]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu_tx.c
linux spl: fix typo in top comment of spl-condvar.c
[mirror_zfs.git] / module / zfs / dmu_tx.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
34dc7c2f
BB
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
22cd4a46 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
4747a7d3 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
22cd4a46 25 */
34dc7c2f 26
34dc7c2f
BB
27#include <sys/dmu.h>
28#include <sys/dmu_impl.h>
29#include <sys/dbuf.h>
30#include <sys/dmu_tx.h>
31#include <sys/dmu_objset.h>
3ec3bc21
BB
32#include <sys/dsl_dataset.h>
33#include <sys/dsl_dir.h>
34dc7c2f 34#include <sys/dsl_pool.h>
3ec3bc21 35#include <sys/zap_impl.h>
34dc7c2f 36#include <sys/spa.h>
428870ff
BB
37#include <sys/sa.h>
38#include <sys/sa_impl.h>
34dc7c2f 39#include <sys/zfs_context.h>
e5d1c27e 40#include <sys/trace_zfs.h>
34dc7c2f
BB
41
42typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43 uint64_t arg1, uint64_t arg2);
44
570827e1
BB
45dmu_tx_stats_t dmu_tx_stats = {
46 { "dmu_tx_assigned", KSTAT_DATA_UINT64 },
47 { "dmu_tx_delay", KSTAT_DATA_UINT64 },
48 { "dmu_tx_error", KSTAT_DATA_UINT64 },
49 { "dmu_tx_suspended", KSTAT_DATA_UINT64 },
50 { "dmu_tx_group", KSTAT_DATA_UINT64 },
570827e1
BB
51 { "dmu_tx_memory_reserve", KSTAT_DATA_UINT64 },
52 { "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 },
570827e1 53 { "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 },
e8b96c60
MA
54 { "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 },
55 { "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 },
750e1f88 56 { "dmu_tx_dirty_frees_delay", KSTAT_DATA_UINT64 },
84d0a03f 57 { "dmu_tx_wrlog_delay", KSTAT_DATA_UINT64 },
570827e1
BB
58 { "dmu_tx_quota", KSTAT_DATA_UINT64 },
59};
60
61static kstat_t *dmu_tx_ksp;
34dc7c2f
BB
62
63dmu_tx_t *
64dmu_tx_create_dd(dsl_dir_t *dd)
65{
79c76d5b 66 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
34dc7c2f 67 tx->tx_dir = dd;
6f1ffb06 68 if (dd != NULL)
34dc7c2f
BB
69 tx->tx_pool = dd->dd_pool;
70 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
71 offsetof(dmu_tx_hold_t, txh_node));
428870ff
BB
72 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
73 offsetof(dmu_tx_callback_t, dcb_node));
e8b96c60 74 tx->tx_start = gethrtime();
34dc7c2f
BB
75 return (tx);
76}
77
78dmu_tx_t *
79dmu_tx_create(objset_t *os)
80{
428870ff 81 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
34dc7c2f 82 tx->tx_objset = os;
34dc7c2f
BB
83 return (tx);
84}
85
86dmu_tx_t *
87dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
88{
89 dmu_tx_t *tx = dmu_tx_create_dd(NULL);
90
8c4fb36a 91 TXG_VERIFY(dp->dp_spa, txg);
34dc7c2f
BB
92 tx->tx_pool = dp;
93 tx->tx_txg = txg;
94 tx->tx_anyobj = TRUE;
95
96 return (tx);
97}
98
99int
100dmu_tx_is_syncing(dmu_tx_t *tx)
101{
102 return (tx->tx_anyobj);
103}
104
105int
106dmu_tx_private_ok(dmu_tx_t *tx)
107{
108 return (tx->tx_anyobj);
109}
110
111static dmu_tx_hold_t *
0eef1bde 112dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
113 uint64_t arg1, uint64_t arg2)
34dc7c2f
BB
114{
115 dmu_tx_hold_t *txh;
34dc7c2f 116
0eef1bde 117 if (dn != NULL) {
c13060e4 118 (void) zfs_refcount_add(&dn->dn_holds, tx);
0eef1bde 119 if (tx->tx_txg != 0) {
34dc7c2f
BB
120 mutex_enter(&dn->dn_mtx);
121 /*
122 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
123 * problem, but there's no way for it to happen (for
124 * now, at least).
125 */
126 ASSERT(dn->dn_assigned_txg == 0);
127 dn->dn_assigned_txg = tx->tx_txg;
c13060e4 128 (void) zfs_refcount_add(&dn->dn_tx_holds, tx);
34dc7c2f
BB
129 mutex_exit(&dn->dn_mtx);
130 }
131 }
132
79c76d5b 133 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
34dc7c2f
BB
134 txh->txh_tx = tx;
135 txh->txh_dnode = dn;
424fd7c3
TS
136 zfs_refcount_create(&txh->txh_space_towrite);
137 zfs_refcount_create(&txh->txh_memory_tohold);
34dc7c2f
BB
138 txh->txh_type = type;
139 txh->txh_arg1 = arg1;
140 txh->txh_arg2 = arg2;
34dc7c2f
BB
141 list_insert_tail(&tx->tx_holds, txh);
142
143 return (txh);
144}
145
0eef1bde 146static dmu_tx_hold_t *
147dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
148 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
149{
150 dnode_t *dn = NULL;
151 dmu_tx_hold_t *txh;
152 int err;
153
154 if (object != DMU_NEW_OBJECT) {
155 err = dnode_hold(os, object, FTAG, &dn);
66eead53 156 if (err != 0) {
0eef1bde 157 tx->tx_err = err;
158 return (NULL);
159 }
160 }
161 txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
162 if (dn != NULL)
163 dnode_rele(dn, FTAG);
164 return (txh);
165}
166
34dc7c2f 167void
66eead53 168dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
34dc7c2f
BB
169{
170 /*
171 * If we're syncing, they can manipulate any object anyhow, and
172 * the hold on the dnode_t can cause problems.
173 */
0eef1bde 174 if (!dmu_tx_is_syncing(tx))
175 (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
34dc7c2f
BB
176}
177
3ec3bc21
BB
178/*
179 * This function reads specified data from disk. The specified data will
180 * be needed to perform the transaction -- i.e, it will be read after
181 * we do dmu_tx_assign(). There are two reasons that we read the data now
182 * (before dmu_tx_assign()):
183 *
184 * 1. Reading it now has potentially better performance. The transaction
185 * has not yet been assigned, so the TXG is not held open, and also the
186 * caller typically has less locks held when calling dmu_tx_hold_*() than
187 * after the transaction has been assigned. This reduces the lock (and txg)
188 * hold times, thus reducing lock contention.
189 *
190 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
191 * that are detected before they start making changes to the DMU state
192 * (i.e. now). Once the transaction has been assigned, and some DMU
193 * state has been changed, it can be difficult to recover from an i/o
194 * error (e.g. to undo the changes already made in memory at the DMU
195 * layer). Typically code to do so does not exist in the caller -- it
196 * assumes that the data has already been cached and thus i/o errors are
197 * not possible.
198 *
199 * It has been observed that the i/o initiated here can be a performance
200 * problem, and it appears to be optional, because we don't look at the
201 * data which is read. However, removing this read would only serve to
202 * move the work elsewhere (after the dmu_tx_assign()), where it may
203 * have a greater impact on performance (in addition to the impact on
204 * fault tolerance noted above).
205 */
34dc7c2f
BB
206static int
207dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
208{
209 int err;
210 dmu_buf_impl_t *db;
211
212 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1b310dfb 213 err = dbuf_hold_impl(dn, level, blkid, TRUE, FALSE, FTAG, &db);
34dc7c2f 214 rw_exit(&dn->dn_struct_rwlock);
1b310dfb
AM
215 if (err == ENOENT)
216 return (0);
217 if (err != 0)
218 return (err);
ed2f7ba0
AM
219 /*
220 * PARTIAL_FIRST allows caching for uncacheable blocks. It will
221 * be cleared after dmu_buf_will_dirty() call dbuf_read() again.
222 */
223 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH |
224 (level == 0 ? DB_RF_PARTIAL_FIRST : 0));
34dc7c2f
BB
225 dbuf_rele(db, FTAG);
226 return (err);
227}
228
34dc7c2f
BB
229static void
230dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
231{
232 dnode_t *dn = txh->txh_dnode;
34dc7c2f
BB
233 int err = 0;
234
235 if (len == 0)
236 return;
237
424fd7c3 238 (void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
34dc7c2f 239
3ec3bc21
BB
240 if (dn == NULL)
241 return;
34dc7c2f 242
3ec3bc21
BB
243 /*
244 * For i/o error checking, read the blocks that will be needed
245 * to perform the write: the first and last level-0 blocks (if
246 * they are not aligned, i.e. if they are partial-block writes),
247 * and all the level-1 blocks.
248 */
249 if (dn->dn_maxblkid == 0) {
250 if (off < dn->dn_datablksz &&
251 (off > 0 || len < dn->dn_datablksz)) {
252 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
253 if (err != 0) {
254 txh->txh_tx->tx_err = err;
34dc7c2f 255 }
9babb374 256 }
3ec3bc21
BB
257 } else {
258 zio_t *zio = zio_root(dn->dn_objset->os_spa,
259 NULL, NULL, ZIO_FLAG_CANFAIL);
9babb374 260
3ec3bc21
BB
261 /* first level-0 block */
262 uint64_t start = off >> dn->dn_datablkshift;
263 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
264 err = dmu_tx_check_ioerr(zio, dn, 0, start);
265 if (err != 0) {
266 txh->txh_tx->tx_err = err;
267 }
428870ff 268 }
428870ff 269
3ec3bc21
BB
270 /* last level-0 block */
271 uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
272 if (end != start && end <= dn->dn_maxblkid &&
273 P2PHASE(off + len, dn->dn_datablksz)) {
274 err = dmu_tx_check_ioerr(zio, dn, 0, end);
275 if (err != 0) {
428870ff 276 txh->txh_tx->tx_err = err;
9babb374 277 }
3ec3bc21 278 }
428870ff 279
3ec3bc21
BB
280 /* level-1 blocks */
281 if (dn->dn_nlevels > 1) {
282 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
283 for (uint64_t i = (start >> shft) + 1;
284 i < end >> shft; i++) {
285 err = dmu_tx_check_ioerr(zio, dn, 1, i);
286 if (err != 0) {
287 txh->txh_tx->tx_err = err;
288 }
9babb374 289 }
9babb374 290 }
34dc7c2f 291
3ec3bc21
BB
292 err = zio_wait(zio);
293 if (err != 0) {
294 txh->txh_tx->tx_err = err;
9babb374 295 }
34dc7c2f 296 }
34dc7c2f
BB
297}
298
903c3613
BB
299static void
300dmu_tx_count_append(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
301{
302 dnode_t *dn = txh->txh_dnode;
303 int err = 0;
304
305 if (len == 0)
306 return;
307
308 (void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
309
310 if (dn == NULL)
311 return;
312
313 /*
314 * For i/o error checking, read the blocks that will be needed
315 * to perform the append; first level-0 block (if not aligned, i.e.
316 * if they are partial-block writes), no additional blocks are read.
317 */
318 if (dn->dn_maxblkid == 0) {
319 if (off < dn->dn_datablksz &&
320 (off > 0 || len < dn->dn_datablksz)) {
321 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
322 if (err != 0) {
323 txh->txh_tx->tx_err = err;
324 }
325 }
326 } else {
327 zio_t *zio = zio_root(dn->dn_objset->os_spa,
328 NULL, NULL, ZIO_FLAG_CANFAIL);
329
330 /* first level-0 block */
331 uint64_t start = off >> dn->dn_datablkshift;
332 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
333 err = dmu_tx_check_ioerr(zio, dn, 0, start);
334 if (err != 0) {
335 txh->txh_tx->tx_err = err;
336 }
337 }
338
339 err = zio_wait(zio);
340 if (err != 0) {
341 txh->txh_tx->tx_err = err;
342 }
343 }
344}
345
34dc7c2f
BB
346static void
347dmu_tx_count_dnode(dmu_tx_hold_t *txh)
348{
424fd7c3
TS
349 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
350 DNODE_MIN_SIZE, FTAG);
34dc7c2f
BB
351}
352
353void
354dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
355{
356 dmu_tx_hold_t *txh;
357
66eead53
MA
358 ASSERT0(tx->tx_txg);
359 ASSERT3U(len, <=, DMU_MAX_ACCESS);
34dc7c2f
BB
360 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
361
362 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
363 object, THT_WRITE, off, len);
66eead53
MA
364 if (txh != NULL) {
365 dmu_tx_count_write(txh, off, len);
366 dmu_tx_count_dnode(txh);
367 }
34dc7c2f
BB
368}
369
0eef1bde 370void
371dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
372{
373 dmu_tx_hold_t *txh;
374
66eead53
MA
375 ASSERT0(tx->tx_txg);
376 ASSERT3U(len, <=, DMU_MAX_ACCESS);
0eef1bde 377 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
378
379 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
66eead53
MA
380 if (txh != NULL) {
381 dmu_tx_count_write(txh, off, len);
382 dmu_tx_count_dnode(txh);
383 }
0eef1bde 384}
385
903c3613
BB
386/*
387 * Should be used when appending to an object and the exact offset is unknown.
388 * The write must occur at or beyond the specified offset. Only the L0 block
389 * at provided offset will be prefetched.
390 */
391void
392dmu_tx_hold_append(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
393{
394 dmu_tx_hold_t *txh;
395
396 ASSERT0(tx->tx_txg);
397 ASSERT3U(len, <=, DMU_MAX_ACCESS);
398
399 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
400 object, THT_APPEND, off, DMU_OBJECT_END);
401 if (txh != NULL) {
402 dmu_tx_count_append(txh, off, len);
403 dmu_tx_count_dnode(txh);
404 }
405}
406
407void
408dmu_tx_hold_append_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
409{
410 dmu_tx_hold_t *txh;
411
412 ASSERT0(tx->tx_txg);
413 ASSERT3U(len, <=, DMU_MAX_ACCESS);
414
415 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_APPEND, off, DMU_OBJECT_END);
416 if (txh != NULL) {
417 dmu_tx_count_append(txh, off, len);
418 dmu_tx_count_dnode(txh);
419 }
420}
421
19d55079
MA
422/*
423 * This function marks the transaction as being a "net free". The end
424 * result is that refquotas will be disabled for this transaction, and
425 * this transaction will be able to use half of the pool space overhead
426 * (see dsl_pool_adjustedsize()). Therefore this function should only
427 * be called for transactions that we expect will not cause a net increase
428 * in the amount of space used (but it's OK if that is occasionally not true).
429 */
430void
431dmu_tx_mark_netfree(dmu_tx_t *tx)
432{
3ec3bc21 433 tx->tx_netfree = B_TRUE;
19d55079
MA
434}
435
0eef1bde 436static void
67a1b037 437dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
34dc7c2f 438{
3ec3bc21
BB
439 dmu_tx_t *tx = txh->txh_tx;
440 dnode_t *dn = txh->txh_dnode;
ea97f8ce 441 int err;
34dc7c2f
BB
442
443 ASSERT(tx->tx_txg == 0);
444
3ec3bc21 445 if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
34dc7c2f
BB
446 return;
447 if (len == DMU_OBJECT_END)
3ec3bc21 448 len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
34dc7c2f
BB
449
450 /*
ea97f8ce
MA
451 * For i/o error checking, we read the first and last level-0
452 * blocks if they are not aligned, and all the level-1 blocks.
453 *
454 * Note: dbuf_free_range() assumes that we have not instantiated
455 * any level-0 dbufs that will be completely freed. Therefore we must
456 * exercise care to not read or count the first and last blocks
457 * if they are blocksize-aligned.
458 */
459 if (dn->dn_datablkshift == 0) {
b663a23d 460 if (off != 0 || len < dn->dn_datablksz)
92bc214c 461 dmu_tx_count_write(txh, 0, dn->dn_datablksz);
ea97f8ce
MA
462 } else {
463 /* first block will be modified if it is not aligned */
464 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
465 dmu_tx_count_write(txh, off, 1);
466 /* last block will be modified if it is not aligned */
467 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
3ec3bc21 468 dmu_tx_count_write(txh, off + len, 1);
ea97f8ce
MA
469 }
470
471 /*
472 * Check level-1 blocks.
34dc7c2f
BB
473 */
474 if (dn->dn_nlevels > 1) {
ea97f8ce 475 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
34dc7c2f 476 SPA_BLKPTRSHIFT;
ea97f8ce
MA
477 uint64_t start = off >> shift;
478 uint64_t end = (off + len) >> shift;
ea97f8ce 479
ea97f8ce 480 ASSERT(dn->dn_indblkshift != 0);
34dc7c2f 481
2e7b7657
MA
482 /*
483 * dnode_reallocate() can result in an object with indirect
484 * blocks having an odd data block size. In this case,
485 * just check the single block.
486 */
487 if (dn->dn_datablkshift == 0)
488 start = end = 0;
489
3ec3bc21 490 zio_t *zio = zio_root(tx->tx_pool->dp_spa,
34dc7c2f 491 NULL, NULL, ZIO_FLAG_CANFAIL);
1c27024e 492 for (uint64_t i = start; i <= end; i++) {
34dc7c2f 493 uint64_t ibyte = i << shift;
b128c09f 494 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
34dc7c2f 495 i = ibyte >> shift;
4bda3bd0 496 if (err == ESRCH || i > end)
34dc7c2f 497 break;
3ec3bc21 498 if (err != 0) {
34dc7c2f 499 tx->tx_err = err;
3ec3bc21 500 (void) zio_wait(zio);
34dc7c2f
BB
501 return;
502 }
503
424fd7c3 504 (void) zfs_refcount_add_many(&txh->txh_memory_tohold,
3ec3bc21
BB
505 1 << dn->dn_indblkshift, FTAG);
506
34dc7c2f 507 err = dmu_tx_check_ioerr(zio, dn, 1, i);
3ec3bc21 508 if (err != 0) {
34dc7c2f 509 tx->tx_err = err;
3ec3bc21 510 (void) zio_wait(zio);
34dc7c2f
BB
511 return;
512 }
513 }
514 err = zio_wait(zio);
3ec3bc21 515 if (err != 0) {
34dc7c2f
BB
516 tx->tx_err = err;
517 return;
518 }
519 }
34dc7c2f
BB
520}
521
522void
0eef1bde 523dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
524{
525 dmu_tx_hold_t *txh;
526
527 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
528 object, THT_FREE, off, len);
67a1b037
PJD
529 if (txh != NULL) {
530 dmu_tx_count_dnode(txh);
531 dmu_tx_count_free(txh, off, len);
532 }
0eef1bde 533}
534
535void
536dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
34dc7c2f
BB
537{
538 dmu_tx_hold_t *txh;
0eef1bde 539
540 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
67a1b037
PJD
541 if (txh != NULL) {
542 dmu_tx_count_dnode(txh);
543 dmu_tx_count_free(txh, off, len);
544 }
545}
546
547static void
548dmu_tx_count_clone(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
549{
550
551 /*
552 * Reuse dmu_tx_count_free(), it does exactly what we need for clone.
553 */
554 dmu_tx_count_free(txh, off, len);
555}
556
557void
558dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
559{
560 dmu_tx_hold_t *txh;
561
562 ASSERT0(tx->tx_txg);
563 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
564
565 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_CLONE, off, len);
566 if (txh != NULL) {
567 dmu_tx_count_dnode(txh);
568 dmu_tx_count_clone(txh, off, len);
569 }
0eef1bde 570}
571
572static void
9522bd24 573dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
0eef1bde 574{
575 dmu_tx_t *tx = txh->txh_tx;
3ec3bc21 576 dnode_t *dn = txh->txh_dnode;
f85c06be 577 int err;
a4b21ead 578 extern int zap_micro_max_size;
34dc7c2f
BB
579
580 ASSERT(tx->tx_txg == 0);
581
34dc7c2f
BB
582 dmu_tx_count_dnode(txh);
583
3ec3bc21
BB
584 /*
585 * Modifying a almost-full microzap is around the worst case (128KB)
586 *
587 * If it is a fat zap, the worst case would be 7*16KB=112KB:
588 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
589 * - 4 new blocks written if adding:
590 * - 2 blocks for possibly split leaves,
591 * - 2 grown ptrtbl blocks
592 */
424fd7c3 593 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
a4b21ead 594 zap_micro_max_size, FTAG);
3ec3bc21
BB
595
596 if (dn == NULL)
34dc7c2f 597 return;
34dc7c2f 598
9ae529ec 599 ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
34dc7c2f 600
3ec3bc21 601 if (dn->dn_maxblkid == 0 || name == NULL) {
34dc7c2f 602 /*
3ec3bc21
BB
603 * This is a microzap (only one block), or we don't know
604 * the name. Check the first block for i/o errors.
34dc7c2f
BB
605 */
606 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
3ec3bc21 607 if (err != 0) {
34dc7c2f 608 tx->tx_err = err;
f85c06be 609 }
3ec3bc21 610 } else {
34dc7c2f 611 /*
3ec3bc21
BB
612 * Access the name so that we'll check for i/o errors to
613 * the leaf blocks, etc. We ignore ENOENT, as this name
614 * may not yet exist.
34dc7c2f 615 */
2bce8049 616 err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
3ec3bc21 617 if (err == EIO || err == ECKSUM || err == ENXIO) {
34dc7c2f 618 tx->tx_err = err;
f85c06be
GM
619 }
620 }
34dc7c2f
BB
621}
622
0eef1bde 623void
624dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
625{
626 dmu_tx_hold_t *txh;
627
66eead53 628 ASSERT0(tx->tx_txg);
0eef1bde 629
630 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
631 object, THT_ZAP, add, (uintptr_t)name);
66eead53 632 if (txh != NULL)
9522bd24 633 dmu_tx_hold_zap_impl(txh, name);
0eef1bde 634}
635
636void
637dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
638{
639 dmu_tx_hold_t *txh;
640
66eead53 641 ASSERT0(tx->tx_txg);
0eef1bde 642 ASSERT(dn != NULL);
643
644 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
66eead53 645 if (txh != NULL)
9522bd24 646 dmu_tx_hold_zap_impl(txh, name);
0eef1bde 647}
648
34dc7c2f
BB
649void
650dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
651{
652 dmu_tx_hold_t *txh;
653
654 ASSERT(tx->tx_txg == 0);
655
656 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
657 object, THT_BONUS, 0, 0);
658 if (txh)
659 dmu_tx_count_dnode(txh);
660}
661
0eef1bde 662void
663dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
664{
665 dmu_tx_hold_t *txh;
666
66eead53 667 ASSERT0(tx->tx_txg);
0eef1bde 668
669 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
670 if (txh)
671 dmu_tx_count_dnode(txh);
672}
673
34dc7c2f
BB
674void
675dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
676{
677 dmu_tx_hold_t *txh;
7d637211 678
34dc7c2f
BB
679 ASSERT(tx->tx_txg == 0);
680
681 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
682 DMU_NEW_OBJECT, THT_SPACE, space, 0);
424fd7c3
TS
683 if (txh) {
684 (void) zfs_refcount_add_many(
685 &txh->txh_space_towrite, space, FTAG);
686 }
34dc7c2f
BB
687}
688
3ec3bc21 689#ifdef ZFS_DEBUG
34dc7c2f
BB
690void
691dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
692{
3ec3bc21
BB
693 boolean_t match_object = B_FALSE;
694 boolean_t match_offset = B_FALSE;
34dc7c2f 695
572e2857 696 DB_DNODE_ENTER(db);
3ec3bc21 697 dnode_t *dn = DB_DNODE(db);
34dc7c2f 698 ASSERT(tx->tx_txg != 0);
428870ff 699 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
34dc7c2f
BB
700 ASSERT3U(dn->dn_object, ==, db->db.db_object);
701
572e2857
BB
702 if (tx->tx_anyobj) {
703 DB_DNODE_EXIT(db);
34dc7c2f 704 return;
572e2857 705 }
34dc7c2f
BB
706
707 /* XXX No checking on the meta dnode for now */
572e2857
BB
708 if (db->db.db_object == DMU_META_DNODE_OBJECT) {
709 DB_DNODE_EXIT(db);
34dc7c2f 710 return;
572e2857 711 }
34dc7c2f 712
3ec3bc21 713 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
34dc7c2f 714 txh = list_next(&tx->tx_holds, txh)) {
99ea23c5 715 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
34dc7c2f
BB
716 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
717 match_object = TRUE;
718 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
719 int datablkshift = dn->dn_datablkshift ?
720 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
721 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
722 int shift = datablkshift + epbs * db->db_level;
723 uint64_t beginblk = shift >= 64 ? 0 :
724 (txh->txh_arg1 >> shift);
725 uint64_t endblk = shift >= 64 ? 0 :
726 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
727 uint64_t blkid = db->db_blkid;
728
729 /* XXX txh_arg2 better not be zero... */
730
731 dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
8e739b2c
RE
732 txh->txh_type, (u_longlong_t)beginblk,
733 (u_longlong_t)endblk);
34dc7c2f
BB
734
735 switch (txh->txh_type) {
736 case THT_WRITE:
737 if (blkid >= beginblk && blkid <= endblk)
738 match_offset = TRUE;
739 /*
740 * We will let this hold work for the bonus
428870ff
BB
741 * or spill buffer so that we don't need to
742 * hold it when creating a new object.
34dc7c2f 743 */
428870ff
BB
744 if (blkid == DMU_BONUS_BLKID ||
745 blkid == DMU_SPILL_BLKID)
34dc7c2f
BB
746 match_offset = TRUE;
747 /*
748 * They might have to increase nlevels,
749 * thus dirtying the new TLIBs. Or the
750 * might have to change the block size,
751 * thus dirying the new lvl=0 blk=0.
752 */
753 if (blkid == 0)
754 match_offset = TRUE;
755 break;
903c3613
BB
756 case THT_APPEND:
757 if (blkid >= beginblk && (blkid <= endblk ||
758 txh->txh_arg2 == DMU_OBJECT_END))
759 match_offset = TRUE;
760
761 /*
762 * THT_WRITE used for bonus and spill blocks.
763 */
764 ASSERT(blkid != DMU_BONUS_BLKID &&
765 blkid != DMU_SPILL_BLKID);
766
767 /*
768 * They might have to increase nlevels,
769 * thus dirtying the new TLIBs. Or the
770 * might have to change the block size,
771 * thus dirying the new lvl=0 blk=0.
772 */
773 if (blkid == 0)
774 match_offset = TRUE;
775 break;
34dc7c2f 776 case THT_FREE:
b128c09f
BB
777 /*
778 * We will dirty all the level 1 blocks in
779 * the free range and perhaps the first and
780 * last level 0 block.
781 */
782 if (blkid >= beginblk && (blkid <= endblk ||
783 txh->txh_arg2 == DMU_OBJECT_END))
34dc7c2f
BB
784 match_offset = TRUE;
785 break;
428870ff
BB
786 case THT_SPILL:
787 if (blkid == DMU_SPILL_BLKID)
788 match_offset = TRUE;
789 break;
34dc7c2f 790 case THT_BONUS:
428870ff 791 if (blkid == DMU_BONUS_BLKID)
34dc7c2f
BB
792 match_offset = TRUE;
793 break;
794 case THT_ZAP:
795 match_offset = TRUE;
796 break;
797 case THT_NEWOBJECT:
798 match_object = TRUE;
799 break;
67a1b037
PJD
800 case THT_CLONE:
801 if (blkid >= beginblk && blkid <= endblk)
802 match_offset = TRUE;
803 break;
34dc7c2f 804 default:
989fd514
BB
805 cmn_err(CE_PANIC, "bad txh_type %d",
806 txh->txh_type);
34dc7c2f
BB
807 }
808 }
572e2857
BB
809 if (match_object && match_offset) {
810 DB_DNODE_EXIT(db);
34dc7c2f 811 return;
572e2857 812 }
34dc7c2f 813 }
572e2857 814 DB_DNODE_EXIT(db);
34dc7c2f
BB
815 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
816 (u_longlong_t)db->db.db_object, db->db_level,
817 (u_longlong_t)db->db_blkid);
818}
819#endif
820
e8b96c60
MA
821/*
822 * If we can't do 10 iops, something is wrong. Let us go ahead
823 * and hit zfs_dirty_data_max.
824 */
18168da7 825static const hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
e8b96c60
MA
826
827/*
828 * We delay transactions when we've determined that the backend storage
829 * isn't able to accommodate the rate of incoming writes.
830 *
831 * If there is already a transaction waiting, we delay relative to when
832 * that transaction finishes waiting. This way the calculated min_time
833 * is independent of the number of threads concurrently executing
834 * transactions.
835 *
836 * If we are the only waiter, wait relative to when the transaction
837 * started, rather than the current time. This credits the transaction for
838 * "time already served", e.g. reading indirect blocks.
839 *
840 * The minimum time for a transaction to take is calculated as:
841 * min_time = scale * (dirty - min) / (max - dirty)
842 * min_time is then capped at zfs_delay_max_ns.
843 *
844 * The delay has two degrees of freedom that can be adjusted via tunables.
845 * The percentage of dirty data at which we start to delay is defined by
846 * zfs_delay_min_dirty_percent. This should typically be at or above
847 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
848 * delay after writing at full speed has failed to keep up with the incoming
849 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
850 * speaking, this variable determines the amount of delay at the midpoint of
851 * the curve.
852 *
853 * delay
854 * 10ms +-------------------------------------------------------------*+
855 * | *|
856 * 9ms + *+
857 * | *|
858 * 8ms + *+
859 * | * |
860 * 7ms + * +
861 * | * |
862 * 6ms + * +
863 * | * |
864 * 5ms + * +
865 * | * |
866 * 4ms + * +
867 * | * |
868 * 3ms + * +
869 * | * |
870 * 2ms + (midpoint) * +
871 * | | ** |
872 * 1ms + v *** +
873 * | zfs_delay_scale ----------> ******** |
874 * 0 +-------------------------------------*********----------------+
875 * 0% <- zfs_dirty_data_max -> 100%
876 *
877 * Note that since the delay is added to the outstanding time remaining on the
878 * most recent transaction, the delay is effectively the inverse of IOPS.
879 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
880 * was chosen such that small changes in the amount of accumulated dirty data
881 * in the first 3/4 of the curve yield relatively small differences in the
882 * amount of delay.
883 *
884 * The effects can be easier to understand when the amount of delay is
885 * represented on a log scale:
886 *
887 * delay
888 * 100ms +-------------------------------------------------------------++
889 * + +
890 * | |
891 * + *+
892 * 10ms + *+
893 * + ** +
894 * | (midpoint) ** |
895 * + | ** +
896 * 1ms + v **** +
897 * + zfs_delay_scale ----------> ***** +
898 * | **** |
899 * + **** +
900 * 100us + ** +
901 * + * +
902 * | * |
903 * + * +
904 * 10us + * +
905 * + +
906 * | |
907 * + +
908 * +--------------------------------------------------------------+
909 * 0% <- zfs_dirty_data_max -> 100%
910 *
911 * Note here that only as the amount of dirty data approaches its limit does
912 * the delay start to increase rapidly. The goal of a properly tuned system
913 * should be to keep the amount of dirty data out of that range by first
914 * ensuring that the appropriate limits are set for the I/O scheduler to reach
915 * optimal throughput on the backend storage, and then by changing the value
916 * of zfs_delay_scale to increase the steepness of the curve.
917 */
918static void
919dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
920{
921 dsl_pool_t *dp = tx->tx_pool;
84d0a03f
AM
922 uint64_t delay_min_bytes, wrlog;
923 hrtime_t wakeup, tx_time = 0, now;
924
925 /* Calculate minimum transaction time for the dirty data amount. */
926 delay_min_bytes =
e8b96c60 927 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
84d0a03f
AM
928 if (dirty > delay_min_bytes) {
929 /*
930 * The caller has already waited until we are under the max.
931 * We make them pass us the amount of dirty data so we don't
932 * have to handle the case of it being >= the max, which
933 * could cause a divide-by-zero if it's == the max.
934 */
935 ASSERT3U(dirty, <, zfs_dirty_data_max);
e8b96c60 936
84d0a03f
AM
937 tx_time = zfs_delay_scale * (dirty - delay_min_bytes) /
938 (zfs_dirty_data_max - dirty);
939 }
e8b96c60 940
84d0a03f
AM
941 /* Calculate minimum transaction time for the TX_WRITE log size. */
942 wrlog = aggsum_upper_bound(&dp->dp_wrlog_total);
943 delay_min_bytes =
944 zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
945 if (wrlog >= zfs_wrlog_data_max) {
946 tx_time = zfs_delay_max_ns;
947 } else if (wrlog > delay_min_bytes) {
948 tx_time = MAX(zfs_delay_scale * (wrlog - delay_min_bytes) /
949 (zfs_wrlog_data_max - wrlog), tx_time);
950 }
951
952 if (tx_time == 0)
953 return;
e8b96c60 954
84d0a03f 955 tx_time = MIN(tx_time, zfs_delay_max_ns);
e8b96c60 956 now = gethrtime();
84d0a03f 957 if (now > tx->tx_start + tx_time)
e8b96c60
MA
958 return;
959
960 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
84d0a03f 961 uint64_t, tx_time);
e8b96c60
MA
962
963 mutex_enter(&dp->dp_lock);
84d0a03f 964 wakeup = MAX(tx->tx_start + tx_time, dp->dp_last_wakeup + tx_time);
e8b96c60
MA
965 dp->dp_last_wakeup = wakeup;
966 mutex_exit(&dp->dp_lock);
967
968 zfs_sleep_until(wakeup);
969}
970
3ec3bc21
BB
971/*
972 * This routine attempts to assign the transaction to a transaction group.
973 * To do so, we must determine if there is sufficient free space on disk.
974 *
975 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
976 * on it), then it is assumed that there is sufficient free space,
977 * unless there's insufficient slop space in the pool (see the comment
978 * above spa_slop_shift in spa_misc.c).
979 *
980 * If it is not a "netfree" transaction, then if the data already on disk
981 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
982 * ENOSPC. Otherwise, if the current rough estimate of pending changes,
983 * plus the rough estimate of this transaction's changes, may exceed the
984 * allowed usage, then this will fail with ERESTART, which will cause the
985 * caller to wait for the pending changes to be written to disk (by waiting
986 * for the next TXG to open), and then check the space usage again.
987 *
988 * The rough estimate of pending changes is comprised of the sum of:
989 *
990 * - this transaction's holds' txh_space_towrite
991 *
992 * - dd_tempreserved[], which is the sum of in-flight transactions'
993 * holds' txh_space_towrite (i.e. those transactions that have called
994 * dmu_tx_assign() but not yet called dmu_tx_commit()).
995 *
996 * - dd_space_towrite[], which is the amount of dirtied dbufs.
997 *
998 * Note that all of these values are inflated by spa_get_worst_case_asize(),
999 * which means that we may get ERESTART well before we are actually in danger
1000 * of running out of space, but this also mitigates any small inaccuracies
1001 * in the rough estimate (e.g. txh_space_towrite doesn't take into account
1002 * indirect blocks, and dd_space_towrite[] doesn't take into account changes
1003 * to the MOS).
1004 *
1005 * Note that due to this algorithm, it is possible to exceed the allowed
1006 * usage by one transaction. Also, as we approach the allowed usage,
1007 * we will allow a very limited amount of changes into each TXG, thus
1008 * decreasing performance.
1009 */
34dc7c2f 1010static int
0735ecb3 1011dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
34dc7c2f 1012{
34dc7c2f 1013 spa_t *spa = tx->tx_pool->dp_spa;
34dc7c2f 1014
c99c9001 1015 ASSERT0(tx->tx_txg);
34dc7c2f 1016
570827e1
BB
1017 if (tx->tx_err) {
1018 DMU_TX_STAT_BUMP(dmu_tx_error);
34dc7c2f 1019 return (tx->tx_err);
570827e1 1020 }
34dc7c2f 1021
b128c09f 1022 if (spa_suspended(spa)) {
570827e1
BB
1023 DMU_TX_STAT_BUMP(dmu_tx_suspended);
1024
34dc7c2f
BB
1025 /*
1026 * If the user has indicated a blocking failure mode
1027 * then return ERESTART which will block in dmu_tx_wait().
1028 * Otherwise, return EIO so that an error can get
1029 * propagated back to the VOP calls.
1030 *
1031 * Note that we always honor the txg_how flag regardless
1032 * of the failuremode setting.
1033 */
1034 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
0735ecb3 1035 !(txg_how & TXG_WAIT))
2e528b49 1036 return (SET_ERROR(EIO));
34dc7c2f 1037
2e528b49 1038 return (SET_ERROR(ERESTART));
34dc7c2f
BB
1039 }
1040
a7bd20e3 1041 if (!tx->tx_dirty_delayed &&
84d0a03f
AM
1042 dsl_pool_need_wrlog_delay(tx->tx_pool)) {
1043 tx->tx_wait_dirty = B_TRUE;
1044 DMU_TX_STAT_BUMP(dmu_tx_wrlog_delay);
a7bd20e3
KJ
1045 return (SET_ERROR(ERESTART));
1046 }
1047
0735ecb3 1048 if (!tx->tx_dirty_delayed &&
e8b96c60
MA
1049 dsl_pool_need_dirty_delay(tx->tx_pool)) {
1050 tx->tx_wait_dirty = B_TRUE;
1051 DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
ecb2b7dc 1052 return (SET_ERROR(ERESTART));
e8b96c60
MA
1053 }
1054
34dc7c2f
BB
1055 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
1056 tx->tx_needassign_txh = NULL;
1057
1058 /*
1059 * NB: No error returns are allowed after txg_hold_open, but
1060 * before processing the dnode holds, due to the
1061 * dmu_tx_unassign() logic.
1062 */
1063
3ec3bc21
BB
1064 uint64_t towrite = 0;
1065 uint64_t tohold = 0;
1066 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
34dc7c2f
BB
1067 txh = list_next(&tx->tx_holds, txh)) {
1068 dnode_t *dn = txh->txh_dnode;
1069 if (dn != NULL) {
cb9e5b7e
MA
1070 /*
1071 * This thread can't hold the dn_struct_rwlock
1072 * while assigning the tx, because this can lead to
1073 * deadlock. Specifically, if this dnode is already
1074 * assigned to an earlier txg, this thread may need
1075 * to wait for that txg to sync (the ERESTART case
1076 * below). The other thread that has assigned this
1077 * dnode to an earlier txg prevents this txg from
1078 * syncing until its tx can complete (calling
1079 * dmu_tx_commit()), but it may need to acquire the
1080 * dn_struct_rwlock to do so (e.g. via
1081 * dmu_buf_hold*()).
1082 *
1083 * Note that this thread can't hold the lock for
1084 * read either, but the rwlock doesn't record
1085 * enough information to make that assertion.
1086 */
1087 ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock));
1088
34dc7c2f
BB
1089 mutex_enter(&dn->dn_mtx);
1090 if (dn->dn_assigned_txg == tx->tx_txg - 1) {
1091 mutex_exit(&dn->dn_mtx);
1092 tx->tx_needassign_txh = txh;
570827e1 1093 DMU_TX_STAT_BUMP(dmu_tx_group);
2e528b49 1094 return (SET_ERROR(ERESTART));
34dc7c2f
BB
1095 }
1096 if (dn->dn_assigned_txg == 0)
1097 dn->dn_assigned_txg = tx->tx_txg;
1098 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
c13060e4 1099 (void) zfs_refcount_add(&dn->dn_tx_holds, tx);
34dc7c2f
BB
1100 mutex_exit(&dn->dn_mtx);
1101 }
424fd7c3
TS
1102 towrite += zfs_refcount_count(&txh->txh_space_towrite);
1103 tohold += zfs_refcount_count(&txh->txh_memory_tohold);
34dc7c2f
BB
1104 }
1105
b128c09f 1106 /* needed allocation: worst-case estimate of write space */
3ec3bc21 1107 uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
b128c09f 1108 /* calculate memory footprint estimate */
3ec3bc21 1109 uint64_t memory = towrite + tohold;
34dc7c2f 1110
3ec3bc21 1111 if (tx->tx_dir != NULL && asize != 0) {
b128c09f 1112 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
3ec3bc21
BB
1113 asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
1114 if (err != 0)
34dc7c2f
BB
1115 return (err);
1116 }
1117
570827e1
BB
1118 DMU_TX_STAT_BUMP(dmu_tx_assigned);
1119
34dc7c2f
BB
1120 return (0);
1121}
1122
1123static void
1124dmu_tx_unassign(dmu_tx_t *tx)
1125{
34dc7c2f
BB
1126 if (tx->tx_txg == 0)
1127 return;
1128
1129 txg_rele_to_quiesce(&tx->tx_txgh);
1130
e49f1e20
WA
1131 /*
1132 * Walk the transaction's hold list, removing the hold on the
1133 * associated dnode, and notifying waiters if the refcount drops to 0.
1134 */
3ec3bc21 1135 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
981b2126 1136 txh && txh != tx->tx_needassign_txh;
34dc7c2f
BB
1137 txh = list_next(&tx->tx_holds, txh)) {
1138 dnode_t *dn = txh->txh_dnode;
1139
1140 if (dn == NULL)
1141 continue;
1142 mutex_enter(&dn->dn_mtx);
1143 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1144
424fd7c3 1145 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
34dc7c2f
BB
1146 dn->dn_assigned_txg = 0;
1147 cv_broadcast(&dn->dn_notxholds);
1148 }
1149 mutex_exit(&dn->dn_mtx);
1150 }
1151
1152 txg_rele_to_sync(&tx->tx_txgh);
1153
1154 tx->tx_lasttried_txg = tx->tx_txg;
1155 tx->tx_txg = 0;
1156}
1157
1158/*
0735ecb3 1159 * Assign tx to a transaction group; txg_how is a bitmask:
34dc7c2f 1160 *
0735ecb3
PS
1161 * If TXG_WAIT is set and the currently open txg is full, this function
1162 * will wait until there's a new txg. This should be used when no locks
1163 * are being held. With this bit set, this function will only fail if
1164 * we're truly out of space (or over quota).
34dc7c2f 1165 *
0735ecb3
PS
1166 * If TXG_WAIT is *not* set and we can't assign into the currently open
1167 * txg without blocking, this function will return immediately with
1168 * ERESTART. This should be used whenever locks are being held. On an
1169 * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1170 * and try again.
e8b96c60 1171 *
0735ecb3
PS
1172 * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
1173 * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1174 * details on the throttle). This is used by the VFS operations, after
1175 * they have already called dmu_tx_wait() (though most likely on a
1176 * different tx).
84268b09
CS
1177 *
1178 * It is guaranteed that subsequent successful calls to dmu_tx_assign()
1179 * will assign the tx to monotonically increasing txgs. Of course this is
1180 * not strong monotonicity, because the same txg can be returned multiple
1181 * times in a row. This guarantee holds both for subsequent calls from
1182 * one thread and for multiple threads. For example, it is impossible to
1183 * observe the following sequence of events:
1184 *
1185 * Thread 1 Thread 2
1186 *
1187 * dmu_tx_assign(T1, ...)
1188 * 1 <- dmu_tx_get_txg(T1)
1189 * dmu_tx_assign(T2, ...)
1190 * 2 <- dmu_tx_get_txg(T2)
1191 * dmu_tx_assign(T3, ...)
1192 * 1 <- dmu_tx_get_txg(T3)
34dc7c2f
BB
1193 */
1194int
0735ecb3 1195dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
34dc7c2f
BB
1196{
1197 int err;
1198
1199 ASSERT(tx->tx_txg == 0);
0735ecb3 1200 ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
34dc7c2f
BB
1201 ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1202
13fe0198 1203 /* If we might wait, we must not hold the config lock. */
0735ecb3
PS
1204 IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));
1205
1206 if ((txg_how & TXG_NOTHROTTLE))
1207 tx->tx_dirty_delayed = B_TRUE;
13fe0198 1208
34dc7c2f
BB
1209 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1210 dmu_tx_unassign(tx);
1211
0735ecb3 1212 if (err != ERESTART || !(txg_how & TXG_WAIT))
34dc7c2f
BB
1213 return (err);
1214
1215 dmu_tx_wait(tx);
1216 }
1217
1218 txg_rele_to_quiesce(&tx->tx_txgh);
1219
1220 return (0);
1221}
1222
1223void
1224dmu_tx_wait(dmu_tx_t *tx)
1225{
1226 spa_t *spa = tx->tx_pool->dp_spa;
e8b96c60 1227 dsl_pool_t *dp = tx->tx_pool;
a77c4c83 1228 hrtime_t before;
34dc7c2f
BB
1229
1230 ASSERT(tx->tx_txg == 0);
13fe0198 1231 ASSERT(!dsl_pool_config_held(tx->tx_pool));
34dc7c2f 1232
a77c4c83
NB
1233 before = gethrtime();
1234
e8b96c60
MA
1235 if (tx->tx_wait_dirty) {
1236 uint64_t dirty;
1237
1238 /*
1239 * dmu_tx_try_assign() has determined that we need to wait
1240 * because we've consumed much or all of the dirty buffer
1241 * space.
1242 */
1243 mutex_enter(&dp->dp_lock);
1244 if (dp->dp_dirty_total >= zfs_dirty_data_max)
1245 DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1246 while (dp->dp_dirty_total >= zfs_dirty_data_max)
1247 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1248 dirty = dp->dp_dirty_total;
1249 mutex_exit(&dp->dp_lock);
1250
1251 dmu_tx_delay(tx, dirty);
1252
1253 tx->tx_wait_dirty = B_FALSE;
1254
1255 /*
0735ecb3
PS
1256 * Note: setting tx_dirty_delayed only has effect if the
1257 * caller used TX_WAIT. Otherwise they are going to
1258 * destroy this tx and try again. The common case,
1259 * zfs_write(), uses TX_WAIT.
e8b96c60 1260 */
0735ecb3 1261 tx->tx_dirty_delayed = B_TRUE;
e8b96c60
MA
1262 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1263 /*
1264 * If the pool is suspended we need to wait until it
1265 * is resumed. Note that it's possible that the pool
1266 * has become active after this thread has tried to
1267 * obtain a tx. If that's the case then tx_lasttried_txg
1268 * would not have been set.
1269 */
1270 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
34dc7c2f
BB
1271 } else if (tx->tx_needassign_txh) {
1272 dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1273
1274 mutex_enter(&dn->dn_mtx);
1275 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1276 cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1277 mutex_exit(&dn->dn_mtx);
1278 tx->tx_needassign_txh = NULL;
1279 } else {
e8b96c60 1280 /*
e48afbc4
SD
1281 * If we have a lot of dirty data just wait until we sync
1282 * out a TXG at which point we'll hopefully have synced
1283 * a portion of the changes.
e8b96c60 1284 */
e48afbc4 1285 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
34dc7c2f 1286 }
a77c4c83
NB
1287
1288 spa_tx_assign_add_nsecs(spa, gethrtime() - before);
34dc7c2f
BB
1289}
1290
f85c06be
GM
1291static void
1292dmu_tx_destroy(dmu_tx_t *tx)
1293{
1294 dmu_tx_hold_t *txh;
1295
1296 while ((txh = list_head(&tx->tx_holds)) != NULL) {
1297 dnode_t *dn = txh->txh_dnode;
1298
1299 list_remove(&tx->tx_holds, txh);
424fd7c3
TS
1300 zfs_refcount_destroy_many(&txh->txh_space_towrite,
1301 zfs_refcount_count(&txh->txh_space_towrite));
1302 zfs_refcount_destroy_many(&txh->txh_memory_tohold,
1303 zfs_refcount_count(&txh->txh_memory_tohold));
f85c06be
GM
1304 kmem_free(txh, sizeof (dmu_tx_hold_t));
1305 if (dn != NULL)
1306 dnode_rele(dn, tx);
1307 }
1308
1309 list_destroy(&tx->tx_callbacks);
1310 list_destroy(&tx->tx_holds);
f85c06be
GM
1311 kmem_free(tx, sizeof (dmu_tx_t));
1312}
1313
34dc7c2f
BB
1314void
1315dmu_tx_commit(dmu_tx_t *tx)
1316{
34dc7c2f
BB
1317 ASSERT(tx->tx_txg != 0);
1318
e49f1e20
WA
1319 /*
1320 * Go through the transaction's hold list and remove holds on
1321 * associated dnodes, notifying waiters if no holds remain.
1322 */
1c27024e 1323 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
f85c06be 1324 txh = list_next(&tx->tx_holds, txh)) {
34dc7c2f
BB
1325 dnode_t *dn = txh->txh_dnode;
1326
34dc7c2f
BB
1327 if (dn == NULL)
1328 continue;
f85c06be 1329
34dc7c2f
BB
1330 mutex_enter(&dn->dn_mtx);
1331 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1332
424fd7c3 1333 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
34dc7c2f
BB
1334 dn->dn_assigned_txg = 0;
1335 cv_broadcast(&dn->dn_notxholds);
1336 }
1337 mutex_exit(&dn->dn_mtx);
34dc7c2f
BB
1338 }
1339
1340 if (tx->tx_tempreserve_cookie)
1341 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1342
428870ff
BB
1343 if (!list_is_empty(&tx->tx_callbacks))
1344 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1345
34dc7c2f
BB
1346 if (tx->tx_anyobj == FALSE)
1347 txg_rele_to_sync(&tx->tx_txgh);
428870ff 1348
f85c06be 1349 dmu_tx_destroy(tx);
34dc7c2f
BB
1350}
1351
1352void
1353dmu_tx_abort(dmu_tx_t *tx)
1354{
34dc7c2f
BB
1355 ASSERT(tx->tx_txg == 0);
1356
428870ff
BB
1357 /*
1358 * Call any registered callbacks with an error code.
1359 */
1360 if (!list_is_empty(&tx->tx_callbacks))
28caa74b 1361 dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED));
428870ff 1362
f85c06be 1363 dmu_tx_destroy(tx);
34dc7c2f
BB
1364}
1365
1366uint64_t
1367dmu_tx_get_txg(dmu_tx_t *tx)
1368{
1369 ASSERT(tx->tx_txg != 0);
1370 return (tx->tx_txg);
1371}
428870ff 1372
13fe0198
MA
1373dsl_pool_t *
1374dmu_tx_pool(dmu_tx_t *tx)
1375{
1376 ASSERT(tx->tx_pool != NULL);
1377 return (tx->tx_pool);
1378}
1379
428870ff
BB
1380void
1381dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1382{
1383 dmu_tx_callback_t *dcb;
1384
79c76d5b 1385 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
428870ff
BB
1386
1387 dcb->dcb_func = func;
1388 dcb->dcb_data = data;
1389
1390 list_insert_tail(&tx->tx_callbacks, dcb);
1391}
1392
1393/*
1394 * Call all the commit callbacks on a list, with a given error code.
1395 */
1396void
1397dmu_tx_do_callbacks(list_t *cb_list, int error)
1398{
1399 dmu_tx_callback_t *dcb;
1400
b3ad3f48 1401 while ((dcb = list_remove_tail(cb_list)) != NULL) {
428870ff
BB
1402 dcb->dcb_func(dcb->dcb_data, error);
1403 kmem_free(dcb, sizeof (dmu_tx_callback_t));
1404 }
1405}
1406
1407/*
1408 * Interface to hold a bunch of attributes.
1409 * used for creating new files.
1410 * attrsize is the total size of all attributes
1411 * to be added during object creation
1412 *
1413 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1414 */
1415
1416/*
1417 * hold necessary attribute name for attribute registration.
1418 * should be a very rare case where this is needed. If it does
1419 * happen it would only happen on the first write to the file system.
1420 */
1421static void
1422dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1423{
428870ff
BB
1424 if (!sa->sa_need_attr_registration)
1425 return;
1426
3ec3bc21 1427 for (int i = 0; i != sa->sa_num_attrs; i++) {
428870ff
BB
1428 if (!sa->sa_attr_table[i].sa_registered) {
1429 if (sa->sa_reg_attr_obj)
1430 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1431 B_TRUE, sa->sa_attr_table[i].sa_name);
1432 else
1433 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1434 B_TRUE, sa->sa_attr_table[i].sa_name);
1435 }
1436 }
1437}
1438
428870ff
BB
1439void
1440dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1441{
9631681b 1442 dmu_tx_hold_t *txh;
428870ff 1443
9631681b
BB
1444 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1445 THT_SPILL, 0, 0);
1446 if (txh != NULL)
424fd7c3 1447 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
9631681b 1448 SPA_OLD_MAXBLOCKSIZE, FTAG);
428870ff
BB
1449}
1450
1451void
1452dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1453{
1454 sa_os_t *sa = tx->tx_objset->os_sa;
1455
1456 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1457
1458 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1459 return;
1460
3ec3bc21 1461 if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
428870ff 1462 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
3ec3bc21 1463 } else {
428870ff
BB
1464 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1465 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1466 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1467 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1468 }
1469
1470 dmu_tx_sa_registration_hold(sa, tx);
1471
50c957f7 1472 if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
428870ff
BB
1473 return;
1474
1475 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1476 THT_SPILL, 0, 0);
1477}
1478
1479/*
1480 * Hold SA attribute
1481 *
1482 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1483 *
1484 * variable_size is the total size of all variable sized attributes
1485 * passed to this function. It is not the total size of all
1486 * variable size attributes that *may* exist on this object.
1487 */
1488void
1489dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1490{
1491 uint64_t object;
1492 sa_os_t *sa = tx->tx_objset->os_sa;
1493
1494 ASSERT(hdl != NULL);
1495
1496 object = sa_handle_object(hdl);
1497
0eb8ba6a
MA
1498 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1499 DB_DNODE_ENTER(db);
1500 dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db));
1501 DB_DNODE_EXIT(db);
428870ff
BB
1502
1503 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1504 return;
1505
1506 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1507 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1508 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1509 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1510 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1511 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1512 }
1513
1514 dmu_tx_sa_registration_hold(sa, tx);
1515
1516 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1517 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1518
572e2857 1519 if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
428870ff
BB
1520 ASSERT(tx->tx_txg == 0);
1521 dmu_tx_hold_spill(tx, object);
572e2857 1522 } else {
572e2857
BB
1523 dnode_t *dn;
1524
1525 DB_DNODE_ENTER(db);
1526 dn = DB_DNODE(db);
1527 if (dn->dn_have_spill) {
1528 ASSERT(tx->tx_txg == 0);
1529 dmu_tx_hold_spill(tx, object);
1530 }
1531 DB_DNODE_EXIT(db);
428870ff
BB
1532 }
1533}
c28b2279 1534
570827e1
BB
1535void
1536dmu_tx_init(void)
1537{
1538 dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1539 KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1540 KSTAT_FLAG_VIRTUAL);
1541
1542 if (dmu_tx_ksp != NULL) {
1543 dmu_tx_ksp->ks_data = &dmu_tx_stats;
1544 kstat_install(dmu_tx_ksp);
1545 }
1546}
1547
1548void
1549dmu_tx_fini(void)
1550{
1551 if (dmu_tx_ksp != NULL) {
1552 kstat_delete(dmu_tx_ksp);
1553 dmu_tx_ksp = NULL;
1554 }
1555}
1556
93ce2b4c 1557#if defined(_KERNEL)
c28b2279
BB
1558EXPORT_SYMBOL(dmu_tx_create);
1559EXPORT_SYMBOL(dmu_tx_hold_write);
0eef1bde 1560EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
903c3613
BB
1561EXPORT_SYMBOL(dmu_tx_hold_append);
1562EXPORT_SYMBOL(dmu_tx_hold_append_by_dnode);
c28b2279 1563EXPORT_SYMBOL(dmu_tx_hold_free);
0eef1bde 1564EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
c28b2279 1565EXPORT_SYMBOL(dmu_tx_hold_zap);
0eef1bde 1566EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
c28b2279 1567EXPORT_SYMBOL(dmu_tx_hold_bonus);
0eef1bde 1568EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
c28b2279
BB
1569EXPORT_SYMBOL(dmu_tx_abort);
1570EXPORT_SYMBOL(dmu_tx_assign);
1571EXPORT_SYMBOL(dmu_tx_wait);
1572EXPORT_SYMBOL(dmu_tx_commit);
848259c1 1573EXPORT_SYMBOL(dmu_tx_mark_netfree);
c28b2279
BB
1574EXPORT_SYMBOL(dmu_tx_get_txg);
1575EXPORT_SYMBOL(dmu_tx_callback_register);
1576EXPORT_SYMBOL(dmu_tx_do_callbacks);
1577EXPORT_SYMBOL(dmu_tx_hold_spill);
1578EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1579EXPORT_SYMBOL(dmu_tx_hold_sa);
1580#endif