]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dsl_pool.c
OpenZFS 8558, 8602 - lwp_create() returns EAGAIN
[mirror_zfs.git] / module / zfs / dsl_pool.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
64fc7762 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
95fd54a1 24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
0c66c32d 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
539d33c7 26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29#include <sys/dsl_pool.h>
30#include <sys/dsl_dataset.h>
428870ff 31#include <sys/dsl_prop.h>
34dc7c2f
BB
32#include <sys/dsl_dir.h>
33#include <sys/dsl_synctask.h>
428870ff
BB
34#include <sys/dsl_scan.h>
35#include <sys/dnode.h>
34dc7c2f
BB
36#include <sys/dmu_tx.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/zap.h>
40#include <sys/zio.h>
41#include <sys/zfs_context.h>
42#include <sys/fs/zfs.h>
b128c09f
BB
43#include <sys/zfs_znode.h>
44#include <sys/spa_impl.h>
428870ff 45#include <sys/dsl_deadlist.h>
9ae529ec
CS
46#include <sys/bptree.h>
47#include <sys/zfeature.h>
29809a6c 48#include <sys/zil_impl.h>
13fe0198 49#include <sys/dsl_userhold.h>
49ee64e5 50#include <sys/trace_txg.h>
379ca9cf 51#include <sys/mmp.h>
34dc7c2f 52
e8b96c60
MA
53/*
54 * ZFS Write Throttle
55 * ------------------
56 *
57 * ZFS must limit the rate of incoming writes to the rate at which it is able
58 * to sync data modifications to the backend storage. Throttling by too much
59 * creates an artificial limit; throttling by too little can only be sustained
60 * for short periods and would lead to highly lumpy performance. On a per-pool
61 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
62 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
63 * of dirty data decreases. When the amount of dirty data exceeds a
64 * predetermined threshold further modifications are blocked until the amount
65 * of dirty data decreases (as data is synced out).
66 *
67 * The limit on dirty data is tunable, and should be adjusted according to
68 * both the IO capacity and available memory of the system. The larger the
69 * window, the more ZFS is able to aggregate and amortize metadata (and data)
70 * changes. However, memory is a limited resource, and allowing for more dirty
71 * data comes at the cost of keeping other useful data in memory (for example
72 * ZFS data cached by the ARC).
73 *
74 * Implementation
75 *
76 * As buffers are modified dsl_pool_willuse_space() increments both the per-
77 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
78 * dirty space used; dsl_pool_dirty_space() decrements those values as data
79 * is synced out from dsl_pool_sync(). While only the poolwide value is
80 * relevant, the per-txg value is useful for debugging. The tunable
81 * zfs_dirty_data_max determines the dirty space limit. Once that value is
82 * exceeded, new writes are halted until space frees up.
83 *
84 * The zfs_dirty_data_sync tunable dictates the threshold at which we
85 * ensure that there is a txg syncing (see the comment in txg.c for a full
86 * description of transaction group stages).
87 *
88 * The IO scheduler uses both the dirty space limit and current amount of
89 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
90 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
91 *
92 * The delay is also calculated based on the amount of dirty data. See the
93 * comment above dmu_tx_delay() for details.
94 */
95
96/*
97 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
98 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
99 * parameter.
100 */
101unsigned long zfs_dirty_data_max = 0;
102unsigned long zfs_dirty_data_max_max = 0;
103int zfs_dirty_data_max_percent = 10;
104int zfs_dirty_data_max_max_percent = 25;
b128c09f 105
e8b96c60
MA
106/*
107 * If there is at least this much dirty data, push out a txg.
108 */
109unsigned long zfs_dirty_data_sync = 64 * 1024 * 1024;
34dc7c2f 110
e8b96c60
MA
111/*
112 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
113 * and delay each transaction.
114 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
115 */
116int zfs_delay_min_dirty_percent = 60;
b128c09f 117
e8b96c60
MA
118/*
119 * This controls how quickly the delay approaches infinity.
120 * Larger values cause it to delay more for a given amount of dirty data.
121 * Therefore larger values will cause there to be less dirty data for a
122 * given throughput.
123 *
124 * For the smoothest delay, this value should be about 1 billion divided
125 * by the maximum number of operations per second. This will smoothly
126 * handle between 10x and 1/10th this number.
127 *
128 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
129 * multiply in dmu_tx_delay().
130 */
131unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
b128c09f 132
64fc7762
MA
133/*
134 * This determines the number of threads used by the dp_sync_taskq.
135 */
136int zfs_sync_taskq_batch_pct = 75;
137
a032ac4b
BB
138/*
139 * These tunables determine the behavior of how zil_itxg_clean() is
140 * called via zil_clean() in the context of spa_sync(). When an itxg
141 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
142 * If the dispatch fails, the call to zil_itxg_clean() will occur
143 * synchronously in the context of spa_sync(), which can negatively
144 * impact the performance of spa_sync() (e.g. in the case of the itxg
145 * list having a large number of itxs that needs to be cleaned).
146 *
147 * Thus, these tunables can be used to manipulate the behavior of the
148 * taskq used by zil_clean(); they determine the number of taskq entries
149 * that are pre-populated when the taskq is first created (via the
150 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
151 * taskq entries that are cached after an on-demand allocation (via the
152 * "zfs_zil_clean_taskq_maxalloc").
153 *
154 * The idea being, we want to try reasonably hard to ensure there will
155 * already be a taskq entry pre-allocated by the time that it is needed
156 * by zil_clean(). This way, we can avoid the possibility of an
157 * on-demand allocation of a new taskq entry from failing, which would
158 * result in zil_itxg_clean() being called synchronously from zil_clean()
159 * (which can adversely affect performance of spa_sync()).
160 *
161 * Additionally, the number of threads used by the taskq can be
162 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
163 */
164int zfs_zil_clean_taskq_nthr_pct = 100;
165int zfs_zil_clean_taskq_minalloc = 1024;
166int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
167
428870ff 168int
b128c09f 169dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
34dc7c2f
BB
170{
171 uint64_t obj;
172 int err;
173
174 err = zap_lookup(dp->dp_meta_objset,
d683ddbb 175 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
b128c09f 176 name, sizeof (obj), 1, &obj);
34dc7c2f
BB
177 if (err)
178 return (err);
179
13fe0198 180 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
34dc7c2f
BB
181}
182
183static dsl_pool_t *
184dsl_pool_open_impl(spa_t *spa, uint64_t txg)
185{
186 dsl_pool_t *dp;
187 blkptr_t *bp = spa_get_rootblkptr(spa);
34dc7c2f
BB
188
189 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
190 dp->dp_spa = spa;
191 dp->dp_meta_rootbp = *bp;
13fe0198 192 rrw_init(&dp->dp_config_rwlock, B_TRUE);
34dc7c2f 193 txg_init(dp, txg);
379ca9cf 194 mmp_init(spa);
34dc7c2f 195
4747a7d3 196 txg_list_create(&dp->dp_dirty_datasets, spa,
34dc7c2f 197 offsetof(dsl_dataset_t, ds_dirty_link));
4747a7d3 198 txg_list_create(&dp->dp_dirty_zilogs, spa,
29809a6c 199 offsetof(zilog_t, zl_dirty_link));
4747a7d3 200 txg_list_create(&dp->dp_dirty_dirs, spa,
34dc7c2f 201 offsetof(dsl_dir_t, dd_dirty_link));
4747a7d3 202 txg_list_create(&dp->dp_sync_tasks, spa,
13fe0198 203 offsetof(dsl_sync_task_t, dst_node));
34dc7c2f 204
64fc7762
MA
205 dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
206 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
207 TASKQ_THREADS_CPU_PCT);
208
a032ac4b
BB
209 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
210 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
211 zfs_zil_clean_taskq_minalloc,
212 zfs_zil_clean_taskq_maxalloc,
213 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
214
34dc7c2f 215 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
e8b96c60 216 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 217
1229323d 218 dp->dp_iput_taskq = taskq_create("z_iput", max_ncpus, defclsyspri,
aa9af22c 219 max_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
9babb374 220
34dc7c2f
BB
221 return (dp);
222}
223
224int
9ae529ec 225dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
34dc7c2f
BB
226{
227 int err;
228 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
9ae529ec 229
b7faa7aa
G
230 /*
231 * Initialize the caller's dsl_pool_t structure before we actually open
232 * the meta objset. This is done because a self-healing write zio may
233 * be issued as part of dmu_objset_open_impl() and the spa needs its
234 * dsl_pool_t initialized in order to handle the write.
235 */
236 *dpp = dp;
237
9ae529ec
CS
238 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
239 &dp->dp_meta_objset);
b7faa7aa 240 if (err != 0) {
9ae529ec 241 dsl_pool_close(dp);
b7faa7aa
G
242 *dpp = NULL;
243 }
9ae529ec
CS
244
245 return (err);
246}
247
248int
249dsl_pool_open(dsl_pool_t *dp)
250{
251 int err;
b128c09f
BB
252 dsl_dir_t *dd;
253 dsl_dataset_t *ds;
428870ff 254 uint64_t obj;
34dc7c2f 255
13fe0198 256 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
34dc7c2f
BB
257 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
258 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
259 &dp->dp_root_dir_obj);
260 if (err)
261 goto out;
262
13fe0198 263 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
34dc7c2f
BB
264 NULL, dp, &dp->dp_root_dir);
265 if (err)
266 goto out;
267
b128c09f 268 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
34dc7c2f
BB
269 if (err)
270 goto out;
271
9ae529ec 272 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
b128c09f
BB
273 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
274 if (err)
275 goto out;
d683ddbb
JG
276 err = dsl_dataset_hold_obj(dp,
277 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
9babb374
BB
278 if (err == 0) {
279 err = dsl_dataset_hold_obj(dp,
d683ddbb 280 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
9babb374
BB
281 &dp->dp_origin_snap);
282 dsl_dataset_rele(ds, FTAG);
283 }
13fe0198 284 dsl_dir_rele(dd, dp);
b128c09f
BB
285 if (err)
286 goto out;
b128c09f
BB
287 }
288
9ae529ec 289 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
428870ff
BB
290 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
291 &dp->dp_free_dir);
b128c09f
BB
292 if (err)
293 goto out;
428870ff 294
b128c09f 295 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
428870ff 296 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
b128c09f
BB
297 if (err)
298 goto out;
13fe0198 299 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
428870ff 300 dp->dp_meta_objset, obj));
b128c09f
BB
301 }
302
fbeddd60
MA
303 /*
304 * Note: errors ignored, because the leak dir will not exist if we
305 * have not encountered a leak yet.
306 */
307 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
308 &dp->dp_leak_dir);
309
fa86b5db 310 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
9ae529ec
CS
311 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
312 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
313 &dp->dp_bptree_obj);
314 if (err != 0)
315 goto out;
316 }
317
fa86b5db 318 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
753c3839
MA
319 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
320 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
321 &dp->dp_empty_bpobj);
322 if (err != 0)
323 goto out;
324 }
325
428870ff
BB
326 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
327 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
328 &dp->dp_tmp_userrefs_obj);
329 if (err == ENOENT)
330 err = 0;
331 if (err)
332 goto out;
333
9ae529ec 334 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
428870ff 335
34dc7c2f 336out:
13fe0198 337 rrw_exit(&dp->dp_config_rwlock, FTAG);
34dc7c2f
BB
338 return (err);
339}
340
341void
342dsl_pool_close(dsl_pool_t *dp)
343{
b128c09f 344 /*
e8b96c60
MA
345 * Drop our references from dsl_pool_open().
346 *
b128c09f
BB
347 * Since we held the origin_snap from "syncing" context (which
348 * includes pool-opening context), it actually only got a "ref"
349 * and not a hold, so just drop that here.
350 */
351 if (dp->dp_origin_snap)
13fe0198 352 dsl_dataset_rele(dp->dp_origin_snap, dp);
34dc7c2f 353 if (dp->dp_mos_dir)
13fe0198 354 dsl_dir_rele(dp->dp_mos_dir, dp);
428870ff 355 if (dp->dp_free_dir)
13fe0198 356 dsl_dir_rele(dp->dp_free_dir, dp);
fbeddd60
MA
357 if (dp->dp_leak_dir)
358 dsl_dir_rele(dp->dp_leak_dir, dp);
34dc7c2f 359 if (dp->dp_root_dir)
13fe0198 360 dsl_dir_rele(dp->dp_root_dir, dp);
34dc7c2f 361
428870ff
BB
362 bpobj_close(&dp->dp_free_bpobj);
363
34dc7c2f
BB
364 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
365 if (dp->dp_meta_objset)
428870ff 366 dmu_objset_evict(dp->dp_meta_objset);
34dc7c2f
BB
367
368 txg_list_destroy(&dp->dp_dirty_datasets);
29809a6c 369 txg_list_destroy(&dp->dp_dirty_zilogs);
428870ff 370 txg_list_destroy(&dp->dp_sync_tasks);
34dc7c2f 371 txg_list_destroy(&dp->dp_dirty_dirs);
34dc7c2f 372
a032ac4b 373 taskq_destroy(dp->dp_zil_clean_taskq);
64fc7762
MA
374 taskq_destroy(dp->dp_sync_taskq);
375
ca0bf58d
PS
376 /*
377 * We can't set retry to TRUE since we're explicitly specifying
378 * a spa to flush. This is good enough; any missed buffers for
379 * this spa won't cause trouble, and they'll eventually fall
380 * out of the ARC just like any other unused buffer.
381 */
382 arc_flush(dp->dp_spa, FALSE);
383
379ca9cf 384 mmp_fini(dp->dp_spa);
34dc7c2f 385 txg_fini(dp);
428870ff 386 dsl_scan_fini(dp);
0c66c32d
JG
387 dmu_buf_user_evict_wait();
388
13fe0198 389 rrw_destroy(&dp->dp_config_rwlock);
34dc7c2f 390 mutex_destroy(&dp->dp_lock);
c17486b2 391 cv_destroy(&dp->dp_spaceavail_cv);
3558fd73 392 taskq_destroy(dp->dp_iput_taskq);
b128c09f 393 if (dp->dp_blkstats)
79c76d5b 394 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
34dc7c2f
BB
395 kmem_free(dp, sizeof (dsl_pool_t));
396}
397
398dsl_pool_t *
b5256303
TC
399dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp,
400 uint64_t txg)
34dc7c2f
BB
401{
402 int err;
403 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
404 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
428870ff 405 objset_t *os;
b128c09f 406 dsl_dataset_t *ds;
428870ff 407 uint64_t obj;
b128c09f 408
13fe0198
MA
409 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
410
b128c09f 411 /* create and open the MOS (meta-objset) */
428870ff
BB
412 dp->dp_meta_objset = dmu_objset_create_impl(spa,
413 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
b5256303 414 spa->spa_meta_objset = dp->dp_meta_objset;
34dc7c2f
BB
415
416 /* create the pool directory */
417 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
418 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
c99c9001 419 ASSERT0(err);
34dc7c2f 420
428870ff 421 /* Initialize scan structures */
13fe0198 422 VERIFY0(dsl_scan_init(dp, txg));
428870ff 423
34dc7c2f 424 /* create and open the root dir */
b128c09f 425 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
13fe0198 426 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
34dc7c2f
BB
427 NULL, dp, &dp->dp_root_dir));
428
429 /* create and open the meta-objset dir */
b128c09f 430 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
13fe0198 431 VERIFY0(dsl_pool_open_special_dir(dp,
b128c09f
BB
432 MOS_DIR_NAME, &dp->dp_mos_dir));
433
428870ff
BB
434 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
435 /* create and open the free dir */
436 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
437 FREE_DIR_NAME, tx);
13fe0198 438 VERIFY0(dsl_pool_open_special_dir(dp,
428870ff
BB
439 FREE_DIR_NAME, &dp->dp_free_dir));
440
441 /* create and open the free_bplist */
f1512ee6 442 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
428870ff
BB
443 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
444 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
13fe0198 445 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
428870ff
BB
446 dp->dp_meta_objset, obj));
447 }
448
b128c09f
BB
449 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
450 dsl_pool_create_origin(dp, tx);
451
b5256303
TC
452 /*
453 * Some features may be needed when creating the root dataset, so we
454 * create the feature objects here.
455 */
456 if (spa_version(spa) >= SPA_VERSION_FEATURES)
457 spa_feature_create_zap_objects(spa, tx);
458
459 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
460 dcp->cp_crypt != ZIO_CRYPT_INHERIT)
461 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
462
b128c09f 463 /* create the root dataset */
b5256303 464 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
b128c09f
BB
465
466 /* create the root objset */
13fe0198 467 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
cc9bb3e5 468 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
0fe3d820
BB
469 VERIFY(NULL != (os = dmu_objset_create_impl(dp->dp_spa, ds,
470 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx)));
cc9bb3e5 471 rrw_exit(&ds->ds_bp_rwlock, FTAG);
b128c09f 472#ifdef _KERNEL
428870ff 473 zfs_create_fs(os, kcred, zplprops, tx);
b128c09f
BB
474#endif
475 dsl_dataset_rele(ds, FTAG);
34dc7c2f
BB
476
477 dmu_tx_commit(tx);
478
13fe0198
MA
479 rrw_exit(&dp->dp_config_rwlock, FTAG);
480
34dc7c2f
BB
481 return (dp);
482}
483
29809a6c
MA
484/*
485 * Account for the meta-objset space in its placeholder dsl_dir.
486 */
487void
488dsl_pool_mos_diduse_space(dsl_pool_t *dp,
489 int64_t used, int64_t comp, int64_t uncomp)
490{
491 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
492 mutex_enter(&dp->dp_lock);
493 dp->dp_mos_used_delta += used;
494 dp->dp_mos_compressed_delta += comp;
495 dp->dp_mos_uncompressed_delta += uncomp;
496 mutex_exit(&dp->dp_lock);
497}
498
e8b96c60
MA
499static void
500dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
501{
502 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
503 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
504 VERIFY0(zio_wait(zio));
505 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
506 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
507}
508
509static void
510dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
511{
512 ASSERT(MUTEX_HELD(&dp->dp_lock));
513
514 if (delta < 0)
515 ASSERT3U(-delta, <=, dp->dp_dirty_total);
516
517 dp->dp_dirty_total += delta;
518
519 /*
520 * Note: we signal even when increasing dp_dirty_total.
521 * This ensures forward progress -- each thread wakes the next waiter.
522 */
c0c8cc7b 523 if (dp->dp_dirty_total < zfs_dirty_data_max)
e8b96c60
MA
524 cv_signal(&dp->dp_spaceavail_cv);
525}
526
34dc7c2f
BB
527void
528dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
529{
530 zio_t *zio;
531 dmu_tx_t *tx;
532 dsl_dir_t *dd;
533 dsl_dataset_t *ds;
428870ff 534 objset_t *mos = dp->dp_meta_objset;
29809a6c
MA
535 list_t synced_datasets;
536
537 list_create(&synced_datasets, sizeof (dsl_dataset_t),
538 offsetof(dsl_dataset_t, ds_synced_link));
34dc7c2f
BB
539
540 tx = dmu_tx_create_assigned(dp, txg);
541
e8b96c60
MA
542 /*
543 * Write out all dirty blocks of dirty datasets.
544 */
34dc7c2f 545 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
e8b96c60 546 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
9babb374
BB
547 /*
548 * We must not sync any non-MOS datasets twice, because
549 * we may have taken a snapshot of them. However, we
550 * may sync newly-created datasets on pass 2.
551 */
552 ASSERT(!list_link_active(&ds->ds_synced_link));
29809a6c 553 list_insert_tail(&synced_datasets, ds);
34dc7c2f
BB
554 dsl_dataset_sync(ds, zio, tx);
555 }
e8b96c60 556 VERIFY0(zio_wait(zio));
9babb374 557
e8b96c60
MA
558 /*
559 * We have written all of the accounted dirty data, so our
560 * dp_space_towrite should now be zero. However, some seldom-used
561 * code paths do not adhere to this (e.g. dbuf_undirty(), also
562 * rounding error in dbuf_write_physdone).
563 * Shore up the accounting of any dirtied space now.
564 */
565 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
34dc7c2f 566
539d33c7
GM
567 /*
568 * Update the long range free counter after
569 * we're done syncing user data
570 */
571 mutex_enter(&dp->dp_lock);
572 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
573 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
574 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
575 mutex_exit(&dp->dp_lock);
576
29809a6c
MA
577 /*
578 * After the data blocks have been written (ensured by the zio_wait()
64fc7762
MA
579 * above), update the user/group space accounting. This happens
580 * in tasks dispatched to dp_sync_taskq, so wait for them before
581 * continuing.
29809a6c 582 */
e8b96c60
MA
583 for (ds = list_head(&synced_datasets); ds != NULL;
584 ds = list_next(&synced_datasets, ds)) {
428870ff 585 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
e8b96c60 586 }
64fc7762 587 taskq_wait(dp->dp_sync_taskq);
9babb374
BB
588
589 /*
590 * Sync the datasets again to push out the changes due to
428870ff 591 * userspace updates. This must be done before we process the
29809a6c
MA
592 * sync tasks, so that any snapshots will have the correct
593 * user accounting information (and we won't get confused
594 * about which blocks are part of the snapshot).
9babb374
BB
595 */
596 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
e8b96c60 597 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
9babb374
BB
598 ASSERT(list_link_active(&ds->ds_synced_link));
599 dmu_buf_rele(ds->ds_dbuf, ds);
600 dsl_dataset_sync(ds, zio, tx);
601 }
e8b96c60 602 VERIFY0(zio_wait(zio));
9babb374 603
428870ff 604 /*
29809a6c
MA
605 * Now that the datasets have been completely synced, we can
606 * clean up our in-memory structures accumulated while syncing:
607 *
608 * - move dead blocks from the pending deadlist to the on-disk deadlist
29809a6c 609 * - release hold from dsl_dataset_dirty()
428870ff 610 */
e8b96c60 611 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
0efd9791 612 dsl_dataset_sync_done(ds, tx);
428870ff
BB
613 }
614
e8b96c60 615 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
34dc7c2f 616 dsl_dir_sync(dd, tx);
e8b96c60 617 }
b128c09f 618
29809a6c
MA
619 /*
620 * The MOS's space is accounted for in the pool/$MOS
621 * (dp_mos_dir). We can't modify the mos while we're syncing
622 * it, so we remember the deltas and apply them here.
623 */
624 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
625 dp->dp_mos_uncompressed_delta != 0) {
626 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
627 dp->dp_mos_used_delta,
628 dp->dp_mos_compressed_delta,
629 dp->dp_mos_uncompressed_delta, tx);
630 dp->dp_mos_used_delta = 0;
631 dp->dp_mos_compressed_delta = 0;
632 dp->dp_mos_uncompressed_delta = 0;
633 }
634
64fc7762 635 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
e8b96c60 636 dsl_pool_sync_mos(dp, tx);
34dc7c2f
BB
637 }
638
29809a6c
MA
639 /*
640 * If we modify a dataset in the same txg that we want to destroy it,
641 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
642 * dsl_dir_destroy_check() will fail if there are unexpected holds.
643 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
644 * and clearing the hold on it) before we process the sync_tasks.
645 * The MOS data dirtied by the sync_tasks will be synced on the next
646 * pass.
647 */
29809a6c 648 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
13fe0198 649 dsl_sync_task_t *dst;
29809a6c
MA
650 /*
651 * No more sync tasks should have been added while we
652 * were syncing.
653 */
e8b96c60
MA
654 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
655 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
13fe0198 656 dsl_sync_task_sync(dst, tx);
29809a6c
MA
657 }
658
34dc7c2f 659 dmu_tx_commit(tx);
b128c09f 660
e8b96c60 661 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
34dc7c2f
BB
662}
663
664void
428870ff 665dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
34dc7c2f 666{
29809a6c 667 zilog_t *zilog;
34dc7c2f 668
55922e73 669 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
e8b96c60 670 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
55922e73
GW
671 /*
672 * We don't remove the zilog from the dp_dirty_zilogs
673 * list until after we've cleaned it. This ensures that
674 * callers of zilog_is_dirty() receive an accurate
675 * answer when they are racing with the spa sync thread.
676 */
29809a6c 677 zil_clean(zilog, txg);
55922e73 678 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
29809a6c
MA
679 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
680 dmu_buf_rele(ds->ds_dbuf, zilog);
34dc7c2f 681 }
428870ff 682 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
34dc7c2f
BB
683}
684
685/*
686 * TRUE if the current thread is the tx_sync_thread or if we
687 * are being called from SPA context during pool initialization.
688 */
689int
690dsl_pool_sync_context(dsl_pool_t *dp)
691{
692 return (curthread == dp->dp_tx.tx_sync_thread ||
64fc7762
MA
693 spa_is_initializing(dp->dp_spa) ||
694 taskq_member(dp->dp_sync_taskq, curthread));
34dc7c2f
BB
695}
696
697uint64_t
698dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
699{
700 uint64_t space, resv;
701
702 /*
34dc7c2f
BB
703 * If we're trying to assess whether it's OK to do a free,
704 * cut the reservation in half to allow forward progress
705 * (e.g. make it possible to rm(1) files from a full pool).
706 */
707 space = spa_get_dspace(dp->dp_spa);
0c60cc32 708 resv = spa_get_slop_space(dp->dp_spa);
34dc7c2f
BB
709 if (netfree)
710 resv >>= 1;
711
712 return (space - resv);
713}
714
e8b96c60
MA
715boolean_t
716dsl_pool_need_dirty_delay(dsl_pool_t *dp)
34dc7c2f 717{
e8b96c60
MA
718 uint64_t delay_min_bytes =
719 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
720 boolean_t rv;
34dc7c2f 721
e8b96c60
MA
722 mutex_enter(&dp->dp_lock);
723 if (dp->dp_dirty_total > zfs_dirty_data_sync)
724 txg_kick(dp);
725 rv = (dp->dp_dirty_total > delay_min_bytes);
726 mutex_exit(&dp->dp_lock);
727 return (rv);
34dc7c2f
BB
728}
729
730void
e8b96c60 731dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
34dc7c2f 732{
e8b96c60
MA
733 if (space > 0) {
734 mutex_enter(&dp->dp_lock);
735 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
736 dsl_pool_dirty_delta(dp, space);
737 mutex_exit(&dp->dp_lock);
738 }
34dc7c2f
BB
739}
740
741void
e8b96c60 742dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
34dc7c2f 743{
e8b96c60
MA
744 ASSERT3S(space, >=, 0);
745 if (space == 0)
34dc7c2f
BB
746 return;
747
e8b96c60
MA
748 mutex_enter(&dp->dp_lock);
749 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
750 /* XXX writing something we didn't dirty? */
751 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
34dc7c2f 752 }
e8b96c60
MA
753 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
754 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
755 ASSERT3U(dp->dp_dirty_total, >=, space);
756 dsl_pool_dirty_delta(dp, -space);
757 mutex_exit(&dp->dp_lock);
34dc7c2f 758}
b128c09f
BB
759
760/* ARGSUSED */
761static int
13fe0198 762upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
b128c09f
BB
763{
764 dmu_tx_t *tx = arg;
765 dsl_dataset_t *ds, *prev = NULL;
766 int err;
b128c09f 767
13fe0198 768 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
b128c09f
BB
769 if (err)
770 return (err);
771
d683ddbb
JG
772 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
773 err = dsl_dataset_hold_obj(dp,
774 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
b128c09f
BB
775 if (err) {
776 dsl_dataset_rele(ds, FTAG);
777 return (err);
778 }
779
d683ddbb 780 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
b128c09f
BB
781 break;
782 dsl_dataset_rele(ds, FTAG);
783 ds = prev;
784 prev = NULL;
785 }
786
787 if (prev == NULL) {
788 prev = dp->dp_origin_snap;
789
790 /*
791 * The $ORIGIN can't have any data, or the accounting
792 * will be wrong.
793 */
cc9bb3e5 794 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
d683ddbb 795 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
cc9bb3e5 796 rrw_exit(&ds->ds_bp_rwlock, FTAG);
b128c09f
BB
797
798 /* The origin doesn't get attached to itself */
799 if (ds->ds_object == prev->ds_object) {
800 dsl_dataset_rele(ds, FTAG);
801 return (0);
802 }
803
804 dmu_buf_will_dirty(ds->ds_dbuf, tx);
d683ddbb
JG
805 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
806 dsl_dataset_phys(ds)->ds_prev_snap_txg =
807 dsl_dataset_phys(prev)->ds_creation_txg;
b128c09f
BB
808
809 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
d683ddbb 810 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
b128c09f
BB
811
812 dmu_buf_will_dirty(prev->ds_dbuf, tx);
d683ddbb 813 dsl_dataset_phys(prev)->ds_num_children++;
b128c09f 814
d683ddbb 815 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
b128c09f 816 ASSERT(ds->ds_prev == NULL);
13fe0198 817 VERIFY0(dsl_dataset_hold_obj(dp,
d683ddbb
JG
818 dsl_dataset_phys(ds)->ds_prev_snap_obj,
819 ds, &ds->ds_prev));
b128c09f
BB
820 }
821 }
822
d683ddbb
JG
823 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
824 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
b128c09f 825
d683ddbb 826 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
428870ff 827 dmu_buf_will_dirty(prev->ds_dbuf, tx);
d683ddbb 828 dsl_dataset_phys(prev)->ds_next_clones_obj =
b128c09f
BB
829 zap_create(dp->dp_meta_objset,
830 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
831 }
13fe0198 832 VERIFY0(zap_add_int(dp->dp_meta_objset,
d683ddbb 833 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
b128c09f
BB
834
835 dsl_dataset_rele(ds, FTAG);
836 if (prev != dp->dp_origin_snap)
837 dsl_dataset_rele(prev, FTAG);
838 return (0);
839}
840
841void
842dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
843{
844 ASSERT(dmu_tx_is_syncing(tx));
845 ASSERT(dp->dp_origin_snap != NULL);
846
13fe0198 847 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
9c43027b 848 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
428870ff
BB
849}
850
851/* ARGSUSED */
852static int
13fe0198 853upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
428870ff
BB
854{
855 dmu_tx_t *tx = arg;
428870ff
BB
856 objset_t *mos = dp->dp_meta_objset;
857
d683ddbb 858 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
428870ff
BB
859 dsl_dataset_t *origin;
860
13fe0198 861 VERIFY0(dsl_dataset_hold_obj(dp,
d683ddbb 862 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
428870ff 863
d683ddbb 864 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
428870ff 865 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
d683ddbb
JG
866 dsl_dir_phys(origin->ds_dir)->dd_clones =
867 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
868 0, tx);
428870ff
BB
869 }
870
13fe0198 871 VERIFY0(zap_add_int(dp->dp_meta_objset,
d683ddbb
JG
872 dsl_dir_phys(origin->ds_dir)->dd_clones,
873 ds->ds_object, tx));
428870ff
BB
874
875 dsl_dataset_rele(origin, FTAG);
876 }
428870ff
BB
877 return (0);
878}
879
880void
881dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
882{
428870ff
BB
883 uint64_t obj;
884
d6320ddb
BB
885 ASSERT(dmu_tx_is_syncing(tx));
886
428870ff 887 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
13fe0198 888 VERIFY0(dsl_pool_open_special_dir(dp,
428870ff
BB
889 FREE_DIR_NAME, &dp->dp_free_dir));
890
891 /*
892 * We can't use bpobj_alloc(), because spa_version() still
893 * returns the old version, and we need a new-version bpobj with
894 * subobj support. So call dmu_object_alloc() directly.
895 */
896 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
f1512ee6 897 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
13fe0198 898 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
428870ff 899 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
13fe0198 900 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
428870ff 901
13fe0198 902 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
9c43027b 903 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
b128c09f
BB
904}
905
906void
907dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
908{
909 uint64_t dsobj;
910 dsl_dataset_t *ds;
911
912 ASSERT(dmu_tx_is_syncing(tx));
913 ASSERT(dp->dp_origin_snap == NULL);
13fe0198 914 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
b128c09f
BB
915
916 /* create the origin dir, ds, & snap-ds */
b128c09f 917 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
b5256303 918 NULL, 0, kcred, NULL, tx);
13fe0198
MA
919 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
920 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
d683ddbb 921 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
b128c09f
BB
922 dp, &dp->dp_origin_snap));
923 dsl_dataset_rele(ds, FTAG);
b128c09f 924}
9babb374
BB
925
926taskq_t *
3558fd73 927dsl_pool_iput_taskq(dsl_pool_t *dp)
9babb374 928{
3558fd73 929 return (dp->dp_iput_taskq);
9babb374 930}
428870ff
BB
931
932/*
933 * Walk through the pool-wide zap object of temporary snapshot user holds
934 * and release them.
935 */
936void
937dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
938{
939 zap_attribute_t za;
940 zap_cursor_t zc;
941 objset_t *mos = dp->dp_meta_objset;
942 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
95fd54a1 943 nvlist_t *holds;
428870ff
BB
944
945 if (zapobj == 0)
946 return;
947 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
948
95fd54a1
SH
949 holds = fnvlist_alloc();
950
428870ff
BB
951 for (zap_cursor_init(&zc, mos, zapobj);
952 zap_cursor_retrieve(&zc, &za) == 0;
953 zap_cursor_advance(&zc)) {
954 char *htag;
95fd54a1 955 nvlist_t *tags;
428870ff
BB
956
957 htag = strchr(za.za_name, '-');
958 *htag = '\0';
959 ++htag;
95fd54a1
SH
960 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
961 tags = fnvlist_alloc();
962 fnvlist_add_boolean(tags, htag);
963 fnvlist_add_nvlist(holds, za.za_name, tags);
964 fnvlist_free(tags);
965 } else {
966 fnvlist_add_boolean(tags, htag);
967 }
428870ff 968 }
95fd54a1
SH
969 dsl_dataset_user_release_tmp(dp, holds);
970 fnvlist_free(holds);
428870ff
BB
971 zap_cursor_fini(&zc);
972}
973
974/*
975 * Create the pool-wide zap object for storing temporary snapshot holds.
976 */
977void
978dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
979{
980 objset_t *mos = dp->dp_meta_objset;
981
982 ASSERT(dp->dp_tmp_userrefs_obj == 0);
983 ASSERT(dmu_tx_is_syncing(tx));
984
9ae529ec
CS
985 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
986 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
428870ff
BB
987}
988
989static int
990dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
13fe0198 991 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
428870ff
BB
992{
993 objset_t *mos = dp->dp_meta_objset;
994 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
995 char *name;
996 int error;
997
998 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
999 ASSERT(dmu_tx_is_syncing(tx));
1000
1001 /*
1002 * If the pool was created prior to SPA_VERSION_USERREFS, the
1003 * zap object for temporary holds might not exist yet.
1004 */
1005 if (zapobj == 0) {
1006 if (holding) {
1007 dsl_pool_user_hold_create_obj(dp, tx);
1008 zapobj = dp->dp_tmp_userrefs_obj;
1009 } else {
2e528b49 1010 return (SET_ERROR(ENOENT));
428870ff
BB
1011 }
1012 }
1013
1014 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1015 if (holding)
13fe0198 1016 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
428870ff
BB
1017 else
1018 error = zap_remove(mos, zapobj, name, tx);
1019 strfree(name);
1020
1021 return (error);
1022}
1023
1024/*
1025 * Add a temporary hold for the given dataset object and tag.
1026 */
1027int
1028dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
13fe0198 1029 uint64_t now, dmu_tx_t *tx)
428870ff
BB
1030{
1031 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1032}
1033
1034/*
1035 * Release a temporary hold for the given dataset object and tag.
1036 */
1037int
1038dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1039 dmu_tx_t *tx)
1040{
13fe0198 1041 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
428870ff
BB
1042 tx, B_FALSE));
1043}
c409e464 1044
13fe0198
MA
1045/*
1046 * DSL Pool Configuration Lock
1047 *
1048 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1049 * creation / destruction / rename / property setting). It must be held for
1050 * read to hold a dataset or dsl_dir. I.e. you must call
1051 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1052 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1053 * must be held continuously until all datasets and dsl_dirs are released.
1054 *
1055 * The only exception to this rule is that if a "long hold" is placed on
1056 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1057 * is still held. The long hold will prevent the dataset from being
1058 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1059 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1060 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1061 *
1062 * Legitimate long-holders (including owners) should be long-running, cancelable
1063 * tasks that should cause "zfs destroy" to fail. This includes DMU
1064 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1065 * "zfs send", and "zfs diff". There are several other long-holders whose
1066 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1067 *
1068 * The usual formula for long-holding would be:
1069 * dsl_pool_hold()
1070 * dsl_dataset_hold()
1071 * ... perform checks ...
1072 * dsl_dataset_long_hold()
1073 * dsl_pool_rele()
1074 * ... perform long-running task ...
1075 * dsl_dataset_long_rele()
1076 * dsl_dataset_rele()
1077 *
1078 * Note that when the long hold is released, the dataset is still held but
1079 * the pool is not held. The dataset may change arbitrarily during this time
1080 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1081 * dataset except release it.
1082 *
1083 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1084 * or modifying operations.
1085 *
1086 * Modifying operations should generally use dsl_sync_task(). The synctask
1087 * infrastructure enforces proper locking strategy with respect to the
1088 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1089 *
1090 * Read-only operations will manually hold the pool, then the dataset, obtain
1091 * information from the dataset, then release the pool and dataset.
1092 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1093 * hold/rele.
1094 */
1095
1096int
1097dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1098{
1099 spa_t *spa;
1100 int error;
1101
1102 error = spa_open(name, &spa, tag);
1103 if (error == 0) {
1104 *dp = spa_get_dsl(spa);
1105 dsl_pool_config_enter(*dp, tag);
1106 }
1107 return (error);
1108}
1109
1110void
1111dsl_pool_rele(dsl_pool_t *dp, void *tag)
1112{
1113 dsl_pool_config_exit(dp, tag);
1114 spa_close(dp->dp_spa, tag);
1115}
1116
1117void
1118dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1119{
1120 /*
1121 * We use a "reentrant" reader-writer lock, but not reentrantly.
1122 *
1123 * The rrwlock can (with the track_all flag) track all reading threads,
1124 * which is very useful for debugging which code path failed to release
1125 * the lock, and for verifying that the *current* thread does hold
1126 * the lock.
1127 *
1128 * (Unlike a rwlock, which knows that N threads hold it for
1129 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1130 * if any thread holds it for read, even if this thread doesn't).
1131 */
1132 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1133 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1134}
1135
5e8cd5d1
AJ
1136void
1137dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1138{
1139 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1140 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1141}
1142
13fe0198
MA
1143void
1144dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1145{
1146 rrw_exit(&dp->dp_config_rwlock, tag);
1147}
1148
1149boolean_t
1150dsl_pool_config_held(dsl_pool_t *dp)
1151{
1152 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1153}
1154
9c43027b
AJ
1155boolean_t
1156dsl_pool_config_held_writer(dsl_pool_t *dp)
1157{
1158 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1159}
1160
c409e464 1161#if defined(_KERNEL) && defined(HAVE_SPL)
40a806df
NB
1162EXPORT_SYMBOL(dsl_pool_config_enter);
1163EXPORT_SYMBOL(dsl_pool_config_exit);
1164
02730c33 1165/* BEGIN CSTYLED */
d1d7e268 1166/* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
e8b96c60
MA
1167module_param(zfs_dirty_data_max_percent, int, 0444);
1168MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty");
c409e464 1169
d1d7e268 1170/* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
e8b96c60
MA
1171module_param(zfs_dirty_data_max_max_percent, int, 0444);
1172MODULE_PARM_DESC(zfs_dirty_data_max_max_percent,
d1d7e268 1173 "zfs_dirty_data_max upper bound as % of RAM");
c409e464 1174
e8b96c60
MA
1175module_param(zfs_delay_min_dirty_percent, int, 0644);
1176MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold");
c409e464 1177
e8b96c60
MA
1178module_param(zfs_dirty_data_max, ulong, 0644);
1179MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit");
c409e464 1180
d1d7e268 1181/* zfs_dirty_data_max_max only applied at module load in arc_init(). */
e8b96c60
MA
1182module_param(zfs_dirty_data_max_max, ulong, 0444);
1183MODULE_PARM_DESC(zfs_dirty_data_max_max,
d1d7e268 1184 "zfs_dirty_data_max upper bound in bytes");
c409e464 1185
e8b96c60
MA
1186module_param(zfs_dirty_data_sync, ulong, 0644);
1187MODULE_PARM_DESC(zfs_dirty_data_sync, "sync txg when this much dirty data");
c409e464 1188
e8b96c60
MA
1189module_param(zfs_delay_scale, ulong, 0644);
1190MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity");
64fc7762
MA
1191
1192module_param(zfs_sync_taskq_batch_pct, int, 0644);
1193MODULE_PARM_DESC(zfs_sync_taskq_batch_pct,
1194 "max percent of CPUs that are used to sync dirty data");
a032ac4b
BB
1195
1196module_param(zfs_zil_clean_taskq_nthr_pct, int, 0644);
1197MODULE_PARM_DESC(zfs_zil_clean_taskq_nthr_pct,
1198 "max percent of CPUs that are used per dp_sync_taskq");
1199
1200module_param(zfs_zil_clean_taskq_minalloc, int, 0644);
1201MODULE_PARM_DESC(zfs_zil_clean_taskq_minalloc,
1202 "number of taskq entries that are pre-populated");
1203
1204module_param(zfs_zil_clean_taskq_maxalloc, int, 0644);
1205MODULE_PARM_DESC(zfs_zil_clean_taskq_maxalloc,
1206 "max number of taskq entries that are cached");
1207
02730c33 1208/* END CSTYLED */
c409e464 1209#endif