]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dsl_pool.c
Add Module Parameter Regarding Log Size Limit
[mirror_zfs.git] / module / zfs / dsl_pool.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
ba67d821 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
95fd54a1 24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
0c66c32d 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
539d33c7 26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29#include <sys/dsl_pool.h>
30#include <sys/dsl_dataset.h>
428870ff 31#include <sys/dsl_prop.h>
34dc7c2f
BB
32#include <sys/dsl_dir.h>
33#include <sys/dsl_synctask.h>
428870ff
BB
34#include <sys/dsl_scan.h>
35#include <sys/dnode.h>
34dc7c2f
BB
36#include <sys/dmu_tx.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/zap.h>
40#include <sys/zio.h>
41#include <sys/zfs_context.h>
42#include <sys/fs/zfs.h>
b128c09f
BB
43#include <sys/zfs_znode.h>
44#include <sys/spa_impl.h>
d2734cce
SD
45#include <sys/vdev_impl.h>
46#include <sys/metaslab_impl.h>
9ae529ec
CS
47#include <sys/bptree.h>
48#include <sys/zfeature.h>
29809a6c 49#include <sys/zil_impl.h>
13fe0198 50#include <sys/dsl_userhold.h>
e5d1c27e 51#include <sys/trace_zfs.h>
379ca9cf 52#include <sys/mmp.h>
34dc7c2f 53
e8b96c60
MA
54/*
55 * ZFS Write Throttle
56 * ------------------
57 *
58 * ZFS must limit the rate of incoming writes to the rate at which it is able
59 * to sync data modifications to the backend storage. Throttling by too much
60 * creates an artificial limit; throttling by too little can only be sustained
61 * for short periods and would lead to highly lumpy performance. On a per-pool
62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64 * of dirty data decreases. When the amount of dirty data exceeds a
65 * predetermined threshold further modifications are blocked until the amount
66 * of dirty data decreases (as data is synced out).
67 *
68 * The limit on dirty data is tunable, and should be adjusted according to
69 * both the IO capacity and available memory of the system. The larger the
70 * window, the more ZFS is able to aggregate and amortize metadata (and data)
71 * changes. However, memory is a limited resource, and allowing for more dirty
72 * data comes at the cost of keeping other useful data in memory (for example
73 * ZFS data cached by the ARC).
74 *
75 * Implementation
76 *
77 * As buffers are modified dsl_pool_willuse_space() increments both the per-
78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79 * dirty space used; dsl_pool_dirty_space() decrements those values as data
80 * is synced out from dsl_pool_sync(). While only the poolwide value is
81 * relevant, the per-txg value is useful for debugging. The tunable
82 * zfs_dirty_data_max determines the dirty space limit. Once that value is
83 * exceeded, new writes are halted until space frees up.
84 *
00f198de 85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
e8b96c60
MA
86 * ensure that there is a txg syncing (see the comment in txg.c for a full
87 * description of transaction group stages).
88 *
89 * The IO scheduler uses both the dirty space limit and current amount of
90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92 *
93 * The delay is also calculated based on the amount of dirty data. See the
94 * comment above dmu_tx_delay() for details.
95 */
96
97/*
98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
100 * parameter.
101 */
102unsigned long zfs_dirty_data_max = 0;
103unsigned long zfs_dirty_data_max_max = 0;
104int zfs_dirty_data_max_percent = 10;
105int zfs_dirty_data_max_max_percent = 25;
b128c09f 106
a7bd20e3
KJ
107/*
108 * zfs_wrlog_data_max, the upper limit of TX_WRITE log data.
109 * Once it is reached, write operation is blocked,
110 * until log data is cleared out after txg sync.
111 * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
112 */
113unsigned long zfs_wrlog_data_max = 0;
114
e8b96c60 115/*
dfbe2675
MA
116 * If there's at least this much dirty data (as a percentage of
117 * zfs_dirty_data_max), push out a txg. This should be less than
118 * zfs_vdev_async_write_active_min_dirty_percent.
e8b96c60 119 */
dfbe2675 120int zfs_dirty_data_sync_percent = 20;
34dc7c2f 121
e8b96c60
MA
122/*
123 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
124 * and delay each transaction.
125 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
126 */
127int zfs_delay_min_dirty_percent = 60;
b128c09f 128
e8b96c60
MA
129/*
130 * This controls how quickly the delay approaches infinity.
131 * Larger values cause it to delay more for a given amount of dirty data.
132 * Therefore larger values will cause there to be less dirty data for a
133 * given throughput.
134 *
135 * For the smoothest delay, this value should be about 1 billion divided
136 * by the maximum number of operations per second. This will smoothly
137 * handle between 10x and 1/10th this number.
138 *
139 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
140 * multiply in dmu_tx_delay().
141 */
142unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
b128c09f 143
64fc7762
MA
144/*
145 * This determines the number of threads used by the dp_sync_taskq.
146 */
147int zfs_sync_taskq_batch_pct = 75;
148
a032ac4b
BB
149/*
150 * These tunables determine the behavior of how zil_itxg_clean() is
151 * called via zil_clean() in the context of spa_sync(). When an itxg
152 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
153 * If the dispatch fails, the call to zil_itxg_clean() will occur
154 * synchronously in the context of spa_sync(), which can negatively
155 * impact the performance of spa_sync() (e.g. in the case of the itxg
156 * list having a large number of itxs that needs to be cleaned).
157 *
158 * Thus, these tunables can be used to manipulate the behavior of the
159 * taskq used by zil_clean(); they determine the number of taskq entries
160 * that are pre-populated when the taskq is first created (via the
161 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
162 * taskq entries that are cached after an on-demand allocation (via the
163 * "zfs_zil_clean_taskq_maxalloc").
164 *
165 * The idea being, we want to try reasonably hard to ensure there will
166 * already be a taskq entry pre-allocated by the time that it is needed
167 * by zil_clean(). This way, we can avoid the possibility of an
168 * on-demand allocation of a new taskq entry from failing, which would
169 * result in zil_itxg_clean() being called synchronously from zil_clean()
170 * (which can adversely affect performance of spa_sync()).
171 *
172 * Additionally, the number of threads used by the taskq can be
173 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
174 */
175int zfs_zil_clean_taskq_nthr_pct = 100;
176int zfs_zil_clean_taskq_minalloc = 1024;
177int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
178
428870ff 179int
b128c09f 180dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
34dc7c2f
BB
181{
182 uint64_t obj;
183 int err;
184
185 err = zap_lookup(dp->dp_meta_objset,
d683ddbb 186 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
b128c09f 187 name, sizeof (obj), 1, &obj);
34dc7c2f
BB
188 if (err)
189 return (err);
190
13fe0198 191 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
34dc7c2f
BB
192}
193
194static dsl_pool_t *
195dsl_pool_open_impl(spa_t *spa, uint64_t txg)
196{
197 dsl_pool_t *dp;
198 blkptr_t *bp = spa_get_rootblkptr(spa);
34dc7c2f
BB
199
200 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
201 dp->dp_spa = spa;
202 dp->dp_meta_rootbp = *bp;
13fe0198 203 rrw_init(&dp->dp_config_rwlock, B_TRUE);
34dc7c2f 204 txg_init(dp, txg);
379ca9cf 205 mmp_init(spa);
34dc7c2f 206
4747a7d3 207 txg_list_create(&dp->dp_dirty_datasets, spa,
34dc7c2f 208 offsetof(dsl_dataset_t, ds_dirty_link));
4747a7d3 209 txg_list_create(&dp->dp_dirty_zilogs, spa,
29809a6c 210 offsetof(zilog_t, zl_dirty_link));
4747a7d3 211 txg_list_create(&dp->dp_dirty_dirs, spa,
34dc7c2f 212 offsetof(dsl_dir_t, dd_dirty_link));
4747a7d3 213 txg_list_create(&dp->dp_sync_tasks, spa,
13fe0198 214 offsetof(dsl_sync_task_t, dst_node));
d2734cce
SD
215 txg_list_create(&dp->dp_early_sync_tasks, spa,
216 offsetof(dsl_sync_task_t, dst_node));
34dc7c2f 217
64fc7762
MA
218 dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
219 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
220 TASKQ_THREADS_CPU_PCT);
221
a032ac4b
BB
222 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
223 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
224 zfs_zil_clean_taskq_minalloc,
225 zfs_zil_clean_taskq_maxalloc,
226 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
227
34dc7c2f 228 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
e8b96c60 229 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 230
a7bd20e3
KJ
231 aggsum_init(&dp->dp_wrlog_total, 0);
232 for (int i = 0; i < TXG_SIZE; i++) {
233 aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
234 }
235
60a4c7d2
PD
236 dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
237 boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
238 TASKQ_THREADS_CPU_PCT);
dcec0a12 239 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
60a4c7d2
PD
240 100, defclsyspri, boot_ncpus, INT_MAX,
241 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
9babb374 242
34dc7c2f
BB
243 return (dp);
244}
245
246int
9ae529ec 247dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
34dc7c2f
BB
248{
249 int err;
250 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
9ae529ec 251
b7faa7aa
G
252 /*
253 * Initialize the caller's dsl_pool_t structure before we actually open
254 * the meta objset. This is done because a self-healing write zio may
255 * be issued as part of dmu_objset_open_impl() and the spa needs its
256 * dsl_pool_t initialized in order to handle the write.
257 */
258 *dpp = dp;
259
9ae529ec
CS
260 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
261 &dp->dp_meta_objset);
b7faa7aa 262 if (err != 0) {
9ae529ec 263 dsl_pool_close(dp);
b7faa7aa
G
264 *dpp = NULL;
265 }
9ae529ec
CS
266
267 return (err);
268}
269
270int
271dsl_pool_open(dsl_pool_t *dp)
272{
273 int err;
b128c09f
BB
274 dsl_dir_t *dd;
275 dsl_dataset_t *ds;
428870ff 276 uint64_t obj;
34dc7c2f 277
13fe0198 278 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
34dc7c2f
BB
279 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
280 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
281 &dp->dp_root_dir_obj);
282 if (err)
283 goto out;
284
13fe0198 285 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
34dc7c2f
BB
286 NULL, dp, &dp->dp_root_dir);
287 if (err)
288 goto out;
289
b128c09f 290 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
34dc7c2f
BB
291 if (err)
292 goto out;
293
9ae529ec 294 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
b128c09f
BB
295 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
296 if (err)
297 goto out;
d683ddbb
JG
298 err = dsl_dataset_hold_obj(dp,
299 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
9babb374
BB
300 if (err == 0) {
301 err = dsl_dataset_hold_obj(dp,
d683ddbb 302 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
9babb374
BB
303 &dp->dp_origin_snap);
304 dsl_dataset_rele(ds, FTAG);
305 }
13fe0198 306 dsl_dir_rele(dd, dp);
b128c09f
BB
307 if (err)
308 goto out;
b128c09f
BB
309 }
310
9ae529ec 311 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
428870ff
BB
312 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
313 &dp->dp_free_dir);
b128c09f
BB
314 if (err)
315 goto out;
428870ff 316
b128c09f 317 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
428870ff 318 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
b128c09f
BB
319 if (err)
320 goto out;
13fe0198 321 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
428870ff 322 dp->dp_meta_objset, obj));
b128c09f
BB
323 }
324
a1d477c2
MA
325 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
326 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
327 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
328 if (err == 0) {
329 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
330 dp->dp_meta_objset, obj));
331 } else if (err == ENOENT) {
332 /*
333 * We might not have created the remap bpobj yet.
334 */
335 err = 0;
336 } else {
337 goto out;
338 }
339 }
340
fbeddd60 341 /*
a1d477c2
MA
342 * Note: errors ignored, because the these special dirs, used for
343 * space accounting, are only created on demand.
fbeddd60
MA
344 */
345 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
346 &dp->dp_leak_dir);
347
fa86b5db 348 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
9ae529ec
CS
349 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
350 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
351 &dp->dp_bptree_obj);
352 if (err != 0)
353 goto out;
354 }
355
fa86b5db 356 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
753c3839
MA
357 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
358 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
359 &dp->dp_empty_bpobj);
360 if (err != 0)
361 goto out;
362 }
363
428870ff
BB
364 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
365 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
366 &dp->dp_tmp_userrefs_obj);
367 if (err == ENOENT)
368 err = 0;
369 if (err)
370 goto out;
371
9ae529ec 372 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
428870ff 373
34dc7c2f 374out:
13fe0198 375 rrw_exit(&dp->dp_config_rwlock, FTAG);
34dc7c2f
BB
376 return (err);
377}
378
379void
380dsl_pool_close(dsl_pool_t *dp)
381{
b128c09f 382 /*
e8b96c60
MA
383 * Drop our references from dsl_pool_open().
384 *
b128c09f
BB
385 * Since we held the origin_snap from "syncing" context (which
386 * includes pool-opening context), it actually only got a "ref"
387 * and not a hold, so just drop that here.
388 */
a1d477c2 389 if (dp->dp_origin_snap != NULL)
13fe0198 390 dsl_dataset_rele(dp->dp_origin_snap, dp);
a1d477c2 391 if (dp->dp_mos_dir != NULL)
13fe0198 392 dsl_dir_rele(dp->dp_mos_dir, dp);
a1d477c2 393 if (dp->dp_free_dir != NULL)
13fe0198 394 dsl_dir_rele(dp->dp_free_dir, dp);
a1d477c2 395 if (dp->dp_leak_dir != NULL)
fbeddd60 396 dsl_dir_rele(dp->dp_leak_dir, dp);
a1d477c2 397 if (dp->dp_root_dir != NULL)
13fe0198 398 dsl_dir_rele(dp->dp_root_dir, dp);
34dc7c2f 399
428870ff 400 bpobj_close(&dp->dp_free_bpobj);
a1d477c2 401 bpobj_close(&dp->dp_obsolete_bpobj);
428870ff 402
34dc7c2f 403 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
a1d477c2 404 if (dp->dp_meta_objset != NULL)
428870ff 405 dmu_objset_evict(dp->dp_meta_objset);
34dc7c2f
BB
406
407 txg_list_destroy(&dp->dp_dirty_datasets);
29809a6c 408 txg_list_destroy(&dp->dp_dirty_zilogs);
428870ff 409 txg_list_destroy(&dp->dp_sync_tasks);
d2734cce 410 txg_list_destroy(&dp->dp_early_sync_tasks);
34dc7c2f 411 txg_list_destroy(&dp->dp_dirty_dirs);
34dc7c2f 412
a032ac4b 413 taskq_destroy(dp->dp_zil_clean_taskq);
64fc7762
MA
414 taskq_destroy(dp->dp_sync_taskq);
415
ca0bf58d
PS
416 /*
417 * We can't set retry to TRUE since we're explicitly specifying
418 * a spa to flush. This is good enough; any missed buffers for
419 * this spa won't cause trouble, and they'll eventually fall
420 * out of the ARC just like any other unused buffer.
421 */
422 arc_flush(dp->dp_spa, FALSE);
423
379ca9cf 424 mmp_fini(dp->dp_spa);
34dc7c2f 425 txg_fini(dp);
428870ff 426 dsl_scan_fini(dp);
0c66c32d
JG
427 dmu_buf_user_evict_wait();
428
13fe0198 429 rrw_destroy(&dp->dp_config_rwlock);
34dc7c2f 430 mutex_destroy(&dp->dp_lock);
c17486b2 431 cv_destroy(&dp->dp_spaceavail_cv);
a7bd20e3
KJ
432
433 ASSERT0(aggsum_value(&dp->dp_wrlog_total));
434 aggsum_fini(&dp->dp_wrlog_total);
435 for (int i = 0; i < TXG_SIZE; i++) {
436 ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
437 aggsum_fini(&dp->dp_wrlog_pertxg[i]);
438 }
439
dcec0a12 440 taskq_destroy(dp->dp_unlinked_drain_taskq);
657ce253 441 taskq_destroy(dp->dp_zrele_taskq);
a1d477c2 442 if (dp->dp_blkstats != NULL) {
d4a72f23 443 mutex_destroy(&dp->dp_blkstats->zab_lock);
79c76d5b 444 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
d4a72f23 445 }
34dc7c2f
BB
446 kmem_free(dp, sizeof (dsl_pool_t));
447}
448
a1d477c2
MA
449void
450dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
451{
452 uint64_t obj;
453 /*
454 * Currently, we only create the obsolete_bpobj where there are
455 * indirect vdevs with referenced mappings.
456 */
457 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
458 /* create and open the obsolete_bpobj */
459 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
460 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
461 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
462 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
463 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
464}
465
466void
467dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
468{
469 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
470 VERIFY0(zap_remove(dp->dp_meta_objset,
471 DMU_POOL_DIRECTORY_OBJECT,
472 DMU_POOL_OBSOLETE_BPOBJ, tx));
473 bpobj_free(dp->dp_meta_objset,
474 dp->dp_obsolete_bpobj.bpo_object, tx);
475 bpobj_close(&dp->dp_obsolete_bpobj);
476}
477
34dc7c2f 478dsl_pool_t *
b5256303
TC
479dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp,
480 uint64_t txg)
34dc7c2f
BB
481{
482 int err;
483 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
484 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
0a108631 485#ifdef _KERNEL
486 objset_t *os;
487#else
488 objset_t *os __attribute__((unused));
489#endif
b128c09f 490 dsl_dataset_t *ds;
428870ff 491 uint64_t obj;
b128c09f 492
13fe0198
MA
493 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
494
b128c09f 495 /* create and open the MOS (meta-objset) */
428870ff
BB
496 dp->dp_meta_objset = dmu_objset_create_impl(spa,
497 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
b5256303 498 spa->spa_meta_objset = dp->dp_meta_objset;
34dc7c2f
BB
499
500 /* create the pool directory */
501 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
502 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
c99c9001 503 ASSERT0(err);
34dc7c2f 504
428870ff 505 /* Initialize scan structures */
13fe0198 506 VERIFY0(dsl_scan_init(dp, txg));
428870ff 507
34dc7c2f 508 /* create and open the root dir */
b128c09f 509 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
13fe0198 510 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
34dc7c2f
BB
511 NULL, dp, &dp->dp_root_dir));
512
513 /* create and open the meta-objset dir */
b128c09f 514 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
13fe0198 515 VERIFY0(dsl_pool_open_special_dir(dp,
b128c09f
BB
516 MOS_DIR_NAME, &dp->dp_mos_dir));
517
428870ff
BB
518 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
519 /* create and open the free dir */
520 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
521 FREE_DIR_NAME, tx);
13fe0198 522 VERIFY0(dsl_pool_open_special_dir(dp,
428870ff
BB
523 FREE_DIR_NAME, &dp->dp_free_dir));
524
525 /* create and open the free_bplist */
f1512ee6 526 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
428870ff
BB
527 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
528 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
13fe0198 529 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
428870ff
BB
530 dp->dp_meta_objset, obj));
531 }
532
b128c09f
BB
533 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
534 dsl_pool_create_origin(dp, tx);
535
b5256303
TC
536 /*
537 * Some features may be needed when creating the root dataset, so we
538 * create the feature objects here.
539 */
540 if (spa_version(spa) >= SPA_VERSION_FEATURES)
541 spa_feature_create_zap_objects(spa, tx);
542
543 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
544 dcp->cp_crypt != ZIO_CRYPT_INHERIT)
545 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
546
b128c09f 547 /* create the root dataset */
b5256303 548 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
b128c09f
BB
549
550 /* create the root objset */
52ce99dd
TC
551 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
552 DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
0a108631 553 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
554 os = dmu_objset_create_impl(dp->dp_spa, ds,
555 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
556 rrw_exit(&ds->ds_bp_rwlock, FTAG);
b128c09f 557#ifdef _KERNEL
0a108631 558 zfs_create_fs(os, kcred, zplprops, tx);
b128c09f 559#endif
52ce99dd 560 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
34dc7c2f
BB
561
562 dmu_tx_commit(tx);
563
13fe0198
MA
564 rrw_exit(&dp->dp_config_rwlock, FTAG);
565
34dc7c2f
BB
566 return (dp);
567}
568
29809a6c
MA
569/*
570 * Account for the meta-objset space in its placeholder dsl_dir.
571 */
572void
573dsl_pool_mos_diduse_space(dsl_pool_t *dp,
574 int64_t used, int64_t comp, int64_t uncomp)
575{
576 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
577 mutex_enter(&dp->dp_lock);
578 dp->dp_mos_used_delta += used;
579 dp->dp_mos_compressed_delta += comp;
580 dp->dp_mos_uncompressed_delta += uncomp;
581 mutex_exit(&dp->dp_lock);
582}
583
e8b96c60
MA
584static void
585dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
586{
587 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
588 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
589 VERIFY0(zio_wait(zio));
ba67d821
MA
590 dmu_objset_sync_done(dp->dp_meta_objset, tx);
591 taskq_wait(dp->dp_sync_taskq);
ffdf019c 592 multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
ba67d821 593
e8b96c60
MA
594 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
595 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
596}
597
598static void
599dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
600{
601 ASSERT(MUTEX_HELD(&dp->dp_lock));
602
603 if (delta < 0)
604 ASSERT3U(-delta, <=, dp->dp_dirty_total);
605
606 dp->dp_dirty_total += delta;
607
608 /*
609 * Note: we signal even when increasing dp_dirty_total.
610 * This ensures forward progress -- each thread wakes the next waiter.
611 */
c0c8cc7b 612 if (dp->dp_dirty_total < zfs_dirty_data_max)
e8b96c60
MA
613 cv_signal(&dp->dp_spaceavail_cv);
614}
615
a7bd20e3
KJ
616void
617dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
618{
619 ASSERT3S(size, >=, 0);
620
621 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
622 aggsum_add(&dp->dp_wrlog_total, size);
623
624 /* Choose a value slightly bigger than min dirty sync bytes */
625 uint64_t sync_min =
626 zfs_dirty_data_max * (zfs_dirty_data_sync_percent + 10) / 100;
627 if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
628 txg_kick(dp, txg);
629}
630
631boolean_t
632dsl_pool_wrlog_over_max(dsl_pool_t *dp)
633{
634 return (aggsum_compare(&dp->dp_wrlog_total, zfs_wrlog_data_max) > 0);
635}
636
637static void
638dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
639{
640 int64_t delta;
641 delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
642 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
643 aggsum_add(&dp->dp_wrlog_total, delta);
644}
645
d2734cce
SD
646#ifdef ZFS_DEBUG
647static boolean_t
648dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
649{
650 spa_t *spa = dp->dp_spa;
651 vdev_t *rvd = spa->spa_root_vdev;
652
653 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
654 vdev_t *vd = rvd->vdev_child[c];
655 txg_list_t *tl = &vd->vdev_ms_list;
656 metaslab_t *ms;
657
658 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
659 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
660 VERIFY(range_tree_is_empty(ms->ms_freeing));
661 VERIFY(range_tree_is_empty(ms->ms_checkpointing));
662 }
663 }
664
665 return (B_TRUE);
666}
667#endif
668
34dc7c2f
BB
669void
670dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
671{
672 zio_t *zio;
673 dmu_tx_t *tx;
674 dsl_dir_t *dd;
675 dsl_dataset_t *ds;
428870ff 676 objset_t *mos = dp->dp_meta_objset;
29809a6c
MA
677 list_t synced_datasets;
678
679 list_create(&synced_datasets, sizeof (dsl_dataset_t),
680 offsetof(dsl_dataset_t, ds_synced_link));
34dc7c2f
BB
681
682 tx = dmu_tx_create_assigned(dp, txg);
683
d2734cce
SD
684 /*
685 * Run all early sync tasks before writing out any dirty blocks.
686 * For more info on early sync tasks see block comment in
687 * dsl_early_sync_task().
688 */
689 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
690 dsl_sync_task_t *dst;
691
692 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
693 while ((dst =
694 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
695 ASSERT(dsl_early_sync_task_verify(dp, txg));
696 dsl_sync_task_sync(dst, tx);
697 }
698 ASSERT(dsl_early_sync_task_verify(dp, txg));
699 }
700
e8b96c60
MA
701 /*
702 * Write out all dirty blocks of dirty datasets.
703 */
34dc7c2f 704 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
e8b96c60 705 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
9babb374
BB
706 /*
707 * We must not sync any non-MOS datasets twice, because
708 * we may have taken a snapshot of them. However, we
709 * may sync newly-created datasets on pass 2.
710 */
711 ASSERT(!list_link_active(&ds->ds_synced_link));
29809a6c 712 list_insert_tail(&synced_datasets, ds);
34dc7c2f
BB
713 dsl_dataset_sync(ds, zio, tx);
714 }
e8b96c60 715 VERIFY0(zio_wait(zio));
9babb374 716
539d33c7
GM
717 /*
718 * Update the long range free counter after
719 * we're done syncing user data
720 */
721 mutex_enter(&dp->dp_lock);
722 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
723 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
724 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
725 mutex_exit(&dp->dp_lock);
726
29809a6c
MA
727 /*
728 * After the data blocks have been written (ensured by the zio_wait()
9c5167d1 729 * above), update the user/group/project space accounting. This happens
64fc7762
MA
730 * in tasks dispatched to dp_sync_taskq, so wait for them before
731 * continuing.
29809a6c 732 */
e8b96c60
MA
733 for (ds = list_head(&synced_datasets); ds != NULL;
734 ds = list_next(&synced_datasets, ds)) {
ba67d821 735 dmu_objset_sync_done(ds->ds_objset, tx);
e8b96c60 736 }
64fc7762 737 taskq_wait(dp->dp_sync_taskq);
9babb374
BB
738
739 /*
740 * Sync the datasets again to push out the changes due to
428870ff 741 * userspace updates. This must be done before we process the
29809a6c
MA
742 * sync tasks, so that any snapshots will have the correct
743 * user accounting information (and we won't get confused
744 * about which blocks are part of the snapshot).
9babb374
BB
745 */
746 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
e8b96c60 747 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
52ce99dd
TC
748 objset_t *os = ds->ds_objset;
749
9babb374
BB
750 ASSERT(list_link_active(&ds->ds_synced_link));
751 dmu_buf_rele(ds->ds_dbuf, ds);
752 dsl_dataset_sync(ds, zio, tx);
52ce99dd
TC
753
754 /*
755 * Release any key mappings created by calls to
756 * dsl_dataset_dirty() from the userquota accounting
757 * code paths.
758 */
759 if (os->os_encrypted && !os->os_raw_receive &&
760 !os->os_next_write_raw[txg & TXG_MASK]) {
761 ASSERT3P(ds->ds_key_mapping, !=, NULL);
762 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
763 }
9babb374 764 }
e8b96c60 765 VERIFY0(zio_wait(zio));
9babb374 766
428870ff 767 /*
29809a6c
MA
768 * Now that the datasets have been completely synced, we can
769 * clean up our in-memory structures accumulated while syncing:
770 *
37f03da8
SH
771 * - move dead blocks from the pending deadlist and livelists
772 * to the on-disk versions
29809a6c 773 * - release hold from dsl_dataset_dirty()
52ce99dd 774 * - release key mapping hold from dsl_dataset_dirty()
428870ff 775 */
e8b96c60 776 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
52ce99dd
TC
777 objset_t *os = ds->ds_objset;
778
779 if (os->os_encrypted && !os->os_raw_receive &&
780 !os->os_next_write_raw[txg & TXG_MASK]) {
781 ASSERT3P(ds->ds_key_mapping, !=, NULL);
782 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
783 }
784
0efd9791 785 dsl_dataset_sync_done(ds, tx);
428870ff
BB
786 }
787
e8b96c60 788 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
34dc7c2f 789 dsl_dir_sync(dd, tx);
e8b96c60 790 }
b128c09f 791
29809a6c
MA
792 /*
793 * The MOS's space is accounted for in the pool/$MOS
794 * (dp_mos_dir). We can't modify the mos while we're syncing
795 * it, so we remember the deltas and apply them here.
796 */
797 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
798 dp->dp_mos_uncompressed_delta != 0) {
799 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
800 dp->dp_mos_used_delta,
801 dp->dp_mos_compressed_delta,
802 dp->dp_mos_uncompressed_delta, tx);
803 dp->dp_mos_used_delta = 0;
804 dp->dp_mos_compressed_delta = 0;
805 dp->dp_mos_uncompressed_delta = 0;
806 }
807
93e28d66 808 if (dmu_objset_is_dirty(mos, txg)) {
e8b96c60 809 dsl_pool_sync_mos(dp, tx);
34dc7c2f
BB
810 }
811
0f8ff49e
SD
812 /*
813 * We have written all of the accounted dirty data, so our
814 * dp_space_towrite should now be zero. However, some seldom-used
815 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
816 * the accounting of any dirtied space now.
817 *
818 * Note that, besides any dirty data from datasets, the amount of
819 * dirty data in the MOS is also accounted by the pool. Therefore,
820 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
821 * attempt to update the accounting for the same dirty data twice.
822 * (i.e. at this point we only update the accounting for the space
823 * that we know that we "leaked").
824 */
825 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
826
29809a6c
MA
827 /*
828 * If we modify a dataset in the same txg that we want to destroy it,
829 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
830 * dsl_dir_destroy_check() will fail if there are unexpected holds.
831 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
832 * and clearing the hold on it) before we process the sync_tasks.
833 * The MOS data dirtied by the sync_tasks will be synced on the next
834 * pass.
835 */
29809a6c 836 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
13fe0198 837 dsl_sync_task_t *dst;
29809a6c
MA
838 /*
839 * No more sync tasks should have been added while we
840 * were syncing.
841 */
e8b96c60
MA
842 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
843 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
13fe0198 844 dsl_sync_task_sync(dst, tx);
29809a6c
MA
845 }
846
34dc7c2f 847 dmu_tx_commit(tx);
b128c09f 848
e8b96c60 849 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
34dc7c2f
BB
850}
851
852void
428870ff 853dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
34dc7c2f 854{
29809a6c 855 zilog_t *zilog;
34dc7c2f 856
55922e73 857 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
e8b96c60 858 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
55922e73
GW
859 /*
860 * We don't remove the zilog from the dp_dirty_zilogs
861 * list until after we've cleaned it. This ensures that
862 * callers of zilog_is_dirty() receive an accurate
863 * answer when they are racing with the spa sync thread.
864 */
29809a6c 865 zil_clean(zilog, txg);
55922e73 866 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
29809a6c
MA
867 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
868 dmu_buf_rele(ds->ds_dbuf, zilog);
34dc7c2f 869 }
a7bd20e3
KJ
870
871 dsl_pool_wrlog_clear(dp, txg);
872
428870ff 873 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
34dc7c2f
BB
874}
875
876/*
877 * TRUE if the current thread is the tx_sync_thread or if we
878 * are being called from SPA context during pool initialization.
879 */
880int
881dsl_pool_sync_context(dsl_pool_t *dp)
882{
883 return (curthread == dp->dp_tx.tx_sync_thread ||
64fc7762
MA
884 spa_is_initializing(dp->dp_spa) ||
885 taskq_member(dp->dp_sync_taskq, curthread));
34dc7c2f
BB
886}
887
d2734cce
SD
888/*
889 * This function returns the amount of allocatable space in the pool
890 * minus whatever space is currently reserved by ZFS for specific
891 * purposes. Specifically:
892 *
893 * 1] Any reserved SLOP space
894 * 2] Any space used by the checkpoint
895 * 3] Any space used for deferred frees
896 *
897 * The latter 2 are especially important because they are needed to
898 * rectify the SPA's and DMU's different understanding of how much space
899 * is used. Now the DMU is aware of that extra space tracked by the SPA
900 * without having to maintain a separate special dir (e.g similar to
901 * $MOS, $FREEING, and $LEAKED).
902 *
903 * Note: By deferred frees here, we mean the frees that were deferred
904 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
905 * segments placed in ms_defer trees during metaslab_sync_done().
906 */
34dc7c2f 907uint64_t
d2734cce 908dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
34dc7c2f 909{
d2734cce
SD
910 spa_t *spa = dp->dp_spa;
911 uint64_t space, resv, adjustedsize;
912 uint64_t spa_deferred_frees =
913 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
914
915 space = spa_get_dspace(spa)
916 - spa_get_checkpoint_space(spa) - spa_deferred_frees;
917 resv = spa_get_slop_space(spa);
918
919 switch (slop_policy) {
920 case ZFS_SPACE_CHECK_NORMAL:
921 break;
922 case ZFS_SPACE_CHECK_RESERVED:
34dc7c2f 923 resv >>= 1;
d2734cce
SD
924 break;
925 case ZFS_SPACE_CHECK_EXTRA_RESERVED:
926 resv >>= 2;
927 break;
928 case ZFS_SPACE_CHECK_NONE:
929 resv = 0;
930 break;
931 default:
932 panic("invalid slop policy value: %d", slop_policy);
933 break;
934 }
935 adjustedsize = (space >= resv) ? (space - resv) : 0;
34dc7c2f 936
d2734cce
SD
937 return (adjustedsize);
938}
939
940uint64_t
941dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
942{
943 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
944 uint64_t deferred =
945 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
946 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
947 return (quota);
34dc7c2f
BB
948}
949
e8b96c60
MA
950boolean_t
951dsl_pool_need_dirty_delay(dsl_pool_t *dp)
34dc7c2f 952{
e8b96c60
MA
953 uint64_t delay_min_bytes =
954 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
34dc7c2f 955
e8b96c60 956 mutex_enter(&dp->dp_lock);
50e09edd 957 uint64_t dirty = dp->dp_dirty_total;
e8b96c60 958 mutex_exit(&dp->dp_lock);
50e09edd 959
48be0dfb 960 return (dirty > delay_min_bytes);
34dc7c2f
BB
961}
962
50e09edd
KJ
963static boolean_t
964dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
965{
966 ASSERT(MUTEX_HELD(&dp->dp_lock));
967
968 uint64_t dirty_min_bytes =
969 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
970 uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
971
972 return (dirty > dirty_min_bytes);
973}
974
34dc7c2f 975void
e8b96c60 976dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
34dc7c2f 977{
e8b96c60
MA
978 if (space > 0) {
979 mutex_enter(&dp->dp_lock);
980 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
981 dsl_pool_dirty_delta(dp, space);
50e09edd
KJ
982 boolean_t needsync = !dmu_tx_is_syncing(tx) &&
983 dsl_pool_need_dirty_sync(dp, tx->tx_txg);
e8b96c60 984 mutex_exit(&dp->dp_lock);
50e09edd
KJ
985
986 if (needsync)
987 txg_kick(dp, tx->tx_txg);
e8b96c60 988 }
34dc7c2f
BB
989}
990
991void
e8b96c60 992dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
34dc7c2f 993{
e8b96c60
MA
994 ASSERT3S(space, >=, 0);
995 if (space == 0)
34dc7c2f
BB
996 return;
997
e8b96c60
MA
998 mutex_enter(&dp->dp_lock);
999 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
1000 /* XXX writing something we didn't dirty? */
1001 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
34dc7c2f 1002 }
e8b96c60
MA
1003 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
1004 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
1005 ASSERT3U(dp->dp_dirty_total, >=, space);
1006 dsl_pool_dirty_delta(dp, -space);
1007 mutex_exit(&dp->dp_lock);
34dc7c2f 1008}
b128c09f
BB
1009
1010/* ARGSUSED */
1011static int
13fe0198 1012upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
b128c09f
BB
1013{
1014 dmu_tx_t *tx = arg;
1015 dsl_dataset_t *ds, *prev = NULL;
1016 int err;
b128c09f 1017
13fe0198 1018 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
b128c09f
BB
1019 if (err)
1020 return (err);
1021
d683ddbb
JG
1022 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
1023 err = dsl_dataset_hold_obj(dp,
1024 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
b128c09f
BB
1025 if (err) {
1026 dsl_dataset_rele(ds, FTAG);
1027 return (err);
1028 }
1029
d683ddbb 1030 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
b128c09f
BB
1031 break;
1032 dsl_dataset_rele(ds, FTAG);
1033 ds = prev;
1034 prev = NULL;
1035 }
1036
1037 if (prev == NULL) {
1038 prev = dp->dp_origin_snap;
1039
1040 /*
1041 * The $ORIGIN can't have any data, or the accounting
1042 * will be wrong.
1043 */
cc9bb3e5 1044 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
d683ddbb 1045 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
cc9bb3e5 1046 rrw_exit(&ds->ds_bp_rwlock, FTAG);
b128c09f
BB
1047
1048 /* The origin doesn't get attached to itself */
1049 if (ds->ds_object == prev->ds_object) {
1050 dsl_dataset_rele(ds, FTAG);
1051 return (0);
1052 }
1053
1054 dmu_buf_will_dirty(ds->ds_dbuf, tx);
d683ddbb
JG
1055 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
1056 dsl_dataset_phys(ds)->ds_prev_snap_txg =
1057 dsl_dataset_phys(prev)->ds_creation_txg;
b128c09f
BB
1058
1059 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
d683ddbb 1060 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
b128c09f
BB
1061
1062 dmu_buf_will_dirty(prev->ds_dbuf, tx);
d683ddbb 1063 dsl_dataset_phys(prev)->ds_num_children++;
b128c09f 1064
d683ddbb 1065 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
b128c09f 1066 ASSERT(ds->ds_prev == NULL);
13fe0198 1067 VERIFY0(dsl_dataset_hold_obj(dp,
d683ddbb
JG
1068 dsl_dataset_phys(ds)->ds_prev_snap_obj,
1069 ds, &ds->ds_prev));
b128c09f
BB
1070 }
1071 }
1072
d683ddbb
JG
1073 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1074 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
b128c09f 1075
d683ddbb 1076 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
428870ff 1077 dmu_buf_will_dirty(prev->ds_dbuf, tx);
d683ddbb 1078 dsl_dataset_phys(prev)->ds_next_clones_obj =
b128c09f
BB
1079 zap_create(dp->dp_meta_objset,
1080 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1081 }
13fe0198 1082 VERIFY0(zap_add_int(dp->dp_meta_objset,
d683ddbb 1083 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
b128c09f
BB
1084
1085 dsl_dataset_rele(ds, FTAG);
1086 if (prev != dp->dp_origin_snap)
1087 dsl_dataset_rele(prev, FTAG);
1088 return (0);
1089}
1090
1091void
1092dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1093{
1094 ASSERT(dmu_tx_is_syncing(tx));
1095 ASSERT(dp->dp_origin_snap != NULL);
1096
13fe0198 1097 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
9c43027b 1098 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
428870ff
BB
1099}
1100
1101/* ARGSUSED */
1102static int
13fe0198 1103upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
428870ff
BB
1104{
1105 dmu_tx_t *tx = arg;
428870ff
BB
1106 objset_t *mos = dp->dp_meta_objset;
1107
d683ddbb 1108 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
428870ff
BB
1109 dsl_dataset_t *origin;
1110
13fe0198 1111 VERIFY0(dsl_dataset_hold_obj(dp,
d683ddbb 1112 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
428870ff 1113
d683ddbb 1114 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
428870ff 1115 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
d683ddbb
JG
1116 dsl_dir_phys(origin->ds_dir)->dd_clones =
1117 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1118 0, tx);
428870ff
BB
1119 }
1120
13fe0198 1121 VERIFY0(zap_add_int(dp->dp_meta_objset,
d683ddbb
JG
1122 dsl_dir_phys(origin->ds_dir)->dd_clones,
1123 ds->ds_object, tx));
428870ff
BB
1124
1125 dsl_dataset_rele(origin, FTAG);
1126 }
428870ff
BB
1127 return (0);
1128}
1129
1130void
1131dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1132{
428870ff
BB
1133 uint64_t obj;
1134
d6320ddb
BB
1135 ASSERT(dmu_tx_is_syncing(tx));
1136
428870ff 1137 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
13fe0198 1138 VERIFY0(dsl_pool_open_special_dir(dp,
428870ff
BB
1139 FREE_DIR_NAME, &dp->dp_free_dir));
1140
1141 /*
1142 * We can't use bpobj_alloc(), because spa_version() still
1143 * returns the old version, and we need a new-version bpobj with
1144 * subobj support. So call dmu_object_alloc() directly.
1145 */
1146 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
f1512ee6 1147 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
13fe0198 1148 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
428870ff 1149 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
13fe0198 1150 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
428870ff 1151
13fe0198 1152 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
9c43027b 1153 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
b128c09f
BB
1154}
1155
1156void
1157dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1158{
1159 uint64_t dsobj;
1160 dsl_dataset_t *ds;
1161
1162 ASSERT(dmu_tx_is_syncing(tx));
1163 ASSERT(dp->dp_origin_snap == NULL);
13fe0198 1164 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
b128c09f
BB
1165
1166 /* create the origin dir, ds, & snap-ds */
b128c09f 1167 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
b5256303 1168 NULL, 0, kcred, NULL, tx);
13fe0198
MA
1169 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1170 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
d683ddbb 1171 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
b128c09f
BB
1172 dp, &dp->dp_origin_snap));
1173 dsl_dataset_rele(ds, FTAG);
b128c09f 1174}
9babb374
BB
1175
1176taskq_t *
657ce253 1177dsl_pool_zrele_taskq(dsl_pool_t *dp)
9babb374 1178{
657ce253 1179 return (dp->dp_zrele_taskq);
9babb374 1180}
428870ff 1181
dcec0a12
AP
1182taskq_t *
1183dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1184{
1185 return (dp->dp_unlinked_drain_taskq);
1186}
1187
428870ff
BB
1188/*
1189 * Walk through the pool-wide zap object of temporary snapshot user holds
1190 * and release them.
1191 */
1192void
1193dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1194{
1195 zap_attribute_t za;
1196 zap_cursor_t zc;
1197 objset_t *mos = dp->dp_meta_objset;
1198 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
95fd54a1 1199 nvlist_t *holds;
428870ff
BB
1200
1201 if (zapobj == 0)
1202 return;
1203 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1204
95fd54a1
SH
1205 holds = fnvlist_alloc();
1206
428870ff
BB
1207 for (zap_cursor_init(&zc, mos, zapobj);
1208 zap_cursor_retrieve(&zc, &za) == 0;
1209 zap_cursor_advance(&zc)) {
1210 char *htag;
95fd54a1 1211 nvlist_t *tags;
428870ff
BB
1212
1213 htag = strchr(za.za_name, '-');
1214 *htag = '\0';
1215 ++htag;
95fd54a1
SH
1216 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1217 tags = fnvlist_alloc();
1218 fnvlist_add_boolean(tags, htag);
1219 fnvlist_add_nvlist(holds, za.za_name, tags);
1220 fnvlist_free(tags);
1221 } else {
1222 fnvlist_add_boolean(tags, htag);
1223 }
428870ff 1224 }
95fd54a1
SH
1225 dsl_dataset_user_release_tmp(dp, holds);
1226 fnvlist_free(holds);
428870ff
BB
1227 zap_cursor_fini(&zc);
1228}
1229
1230/*
1231 * Create the pool-wide zap object for storing temporary snapshot holds.
1232 */
65c7cc49 1233static void
428870ff
BB
1234dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1235{
1236 objset_t *mos = dp->dp_meta_objset;
1237
1238 ASSERT(dp->dp_tmp_userrefs_obj == 0);
1239 ASSERT(dmu_tx_is_syncing(tx));
1240
9ae529ec
CS
1241 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1242 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
428870ff
BB
1243}
1244
1245static int
1246dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
13fe0198 1247 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
428870ff
BB
1248{
1249 objset_t *mos = dp->dp_meta_objset;
1250 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1251 char *name;
1252 int error;
1253
1254 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1255 ASSERT(dmu_tx_is_syncing(tx));
1256
1257 /*
1258 * If the pool was created prior to SPA_VERSION_USERREFS, the
1259 * zap object for temporary holds might not exist yet.
1260 */
1261 if (zapobj == 0) {
1262 if (holding) {
1263 dsl_pool_user_hold_create_obj(dp, tx);
1264 zapobj = dp->dp_tmp_userrefs_obj;
1265 } else {
2e528b49 1266 return (SET_ERROR(ENOENT));
428870ff
BB
1267 }
1268 }
1269
1270 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1271 if (holding)
13fe0198 1272 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
428870ff
BB
1273 else
1274 error = zap_remove(mos, zapobj, name, tx);
e4f5fa12 1275 kmem_strfree(name);
428870ff
BB
1276
1277 return (error);
1278}
1279
1280/*
1281 * Add a temporary hold for the given dataset object and tag.
1282 */
1283int
1284dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
13fe0198 1285 uint64_t now, dmu_tx_t *tx)
428870ff
BB
1286{
1287 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1288}
1289
1290/*
1291 * Release a temporary hold for the given dataset object and tag.
1292 */
1293int
1294dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1295 dmu_tx_t *tx)
1296{
13fe0198 1297 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
428870ff
BB
1298 tx, B_FALSE));
1299}
c409e464 1300
13fe0198
MA
1301/*
1302 * DSL Pool Configuration Lock
1303 *
1304 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1305 * creation / destruction / rename / property setting). It must be held for
1306 * read to hold a dataset or dsl_dir. I.e. you must call
1307 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1308 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1309 * must be held continuously until all datasets and dsl_dirs are released.
1310 *
1311 * The only exception to this rule is that if a "long hold" is placed on
1312 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1313 * is still held. The long hold will prevent the dataset from being
1314 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1315 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1316 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1317 *
1318 * Legitimate long-holders (including owners) should be long-running, cancelable
1319 * tasks that should cause "zfs destroy" to fail. This includes DMU
1320 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1321 * "zfs send", and "zfs diff". There are several other long-holders whose
1322 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1323 *
1324 * The usual formula for long-holding would be:
1325 * dsl_pool_hold()
1326 * dsl_dataset_hold()
1327 * ... perform checks ...
1328 * dsl_dataset_long_hold()
1329 * dsl_pool_rele()
1330 * ... perform long-running task ...
1331 * dsl_dataset_long_rele()
1332 * dsl_dataset_rele()
1333 *
1334 * Note that when the long hold is released, the dataset is still held but
1335 * the pool is not held. The dataset may change arbitrarily during this time
1336 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1337 * dataset except release it.
1338 *
49c482fd
CS
1339 * Operations generally fall somewhere into the following taxonomy:
1340 *
1341 * Read-Only Modifying
1342 *
1343 * Dataset Layer / MOS zfs get zfs destroy
1344 *
1345 * Individual Dataset read() write()
1346 *
1347 *
1348 * Dataset Layer Operations
13fe0198
MA
1349 *
1350 * Modifying operations should generally use dsl_sync_task(). The synctask
1351 * infrastructure enforces proper locking strategy with respect to the
1352 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1353 *
1354 * Read-only operations will manually hold the pool, then the dataset, obtain
1355 * information from the dataset, then release the pool and dataset.
1356 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1357 * hold/rele.
49c482fd
CS
1358 *
1359 *
1360 * Operations On Individual Datasets
1361 *
1362 * Objects _within_ an objset should only be modified by the current 'owner'
1363 * of the objset to prevent incorrect concurrent modification. Thus, use
1364 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1365 * and fail with EBUSY if there is already an owner. The owner can then
1366 * implement its own locking strategy, independent of the dataset layer's
1367 * locking infrastructure.
1368 * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1369 * vnop will not reach into the dataset layer).
1370 *
1371 * Ideally, objects would also only be read by the objset’s owner, so that we
1372 * don’t observe state mid-modification.
1373 * (E.g. the ZPL is creating a new object and linking it into a directory; if
1374 * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
1375 * intermediate state. The ioctl level violates this but in pretty benign
1376 * ways, e.g. reading the zpl props object.)
13fe0198
MA
1377 */
1378
1379int
1380dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1381{
1382 spa_t *spa;
1383 int error;
1384
1385 error = spa_open(name, &spa, tag);
1386 if (error == 0) {
1387 *dp = spa_get_dsl(spa);
1388 dsl_pool_config_enter(*dp, tag);
1389 }
1390 return (error);
1391}
1392
1393void
1394dsl_pool_rele(dsl_pool_t *dp, void *tag)
1395{
1396 dsl_pool_config_exit(dp, tag);
1397 spa_close(dp->dp_spa, tag);
1398}
1399
1400void
1401dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1402{
1403 /*
1404 * We use a "reentrant" reader-writer lock, but not reentrantly.
1405 *
1406 * The rrwlock can (with the track_all flag) track all reading threads,
1407 * which is very useful for debugging which code path failed to release
1408 * the lock, and for verifying that the *current* thread does hold
1409 * the lock.
1410 *
1411 * (Unlike a rwlock, which knows that N threads hold it for
1412 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1413 * if any thread holds it for read, even if this thread doesn't).
1414 */
1415 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1416 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1417}
1418
5e8cd5d1
AJ
1419void
1420dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1421{
1422 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1423 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1424}
1425
13fe0198
MA
1426void
1427dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1428{
1429 rrw_exit(&dp->dp_config_rwlock, tag);
1430}
1431
1432boolean_t
1433dsl_pool_config_held(dsl_pool_t *dp)
1434{
1435 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1436}
1437
9c43027b
AJ
1438boolean_t
1439dsl_pool_config_held_writer(dsl_pool_t *dp)
1440{
1441 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1442}
1443
40a806df
NB
1444EXPORT_SYMBOL(dsl_pool_config_enter);
1445EXPORT_SYMBOL(dsl_pool_config_exit);
1446
02730c33 1447/* BEGIN CSTYLED */
d1d7e268 1448/* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
03fdcb9a
MM
1449ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, INT, ZMOD_RD,
1450 "Max percent of RAM allowed to be dirty");
c409e464 1451
d1d7e268 1452/* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
03fdcb9a 1453ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, INT, ZMOD_RD,
d1d7e268 1454 "zfs_dirty_data_max upper bound as % of RAM");
c409e464 1455
03fdcb9a
MM
1456ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, INT, ZMOD_RW,
1457 "Transaction delay threshold");
c409e464 1458
03fdcb9a
MM
1459ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, ULONG, ZMOD_RW,
1460 "Determines the dirty space limit");
c409e464 1461
a7bd20e3
KJ
1462ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, ULONG, ZMOD_RW,
1463 "The size limit of write-transaction zil log data");
1464
d1d7e268 1465/* zfs_dirty_data_max_max only applied at module load in arc_init(). */
03fdcb9a 1466ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, ULONG, ZMOD_RD,
d1d7e268 1467 "zfs_dirty_data_max upper bound in bytes");
c409e464 1468
03fdcb9a
MM
1469ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, INT, ZMOD_RW,
1470 "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
c409e464 1471
03fdcb9a
MM
1472ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, ULONG, ZMOD_RW,
1473 "How quickly delay approaches infinity");
64fc7762 1474
03fdcb9a
MM
1475ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW,
1476 "Max percent of CPUs that are used to sync dirty data");
a032ac4b 1477
03fdcb9a
MM
1478ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1479 "Max percent of CPUs that are used per dp_sync_taskq");
a032ac4b 1480
03fdcb9a
MM
1481ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1482 "Number of taskq entries that are pre-populated");
a032ac4b 1483
03fdcb9a
MM
1484ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1485 "Max number of taskq entries that are cached");
02730c33 1486/* END CSTYLED */