
3118/*
3119 * dmu_recv_stream's worker thread; pull records off the queue, and then call
3120 * receive_process_record When we're done, signal the main thread and exit.
3121 */
460748d4 3122static __attribute__((noreturn)) void
03916905
PD
3123receive_writer_thread(void *arg)
3124{
3125 struct receive_writer_arg *rwa = arg;
3126 struct receive_record_arg *rrd;
3127 fstrans_cookie_t cookie = spl_fstrans_mark();
3128
3129 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3130 rrd = bqueue_dequeue(&rwa->q)) {
3131 /*
3132 * If there's an error, the main thread will stop putting things
3133 * on the queue, but we need to clear everything in it before we
3134 * can exit.
3135 */
7261fc2e 3136 int err = 0;
03916905 3137 if (rwa->err == 0) {
7261fc2e 3138 err = receive_process_record(rwa, rrd);
ba67d821
MA
3139 } else if (rrd->abd != NULL) {
3140 abd_free(rrd->abd);
3141 rrd->abd = NULL;
03916905
PD
3142 rrd->payload = NULL;
3143 } else if (rrd->payload != NULL) {
3144 kmem_free(rrd->payload, rrd->payload_size);
3145 rrd->payload = NULL;
3146 }
7261fc2e
MA
3147 /*
3148 * EAGAIN indicates that this record has been saved (on
3149 * raw->write_batch), and will be used again, so we don't
3150 * free it.
e8cf3a4f 3151 * When healing data we always need to free the record.
7261fc2e 3152 */
e8cf3a4f 3153 if (err != EAGAIN || rwa->heal) {
1b9cd1a9
MA
3154 if (rwa->err == 0)
3155 rwa->err = err;
7261fc2e
MA
3156 kmem_free(rrd, sizeof (*rrd));
3157 }
03916905
PD
3158 }
3159 kmem_free(rrd, sizeof (*rrd));
7261fc2e 3160
e8cf3a4f
AP
3161 if (rwa->heal) {
3162 zio_wait(rwa->heal_pio);
3163 } else {
3164 int err = flush_write_batch(rwa);
3165 if (rwa->err == 0)
3166 rwa->err = err;
3167 }
03916905
PD
3168 mutex_enter(&rwa->mutex);
3169 rwa->done = B_TRUE;
3170 cv_signal(&rwa->cv);
3171 mutex_exit(&rwa->mutex);
3172 spl_fstrans_unmark(cookie);
3173 thread_exit();
3174}
3175
3176static int
30af21b0 3177resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
03916905
PD
3178{
3179 uint64_t val;
30af21b0
PD
3180 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3181 uint64_t dsobj = dmu_objset_id(drc->drc_os);
03916905
PD
3182 uint64_t resume_obj, resume_off;
3183
3184 if (nvlist_lookup_uint64(begin_nvl,
3185 "resume_object", &resume_obj) != 0 ||
3186 nvlist_lookup_uint64(begin_nvl,
3187 "resume_offset", &resume_off) != 0) {
3188 return (SET_ERROR(EINVAL));
3189 }
3190 VERIFY0(zap_lookup(mos, dsobj,
3191 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3192 if (resume_obj != val)
3193 return (SET_ERROR(EINVAL));
3194 VERIFY0(zap_lookup(mos, dsobj,
3195 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3196 if (resume_off != val)
3197 return (SET_ERROR(EINVAL));
3198
3199 return (0);
3200}
3201
3202/*
3203 * Read in the stream's records, one by one, and apply them to the pool. There
3204 * are two threads involved; the thread that calls this function will spin up a
3205 * worker thread, read the records off the stream one by one, and issue
3206 * prefetches for any necessary indirect blocks. It will then push the records
3207 * onto an internal blocking queue. The worker thread will pull the records off
3208 * the queue, and actually write the data into the DMU. This way, the worker
3209 * thread doesn't have to wait for reads to complete, since everything it needs
3210 * (the indirect blocks) will be prefetched.
3211 *
3212 * NB: callers *must* call dmu_recv_end() if this succeeds.
3213 */
3214int
196bee4c 3215dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
03916905
PD
3216{
3217 int err = 0;
30af21b0 3218 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
03916905 3219
fce29d6a
PZ
3220 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3221 uint64_t bytes = 0;
03916905
PD
3222 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3223 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
30af21b0
PD
3224 sizeof (bytes), 1, &bytes);
3225 drc->drc_bytes_read += bytes;
03916905
PD
3226 }
3227
30af21b0 3228 drc->drc_ignore_objlist = objlist_create();
03916905
PD
3229
3230 /* these were verified in dmu_recv_begin */
3231 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3232 DMU_SUBSTREAM);
3233 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3234
03916905 3235 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
30af21b0
PD
3236 ASSERT0(drc->drc_os->os_encrypted &&
3237 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
03916905 3238
03916905 3239 /* handle DSL encryption key payload */
30af21b0 3240 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
03916905
PD
3241 nvlist_t *keynvl = NULL;
3242
30af21b0 3243 ASSERT(drc->drc_os->os_encrypted);
03916905
PD
3244 ASSERT(drc->drc_raw);
3245
30af21b0
PD
3246 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3247 &keynvl);
03916905
PD
3248 if (err != 0)
3249 goto out;
3250
e8cf3a4f
AP
3251 if (!drc->drc_heal) {
3252 /*
3253 * If this is a new dataset we set the key immediately.
3254 * Otherwise we don't want to change the key until we
3255 * are sure the rest of the receive succeeded so we
3256 * stash the keynvl away until then.
3257 */
3258 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3259 drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3260 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3261 if (err != 0)
3262 goto out;
3263 }
03916905 3264
f00ab3f2
TC
3265 /* see comment in dmu_recv_end_sync() */
3266 drc->drc_ivset_guid = 0;
3267 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3268 &drc->drc_ivset_guid);
3269
03916905
PD
3270 if (!drc->drc_newfs)
3271 drc->drc_keynvl = fnvlist_dup(keynvl);
3272 }
3273
30af21b0
PD
3274 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3275 err = resume_check(drc, drc->drc_begin_nvl);
03916905
PD
3276 if (err != 0)
3277 goto out;
3278 }
3279
61152d10
TC
3280 /*
3281 * If we failed before this point we will clean up any new resume
3282 * state that was created. Now that we've gotten past the initial
3283 * checks we are ok to retain that resume state.
3284 */
3285 drc->drc_should_save = B_TRUE;
3286
30af21b0 3287 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
03916905
PD
3288 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3289 offsetof(struct receive_record_arg, node));
3290 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3291 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
30af21b0 3292 rwa->os = drc->drc_os;
03916905 3293 rwa->byteswap = drc->drc_byteswap;
e8cf3a4f
AP
3294 rwa->heal = drc->drc_heal;
3295 rwa->tofs = drc->drc_tofs;
03916905
PD
3296 rwa->resumable = drc->drc_resumable;
3297 rwa->raw = drc->drc_raw;
caf9dd20 3298 rwa->spill = drc->drc_spill;
7bcb7f08 3299 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
03916905 3300 rwa->os->os_raw_receive = drc->drc_raw;
e8cf3a4f
AP
3301 if (drc->drc_heal) {
3302 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3303 ZIO_FLAG_GODFATHER);
3304 }
7261fc2e
MA
3305 list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3306 offsetof(struct receive_record_arg, node.bqn_node));
03916905
PD
3307
3308 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3309 TS_RUN, minclsyspri);
3310 /*
3311 * We're reading rwa->err without locks, which is safe since we are the
3312 * only reader, and the worker thread is the only writer. It's ok if we
3313 * miss a write for an iteration or two of the loop, since the writer
3314 * thread will keep freeing records we send it until we send it an eos
3315 * marker.
3316 *
3317 * We can leave this loop in 3 ways: First, if rwa->err is
3318 * non-zero. In that case, the writer thread will free the rrd we just
3319 * pushed. Second, if we're interrupted; in that case, either it's the
30af21b0
PD
3320 * first loop and drc->drc_rrd was never allocated, or it's later, and
3321 * drc->drc_rrd has been handed off to the writer thread who will free
3322 * it. Finally, if receive_read_record fails or we're at the end of the
3323 * stream, then we free drc->drc_rrd and exit.
03916905
PD
3324 */
3325 while (rwa->err == 0) {
3326 if (issig(JUSTLOOKING) && issig(FORREAL)) {
3327 err = SET_ERROR(EINTR);
3328 break;
3329 }
3330
30af21b0
PD
3331 ASSERT3P(drc->drc_rrd, ==, NULL);
3332 drc->drc_rrd = drc->drc_next_rrd;
3333 drc->drc_next_rrd = NULL;
3334 /* Allocates and loads header into drc->drc_next_rrd */
3335 err = receive_read_record(drc);
03916905 3336
30af21b0
PD
3337 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3338 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3339 drc->drc_rrd = NULL;
03916905
PD
3340 break;
3341 }
3342
30af21b0
PD
3343 bqueue_enqueue(&rwa->q, drc->drc_rrd,
3344 sizeof (struct receive_record_arg) +
3345 drc->drc_rrd->payload_size);
3346 drc->drc_rrd = NULL;
03916905 3347 }
30af21b0
PD
3348
3349 ASSERT3P(drc->drc_rrd, ==, NULL);
3350 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3351 drc->drc_rrd->eos_marker = B_TRUE;
3352 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
03916905
PD
3353
3354 mutex_enter(&rwa->mutex);
3355 while (!rwa->done) {
30af21b0
PD
3356 /*
3357 * We need to use cv_wait_sig() so that any process that may
3358 * be sleeping here can still fork.
3359 */
3360 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
03916905
PD
3361 }
3362 mutex_exit(&rwa->mutex);
3363
3364 /*
3365 * If we are receiving a full stream as a clone, all object IDs which
3366 * are greater than the maximum ID referenced in the stream are
3367 * by definition unused and must be freed.
3368 */
3369 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3370 uint64_t obj = rwa->max_object + 1;
3371 int free_err = 0;
3372 int next_err = 0;
3373
3374 while (next_err == 0) {
3375 free_err = dmu_free_long_object(rwa->os, obj);
3376 if (free_err != 0 && free_err != ENOENT)
3377 break;
3378
3379 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3380 }
3381
3382 if (err == 0) {
3383 if (free_err != 0 && free_err != ENOENT)
3384 err = free_err;
3385 else if (next_err != ESRCH)
3386 err = next_err;
3387 }
3388 }
3389
3390 cv_destroy(&rwa->cv);
3391 mutex_destroy(&rwa->mutex);
3392 bqueue_destroy(&rwa->q);
7261fc2e 3393 list_destroy(&rwa->write_batch);
03916905
PD
3394 if (err == 0)
3395 err = rwa->err;
3396
3397out:
f00ab3f2
TC
3398 /*
3399 * If we hit an error before we started the receive_writer_thread
3400 * we need to clean up the next_rrd we create by processing the
3401 * DRR_BEGIN record.
3402 */
30af21b0
PD
3403 if (drc->drc_next_rrd != NULL)
3404 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
f00ab3f2 3405
ec213971
MA
3406 /*
3407 * The objset will be invalidated by dmu_recv_end() when we do
3408 * dsl_dataset_clone_swap_sync_impl().
3409 */
3410 drc->drc_os = NULL;
3411
30af21b0
PD
3412 kmem_free(rwa, sizeof (*rwa));
3413 nvlist_free(drc->drc_begin_nvl);
03916905
PD
3414
3415 if (err != 0) {
3416 /*
3417 * Clean up references. If receive is not resumable,
3418 * destroy what we created, so we don't leave it in
3419 * the inconsistent state.
3420 */
3421 dmu_recv_cleanup_ds(drc);
3422 nvlist_free(drc->drc_keynvl);
3423 }
3424
30af21b0
PD
3425 objlist_destroy(drc->drc_ignore_objlist);
3426 drc->drc_ignore_objlist = NULL;
3427 *voffp = drc->drc_voff;
03916905
PD
3428 return (err);
3429}
3430
3431static int
3432dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3433{
3434 dmu_recv_cookie_t *drc = arg;
3435 dsl_pool_t *dp = dmu_tx_pool(tx);
3436 int error;
3437
3438 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3439
e8cf3a4f
AP
3440 if (drc->drc_heal) {
3441 error = 0;
3442 } else if (!drc->drc_newfs) {
03916905
PD
3443 dsl_dataset_t *origin_head;
3444
3445 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3446 if (error != 0)
3447 return (error);
3448 if (drc->drc_force) {
3449 /*
3450 * We will destroy any snapshots in tofs (i.e. before
3451 * origin_head) that are after the origin (which is
3452 * the snap before drc_ds, because drc_ds can not
3453 * have any snaps of its own).
3454 */
3455 uint64_t obj;
3456
3457 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3458 while (obj !=
3459 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3460 dsl_dataset_t *snap;
3461 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3462 &snap);
3463 if (error != 0)
3464 break;
3465 if (snap->ds_dir != origin_head->ds_dir)
3466 error = SET_ERROR(EINVAL);
3467 if (error == 0) {
3468 error = dsl_destroy_snapshot_check_impl(
3469 snap, B_FALSE);
3470 }
3471 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3472 dsl_dataset_rele(snap, FTAG);
3473 if (error != 0)
3474 break;
3475 }
3476 if (error != 0) {
3477 dsl_dataset_rele(origin_head, FTAG);
3478 return (error);
3479 }
3480 }
3481 if (drc->drc_keynvl != NULL) {
3482 error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3483 drc->drc_keynvl, tx);
3484 if (error != 0) {
3485 dsl_dataset_rele(origin_head, FTAG);
3486 return (error);
3487 }
3488 }
3489
3490 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3491 origin_head, drc->drc_force, drc->drc_owner, tx);
3492 if (error != 0) {
3493 dsl_dataset_rele(origin_head, FTAG);
3494 return (error);
3495 }
3496 error = dsl_dataset_snapshot_check_impl(origin_head,
e59a377a
MA
3497 drc->drc_tosnap, tx, B_TRUE, 1,
3498 drc->drc_cred, drc->drc_proc);
03916905
PD
3499 dsl_dataset_rele(origin_head, FTAG);
3500 if (error != 0)
3501 return (error);
3502
3503 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3504 } else {
3505 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
e59a377a
MA
3506 drc->drc_tosnap, tx, B_TRUE, 1,
3507 drc->drc_cred, drc->drc_proc);
03916905
PD
3508 }
3509 return (error);
3510}
3511
3512static void
3513dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3514{
3515 dmu_recv_cookie_t *drc = arg;
3516 dsl_pool_t *dp = dmu_tx_pool(tx);
3517 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
e8cf3a4f 3518 uint64_t newsnapobj = 0;
03916905
PD
3519
3520 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3521 tx, "snap=%s", drc->drc_tosnap);
3522 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3523
e8cf3a4f
AP
3524 if (drc->drc_heal) {
3525 if (drc->drc_keynvl != NULL) {
3526 nvlist_free(drc->drc_keynvl);
3527 drc->drc_keynvl = NULL;
3528 }
3529 } else if (!drc->drc_newfs) {
03916905
PD
3530 dsl_dataset_t *origin_head;
3531
3532 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3533 &origin_head));
3534
3535 if (drc->drc_force) {
3536 /*
3537 * Destroy any snapshots of drc_tofs (origin_head)
3538 * after the origin (the snap before drc_ds).
3539 */
3540 uint64_t obj;
3541
3542 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3543 while (obj !=
3544 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3545 dsl_dataset_t *snap;
3546 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3547 &snap));
3548 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3549 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3550 dsl_destroy_snapshot_sync_impl(snap,
3551 B_FALSE, tx);
3552 dsl_dataset_rele(snap, FTAG);
3553 }
3554 }
3555 if (drc->drc_keynvl != NULL) {
3556 dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3557 drc->drc_keynvl, tx);
3558 nvlist_free(drc->drc_keynvl);
3559 drc->drc_keynvl = NULL;
3560 }
3561
30af21b0
PD
3562 VERIFY3P(drc->drc_ds->ds_prev, ==,
3563 origin_head->ds_prev);
03916905
PD
3564
3565 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3566 origin_head, tx);
0fdd6106
MA
3567 /*
3568 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3569 * so drc_os is no longer valid.
3570 */
3571 drc->drc_os = NULL;
3572
03916905
PD
3573 dsl_dataset_snapshot_sync_impl(origin_head,
3574 drc->drc_tosnap, tx);
3575
3576 /* set snapshot's creation time and guid */
3577 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3578 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3579 drc->drc_drrb->drr_creation_time;
3580 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3581 drc->drc_drrb->drr_toguid;
3582 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3583 ~DS_FLAG_INCONSISTENT;
3584
3585 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3586 dsl_dataset_phys(origin_head)->ds_flags &=
3587 ~DS_FLAG_INCONSISTENT;
3588
196bee4c 3589 newsnapobj =
03916905
PD
3590 dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3591
3592 dsl_dataset_rele(origin_head, FTAG);
3593 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3594
3595 if (drc->drc_owner != NULL)
3596 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3597 } else {
3598 dsl_dataset_t *ds = drc->drc_ds;
3599
3600 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3601
3602 /* set snapshot's creation time and guid */
3603 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3604 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3605 drc->drc_drrb->drr_creation_time;
3606 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3607 drc->drc_drrb->drr_toguid;
3608 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3609 ~DS_FLAG_INCONSISTENT;
3610
3611 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3612 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3613 if (dsl_dataset_has_resume_receive_state(ds)) {
3614 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3615 DS_FIELD_RESUME_FROMGUID, tx);
3616 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3617 DS_FIELD_RESUME_OBJECT, tx);
3618 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3619 DS_FIELD_RESUME_OFFSET, tx);
3620 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3621 DS_FIELD_RESUME_BYTES, tx);
3622 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3623 DS_FIELD_RESUME_TOGUID, tx);
3624 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3625 DS_FIELD_RESUME_TONAME, tx);
30af21b0
PD
3626 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3627 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
03916905 3628 }
196bee4c 3629 newsnapobj =
03916905
PD
3630 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3631 }
f00ab3f2
TC
3632
3633 /*
3634 * If this is a raw receive, the crypt_keydata nvlist will include
3635 * a to_ivset_guid for us to set on the new snapshot. This value
3636 * will override the value generated by the snapshot code. However,
3637 * this value may not be present, because older implementations of
3638 * the raw send code did not include this value, and we are still
3639 * allowed to receive them if the zfs_disable_ivset_guid_check
3640 * tunable is set, in which case we will leave the newly-generated
3641 * value.
3642 */
e8cf3a4f 3643 if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
196bee4c 3644 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
f00ab3f2 3645 DMU_OT_DSL_DATASET, tx);
196bee4c 3646 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
f00ab3f2
TC
3647 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3648 &drc->drc_ivset_guid, tx));
3649 }
3650
03916905
PD
3651 /*
3652 * Release the hold from dmu_recv_begin. This must be done before
3653 * we return to open context, so that when we free the dataset's dnode
3654 * we can evict its bonus buffer. Since the dataset may be destroyed
3655 * at this point (and therefore won't have a valid pointer to the spa)
3656 * we release the key mapping manually here while we do have a valid
3657 * pointer, if it exists.
3658 */
3659 if (!drc->drc_raw && encrypted) {
3660 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3661 drc->drc_ds->ds_object, drc->drc_ds);
3662 }
3663 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3664 drc->drc_ds = NULL;
3665}
3666
03916905
PD
3667static int dmu_recv_end_modified_blocks = 3;
3668
3669static int
3670dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3671{
3672#ifdef _KERNEL
3673 /*
3674 * We will be destroying the ds; make sure its origin is unmounted if
3675 * necessary.
3676 */
3677 char name[ZFS_MAX_DATASET_NAME_LEN];
3678 dsl_dataset_name(drc->drc_ds, name);
3679 zfs_destroy_unmount_origin(name);
3680#endif
3681
3682 return (dsl_sync_task(drc->drc_tofs,
3683 dmu_recv_end_check, dmu_recv_end_sync, drc,
3684 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3685}
3686
3687static int
3688dmu_recv_new_end(dmu_recv_cookie_t *drc)
3689{
3690 return (dsl_sync_task(drc->drc_tofs,
3691 dmu_recv_end_check, dmu_recv_end_sync, drc,
3692 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3693}
3694
3695int
3696dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3697{
3698 int error;
3699
3700 drc->drc_owner = owner;
3701
3702 if (drc->drc_newfs)
3703 error = dmu_recv_new_end(drc);
3704 else
3705 error = dmu_recv_existing_end(drc);
3706
3707 if (error != 0) {
3708 dmu_recv_cleanup_ds(drc);
3709 nvlist_free(drc->drc_keynvl);
e8cf3a4f 3710 } else if (!drc->drc_heal) {
ec213971
MA
3711 if (drc->drc_newfs) {
3712 zvol_create_minor(drc->drc_tofs);
3713 }
3714 char *snapname = kmem_asprintf("%s@%s",
3715 drc->drc_tofs, drc->drc_tosnap);
3716 zvol_create_minor(snapname);
3717 kmem_strfree(snapname);
03916905
PD
3718 }
3719 return (error);
3720}
3721
3722/*
3723 * Return TRUE if this objset is currently being received into.
3724 */
3725boolean_t
3726dmu_objset_is_receiving(objset_t *os)
3727{
3728 return (os->os_dsl_dataset != NULL &&
3729 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3730}
3731
fdc2d303 3732ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
03fdcb9a 3733 "Maximum receive queue length");
30af21b0 3734
fdc2d303 3735ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
03fdcb9a 3736 "Receive queue fill fraction");
7261fc2e 3737
fdc2d303 3738ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
7261fc2e 3739 "Maximum amount of writes to batch into one transaction");
e8cf3a4f
AP
3740
3741ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3742 "Ignore errors during corrective receive");
3743/* END CSTYLED */