]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/metaslab.c
Fix atomic_sub_64() i386 assembly implementation
[mirror_zfs.git] / module / zfs / metaslab.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
4e21fd06 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
2e528b49 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
34dc7c2f
BB
25 */
26
34dc7c2f 27#include <sys/zfs_context.h>
34dc7c2f
BB
28#include <sys/dmu.h>
29#include <sys/dmu_tx.h>
30#include <sys/space_map.h>
31#include <sys/metaslab_impl.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio.h>
93cf2076 34#include <sys/spa_impl.h>
f3a7f661 35#include <sys/zfeature.h>
34dc7c2f 36
d1d7e268 37#define WITH_DF_BLOCK_ALLOCATOR
6d974228 38
3dfb57a3
DB
39#define GANG_ALLOCATION(flags) \
40 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
22c81dd8 41
e8fe6684
ED
42/*
43 * Metaslab granularity, in bytes. This is roughly similar to what would be
44 * referred to as the "stripe size" in traditional RAID arrays. In normal
45 * operation, we will try to write this amount of data to a top-level vdev
46 * before moving on to the next one.
47 */
99b14de4 48unsigned long metaslab_aliquot = 512 << 10;
e8fe6684 49
34dc7c2f
BB
50uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
51
e51be066
GW
52/*
53 * The in-core space map representation is more compact than its on-disk form.
54 * The zfs_condense_pct determines how much more compact the in-core
4e21fd06 55 * space map representation must be before we compact it on-disk.
e51be066
GW
56 * Values should be greater than or equal to 100.
57 */
58int zfs_condense_pct = 200;
59
b02fe35d
AR
60/*
61 * Condensing a metaslab is not guaranteed to actually reduce the amount of
62 * space used on disk. In particular, a space map uses data in increments of
96358617 63 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
b02fe35d
AR
64 * same number of blocks after condensing. Since the goal of condensing is to
65 * reduce the number of IOPs required to read the space map, we only want to
66 * condense when we can be sure we will reduce the number of blocks used by the
67 * space map. Unfortunately, we cannot precisely compute whether or not this is
68 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
69 * we apply the following heuristic: do not condense a spacemap unless the
70 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
71 * blocks.
72 */
73int zfs_metaslab_condense_block_threshold = 4;
74
ac72fac3
GW
75/*
76 * The zfs_mg_noalloc_threshold defines which metaslab groups should
77 * be eligible for allocation. The value is defined as a percentage of
f3a7f661 78 * free space. Metaslab groups that have more free space than
ac72fac3
GW
79 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
80 * a metaslab group's free space is less than or equal to the
81 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
82 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
83 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
84 * groups are allowed to accept allocations. Gang blocks are always
85 * eligible to allocate on any metaslab group. The default value of 0 means
86 * no metaslab group will be excluded based on this criterion.
87 */
88int zfs_mg_noalloc_threshold = 0;
6d974228 89
f3a7f661
GW
90/*
91 * Metaslab groups are considered eligible for allocations if their
92 * fragmenation metric (measured as a percentage) is less than or equal to
93 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
94 * then it will be skipped unless all metaslab groups within the metaslab
95 * class have also crossed this threshold.
96 */
97int zfs_mg_fragmentation_threshold = 85;
98
99/*
100 * Allow metaslabs to keep their active state as long as their fragmentation
101 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
102 * active metaslab that exceeds this threshold will no longer keep its active
103 * status allowing better metaslabs to be selected.
104 */
105int zfs_metaslab_fragmentation_threshold = 70;
106
428870ff 107/*
aa7d06a9 108 * When set will load all metaslabs when pool is first opened.
428870ff 109 */
aa7d06a9
GW
110int metaslab_debug_load = 0;
111
112/*
113 * When set will prevent metaslabs from being unloaded.
114 */
115int metaslab_debug_unload = 0;
428870ff 116
9babb374
BB
117/*
118 * Minimum size which forces the dynamic allocator to change
428870ff 119 * it's allocation strategy. Once the space map cannot satisfy
9babb374
BB
120 * an allocation of this size then it switches to using more
121 * aggressive strategy (i.e search by size rather than offset).
122 */
4e21fd06 123uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
9babb374
BB
124
125/*
126 * The minimum free space, in percent, which must be available
127 * in a space map to continue allocations in a first-fit fashion.
4e21fd06 128 * Once the space map's free space drops below this level we dynamically
9babb374
BB
129 * switch to using best-fit allocations.
130 */
428870ff
BB
131int metaslab_df_free_pct = 4;
132
428870ff 133/*
93cf2076 134 * Percentage of all cpus that can be used by the metaslab taskq.
428870ff 135 */
93cf2076 136int metaslab_load_pct = 50;
428870ff
BB
137
138/*
93cf2076
GW
139 * Determines how many txgs a metaslab may remain loaded without having any
140 * allocations from it. As long as a metaslab continues to be used we will
141 * keep it loaded.
428870ff 142 */
93cf2076 143int metaslab_unload_delay = TXG_SIZE * 2;
9babb374 144
93cf2076
GW
145/*
146 * Max number of metaslabs per group to preload.
147 */
148int metaslab_preload_limit = SPA_DVAS_PER_BP;
149
150/*
151 * Enable/disable preloading of metaslab.
152 */
f3a7f661 153int metaslab_preload_enabled = B_TRUE;
93cf2076
GW
154
155/*
f3a7f661 156 * Enable/disable fragmentation weighting on metaslabs.
93cf2076 157 */
f3a7f661 158int metaslab_fragmentation_factor_enabled = B_TRUE;
93cf2076 159
f3a7f661
GW
160/*
161 * Enable/disable lba weighting (i.e. outer tracks are given preference).
162 */
163int metaslab_lba_weighting_enabled = B_TRUE;
164
165/*
166 * Enable/disable metaslab group biasing.
167 */
168int metaslab_bias_enabled = B_TRUE;
169
4e21fd06
DB
170
171/*
172 * Enable/disable segment-based metaslab selection.
173 */
174int zfs_metaslab_segment_weight_enabled = B_TRUE;
175
176/*
177 * When using segment-based metaslab selection, we will continue
178 * allocating from the active metaslab until we have exhausted
179 * zfs_metaslab_switch_threshold of its buckets.
180 */
181int zfs_metaslab_switch_threshold = 2;
182
183/*
184 * Internal switch to enable/disable the metaslab allocation tracing
185 * facility.
186 */
187#ifdef _METASLAB_TRACING
188boolean_t metaslab_trace_enabled = B_TRUE;
189#endif
190
191/*
192 * Maximum entries that the metaslab allocation tracing facility will keep
193 * in a given list when running in non-debug mode. We limit the number
194 * of entries in non-debug mode to prevent us from using up too much memory.
195 * The limit should be sufficiently large that we don't expect any allocation
196 * to every exceed this value. In debug mode, the system will panic if this
197 * limit is ever reached allowing for further investigation.
198 */
199#ifdef _METASLAB_TRACING
200uint64_t metaslab_trace_max_entries = 5000;
201#endif
202
203static uint64_t metaslab_weight(metaslab_t *);
204static void metaslab_set_fragmentation(metaslab_t *);
205
206#ifdef _METASLAB_TRACING
207kmem_cache_t *metaslab_alloc_trace_cache;
208#endif
93cf2076 209
34dc7c2f
BB
210/*
211 * ==========================================================================
212 * Metaslab classes
213 * ==========================================================================
214 */
215metaslab_class_t *
93cf2076 216metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
34dc7c2f
BB
217{
218 metaslab_class_t *mc;
219
79c76d5b 220 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
34dc7c2f 221
428870ff 222 mc->mc_spa = spa;
34dc7c2f 223 mc->mc_rotor = NULL;
9babb374 224 mc->mc_ops = ops;
3dfb57a3
DB
225 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
226 refcount_create_tracked(&mc->mc_alloc_slots);
34dc7c2f
BB
227
228 return (mc);
229}
230
231void
232metaslab_class_destroy(metaslab_class_t *mc)
233{
428870ff
BB
234 ASSERT(mc->mc_rotor == NULL);
235 ASSERT(mc->mc_alloc == 0);
236 ASSERT(mc->mc_deferred == 0);
237 ASSERT(mc->mc_space == 0);
238 ASSERT(mc->mc_dspace == 0);
34dc7c2f 239
3dfb57a3
DB
240 refcount_destroy(&mc->mc_alloc_slots);
241 mutex_destroy(&mc->mc_lock);
34dc7c2f
BB
242 kmem_free(mc, sizeof (metaslab_class_t));
243}
244
428870ff
BB
245int
246metaslab_class_validate(metaslab_class_t *mc)
34dc7c2f 247{
428870ff
BB
248 metaslab_group_t *mg;
249 vdev_t *vd;
34dc7c2f 250
428870ff
BB
251 /*
252 * Must hold one of the spa_config locks.
253 */
254 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
255 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
34dc7c2f 256
428870ff
BB
257 if ((mg = mc->mc_rotor) == NULL)
258 return (0);
259
260 do {
261 vd = mg->mg_vd;
262 ASSERT(vd->vdev_mg != NULL);
263 ASSERT3P(vd->vdev_top, ==, vd);
264 ASSERT3P(mg->mg_class, ==, mc);
265 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
266 } while ((mg = mg->mg_next) != mc->mc_rotor);
267
268 return (0);
34dc7c2f
BB
269}
270
271void
428870ff
BB
272metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
273 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
34dc7c2f 274{
428870ff
BB
275 atomic_add_64(&mc->mc_alloc, alloc_delta);
276 atomic_add_64(&mc->mc_deferred, defer_delta);
277 atomic_add_64(&mc->mc_space, space_delta);
278 atomic_add_64(&mc->mc_dspace, dspace_delta);
279}
34dc7c2f 280
428870ff
BB
281uint64_t
282metaslab_class_get_alloc(metaslab_class_t *mc)
283{
284 return (mc->mc_alloc);
285}
34dc7c2f 286
428870ff
BB
287uint64_t
288metaslab_class_get_deferred(metaslab_class_t *mc)
289{
290 return (mc->mc_deferred);
291}
34dc7c2f 292
428870ff
BB
293uint64_t
294metaslab_class_get_space(metaslab_class_t *mc)
295{
296 return (mc->mc_space);
297}
34dc7c2f 298
428870ff
BB
299uint64_t
300metaslab_class_get_dspace(metaslab_class_t *mc)
301{
302 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
34dc7c2f
BB
303}
304
f3a7f661
GW
305void
306metaslab_class_histogram_verify(metaslab_class_t *mc)
307{
308 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
309 uint64_t *mc_hist;
310 int i, c;
311
312 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
313 return;
314
315 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 316 KM_SLEEP);
f3a7f661
GW
317
318 for (c = 0; c < rvd->vdev_children; c++) {
319 vdev_t *tvd = rvd->vdev_child[c];
320 metaslab_group_t *mg = tvd->vdev_mg;
321
322 /*
323 * Skip any holes, uninitialized top-levels, or
324 * vdevs that are not in this metalab class.
325 */
326 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
327 mg->mg_class != mc) {
328 continue;
329 }
330
331 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
332 mc_hist[i] += mg->mg_histogram[i];
333 }
334
335 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
336 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
337
338 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
339}
340
341/*
342 * Calculate the metaslab class's fragmentation metric. The metric
343 * is weighted based on the space contribution of each metaslab group.
344 * The return value will be a number between 0 and 100 (inclusive), or
345 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
346 * zfs_frag_table for more information about the metric.
347 */
348uint64_t
349metaslab_class_fragmentation(metaslab_class_t *mc)
350{
351 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
352 uint64_t fragmentation = 0;
353 int c;
354
355 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
356
357 for (c = 0; c < rvd->vdev_children; c++) {
358 vdev_t *tvd = rvd->vdev_child[c];
359 metaslab_group_t *mg = tvd->vdev_mg;
360
361 /*
362 * Skip any holes, uninitialized top-levels, or
363 * vdevs that are not in this metalab class.
364 */
365 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
366 mg->mg_class != mc) {
367 continue;
368 }
369
370 /*
371 * If a metaslab group does not contain a fragmentation
372 * metric then just bail out.
373 */
374 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
375 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
376 return (ZFS_FRAG_INVALID);
377 }
378
379 /*
380 * Determine how much this metaslab_group is contributing
381 * to the overall pool fragmentation metric.
382 */
383 fragmentation += mg->mg_fragmentation *
384 metaslab_group_get_space(mg);
385 }
386 fragmentation /= metaslab_class_get_space(mc);
387
388 ASSERT3U(fragmentation, <=, 100);
389 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
390 return (fragmentation);
391}
392
393/*
394 * Calculate the amount of expandable space that is available in
395 * this metaslab class. If a device is expanded then its expandable
396 * space will be the amount of allocatable space that is currently not
397 * part of this metaslab class.
398 */
399uint64_t
400metaslab_class_expandable_space(metaslab_class_t *mc)
401{
402 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
403 uint64_t space = 0;
404 int c;
405
406 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
407 for (c = 0; c < rvd->vdev_children; c++) {
408 vdev_t *tvd = rvd->vdev_child[c];
409 metaslab_group_t *mg = tvd->vdev_mg;
410
411 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
412 mg->mg_class != mc) {
413 continue;
414 }
415
416 space += tvd->vdev_max_asize - tvd->vdev_asize;
417 }
418 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
419 return (space);
420}
421
34dc7c2f
BB
422static int
423metaslab_compare(const void *x1, const void *x2)
424{
ee36c709
GN
425 const metaslab_t *m1 = (const metaslab_t *)x1;
426 const metaslab_t *m2 = (const metaslab_t *)x2;
34dc7c2f 427
ee36c709
GN
428 int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
429 if (likely(cmp))
430 return (cmp);
34dc7c2f 431
ee36c709 432 IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
34dc7c2f 433
ee36c709 434 return (AVL_CMP(m1->ms_start, m2->ms_start));
34dc7c2f
BB
435}
436
4e21fd06
DB
437/*
438 * Verify that the space accounting on disk matches the in-core range_trees.
439 */
440void
441metaslab_verify_space(metaslab_t *msp, uint64_t txg)
442{
443 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
444 uint64_t allocated = 0;
4e21fd06
DB
445 uint64_t sm_free_space, msp_free_space;
446 int t;
447
448 ASSERT(MUTEX_HELD(&msp->ms_lock));
449
450 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
451 return;
452
453 /*
454 * We can only verify the metaslab space when we're called
455 * from syncing context with a loaded metaslab that has an allocated
456 * space map. Calling this in non-syncing context does not
457 * provide a consistent view of the metaslab since we're performing
458 * allocations in the future.
459 */
460 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
461 !msp->ms_loaded)
462 return;
463
464 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
465 space_map_alloc_delta(msp->ms_sm);
466
467 /*
468 * Account for future allocations since we would have already
469 * deducted that space from the ms_freetree.
470 */
471 for (t = 0; t < TXG_CONCURRENT_STATES; t++) {
472 allocated +=
473 range_tree_space(msp->ms_alloctree[(txg + t) & TXG_MASK]);
474 }
4e21fd06
DB
475
476 msp_free_space = range_tree_space(msp->ms_tree) + allocated +
258553d3 477 msp->ms_deferspace + range_tree_space(msp->ms_freedtree);
4e21fd06
DB
478
479 VERIFY3U(sm_free_space, ==, msp_free_space);
480}
481
482/*
483 * ==========================================================================
484 * Metaslab groups
485 * ==========================================================================
486 */
ac72fac3
GW
487/*
488 * Update the allocatable flag and the metaslab group's capacity.
489 * The allocatable flag is set to true if the capacity is below
3dfb57a3
DB
490 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
491 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
492 * transitions from allocatable to non-allocatable or vice versa then the
493 * metaslab group's class is updated to reflect the transition.
ac72fac3
GW
494 */
495static void
496metaslab_group_alloc_update(metaslab_group_t *mg)
497{
498 vdev_t *vd = mg->mg_vd;
499 metaslab_class_t *mc = mg->mg_class;
500 vdev_stat_t *vs = &vd->vdev_stat;
501 boolean_t was_allocatable;
3dfb57a3 502 boolean_t was_initialized;
ac72fac3
GW
503
504 ASSERT(vd == vd->vdev_top);
505
506 mutex_enter(&mg->mg_lock);
507 was_allocatable = mg->mg_allocatable;
3dfb57a3 508 was_initialized = mg->mg_initialized;
ac72fac3
GW
509
510 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
511 (vs->vs_space + 1);
512
3dfb57a3
DB
513 mutex_enter(&mc->mc_lock);
514
515 /*
516 * If the metaslab group was just added then it won't
517 * have any space until we finish syncing out this txg.
518 * At that point we will consider it initialized and available
519 * for allocations. We also don't consider non-activated
520 * metaslab groups (e.g. vdevs that are in the middle of being removed)
521 * to be initialized, because they can't be used for allocation.
522 */
523 mg->mg_initialized = metaslab_group_initialized(mg);
524 if (!was_initialized && mg->mg_initialized) {
525 mc->mc_groups++;
526 } else if (was_initialized && !mg->mg_initialized) {
527 ASSERT3U(mc->mc_groups, >, 0);
528 mc->mc_groups--;
529 }
530 if (mg->mg_initialized)
531 mg->mg_no_free_space = B_FALSE;
532
f3a7f661
GW
533 /*
534 * A metaslab group is considered allocatable if it has plenty
535 * of free space or is not heavily fragmented. We only take
536 * fragmentation into account if the metaslab group has a valid
537 * fragmentation metric (i.e. a value between 0 and 100).
538 */
3dfb57a3
DB
539 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
540 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
f3a7f661
GW
541 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
542 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
ac72fac3
GW
543
544 /*
545 * The mc_alloc_groups maintains a count of the number of
546 * groups in this metaslab class that are still above the
547 * zfs_mg_noalloc_threshold. This is used by the allocating
548 * threads to determine if they should avoid allocations to
549 * a given group. The allocator will avoid allocations to a group
550 * if that group has reached or is below the zfs_mg_noalloc_threshold
551 * and there are still other groups that are above the threshold.
552 * When a group transitions from allocatable to non-allocatable or
553 * vice versa we update the metaslab class to reflect that change.
554 * When the mc_alloc_groups value drops to 0 that means that all
555 * groups have reached the zfs_mg_noalloc_threshold making all groups
556 * eligible for allocations. This effectively means that all devices
557 * are balanced again.
558 */
559 if (was_allocatable && !mg->mg_allocatable)
560 mc->mc_alloc_groups--;
561 else if (!was_allocatable && mg->mg_allocatable)
562 mc->mc_alloc_groups++;
3dfb57a3 563 mutex_exit(&mc->mc_lock);
f3a7f661 564
ac72fac3
GW
565 mutex_exit(&mg->mg_lock);
566}
567
34dc7c2f
BB
568metaslab_group_t *
569metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
570{
571 metaslab_group_t *mg;
572
79c76d5b 573 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
34dc7c2f
BB
574 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
575 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
576 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
34dc7c2f 577 mg->mg_vd = vd;
428870ff
BB
578 mg->mg_class = mc;
579 mg->mg_activation_count = 0;
3dfb57a3
DB
580 mg->mg_initialized = B_FALSE;
581 mg->mg_no_free_space = B_TRUE;
582 refcount_create_tracked(&mg->mg_alloc_queue_depth);
34dc7c2f 583
3c51c5cb 584 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
1229323d 585 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
93cf2076 586
34dc7c2f
BB
587 return (mg);
588}
589
590void
591metaslab_group_destroy(metaslab_group_t *mg)
592{
428870ff
BB
593 ASSERT(mg->mg_prev == NULL);
594 ASSERT(mg->mg_next == NULL);
595 /*
596 * We may have gone below zero with the activation count
597 * either because we never activated in the first place or
598 * because we're done, and possibly removing the vdev.
599 */
600 ASSERT(mg->mg_activation_count <= 0);
601
3c51c5cb 602 taskq_destroy(mg->mg_taskq);
34dc7c2f
BB
603 avl_destroy(&mg->mg_metaslab_tree);
604 mutex_destroy(&mg->mg_lock);
3dfb57a3 605 refcount_destroy(&mg->mg_alloc_queue_depth);
34dc7c2f
BB
606 kmem_free(mg, sizeof (metaslab_group_t));
607}
608
428870ff
BB
609void
610metaslab_group_activate(metaslab_group_t *mg)
611{
612 metaslab_class_t *mc = mg->mg_class;
613 metaslab_group_t *mgprev, *mgnext;
614
615 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
616
617 ASSERT(mc->mc_rotor != mg);
618 ASSERT(mg->mg_prev == NULL);
619 ASSERT(mg->mg_next == NULL);
620 ASSERT(mg->mg_activation_count <= 0);
621
622 if (++mg->mg_activation_count <= 0)
623 return;
624
625 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
ac72fac3 626 metaslab_group_alloc_update(mg);
428870ff
BB
627
628 if ((mgprev = mc->mc_rotor) == NULL) {
629 mg->mg_prev = mg;
630 mg->mg_next = mg;
631 } else {
632 mgnext = mgprev->mg_next;
633 mg->mg_prev = mgprev;
634 mg->mg_next = mgnext;
635 mgprev->mg_next = mg;
636 mgnext->mg_prev = mg;
637 }
638 mc->mc_rotor = mg;
639}
640
641void
642metaslab_group_passivate(metaslab_group_t *mg)
643{
644 metaslab_class_t *mc = mg->mg_class;
645 metaslab_group_t *mgprev, *mgnext;
646
647 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
648
649 if (--mg->mg_activation_count != 0) {
650 ASSERT(mc->mc_rotor != mg);
651 ASSERT(mg->mg_prev == NULL);
652 ASSERT(mg->mg_next == NULL);
653 ASSERT(mg->mg_activation_count < 0);
654 return;
655 }
656
c5528b9b 657 taskq_wait_outstanding(mg->mg_taskq, 0);
f3a7f661 658 metaslab_group_alloc_update(mg);
93cf2076 659
428870ff
BB
660 mgprev = mg->mg_prev;
661 mgnext = mg->mg_next;
662
663 if (mg == mgnext) {
664 mc->mc_rotor = NULL;
665 } else {
666 mc->mc_rotor = mgnext;
667 mgprev->mg_next = mgnext;
668 mgnext->mg_prev = mgprev;
669 }
670
671 mg->mg_prev = NULL;
672 mg->mg_next = NULL;
673}
674
3dfb57a3
DB
675boolean_t
676metaslab_group_initialized(metaslab_group_t *mg)
677{
678 vdev_t *vd = mg->mg_vd;
679 vdev_stat_t *vs = &vd->vdev_stat;
680
681 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
682}
683
f3a7f661
GW
684uint64_t
685metaslab_group_get_space(metaslab_group_t *mg)
686{
687 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
688}
689
690void
691metaslab_group_histogram_verify(metaslab_group_t *mg)
692{
693 uint64_t *mg_hist;
694 vdev_t *vd = mg->mg_vd;
695 uint64_t ashift = vd->vdev_ashift;
696 int i, m;
697
698 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
699 return;
700
701 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 702 KM_SLEEP);
f3a7f661
GW
703
704 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
705 SPACE_MAP_HISTOGRAM_SIZE + ashift);
706
707 for (m = 0; m < vd->vdev_ms_count; m++) {
708 metaslab_t *msp = vd->vdev_ms[m];
709
710 if (msp->ms_sm == NULL)
711 continue;
712
713 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
714 mg_hist[i + ashift] +=
715 msp->ms_sm->sm_phys->smp_histogram[i];
716 }
717
718 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
719 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
720
721 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
722}
723
34dc7c2f 724static void
f3a7f661 725metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
34dc7c2f 726{
f3a7f661
GW
727 metaslab_class_t *mc = mg->mg_class;
728 uint64_t ashift = mg->mg_vd->vdev_ashift;
729 int i;
730
731 ASSERT(MUTEX_HELD(&msp->ms_lock));
732 if (msp->ms_sm == NULL)
733 return;
734
34dc7c2f 735 mutex_enter(&mg->mg_lock);
f3a7f661
GW
736 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
737 mg->mg_histogram[i + ashift] +=
738 msp->ms_sm->sm_phys->smp_histogram[i];
739 mc->mc_histogram[i + ashift] +=
740 msp->ms_sm->sm_phys->smp_histogram[i];
741 }
742 mutex_exit(&mg->mg_lock);
743}
744
745void
746metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
747{
748 metaslab_class_t *mc = mg->mg_class;
749 uint64_t ashift = mg->mg_vd->vdev_ashift;
750 int i;
751
752 ASSERT(MUTEX_HELD(&msp->ms_lock));
753 if (msp->ms_sm == NULL)
754 return;
755
756 mutex_enter(&mg->mg_lock);
757 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
758 ASSERT3U(mg->mg_histogram[i + ashift], >=,
759 msp->ms_sm->sm_phys->smp_histogram[i]);
760 ASSERT3U(mc->mc_histogram[i + ashift], >=,
761 msp->ms_sm->sm_phys->smp_histogram[i]);
762
763 mg->mg_histogram[i + ashift] -=
764 msp->ms_sm->sm_phys->smp_histogram[i];
765 mc->mc_histogram[i + ashift] -=
766 msp->ms_sm->sm_phys->smp_histogram[i];
767 }
768 mutex_exit(&mg->mg_lock);
769}
770
771static void
772metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
773{
34dc7c2f 774 ASSERT(msp->ms_group == NULL);
f3a7f661 775 mutex_enter(&mg->mg_lock);
34dc7c2f
BB
776 msp->ms_group = mg;
777 msp->ms_weight = 0;
778 avl_add(&mg->mg_metaslab_tree, msp);
779 mutex_exit(&mg->mg_lock);
f3a7f661
GW
780
781 mutex_enter(&msp->ms_lock);
782 metaslab_group_histogram_add(mg, msp);
783 mutex_exit(&msp->ms_lock);
34dc7c2f
BB
784}
785
786static void
787metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
788{
f3a7f661
GW
789 mutex_enter(&msp->ms_lock);
790 metaslab_group_histogram_remove(mg, msp);
791 mutex_exit(&msp->ms_lock);
792
34dc7c2f
BB
793 mutex_enter(&mg->mg_lock);
794 ASSERT(msp->ms_group == mg);
795 avl_remove(&mg->mg_metaslab_tree, msp);
796 msp->ms_group = NULL;
797 mutex_exit(&mg->mg_lock);
798}
799
800static void
801metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
802{
803 /*
804 * Although in principle the weight can be any value, in
f3a7f661 805 * practice we do not use values in the range [1, 511].
34dc7c2f 806 */
f3a7f661 807 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
34dc7c2f
BB
808 ASSERT(MUTEX_HELD(&msp->ms_lock));
809
810 mutex_enter(&mg->mg_lock);
811 ASSERT(msp->ms_group == mg);
812 avl_remove(&mg->mg_metaslab_tree, msp);
813 msp->ms_weight = weight;
814 avl_add(&mg->mg_metaslab_tree, msp);
815 mutex_exit(&mg->mg_lock);
816}
817
f3a7f661
GW
818/*
819 * Calculate the fragmentation for a given metaslab group. We can use
820 * a simple average here since all metaslabs within the group must have
821 * the same size. The return value will be a value between 0 and 100
822 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
823 * group have a fragmentation metric.
824 */
825uint64_t
826metaslab_group_fragmentation(metaslab_group_t *mg)
827{
828 vdev_t *vd = mg->mg_vd;
829 uint64_t fragmentation = 0;
830 uint64_t valid_ms = 0;
831 int m;
832
833 for (m = 0; m < vd->vdev_ms_count; m++) {
834 metaslab_t *msp = vd->vdev_ms[m];
835
836 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
837 continue;
838
839 valid_ms++;
840 fragmentation += msp->ms_fragmentation;
841 }
842
843 if (valid_ms <= vd->vdev_ms_count / 2)
844 return (ZFS_FRAG_INVALID);
845
846 fragmentation /= valid_ms;
847 ASSERT3U(fragmentation, <=, 100);
848 return (fragmentation);
849}
850
ac72fac3
GW
851/*
852 * Determine if a given metaslab group should skip allocations. A metaslab
f3a7f661
GW
853 * group should avoid allocations if its free capacity is less than the
854 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
855 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
3dfb57a3
DB
856 * that can still handle allocations. If the allocation throttle is enabled
857 * then we skip allocations to devices that have reached their maximum
858 * allocation queue depth unless the selected metaslab group is the only
859 * eligible group remaining.
ac72fac3
GW
860 */
861static boolean_t
3dfb57a3
DB
862metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
863 uint64_t psize)
ac72fac3 864{
3dfb57a3 865 spa_t *spa = mg->mg_vd->vdev_spa;
ac72fac3
GW
866 metaslab_class_t *mc = mg->mg_class;
867
868 /*
3dfb57a3
DB
869 * We can only consider skipping this metaslab group if it's
870 * in the normal metaslab class and there are other metaslab
871 * groups to select from. Otherwise, we always consider it eligible
f3a7f661 872 * for allocations.
ac72fac3 873 */
3dfb57a3
DB
874 if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
875 return (B_TRUE);
876
877 /*
878 * If the metaslab group's mg_allocatable flag is set (see comments
879 * in metaslab_group_alloc_update() for more information) and
880 * the allocation throttle is disabled then allow allocations to this
881 * device. However, if the allocation throttle is enabled then
882 * check if we have reached our allocation limit (mg_alloc_queue_depth)
883 * to determine if we should allow allocations to this metaslab group.
884 * If all metaslab groups are no longer considered allocatable
885 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
886 * gang block size then we allow allocations on this metaslab group
887 * regardless of the mg_allocatable or throttle settings.
888 */
889 if (mg->mg_allocatable) {
890 metaslab_group_t *mgp;
891 int64_t qdepth;
892 uint64_t qmax = mg->mg_max_alloc_queue_depth;
893
894 if (!mc->mc_alloc_throttle_enabled)
895 return (B_TRUE);
896
897 /*
898 * If this metaslab group does not have any free space, then
899 * there is no point in looking further.
900 */
901 if (mg->mg_no_free_space)
902 return (B_FALSE);
903
904 qdepth = refcount_count(&mg->mg_alloc_queue_depth);
905
906 /*
907 * If this metaslab group is below its qmax or it's
908 * the only allocatable metasable group, then attempt
909 * to allocate from it.
910 */
911 if (qdepth < qmax || mc->mc_alloc_groups == 1)
912 return (B_TRUE);
913 ASSERT3U(mc->mc_alloc_groups, >, 1);
914
915 /*
916 * Since this metaslab group is at or over its qmax, we
917 * need to determine if there are metaslab groups after this
918 * one that might be able to handle this allocation. This is
919 * racy since we can't hold the locks for all metaslab
920 * groups at the same time when we make this check.
921 */
922 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
923 qmax = mgp->mg_max_alloc_queue_depth;
924
925 qdepth = refcount_count(&mgp->mg_alloc_queue_depth);
926
927 /*
928 * If there is another metaslab group that
929 * might be able to handle the allocation, then
930 * we return false so that we skip this group.
931 */
932 if (qdepth < qmax && !mgp->mg_no_free_space)
933 return (B_FALSE);
934 }
935
936 /*
937 * We didn't find another group to handle the allocation
938 * so we can't skip this metaslab group even though
939 * we are at or over our qmax.
940 */
941 return (B_TRUE);
942
943 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
944 return (B_TRUE);
945 }
946 return (B_FALSE);
ac72fac3
GW
947}
948
428870ff
BB
949/*
950 * ==========================================================================
93cf2076 951 * Range tree callbacks
428870ff
BB
952 * ==========================================================================
953 */
93cf2076
GW
954
955/*
956 * Comparison function for the private size-ordered tree. Tree is sorted
957 * by size, larger sizes at the end of the tree.
958 */
428870ff 959static int
93cf2076 960metaslab_rangesize_compare(const void *x1, const void *x2)
428870ff 961{
93cf2076
GW
962 const range_seg_t *r1 = x1;
963 const range_seg_t *r2 = x2;
964 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
965 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
428870ff 966
ee36c709
GN
967 int cmp = AVL_CMP(rs_size1, rs_size2);
968 if (likely(cmp))
969 return (cmp);
428870ff 970
ee36c709 971 return (AVL_CMP(r1->rs_start, r2->rs_start));
428870ff
BB
972}
973
34dc7c2f 974/*
93cf2076
GW
975 * Create any block allocator specific components. The current allocators
976 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
34dc7c2f 977 */
93cf2076
GW
978static void
979metaslab_rt_create(range_tree_t *rt, void *arg)
34dc7c2f 980{
93cf2076 981 metaslab_t *msp = arg;
34dc7c2f 982
93cf2076
GW
983 ASSERT3P(rt->rt_arg, ==, msp);
984 ASSERT(msp->ms_tree == NULL);
34dc7c2f 985
93cf2076
GW
986 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
987 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
9babb374
BB
988}
989
93cf2076
GW
990/*
991 * Destroy the block allocator specific components.
992 */
9babb374 993static void
93cf2076 994metaslab_rt_destroy(range_tree_t *rt, void *arg)
9babb374 995{
93cf2076 996 metaslab_t *msp = arg;
428870ff 997
93cf2076
GW
998 ASSERT3P(rt->rt_arg, ==, msp);
999 ASSERT3P(msp->ms_tree, ==, rt);
1000 ASSERT0(avl_numnodes(&msp->ms_size_tree));
428870ff 1001
93cf2076 1002 avl_destroy(&msp->ms_size_tree);
9babb374
BB
1003}
1004
1005static void
93cf2076 1006metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
9babb374 1007{
93cf2076 1008 metaslab_t *msp = arg;
9babb374 1009
93cf2076
GW
1010 ASSERT3P(rt->rt_arg, ==, msp);
1011 ASSERT3P(msp->ms_tree, ==, rt);
1012 VERIFY(!msp->ms_condensing);
1013 avl_add(&msp->ms_size_tree, rs);
34dc7c2f
BB
1014}
1015
34dc7c2f 1016static void
93cf2076 1017metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
34dc7c2f 1018{
93cf2076
GW
1019 metaslab_t *msp = arg;
1020
1021 ASSERT3P(rt->rt_arg, ==, msp);
1022 ASSERT3P(msp->ms_tree, ==, rt);
1023 VERIFY(!msp->ms_condensing);
1024 avl_remove(&msp->ms_size_tree, rs);
34dc7c2f
BB
1025}
1026
34dc7c2f 1027static void
93cf2076 1028metaslab_rt_vacate(range_tree_t *rt, void *arg)
34dc7c2f 1029{
93cf2076
GW
1030 metaslab_t *msp = arg;
1031
1032 ASSERT3P(rt->rt_arg, ==, msp);
1033 ASSERT3P(msp->ms_tree, ==, rt);
1034
1035 /*
1036 * Normally one would walk the tree freeing nodes along the way.
1037 * Since the nodes are shared with the range trees we can avoid
1038 * walking all nodes and just reinitialize the avl tree. The nodes
1039 * will be freed by the range tree, so we don't want to free them here.
1040 */
1041 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
1042 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
34dc7c2f
BB
1043}
1044
93cf2076
GW
1045static range_tree_ops_t metaslab_rt_ops = {
1046 metaslab_rt_create,
1047 metaslab_rt_destroy,
1048 metaslab_rt_add,
1049 metaslab_rt_remove,
1050 metaslab_rt_vacate
1051};
1052
1053/*
1054 * ==========================================================================
4e21fd06 1055 * Common allocator routines
93cf2076
GW
1056 * ==========================================================================
1057 */
1058
9babb374 1059/*
428870ff 1060 * Return the maximum contiguous segment within the metaslab.
9babb374 1061 */
9babb374 1062uint64_t
93cf2076 1063metaslab_block_maxsize(metaslab_t *msp)
9babb374 1064{
93cf2076
GW
1065 avl_tree_t *t = &msp->ms_size_tree;
1066 range_seg_t *rs;
9babb374 1067
93cf2076 1068 if (t == NULL || (rs = avl_last(t)) == NULL)
9babb374
BB
1069 return (0ULL);
1070
93cf2076
GW
1071 return (rs->rs_end - rs->rs_start);
1072}
1073
4e21fd06
DB
1074static range_seg_t *
1075metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
93cf2076 1076{
4e21fd06
DB
1077 range_seg_t *rs, rsearch;
1078 avl_index_t where;
93cf2076 1079
4e21fd06
DB
1080 rsearch.rs_start = start;
1081 rsearch.rs_end = start + size;
93cf2076 1082
4e21fd06
DB
1083 rs = avl_find(t, &rsearch, &where);
1084 if (rs == NULL) {
1085 rs = avl_nearest(t, where, AVL_AFTER);
93cf2076 1086 }
93cf2076 1087
4e21fd06
DB
1088 return (rs);
1089}
93cf2076
GW
1090
1091#if defined(WITH_FF_BLOCK_ALLOCATOR) || \
1092 defined(WITH_DF_BLOCK_ALLOCATOR) || \
1093 defined(WITH_CF_BLOCK_ALLOCATOR)
1094/*
1095 * This is a helper function that can be used by the allocator to find
1096 * a suitable block to allocate. This will search the specified AVL
1097 * tree looking for a block that matches the specified criteria.
1098 */
1099static uint64_t
1100metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1101 uint64_t align)
1102{
4e21fd06 1103 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
93cf2076
GW
1104
1105 while (rs != NULL) {
1106 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1107
1108 if (offset + size <= rs->rs_end) {
1109 *cursor = offset + size;
1110 return (offset);
1111 }
1112 rs = AVL_NEXT(t, rs);
1113 }
1114
1115 /*
1116 * If we know we've searched the whole map (*cursor == 0), give up.
1117 * Otherwise, reset the cursor to the beginning and try again.
1118 */
1119 if (*cursor == 0)
1120 return (-1ULL);
1121
1122 *cursor = 0;
1123 return (metaslab_block_picker(t, cursor, size, align));
9babb374 1124}
93cf2076 1125#endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
9babb374 1126
22c81dd8 1127#if defined(WITH_FF_BLOCK_ALLOCATOR)
428870ff
BB
1128/*
1129 * ==========================================================================
1130 * The first-fit block allocator
1131 * ==========================================================================
1132 */
1133static uint64_t
93cf2076 1134metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
9babb374 1135{
93cf2076
GW
1136 /*
1137 * Find the largest power of 2 block size that evenly divides the
1138 * requested size. This is used to try to allocate blocks with similar
1139 * alignment from the same area of the metaslab (i.e. same cursor
1140 * bucket) but it does not guarantee that other allocations sizes
1141 * may exist in the same region.
1142 */
428870ff 1143 uint64_t align = size & -size;
9bd274dd 1144 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
93cf2076 1145 avl_tree_t *t = &msp->ms_tree->rt_root;
9babb374 1146
428870ff 1147 return (metaslab_block_picker(t, cursor, size, align));
9babb374
BB
1148}
1149
93cf2076 1150static metaslab_ops_t metaslab_ff_ops = {
f3a7f661 1151 metaslab_ff_alloc
428870ff 1152};
9babb374 1153
93cf2076 1154metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
22c81dd8
BB
1155#endif /* WITH_FF_BLOCK_ALLOCATOR */
1156
1157#if defined(WITH_DF_BLOCK_ALLOCATOR)
428870ff
BB
1158/*
1159 * ==========================================================================
1160 * Dynamic block allocator -
1161 * Uses the first fit allocation scheme until space get low and then
1162 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1163 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1164 * ==========================================================================
1165 */
9babb374 1166static uint64_t
93cf2076 1167metaslab_df_alloc(metaslab_t *msp, uint64_t size)
9babb374 1168{
93cf2076
GW
1169 /*
1170 * Find the largest power of 2 block size that evenly divides the
1171 * requested size. This is used to try to allocate blocks with similar
1172 * alignment from the same area of the metaslab (i.e. same cursor
1173 * bucket) but it does not guarantee that other allocations sizes
1174 * may exist in the same region.
1175 */
9babb374 1176 uint64_t align = size & -size;
9bd274dd 1177 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
93cf2076
GW
1178 range_tree_t *rt = msp->ms_tree;
1179 avl_tree_t *t = &rt->rt_root;
1180 uint64_t max_size = metaslab_block_maxsize(msp);
1181 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
9babb374 1182
93cf2076
GW
1183 ASSERT(MUTEX_HELD(&msp->ms_lock));
1184 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
9babb374
BB
1185
1186 if (max_size < size)
1187 return (-1ULL);
1188
1189 /*
1190 * If we're running low on space switch to using the size
1191 * sorted AVL tree (best-fit).
1192 */
1193 if (max_size < metaslab_df_alloc_threshold ||
1194 free_pct < metaslab_df_free_pct) {
93cf2076 1195 t = &msp->ms_size_tree;
9babb374
BB
1196 *cursor = 0;
1197 }
1198
1199 return (metaslab_block_picker(t, cursor, size, 1ULL));
1200}
1201
93cf2076 1202static metaslab_ops_t metaslab_df_ops = {
f3a7f661 1203 metaslab_df_alloc
34dc7c2f
BB
1204};
1205
93cf2076 1206metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
22c81dd8
BB
1207#endif /* WITH_DF_BLOCK_ALLOCATOR */
1208
93cf2076 1209#if defined(WITH_CF_BLOCK_ALLOCATOR)
428870ff
BB
1210/*
1211 * ==========================================================================
93cf2076
GW
1212 * Cursor fit block allocator -
1213 * Select the largest region in the metaslab, set the cursor to the beginning
1214 * of the range and the cursor_end to the end of the range. As allocations
1215 * are made advance the cursor. Continue allocating from the cursor until
1216 * the range is exhausted and then find a new range.
428870ff
BB
1217 * ==========================================================================
1218 */
1219static uint64_t
93cf2076 1220metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1221{
93cf2076
GW
1222 range_tree_t *rt = msp->ms_tree;
1223 avl_tree_t *t = &msp->ms_size_tree;
1224 uint64_t *cursor = &msp->ms_lbas[0];
1225 uint64_t *cursor_end = &msp->ms_lbas[1];
428870ff
BB
1226 uint64_t offset = 0;
1227
93cf2076
GW
1228 ASSERT(MUTEX_HELD(&msp->ms_lock));
1229 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
428870ff 1230
93cf2076 1231 ASSERT3U(*cursor_end, >=, *cursor);
428870ff 1232
93cf2076
GW
1233 if ((*cursor + size) > *cursor_end) {
1234 range_seg_t *rs;
428870ff 1235
93cf2076
GW
1236 rs = avl_last(&msp->ms_size_tree);
1237 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1238 return (-1ULL);
428870ff 1239
93cf2076
GW
1240 *cursor = rs->rs_start;
1241 *cursor_end = rs->rs_end;
428870ff 1242 }
93cf2076
GW
1243
1244 offset = *cursor;
1245 *cursor += size;
1246
428870ff
BB
1247 return (offset);
1248}
1249
93cf2076 1250static metaslab_ops_t metaslab_cf_ops = {
f3a7f661 1251 metaslab_cf_alloc
428870ff
BB
1252};
1253
93cf2076
GW
1254metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1255#endif /* WITH_CF_BLOCK_ALLOCATOR */
22c81dd8
BB
1256
1257#if defined(WITH_NDF_BLOCK_ALLOCATOR)
93cf2076
GW
1258/*
1259 * ==========================================================================
1260 * New dynamic fit allocator -
1261 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1262 * contiguous blocks. If no region is found then just use the largest segment
1263 * that remains.
1264 * ==========================================================================
1265 */
1266
1267/*
1268 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1269 * to request from the allocator.
1270 */
428870ff
BB
1271uint64_t metaslab_ndf_clump_shift = 4;
1272
1273static uint64_t
93cf2076 1274metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1275{
93cf2076 1276 avl_tree_t *t = &msp->ms_tree->rt_root;
428870ff 1277 avl_index_t where;
93cf2076 1278 range_seg_t *rs, rsearch;
9bd274dd 1279 uint64_t hbit = highbit64(size);
93cf2076
GW
1280 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1281 uint64_t max_size = metaslab_block_maxsize(msp);
428870ff 1282
93cf2076
GW
1283 ASSERT(MUTEX_HELD(&msp->ms_lock));
1284 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
428870ff
BB
1285
1286 if (max_size < size)
1287 return (-1ULL);
1288
93cf2076
GW
1289 rsearch.rs_start = *cursor;
1290 rsearch.rs_end = *cursor + size;
428870ff 1291
93cf2076
GW
1292 rs = avl_find(t, &rsearch, &where);
1293 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1294 t = &msp->ms_size_tree;
428870ff 1295
93cf2076
GW
1296 rsearch.rs_start = 0;
1297 rsearch.rs_end = MIN(max_size,
428870ff 1298 1ULL << (hbit + metaslab_ndf_clump_shift));
93cf2076
GW
1299 rs = avl_find(t, &rsearch, &where);
1300 if (rs == NULL)
1301 rs = avl_nearest(t, where, AVL_AFTER);
1302 ASSERT(rs != NULL);
428870ff
BB
1303 }
1304
93cf2076
GW
1305 if ((rs->rs_end - rs->rs_start) >= size) {
1306 *cursor = rs->rs_start + size;
1307 return (rs->rs_start);
428870ff
BB
1308 }
1309 return (-1ULL);
1310}
1311
93cf2076 1312static metaslab_ops_t metaslab_ndf_ops = {
f3a7f661 1313 metaslab_ndf_alloc
428870ff
BB
1314};
1315
93cf2076 1316metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
22c81dd8 1317#endif /* WITH_NDF_BLOCK_ALLOCATOR */
9babb374 1318
93cf2076 1319
34dc7c2f
BB
1320/*
1321 * ==========================================================================
1322 * Metaslabs
1323 * ==========================================================================
1324 */
93cf2076
GW
1325
1326/*
1327 * Wait for any in-progress metaslab loads to complete.
1328 */
1329void
1330metaslab_load_wait(metaslab_t *msp)
1331{
1332 ASSERT(MUTEX_HELD(&msp->ms_lock));
1333
1334 while (msp->ms_loading) {
1335 ASSERT(!msp->ms_loaded);
1336 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1337 }
1338}
1339
1340int
1341metaslab_load(metaslab_t *msp)
1342{
1343 int error = 0;
1344 int t;
4e21fd06 1345 boolean_t success = B_FALSE;
93cf2076
GW
1346
1347 ASSERT(MUTEX_HELD(&msp->ms_lock));
1348 ASSERT(!msp->ms_loaded);
1349 ASSERT(!msp->ms_loading);
1350
1351 msp->ms_loading = B_TRUE;
1352
1353 /*
1354 * If the space map has not been allocated yet, then treat
1355 * all the space in the metaslab as free and add it to the
1356 * ms_tree.
1357 */
1358 if (msp->ms_sm != NULL)
1359 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1360 else
1361 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1362
4e21fd06 1363 success = (error == 0);
93cf2076
GW
1364 msp->ms_loading = B_FALSE;
1365
4e21fd06
DB
1366 if (success) {
1367 ASSERT3P(msp->ms_group, !=, NULL);
1368 msp->ms_loaded = B_TRUE;
1369
93cf2076
GW
1370 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1371 range_tree_walk(msp->ms_defertree[t],
1372 range_tree_remove, msp->ms_tree);
1373 }
4e21fd06 1374 msp->ms_max_size = metaslab_block_maxsize(msp);
93cf2076
GW
1375 }
1376 cv_broadcast(&msp->ms_load_cv);
1377 return (error);
1378}
1379
1380void
1381metaslab_unload(metaslab_t *msp)
1382{
1383 ASSERT(MUTEX_HELD(&msp->ms_lock));
1384 range_tree_vacate(msp->ms_tree, NULL, NULL);
1385 msp->ms_loaded = B_FALSE;
1386 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
4e21fd06 1387 msp->ms_max_size = 0;
93cf2076
GW
1388}
1389
fb42a493
PS
1390int
1391metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1392 metaslab_t **msp)
34dc7c2f
BB
1393{
1394 vdev_t *vd = mg->mg_vd;
93cf2076 1395 objset_t *mos = vd->vdev_spa->spa_meta_objset;
fb42a493
PS
1396 metaslab_t *ms;
1397 int error;
34dc7c2f 1398
79c76d5b 1399 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
fb42a493
PS
1400 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1401 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1402 ms->ms_id = id;
1403 ms->ms_start = id << vd->vdev_ms_shift;
1404 ms->ms_size = 1ULL << vd->vdev_ms_shift;
34dc7c2f 1405
93cf2076
GW
1406 /*
1407 * We only open space map objects that already exist. All others
afe37326 1408 * will be opened when we finally allocate an object for it.
93cf2076 1409 */
afe37326 1410 if (object != 0) {
fb42a493
PS
1411 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1412 ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
1413
1414 if (error != 0) {
1415 kmem_free(ms, sizeof (metaslab_t));
1416 return (error);
1417 }
1418
1419 ASSERT(ms->ms_sm != NULL);
93cf2076 1420 }
34dc7c2f
BB
1421
1422 /*
93cf2076 1423 * We create the main range tree here, but we don't create the
258553d3 1424 * other range trees until metaslab_sync_done(). This serves
34dc7c2f
BB
1425 * two purposes: it allows metaslab_sync_done() to detect the
1426 * addition of new space; and for debugging, it ensures that we'd
1427 * data fault on any attempt to use this metaslab before it's ready.
1428 */
fb42a493
PS
1429 ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock);
1430 metaslab_group_add(mg, ms);
34dc7c2f 1431
4e21fd06 1432 metaslab_set_fragmentation(ms);
428870ff 1433
34dc7c2f
BB
1434 /*
1435 * If we're opening an existing pool (txg == 0) or creating
1436 * a new one (txg == TXG_INITIAL), all space is available now.
1437 * If we're adding space to an existing pool, the new space
1438 * does not become available until after this txg has synced.
4e21fd06
DB
1439 * The metaslab's weight will also be initialized when we sync
1440 * out this txg. This ensures that we don't attempt to allocate
1441 * from it before we have initialized it completely.
34dc7c2f
BB
1442 */
1443 if (txg <= TXG_INITIAL)
fb42a493 1444 metaslab_sync_done(ms, 0);
34dc7c2f 1445
93cf2076
GW
1446 /*
1447 * If metaslab_debug_load is set and we're initializing a metaslab
4e21fd06 1448 * that has an allocated space map object then load the its space
93cf2076
GW
1449 * map so that can verify frees.
1450 */
fb42a493
PS
1451 if (metaslab_debug_load && ms->ms_sm != NULL) {
1452 mutex_enter(&ms->ms_lock);
1453 VERIFY0(metaslab_load(ms));
1454 mutex_exit(&ms->ms_lock);
93cf2076
GW
1455 }
1456
34dc7c2f 1457 if (txg != 0) {
34dc7c2f 1458 vdev_dirty(vd, 0, NULL, txg);
fb42a493 1459 vdev_dirty(vd, VDD_METASLAB, ms, txg);
34dc7c2f
BB
1460 }
1461
fb42a493
PS
1462 *msp = ms;
1463
1464 return (0);
34dc7c2f
BB
1465}
1466
1467void
1468metaslab_fini(metaslab_t *msp)
1469{
d6320ddb 1470 int t;
34dc7c2f 1471
93cf2076 1472 metaslab_group_t *mg = msp->ms_group;
34dc7c2f
BB
1473
1474 metaslab_group_remove(mg, msp);
1475
1476 mutex_enter(&msp->ms_lock);
93cf2076
GW
1477 VERIFY(msp->ms_group == NULL);
1478 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1479 0, -msp->ms_size);
1480 space_map_close(msp->ms_sm);
1481
1482 metaslab_unload(msp);
1483 range_tree_destroy(msp->ms_tree);
258553d3
TC
1484 range_tree_destroy(msp->ms_freeingtree);
1485 range_tree_destroy(msp->ms_freedtree);
34dc7c2f 1486
d6320ddb 1487 for (t = 0; t < TXG_SIZE; t++) {
93cf2076 1488 range_tree_destroy(msp->ms_alloctree[t]);
34dc7c2f
BB
1489 }
1490
e51be066 1491 for (t = 0; t < TXG_DEFER_SIZE; t++) {
93cf2076 1492 range_tree_destroy(msp->ms_defertree[t]);
e51be066 1493 }
428870ff 1494
c99c9001 1495 ASSERT0(msp->ms_deferspace);
428870ff 1496
34dc7c2f 1497 mutex_exit(&msp->ms_lock);
93cf2076 1498 cv_destroy(&msp->ms_load_cv);
34dc7c2f
BB
1499 mutex_destroy(&msp->ms_lock);
1500
1501 kmem_free(msp, sizeof (metaslab_t));
1502}
1503
f3a7f661
GW
1504#define FRAGMENTATION_TABLE_SIZE 17
1505
93cf2076 1506/*
f3a7f661
GW
1507 * This table defines a segment size based fragmentation metric that will
1508 * allow each metaslab to derive its own fragmentation value. This is done
1509 * by calculating the space in each bucket of the spacemap histogram and
1510 * multiplying that by the fragmetation metric in this table. Doing
1511 * this for all buckets and dividing it by the total amount of free
1512 * space in this metaslab (i.e. the total free space in all buckets) gives
1513 * us the fragmentation metric. This means that a high fragmentation metric
1514 * equates to most of the free space being comprised of small segments.
1515 * Conversely, if the metric is low, then most of the free space is in
1516 * large segments. A 10% change in fragmentation equates to approximately
1517 * double the number of segments.
93cf2076 1518 *
f3a7f661
GW
1519 * This table defines 0% fragmented space using 16MB segments. Testing has
1520 * shown that segments that are greater than or equal to 16MB do not suffer
1521 * from drastic performance problems. Using this value, we derive the rest
1522 * of the table. Since the fragmentation value is never stored on disk, it
1523 * is possible to change these calculations in the future.
1524 */
1525int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1526 100, /* 512B */
1527 100, /* 1K */
1528 98, /* 2K */
1529 95, /* 4K */
1530 90, /* 8K */
1531 80, /* 16K */
1532 70, /* 32K */
1533 60, /* 64K */
1534 50, /* 128K */
1535 40, /* 256K */
1536 30, /* 512K */
1537 20, /* 1M */
1538 15, /* 2M */
1539 10, /* 4M */
1540 5, /* 8M */
1541 0 /* 16M */
1542};
1543
1544/*
1545 * Calclate the metaslab's fragmentation metric. A return value
1546 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1547 * not support this metric. Otherwise, the return value should be in the
1548 * range [0, 100].
93cf2076 1549 */
4e21fd06
DB
1550static void
1551metaslab_set_fragmentation(metaslab_t *msp)
93cf2076 1552{
f3a7f661
GW
1553 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1554 uint64_t fragmentation = 0;
1555 uint64_t total = 0;
1556 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1557 SPA_FEATURE_SPACEMAP_HISTOGRAM);
93cf2076
GW
1558 int i;
1559
4e21fd06
DB
1560 if (!feature_enabled) {
1561 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1562 return;
1563 }
f3a7f661 1564
93cf2076 1565 /*
f3a7f661
GW
1566 * A null space map means that the entire metaslab is free
1567 * and thus is not fragmented.
93cf2076 1568 */
4e21fd06
DB
1569 if (msp->ms_sm == NULL) {
1570 msp->ms_fragmentation = 0;
1571 return;
1572 }
f3a7f661
GW
1573
1574 /*
4e21fd06 1575 * If this metaslab's space map has not been upgraded, flag it
f3a7f661
GW
1576 * so that we upgrade next time we encounter it.
1577 */
1578 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
93cf2076
GW
1579 vdev_t *vd = msp->ms_group->mg_vd;
1580
8b0a0840
TC
1581 if (spa_writeable(vd->vdev_spa)) {
1582 uint64_t txg = spa_syncing_txg(spa);
1583
1584 msp->ms_condense_wanted = B_TRUE;
1585 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1586 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1587 "msp %p, vd %p", txg, msp, vd);
1588 }
4e21fd06
DB
1589 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1590 return;
93cf2076
GW
1591 }
1592
f3a7f661
GW
1593 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1594 uint64_t space = 0;
1595 uint8_t shift = msp->ms_sm->sm_shift;
4e21fd06 1596
f3a7f661
GW
1597 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1598 FRAGMENTATION_TABLE_SIZE - 1);
93cf2076 1599
93cf2076
GW
1600 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1601 continue;
1602
f3a7f661
GW
1603 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1604 total += space;
1605
1606 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1607 fragmentation += space * zfs_frag_table[idx];
93cf2076 1608 }
f3a7f661
GW
1609
1610 if (total > 0)
1611 fragmentation /= total;
1612 ASSERT3U(fragmentation, <=, 100);
4e21fd06
DB
1613
1614 msp->ms_fragmentation = fragmentation;
93cf2076 1615}
34dc7c2f 1616
f3a7f661
GW
1617/*
1618 * Compute a weight -- a selection preference value -- for the given metaslab.
1619 * This is based on the amount of free space, the level of fragmentation,
1620 * the LBA range, and whether the metaslab is loaded.
1621 */
34dc7c2f 1622static uint64_t
4e21fd06 1623metaslab_space_weight(metaslab_t *msp)
34dc7c2f
BB
1624{
1625 metaslab_group_t *mg = msp->ms_group;
34dc7c2f
BB
1626 vdev_t *vd = mg->mg_vd;
1627 uint64_t weight, space;
1628
1629 ASSERT(MUTEX_HELD(&msp->ms_lock));
4e21fd06 1630 ASSERT(!vd->vdev_removing);
c2e42f9d 1631
34dc7c2f
BB
1632 /*
1633 * The baseline weight is the metaslab's free space.
1634 */
93cf2076 1635 space = msp->ms_size - space_map_allocated(msp->ms_sm);
f3a7f661 1636
f3a7f661
GW
1637 if (metaslab_fragmentation_factor_enabled &&
1638 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1639 /*
1640 * Use the fragmentation information to inversely scale
1641 * down the baseline weight. We need to ensure that we
1642 * don't exclude this metaslab completely when it's 100%
1643 * fragmented. To avoid this we reduce the fragmented value
1644 * by 1.
1645 */
1646 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1647
1648 /*
1649 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1650 * this metaslab again. The fragmentation metric may have
1651 * decreased the space to something smaller than
1652 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1653 * so that we can consume any remaining space.
1654 */
1655 if (space > 0 && space < SPA_MINBLOCKSIZE)
1656 space = SPA_MINBLOCKSIZE;
1657 }
34dc7c2f
BB
1658 weight = space;
1659
1660 /*
1661 * Modern disks have uniform bit density and constant angular velocity.
1662 * Therefore, the outer recording zones are faster (higher bandwidth)
1663 * than the inner zones by the ratio of outer to inner track diameter,
1664 * which is typically around 2:1. We account for this by assigning
1665 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1666 * In effect, this means that we'll select the metaslab with the most
1667 * free bandwidth rather than simply the one with the most free space.
1668 */
fb40095f 1669 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
f3a7f661
GW
1670 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1671 ASSERT(weight >= space && weight <= 2 * space);
1672 }
428870ff 1673
f3a7f661
GW
1674 /*
1675 * If this metaslab is one we're actively using, adjust its
1676 * weight to make it preferable to any inactive metaslab so
1677 * we'll polish it off. If the fragmentation on this metaslab
1678 * has exceed our threshold, then don't mark it active.
1679 */
1680 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1681 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
428870ff
BB
1682 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1683 }
34dc7c2f 1684
4e21fd06
DB
1685 WEIGHT_SET_SPACEBASED(weight);
1686 return (weight);
1687}
1688
1689/*
1690 * Return the weight of the specified metaslab, according to the segment-based
1691 * weighting algorithm. The metaslab must be loaded. This function can
1692 * be called within a sync pass since it relies only on the metaslab's
1693 * range tree which is always accurate when the metaslab is loaded.
1694 */
1695static uint64_t
1696metaslab_weight_from_range_tree(metaslab_t *msp)
1697{
1698 uint64_t weight = 0;
1699 uint32_t segments = 0;
1700 int i;
1701
1702 ASSERT(msp->ms_loaded);
1703
1704 for (i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; i--) {
1705 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1706 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1707
1708 segments <<= 1;
1709 segments += msp->ms_tree->rt_histogram[i];
1710
1711 /*
1712 * The range tree provides more precision than the space map
1713 * and must be downgraded so that all values fit within the
1714 * space map's histogram. This allows us to compare loaded
1715 * vs. unloaded metaslabs to determine which metaslab is
1716 * considered "best".
1717 */
1718 if (i > max_idx)
1719 continue;
1720
1721 if (segments != 0) {
1722 WEIGHT_SET_COUNT(weight, segments);
1723 WEIGHT_SET_INDEX(weight, i);
1724 WEIGHT_SET_ACTIVE(weight, 0);
1725 break;
1726 }
1727 }
1728 return (weight);
1729}
1730
1731/*
1732 * Calculate the weight based on the on-disk histogram. This should only
1733 * be called after a sync pass has completely finished since the on-disk
1734 * information is updated in metaslab_sync().
1735 */
1736static uint64_t
1737metaslab_weight_from_spacemap(metaslab_t *msp)
1738{
1739 uint64_t weight = 0;
1740 int i;
1741
1742 for (i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
1743 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1744 WEIGHT_SET_COUNT(weight,
1745 msp->ms_sm->sm_phys->smp_histogram[i]);
1746 WEIGHT_SET_INDEX(weight, i +
1747 msp->ms_sm->sm_shift);
1748 WEIGHT_SET_ACTIVE(weight, 0);
1749 break;
1750 }
1751 }
1752 return (weight);
1753}
1754
1755/*
1756 * Compute a segment-based weight for the specified metaslab. The weight
1757 * is determined by highest bucket in the histogram. The information
1758 * for the highest bucket is encoded into the weight value.
1759 */
1760static uint64_t
1761metaslab_segment_weight(metaslab_t *msp)
1762{
1763 metaslab_group_t *mg = msp->ms_group;
1764 uint64_t weight = 0;
1765 uint8_t shift = mg->mg_vd->vdev_ashift;
1766
1767 ASSERT(MUTEX_HELD(&msp->ms_lock));
1768
1769 /*
1770 * The metaslab is completely free.
1771 */
1772 if (space_map_allocated(msp->ms_sm) == 0) {
1773 int idx = highbit64(msp->ms_size) - 1;
1774 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1775
1776 if (idx < max_idx) {
1777 WEIGHT_SET_COUNT(weight, 1ULL);
1778 WEIGHT_SET_INDEX(weight, idx);
1779 } else {
1780 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1781 WEIGHT_SET_INDEX(weight, max_idx);
1782 }
1783 WEIGHT_SET_ACTIVE(weight, 0);
1784 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1785
1786 return (weight);
1787 }
1788
1789 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1790
1791 /*
1792 * If the metaslab is fully allocated then just make the weight 0.
1793 */
1794 if (space_map_allocated(msp->ms_sm) == msp->ms_size)
1795 return (0);
1796 /*
1797 * If the metaslab is already loaded, then use the range tree to
1798 * determine the weight. Otherwise, we rely on the space map information
1799 * to generate the weight.
1800 */
1801 if (msp->ms_loaded) {
1802 weight = metaslab_weight_from_range_tree(msp);
1803 } else {
1804 weight = metaslab_weight_from_spacemap(msp);
1805 }
1806
1807 /*
1808 * If the metaslab was active the last time we calculated its weight
1809 * then keep it active. We want to consume the entire region that
1810 * is associated with this weight.
1811 */
1812 if (msp->ms_activation_weight != 0 && weight != 0)
1813 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
1814 return (weight);
1815}
1816
1817/*
1818 * Determine if we should attempt to allocate from this metaslab. If the
1819 * metaslab has a maximum size then we can quickly determine if the desired
1820 * allocation size can be satisfied. Otherwise, if we're using segment-based
1821 * weighting then we can determine the maximum allocation that this metaslab
1822 * can accommodate based on the index encoded in the weight. If we're using
1823 * space-based weights then rely on the entire weight (excluding the weight
1824 * type bit).
1825 */
1826boolean_t
1827metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
1828{
1829 boolean_t should_allocate;
1830
1831 if (msp->ms_max_size != 0)
1832 return (msp->ms_max_size >= asize);
1833
1834 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
1835 /*
1836 * The metaslab segment weight indicates segments in the
1837 * range [2^i, 2^(i+1)), where i is the index in the weight.
1838 * Since the asize might be in the middle of the range, we
1839 * should attempt the allocation if asize < 2^(i+1).
1840 */
1841 should_allocate = (asize <
1842 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
1843 } else {
1844 should_allocate = (asize <=
1845 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
1846 }
1847 return (should_allocate);
1848}
1849static uint64_t
1850metaslab_weight(metaslab_t *msp)
1851{
1852 vdev_t *vd = msp->ms_group->mg_vd;
1853 spa_t *spa = vd->vdev_spa;
1854 uint64_t weight;
1855
1856 ASSERT(MUTEX_HELD(&msp->ms_lock));
1857
1858 /*
1859 * This vdev is in the process of being removed so there is nothing
1860 * for us to do here.
1861 */
1862 if (vd->vdev_removing) {
1863 ASSERT0(space_map_allocated(msp->ms_sm));
1864 ASSERT0(vd->vdev_ms_shift);
1865 return (0);
1866 }
1867
1868 metaslab_set_fragmentation(msp);
1869
1870 /*
1871 * Update the maximum size if the metaslab is loaded. This will
1872 * ensure that we get an accurate maximum size if newly freed space
1873 * has been added back into the free tree.
1874 */
1875 if (msp->ms_loaded)
1876 msp->ms_max_size = metaslab_block_maxsize(msp);
1877
1878 /*
1879 * Segment-based weighting requires space map histogram support.
1880 */
1881 if (zfs_metaslab_segment_weight_enabled &&
1882 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
1883 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
1884 sizeof (space_map_phys_t))) {
1885 weight = metaslab_segment_weight(msp);
1886 } else {
1887 weight = metaslab_space_weight(msp);
1888 }
93cf2076 1889 return (weight);
34dc7c2f
BB
1890}
1891
1892static int
6d974228 1893metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
34dc7c2f 1894{
34dc7c2f
BB
1895 ASSERT(MUTEX_HELD(&msp->ms_lock));
1896
1897 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
93cf2076
GW
1898 metaslab_load_wait(msp);
1899 if (!msp->ms_loaded) {
1900 int error = metaslab_load(msp);
1901 if (error) {
428870ff
BB
1902 metaslab_group_sort(msp->ms_group, msp, 0);
1903 return (error);
1904 }
34dc7c2f 1905 }
9babb374 1906
4e21fd06 1907 msp->ms_activation_weight = msp->ms_weight;
34dc7c2f
BB
1908 metaslab_group_sort(msp->ms_group, msp,
1909 msp->ms_weight | activation_weight);
1910 }
93cf2076 1911 ASSERT(msp->ms_loaded);
34dc7c2f
BB
1912 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1913
1914 return (0);
1915}
1916
1917static void
4e21fd06 1918metaslab_passivate(metaslab_t *msp, uint64_t weight)
34dc7c2f 1919{
4e21fd06
DB
1920 ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
1921
34dc7c2f
BB
1922 /*
1923 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1924 * this metaslab again. In that case, it had better be empty,
1925 * or we would be leaving space on the table.
1926 */
4e21fd06
DB
1927 ASSERT(size >= SPA_MINBLOCKSIZE ||
1928 range_tree_space(msp->ms_tree) == 0);
1929 ASSERT0(weight & METASLAB_ACTIVE_MASK);
1930
1931 msp->ms_activation_weight = 0;
1932 metaslab_group_sort(msp->ms_group, msp, weight);
34dc7c2f
BB
1933 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1934}
1935
4e21fd06
DB
1936/*
1937 * Segment-based metaslabs are activated once and remain active until
1938 * we either fail an allocation attempt (similar to space-based metaslabs)
1939 * or have exhausted the free space in zfs_metaslab_switch_threshold
1940 * buckets since the metaslab was activated. This function checks to see
1941 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
1942 * metaslab and passivates it proactively. This will allow us to select a
1943 * metaslab with a larger contiguous region, if any, remaining within this
1944 * metaslab group. If we're in sync pass > 1, then we continue using this
1945 * metaslab so that we don't dirty more block and cause more sync passes.
1946 */
1947void
1948metaslab_segment_may_passivate(metaslab_t *msp)
1949{
1950 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1951 uint64_t weight;
1952 int activation_idx, current_idx;
1953
1954 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
1955 return;
1956
1957 /*
1958 * Since we are in the middle of a sync pass, the most accurate
1959 * information that is accessible to us is the in-core range tree
1960 * histogram; calculate the new weight based on that information.
1961 */
1962 weight = metaslab_weight_from_range_tree(msp);
1963 activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
1964 current_idx = WEIGHT_GET_INDEX(weight);
1965
1966 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
1967 metaslab_passivate(msp, weight);
1968}
1969
93cf2076
GW
1970static void
1971metaslab_preload(void *arg)
1972{
1973 metaslab_t *msp = arg;
1974 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1cd77734 1975 fstrans_cookie_t cookie = spl_fstrans_mark();
93cf2076 1976
080b3100
GW
1977 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1978
93cf2076
GW
1979 mutex_enter(&msp->ms_lock);
1980 metaslab_load_wait(msp);
1981 if (!msp->ms_loaded)
1982 (void) metaslab_load(msp);
4e21fd06 1983 msp->ms_selected_txg = spa_syncing_txg(spa);
93cf2076 1984 mutex_exit(&msp->ms_lock);
1cd77734 1985 spl_fstrans_unmark(cookie);
93cf2076
GW
1986}
1987
1988static void
1989metaslab_group_preload(metaslab_group_t *mg)
1990{
1991 spa_t *spa = mg->mg_vd->vdev_spa;
1992 metaslab_t *msp;
1993 avl_tree_t *t = &mg->mg_metaslab_tree;
1994 int m = 0;
1995
1996 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
c5528b9b 1997 taskq_wait_outstanding(mg->mg_taskq, 0);
93cf2076
GW
1998 return;
1999 }
93cf2076 2000
080b3100 2001 mutex_enter(&mg->mg_lock);
93cf2076 2002 /*
080b3100 2003 * Load the next potential metaslabs
93cf2076 2004 */
4e21fd06 2005 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
f3a7f661
GW
2006 /*
2007 * We preload only the maximum number of metaslabs specified
2008 * by metaslab_preload_limit. If a metaslab is being forced
2009 * to condense then we preload it too. This will ensure
2010 * that force condensing happens in the next txg.
2011 */
2012 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
f3a7f661
GW
2013 continue;
2014 }
93cf2076
GW
2015
2016 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
48d3eb40 2017 msp, TQ_SLEEP) != TASKQID_INVALID);
93cf2076
GW
2018 }
2019 mutex_exit(&mg->mg_lock);
2020}
2021
e51be066 2022/*
93cf2076
GW
2023 * Determine if the space map's on-disk footprint is past our tolerance
2024 * for inefficiency. We would like to use the following criteria to make
2025 * our decision:
e51be066
GW
2026 *
2027 * 1. The size of the space map object should not dramatically increase as a
93cf2076 2028 * result of writing out the free space range tree.
e51be066
GW
2029 *
2030 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
93cf2076
GW
2031 * times the size than the free space range tree representation
2032 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
e51be066 2033 *
b02fe35d
AR
2034 * 3. The on-disk size of the space map should actually decrease.
2035 *
e51be066
GW
2036 * Checking the first condition is tricky since we don't want to walk
2037 * the entire AVL tree calculating the estimated on-disk size. Instead we
93cf2076
GW
2038 * use the size-ordered range tree in the metaslab and calculate the
2039 * size required to write out the largest segment in our free tree. If the
e51be066
GW
2040 * size required to represent that segment on disk is larger than the space
2041 * map object then we avoid condensing this map.
2042 *
2043 * To determine the second criterion we use a best-case estimate and assume
2044 * each segment can be represented on-disk as a single 64-bit entry. We refer
2045 * to this best-case estimate as the space map's minimal form.
b02fe35d
AR
2046 *
2047 * Unfortunately, we cannot compute the on-disk size of the space map in this
2048 * context because we cannot accurately compute the effects of compression, etc.
2049 * Instead, we apply the heuristic described in the block comment for
2050 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2051 * is greater than a threshold number of blocks.
e51be066
GW
2052 */
2053static boolean_t
2054metaslab_should_condense(metaslab_t *msp)
2055{
93cf2076
GW
2056 space_map_t *sm = msp->ms_sm;
2057 range_seg_t *rs;
b02fe35d
AR
2058 uint64_t size, entries, segsz, object_size, optimal_size, record_size;
2059 dmu_object_info_t doi;
f4bae2ed 2060 uint64_t vdev_blocksize = 1ULL << msp->ms_group->mg_vd->vdev_ashift;
e51be066
GW
2061
2062 ASSERT(MUTEX_HELD(&msp->ms_lock));
93cf2076 2063 ASSERT(msp->ms_loaded);
e51be066
GW
2064
2065 /*
93cf2076 2066 * Use the ms_size_tree range tree, which is ordered by size, to
f3a7f661
GW
2067 * obtain the largest segment in the free tree. We always condense
2068 * metaslabs that are empty and metaslabs for which a condense
2069 * request has been made.
e51be066 2070 */
93cf2076 2071 rs = avl_last(&msp->ms_size_tree);
f3a7f661 2072 if (rs == NULL || msp->ms_condense_wanted)
e51be066
GW
2073 return (B_TRUE);
2074
2075 /*
2076 * Calculate the number of 64-bit entries this segment would
2077 * require when written to disk. If this single segment would be
2078 * larger on-disk than the entire current on-disk structure, then
2079 * clearly condensing will increase the on-disk structure size.
2080 */
93cf2076 2081 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
e51be066
GW
2082 entries = size / (MIN(size, SM_RUN_MAX));
2083 segsz = entries * sizeof (uint64_t);
2084
b02fe35d
AR
2085 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
2086 object_size = space_map_length(msp->ms_sm);
2087
2088 dmu_object_info_from_db(sm->sm_dbuf, &doi);
2089 record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2090
2091 return (segsz <= object_size &&
2092 object_size >= (optimal_size * zfs_condense_pct / 100) &&
2093 object_size > zfs_metaslab_condense_block_threshold * record_size);
e51be066
GW
2094}
2095
2096/*
2097 * Condense the on-disk space map representation to its minimized form.
2098 * The minimized form consists of a small number of allocations followed by
93cf2076 2099 * the entries of the free range tree.
e51be066
GW
2100 */
2101static void
2102metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2103{
2104 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
93cf2076
GW
2105 range_tree_t *condense_tree;
2106 space_map_t *sm = msp->ms_sm;
e51be066
GW
2107 int t;
2108
2109 ASSERT(MUTEX_HELD(&msp->ms_lock));
2110 ASSERT3U(spa_sync_pass(spa), ==, 1);
93cf2076 2111 ASSERT(msp->ms_loaded);
e51be066 2112
f3a7f661 2113
5f3d9c69
JS
2114 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2115 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2116 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2117 msp->ms_group->mg_vd->vdev_spa->spa_name,
2118 space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root),
f3a7f661
GW
2119 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2120
2121 msp->ms_condense_wanted = B_FALSE;
e51be066
GW
2122
2123 /*
93cf2076 2124 * Create an range tree that is 100% allocated. We remove segments
e51be066
GW
2125 * that have been freed in this txg, any deferred frees that exist,
2126 * and any allocation in the future. Removing segments should be
93cf2076
GW
2127 * a relatively inexpensive operation since we expect these trees to
2128 * have a small number of nodes.
e51be066 2129 */
93cf2076
GW
2130 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
2131 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
e51be066
GW
2132
2133 /*
93cf2076 2134 * Remove what's been freed in this txg from the condense_tree.
e51be066 2135 * Since we're in sync_pass 1, we know that all the frees from
258553d3 2136 * this txg are in the freeingtree.
e51be066 2137 */
258553d3 2138 range_tree_walk(msp->ms_freeingtree, range_tree_remove, condense_tree);
e51be066 2139
93cf2076
GW
2140 for (t = 0; t < TXG_DEFER_SIZE; t++) {
2141 range_tree_walk(msp->ms_defertree[t],
2142 range_tree_remove, condense_tree);
2143 }
e51be066 2144
93cf2076
GW
2145 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
2146 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
2147 range_tree_remove, condense_tree);
2148 }
e51be066
GW
2149
2150 /*
2151 * We're about to drop the metaslab's lock thus allowing
2152 * other consumers to change it's content. Set the
93cf2076 2153 * metaslab's ms_condensing flag to ensure that
e51be066
GW
2154 * allocations on this metaslab do not occur while we're
2155 * in the middle of committing it to disk. This is only critical
93cf2076 2156 * for the ms_tree as all other range trees use per txg
e51be066
GW
2157 * views of their content.
2158 */
93cf2076 2159 msp->ms_condensing = B_TRUE;
e51be066
GW
2160
2161 mutex_exit(&msp->ms_lock);
93cf2076 2162 space_map_truncate(sm, tx);
e51be066
GW
2163 mutex_enter(&msp->ms_lock);
2164
2165 /*
4e21fd06 2166 * While we would ideally like to create a space map representation
e51be066 2167 * that consists only of allocation records, doing so can be
93cf2076 2168 * prohibitively expensive because the in-core free tree can be
e51be066 2169 * large, and therefore computationally expensive to subtract
93cf2076
GW
2170 * from the condense_tree. Instead we sync out two trees, a cheap
2171 * allocation only tree followed by the in-core free tree. While not
e51be066
GW
2172 * optimal, this is typically close to optimal, and much cheaper to
2173 * compute.
2174 */
93cf2076
GW
2175 space_map_write(sm, condense_tree, SM_ALLOC, tx);
2176 range_tree_vacate(condense_tree, NULL, NULL);
2177 range_tree_destroy(condense_tree);
e51be066 2178
93cf2076
GW
2179 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
2180 msp->ms_condensing = B_FALSE;
e51be066
GW
2181}
2182
34dc7c2f
BB
2183/*
2184 * Write a metaslab to disk in the context of the specified transaction group.
2185 */
2186void
2187metaslab_sync(metaslab_t *msp, uint64_t txg)
2188{
93cf2076
GW
2189 metaslab_group_t *mg = msp->ms_group;
2190 vdev_t *vd = mg->mg_vd;
34dc7c2f 2191 spa_t *spa = vd->vdev_spa;
428870ff 2192 objset_t *mos = spa_meta_objset(spa);
93cf2076 2193 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
34dc7c2f 2194 dmu_tx_t *tx;
93cf2076 2195 uint64_t object = space_map_object(msp->ms_sm);
34dc7c2f 2196
428870ff
BB
2197 ASSERT(!vd->vdev_ishole);
2198
e51be066
GW
2199 /*
2200 * This metaslab has just been added so there's no work to do now.
2201 */
258553d3 2202 if (msp->ms_freeingtree == NULL) {
93cf2076 2203 ASSERT3P(alloctree, ==, NULL);
e51be066
GW
2204 return;
2205 }
2206
93cf2076 2207 ASSERT3P(alloctree, !=, NULL);
258553d3
TC
2208 ASSERT3P(msp->ms_freeingtree, !=, NULL);
2209 ASSERT3P(msp->ms_freedtree, !=, NULL);
e51be066 2210
f3a7f661
GW
2211 /*
2212 * Normally, we don't want to process a metaslab if there
2213 * are no allocations or frees to perform. However, if the metaslab
2214 * is being forced to condense we need to let it through.
2215 */
93cf2076 2216 if (range_tree_space(alloctree) == 0 &&
258553d3 2217 range_tree_space(msp->ms_freeingtree) == 0 &&
f3a7f661 2218 !msp->ms_condense_wanted)
428870ff 2219 return;
34dc7c2f
BB
2220
2221 /*
2222 * The only state that can actually be changing concurrently with
93cf2076 2223 * metaslab_sync() is the metaslab's ms_tree. No other thread can
258553d3 2224 * be modifying this txg's alloctree, freeingtree, freedtree, or
93cf2076 2225 * space_map_phys_t. Therefore, we only hold ms_lock to satify
4e21fd06 2226 * space map ASSERTs. We drop it whenever we call into the DMU,
93cf2076
GW
2227 * because the DMU can call down to us (e.g. via zio_free()) at
2228 * any time.
34dc7c2f 2229 */
428870ff
BB
2230
2231 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
34dc7c2f 2232
93cf2076
GW
2233 if (msp->ms_sm == NULL) {
2234 uint64_t new_object;
2235
2236 new_object = space_map_alloc(mos, tx);
2237 VERIFY3U(new_object, !=, 0);
2238
2239 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2240 msp->ms_start, msp->ms_size, vd->vdev_ashift,
2241 &msp->ms_lock));
2242 ASSERT(msp->ms_sm != NULL);
34dc7c2f
BB
2243 }
2244
428870ff
BB
2245 mutex_enter(&msp->ms_lock);
2246
96358617 2247 /*
4e21fd06
DB
2248 * Note: metaslab_condense() clears the space map's histogram.
2249 * Therefore we must verify and remove this histogram before
96358617
MA
2250 * condensing.
2251 */
2252 metaslab_group_histogram_verify(mg);
2253 metaslab_class_histogram_verify(mg->mg_class);
2254 metaslab_group_histogram_remove(mg, msp);
2255
93cf2076 2256 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
e51be066
GW
2257 metaslab_should_condense(msp)) {
2258 metaslab_condense(msp, txg, tx);
2259 } else {
93cf2076 2260 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
258553d3 2261 space_map_write(msp->ms_sm, msp->ms_freeingtree, SM_FREE, tx);
e51be066 2262 }
428870ff 2263
93cf2076 2264 if (msp->ms_loaded) {
4e21fd06
DB
2265 int t;
2266
93cf2076
GW
2267 /*
2268 * When the space map is loaded, we have an accruate
2269 * histogram in the range tree. This gives us an opportunity
2270 * to bring the space map's histogram up-to-date so we clear
2271 * it first before updating it.
2272 */
2273 space_map_histogram_clear(msp->ms_sm);
2274 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
4e21fd06
DB
2275
2276 /*
2277 * Since we've cleared the histogram we need to add back
2278 * any free space that has already been processed, plus
2279 * any deferred space. This allows the on-disk histogram
2280 * to accurately reflect all free space even if some space
2281 * is not yet available for allocation (i.e. deferred).
2282 */
258553d3 2283 space_map_histogram_add(msp->ms_sm, msp->ms_freedtree, tx);
4e21fd06 2284
93cf2076 2285 /*
4e21fd06
DB
2286 * Add back any deferred free space that has not been
2287 * added back into the in-core free tree yet. This will
2288 * ensure that we don't end up with a space map histogram
2289 * that is completely empty unless the metaslab is fully
2290 * allocated.
93cf2076 2291 */
4e21fd06
DB
2292 for (t = 0; t < TXG_DEFER_SIZE; t++) {
2293 space_map_histogram_add(msp->ms_sm,
2294 msp->ms_defertree[t], tx);
2295 }
93cf2076 2296 }
4e21fd06
DB
2297
2298 /*
2299 * Always add the free space from this sync pass to the space
2300 * map histogram. We want to make sure that the on-disk histogram
2301 * accounts for all free space. If the space map is not loaded,
2302 * then we will lose some accuracy but will correct it the next
2303 * time we load the space map.
2304 */
258553d3 2305 space_map_histogram_add(msp->ms_sm, msp->ms_freeingtree, tx);
4e21fd06 2306
f3a7f661
GW
2307 metaslab_group_histogram_add(mg, msp);
2308 metaslab_group_histogram_verify(mg);
2309 metaslab_class_histogram_verify(mg->mg_class);
34dc7c2f 2310
e51be066 2311 /*
93cf2076 2312 * For sync pass 1, we avoid traversing this txg's free range tree
258553d3
TC
2313 * and instead will just swap the pointers for freeingtree and
2314 * freedtree. We can safely do this since the freed_tree is
e51be066
GW
2315 * guaranteed to be empty on the initial pass.
2316 */
2317 if (spa_sync_pass(spa) == 1) {
258553d3 2318 range_tree_swap(&msp->ms_freeingtree, &msp->ms_freedtree);
e51be066 2319 } else {
258553d3
TC
2320 range_tree_vacate(msp->ms_freeingtree,
2321 range_tree_add, msp->ms_freedtree);
34dc7c2f 2322 }
f3a7f661 2323 range_tree_vacate(alloctree, NULL, NULL);
34dc7c2f 2324
93cf2076 2325 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
4e21fd06 2326 ASSERT0(range_tree_space(msp->ms_alloctree[TXG_CLEAN(txg) & TXG_MASK]));
258553d3 2327 ASSERT0(range_tree_space(msp->ms_freeingtree));
34dc7c2f
BB
2328
2329 mutex_exit(&msp->ms_lock);
2330
93cf2076
GW
2331 if (object != space_map_object(msp->ms_sm)) {
2332 object = space_map_object(msp->ms_sm);
2333 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2334 msp->ms_id, sizeof (uint64_t), &object, tx);
2335 }
34dc7c2f
BB
2336 dmu_tx_commit(tx);
2337}
2338
2339/*
2340 * Called after a transaction group has completely synced to mark
2341 * all of the metaslab's free space as usable.
2342 */
2343void
2344metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2345{
34dc7c2f
BB
2346 metaslab_group_t *mg = msp->ms_group;
2347 vdev_t *vd = mg->mg_vd;
4e21fd06 2348 spa_t *spa = vd->vdev_spa;
93cf2076 2349 range_tree_t **defer_tree;
428870ff 2350 int64_t alloc_delta, defer_delta;
4e21fd06
DB
2351 uint64_t free_space;
2352 boolean_t defer_allowed = B_TRUE;
d6320ddb 2353 int t;
428870ff
BB
2354
2355 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
2356
2357 mutex_enter(&msp->ms_lock);
2358
2359 /*
2360 * If this metaslab is just becoming available, initialize its
258553d3 2361 * range trees and add its capacity to the vdev.
34dc7c2f 2362 */
258553d3 2363 if (msp->ms_freedtree == NULL) {
d6320ddb 2364 for (t = 0; t < TXG_SIZE; t++) {
93cf2076 2365 ASSERT(msp->ms_alloctree[t] == NULL);
93cf2076
GW
2366
2367 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
2368 &msp->ms_lock);
34dc7c2f 2369 }
428870ff 2370
258553d3
TC
2371 ASSERT3P(msp->ms_freeingtree, ==, NULL);
2372 msp->ms_freeingtree = range_tree_create(NULL, msp,
2373 &msp->ms_lock);
2374
2375 ASSERT3P(msp->ms_freedtree, ==, NULL);
2376 msp->ms_freedtree = range_tree_create(NULL, msp,
2377 &msp->ms_lock);
2378
e51be066 2379 for (t = 0; t < TXG_DEFER_SIZE; t++) {
93cf2076 2380 ASSERT(msp->ms_defertree[t] == NULL);
e51be066 2381
93cf2076
GW
2382 msp->ms_defertree[t] = range_tree_create(NULL, msp,
2383 &msp->ms_lock);
2384 }
428870ff 2385
93cf2076 2386 vdev_space_update(vd, 0, 0, msp->ms_size);
34dc7c2f
BB
2387 }
2388
93cf2076
GW
2389 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
2390
4e21fd06
DB
2391 free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2392 metaslab_class_get_alloc(spa_normal_class(spa));
2393 if (free_space <= spa_get_slop_space(spa)) {
2394 defer_allowed = B_FALSE;
2395 }
2396
2397 defer_delta = 0;
93cf2076 2398 alloc_delta = space_map_alloc_delta(msp->ms_sm);
4e21fd06 2399 if (defer_allowed) {
258553d3 2400 defer_delta = range_tree_space(msp->ms_freedtree) -
4e21fd06
DB
2401 range_tree_space(*defer_tree);
2402 } else {
2403 defer_delta -= range_tree_space(*defer_tree);
2404 }
428870ff
BB
2405
2406 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
34dc7c2f 2407
34dc7c2f 2408 /*
93cf2076 2409 * If there's a metaslab_load() in progress, wait for it to complete
34dc7c2f 2410 * so that we have a consistent view of the in-core space map.
34dc7c2f 2411 */
93cf2076 2412 metaslab_load_wait(msp);
c2e42f9d
GW
2413
2414 /*
93cf2076
GW
2415 * Move the frees from the defer_tree back to the free
2416 * range tree (if it's loaded). Swap the freed_tree and the
2417 * defer_tree -- this is safe to do because we've just emptied out
2418 * the defer_tree.
c2e42f9d 2419 */
93cf2076
GW
2420 range_tree_vacate(*defer_tree,
2421 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
4e21fd06 2422 if (defer_allowed) {
258553d3 2423 range_tree_swap(&msp->ms_freedtree, defer_tree);
4e21fd06 2424 } else {
258553d3 2425 range_tree_vacate(msp->ms_freedtree,
4e21fd06
DB
2426 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2427 }
34dc7c2f 2428
93cf2076 2429 space_map_update(msp->ms_sm);
34dc7c2f 2430
428870ff
BB
2431 msp->ms_deferspace += defer_delta;
2432 ASSERT3S(msp->ms_deferspace, >=, 0);
93cf2076 2433 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
428870ff
BB
2434 if (msp->ms_deferspace != 0) {
2435 /*
2436 * Keep syncing this metaslab until all deferred frees
2437 * are back in circulation.
2438 */
2439 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2440 }
2441
4e21fd06
DB
2442 /*
2443 * Calculate the new weights before unloading any metaslabs.
2444 * This will give us the most accurate weighting.
2445 */
2446 metaslab_group_sort(mg, msp, metaslab_weight(msp));
2447
2448 /*
2449 * If the metaslab is loaded and we've not tried to load or allocate
2450 * from it in 'metaslab_unload_delay' txgs, then unload it.
2451 */
2452 if (msp->ms_loaded &&
2453 msp->ms_selected_txg + metaslab_unload_delay < txg) {
2454
93cf2076
GW
2455 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
2456 VERIFY0(range_tree_space(
2457 msp->ms_alloctree[(txg + t) & TXG_MASK]));
2458 }
34dc7c2f 2459
93cf2076
GW
2460 if (!metaslab_debug_unload)
2461 metaslab_unload(msp);
34dc7c2f
BB
2462 }
2463
34dc7c2f
BB
2464 mutex_exit(&msp->ms_lock);
2465}
2466
428870ff
BB
2467void
2468metaslab_sync_reassess(metaslab_group_t *mg)
2469{
1be627f5 2470 metaslab_group_alloc_update(mg);
f3a7f661 2471 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
6d974228 2472
428870ff 2473 /*
93cf2076 2474 * Preload the next potential metaslabs
428870ff 2475 */
93cf2076 2476 metaslab_group_preload(mg);
428870ff
BB
2477}
2478
34dc7c2f
BB
2479static uint64_t
2480metaslab_distance(metaslab_t *msp, dva_t *dva)
2481{
2482 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2483 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
93cf2076 2484 uint64_t start = msp->ms_id;
34dc7c2f
BB
2485
2486 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2487 return (1ULL << 63);
2488
2489 if (offset < start)
2490 return ((start - offset) << ms_shift);
2491 if (offset > start)
2492 return ((offset - start) << ms_shift);
2493 return (0);
2494}
2495
4e21fd06
DB
2496/*
2497 * ==========================================================================
2498 * Metaslab allocation tracing facility
2499 * ==========================================================================
2500 */
2501#ifdef _METASLAB_TRACING
2502kstat_t *metaslab_trace_ksp;
2503kstat_named_t metaslab_trace_over_limit;
2504
2505void
2506metaslab_alloc_trace_init(void)
2507{
2508 ASSERT(metaslab_alloc_trace_cache == NULL);
2509 metaslab_alloc_trace_cache = kmem_cache_create(
2510 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2511 0, NULL, NULL, NULL, NULL, NULL, 0);
2512 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2513 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2514 if (metaslab_trace_ksp != NULL) {
2515 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2516 kstat_named_init(&metaslab_trace_over_limit,
2517 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2518 kstat_install(metaslab_trace_ksp);
2519 }
2520}
2521
2522void
2523metaslab_alloc_trace_fini(void)
2524{
2525 if (metaslab_trace_ksp != NULL) {
2526 kstat_delete(metaslab_trace_ksp);
2527 metaslab_trace_ksp = NULL;
2528 }
2529 kmem_cache_destroy(metaslab_alloc_trace_cache);
2530 metaslab_alloc_trace_cache = NULL;
2531}
2532
2533/*
2534 * Add an allocation trace element to the allocation tracing list.
2535 */
2536static void
2537metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
2538 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset)
2539{
2540 metaslab_alloc_trace_t *mat;
2541
2542 if (!metaslab_trace_enabled)
2543 return;
2544
2545 /*
2546 * When the tracing list reaches its maximum we remove
2547 * the second element in the list before adding a new one.
2548 * By removing the second element we preserve the original
2549 * entry as a clue to what allocations steps have already been
2550 * performed.
2551 */
2552 if (zal->zal_size == metaslab_trace_max_entries) {
2553 metaslab_alloc_trace_t *mat_next;
2554#ifdef DEBUG
2555 panic("too many entries in allocation list");
2556#endif
2557 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2558 zal->zal_size--;
2559 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2560 list_remove(&zal->zal_list, mat_next);
2561 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2562 }
2563
2564 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2565 list_link_init(&mat->mat_list_node);
2566 mat->mat_mg = mg;
2567 mat->mat_msp = msp;
2568 mat->mat_size = psize;
2569 mat->mat_dva_id = dva_id;
2570 mat->mat_offset = offset;
2571 mat->mat_weight = 0;
2572
2573 if (msp != NULL)
2574 mat->mat_weight = msp->ms_weight;
2575
2576 /*
2577 * The list is part of the zio so locking is not required. Only
2578 * a single thread will perform allocations for a given zio.
2579 */
2580 list_insert_tail(&zal->zal_list, mat);
2581 zal->zal_size++;
2582
2583 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2584}
2585
2586void
2587metaslab_trace_init(zio_alloc_list_t *zal)
2588{
2589 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2590 offsetof(metaslab_alloc_trace_t, mat_list_node));
2591 zal->zal_size = 0;
2592}
2593
2594void
2595metaslab_trace_fini(zio_alloc_list_t *zal)
2596{
2597 metaslab_alloc_trace_t *mat;
2598
2599 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2600 kmem_cache_free(metaslab_alloc_trace_cache, mat);
2601 list_destroy(&zal->zal_list);
2602 zal->zal_size = 0;
2603}
2604#else
2605
2606#define metaslab_trace_add(zal, mg, msp, psize, id, off)
2607
2608void
2609metaslab_alloc_trace_init(void)
2610{
2611}
2612
2613void
2614metaslab_alloc_trace_fini(void)
2615{
2616}
2617
2618void
2619metaslab_trace_init(zio_alloc_list_t *zal)
2620{
2621}
2622
2623void
2624metaslab_trace_fini(zio_alloc_list_t *zal)
2625{
2626}
2627
2628#endif /* _METASLAB_TRACING */
2629
3dfb57a3
DB
2630/*
2631 * ==========================================================================
2632 * Metaslab block operations
2633 * ==========================================================================
2634 */
2635
2636static void
2637metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags)
2638{
2639 metaslab_group_t *mg;
2640
2641 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2642 flags & METASLAB_DONT_THROTTLE)
2643 return;
2644
2645 mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2646 if (!mg->mg_class->mc_alloc_throttle_enabled)
2647 return;
2648
2649 (void) refcount_add(&mg->mg_alloc_queue_depth, tag);
2650}
2651
2652void
2653metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags)
2654{
2655 metaslab_group_t *mg;
2656
2657 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2658 flags & METASLAB_DONT_THROTTLE)
2659 return;
2660
2661 mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2662 if (!mg->mg_class->mc_alloc_throttle_enabled)
2663 return;
2664
2665 (void) refcount_remove(&mg->mg_alloc_queue_depth, tag);
2666}
2667
2668void
2669metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag)
2670{
2671#ifdef ZFS_DEBUG
2672 const dva_t *dva = bp->blk_dva;
2673 int ndvas = BP_GET_NDVAS(bp);
2674 int d;
2675
2676 for (d = 0; d < ndvas; d++) {
2677 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2678 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2679 VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth, tag));
2680 }
2681#endif
2682}
2683
34dc7c2f 2684static uint64_t
4e21fd06
DB
2685metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
2686{
2687 uint64_t start;
2688 range_tree_t *rt = msp->ms_tree;
2689 metaslab_class_t *mc = msp->ms_group->mg_class;
2690
2691 VERIFY(!msp->ms_condensing);
2692
2693 start = mc->mc_ops->msop_alloc(msp, size);
2694 if (start != -1ULL) {
2695 metaslab_group_t *mg = msp->ms_group;
2696 vdev_t *vd = mg->mg_vd;
2697
2698 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
2699 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2700 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
2701 range_tree_remove(rt, start, size);
2702
2703 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2704 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2705
2706 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], start, size);
2707
2708 /* Track the last successful allocation */
2709 msp->ms_alloc_txg = txg;
2710 metaslab_verify_space(msp, txg);
2711 }
2712
2713 /*
2714 * Now that we've attempted the allocation we need to update the
2715 * metaslab's maximum block size since it may have changed.
2716 */
2717 msp->ms_max_size = metaslab_block_maxsize(msp);
2718 return (start);
2719}
2720
2721static uint64_t
2722metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
2723 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
34dc7c2f
BB
2724{
2725 metaslab_t *msp = NULL;
4e21fd06 2726 metaslab_t *search;
34dc7c2f 2727 uint64_t offset = -1ULL;
34dc7c2f
BB
2728 uint64_t activation_weight;
2729 uint64_t target_distance;
2730 int i;
2731
2732 activation_weight = METASLAB_WEIGHT_PRIMARY;
9babb374
BB
2733 for (i = 0; i < d; i++) {
2734 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
34dc7c2f 2735 activation_weight = METASLAB_WEIGHT_SECONDARY;
9babb374
BB
2736 break;
2737 }
2738 }
34dc7c2f 2739
4e21fd06
DB
2740 search = kmem_alloc(sizeof (*search), KM_SLEEP);
2741 search->ms_weight = UINT64_MAX;
2742 search->ms_start = 0;
34dc7c2f 2743 for (;;) {
9babb374 2744 boolean_t was_active;
4e21fd06
DB
2745 avl_tree_t *t = &mg->mg_metaslab_tree;
2746 avl_index_t idx;
9babb374 2747
34dc7c2f 2748 mutex_enter(&mg->mg_lock);
4e21fd06
DB
2749
2750 /*
2751 * Find the metaslab with the highest weight that is less
2752 * than what we've already tried. In the common case, this
2753 * means that we will examine each metaslab at most once.
2754 * Note that concurrent callers could reorder metaslabs
2755 * by activation/passivation once we have dropped the mg_lock.
2756 * If a metaslab is activated by another thread, and we fail
2757 * to allocate from the metaslab we have selected, we may
2758 * not try the newly-activated metaslab, and instead activate
2759 * another metaslab. This is not optimal, but generally
2760 * does not cause any problems (a possible exception being
2761 * if every metaslab is completely full except for the
2762 * the newly-activated metaslab which we fail to examine).
2763 */
2764 msp = avl_find(t, search, &idx);
2765 if (msp == NULL)
2766 msp = avl_nearest(t, idx, AVL_AFTER);
2767 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
2768
2769 if (!metaslab_should_allocate(msp, asize)) {
2770 metaslab_trace_add(zal, mg, msp, asize, d,
2771 TRACE_TOO_SMALL);
2772 continue;
34dc7c2f 2773 }
7a614407
GW
2774
2775 /*
2776 * If the selected metaslab is condensing, skip it.
2777 */
93cf2076 2778 if (msp->ms_condensing)
7a614407
GW
2779 continue;
2780
9babb374 2781 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
34dc7c2f
BB
2782 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2783 break;
2784
2785 target_distance = min_distance +
93cf2076
GW
2786 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2787 min_distance >> 1);
34dc7c2f 2788
4e21fd06 2789 for (i = 0; i < d; i++) {
34dc7c2f
BB
2790 if (metaslab_distance(msp, &dva[i]) <
2791 target_distance)
2792 break;
4e21fd06 2793 }
34dc7c2f
BB
2794 if (i == d)
2795 break;
2796 }
2797 mutex_exit(&mg->mg_lock);
4e21fd06
DB
2798 if (msp == NULL) {
2799 kmem_free(search, sizeof (*search));
34dc7c2f 2800 return (-1ULL);
4e21fd06
DB
2801 }
2802 search->ms_weight = msp->ms_weight;
2803 search->ms_start = msp->ms_start + 1;
34dc7c2f 2804
ac72fac3
GW
2805 mutex_enter(&msp->ms_lock);
2806
34dc7c2f
BB
2807 /*
2808 * Ensure that the metaslab we have selected is still
2809 * capable of handling our request. It's possible that
2810 * another thread may have changed the weight while we
4e21fd06
DB
2811 * were blocked on the metaslab lock. We check the
2812 * active status first to see if we need to reselect
2813 * a new metaslab.
34dc7c2f 2814 */
4e21fd06 2815 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
34dc7c2f
BB
2816 mutex_exit(&msp->ms_lock);
2817 continue;
2818 }
2819
2820 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2821 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2822 metaslab_passivate(msp,
2823 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2824 mutex_exit(&msp->ms_lock);
2825 continue;
2826 }
2827
6d974228 2828 if (metaslab_activate(msp, activation_weight) != 0) {
34dc7c2f
BB
2829 mutex_exit(&msp->ms_lock);
2830 continue;
2831 }
4e21fd06
DB
2832 msp->ms_selected_txg = txg;
2833
2834 /*
2835 * Now that we have the lock, recheck to see if we should
2836 * continue to use this metaslab for this allocation. The
2837 * the metaslab is now loaded so metaslab_should_allocate() can
2838 * accurately determine if the allocation attempt should
2839 * proceed.
2840 */
2841 if (!metaslab_should_allocate(msp, asize)) {
2842 /* Passivate this metaslab and select a new one. */
2843 metaslab_trace_add(zal, mg, msp, asize, d,
2844 TRACE_TOO_SMALL);
2845 goto next;
2846 }
2847
34dc7c2f 2848
7a614407
GW
2849 /*
2850 * If this metaslab is currently condensing then pick again as
2851 * we can't manipulate this metaslab until it's committed
2852 * to disk.
2853 */
93cf2076 2854 if (msp->ms_condensing) {
4e21fd06
DB
2855 metaslab_trace_add(zal, mg, msp, asize, d,
2856 TRACE_CONDENSING);
7a614407
GW
2857 mutex_exit(&msp->ms_lock);
2858 continue;
2859 }
2860
4e21fd06
DB
2861 offset = metaslab_block_alloc(msp, asize, txg);
2862 metaslab_trace_add(zal, mg, msp, asize, d, offset);
2863
2864 if (offset != -1ULL) {
2865 /* Proactively passivate the metaslab, if needed */
2866 metaslab_segment_may_passivate(msp);
34dc7c2f 2867 break;
4e21fd06
DB
2868 }
2869next:
2870 ASSERT(msp->ms_loaded);
2871
2872 /*
2873 * We were unable to allocate from this metaslab so determine
2874 * a new weight for this metaslab. Now that we have loaded
2875 * the metaslab we can provide a better hint to the metaslab
2876 * selector.
2877 *
2878 * For space-based metaslabs, we use the maximum block size.
2879 * This information is only available when the metaslab
2880 * is loaded and is more accurate than the generic free
2881 * space weight that was calculated by metaslab_weight().
2882 * This information allows us to quickly compare the maximum
2883 * available allocation in the metaslab to the allocation
2884 * size being requested.
2885 *
2886 * For segment-based metaslabs, determine the new weight
2887 * based on the highest bucket in the range tree. We
2888 * explicitly use the loaded segment weight (i.e. the range
2889 * tree histogram) since it contains the space that is
2890 * currently available for allocation and is accurate
2891 * even within a sync pass.
2892 */
2893 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
2894 uint64_t weight = metaslab_block_maxsize(msp);
2895 WEIGHT_SET_SPACEBASED(weight);
2896 metaslab_passivate(msp, weight);
2897 } else {
2898 metaslab_passivate(msp,
2899 metaslab_weight_from_range_tree(msp));
2900 }
34dc7c2f 2901
4e21fd06
DB
2902 /*
2903 * We have just failed an allocation attempt, check
2904 * that metaslab_should_allocate() agrees. Otherwise,
2905 * we may end up in an infinite loop retrying the same
2906 * metaslab.
2907 */
2908 ASSERT(!metaslab_should_allocate(msp, asize));
34dc7c2f
BB
2909 mutex_exit(&msp->ms_lock);
2910 }
4e21fd06
DB
2911 mutex_exit(&msp->ms_lock);
2912 kmem_free(search, sizeof (*search));
2913 return (offset);
2914}
34dc7c2f 2915
4e21fd06
DB
2916static uint64_t
2917metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
2918 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2919{
2920 uint64_t offset;
2921 ASSERT(mg->mg_initialized);
34dc7c2f 2922
4e21fd06
DB
2923 offset = metaslab_group_alloc_normal(mg, zal, asize, txg,
2924 min_distance, dva, d);
34dc7c2f 2925
4e21fd06
DB
2926 mutex_enter(&mg->mg_lock);
2927 if (offset == -1ULL) {
2928 mg->mg_failed_allocations++;
2929 metaslab_trace_add(zal, mg, NULL, asize, d,
2930 TRACE_GROUP_FAILURE);
2931 if (asize == SPA_GANGBLOCKSIZE) {
2932 /*
2933 * This metaslab group was unable to allocate
2934 * the minimum gang block size so it must be out of
2935 * space. We must notify the allocation throttle
2936 * to start skipping allocation attempts to this
2937 * metaslab group until more space becomes available.
2938 * Note: this failure cannot be caused by the
2939 * allocation throttle since the allocation throttle
2940 * is only responsible for skipping devices and
2941 * not failing block allocations.
2942 */
2943 mg->mg_no_free_space = B_TRUE;
2944 }
2945 }
2946 mg->mg_allocations++;
2947 mutex_exit(&mg->mg_lock);
34dc7c2f
BB
2948 return (offset);
2949}
2950
4e21fd06
DB
2951/*
2952 * If we have to write a ditto block (i.e. more than one DVA for a given BP)
2953 * on the same vdev as an existing DVA of this BP, then try to allocate it
2954 * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the
2955 * existing DVAs.
2956 */
2957int ditto_same_vdev_distance_shift = 3;
2958
34dc7c2f
BB
2959/*
2960 * Allocate a block for the specified i/o.
2961 */
2962static int
2963metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
4e21fd06
DB
2964 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
2965 zio_alloc_list_t *zal)
34dc7c2f 2966{
920dd524 2967 metaslab_group_t *mg, *fast_mg, *rotor;
34dc7c2f 2968 vdev_t *vd;
4e21fd06 2969 boolean_t try_hard = B_FALSE;
34dc7c2f
BB
2970
2971 ASSERT(!DVA_IS_VALID(&dva[d]));
2972
2973 /*
2974 * For testing, make some blocks above a certain size be gang blocks.
2975 */
4e21fd06
DB
2976 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) {
2977 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG);
2e528b49 2978 return (SET_ERROR(ENOSPC));
4e21fd06 2979 }
34dc7c2f
BB
2980
2981 /*
2982 * Start at the rotor and loop through all mgs until we find something.
428870ff 2983 * Note that there's no locking on mc_rotor or mc_aliquot because
34dc7c2f
BB
2984 * nothing actually breaks if we miss a few updates -- we just won't
2985 * allocate quite as evenly. It all balances out over time.
2986 *
2987 * If we are doing ditto or log blocks, try to spread them across
2988 * consecutive vdevs. If we're forced to reuse a vdev before we've
2989 * allocated all of our ditto blocks, then try and spread them out on
2990 * that vdev as much as possible. If it turns out to not be possible,
2991 * gradually lower our standards until anything becomes acceptable.
2992 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2993 * gives us hope of containing our fault domains to something we're
2994 * able to reason about. Otherwise, any two top-level vdev failures
2995 * will guarantee the loss of data. With consecutive allocation,
2996 * only two adjacent top-level vdev failures will result in data loss.
2997 *
2998 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2999 * ourselves on the same vdev as our gang block header. That
3000 * way, we can hope for locality in vdev_cache, plus it makes our
3001 * fault domains something tractable.
3002 */
3003 if (hintdva) {
3004 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
428870ff
BB
3005
3006 /*
3007 * It's possible the vdev we're using as the hint no
3008 * longer exists (i.e. removed). Consult the rotor when
3009 * all else fails.
3010 */
3011 if (vd != NULL) {
34dc7c2f 3012 mg = vd->vdev_mg;
428870ff
BB
3013
3014 if (flags & METASLAB_HINTBP_AVOID &&
3015 mg->mg_next != NULL)
3016 mg = mg->mg_next;
3017 } else {
3018 mg = mc->mc_rotor;
3019 }
34dc7c2f
BB
3020 } else if (d != 0) {
3021 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3022 mg = vd->vdev_mg->mg_next;
920dd524
ED
3023 } else if (flags & METASLAB_FASTWRITE) {
3024 mg = fast_mg = mc->mc_rotor;
3025
3026 do {
3027 if (fast_mg->mg_vd->vdev_pending_fastwrite <
3028 mg->mg_vd->vdev_pending_fastwrite)
3029 mg = fast_mg;
3030 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
3031
34dc7c2f
BB
3032 } else {
3033 mg = mc->mc_rotor;
3034 }
3035
3036 /*
428870ff
BB
3037 * If the hint put us into the wrong metaslab class, or into a
3038 * metaslab group that has been passivated, just follow the rotor.
34dc7c2f 3039 */
428870ff 3040 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
34dc7c2f
BB
3041 mg = mc->mc_rotor;
3042
3043 rotor = mg;
3044top:
34dc7c2f 3045 do {
4e21fd06 3046 boolean_t allocatable;
3dfb57a3 3047 uint64_t offset;
4e21fd06 3048 uint64_t distance, asize;
428870ff 3049
3dfb57a3 3050 ASSERT(mg->mg_activation_count == 1);
34dc7c2f 3051 vd = mg->mg_vd;
fb5f0bc8 3052
34dc7c2f 3053 /*
b128c09f 3054 * Don't allocate from faulted devices.
34dc7c2f 3055 */
4e21fd06 3056 if (try_hard) {
fb5f0bc8
BB
3057 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3058 allocatable = vdev_allocatable(vd);
3059 spa_config_exit(spa, SCL_ZIO, FTAG);
3060 } else {
3061 allocatable = vdev_allocatable(vd);
3062 }
ac72fac3
GW
3063
3064 /*
3065 * Determine if the selected metaslab group is eligible
3dfb57a3
DB
3066 * for allocations. If we're ganging then don't allow
3067 * this metaslab group to skip allocations since that would
3068 * inadvertently return ENOSPC and suspend the pool
ac72fac3
GW
3069 * even though space is still available.
3070 */
4e21fd06 3071 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3dfb57a3
DB
3072 allocatable = metaslab_group_allocatable(mg, rotor,
3073 psize);
3074 }
ac72fac3 3075
4e21fd06
DB
3076 if (!allocatable) {
3077 metaslab_trace_add(zal, mg, NULL, psize, d,
3078 TRACE_NOT_ALLOCATABLE);
34dc7c2f 3079 goto next;
4e21fd06 3080 }
fb5f0bc8 3081
3dfb57a3
DB
3082 ASSERT(mg->mg_initialized);
3083
34dc7c2f 3084 /*
4e21fd06
DB
3085 * Avoid writing single-copy data to a failing,
3086 * non-redundant vdev, unless we've already tried all
3087 * other vdevs.
34dc7c2f
BB
3088 */
3089 if ((vd->vdev_stat.vs_write_errors > 0 ||
3090 vd->vdev_state < VDEV_STATE_HEALTHY) &&
4e21fd06
DB
3091 d == 0 && !try_hard && vd->vdev_children == 0) {
3092 metaslab_trace_add(zal, mg, NULL, psize, d,
3093 TRACE_VDEV_ERROR);
34dc7c2f
BB
3094 goto next;
3095 }
3096
3097 ASSERT(mg->mg_class == mc);
3098
4e21fd06
DB
3099 /*
3100 * If we don't need to try hard, then require that the
3101 * block be 1/8th of the device away from any other DVAs
3102 * in this BP. If we are trying hard, allow any offset
3103 * to be used (distance=0).
3104 */
3105 distance = 0;
3106 if (!try_hard) {
3107 distance = vd->vdev_asize >>
3108 ditto_same_vdev_distance_shift;
3109 if (distance <= (1ULL << vd->vdev_ms_shift))
3110 distance = 0;
3111 }
34dc7c2f
BB
3112
3113 asize = vdev_psize_to_asize(vd, psize);
3114 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3115
4e21fd06
DB
3116 offset = metaslab_group_alloc(mg, zal, asize, txg, distance,
3117 dva, d);
3dfb57a3 3118
34dc7c2f
BB
3119 if (offset != -1ULL) {
3120 /*
3121 * If we've just selected this metaslab group,
3122 * figure out whether the corresponding vdev is
3123 * over- or under-used relative to the pool,
3124 * and set an allocation bias to even it out.
bb3250d0
ED
3125 *
3126 * Bias is also used to compensate for unequally
3127 * sized vdevs so that space is allocated fairly.
34dc7c2f 3128 */
f3a7f661 3129 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
34dc7c2f 3130 vdev_stat_t *vs = &vd->vdev_stat;
bb3250d0
ED
3131 int64_t vs_free = vs->vs_space - vs->vs_alloc;
3132 int64_t mc_free = mc->mc_space - mc->mc_alloc;
3133 int64_t ratio;
34dc7c2f
BB
3134
3135 /*
6d974228
GW
3136 * Calculate how much more or less we should
3137 * try to allocate from this device during
3138 * this iteration around the rotor.
6d974228 3139 *
bb3250d0
ED
3140 * This basically introduces a zero-centered
3141 * bias towards the devices with the most
3142 * free space, while compensating for vdev
3143 * size differences.
3144 *
3145 * Examples:
3146 * vdev V1 = 16M/128M
3147 * vdev V2 = 16M/128M
3148 * ratio(V1) = 100% ratio(V2) = 100%
3149 *
3150 * vdev V1 = 16M/128M
3151 * vdev V2 = 64M/128M
3152 * ratio(V1) = 127% ratio(V2) = 72%
6d974228 3153 *
bb3250d0
ED
3154 * vdev V1 = 16M/128M
3155 * vdev V2 = 64M/512M
3156 * ratio(V1) = 40% ratio(V2) = 160%
34dc7c2f 3157 */
bb3250d0
ED
3158 ratio = (vs_free * mc->mc_alloc_groups * 100) /
3159 (mc_free + 1);
3160 mg->mg_bias = ((ratio - 100) *
6d974228 3161 (int64_t)mg->mg_aliquot) / 100;
f3a7f661
GW
3162 } else if (!metaslab_bias_enabled) {
3163 mg->mg_bias = 0;
34dc7c2f
BB
3164 }
3165
920dd524
ED
3166 if ((flags & METASLAB_FASTWRITE) ||
3167 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
34dc7c2f
BB
3168 mg->mg_aliquot + mg->mg_bias) {
3169 mc->mc_rotor = mg->mg_next;
428870ff 3170 mc->mc_aliquot = 0;
34dc7c2f
BB
3171 }
3172
3173 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3174 DVA_SET_OFFSET(&dva[d], offset);
e3e7cf60
D
3175 DVA_SET_GANG(&dva[d],
3176 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
34dc7c2f
BB
3177 DVA_SET_ASIZE(&dva[d], asize);
3178
920dd524
ED
3179 if (flags & METASLAB_FASTWRITE) {
3180 atomic_add_64(&vd->vdev_pending_fastwrite,
3181 psize);
920dd524
ED
3182 }
3183
34dc7c2f
BB
3184 return (0);
3185 }
3186next:
3187 mc->mc_rotor = mg->mg_next;
428870ff 3188 mc->mc_aliquot = 0;
34dc7c2f
BB
3189 } while ((mg = mg->mg_next) != rotor);
3190
4e21fd06
DB
3191 /*
3192 * If we haven't tried hard, do so now.
3193 */
3194 if (!try_hard) {
3195 try_hard = B_TRUE;
fb5f0bc8
BB
3196 goto top;
3197 }
3198
34dc7c2f
BB
3199 bzero(&dva[d], sizeof (dva_t));
3200
4e21fd06 3201 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC);
2e528b49 3202 return (SET_ERROR(ENOSPC));
34dc7c2f
BB
3203}
3204
3205/*
3206 * Free the block represented by DVA in the context of the specified
3207 * transaction group.
3208 */
3209static void
3210metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
3211{
3212 uint64_t vdev = DVA_GET_VDEV(dva);
3213 uint64_t offset = DVA_GET_OFFSET(dva);
3214 uint64_t size = DVA_GET_ASIZE(dva);
3215 vdev_t *vd;
3216 metaslab_t *msp;
3217
34dc7c2f
BB
3218 if (txg > spa_freeze_txg(spa))
3219 return;
3220
7d2868d5 3221 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
34dc7c2f 3222 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
7d2868d5
BB
3223 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
3224 (u_longlong_t)vdev, (u_longlong_t)offset,
3225 (u_longlong_t)size);
34dc7c2f
BB
3226 return;
3227 }
3228
3229 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3230
3231 if (DVA_GET_GANG(dva))
3232 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3233
3234 mutex_enter(&msp->ms_lock);
3235
3236 if (now) {
93cf2076 3237 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
34dc7c2f 3238 offset, size);
93cf2076
GW
3239
3240 VERIFY(!msp->ms_condensing);
3241 VERIFY3U(offset, >=, msp->ms_start);
3242 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
3243 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
3244 msp->ms_size);
3245 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3246 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3247 range_tree_add(msp->ms_tree, offset, size);
4e21fd06 3248 msp->ms_max_size = metaslab_block_maxsize(msp);
34dc7c2f 3249 } else {
258553d3
TC
3250 VERIFY3U(txg, ==, spa->spa_syncing_txg);
3251 if (range_tree_space(msp->ms_freeingtree) == 0)
34dc7c2f 3252 vdev_dirty(vd, VDD_METASLAB, msp, txg);
258553d3 3253 range_tree_add(msp->ms_freeingtree, offset, size);
34dc7c2f
BB
3254 }
3255
3256 mutex_exit(&msp->ms_lock);
3257}
3258
3259/*
3260 * Intent log support: upon opening the pool after a crash, notify the SPA
3261 * of blocks that the intent log has allocated for immediate write, but
3262 * which are still considered free by the SPA because the last transaction
3263 * group didn't commit yet.
3264 */
3265static int
3266metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3267{
3268 uint64_t vdev = DVA_GET_VDEV(dva);
3269 uint64_t offset = DVA_GET_OFFSET(dva);
3270 uint64_t size = DVA_GET_ASIZE(dva);
3271 vdev_t *vd;
3272 metaslab_t *msp;
428870ff 3273 int error = 0;
34dc7c2f
BB
3274
3275 ASSERT(DVA_IS_VALID(dva));
3276
3277 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
3278 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2e528b49 3279 return (SET_ERROR(ENXIO));
34dc7c2f
BB
3280
3281 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3282
3283 if (DVA_GET_GANG(dva))
3284 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3285
3286 mutex_enter(&msp->ms_lock);
3287
93cf2076 3288 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
6d974228 3289 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
428870ff 3290
93cf2076 3291 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2e528b49 3292 error = SET_ERROR(ENOENT);
428870ff 3293
b128c09f 3294 if (error || txg == 0) { /* txg == 0 indicates dry run */
34dc7c2f
BB
3295 mutex_exit(&msp->ms_lock);
3296 return (error);
3297 }
3298
93cf2076
GW
3299 VERIFY(!msp->ms_condensing);
3300 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3301 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3302 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
3303 range_tree_remove(msp->ms_tree, offset, size);
b128c09f 3304
fb5f0bc8 3305 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
93cf2076 3306 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
b128c09f 3307 vdev_dirty(vd, VDD_METASLAB, msp, txg);
93cf2076 3308 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
b128c09f 3309 }
34dc7c2f
BB
3310
3311 mutex_exit(&msp->ms_lock);
3312
3313 return (0);
3314}
3315
3dfb57a3
DB
3316/*
3317 * Reserve some allocation slots. The reservation system must be called
3318 * before we call into the allocator. If there aren't any available slots
3319 * then the I/O will be throttled until an I/O completes and its slots are
3320 * freed up. The function returns true if it was successful in placing
3321 * the reservation.
3322 */
3323boolean_t
3324metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio,
3325 int flags)
3326{
3327 uint64_t available_slots = 0;
3328 uint64_t reserved_slots;
3329 boolean_t slot_reserved = B_FALSE;
3330
3331 ASSERT(mc->mc_alloc_throttle_enabled);
3332 mutex_enter(&mc->mc_lock);
3333
3334 reserved_slots = refcount_count(&mc->mc_alloc_slots);
3335 if (reserved_slots < mc->mc_alloc_max_slots)
3336 available_slots = mc->mc_alloc_max_slots - reserved_slots;
3337
3338 if (slots <= available_slots || GANG_ALLOCATION(flags)) {
3339 int d;
3340
3341 /*
3342 * We reserve the slots individually so that we can unreserve
3343 * them individually when an I/O completes.
3344 */
3345 for (d = 0; d < slots; d++) {
3346 reserved_slots = refcount_add(&mc->mc_alloc_slots, zio);
3347 }
3348 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3349 slot_reserved = B_TRUE;
3350 }
3351
3352 mutex_exit(&mc->mc_lock);
3353 return (slot_reserved);
3354}
3355
3356void
3357metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, zio_t *zio)
3358{
3359 int d;
3360
3361 ASSERT(mc->mc_alloc_throttle_enabled);
3362 mutex_enter(&mc->mc_lock);
3363 for (d = 0; d < slots; d++) {
3364 (void) refcount_remove(&mc->mc_alloc_slots, zio);
3365 }
3366 mutex_exit(&mc->mc_lock);
3367}
3368
34dc7c2f
BB
3369int
3370metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
4e21fd06
DB
3371 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
3372 zio_alloc_list_t *zal, zio_t *zio)
34dc7c2f
BB
3373{
3374 dva_t *dva = bp->blk_dva;
3375 dva_t *hintdva = hintbp->blk_dva;
d6320ddb 3376 int d, error = 0;
34dc7c2f 3377
b128c09f 3378 ASSERT(bp->blk_birth == 0);
428870ff 3379 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
b128c09f
BB
3380
3381 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3382
3383 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
3384 spa_config_exit(spa, SCL_ALLOC, FTAG);
2e528b49 3385 return (SET_ERROR(ENOSPC));
b128c09f 3386 }
34dc7c2f
BB
3387
3388 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
3389 ASSERT(BP_GET_NDVAS(bp) == 0);
3390 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4e21fd06 3391 ASSERT3P(zal, !=, NULL);
34dc7c2f 3392
d6320ddb 3393 for (d = 0; d < ndvas; d++) {
34dc7c2f 3394 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
4e21fd06 3395 txg, flags, zal);
93cf2076 3396 if (error != 0) {
34dc7c2f
BB
3397 for (d--; d >= 0; d--) {
3398 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
3dfb57a3
DB
3399 metaslab_group_alloc_decrement(spa,
3400 DVA_GET_VDEV(&dva[d]), zio, flags);
34dc7c2f
BB
3401 bzero(&dva[d], sizeof (dva_t));
3402 }
b128c09f 3403 spa_config_exit(spa, SCL_ALLOC, FTAG);
34dc7c2f 3404 return (error);
3dfb57a3
DB
3405 } else {
3406 /*
3407 * Update the metaslab group's queue depth
3408 * based on the newly allocated dva.
3409 */
3410 metaslab_group_alloc_increment(spa,
3411 DVA_GET_VDEV(&dva[d]), zio, flags);
34dc7c2f 3412 }
3dfb57a3 3413
34dc7c2f
BB
3414 }
3415 ASSERT(error == 0);
3416 ASSERT(BP_GET_NDVAS(bp) == ndvas);
3417
b128c09f
BB
3418 spa_config_exit(spa, SCL_ALLOC, FTAG);
3419
efe7978d 3420 BP_SET_BIRTH(bp, txg, 0);
b128c09f 3421
34dc7c2f
BB
3422 return (0);
3423}
3424
3425void
3426metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
3427{
3428 const dva_t *dva = bp->blk_dva;
d6320ddb 3429 int d, ndvas = BP_GET_NDVAS(bp);
34dc7c2f
BB
3430
3431 ASSERT(!BP_IS_HOLE(bp));
428870ff 3432 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
b128c09f
BB
3433
3434 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
34dc7c2f 3435
d6320ddb 3436 for (d = 0; d < ndvas; d++)
34dc7c2f 3437 metaslab_free_dva(spa, &dva[d], txg, now);
b128c09f
BB
3438
3439 spa_config_exit(spa, SCL_FREE, FTAG);
34dc7c2f
BB
3440}
3441
3442int
3443metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
3444{
3445 const dva_t *dva = bp->blk_dva;
3446 int ndvas = BP_GET_NDVAS(bp);
d6320ddb 3447 int d, error = 0;
34dc7c2f
BB
3448
3449 ASSERT(!BP_IS_HOLE(bp));
3450
b128c09f
BB
3451 if (txg != 0) {
3452 /*
3453 * First do a dry run to make sure all DVAs are claimable,
3454 * so we don't have to unwind from partial failures below.
3455 */
3456 if ((error = metaslab_claim(spa, bp, 0)) != 0)
3457 return (error);
3458 }
3459
3460 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3461
d6320ddb 3462 for (d = 0; d < ndvas; d++)
34dc7c2f 3463 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
b128c09f
BB
3464 break;
3465
3466 spa_config_exit(spa, SCL_ALLOC, FTAG);
3467
3468 ASSERT(error == 0 || txg == 0);
34dc7c2f 3469
b128c09f 3470 return (error);
34dc7c2f 3471}
920dd524 3472
d1d7e268
MK
3473void
3474metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
3475{
3476 const dva_t *dva = bp->blk_dva;
3477 int ndvas = BP_GET_NDVAS(bp);
3478 uint64_t psize = BP_GET_PSIZE(bp);
3479 int d;
3480 vdev_t *vd;
3481
3482 ASSERT(!BP_IS_HOLE(bp));
9b67f605 3483 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
3484 ASSERT(psize > 0);
3485
3486 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3487
3488 for (d = 0; d < ndvas; d++) {
3489 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
3490 continue;
3491 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
3492 }
3493
3494 spa_config_exit(spa, SCL_VDEV, FTAG);
3495}
3496
d1d7e268
MK
3497void
3498metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
3499{
3500 const dva_t *dva = bp->blk_dva;
3501 int ndvas = BP_GET_NDVAS(bp);
3502 uint64_t psize = BP_GET_PSIZE(bp);
3503 int d;
3504 vdev_t *vd;
3505
3506 ASSERT(!BP_IS_HOLE(bp));
9b67f605 3507 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
3508 ASSERT(psize > 0);
3509
3510 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3511
3512 for (d = 0; d < ndvas; d++) {
3513 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
3514 continue;
3515 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
3516 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
3517 }
3518
3519 spa_config_exit(spa, SCL_VDEV, FTAG);
3520}
30b92c1d 3521
13fe0198
MA
3522void
3523metaslab_check_free(spa_t *spa, const blkptr_t *bp)
3524{
3525 int i, j;
3526
3527 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
3528 return;
3529
3530 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3531 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
93cf2076
GW
3532 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
3533 vdev_t *vd = vdev_lookup_top(spa, vdev);
3534 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
13fe0198 3535 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
93cf2076 3536 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
13fe0198 3537
93cf2076
GW
3538 if (msp->ms_loaded)
3539 range_tree_verify(msp->ms_tree, offset, size);
13fe0198 3540
258553d3
TC
3541 range_tree_verify(msp->ms_freeingtree, offset, size);
3542 range_tree_verify(msp->ms_freedtree, offset, size);
13fe0198 3543 for (j = 0; j < TXG_DEFER_SIZE; j++)
93cf2076 3544 range_tree_verify(msp->ms_defertree[j], offset, size);
13fe0198
MA
3545 }
3546 spa_config_exit(spa, SCL_VDEV, FTAG);
3547}
3548
30b92c1d 3549#if defined(_KERNEL) && defined(HAVE_SPL)
02730c33 3550/* CSTYLED */
99b14de4 3551module_param(metaslab_aliquot, ulong, 0644);
99b14de4
ED
3552MODULE_PARM_DESC(metaslab_aliquot,
3553 "allocation granularity (a.k.a. stripe size)");
02730c33
BB
3554
3555module_param(metaslab_debug_load, int, 0644);
93cf2076
GW
3556MODULE_PARM_DESC(metaslab_debug_load,
3557 "load all metaslabs when pool is first opened");
02730c33
BB
3558
3559module_param(metaslab_debug_unload, int, 0644);
1ce04573
BB
3560MODULE_PARM_DESC(metaslab_debug_unload,
3561 "prevent metaslabs from being unloaded");
02730c33
BB
3562
3563module_param(metaslab_preload_enabled, int, 0644);
f3a7f661
GW
3564MODULE_PARM_DESC(metaslab_preload_enabled,
3565 "preload potential metaslabs during reassessment");
f4a4046b 3566
02730c33 3567module_param(zfs_mg_noalloc_threshold, int, 0644);
f4a4046b
TC
3568MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
3569 "percentage of free space for metaslab group to allow allocation");
02730c33
BB
3570
3571module_param(zfs_mg_fragmentation_threshold, int, 0644);
f3a7f661
GW
3572MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
3573 "fragmentation for metaslab group to allow allocation");
3574
02730c33 3575module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
f3a7f661
GW
3576MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
3577 "fragmentation for metaslab to allow allocation");
02730c33
BB
3578
3579module_param(metaslab_fragmentation_factor_enabled, int, 0644);
f3a7f661
GW
3580MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
3581 "use the fragmentation metric to prefer less fragmented metaslabs");
02730c33
BB
3582
3583module_param(metaslab_lba_weighting_enabled, int, 0644);
f3a7f661
GW
3584MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
3585 "prefer metaslabs with lower LBAs");
02730c33
BB
3586
3587module_param(metaslab_bias_enabled, int, 0644);
f3a7f661
GW
3588MODULE_PARM_DESC(metaslab_bias_enabled,
3589 "enable metaslab group biasing");
4e21fd06
DB
3590
3591module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
3592MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
3593 "enable segment-based metaslab selection");
3594
3595module_param(zfs_metaslab_switch_threshold, int, 0644);
3596MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
3597 "segment-based metaslab selection maximum buckets before switching");
30b92c1d 3598#endif /* _KERNEL && HAVE_SPL */