]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dsl_pool.c
vdev_disk: reorganise vdev_disk_io_start
[mirror_zfs.git] / module / zfs / dsl_pool.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
34dc7c2f
BB
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
ba67d821 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
95fd54a1 24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
0c66c32d 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
539d33c7 26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29#include <sys/dsl_pool.h>
30#include <sys/dsl_dataset.h>
428870ff 31#include <sys/dsl_prop.h>
34dc7c2f
BB
32#include <sys/dsl_dir.h>
33#include <sys/dsl_synctask.h>
428870ff
BB
34#include <sys/dsl_scan.h>
35#include <sys/dnode.h>
34dc7c2f
BB
36#include <sys/dmu_tx.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/zap.h>
40#include <sys/zio.h>
41#include <sys/zfs_context.h>
42#include <sys/fs/zfs.h>
b128c09f
BB
43#include <sys/zfs_znode.h>
44#include <sys/spa_impl.h>
d2734cce
SD
45#include <sys/vdev_impl.h>
46#include <sys/metaslab_impl.h>
9ae529ec
CS
47#include <sys/bptree.h>
48#include <sys/zfeature.h>
29809a6c 49#include <sys/zil_impl.h>
13fe0198 50#include <sys/dsl_userhold.h>
e5d1c27e 51#include <sys/trace_zfs.h>
379ca9cf 52#include <sys/mmp.h>
34dc7c2f 53
e8b96c60
MA
54/*
55 * ZFS Write Throttle
56 * ------------------
57 *
58 * ZFS must limit the rate of incoming writes to the rate at which it is able
59 * to sync data modifications to the backend storage. Throttling by too much
60 * creates an artificial limit; throttling by too little can only be sustained
61 * for short periods and would lead to highly lumpy performance. On a per-pool
62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64 * of dirty data decreases. When the amount of dirty data exceeds a
65 * predetermined threshold further modifications are blocked until the amount
66 * of dirty data decreases (as data is synced out).
67 *
68 * The limit on dirty data is tunable, and should be adjusted according to
69 * both the IO capacity and available memory of the system. The larger the
70 * window, the more ZFS is able to aggregate and amortize metadata (and data)
71 * changes. However, memory is a limited resource, and allowing for more dirty
72 * data comes at the cost of keeping other useful data in memory (for example
73 * ZFS data cached by the ARC).
74 *
75 * Implementation
76 *
77 * As buffers are modified dsl_pool_willuse_space() increments both the per-
78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79 * dirty space used; dsl_pool_dirty_space() decrements those values as data
80 * is synced out from dsl_pool_sync(). While only the poolwide value is
81 * relevant, the per-txg value is useful for debugging. The tunable
82 * zfs_dirty_data_max determines the dirty space limit. Once that value is
83 * exceeded, new writes are halted until space frees up.
84 *
00f198de 85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
e8b96c60
MA
86 * ensure that there is a txg syncing (see the comment in txg.c for a full
87 * description of transaction group stages).
88 *
89 * The IO scheduler uses both the dirty space limit and current amount of
90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92 *
93 * The delay is also calculated based on the amount of dirty data. See the
94 * comment above dmu_tx_delay() for details.
95 */
96
97/*
98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
100 * parameter.
101 */
ab8d9c17
RY
102uint64_t zfs_dirty_data_max = 0;
103uint64_t zfs_dirty_data_max_max = 0;
fdc2d303
RY
104uint_t zfs_dirty_data_max_percent = 10;
105uint_t zfs_dirty_data_max_max_percent = 25;
b128c09f 106
a7bd20e3 107/*
84d0a03f
AM
108 * The upper limit of TX_WRITE log data. Write operations are throttled
109 * when approaching the limit until log data is cleared out after txg sync.
a7bd20e3
KJ
110 * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
111 */
ab8d9c17 112uint64_t zfs_wrlog_data_max = 0;
a7bd20e3 113
e8b96c60 114/*
dfbe2675
MA
115 * If there's at least this much dirty data (as a percentage of
116 * zfs_dirty_data_max), push out a txg. This should be less than
117 * zfs_vdev_async_write_active_min_dirty_percent.
e8b96c60 118 */
fdc2d303 119static uint_t zfs_dirty_data_sync_percent = 20;
34dc7c2f 120
e8b96c60
MA
121/*
122 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
123 * and delay each transaction.
124 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
125 */
fdc2d303 126uint_t zfs_delay_min_dirty_percent = 60;
b128c09f 127
e8b96c60
MA
128/*
129 * This controls how quickly the delay approaches infinity.
130 * Larger values cause it to delay more for a given amount of dirty data.
131 * Therefore larger values will cause there to be less dirty data for a
132 * given throughput.
133 *
134 * For the smoothest delay, this value should be about 1 billion divided
135 * by the maximum number of operations per second. This will smoothly
136 * handle between 10x and 1/10th this number.
137 *
138 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
139 * multiply in dmu_tx_delay().
140 */
ab8d9c17 141uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
b128c09f 142
a032ac4b
BB
143/*
144 * These tunables determine the behavior of how zil_itxg_clean() is
145 * called via zil_clean() in the context of spa_sync(). When an itxg
146 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
147 * If the dispatch fails, the call to zil_itxg_clean() will occur
148 * synchronously in the context of spa_sync(), which can negatively
149 * impact the performance of spa_sync() (e.g. in the case of the itxg
150 * list having a large number of itxs that needs to be cleaned).
151 *
152 * Thus, these tunables can be used to manipulate the behavior of the
153 * taskq used by zil_clean(); they determine the number of taskq entries
154 * that are pre-populated when the taskq is first created (via the
155 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
156 * taskq entries that are cached after an on-demand allocation (via the
157 * "zfs_zil_clean_taskq_maxalloc").
158 *
159 * The idea being, we want to try reasonably hard to ensure there will
160 * already be a taskq entry pre-allocated by the time that it is needed
161 * by zil_clean(). This way, we can avoid the possibility of an
162 * on-demand allocation of a new taskq entry from failing, which would
163 * result in zil_itxg_clean() being called synchronously from zil_clean()
164 * (which can adversely affect performance of spa_sync()).
165 *
166 * Additionally, the number of threads used by the taskq can be
167 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
168 */
18168da7
AZ
169static int zfs_zil_clean_taskq_nthr_pct = 100;
170static int zfs_zil_clean_taskq_minalloc = 1024;
171static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
a032ac4b 172
428870ff 173int
b128c09f 174dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
34dc7c2f
BB
175{
176 uint64_t obj;
177 int err;
178
179 err = zap_lookup(dp->dp_meta_objset,
d683ddbb 180 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
b128c09f 181 name, sizeof (obj), 1, &obj);
34dc7c2f
BB
182 if (err)
183 return (err);
184
13fe0198 185 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
34dc7c2f
BB
186}
187
188static dsl_pool_t *
189dsl_pool_open_impl(spa_t *spa, uint64_t txg)
190{
191 dsl_pool_t *dp;
192 blkptr_t *bp = spa_get_rootblkptr(spa);
34dc7c2f
BB
193
194 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
195 dp->dp_spa = spa;
196 dp->dp_meta_rootbp = *bp;
13fe0198 197 rrw_init(&dp->dp_config_rwlock, B_TRUE);
34dc7c2f 198 txg_init(dp, txg);
379ca9cf 199 mmp_init(spa);
34dc7c2f 200
4747a7d3 201 txg_list_create(&dp->dp_dirty_datasets, spa,
34dc7c2f 202 offsetof(dsl_dataset_t, ds_dirty_link));
4747a7d3 203 txg_list_create(&dp->dp_dirty_zilogs, spa,
29809a6c 204 offsetof(zilog_t, zl_dirty_link));
4747a7d3 205 txg_list_create(&dp->dp_dirty_dirs, spa,
34dc7c2f 206 offsetof(dsl_dir_t, dd_dirty_link));
4747a7d3 207 txg_list_create(&dp->dp_sync_tasks, spa,
13fe0198 208 offsetof(dsl_sync_task_t, dst_node));
d2734cce
SD
209 txg_list_create(&dp->dp_early_sync_tasks, spa,
210 offsetof(dsl_sync_task_t, dst_node));
34dc7c2f 211
3bd4df38 212 dp->dp_sync_taskq = spa_sync_tq_create(spa, "dp_sync_taskq");
64fc7762 213
a032ac4b
BB
214 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
215 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
216 zfs_zil_clean_taskq_minalloc,
217 zfs_zil_clean_taskq_maxalloc,
218 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
219
34dc7c2f 220 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
e8b96c60 221 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 222
a7bd20e3
KJ
223 aggsum_init(&dp->dp_wrlog_total, 0);
224 for (int i = 0; i < TXG_SIZE; i++) {
225 aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
226 }
227
60a4c7d2
PD
228 dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
229 boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
230 TASKQ_THREADS_CPU_PCT);
dcec0a12 231 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
60a4c7d2
PD
232 100, defclsyspri, boot_ncpus, INT_MAX,
233 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
9babb374 234
34dc7c2f
BB
235 return (dp);
236}
237
238int
9ae529ec 239dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
34dc7c2f
BB
240{
241 int err;
242 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
9ae529ec 243
b7faa7aa
G
244 /*
245 * Initialize the caller's dsl_pool_t structure before we actually open
246 * the meta objset. This is done because a self-healing write zio may
247 * be issued as part of dmu_objset_open_impl() and the spa needs its
248 * dsl_pool_t initialized in order to handle the write.
249 */
250 *dpp = dp;
251
9ae529ec
CS
252 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
253 &dp->dp_meta_objset);
b7faa7aa 254 if (err != 0) {
9ae529ec 255 dsl_pool_close(dp);
b7faa7aa
G
256 *dpp = NULL;
257 }
9ae529ec
CS
258
259 return (err);
260}
261
262int
263dsl_pool_open(dsl_pool_t *dp)
264{
265 int err;
b128c09f
BB
266 dsl_dir_t *dd;
267 dsl_dataset_t *ds;
428870ff 268 uint64_t obj;
34dc7c2f 269
13fe0198 270 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
34dc7c2f
BB
271 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
272 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
273 &dp->dp_root_dir_obj);
274 if (err)
275 goto out;
276
13fe0198 277 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
34dc7c2f
BB
278 NULL, dp, &dp->dp_root_dir);
279 if (err)
280 goto out;
281
b128c09f 282 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
34dc7c2f
BB
283 if (err)
284 goto out;
285
9ae529ec 286 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
b128c09f
BB
287 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
288 if (err)
289 goto out;
d683ddbb
JG
290 err = dsl_dataset_hold_obj(dp,
291 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
9babb374
BB
292 if (err == 0) {
293 err = dsl_dataset_hold_obj(dp,
d683ddbb 294 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
9babb374
BB
295 &dp->dp_origin_snap);
296 dsl_dataset_rele(ds, FTAG);
297 }
13fe0198 298 dsl_dir_rele(dd, dp);
b128c09f
BB
299 if (err)
300 goto out;
b128c09f
BB
301 }
302
9ae529ec 303 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
428870ff
BB
304 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
305 &dp->dp_free_dir);
b128c09f
BB
306 if (err)
307 goto out;
428870ff 308
b128c09f 309 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
428870ff 310 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
b128c09f
BB
311 if (err)
312 goto out;
13fe0198 313 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
428870ff 314 dp->dp_meta_objset, obj));
b128c09f
BB
315 }
316
a1d477c2
MA
317 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
318 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
319 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
320 if (err == 0) {
321 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
322 dp->dp_meta_objset, obj));
323 } else if (err == ENOENT) {
324 /*
325 * We might not have created the remap bpobj yet.
326 */
a1d477c2
MA
327 } else {
328 goto out;
329 }
330 }
331
fbeddd60 332 /*
a1d477c2
MA
333 * Note: errors ignored, because the these special dirs, used for
334 * space accounting, are only created on demand.
fbeddd60
MA
335 */
336 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
337 &dp->dp_leak_dir);
338
fa86b5db 339 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
9ae529ec
CS
340 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
341 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
342 &dp->dp_bptree_obj);
343 if (err != 0)
344 goto out;
345 }
346
fa86b5db 347 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
753c3839
MA
348 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
349 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
350 &dp->dp_empty_bpobj);
351 if (err != 0)
352 goto out;
353 }
354
428870ff
BB
355 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
356 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
357 &dp->dp_tmp_userrefs_obj);
358 if (err == ENOENT)
359 err = 0;
360 if (err)
361 goto out;
362
9ae529ec 363 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
428870ff 364
34dc7c2f 365out:
13fe0198 366 rrw_exit(&dp->dp_config_rwlock, FTAG);
34dc7c2f
BB
367 return (err);
368}
369
370void
371dsl_pool_close(dsl_pool_t *dp)
372{
b128c09f 373 /*
e8b96c60
MA
374 * Drop our references from dsl_pool_open().
375 *
b128c09f
BB
376 * Since we held the origin_snap from "syncing" context (which
377 * includes pool-opening context), it actually only got a "ref"
378 * and not a hold, so just drop that here.
379 */
a1d477c2 380 if (dp->dp_origin_snap != NULL)
13fe0198 381 dsl_dataset_rele(dp->dp_origin_snap, dp);
a1d477c2 382 if (dp->dp_mos_dir != NULL)
13fe0198 383 dsl_dir_rele(dp->dp_mos_dir, dp);
a1d477c2 384 if (dp->dp_free_dir != NULL)
13fe0198 385 dsl_dir_rele(dp->dp_free_dir, dp);
a1d477c2 386 if (dp->dp_leak_dir != NULL)
fbeddd60 387 dsl_dir_rele(dp->dp_leak_dir, dp);
a1d477c2 388 if (dp->dp_root_dir != NULL)
13fe0198 389 dsl_dir_rele(dp->dp_root_dir, dp);
34dc7c2f 390
428870ff 391 bpobj_close(&dp->dp_free_bpobj);
a1d477c2 392 bpobj_close(&dp->dp_obsolete_bpobj);
428870ff 393
34dc7c2f 394 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
a1d477c2 395 if (dp->dp_meta_objset != NULL)
428870ff 396 dmu_objset_evict(dp->dp_meta_objset);
34dc7c2f
BB
397
398 txg_list_destroy(&dp->dp_dirty_datasets);
29809a6c 399 txg_list_destroy(&dp->dp_dirty_zilogs);
428870ff 400 txg_list_destroy(&dp->dp_sync_tasks);
d2734cce 401 txg_list_destroy(&dp->dp_early_sync_tasks);
34dc7c2f 402 txg_list_destroy(&dp->dp_dirty_dirs);
34dc7c2f 403
a032ac4b 404 taskq_destroy(dp->dp_zil_clean_taskq);
3bd4df38 405 spa_sync_tq_destroy(dp->dp_spa);
64fc7762 406
ca0bf58d
PS
407 /*
408 * We can't set retry to TRUE since we're explicitly specifying
409 * a spa to flush. This is good enough; any missed buffers for
410 * this spa won't cause trouble, and they'll eventually fall
411 * out of the ARC just like any other unused buffer.
412 */
413 arc_flush(dp->dp_spa, FALSE);
414
379ca9cf 415 mmp_fini(dp->dp_spa);
34dc7c2f 416 txg_fini(dp);
428870ff 417 dsl_scan_fini(dp);
0c66c32d
JG
418 dmu_buf_user_evict_wait();
419
13fe0198 420 rrw_destroy(&dp->dp_config_rwlock);
34dc7c2f 421 mutex_destroy(&dp->dp_lock);
c17486b2 422 cv_destroy(&dp->dp_spaceavail_cv);
a7bd20e3
KJ
423
424 ASSERT0(aggsum_value(&dp->dp_wrlog_total));
425 aggsum_fini(&dp->dp_wrlog_total);
426 for (int i = 0; i < TXG_SIZE; i++) {
427 ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
428 aggsum_fini(&dp->dp_wrlog_pertxg[i]);
429 }
430
dcec0a12 431 taskq_destroy(dp->dp_unlinked_drain_taskq);
657ce253 432 taskq_destroy(dp->dp_zrele_taskq);
82732299 433 if (dp->dp_blkstats != NULL)
79c76d5b 434 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
34dc7c2f
BB
435 kmem_free(dp, sizeof (dsl_pool_t));
436}
437
a1d477c2
MA
438void
439dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
440{
441 uint64_t obj;
442 /*
443 * Currently, we only create the obsolete_bpobj where there are
444 * indirect vdevs with referenced mappings.
445 */
446 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
447 /* create and open the obsolete_bpobj */
448 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
449 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
450 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
451 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
452 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
453}
454
455void
456dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
457{
458 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
459 VERIFY0(zap_remove(dp->dp_meta_objset,
460 DMU_POOL_DIRECTORY_OBJECT,
461 DMU_POOL_OBSOLETE_BPOBJ, tx));
462 bpobj_free(dp->dp_meta_objset,
463 dp->dp_obsolete_bpobj.bpo_object, tx);
464 bpobj_close(&dp->dp_obsolete_bpobj);
465}
466
34dc7c2f 467dsl_pool_t *
14e4e3cb
AZ
468dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
469 dsl_crypto_params_t *dcp, uint64_t txg)
34dc7c2f
BB
470{
471 int err;
472 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
473 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
0a108631 474#ifdef _KERNEL
475 objset_t *os;
476#else
477 objset_t *os __attribute__((unused));
478#endif
b128c09f 479 dsl_dataset_t *ds;
428870ff 480 uint64_t obj;
b128c09f 481
13fe0198
MA
482 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
483
b128c09f 484 /* create and open the MOS (meta-objset) */
428870ff
BB
485 dp->dp_meta_objset = dmu_objset_create_impl(spa,
486 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
b5256303 487 spa->spa_meta_objset = dp->dp_meta_objset;
34dc7c2f
BB
488
489 /* create the pool directory */
490 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
491 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
c99c9001 492 ASSERT0(err);
34dc7c2f 493
428870ff 494 /* Initialize scan structures */
13fe0198 495 VERIFY0(dsl_scan_init(dp, txg));
428870ff 496
34dc7c2f 497 /* create and open the root dir */
b128c09f 498 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
13fe0198 499 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
34dc7c2f
BB
500 NULL, dp, &dp->dp_root_dir));
501
502 /* create and open the meta-objset dir */
b128c09f 503 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
13fe0198 504 VERIFY0(dsl_pool_open_special_dir(dp,
b128c09f
BB
505 MOS_DIR_NAME, &dp->dp_mos_dir));
506
428870ff
BB
507 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
508 /* create and open the free dir */
509 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
510 FREE_DIR_NAME, tx);
13fe0198 511 VERIFY0(dsl_pool_open_special_dir(dp,
428870ff
BB
512 FREE_DIR_NAME, &dp->dp_free_dir));
513
514 /* create and open the free_bplist */
f1512ee6 515 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
428870ff
BB
516 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
517 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
13fe0198 518 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
428870ff
BB
519 dp->dp_meta_objset, obj));
520 }
521
b128c09f
BB
522 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
523 dsl_pool_create_origin(dp, tx);
524
b5256303
TC
525 /*
526 * Some features may be needed when creating the root dataset, so we
527 * create the feature objects here.
528 */
529 if (spa_version(spa) >= SPA_VERSION_FEATURES)
530 spa_feature_create_zap_objects(spa, tx);
531
532 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
533 dcp->cp_crypt != ZIO_CRYPT_INHERIT)
534 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
535
b128c09f 536 /* create the root dataset */
b5256303 537 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
b128c09f
BB
538
539 /* create the root objset */
52ce99dd
TC
540 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
541 DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
0a108631 542 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
543 os = dmu_objset_create_impl(dp->dp_spa, ds,
544 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
545 rrw_exit(&ds->ds_bp_rwlock, FTAG);
b128c09f 546#ifdef _KERNEL
0a108631 547 zfs_create_fs(os, kcred, zplprops, tx);
b128c09f 548#endif
52ce99dd 549 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
34dc7c2f
BB
550
551 dmu_tx_commit(tx);
552
13fe0198
MA
553 rrw_exit(&dp->dp_config_rwlock, FTAG);
554
34dc7c2f
BB
555 return (dp);
556}
557
29809a6c
MA
558/*
559 * Account for the meta-objset space in its placeholder dsl_dir.
560 */
561void
562dsl_pool_mos_diduse_space(dsl_pool_t *dp,
563 int64_t used, int64_t comp, int64_t uncomp)
564{
565 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
566 mutex_enter(&dp->dp_lock);
567 dp->dp_mos_used_delta += used;
568 dp->dp_mos_compressed_delta += comp;
569 dp->dp_mos_uncompressed_delta += uncomp;
570 mutex_exit(&dp->dp_lock);
571}
572
e8b96c60
MA
573static void
574dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
575{
576 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
577 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
578 VERIFY0(zio_wait(zio));
ba67d821
MA
579 dmu_objset_sync_done(dp->dp_meta_objset, tx);
580 taskq_wait(dp->dp_sync_taskq);
ffdf019c 581 multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
ba67d821 582
e8b96c60
MA
583 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
584 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
585}
586
587static void
588dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
589{
590 ASSERT(MUTEX_HELD(&dp->dp_lock));
591
592 if (delta < 0)
593 ASSERT3U(-delta, <=, dp->dp_dirty_total);
594
595 dp->dp_dirty_total += delta;
596
597 /*
598 * Note: we signal even when increasing dp_dirty_total.
599 * This ensures forward progress -- each thread wakes the next waiter.
600 */
c0c8cc7b 601 if (dp->dp_dirty_total < zfs_dirty_data_max)
e8b96c60
MA
602 cv_signal(&dp->dp_spaceavail_cv);
603}
604
a7bd20e3
KJ
605void
606dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
607{
608 ASSERT3S(size, >=, 0);
609
610 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
611 aggsum_add(&dp->dp_wrlog_total, size);
612
613 /* Choose a value slightly bigger than min dirty sync bytes */
614 uint64_t sync_min =
84d0a03f 615 zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200;
a7bd20e3
KJ
616 if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
617 txg_kick(dp, txg);
618}
619
620boolean_t
84d0a03f 621dsl_pool_need_wrlog_delay(dsl_pool_t *dp)
a7bd20e3 622{
84d0a03f
AM
623 uint64_t delay_min_bytes =
624 zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
625
626 return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0);
a7bd20e3
KJ
627}
628
629static void
630dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
631{
632 int64_t delta;
633 delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
634 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
635 aggsum_add(&dp->dp_wrlog_total, delta);
84d0a03f
AM
636 /* Compact per-CPU sums after the big change. */
637 (void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
638 (void) aggsum_value(&dp->dp_wrlog_total);
a7bd20e3
KJ
639}
640
d2734cce
SD
641#ifdef ZFS_DEBUG
642static boolean_t
643dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
644{
645 spa_t *spa = dp->dp_spa;
646 vdev_t *rvd = spa->spa_root_vdev;
647
648 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
649 vdev_t *vd = rvd->vdev_child[c];
650 txg_list_t *tl = &vd->vdev_ms_list;
651 metaslab_t *ms;
652
653 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
654 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
655 VERIFY(range_tree_is_empty(ms->ms_freeing));
656 VERIFY(range_tree_is_empty(ms->ms_checkpointing));
657 }
658 }
659
660 return (B_TRUE);
661}
89495a42
AZ
662#else
663#define dsl_early_sync_task_verify(dp, txg) \
664 ((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
d2734cce
SD
665#endif
666
34dc7c2f
BB
667void
668dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
669{
3bd4df38 670 zio_t *rio; /* root zio for all dirty dataset syncs */
34dc7c2f
BB
671 dmu_tx_t *tx;
672 dsl_dir_t *dd;
673 dsl_dataset_t *ds;
428870ff 674 objset_t *mos = dp->dp_meta_objset;
29809a6c
MA
675 list_t synced_datasets;
676
677 list_create(&synced_datasets, sizeof (dsl_dataset_t),
678 offsetof(dsl_dataset_t, ds_synced_link));
34dc7c2f
BB
679
680 tx = dmu_tx_create_assigned(dp, txg);
681
d2734cce
SD
682 /*
683 * Run all early sync tasks before writing out any dirty blocks.
684 * For more info on early sync tasks see block comment in
685 * dsl_early_sync_task().
686 */
687 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
688 dsl_sync_task_t *dst;
689
690 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
691 while ((dst =
692 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
693 ASSERT(dsl_early_sync_task_verify(dp, txg));
694 dsl_sync_task_sync(dst, tx);
695 }
696 ASSERT(dsl_early_sync_task_verify(dp, txg));
697 }
698
e8b96c60 699 /*
3bd4df38
EN
700 * Write out all dirty blocks of dirty datasets. Note, this could
701 * create a very large (+10k) zio tree.
e8b96c60 702 */
3bd4df38 703 rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
e8b96c60 704 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
9babb374
BB
705 /*
706 * We must not sync any non-MOS datasets twice, because
707 * we may have taken a snapshot of them. However, we
708 * may sync newly-created datasets on pass 2.
709 */
710 ASSERT(!list_link_active(&ds->ds_synced_link));
29809a6c 711 list_insert_tail(&synced_datasets, ds);
3bd4df38 712 dsl_dataset_sync(ds, rio, tx);
34dc7c2f 713 }
3bd4df38 714 VERIFY0(zio_wait(rio));
9babb374 715
539d33c7
GM
716 /*
717 * Update the long range free counter after
718 * we're done syncing user data
719 */
720 mutex_enter(&dp->dp_lock);
721 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
722 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
723 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
724 mutex_exit(&dp->dp_lock);
725
29809a6c
MA
726 /*
727 * After the data blocks have been written (ensured by the zio_wait()
9c5167d1 728 * above), update the user/group/project space accounting. This happens
64fc7762
MA
729 * in tasks dispatched to dp_sync_taskq, so wait for them before
730 * continuing.
29809a6c 731 */
e8b96c60
MA
732 for (ds = list_head(&synced_datasets); ds != NULL;
733 ds = list_next(&synced_datasets, ds)) {
ba67d821 734 dmu_objset_sync_done(ds->ds_objset, tx);
e8b96c60 735 }
64fc7762 736 taskq_wait(dp->dp_sync_taskq);
9babb374
BB
737
738 /*
739 * Sync the datasets again to push out the changes due to
428870ff 740 * userspace updates. This must be done before we process the
29809a6c
MA
741 * sync tasks, so that any snapshots will have the correct
742 * user accounting information (and we won't get confused
743 * about which blocks are part of the snapshot).
9babb374 744 */
3bd4df38 745 rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
e8b96c60 746 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
52ce99dd
TC
747 objset_t *os = ds->ds_objset;
748
9babb374
BB
749 ASSERT(list_link_active(&ds->ds_synced_link));
750 dmu_buf_rele(ds->ds_dbuf, ds);
3bd4df38 751 dsl_dataset_sync(ds, rio, tx);
52ce99dd
TC
752
753 /*
754 * Release any key mappings created by calls to
755 * dsl_dataset_dirty() from the userquota accounting
756 * code paths.
757 */
758 if (os->os_encrypted && !os->os_raw_receive &&
759 !os->os_next_write_raw[txg & TXG_MASK]) {
760 ASSERT3P(ds->ds_key_mapping, !=, NULL);
761 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
762 }
9babb374 763 }
3bd4df38 764 VERIFY0(zio_wait(rio));
9babb374 765
428870ff 766 /*
29809a6c
MA
767 * Now that the datasets have been completely synced, we can
768 * clean up our in-memory structures accumulated while syncing:
769 *
37f03da8
SH
770 * - move dead blocks from the pending deadlist and livelists
771 * to the on-disk versions
29809a6c 772 * - release hold from dsl_dataset_dirty()
52ce99dd 773 * - release key mapping hold from dsl_dataset_dirty()
428870ff 774 */
e8b96c60 775 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
52ce99dd
TC
776 objset_t *os = ds->ds_objset;
777
778 if (os->os_encrypted && !os->os_raw_receive &&
779 !os->os_next_write_raw[txg & TXG_MASK]) {
780 ASSERT3P(ds->ds_key_mapping, !=, NULL);
781 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
782 }
783
0efd9791 784 dsl_dataset_sync_done(ds, tx);
d816bc5e 785 dmu_buf_rele(ds->ds_dbuf, ds);
428870ff
BB
786 }
787
e8b96c60 788 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
34dc7c2f 789 dsl_dir_sync(dd, tx);
e8b96c60 790 }
b128c09f 791
29809a6c
MA
792 /*
793 * The MOS's space is accounted for in the pool/$MOS
794 * (dp_mos_dir). We can't modify the mos while we're syncing
795 * it, so we remember the deltas and apply them here.
796 */
797 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
798 dp->dp_mos_uncompressed_delta != 0) {
799 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
800 dp->dp_mos_used_delta,
801 dp->dp_mos_compressed_delta,
802 dp->dp_mos_uncompressed_delta, tx);
803 dp->dp_mos_used_delta = 0;
804 dp->dp_mos_compressed_delta = 0;
805 dp->dp_mos_uncompressed_delta = 0;
806 }
807
93e28d66 808 if (dmu_objset_is_dirty(mos, txg)) {
e8b96c60 809 dsl_pool_sync_mos(dp, tx);
34dc7c2f
BB
810 }
811
0f8ff49e
SD
812 /*
813 * We have written all of the accounted dirty data, so our
814 * dp_space_towrite should now be zero. However, some seldom-used
815 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
816 * the accounting of any dirtied space now.
817 *
818 * Note that, besides any dirty data from datasets, the amount of
819 * dirty data in the MOS is also accounted by the pool. Therefore,
820 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
821 * attempt to update the accounting for the same dirty data twice.
822 * (i.e. at this point we only update the accounting for the space
823 * that we know that we "leaked").
824 */
825 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
826
29809a6c
MA
827 /*
828 * If we modify a dataset in the same txg that we want to destroy it,
829 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
830 * dsl_dir_destroy_check() will fail if there are unexpected holds.
831 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
832 * and clearing the hold on it) before we process the sync_tasks.
833 * The MOS data dirtied by the sync_tasks will be synced on the next
834 * pass.
835 */
29809a6c 836 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
13fe0198 837 dsl_sync_task_t *dst;
29809a6c
MA
838 /*
839 * No more sync tasks should have been added while we
840 * were syncing.
841 */
e8b96c60
MA
842 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
843 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
13fe0198 844 dsl_sync_task_sync(dst, tx);
29809a6c
MA
845 }
846
34dc7c2f 847 dmu_tx_commit(tx);
b128c09f 848
e8b96c60 849 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
34dc7c2f
BB
850}
851
852void
428870ff 853dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
34dc7c2f 854{
29809a6c 855 zilog_t *zilog;
34dc7c2f 856
55922e73 857 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
e8b96c60 858 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
55922e73
GW
859 /*
860 * We don't remove the zilog from the dp_dirty_zilogs
861 * list until after we've cleaned it. This ensures that
862 * callers of zilog_is_dirty() receive an accurate
863 * answer when they are racing with the spa sync thread.
864 */
29809a6c 865 zil_clean(zilog, txg);
55922e73 866 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
29809a6c
MA
867 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
868 dmu_buf_rele(ds->ds_dbuf, zilog);
34dc7c2f 869 }
a7bd20e3
KJ
870
871 dsl_pool_wrlog_clear(dp, txg);
872
428870ff 873 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
34dc7c2f
BB
874}
875
876/*
877 * TRUE if the current thread is the tx_sync_thread or if we
878 * are being called from SPA context during pool initialization.
879 */
880int
881dsl_pool_sync_context(dsl_pool_t *dp)
882{
883 return (curthread == dp->dp_tx.tx_sync_thread ||
64fc7762
MA
884 spa_is_initializing(dp->dp_spa) ||
885 taskq_member(dp->dp_sync_taskq, curthread));
34dc7c2f
BB
886}
887
d2734cce
SD
888/*
889 * This function returns the amount of allocatable space in the pool
890 * minus whatever space is currently reserved by ZFS for specific
891 * purposes. Specifically:
892 *
893 * 1] Any reserved SLOP space
894 * 2] Any space used by the checkpoint
895 * 3] Any space used for deferred frees
896 *
897 * The latter 2 are especially important because they are needed to
898 * rectify the SPA's and DMU's different understanding of how much space
899 * is used. Now the DMU is aware of that extra space tracked by the SPA
900 * without having to maintain a separate special dir (e.g similar to
901 * $MOS, $FREEING, and $LEAKED).
902 *
903 * Note: By deferred frees here, we mean the frees that were deferred
904 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
905 * segments placed in ms_defer trees during metaslab_sync_done().
906 */
34dc7c2f 907uint64_t
d2734cce 908dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
34dc7c2f 909{
d2734cce
SD
910 spa_t *spa = dp->dp_spa;
911 uint64_t space, resv, adjustedsize;
912 uint64_t spa_deferred_frees =
913 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
914
915 space = spa_get_dspace(spa)
916 - spa_get_checkpoint_space(spa) - spa_deferred_frees;
917 resv = spa_get_slop_space(spa);
918
919 switch (slop_policy) {
920 case ZFS_SPACE_CHECK_NORMAL:
921 break;
922 case ZFS_SPACE_CHECK_RESERVED:
34dc7c2f 923 resv >>= 1;
d2734cce
SD
924 break;
925 case ZFS_SPACE_CHECK_EXTRA_RESERVED:
926 resv >>= 2;
927 break;
928 case ZFS_SPACE_CHECK_NONE:
929 resv = 0;
930 break;
931 default:
932 panic("invalid slop policy value: %d", slop_policy);
933 break;
934 }
935 adjustedsize = (space >= resv) ? (space - resv) : 0;
34dc7c2f 936
d2734cce
SD
937 return (adjustedsize);
938}
939
940uint64_t
941dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
942{
943 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
944 uint64_t deferred =
945 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
946 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
947 return (quota);
34dc7c2f
BB
948}
949
6df43169
BB
950uint64_t
951dsl_pool_deferred_space(dsl_pool_t *dp)
952{
953 return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
954}
955
e8b96c60
MA
956boolean_t
957dsl_pool_need_dirty_delay(dsl_pool_t *dp)
34dc7c2f 958{
e8b96c60
MA
959 uint64_t delay_min_bytes =
960 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
34dc7c2f 961
4fbc5249
AM
962 /*
963 * We are not taking the dp_lock here and few other places, since torn
964 * reads are unlikely: on 64-bit systems due to register size and on
965 * 32-bit due to memory constraints. Pool-wide locks in hot path may
966 * be too expensive, while we do not need a precise result here.
967 */
968 return (dp->dp_dirty_total > delay_min_bytes);
34dc7c2f
BB
969}
970
50e09edd
KJ
971static boolean_t
972dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
973{
50e09edd
KJ
974 uint64_t dirty_min_bytes =
975 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
976 uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
977
978 return (dirty > dirty_min_bytes);
979}
980
34dc7c2f 981void
e8b96c60 982dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
34dc7c2f 983{
e8b96c60
MA
984 if (space > 0) {
985 mutex_enter(&dp->dp_lock);
986 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
987 dsl_pool_dirty_delta(dp, space);
50e09edd
KJ
988 boolean_t needsync = !dmu_tx_is_syncing(tx) &&
989 dsl_pool_need_dirty_sync(dp, tx->tx_txg);
e8b96c60 990 mutex_exit(&dp->dp_lock);
50e09edd
KJ
991
992 if (needsync)
993 txg_kick(dp, tx->tx_txg);
e8b96c60 994 }
34dc7c2f
BB
995}
996
997void
e8b96c60 998dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
34dc7c2f 999{
e8b96c60
MA
1000 ASSERT3S(space, >=, 0);
1001 if (space == 0)
34dc7c2f
BB
1002 return;
1003
e8b96c60
MA
1004 mutex_enter(&dp->dp_lock);
1005 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
1006 /* XXX writing something we didn't dirty? */
1007 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
34dc7c2f 1008 }
e8b96c60
MA
1009 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
1010 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
1011 ASSERT3U(dp->dp_dirty_total, >=, space);
1012 dsl_pool_dirty_delta(dp, -space);
1013 mutex_exit(&dp->dp_lock);
34dc7c2f 1014}
b128c09f 1015
b128c09f 1016static int
13fe0198 1017upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
b128c09f
BB
1018{
1019 dmu_tx_t *tx = arg;
1020 dsl_dataset_t *ds, *prev = NULL;
1021 int err;
b128c09f 1022
13fe0198 1023 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
b128c09f
BB
1024 if (err)
1025 return (err);
1026
d683ddbb
JG
1027 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
1028 err = dsl_dataset_hold_obj(dp,
1029 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
b128c09f
BB
1030 if (err) {
1031 dsl_dataset_rele(ds, FTAG);
1032 return (err);
1033 }
1034
d683ddbb 1035 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
b128c09f
BB
1036 break;
1037 dsl_dataset_rele(ds, FTAG);
1038 ds = prev;
1039 prev = NULL;
1040 }
1041
1042 if (prev == NULL) {
1043 prev = dp->dp_origin_snap;
1044
1045 /*
1046 * The $ORIGIN can't have any data, or the accounting
1047 * will be wrong.
1048 */
cc9bb3e5 1049 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
493fcce9 1050 ASSERT0(BP_GET_LOGICAL_BIRTH(&dsl_dataset_phys(prev)->ds_bp));
cc9bb3e5 1051 rrw_exit(&ds->ds_bp_rwlock, FTAG);
b128c09f
BB
1052
1053 /* The origin doesn't get attached to itself */
1054 if (ds->ds_object == prev->ds_object) {
1055 dsl_dataset_rele(ds, FTAG);
1056 return (0);
1057 }
1058
1059 dmu_buf_will_dirty(ds->ds_dbuf, tx);
d683ddbb
JG
1060 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
1061 dsl_dataset_phys(ds)->ds_prev_snap_txg =
1062 dsl_dataset_phys(prev)->ds_creation_txg;
b128c09f
BB
1063
1064 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
d683ddbb 1065 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
b128c09f
BB
1066
1067 dmu_buf_will_dirty(prev->ds_dbuf, tx);
d683ddbb 1068 dsl_dataset_phys(prev)->ds_num_children++;
b128c09f 1069
d683ddbb 1070 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
b128c09f 1071 ASSERT(ds->ds_prev == NULL);
13fe0198 1072 VERIFY0(dsl_dataset_hold_obj(dp,
d683ddbb
JG
1073 dsl_dataset_phys(ds)->ds_prev_snap_obj,
1074 ds, &ds->ds_prev));
b128c09f
BB
1075 }
1076 }
1077
d683ddbb
JG
1078 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1079 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
b128c09f 1080
d683ddbb 1081 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
428870ff 1082 dmu_buf_will_dirty(prev->ds_dbuf, tx);
d683ddbb 1083 dsl_dataset_phys(prev)->ds_next_clones_obj =
b128c09f
BB
1084 zap_create(dp->dp_meta_objset,
1085 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1086 }
13fe0198 1087 VERIFY0(zap_add_int(dp->dp_meta_objset,
d683ddbb 1088 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
b128c09f
BB
1089
1090 dsl_dataset_rele(ds, FTAG);
1091 if (prev != dp->dp_origin_snap)
1092 dsl_dataset_rele(prev, FTAG);
1093 return (0);
1094}
1095
1096void
1097dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1098{
1099 ASSERT(dmu_tx_is_syncing(tx));
1100 ASSERT(dp->dp_origin_snap != NULL);
1101
13fe0198 1102 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
9c43027b 1103 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
428870ff
BB
1104}
1105
428870ff 1106static int
13fe0198 1107upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
428870ff
BB
1108{
1109 dmu_tx_t *tx = arg;
428870ff
BB
1110 objset_t *mos = dp->dp_meta_objset;
1111
d683ddbb 1112 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
428870ff
BB
1113 dsl_dataset_t *origin;
1114
13fe0198 1115 VERIFY0(dsl_dataset_hold_obj(dp,
d683ddbb 1116 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
428870ff 1117
d683ddbb 1118 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
428870ff 1119 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
d683ddbb
JG
1120 dsl_dir_phys(origin->ds_dir)->dd_clones =
1121 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1122 0, tx);
428870ff
BB
1123 }
1124
13fe0198 1125 VERIFY0(zap_add_int(dp->dp_meta_objset,
d683ddbb
JG
1126 dsl_dir_phys(origin->ds_dir)->dd_clones,
1127 ds->ds_object, tx));
428870ff
BB
1128
1129 dsl_dataset_rele(origin, FTAG);
1130 }
428870ff
BB
1131 return (0);
1132}
1133
1134void
1135dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1136{
428870ff
BB
1137 uint64_t obj;
1138
d6320ddb
BB
1139 ASSERT(dmu_tx_is_syncing(tx));
1140
428870ff 1141 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
13fe0198 1142 VERIFY0(dsl_pool_open_special_dir(dp,
428870ff
BB
1143 FREE_DIR_NAME, &dp->dp_free_dir));
1144
1145 /*
1146 * We can't use bpobj_alloc(), because spa_version() still
1147 * returns the old version, and we need a new-version bpobj with
1148 * subobj support. So call dmu_object_alloc() directly.
1149 */
1150 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
f1512ee6 1151 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
13fe0198 1152 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
428870ff 1153 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
13fe0198 1154 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
428870ff 1155
13fe0198 1156 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
9c43027b 1157 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
b128c09f
BB
1158}
1159
1160void
1161dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1162{
1163 uint64_t dsobj;
1164 dsl_dataset_t *ds;
1165
1166 ASSERT(dmu_tx_is_syncing(tx));
1167 ASSERT(dp->dp_origin_snap == NULL);
13fe0198 1168 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
b128c09f
BB
1169
1170 /* create the origin dir, ds, & snap-ds */
b128c09f 1171 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
b5256303 1172 NULL, 0, kcred, NULL, tx);
13fe0198
MA
1173 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1174 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
d683ddbb 1175 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
b128c09f
BB
1176 dp, &dp->dp_origin_snap));
1177 dsl_dataset_rele(ds, FTAG);
b128c09f 1178}
9babb374
BB
1179
1180taskq_t *
657ce253 1181dsl_pool_zrele_taskq(dsl_pool_t *dp)
9babb374 1182{
657ce253 1183 return (dp->dp_zrele_taskq);
9babb374 1184}
428870ff 1185
dcec0a12
AP
1186taskq_t *
1187dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1188{
1189 return (dp->dp_unlinked_drain_taskq);
1190}
1191
428870ff
BB
1192/*
1193 * Walk through the pool-wide zap object of temporary snapshot user holds
1194 * and release them.
1195 */
1196void
1197dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1198{
1199 zap_attribute_t za;
1200 zap_cursor_t zc;
1201 objset_t *mos = dp->dp_meta_objset;
1202 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
95fd54a1 1203 nvlist_t *holds;
428870ff
BB
1204
1205 if (zapobj == 0)
1206 return;
1207 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1208
95fd54a1
SH
1209 holds = fnvlist_alloc();
1210
428870ff
BB
1211 for (zap_cursor_init(&zc, mos, zapobj);
1212 zap_cursor_retrieve(&zc, &za) == 0;
1213 zap_cursor_advance(&zc)) {
1214 char *htag;
95fd54a1 1215 nvlist_t *tags;
428870ff
BB
1216
1217 htag = strchr(za.za_name, '-');
1218 *htag = '\0';
1219 ++htag;
95fd54a1
SH
1220 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1221 tags = fnvlist_alloc();
1222 fnvlist_add_boolean(tags, htag);
1223 fnvlist_add_nvlist(holds, za.za_name, tags);
1224 fnvlist_free(tags);
1225 } else {
1226 fnvlist_add_boolean(tags, htag);
1227 }
428870ff 1228 }
95fd54a1
SH
1229 dsl_dataset_user_release_tmp(dp, holds);
1230 fnvlist_free(holds);
428870ff
BB
1231 zap_cursor_fini(&zc);
1232}
1233
1234/*
1235 * Create the pool-wide zap object for storing temporary snapshot holds.
1236 */
65c7cc49 1237static void
428870ff
BB
1238dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1239{
1240 objset_t *mos = dp->dp_meta_objset;
1241
1242 ASSERT(dp->dp_tmp_userrefs_obj == 0);
1243 ASSERT(dmu_tx_is_syncing(tx));
1244
9ae529ec
CS
1245 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1246 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
428870ff
BB
1247}
1248
1249static int
1250dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
13fe0198 1251 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
428870ff
BB
1252{
1253 objset_t *mos = dp->dp_meta_objset;
1254 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1255 char *name;
1256 int error;
1257
1258 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1259 ASSERT(dmu_tx_is_syncing(tx));
1260
1261 /*
1262 * If the pool was created prior to SPA_VERSION_USERREFS, the
1263 * zap object for temporary holds might not exist yet.
1264 */
1265 if (zapobj == 0) {
1266 if (holding) {
1267 dsl_pool_user_hold_create_obj(dp, tx);
1268 zapobj = dp->dp_tmp_userrefs_obj;
1269 } else {
2e528b49 1270 return (SET_ERROR(ENOENT));
428870ff
BB
1271 }
1272 }
1273
1274 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1275 if (holding)
13fe0198 1276 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
428870ff
BB
1277 else
1278 error = zap_remove(mos, zapobj, name, tx);
e4f5fa12 1279 kmem_strfree(name);
428870ff
BB
1280
1281 return (error);
1282}
1283
1284/*
1285 * Add a temporary hold for the given dataset object and tag.
1286 */
1287int
1288dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
13fe0198 1289 uint64_t now, dmu_tx_t *tx)
428870ff
BB
1290{
1291 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1292}
1293
1294/*
1295 * Release a temporary hold for the given dataset object and tag.
1296 */
1297int
1298dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1299 dmu_tx_t *tx)
1300{
13fe0198 1301 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
428870ff
BB
1302 tx, B_FALSE));
1303}
c409e464 1304
13fe0198
MA
1305/*
1306 * DSL Pool Configuration Lock
1307 *
1308 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1309 * creation / destruction / rename / property setting). It must be held for
1310 * read to hold a dataset or dsl_dir. I.e. you must call
1311 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1312 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1313 * must be held continuously until all datasets and dsl_dirs are released.
1314 *
1315 * The only exception to this rule is that if a "long hold" is placed on
1316 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1317 * is still held. The long hold will prevent the dataset from being
1318 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1319 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1320 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1321 *
1322 * Legitimate long-holders (including owners) should be long-running, cancelable
1323 * tasks that should cause "zfs destroy" to fail. This includes DMU
1324 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1325 * "zfs send", and "zfs diff". There are several other long-holders whose
1326 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1327 *
1328 * The usual formula for long-holding would be:
1329 * dsl_pool_hold()
1330 * dsl_dataset_hold()
1331 * ... perform checks ...
1332 * dsl_dataset_long_hold()
1333 * dsl_pool_rele()
1334 * ... perform long-running task ...
1335 * dsl_dataset_long_rele()
1336 * dsl_dataset_rele()
1337 *
1338 * Note that when the long hold is released, the dataset is still held but
1339 * the pool is not held. The dataset may change arbitrarily during this time
1340 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1341 * dataset except release it.
1342 *
49c482fd
CS
1343 * Operations generally fall somewhere into the following taxonomy:
1344 *
1345 * Read-Only Modifying
1346 *
1347 * Dataset Layer / MOS zfs get zfs destroy
1348 *
1349 * Individual Dataset read() write()
1350 *
1351 *
1352 * Dataset Layer Operations
13fe0198
MA
1353 *
1354 * Modifying operations should generally use dsl_sync_task(). The synctask
1355 * infrastructure enforces proper locking strategy with respect to the
1356 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1357 *
1358 * Read-only operations will manually hold the pool, then the dataset, obtain
1359 * information from the dataset, then release the pool and dataset.
1360 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1361 * hold/rele.
49c482fd
CS
1362 *
1363 *
1364 * Operations On Individual Datasets
1365 *
1366 * Objects _within_ an objset should only be modified by the current 'owner'
1367 * of the objset to prevent incorrect concurrent modification. Thus, use
1368 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1369 * and fail with EBUSY if there is already an owner. The owner can then
1370 * implement its own locking strategy, independent of the dataset layer's
1371 * locking infrastructure.
1372 * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1373 * vnop will not reach into the dataset layer).
1374 *
1375 * Ideally, objects would also only be read by the objset’s owner, so that we
1376 * don’t observe state mid-modification.
1377 * (E.g. the ZPL is creating a new object and linking it into a directory; if
1378 * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
1379 * intermediate state. The ioctl level violates this but in pretty benign
1380 * ways, e.g. reading the zpl props object.)
13fe0198
MA
1381 */
1382
1383int
a926aab9 1384dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp)
13fe0198
MA
1385{
1386 spa_t *spa;
1387 int error;
1388
1389 error = spa_open(name, &spa, tag);
1390 if (error == 0) {
1391 *dp = spa_get_dsl(spa);
1392 dsl_pool_config_enter(*dp, tag);
1393 }
1394 return (error);
1395}
1396
1397void
a926aab9 1398dsl_pool_rele(dsl_pool_t *dp, const void *tag)
13fe0198
MA
1399{
1400 dsl_pool_config_exit(dp, tag);
1401 spa_close(dp->dp_spa, tag);
1402}
1403
1404void
a926aab9 1405dsl_pool_config_enter(dsl_pool_t *dp, const void *tag)
13fe0198
MA
1406{
1407 /*
1408 * We use a "reentrant" reader-writer lock, but not reentrantly.
1409 *
1410 * The rrwlock can (with the track_all flag) track all reading threads,
1411 * which is very useful for debugging which code path failed to release
1412 * the lock, and for verifying that the *current* thread does hold
1413 * the lock.
1414 *
1415 * (Unlike a rwlock, which knows that N threads hold it for
1416 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1417 * if any thread holds it for read, even if this thread doesn't).
1418 */
1419 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1420 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1421}
1422
5e8cd5d1 1423void
a926aab9 1424dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag)
5e8cd5d1
AJ
1425{
1426 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1427 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1428}
1429
13fe0198 1430void
a926aab9 1431dsl_pool_config_exit(dsl_pool_t *dp, const void *tag)
13fe0198
MA
1432{
1433 rrw_exit(&dp->dp_config_rwlock, tag);
1434}
1435
1436boolean_t
1437dsl_pool_config_held(dsl_pool_t *dp)
1438{
1439 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1440}
1441
9c43027b
AJ
1442boolean_t
1443dsl_pool_config_held_writer(dsl_pool_t *dp)
1444{
1445 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1446}
1447
40a806df
NB
1448EXPORT_SYMBOL(dsl_pool_config_enter);
1449EXPORT_SYMBOL(dsl_pool_config_exit);
1450
d1d7e268 1451/* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
fdc2d303 1452ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD,
03fdcb9a 1453 "Max percent of RAM allowed to be dirty");
c409e464 1454
d1d7e268 1455/* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
fdc2d303 1456ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD,
d1d7e268 1457 "zfs_dirty_data_max upper bound as % of RAM");
c409e464 1458
fdc2d303 1459ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW,
03fdcb9a 1460 "Transaction delay threshold");
c409e464 1461
ab8d9c17 1462ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW,
03fdcb9a 1463 "Determines the dirty space limit");
c409e464 1464
ab8d9c17 1465ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW,
a7bd20e3
KJ
1466 "The size limit of write-transaction zil log data");
1467
d1d7e268 1468/* zfs_dirty_data_max_max only applied at module load in arc_init(). */
ab8d9c17 1469ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD,
d1d7e268 1470 "zfs_dirty_data_max upper bound in bytes");
c409e464 1471
fdc2d303 1472ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW,
03fdcb9a 1473 "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
c409e464 1474
ab8d9c17 1475ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW,
03fdcb9a 1476 "How quickly delay approaches infinity");
64fc7762 1477
03fdcb9a
MM
1478ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1479 "Max percent of CPUs that are used per dp_sync_taskq");
a032ac4b 1480
03fdcb9a
MM
1481ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1482 "Number of taskq entries that are pre-populated");
a032ac4b 1483
03fdcb9a
MM
1484ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1485 "Max number of taskq entries that are cached");