]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/metaslab.c
metaslab: tuneable to better control force ganging
[mirror_zfs.git] / module / zfs / metaslab.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
34dc7c2f
BB
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
893a6d62 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
2e528b49 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
dce63135 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
cc99f275 26 * Copyright (c) 2017, Intel Corporation.
34dc7c2f
BB
27 */
28
34dc7c2f 29#include <sys/zfs_context.h>
34dc7c2f
BB
30#include <sys/dmu.h>
31#include <sys/dmu_tx.h>
32#include <sys/space_map.h>
33#include <sys/metaslab_impl.h>
34#include <sys/vdev_impl.h>
b2255edc 35#include <sys/vdev_draid.h>
34dc7c2f 36#include <sys/zio.h>
93cf2076 37#include <sys/spa_impl.h>
f3a7f661 38#include <sys/zfeature.h>
a1d477c2 39#include <sys/vdev_indirect_mapping.h>
d2734cce 40#include <sys/zap.h>
ca577779 41#include <sys/btree.h>
34dc7c2f 42
d1d7e268 43#define WITH_DF_BLOCK_ALLOCATOR
6d974228 44
3dfb57a3
DB
45#define GANG_ALLOCATION(flags) \
46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
22c81dd8 47
e8fe6684
ED
48/*
49 * Metaslab granularity, in bytes. This is roughly similar to what would be
50 * referred to as the "stripe size" in traditional RAID arrays. In normal
c55b2932
AM
51 * operation, we will try to write this amount of data to each disk before
52 * moving on to the next top-level vdev.
e8fe6684 53 */
ab8d9c17 54static uint64_t metaslab_aliquot = 1024 * 1024;
e8fe6684 55
d830d479
MA
56/*
57 * For testing, make some blocks above a certain size be gang blocks.
58 */
ab8d9c17 59uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
34dc7c2f 60
46adb282
RN
61/*
62 * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
63 */
64uint_t metaslab_force_ganging_pct = 3;
65
d2734cce 66/*
93e28d66
SD
67 * In pools where the log space map feature is not enabled we touch
68 * multiple metaslabs (and their respective space maps) with each
69 * transaction group. Thus, we benefit from having a small space map
d2734cce 70 * block size since it allows us to issue more I/O operations scattered
93e28d66
SD
71 * around the disk. So a sane default for the space map block size
72 * is 8~16K.
d2734cce 73 */
93e28d66
SD
74int zfs_metaslab_sm_blksz_no_log = (1 << 14);
75
76/*
77 * When the log space map feature is enabled, we accumulate a lot of
78 * changes per metaslab that are flushed once in a while so we benefit
79 * from a bigger block size like 128K for the metaslab space maps.
80 */
81int zfs_metaslab_sm_blksz_with_log = (1 << 17);
d2734cce 82
e51be066
GW
83/*
84 * The in-core space map representation is more compact than its on-disk form.
85 * The zfs_condense_pct determines how much more compact the in-core
4e21fd06 86 * space map representation must be before we compact it on-disk.
e51be066
GW
87 * Values should be greater than or equal to 100.
88 */
fdc2d303 89uint_t zfs_condense_pct = 200;
e51be066 90
b02fe35d
AR
91/*
92 * Condensing a metaslab is not guaranteed to actually reduce the amount of
93 * space used on disk. In particular, a space map uses data in increments of
96358617 94 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
b02fe35d
AR
95 * same number of blocks after condensing. Since the goal of condensing is to
96 * reduce the number of IOPs required to read the space map, we only want to
97 * condense when we can be sure we will reduce the number of blocks used by the
98 * space map. Unfortunately, we cannot precisely compute whether or not this is
99 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
100 * we apply the following heuristic: do not condense a spacemap unless the
101 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
102 * blocks.
103 */
18168da7 104static const int zfs_metaslab_condense_block_threshold = 4;
b02fe35d 105
ac72fac3
GW
106/*
107 * The zfs_mg_noalloc_threshold defines which metaslab groups should
108 * be eligible for allocation. The value is defined as a percentage of
f3a7f661 109 * free space. Metaslab groups that have more free space than
ac72fac3
GW
110 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
111 * a metaslab group's free space is less than or equal to the
112 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
113 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
114 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
115 * groups are allowed to accept allocations. Gang blocks are always
116 * eligible to allocate on any metaslab group. The default value of 0 means
117 * no metaslab group will be excluded based on this criterion.
118 */
fdc2d303 119static uint_t zfs_mg_noalloc_threshold = 0;
6d974228 120
f3a7f661
GW
121/*
122 * Metaslab groups are considered eligible for allocations if their
e1cfd73f 123 * fragmentation metric (measured as a percentage) is less than or
cb020f0d
SD
124 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
125 * exceeds this threshold then it will be skipped unless all metaslab
126 * groups within the metaslab class have also crossed this threshold.
127 *
128 * This tunable was introduced to avoid edge cases where we continue
129 * allocating from very fragmented disks in our pool while other, less
130 * fragmented disks, exists. On the other hand, if all disks in the
131 * pool are uniformly approaching the threshold, the threshold can
132 * be a speed bump in performance, where we keep switching the disks
133 * that we allocate from (e.g. we allocate some segments from disk A
134 * making it bypassing the threshold while freeing segments from disk
135 * B getting its fragmentation below the threshold).
136 *
137 * Empirically, we've seen that our vdev selection for allocations is
138 * good enough that fragmentation increases uniformly across all vdevs
139 * the majority of the time. Thus we set the threshold percentage high
140 * enough to avoid hitting the speed bump on pools that are being pushed
141 * to the edge.
f3a7f661 142 */
fdc2d303 143static uint_t zfs_mg_fragmentation_threshold = 95;
f3a7f661
GW
144
145/*
146 * Allow metaslabs to keep their active state as long as their fragmentation
147 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
148 * active metaslab that exceeds this threshold will no longer keep its active
149 * status allowing better metaslabs to be selected.
150 */
fdc2d303 151static uint_t zfs_metaslab_fragmentation_threshold = 70;
f3a7f661 152
428870ff 153/*
aa7d06a9 154 * When set will load all metaslabs when pool is first opened.
428870ff 155 */
18168da7 156int metaslab_debug_load = B_FALSE;
aa7d06a9
GW
157
158/*
159 * When set will prevent metaslabs from being unloaded.
160 */
18168da7 161static int metaslab_debug_unload = B_FALSE;
428870ff 162
9babb374
BB
163/*
164 * Minimum size which forces the dynamic allocator to change
428870ff 165 * it's allocation strategy. Once the space map cannot satisfy
9babb374
BB
166 * an allocation of this size then it switches to using more
167 * aggressive strategy (i.e search by size rather than offset).
168 */
4e21fd06 169uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
9babb374
BB
170
171/*
172 * The minimum free space, in percent, which must be available
173 * in a space map to continue allocations in a first-fit fashion.
4e21fd06 174 * Once the space map's free space drops below this level we dynamically
9babb374
BB
175 * switch to using best-fit allocations.
176 */
fdc2d303 177uint_t metaslab_df_free_pct = 4;
428870ff 178
d3230d76
MA
179/*
180 * Maximum distance to search forward from the last offset. Without this
181 * limit, fragmented pools can see >100,000 iterations and
182 * metaslab_block_picker() becomes the performance limiting factor on
183 * high-performance storage.
184 *
185 * With the default setting of 16MB, we typically see less than 500
186 * iterations, even with very fragmented, ashift=9 pools. The maximum number
187 * of iterations possible is:
188 * metaslab_df_max_search / (2 * (1<<ashift))
189 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
190 * 2048 (with ashift=12).
191 */
fdc2d303 192static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
d3230d76 193
ca577779
PD
194/*
195 * Forces the metaslab_block_picker function to search for at least this many
196 * segments forwards until giving up on finding a segment that the allocation
197 * will fit into.
198 */
18168da7 199static const uint32_t metaslab_min_search_count = 100;
ca577779 200
d3230d76
MA
201/*
202 * If we are not searching forward (due to metaslab_df_max_search,
203 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
204 * controls what segment is used. If it is set, we will use the largest free
205 * segment. If it is not set, we will use a segment of exactly the requested
206 * size (or larger).
207 */
18168da7 208static int metaslab_df_use_largest_segment = B_FALSE;
d3230d76 209
428870ff 210/*
93cf2076 211 * Percentage of all cpus that can be used by the metaslab taskq.
428870ff 212 */
93cf2076 213int metaslab_load_pct = 50;
428870ff
BB
214
215/*
eef0f4d8
PD
216 * These tunables control how long a metaslab will remain loaded after the
217 * last allocation from it. A metaslab can't be unloaded until at least
218 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
219 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
220 * unloaded sooner. These settings are intended to be generous -- to keep
221 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
428870ff 222 */
fdc2d303
RY
223static uint_t metaslab_unload_delay = 32;
224static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
9babb374 225
93cf2076
GW
226/*
227 * Max number of metaslabs per group to preload.
228 */
fdc2d303 229uint_t metaslab_preload_limit = 10;
93cf2076
GW
230
231/*
232 * Enable/disable preloading of metaslab.
233 */
18168da7 234static int metaslab_preload_enabled = B_TRUE;
93cf2076
GW
235
236/*
f3a7f661 237 * Enable/disable fragmentation weighting on metaslabs.
93cf2076 238 */
18168da7 239static int metaslab_fragmentation_factor_enabled = B_TRUE;
93cf2076 240
f3a7f661
GW
241/*
242 * Enable/disable lba weighting (i.e. outer tracks are given preference).
243 */
18168da7 244static int metaslab_lba_weighting_enabled = B_TRUE;
f3a7f661
GW
245
246/*
247 * Enable/disable metaslab group biasing.
248 */
18168da7 249static int metaslab_bias_enabled = B_TRUE;
f3a7f661 250
a1d477c2
MA
251/*
252 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
253 */
18168da7 254static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
a1d477c2 255
4e21fd06
DB
256/*
257 * Enable/disable segment-based metaslab selection.
258 */
18168da7 259static int zfs_metaslab_segment_weight_enabled = B_TRUE;
4e21fd06
DB
260
261/*
262 * When using segment-based metaslab selection, we will continue
263 * allocating from the active metaslab until we have exhausted
264 * zfs_metaslab_switch_threshold of its buckets.
265 */
18168da7 266static int zfs_metaslab_switch_threshold = 2;
4e21fd06
DB
267
268/*
269 * Internal switch to enable/disable the metaslab allocation tracing
270 * facility.
271 */
18168da7 272static const boolean_t metaslab_trace_enabled = B_FALSE;
4e21fd06
DB
273
274/*
275 * Maximum entries that the metaslab allocation tracing facility will keep
276 * in a given list when running in non-debug mode. We limit the number
277 * of entries in non-debug mode to prevent us from using up too much memory.
278 * The limit should be sufficiently large that we don't expect any allocation
279 * to every exceed this value. In debug mode, the system will panic if this
280 * limit is ever reached allowing for further investigation.
281 */
18168da7 282static const uint64_t metaslab_trace_max_entries = 5000;
4e21fd06 283
1b939560
BB
284/*
285 * Maximum number of metaslabs per group that can be disabled
286 * simultaneously.
287 */
18168da7 288static const int max_disabled_ms = 3;
1b939560 289
ca577779
PD
290/*
291 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
292 * To avoid 64-bit overflow, don't set above UINT32_MAX.
293 */
ab8d9c17 294static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
ca577779 295
f09fda50
PD
296/*
297 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
298 * a metaslab would take it over this percentage, the oldest selected metaslab
299 * is automatically unloaded.
300 */
fdc2d303 301static uint_t zfs_metaslab_mem_limit = 25;
eef0f4d8
PD
302
303/*
ca577779
PD
304 * Force the per-metaslab range trees to use 64-bit integers to store
305 * segments. Used for debugging purposes.
eef0f4d8 306 */
18168da7 307static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
ca577779
PD
308
309/*
310 * By default we only store segments over a certain size in the size-sorted
311 * metaslab trees (ms_allocatable_by_size and
312 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
313 * improves load and unload times at the cost of causing us to use slightly
314 * larger segments than we would otherwise in some cases.
315 */
18168da7 316static const uint32_t metaslab_by_size_min_shift = 14;
f09fda50 317
be5c6d96
MA
318/*
319 * If not set, we will first try normal allocation. If that fails then
320 * we will do a gang allocation. If that fails then we will do a "try hard"
321 * gang allocation. If that fails then we will have a multi-layer gang
322 * block.
323 *
324 * If set, we will first try normal allocation. If that fails then
325 * we will do a "try hard" allocation. If that fails we will do a gang
326 * allocation. If that fails we will do a "try hard" gang allocation. If
327 * that fails then we will have a multi-layer gang block.
328 */
18168da7 329static int zfs_metaslab_try_hard_before_gang = B_FALSE;
be5c6d96
MA
330
331/*
332 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
333 * metaslabs. This improves performance, especially when there are many
334 * metaslabs per vdev and the allocation can't actually be satisfied (so we
335 * would otherwise iterate all the metaslabs). If there is a metaslab with a
336 * worse weight but it can actually satisfy the allocation, we won't find it
337 * until trying hard. This may happen if the worse metaslab is not loaded
338 * (and the true weight is better than we have calculated), or due to weight
339 * bucketization. E.g. we are looking for a 60K segment, and the best
340 * metaslabs all have free segments in the 32-63K bucket, but the best
341 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
342 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
343 * bucket, and therefore a lower weight).
344 */
fdc2d303 345static uint_t zfs_metaslab_find_max_tries = 100;
be5c6d96 346
65a91b16
SD
347static uint64_t metaslab_weight(metaslab_t *, boolean_t);
348static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
d2734cce 349static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
a1d477c2 350static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
4e21fd06 351
492f64e9
PD
352static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
353static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
93e28d66 354static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
f09fda50
PD
355static unsigned int metaslab_idx_func(multilist_t *, void *);
356static void metaslab_evict(metaslab_t *, uint64_t);
ca577779 357static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
4e21fd06 358kmem_cache_t *metaslab_alloc_trace_cache;
ca577779
PD
359
360typedef struct metaslab_stats {
361 kstat_named_t metaslabstat_trace_over_limit;
ca577779 362 kstat_named_t metaslabstat_reload_tree;
be5c6d96
MA
363 kstat_named_t metaslabstat_too_many_tries;
364 kstat_named_t metaslabstat_try_hard;
ca577779
PD
365} metaslab_stats_t;
366
367static metaslab_stats_t metaslab_stats = {
368 { "trace_over_limit", KSTAT_DATA_UINT64 },
ca577779 369 { "reload_tree", KSTAT_DATA_UINT64 },
be5c6d96
MA
370 { "too_many_tries", KSTAT_DATA_UINT64 },
371 { "try_hard", KSTAT_DATA_UINT64 },
ca577779
PD
372};
373
374#define METASLABSTAT_BUMP(stat) \
375 atomic_inc_64(&metaslab_stats.stat.value.ui64);
376
377
18168da7 378static kstat_t *metaslab_ksp;
ca577779
PD
379
380void
381metaslab_stat_init(void)
382{
383 ASSERT(metaslab_alloc_trace_cache == NULL);
384 metaslab_alloc_trace_cache = kmem_cache_create(
385 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
386 0, NULL, NULL, NULL, NULL, NULL, 0);
387 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
388 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
389 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
390 if (metaslab_ksp != NULL) {
391 metaslab_ksp->ks_data = &metaslab_stats;
392 kstat_install(metaslab_ksp);
393 }
394}
395
396void
397metaslab_stat_fini(void)
398{
399 if (metaslab_ksp != NULL) {
400 kstat_delete(metaslab_ksp);
401 metaslab_ksp = NULL;
402 }
403
404 kmem_cache_destroy(metaslab_alloc_trace_cache);
405 metaslab_alloc_trace_cache = NULL;
406}
93cf2076 407
34dc7c2f
BB
408/*
409 * ==========================================================================
410 * Metaslab classes
411 * ==========================================================================
412 */
413metaslab_class_t *
18168da7 414metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
34dc7c2f
BB
415{
416 metaslab_class_t *mc;
417
f8020c93
AM
418 mc = kmem_zalloc(offsetof(metaslab_class_t,
419 mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
34dc7c2f 420
428870ff 421 mc->mc_spa = spa;
9babb374 422 mc->mc_ops = ops;
3dfb57a3 423 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
ffdf019c 424 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
f09fda50 425 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
f8020c93
AM
426 for (int i = 0; i < spa->spa_alloc_count; i++) {
427 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
428 mca->mca_rotor = NULL;
429 zfs_refcount_create_tracked(&mca->mca_alloc_slots);
430 }
34dc7c2f
BB
431
432 return (mc);
433}
434
435void
436metaslab_class_destroy(metaslab_class_t *mc)
437{
f8020c93
AM
438 spa_t *spa = mc->mc_spa;
439
428870ff
BB
440 ASSERT(mc->mc_alloc == 0);
441 ASSERT(mc->mc_deferred == 0);
442 ASSERT(mc->mc_space == 0);
443 ASSERT(mc->mc_dspace == 0);
34dc7c2f 444
f8020c93
AM
445 for (int i = 0; i < spa->spa_alloc_count; i++) {
446 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
447 ASSERT(mca->mca_rotor == NULL);
448 zfs_refcount_destroy(&mca->mca_alloc_slots);
449 }
3dfb57a3 450 mutex_destroy(&mc->mc_lock);
ffdf019c 451 multilist_destroy(&mc->mc_metaslab_txg_list);
f8020c93
AM
452 kmem_free(mc, offsetof(metaslab_class_t,
453 mc_allocator[spa->spa_alloc_count]));
34dc7c2f
BB
454}
455
428870ff
BB
456int
457metaslab_class_validate(metaslab_class_t *mc)
34dc7c2f 458{
428870ff
BB
459 metaslab_group_t *mg;
460 vdev_t *vd;
34dc7c2f 461
428870ff
BB
462 /*
463 * Must hold one of the spa_config locks.
464 */
465 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
466 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
34dc7c2f 467
f8020c93 468 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
428870ff
BB
469 return (0);
470
471 do {
472 vd = mg->mg_vd;
473 ASSERT(vd->vdev_mg != NULL);
474 ASSERT3P(vd->vdev_top, ==, vd);
475 ASSERT3P(mg->mg_class, ==, mc);
476 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
f8020c93 477 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
428870ff
BB
478
479 return (0);
34dc7c2f
BB
480}
481
cc99f275 482static void
428870ff
BB
483metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
484 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
34dc7c2f 485{
428870ff
BB
486 atomic_add_64(&mc->mc_alloc, alloc_delta);
487 atomic_add_64(&mc->mc_deferred, defer_delta);
488 atomic_add_64(&mc->mc_space, space_delta);
489 atomic_add_64(&mc->mc_dspace, dspace_delta);
490}
34dc7c2f 491
428870ff
BB
492uint64_t
493metaslab_class_get_alloc(metaslab_class_t *mc)
494{
495 return (mc->mc_alloc);
496}
34dc7c2f 497
428870ff
BB
498uint64_t
499metaslab_class_get_deferred(metaslab_class_t *mc)
500{
501 return (mc->mc_deferred);
502}
34dc7c2f 503
428870ff
BB
504uint64_t
505metaslab_class_get_space(metaslab_class_t *mc)
506{
507 return (mc->mc_space);
508}
34dc7c2f 509
428870ff
BB
510uint64_t
511metaslab_class_get_dspace(metaslab_class_t *mc)
512{
513 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
34dc7c2f
BB
514}
515
f3a7f661
GW
516void
517metaslab_class_histogram_verify(metaslab_class_t *mc)
518{
cc99f275
DB
519 spa_t *spa = mc->mc_spa;
520 vdev_t *rvd = spa->spa_root_vdev;
f3a7f661 521 uint64_t *mc_hist;
1c27024e 522 int i;
f3a7f661
GW
523
524 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
525 return;
526
527 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 528 KM_SLEEP);
f3a7f661 529
a0e01997 530 mutex_enter(&mc->mc_lock);
1c27024e 531 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661 532 vdev_t *tvd = rvd->vdev_child[c];
aa755b35 533 metaslab_group_t *mg = vdev_get_mg(tvd, mc);
f3a7f661
GW
534
535 /*
536 * Skip any holes, uninitialized top-levels, or
537 * vdevs that are not in this metalab class.
538 */
a1d477c2 539 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
540 mg->mg_class != mc) {
541 continue;
542 }
543
aa755b35
MA
544 IMPLY(mg == mg->mg_vd->vdev_log_mg,
545 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
546
f3a7f661
GW
547 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
548 mc_hist[i] += mg->mg_histogram[i];
549 }
550
aa755b35 551 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
f3a7f661 552 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
aa755b35 553 }
f3a7f661 554
a0e01997 555 mutex_exit(&mc->mc_lock);
f3a7f661
GW
556 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
557}
558
559/*
560 * Calculate the metaslab class's fragmentation metric. The metric
561 * is weighted based on the space contribution of each metaslab group.
562 * The return value will be a number between 0 and 100 (inclusive), or
563 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
564 * zfs_frag_table for more information about the metric.
565 */
566uint64_t
567metaslab_class_fragmentation(metaslab_class_t *mc)
568{
569 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
570 uint64_t fragmentation = 0;
f3a7f661
GW
571
572 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
573
1c27024e 574 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661
GW
575 vdev_t *tvd = rvd->vdev_child[c];
576 metaslab_group_t *mg = tvd->vdev_mg;
577
578 /*
a1d477c2
MA
579 * Skip any holes, uninitialized top-levels,
580 * or vdevs that are not in this metalab class.
f3a7f661 581 */
a1d477c2 582 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
583 mg->mg_class != mc) {
584 continue;
585 }
586
587 /*
588 * If a metaslab group does not contain a fragmentation
589 * metric then just bail out.
590 */
591 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
592 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
593 return (ZFS_FRAG_INVALID);
594 }
595
596 /*
597 * Determine how much this metaslab_group is contributing
598 * to the overall pool fragmentation metric.
599 */
600 fragmentation += mg->mg_fragmentation *
601 metaslab_group_get_space(mg);
602 }
603 fragmentation /= metaslab_class_get_space(mc);
604
605 ASSERT3U(fragmentation, <=, 100);
606 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
607 return (fragmentation);
608}
609
610/*
611 * Calculate the amount of expandable space that is available in
612 * this metaslab class. If a device is expanded then its expandable
613 * space will be the amount of allocatable space that is currently not
614 * part of this metaslab class.
615 */
616uint64_t
617metaslab_class_expandable_space(metaslab_class_t *mc)
618{
619 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
620 uint64_t space = 0;
f3a7f661
GW
621
622 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
1c27024e 623 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661
GW
624 vdev_t *tvd = rvd->vdev_child[c];
625 metaslab_group_t *mg = tvd->vdev_mg;
626
a1d477c2 627 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
628 mg->mg_class != mc) {
629 continue;
630 }
631
0f676dc2
GM
632 /*
633 * Calculate if we have enough space to add additional
634 * metaslabs. We report the expandable space in terms
635 * of the metaslab size since that's the unit of expansion.
636 */
637 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
638 1ULL << tvd->vdev_ms_shift);
f3a7f661
GW
639 }
640 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
641 return (space);
642}
643
f09fda50
PD
644void
645metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
646{
ffdf019c 647 multilist_t *ml = &mc->mc_metaslab_txg_list;
f09fda50
PD
648 for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
649 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
650 metaslab_t *msp = multilist_sublist_head(mls);
651 multilist_sublist_unlock(mls);
652 while (msp != NULL) {
653 mutex_enter(&msp->ms_lock);
f09fda50
PD
654
655 /*
656 * If the metaslab has been removed from the list
657 * (which could happen if we were at the memory limit
658 * and it was evicted during this loop), then we can't
659 * proceed and we should restart the sublist.
660 */
661 if (!multilist_link_active(&msp->ms_class_txg_node)) {
662 mutex_exit(&msp->ms_lock);
663 i--;
664 break;
665 }
666 mls = multilist_sublist_lock(ml, i);
667 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
668 multilist_sublist_unlock(mls);
eef0f4d8
PD
669 if (txg >
670 msp->ms_selected_txg + metaslab_unload_delay &&
671 gethrtime() > msp->ms_selected_time +
672 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
673 metaslab_evict(msp, txg);
674 } else {
675 /*
676 * Once we've hit a metaslab selected too
677 * recently to evict, we're done evicting for
678 * now.
679 */
680 mutex_exit(&msp->ms_lock);
681 break;
682 }
f09fda50
PD
683 mutex_exit(&msp->ms_lock);
684 msp = next_msp;
685 }
686 }
687}
688
34dc7c2f
BB
689static int
690metaslab_compare(const void *x1, const void *x2)
691{
ee36c709
GN
692 const metaslab_t *m1 = (const metaslab_t *)x1;
693 const metaslab_t *m2 = (const metaslab_t *)x2;
34dc7c2f 694
492f64e9
PD
695 int sort1 = 0;
696 int sort2 = 0;
697 if (m1->ms_allocator != -1 && m1->ms_primary)
698 sort1 = 1;
699 else if (m1->ms_allocator != -1 && !m1->ms_primary)
700 sort1 = 2;
701 if (m2->ms_allocator != -1 && m2->ms_primary)
702 sort2 = 1;
703 else if (m2->ms_allocator != -1 && !m2->ms_primary)
704 sort2 = 2;
705
706 /*
707 * Sort inactive metaslabs first, then primaries, then secondaries. When
708 * selecting a metaslab to allocate from, an allocator first tries its
709 * primary, then secondary active metaslab. If it doesn't have active
710 * metaslabs, or can't allocate from them, it searches for an inactive
711 * metaslab to activate. If it can't find a suitable one, it will steal
712 * a primary or secondary metaslab from another allocator.
713 */
714 if (sort1 < sort2)
715 return (-1);
716 if (sort1 > sort2)
717 return (1);
718
ca577779 719 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
ee36c709
GN
720 if (likely(cmp))
721 return (cmp);
34dc7c2f 722
ca577779 723 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
34dc7c2f 724
ca577779 725 return (TREE_CMP(m1->ms_start, m2->ms_start));
34dc7c2f
BB
726}
727
4e21fd06
DB
728/*
729 * ==========================================================================
730 * Metaslab groups
731 * ==========================================================================
732 */
ac72fac3
GW
733/*
734 * Update the allocatable flag and the metaslab group's capacity.
735 * The allocatable flag is set to true if the capacity is below
3dfb57a3
DB
736 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
737 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
738 * transitions from allocatable to non-allocatable or vice versa then the
739 * metaslab group's class is updated to reflect the transition.
ac72fac3
GW
740 */
741static void
742metaslab_group_alloc_update(metaslab_group_t *mg)
743{
744 vdev_t *vd = mg->mg_vd;
745 metaslab_class_t *mc = mg->mg_class;
746 vdev_stat_t *vs = &vd->vdev_stat;
747 boolean_t was_allocatable;
3dfb57a3 748 boolean_t was_initialized;
ac72fac3
GW
749
750 ASSERT(vd == vd->vdev_top);
a1d477c2
MA
751 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
752 SCL_ALLOC);
ac72fac3
GW
753
754 mutex_enter(&mg->mg_lock);
755 was_allocatable = mg->mg_allocatable;
3dfb57a3 756 was_initialized = mg->mg_initialized;
ac72fac3
GW
757
758 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
759 (vs->vs_space + 1);
760
3dfb57a3
DB
761 mutex_enter(&mc->mc_lock);
762
763 /*
764 * If the metaslab group was just added then it won't
765 * have any space until we finish syncing out this txg.
766 * At that point we will consider it initialized and available
767 * for allocations. We also don't consider non-activated
768 * metaslab groups (e.g. vdevs that are in the middle of being removed)
769 * to be initialized, because they can't be used for allocation.
770 */
771 mg->mg_initialized = metaslab_group_initialized(mg);
772 if (!was_initialized && mg->mg_initialized) {
773 mc->mc_groups++;
774 } else if (was_initialized && !mg->mg_initialized) {
775 ASSERT3U(mc->mc_groups, >, 0);
776 mc->mc_groups--;
777 }
778 if (mg->mg_initialized)
779 mg->mg_no_free_space = B_FALSE;
780
f3a7f661
GW
781 /*
782 * A metaslab group is considered allocatable if it has plenty
783 * of free space or is not heavily fragmented. We only take
784 * fragmentation into account if the metaslab group has a valid
785 * fragmentation metric (i.e. a value between 0 and 100).
786 */
3dfb57a3
DB
787 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
788 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
f3a7f661
GW
789 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
790 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
ac72fac3
GW
791
792 /*
793 * The mc_alloc_groups maintains a count of the number of
794 * groups in this metaslab class that are still above the
795 * zfs_mg_noalloc_threshold. This is used by the allocating
796 * threads to determine if they should avoid allocations to
797 * a given group. The allocator will avoid allocations to a group
798 * if that group has reached or is below the zfs_mg_noalloc_threshold
799 * and there are still other groups that are above the threshold.
800 * When a group transitions from allocatable to non-allocatable or
801 * vice versa we update the metaslab class to reflect that change.
802 * When the mc_alloc_groups value drops to 0 that means that all
803 * groups have reached the zfs_mg_noalloc_threshold making all groups
804 * eligible for allocations. This effectively means that all devices
805 * are balanced again.
806 */
807 if (was_allocatable && !mg->mg_allocatable)
808 mc->mc_alloc_groups--;
809 else if (!was_allocatable && mg->mg_allocatable)
810 mc->mc_alloc_groups++;
3dfb57a3 811 mutex_exit(&mc->mc_lock);
f3a7f661 812
ac72fac3
GW
813 mutex_exit(&mg->mg_lock);
814}
815
93e28d66
SD
816int
817metaslab_sort_by_flushed(const void *va, const void *vb)
818{
819 const metaslab_t *a = va;
820 const metaslab_t *b = vb;
821
ca577779 822 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
93e28d66
SD
823 if (likely(cmp))
824 return (cmp);
825
826 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
827 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
ca577779 828 cmp = TREE_CMP(a_vdev_id, b_vdev_id);
93e28d66
SD
829 if (cmp)
830 return (cmp);
831
ca577779 832 return (TREE_CMP(a->ms_id, b->ms_id));
93e28d66
SD
833}
834
34dc7c2f 835metaslab_group_t *
492f64e9 836metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
34dc7c2f
BB
837{
838 metaslab_group_t *mg;
839
f8020c93
AM
840 mg = kmem_zalloc(offsetof(metaslab_group_t,
841 mg_allocator[allocators]), KM_SLEEP);
34dc7c2f 842 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
1b939560
BB
843 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
844 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 845 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
93e28d66 846 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
34dc7c2f 847 mg->mg_vd = vd;
428870ff
BB
848 mg->mg_class = mc;
849 mg->mg_activation_count = 0;
3dfb57a3
DB
850 mg->mg_initialized = B_FALSE;
851 mg->mg_no_free_space = B_TRUE;
492f64e9
PD
852 mg->mg_allocators = allocators;
853
492f64e9 854 for (int i = 0; i < allocators; i++) {
32d805c3
MA
855 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
856 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
492f64e9 857 }
34dc7c2f 858
3c51c5cb 859 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
1229323d 860 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
93cf2076 861
34dc7c2f
BB
862 return (mg);
863}
864
865void
866metaslab_group_destroy(metaslab_group_t *mg)
867{
428870ff
BB
868 ASSERT(mg->mg_prev == NULL);
869 ASSERT(mg->mg_next == NULL);
870 /*
871 * We may have gone below zero with the activation count
872 * either because we never activated in the first place or
873 * because we're done, and possibly removing the vdev.
874 */
875 ASSERT(mg->mg_activation_count <= 0);
876
3c51c5cb 877 taskq_destroy(mg->mg_taskq);
34dc7c2f
BB
878 avl_destroy(&mg->mg_metaslab_tree);
879 mutex_destroy(&mg->mg_lock);
1b939560
BB
880 mutex_destroy(&mg->mg_ms_disabled_lock);
881 cv_destroy(&mg->mg_ms_disabled_cv);
492f64e9
PD
882
883 for (int i = 0; i < mg->mg_allocators; i++) {
32d805c3
MA
884 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
885 zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
492f64e9 886 }
f8020c93
AM
887 kmem_free(mg, offsetof(metaslab_group_t,
888 mg_allocator[mg->mg_allocators]));
34dc7c2f
BB
889}
890
428870ff
BB
891void
892metaslab_group_activate(metaslab_group_t *mg)
893{
894 metaslab_class_t *mc = mg->mg_class;
f8020c93 895 spa_t *spa = mc->mc_spa;
428870ff
BB
896 metaslab_group_t *mgprev, *mgnext;
897
f8020c93 898 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
428870ff 899
428870ff
BB
900 ASSERT(mg->mg_prev == NULL);
901 ASSERT(mg->mg_next == NULL);
902 ASSERT(mg->mg_activation_count <= 0);
903
904 if (++mg->mg_activation_count <= 0)
905 return;
906
c55b2932
AM
907 mg->mg_aliquot = metaslab_aliquot * MAX(1,
908 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
ac72fac3 909 metaslab_group_alloc_update(mg);
428870ff 910
f8020c93 911 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
428870ff
BB
912 mg->mg_prev = mg;
913 mg->mg_next = mg;
914 } else {
915 mgnext = mgprev->mg_next;
916 mg->mg_prev = mgprev;
917 mg->mg_next = mgnext;
918 mgprev->mg_next = mg;
919 mgnext->mg_prev = mg;
920 }
f8020c93
AM
921 for (int i = 0; i < spa->spa_alloc_count; i++) {
922 mc->mc_allocator[i].mca_rotor = mg;
923 mg = mg->mg_next;
924 }
428870ff
BB
925}
926
a1d477c2
MA
927/*
928 * Passivate a metaslab group and remove it from the allocation rotor.
929 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
930 * a metaslab group. This function will momentarily drop spa_config_locks
931 * that are lower than the SCL_ALLOC lock (see comment below).
932 */
428870ff
BB
933void
934metaslab_group_passivate(metaslab_group_t *mg)
935{
936 metaslab_class_t *mc = mg->mg_class;
a1d477c2 937 spa_t *spa = mc->mc_spa;
428870ff 938 metaslab_group_t *mgprev, *mgnext;
a1d477c2 939 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
428870ff 940
a1d477c2
MA
941 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
942 (SCL_ALLOC | SCL_ZIO));
428870ff
BB
943
944 if (--mg->mg_activation_count != 0) {
f8020c93
AM
945 for (int i = 0; i < spa->spa_alloc_count; i++)
946 ASSERT(mc->mc_allocator[i].mca_rotor != mg);
428870ff
BB
947 ASSERT(mg->mg_prev == NULL);
948 ASSERT(mg->mg_next == NULL);
949 ASSERT(mg->mg_activation_count < 0);
950 return;
951 }
952
a1d477c2
MA
953 /*
954 * The spa_config_lock is an array of rwlocks, ordered as
955 * follows (from highest to lowest):
956 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
957 * SCL_ZIO > SCL_FREE > SCL_VDEV
958 * (For more information about the spa_config_lock see spa_misc.c)
959 * The higher the lock, the broader its coverage. When we passivate
960 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
961 * config locks. However, the metaslab group's taskq might be trying
962 * to preload metaslabs so we must drop the SCL_ZIO lock and any
963 * lower locks to allow the I/O to complete. At a minimum,
964 * we continue to hold the SCL_ALLOC lock, which prevents any future
965 * allocations from taking place and any changes to the vdev tree.
966 */
967 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
c5528b9b 968 taskq_wait_outstanding(mg->mg_taskq, 0);
a1d477c2 969 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
f3a7f661 970 metaslab_group_alloc_update(mg);
492f64e9 971 for (int i = 0; i < mg->mg_allocators; i++) {
32d805c3
MA
972 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
973 metaslab_t *msp = mga->mga_primary;
492f64e9
PD
974 if (msp != NULL) {
975 mutex_enter(&msp->ms_lock);
976 metaslab_passivate(msp,
977 metaslab_weight_from_range_tree(msp));
978 mutex_exit(&msp->ms_lock);
979 }
32d805c3 980 msp = mga->mga_secondary;
492f64e9
PD
981 if (msp != NULL) {
982 mutex_enter(&msp->ms_lock);
983 metaslab_passivate(msp,
984 metaslab_weight_from_range_tree(msp));
985 mutex_exit(&msp->ms_lock);
986 }
987 }
93cf2076 988
428870ff
BB
989 mgprev = mg->mg_prev;
990 mgnext = mg->mg_next;
991
992 if (mg == mgnext) {
f8020c93 993 mgnext = NULL;
428870ff 994 } else {
428870ff
BB
995 mgprev->mg_next = mgnext;
996 mgnext->mg_prev = mgprev;
997 }
f8020c93
AM
998 for (int i = 0; i < spa->spa_alloc_count; i++) {
999 if (mc->mc_allocator[i].mca_rotor == mg)
1000 mc->mc_allocator[i].mca_rotor = mgnext;
1001 }
428870ff
BB
1002
1003 mg->mg_prev = NULL;
1004 mg->mg_next = NULL;
1005}
1006
3dfb57a3
DB
1007boolean_t
1008metaslab_group_initialized(metaslab_group_t *mg)
1009{
1010 vdev_t *vd = mg->mg_vd;
1011 vdev_stat_t *vs = &vd->vdev_stat;
1012
1013 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1014}
1015
f3a7f661
GW
1016uint64_t
1017metaslab_group_get_space(metaslab_group_t *mg)
1018{
aa755b35
MA
1019 /*
1020 * Note that the number of nodes in mg_metaslab_tree may be one less
1021 * than vdev_ms_count, due to the embedded log metaslab.
1022 */
1023 mutex_enter(&mg->mg_lock);
1024 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1025 mutex_exit(&mg->mg_lock);
1026 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
f3a7f661
GW
1027}
1028
1029void
1030metaslab_group_histogram_verify(metaslab_group_t *mg)
1031{
1032 uint64_t *mg_hist;
aa755b35
MA
1033 avl_tree_t *t = &mg->mg_metaslab_tree;
1034 uint64_t ashift = mg->mg_vd->vdev_ashift;
f3a7f661
GW
1035
1036 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1037 return;
1038
1039 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 1040 KM_SLEEP);
f3a7f661
GW
1041
1042 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1043 SPACE_MAP_HISTOGRAM_SIZE + ashift);
1044
aa755b35
MA
1045 mutex_enter(&mg->mg_lock);
1046 for (metaslab_t *msp = avl_first(t);
1047 msp != NULL; msp = AVL_NEXT(t, msp)) {
1048 VERIFY3P(msp->ms_group, ==, mg);
1049 /* skip if not active */
1050 if (msp->ms_sm == NULL)
f3a7f661
GW
1051 continue;
1052
aa755b35 1053 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
1054 mg_hist[i + ashift] +=
1055 msp->ms_sm->sm_phys->smp_histogram[i];
aa755b35 1056 }
f3a7f661
GW
1057 }
1058
aa755b35 1059 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
f3a7f661
GW
1060 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1061
aa755b35
MA
1062 mutex_exit(&mg->mg_lock);
1063
f3a7f661
GW
1064 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1065}
1066
34dc7c2f 1067static void
f3a7f661 1068metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
34dc7c2f 1069{
f3a7f661
GW
1070 metaslab_class_t *mc = mg->mg_class;
1071 uint64_t ashift = mg->mg_vd->vdev_ashift;
f3a7f661
GW
1072
1073 ASSERT(MUTEX_HELD(&msp->ms_lock));
1074 if (msp->ms_sm == NULL)
1075 return;
1076
34dc7c2f 1077 mutex_enter(&mg->mg_lock);
a0e01997 1078 mutex_enter(&mc->mc_lock);
1c27024e 1079 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
aa755b35
MA
1080 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1081 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
f3a7f661
GW
1082 mg->mg_histogram[i + ashift] +=
1083 msp->ms_sm->sm_phys->smp_histogram[i];
1084 mc->mc_histogram[i + ashift] +=
1085 msp->ms_sm->sm_phys->smp_histogram[i];
1086 }
a0e01997 1087 mutex_exit(&mc->mc_lock);
f3a7f661
GW
1088 mutex_exit(&mg->mg_lock);
1089}
1090
1091void
1092metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1093{
1094 metaslab_class_t *mc = mg->mg_class;
1095 uint64_t ashift = mg->mg_vd->vdev_ashift;
f3a7f661
GW
1096
1097 ASSERT(MUTEX_HELD(&msp->ms_lock));
1098 if (msp->ms_sm == NULL)
1099 return;
1100
1101 mutex_enter(&mg->mg_lock);
a0e01997 1102 mutex_enter(&mc->mc_lock);
1c27024e 1103 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
1104 ASSERT3U(mg->mg_histogram[i + ashift], >=,
1105 msp->ms_sm->sm_phys->smp_histogram[i]);
1106 ASSERT3U(mc->mc_histogram[i + ashift], >=,
1107 msp->ms_sm->sm_phys->smp_histogram[i]);
aa755b35
MA
1108 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1109 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
f3a7f661
GW
1110
1111 mg->mg_histogram[i + ashift] -=
1112 msp->ms_sm->sm_phys->smp_histogram[i];
1113 mc->mc_histogram[i + ashift] -=
1114 msp->ms_sm->sm_phys->smp_histogram[i];
1115 }
a0e01997 1116 mutex_exit(&mc->mc_lock);
f3a7f661
GW
1117 mutex_exit(&mg->mg_lock);
1118}
1119
1120static void
1121metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1122{
34dc7c2f 1123 ASSERT(msp->ms_group == NULL);
f3a7f661 1124 mutex_enter(&mg->mg_lock);
34dc7c2f
BB
1125 msp->ms_group = mg;
1126 msp->ms_weight = 0;
1127 avl_add(&mg->mg_metaslab_tree, msp);
1128 mutex_exit(&mg->mg_lock);
f3a7f661
GW
1129
1130 mutex_enter(&msp->ms_lock);
1131 metaslab_group_histogram_add(mg, msp);
1132 mutex_exit(&msp->ms_lock);
34dc7c2f
BB
1133}
1134
1135static void
1136metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1137{
f3a7f661
GW
1138 mutex_enter(&msp->ms_lock);
1139 metaslab_group_histogram_remove(mg, msp);
1140 mutex_exit(&msp->ms_lock);
1141
34dc7c2f
BB
1142 mutex_enter(&mg->mg_lock);
1143 ASSERT(msp->ms_group == mg);
1144 avl_remove(&mg->mg_metaslab_tree, msp);
f09fda50
PD
1145
1146 metaslab_class_t *mc = msp->ms_group->mg_class;
1147 multilist_sublist_t *mls =
ffdf019c 1148 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
f09fda50
PD
1149 if (multilist_link_active(&msp->ms_class_txg_node))
1150 multilist_sublist_remove(mls, msp);
1151 multilist_sublist_unlock(mls);
1152
34dc7c2f
BB
1153 msp->ms_group = NULL;
1154 mutex_exit(&mg->mg_lock);
1155}
1156
492f64e9
PD
1157static void
1158metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1159{
679b0f2a 1160 ASSERT(MUTEX_HELD(&msp->ms_lock));
492f64e9
PD
1161 ASSERT(MUTEX_HELD(&mg->mg_lock));
1162 ASSERT(msp->ms_group == mg);
679b0f2a 1163
492f64e9
PD
1164 avl_remove(&mg->mg_metaslab_tree, msp);
1165 msp->ms_weight = weight;
1166 avl_add(&mg->mg_metaslab_tree, msp);
1167
1168}
1169
34dc7c2f
BB
1170static void
1171metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1172{
1173 /*
1174 * Although in principle the weight can be any value, in
f3a7f661 1175 * practice we do not use values in the range [1, 511].
34dc7c2f 1176 */
f3a7f661 1177 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
34dc7c2f
BB
1178 ASSERT(MUTEX_HELD(&msp->ms_lock));
1179
1180 mutex_enter(&mg->mg_lock);
492f64e9 1181 metaslab_group_sort_impl(mg, msp, weight);
34dc7c2f
BB
1182 mutex_exit(&mg->mg_lock);
1183}
1184
f3a7f661
GW
1185/*
1186 * Calculate the fragmentation for a given metaslab group. We can use
1187 * a simple average here since all metaslabs within the group must have
1188 * the same size. The return value will be a value between 0 and 100
1189 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1190 * group have a fragmentation metric.
1191 */
1192uint64_t
1193metaslab_group_fragmentation(metaslab_group_t *mg)
1194{
1195 vdev_t *vd = mg->mg_vd;
1196 uint64_t fragmentation = 0;
1197 uint64_t valid_ms = 0;
f3a7f661 1198
1c27024e 1199 for (int m = 0; m < vd->vdev_ms_count; m++) {
f3a7f661
GW
1200 metaslab_t *msp = vd->vdev_ms[m];
1201
1202 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1203 continue;
cc99f275
DB
1204 if (msp->ms_group != mg)
1205 continue;
f3a7f661
GW
1206
1207 valid_ms++;
1208 fragmentation += msp->ms_fragmentation;
1209 }
1210
cc99f275 1211 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
f3a7f661
GW
1212 return (ZFS_FRAG_INVALID);
1213
1214 fragmentation /= valid_ms;
1215 ASSERT3U(fragmentation, <=, 100);
1216 return (fragmentation);
1217}
1218
ac72fac3
GW
1219/*
1220 * Determine if a given metaslab group should skip allocations. A metaslab
f3a7f661
GW
1221 * group should avoid allocations if its free capacity is less than the
1222 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1223 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
3dfb57a3
DB
1224 * that can still handle allocations. If the allocation throttle is enabled
1225 * then we skip allocations to devices that have reached their maximum
1226 * allocation queue depth unless the selected metaslab group is the only
1227 * eligible group remaining.
ac72fac3
GW
1228 */
1229static boolean_t
3dfb57a3 1230metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
7bf4c97a 1231 int flags, uint64_t psize, int allocator, int d)
ac72fac3 1232{
3dfb57a3 1233 spa_t *spa = mg->mg_vd->vdev_spa;
ac72fac3
GW
1234 metaslab_class_t *mc = mg->mg_class;
1235
1236 /*
3dfb57a3
DB
1237 * We can only consider skipping this metaslab group if it's
1238 * in the normal metaslab class and there are other metaslab
1239 * groups to select from. Otherwise, we always consider it eligible
f3a7f661 1240 * for allocations.
ac72fac3 1241 */
cc99f275
DB
1242 if ((mc != spa_normal_class(spa) &&
1243 mc != spa_special_class(spa) &&
1244 mc != spa_dedup_class(spa)) ||
1245 mc->mc_groups <= 1)
3dfb57a3
DB
1246 return (B_TRUE);
1247
1248 /*
1249 * If the metaslab group's mg_allocatable flag is set (see comments
1250 * in metaslab_group_alloc_update() for more information) and
1251 * the allocation throttle is disabled then allow allocations to this
1252 * device. However, if the allocation throttle is enabled then
f8020c93 1253 * check if we have reached our allocation limit (mga_alloc_queue_depth)
3dfb57a3
DB
1254 * to determine if we should allow allocations to this metaslab group.
1255 * If all metaslab groups are no longer considered allocatable
1256 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1257 * gang block size then we allow allocations on this metaslab group
1258 * regardless of the mg_allocatable or throttle settings.
1259 */
1260 if (mg->mg_allocatable) {
32d805c3 1261 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3dfb57a3 1262 int64_t qdepth;
32d805c3 1263 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
3dfb57a3
DB
1264
1265 if (!mc->mc_alloc_throttle_enabled)
1266 return (B_TRUE);
1267
1268 /*
1269 * If this metaslab group does not have any free space, then
1270 * there is no point in looking further.
1271 */
1272 if (mg->mg_no_free_space)
1273 return (B_FALSE);
1274
7bf4c97a
SD
1275 /*
1276 * Some allocations (e.g., those coming from device removal
1277 * where the * allocations are not even counted in the
1278 * metaslab * allocation queues) are allowed to bypass
1279 * the throttle.
1280 */
1281 if (flags & METASLAB_DONT_THROTTLE)
1282 return (B_TRUE);
1283
c197a77c 1284 /*
1285 * Relax allocation throttling for ditto blocks. Due to
1286 * random imbalances in allocation it tends to push copies
1287 * to one vdev, that looks a bit better at the moment.
1288 */
1289 qmax = qmax * (4 + d) / 4;
1290
32d805c3 1291 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
3dfb57a3
DB
1292
1293 /*
1294 * If this metaslab group is below its qmax or it's
1295 * the only allocatable metasable group, then attempt
1296 * to allocate from it.
1297 */
1298 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1299 return (B_TRUE);
1300 ASSERT3U(mc->mc_alloc_groups, >, 1);
1301
1302 /*
1303 * Since this metaslab group is at or over its qmax, we
1304 * need to determine if there are metaslab groups after this
1305 * one that might be able to handle this allocation. This is
1306 * racy since we can't hold the locks for all metaslab
1307 * groups at the same time when we make this check.
1308 */
32d805c3
MA
1309 for (metaslab_group_t *mgp = mg->mg_next;
1310 mgp != rotor; mgp = mgp->mg_next) {
1311 metaslab_group_allocator_t *mgap =
1312 &mgp->mg_allocator[allocator];
1313 qmax = mgap->mga_cur_max_alloc_queue_depth;
c197a77c 1314 qmax = qmax * (4 + d) / 4;
32d805c3
MA
1315 qdepth =
1316 zfs_refcount_count(&mgap->mga_alloc_queue_depth);
3dfb57a3
DB
1317
1318 /*
1319 * If there is another metaslab group that
1320 * might be able to handle the allocation, then
1321 * we return false so that we skip this group.
1322 */
1323 if (qdepth < qmax && !mgp->mg_no_free_space)
1324 return (B_FALSE);
1325 }
1326
1327 /*
1328 * We didn't find another group to handle the allocation
1329 * so we can't skip this metaslab group even though
1330 * we are at or over our qmax.
1331 */
1332 return (B_TRUE);
1333
1334 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1335 return (B_TRUE);
1336 }
1337 return (B_FALSE);
ac72fac3
GW
1338}
1339
428870ff
BB
1340/*
1341 * ==========================================================================
93cf2076 1342 * Range tree callbacks
428870ff
BB
1343 * ==========================================================================
1344 */
93cf2076
GW
1345
1346/*
ca577779
PD
1347 * Comparison function for the private size-ordered tree using 32-bit
1348 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
93cf2076 1349 */
677c6f84 1350__attribute__((always_inline)) inline
428870ff 1351static int
ca577779 1352metaslab_rangesize32_compare(const void *x1, const void *x2)
428870ff 1353{
ca577779
PD
1354 const range_seg32_t *r1 = x1;
1355 const range_seg32_t *r2 = x2;
1356
93cf2076
GW
1357 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1358 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
428870ff 1359
ca577779 1360 int cmp = TREE_CMP(rs_size1, rs_size2);
428870ff 1361
677c6f84 1362 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
428870ff
BB
1363}
1364
ca577779
PD
1365/*
1366 * Comparison function for the private size-ordered tree using 64-bit
1367 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1368 */
677c6f84 1369__attribute__((always_inline)) inline
ca577779
PD
1370static int
1371metaslab_rangesize64_compare(const void *x1, const void *x2)
1372{
1373 const range_seg64_t *r1 = x1;
1374 const range_seg64_t *r2 = x2;
1375
1376 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1377 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1378
1379 int cmp = TREE_CMP(rs_size1, rs_size2);
ca577779 1380
677c6f84 1381 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
ca577779 1382}
677c6f84 1383
ca577779
PD
1384typedef struct metaslab_rt_arg {
1385 zfs_btree_t *mra_bt;
1386 uint32_t mra_floor_shift;
1387} metaslab_rt_arg_t;
1388
1389struct mssa_arg {
1390 range_tree_t *rt;
1391 metaslab_rt_arg_t *mra;
1392};
1393
1394static void
1395metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1396{
1397 struct mssa_arg *mssap = arg;
1398 range_tree_t *rt = mssap->rt;
1399 metaslab_rt_arg_t *mrap = mssap->mra;
1400 range_seg_max_t seg = {0};
1401 rs_set_start(&seg, rt, start);
1402 rs_set_end(&seg, rt, start + size);
1403 metaslab_rt_add(rt, &seg, mrap);
1404}
1405
1406static void
1407metaslab_size_tree_full_load(range_tree_t *rt)
1408{
1409 metaslab_rt_arg_t *mrap = rt->rt_arg;
ca577779 1410 METASLABSTAT_BUMP(metaslabstat_reload_tree);
ca577779
PD
1411 ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1412 mrap->mra_floor_shift = 0;
1413 struct mssa_arg arg = {0};
1414 arg.rt = rt;
1415 arg.mra = mrap;
1416 range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1417}
1418
677c6f84
RY
1419
1420ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1421 range_seg32_t, metaslab_rangesize32_compare)
1422
1423ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1424 range_seg64_t, metaslab_rangesize64_compare)
1425
ca577779
PD
1426/*
1427 * Create any block allocator specific components. The current allocators
1428 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1429 */
ca577779
PD
1430static void
1431metaslab_rt_create(range_tree_t *rt, void *arg)
1432{
1433 metaslab_rt_arg_t *mrap = arg;
1434 zfs_btree_t *size_tree = mrap->mra_bt;
1435
1436 size_t size;
1437 int (*compare) (const void *, const void *);
677c6f84 1438 bt_find_in_buf_f bt_find;
ca577779
PD
1439 switch (rt->rt_type) {
1440 case RANGE_SEG32:
1441 size = sizeof (range_seg32_t);
1442 compare = metaslab_rangesize32_compare;
677c6f84 1443 bt_find = metaslab_rt_find_rangesize32_in_buf;
ca577779
PD
1444 break;
1445 case RANGE_SEG64:
1446 size = sizeof (range_seg64_t);
1447 compare = metaslab_rangesize64_compare;
677c6f84 1448 bt_find = metaslab_rt_find_rangesize64_in_buf;
ca577779
PD
1449 break;
1450 default:
1451 panic("Invalid range seg type %d", rt->rt_type);
1452 }
677c6f84 1453 zfs_btree_create(size_tree, compare, bt_find, size);
ca577779
PD
1454 mrap->mra_floor_shift = metaslab_by_size_min_shift;
1455}
1456
ca577779
PD
1457static void
1458metaslab_rt_destroy(range_tree_t *rt, void *arg)
1459{
14e4e3cb 1460 (void) rt;
ca577779
PD
1461 metaslab_rt_arg_t *mrap = arg;
1462 zfs_btree_t *size_tree = mrap->mra_bt;
1463
1464 zfs_btree_destroy(size_tree);
1465 kmem_free(mrap, sizeof (*mrap));
1466}
1467
ca577779
PD
1468static void
1469metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1470{
1471 metaslab_rt_arg_t *mrap = arg;
1472 zfs_btree_t *size_tree = mrap->mra_bt;
1473
1474 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
e506a0ce 1475 (1ULL << mrap->mra_floor_shift))
ca577779
PD
1476 return;
1477
1478 zfs_btree_add(size_tree, rs);
1479}
1480
ca577779
PD
1481static void
1482metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1483{
1484 metaslab_rt_arg_t *mrap = arg;
1485 zfs_btree_t *size_tree = mrap->mra_bt;
1486
e506a0ce 1487 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
ca577779
PD
1488 mrap->mra_floor_shift))
1489 return;
1490
1491 zfs_btree_remove(size_tree, rs);
1492}
1493
ca577779
PD
1494static void
1495metaslab_rt_vacate(range_tree_t *rt, void *arg)
1496{
1497 metaslab_rt_arg_t *mrap = arg;
1498 zfs_btree_t *size_tree = mrap->mra_bt;
1499 zfs_btree_clear(size_tree);
1500 zfs_btree_destroy(size_tree);
1501
1502 metaslab_rt_create(rt, arg);
1503}
1504
18168da7 1505static const range_tree_ops_t metaslab_rt_ops = {
ca577779
PD
1506 .rtop_create = metaslab_rt_create,
1507 .rtop_destroy = metaslab_rt_destroy,
1508 .rtop_add = metaslab_rt_add,
1509 .rtop_remove = metaslab_rt_remove,
1510 .rtop_vacate = metaslab_rt_vacate
1511};
1512
93cf2076
GW
1513/*
1514 * ==========================================================================
4e21fd06 1515 * Common allocator routines
93cf2076
GW
1516 * ==========================================================================
1517 */
1518
9babb374 1519/*
428870ff 1520 * Return the maximum contiguous segment within the metaslab.
9babb374 1521 */
9babb374 1522uint64_t
c81f1790 1523metaslab_largest_allocatable(metaslab_t *msp)
9babb374 1524{
ca577779 1525 zfs_btree_t *t = &msp->ms_allocatable_by_size;
93cf2076 1526 range_seg_t *rs;
9babb374 1527
c81f1790
PD
1528 if (t == NULL)
1529 return (0);
ca577779
PD
1530 if (zfs_btree_numnodes(t) == 0)
1531 metaslab_size_tree_full_load(msp->ms_allocatable);
1532
1533 rs = zfs_btree_last(t, NULL);
c81f1790
PD
1534 if (rs == NULL)
1535 return (0);
9babb374 1536
ca577779
PD
1537 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1538 msp->ms_allocatable));
93cf2076
GW
1539}
1540
c81f1790
PD
1541/*
1542 * Return the maximum contiguous segment within the unflushed frees of this
1543 * metaslab.
1544 */
65c7cc49 1545static uint64_t
c81f1790
PD
1546metaslab_largest_unflushed_free(metaslab_t *msp)
1547{
1548 ASSERT(MUTEX_HELD(&msp->ms_lock));
1549
1550 if (msp->ms_unflushed_frees == NULL)
1551 return (0);
1552
ca577779
PD
1553 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1554 metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1555 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1556 NULL);
c81f1790
PD
1557 if (rs == NULL)
1558 return (0);
1559
1560 /*
1561 * When a range is freed from the metaslab, that range is added to
1562 * both the unflushed frees and the deferred frees. While the block
1563 * will eventually be usable, if the metaslab were loaded the range
1564 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1565 * txgs had passed. As a result, when attempting to estimate an upper
1566 * bound for the largest currently-usable free segment in the
1567 * metaslab, we need to not consider any ranges currently in the defer
1568 * trees. This algorithm approximates the largest available chunk in
1569 * the largest range in the unflushed_frees tree by taking the first
1570 * chunk. While this may be a poor estimate, it should only remain so
1571 * briefly and should eventually self-correct as frees are no longer
1572 * deferred. Similar logic applies to the ms_freed tree. See
1573 * metaslab_load() for more details.
1574 *
e1cfd73f 1575 * There are two primary sources of inaccuracy in this estimate. Both
c81f1790
PD
1576 * are tolerated for performance reasons. The first source is that we
1577 * only check the largest segment for overlaps. Smaller segments may
1578 * have more favorable overlaps with the other trees, resulting in
1579 * larger usable chunks. Second, we only look at the first chunk in
1580 * the largest segment; there may be other usable chunks in the
1581 * largest segment, but we ignore them.
1582 */
ca577779
PD
1583 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1584 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
c81f1790
PD
1585 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1586 uint64_t start = 0;
1587 uint64_t size = 0;
1588 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1589 rsize, &start, &size);
1590 if (found) {
1591 if (rstart == start)
1592 return (0);
1593 rsize = start - rstart;
1594 }
1595 }
1596
1597 uint64_t start = 0;
1598 uint64_t size = 0;
1599 boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1600 rsize, &start, &size);
1601 if (found)
1602 rsize = start - rstart;
1603
1604 return (rsize);
1605}
1606
4e21fd06 1607static range_seg_t *
ca577779
PD
1608metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1609 uint64_t size, zfs_btree_index_t *where)
93cf2076 1610{
ca577779
PD
1611 range_seg_t *rs;
1612 range_seg_max_t rsearch;
93cf2076 1613
ca577779
PD
1614 rs_set_start(&rsearch, rt, start);
1615 rs_set_end(&rsearch, rt, start + size);
93cf2076 1616
ca577779 1617 rs = zfs_btree_find(t, &rsearch, where);
4e21fd06 1618 if (rs == NULL) {
ca577779 1619 rs = zfs_btree_next(t, where, where);
93cf2076 1620 }
93cf2076 1621
4e21fd06
DB
1622 return (rs);
1623}
93cf2076 1624
d3230d76 1625#if defined(WITH_DF_BLOCK_ALLOCATOR) || \
93cf2076 1626 defined(WITH_CF_BLOCK_ALLOCATOR)
b2255edc 1627
93cf2076 1628/*
ca577779
PD
1629 * This is a helper function that can be used by the allocator to find a
1630 * suitable block to allocate. This will search the specified B-tree looking
1631 * for a block that matches the specified criteria.
93cf2076
GW
1632 */
1633static uint64_t
ca577779 1634metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
d3230d76 1635 uint64_t max_search)
93cf2076 1636{
ca577779
PD
1637 if (*cursor == 0)
1638 *cursor = rt->rt_start;
1639 zfs_btree_t *bt = &rt->rt_root;
1640 zfs_btree_index_t where;
1641 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
d3230d76 1642 uint64_t first_found;
ca577779 1643 int count_searched = 0;
93cf2076 1644
d3230d76 1645 if (rs != NULL)
ca577779 1646 first_found = rs_get_start(rs, rt);
93cf2076 1647
ca577779
PD
1648 while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1649 max_search || count_searched < metaslab_min_search_count)) {
1650 uint64_t offset = rs_get_start(rs, rt);
1651 if (offset + size <= rs_get_end(rs, rt)) {
93cf2076
GW
1652 *cursor = offset + size;
1653 return (offset);
1654 }
ca577779
PD
1655 rs = zfs_btree_next(bt, &where, &where);
1656 count_searched++;
93cf2076
GW
1657 }
1658
93cf2076 1659 *cursor = 0;
d3230d76 1660 return (-1ULL);
9babb374 1661}
d3230d76 1662#endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
22c81dd8
BB
1663
1664#if defined(WITH_DF_BLOCK_ALLOCATOR)
428870ff
BB
1665/*
1666 * ==========================================================================
d3230d76
MA
1667 * Dynamic Fit (df) block allocator
1668 *
1669 * Search for a free chunk of at least this size, starting from the last
1670 * offset (for this alignment of block) looking for up to
1671 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1672 * found within 16MB, then return a free chunk of exactly the requested size (or
1673 * larger).
1674 *
1675 * If it seems like searching from the last offset will be unproductive, skip
1676 * that and just return a free chunk of exactly the requested size (or larger).
1677 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1678 * mechanism is probably not very useful and may be removed in the future.
1679 *
1680 * The behavior when not searching can be changed to return the largest free
1681 * chunk, instead of a free chunk of exactly the requested size, by setting
1682 * metaslab_df_use_largest_segment.
428870ff
BB
1683 * ==========================================================================
1684 */
9babb374 1685static uint64_t
93cf2076 1686metaslab_df_alloc(metaslab_t *msp, uint64_t size)
9babb374 1687{
93cf2076
GW
1688 /*
1689 * Find the largest power of 2 block size that evenly divides the
1690 * requested size. This is used to try to allocate blocks with similar
1691 * alignment from the same area of the metaslab (i.e. same cursor
1692 * bucket) but it does not guarantee that other allocations sizes
1693 * may exist in the same region.
1694 */
9babb374 1695 uint64_t align = size & -size;
9bd274dd 1696 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
d2734cce 1697 range_tree_t *rt = msp->ms_allocatable;
fdc2d303 1698 uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
d3230d76 1699 uint64_t offset;
9babb374 1700
93cf2076 1701 ASSERT(MUTEX_HELD(&msp->ms_lock));
9babb374 1702
9babb374 1703 /*
d3230d76
MA
1704 * If we're running low on space, find a segment based on size,
1705 * rather than iterating based on offset.
9babb374 1706 */
c81f1790 1707 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
9babb374 1708 free_pct < metaslab_df_free_pct) {
d3230d76
MA
1709 offset = -1;
1710 } else {
ca577779 1711 offset = metaslab_block_picker(rt,
d3230d76 1712 cursor, size, metaslab_df_max_search);
9babb374
BB
1713 }
1714
d3230d76
MA
1715 if (offset == -1) {
1716 range_seg_t *rs;
ca577779
PD
1717 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1718 metaslab_size_tree_full_load(msp->ms_allocatable);
b2255edc 1719
d3230d76
MA
1720 if (metaslab_df_use_largest_segment) {
1721 /* use largest free segment */
ca577779 1722 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
d3230d76 1723 } else {
ca577779 1724 zfs_btree_index_t where;
d3230d76
MA
1725 /* use segment of this size, or next largest */
1726 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
ca577779 1727 rt, msp->ms_start, size, &where);
d3230d76 1728 }
ca577779
PD
1729 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1730 rt)) {
1731 offset = rs_get_start(rs, rt);
d3230d76
MA
1732 *cursor = offset + size;
1733 }
1734 }
1735
1736 return (offset);
9babb374
BB
1737}
1738
18168da7 1739const metaslab_ops_t zfs_metaslab_ops = {
f3a7f661 1740 metaslab_df_alloc
34dc7c2f 1741};
22c81dd8
BB
1742#endif /* WITH_DF_BLOCK_ALLOCATOR */
1743
93cf2076 1744#if defined(WITH_CF_BLOCK_ALLOCATOR)
428870ff
BB
1745/*
1746 * ==========================================================================
93cf2076
GW
1747 * Cursor fit block allocator -
1748 * Select the largest region in the metaslab, set the cursor to the beginning
1749 * of the range and the cursor_end to the end of the range. As allocations
1750 * are made advance the cursor. Continue allocating from the cursor until
1751 * the range is exhausted and then find a new range.
428870ff
BB
1752 * ==========================================================================
1753 */
1754static uint64_t
93cf2076 1755metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1756{
d2734cce 1757 range_tree_t *rt = msp->ms_allocatable;
ca577779 1758 zfs_btree_t *t = &msp->ms_allocatable_by_size;
93cf2076
GW
1759 uint64_t *cursor = &msp->ms_lbas[0];
1760 uint64_t *cursor_end = &msp->ms_lbas[1];
428870ff
BB
1761 uint64_t offset = 0;
1762
93cf2076 1763 ASSERT(MUTEX_HELD(&msp->ms_lock));
428870ff 1764
93cf2076 1765 ASSERT3U(*cursor_end, >=, *cursor);
428870ff 1766
93cf2076
GW
1767 if ((*cursor + size) > *cursor_end) {
1768 range_seg_t *rs;
428870ff 1769
ca577779
PD
1770 if (zfs_btree_numnodes(t) == 0)
1771 metaslab_size_tree_full_load(msp->ms_allocatable);
1772 rs = zfs_btree_last(t, NULL);
1773 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1774 size)
93cf2076 1775 return (-1ULL);
428870ff 1776
ca577779
PD
1777 *cursor = rs_get_start(rs, rt);
1778 *cursor_end = rs_get_end(rs, rt);
428870ff 1779 }
93cf2076
GW
1780
1781 offset = *cursor;
1782 *cursor += size;
1783
428870ff
BB
1784 return (offset);
1785}
1786
18168da7 1787const metaslab_ops_t zfs_metaslab_ops = {
f3a7f661 1788 metaslab_cf_alloc
428870ff 1789};
93cf2076 1790#endif /* WITH_CF_BLOCK_ALLOCATOR */
22c81dd8
BB
1791
1792#if defined(WITH_NDF_BLOCK_ALLOCATOR)
93cf2076
GW
1793/*
1794 * ==========================================================================
1795 * New dynamic fit allocator -
1796 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1797 * contiguous blocks. If no region is found then just use the largest segment
1798 * that remains.
1799 * ==========================================================================
1800 */
1801
1802/*
1803 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1804 * to request from the allocator.
1805 */
428870ff
BB
1806uint64_t metaslab_ndf_clump_shift = 4;
1807
1808static uint64_t
93cf2076 1809metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1810{
ca577779
PD
1811 zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1812 range_tree_t *rt = msp->ms_allocatable;
1813 zfs_btree_index_t where;
1814 range_seg_t *rs;
1815 range_seg_max_t rsearch;
9bd274dd 1816 uint64_t hbit = highbit64(size);
93cf2076 1817 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
c81f1790 1818 uint64_t max_size = metaslab_largest_allocatable(msp);
428870ff 1819
93cf2076 1820 ASSERT(MUTEX_HELD(&msp->ms_lock));
428870ff
BB
1821
1822 if (max_size < size)
1823 return (-1ULL);
1824
ca577779
PD
1825 rs_set_start(&rsearch, rt, *cursor);
1826 rs_set_end(&rsearch, rt, *cursor + size);
428870ff 1827
ca577779
PD
1828 rs = zfs_btree_find(t, &rsearch, &where);
1829 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
d2734cce 1830 t = &msp->ms_allocatable_by_size;
428870ff 1831
ca577779
PD
1832 rs_set_start(&rsearch, rt, 0);
1833 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1834 metaslab_ndf_clump_shift)));
1835
1836 rs = zfs_btree_find(t, &rsearch, &where);
93cf2076 1837 if (rs == NULL)
ca577779 1838 rs = zfs_btree_next(t, &where, &where);
93cf2076 1839 ASSERT(rs != NULL);
428870ff
BB
1840 }
1841
ca577779
PD
1842 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1843 *cursor = rs_get_start(rs, rt) + size;
1844 return (rs_get_start(rs, rt));
428870ff
BB
1845 }
1846 return (-1ULL);
1847}
1848
18168da7 1849const metaslab_ops_t zfs_metaslab_ops = {
f3a7f661 1850 metaslab_ndf_alloc
428870ff 1851};
22c81dd8 1852#endif /* WITH_NDF_BLOCK_ALLOCATOR */
9babb374 1853
93cf2076 1854
34dc7c2f
BB
1855/*
1856 * ==========================================================================
1857 * Metaslabs
1858 * ==========================================================================
1859 */
93cf2076 1860
93e28d66
SD
1861/*
1862 * Wait for any in-progress metaslab loads to complete.
1863 */
65c7cc49 1864static void
93e28d66
SD
1865metaslab_load_wait(metaslab_t *msp)
1866{
1867 ASSERT(MUTEX_HELD(&msp->ms_lock));
1868
1869 while (msp->ms_loading) {
1870 ASSERT(!msp->ms_loaded);
1871 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1872 }
1873}
1874
1875/*
1876 * Wait for any in-progress flushing to complete.
1877 */
65c7cc49 1878static void
93e28d66
SD
1879metaslab_flush_wait(metaslab_t *msp)
1880{
1881 ASSERT(MUTEX_HELD(&msp->ms_lock));
1882
1883 while (msp->ms_flushing)
1884 cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1885}
1886
f09fda50
PD
1887static unsigned int
1888metaslab_idx_func(multilist_t *ml, void *arg)
1889{
1890 metaslab_t *msp = arg;
5b7053a9
AM
1891
1892 /*
1893 * ms_id values are allocated sequentially, so full 64bit
1894 * division would be a waste of time, so limit it to 32 bits.
1895 */
1896 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
f09fda50
PD
1897}
1898
93e28d66
SD
1899uint64_t
1900metaslab_allocated_space(metaslab_t *msp)
1901{
1902 return (msp->ms_allocated_space);
1903}
1904
1905/*
1906 * Verify that the space accounting on disk matches the in-core range_trees.
1907 */
1908static void
1909metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1910{
1911 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1912 uint64_t allocating = 0;
1913 uint64_t sm_free_space, msp_free_space;
1914
1915 ASSERT(MUTEX_HELD(&msp->ms_lock));
1916 ASSERT(!msp->ms_condensing);
1917
1918 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1919 return;
1920
1921 /*
1922 * We can only verify the metaslab space when we're called
1923 * from syncing context with a loaded metaslab that has an
1924 * allocated space map. Calling this in non-syncing context
1925 * does not provide a consistent view of the metaslab since
1926 * we're performing allocations in the future.
1927 */
1928 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1929 !msp->ms_loaded)
1930 return;
1931
1932 /*
1933 * Even though the smp_alloc field can get negative,
1934 * when it comes to a metaslab's space map, that should
1935 * never be the case.
1936 */
1937 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1938
1939 ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1940 range_tree_space(msp->ms_unflushed_frees));
1941
1942 ASSERT3U(metaslab_allocated_space(msp), ==,
1943 space_map_allocated(msp->ms_sm) +
1944 range_tree_space(msp->ms_unflushed_allocs) -
1945 range_tree_space(msp->ms_unflushed_frees));
1946
1947 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1948
1949 /*
1950 * Account for future allocations since we would have
1951 * already deducted that space from the ms_allocatable.
1952 */
1953 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1954 allocating +=
1955 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1956 }
f09fda50
PD
1957 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1958 msp->ms_allocating_total);
93e28d66
SD
1959
1960 ASSERT3U(msp->ms_deferspace, ==,
1961 range_tree_space(msp->ms_defer[0]) +
1962 range_tree_space(msp->ms_defer[1]));
1963
1964 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1965 msp->ms_deferspace + range_tree_space(msp->ms_freed);
1966
1967 VERIFY3U(sm_free_space, ==, msp_free_space);
1968}
1969
928e8ad4
SD
1970static void
1971metaslab_aux_histograms_clear(metaslab_t *msp)
1972{
1973 /*
1974 * Auxiliary histograms are only cleared when resetting them,
1975 * which can only happen while the metaslab is loaded.
1976 */
1977 ASSERT(msp->ms_loaded);
1978
861166b0 1979 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
928e8ad4 1980 for (int t = 0; t < TXG_DEFER_SIZE; t++)
861166b0 1981 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
928e8ad4
SD
1982}
1983
1984static void
1985metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1986 range_tree_t *rt)
1987{
1988 /*
1989 * This is modeled after space_map_histogram_add(), so refer to that
1990 * function for implementation details. We want this to work like
1991 * the space map histogram, and not the range tree histogram, as we
1992 * are essentially constructing a delta that will be later subtracted
1993 * from the space map histogram.
1994 */
1995 int idx = 0;
1996 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1997 ASSERT3U(i, >=, idx + shift);
1998 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1999
2000 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
2001 ASSERT3U(idx + shift, ==, i);
2002 idx++;
2003 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
2004 }
2005 }
2006}
2007
2008/*
2009 * Called at every sync pass that the metaslab gets synced.
2010 *
2011 * The reason is that we want our auxiliary histograms to be updated
2012 * wherever the metaslab's space map histogram is updated. This way
2013 * we stay consistent on which parts of the metaslab space map's
2014 * histogram are currently not available for allocations (e.g because
2015 * they are in the defer, freed, and freeing trees).
2016 */
2017static void
2018metaslab_aux_histograms_update(metaslab_t *msp)
2019{
2020 space_map_t *sm = msp->ms_sm;
2021 ASSERT(sm != NULL);
2022
2023 /*
2024 * This is similar to the metaslab's space map histogram updates
2025 * that take place in metaslab_sync(). The only difference is that
2026 * we only care about segments that haven't made it into the
2027 * ms_allocatable tree yet.
2028 */
2029 if (msp->ms_loaded) {
2030 metaslab_aux_histograms_clear(msp);
2031
2032 metaslab_aux_histogram_add(msp->ms_synchist,
2033 sm->sm_shift, msp->ms_freed);
2034
2035 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2036 metaslab_aux_histogram_add(msp->ms_deferhist[t],
2037 sm->sm_shift, msp->ms_defer[t]);
2038 }
2039 }
2040
2041 metaslab_aux_histogram_add(msp->ms_synchist,
2042 sm->sm_shift, msp->ms_freeing);
2043}
2044
2045/*
2046 * Called every time we are done syncing (writing to) the metaslab,
2047 * i.e. at the end of each sync pass.
2048 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2049 */
2050static void
2051metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2052{
2053 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2054 space_map_t *sm = msp->ms_sm;
2055
2056 if (sm == NULL) {
2057 /*
2058 * We came here from metaslab_init() when creating/opening a
2059 * pool, looking at a metaslab that hasn't had any allocations
2060 * yet.
2061 */
2062 return;
2063 }
2064
2065 /*
2066 * This is similar to the actions that we take for the ms_freed
2067 * and ms_defer trees in metaslab_sync_done().
2068 */
2069 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2070 if (defer_allowed) {
861166b0 2071 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
928e8ad4
SD
2072 sizeof (msp->ms_synchist));
2073 } else {
861166b0 2074 memset(msp->ms_deferhist[hist_index], 0,
928e8ad4
SD
2075 sizeof (msp->ms_deferhist[hist_index]));
2076 }
861166b0 2077 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
928e8ad4
SD
2078}
2079
2080/*
2081 * Ensure that the metaslab's weight and fragmentation are consistent
2082 * with the contents of the histogram (either the range tree's histogram
2083 * or the space map's depending whether the metaslab is loaded).
2084 */
2085static void
2086metaslab_verify_weight_and_frag(metaslab_t *msp)
2087{
2088 ASSERT(MUTEX_HELD(&msp->ms_lock));
2089
2090 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2091 return;
2092
2fcf4481
SD
2093 /*
2094 * We can end up here from vdev_remove_complete(), in which case we
2095 * cannot do these assertions because we hold spa config locks and
2096 * thus we are not allowed to read from the DMU.
2097 *
2098 * We check if the metaslab group has been removed and if that's
2099 * the case we return immediately as that would mean that we are
2100 * here from the aforementioned code path.
2101 */
928e8ad4
SD
2102 if (msp->ms_group == NULL)
2103 return;
2104
2105 /*
2106 * Devices being removed always return a weight of 0 and leave
2107 * fragmentation and ms_max_size as is - there is nothing for
2108 * us to verify here.
2109 */
2110 vdev_t *vd = msp->ms_group->mg_vd;
2111 if (vd->vdev_removing)
2112 return;
2113
2114 /*
2115 * If the metaslab is dirty it probably means that we've done
2116 * some allocations or frees that have changed our histograms
2117 * and thus the weight.
2118 */
2119 for (int t = 0; t < TXG_SIZE; t++) {
2120 if (txg_list_member(&vd->vdev_ms_list, msp, t))
2121 return;
2122 }
2123
2124 /*
2125 * This verification checks that our in-memory state is consistent
2126 * with what's on disk. If the pool is read-only then there aren't
2127 * any changes and we just have the initially-loaded state.
2128 */
2129 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2130 return;
2131
2132 /* some extra verification for in-core tree if you can */
2133 if (msp->ms_loaded) {
2134 range_tree_stat_verify(msp->ms_allocatable);
2135 VERIFY(space_map_histogram_verify(msp->ms_sm,
2136 msp->ms_allocatable));
2137 }
2138
2139 uint64_t weight = msp->ms_weight;
2140 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2141 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2142 uint64_t frag = msp->ms_fragmentation;
2143 uint64_t max_segsize = msp->ms_max_size;
2144
2145 msp->ms_weight = 0;
2146 msp->ms_fragmentation = 0;
928e8ad4
SD
2147
2148 /*
65a91b16
SD
2149 * This function is used for verification purposes and thus should
2150 * not introduce any side-effects/mutations on the system's state.
2151 *
2152 * Regardless of whether metaslab_weight() thinks this metaslab
2153 * should be active or not, we want to ensure that the actual weight
2154 * (and therefore the value of ms_weight) would be the same if it
2155 * was to be recalculated at this point.
2156 *
2157 * In addition we set the nodirty flag so metaslab_weight() does
2158 * not dirty the metaslab for future TXGs (e.g. when trying to
2159 * force condensing to upgrade the metaslab spacemaps).
928e8ad4 2160 */
65a91b16 2161 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
928e8ad4
SD
2162
2163 VERIFY3U(max_segsize, ==, msp->ms_max_size);
2164
2165 /*
2166 * If the weight type changed then there is no point in doing
2167 * verification. Revert fields to their original values.
2168 */
2169 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2170 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2171 msp->ms_fragmentation = frag;
2172 msp->ms_weight = weight;
2173 return;
2174 }
2175
2176 VERIFY3U(msp->ms_fragmentation, ==, frag);
2177 VERIFY3U(msp->ms_weight, ==, weight);
2178}
2179
f09fda50
PD
2180/*
2181 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2182 * this class that was used longest ago, and attempt to unload it. We don't
2183 * want to spend too much time in this loop to prevent performance
e1cfd73f 2184 * degradation, and we expect that most of the time this operation will
f09fda50
PD
2185 * succeed. Between that and the normal unloading processing during txg sync,
2186 * we expect this to keep the metaslab memory usage under control.
2187 */
2188static void
2189metaslab_potentially_evict(metaslab_class_t *mc)
2190{
2191#ifdef _KERNEL
2192 uint64_t allmem = arc_all_memory();
65019062
MM
2193 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2194 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
fdc2d303 2195 uint_t tries = 0;
f09fda50 2196 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
ffdf019c 2197 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
f09fda50
PD
2198 tries++) {
2199 unsigned int idx = multilist_get_random_index(
ffdf019c 2200 &mc->mc_metaslab_txg_list);
f09fda50 2201 multilist_sublist_t *mls =
ffdf019c 2202 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
f09fda50
PD
2203 metaslab_t *msp = multilist_sublist_head(mls);
2204 multilist_sublist_unlock(mls);
2205 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2206 inuse * size) {
2207 VERIFY3P(mls, ==, multilist_sublist_lock(
ffdf019c 2208 &mc->mc_metaslab_txg_list, idx));
f09fda50 2209 ASSERT3U(idx, ==,
ffdf019c 2210 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
f09fda50
PD
2211
2212 if (!multilist_link_active(&msp->ms_class_txg_node)) {
2213 multilist_sublist_unlock(mls);
2214 break;
2215 }
2216 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2217 multilist_sublist_unlock(mls);
2218 /*
2219 * If the metaslab is currently loading there are two
2220 * cases. If it's the metaslab we're evicting, we
2221 * can't continue on or we'll panic when we attempt to
2222 * recursively lock the mutex. If it's another
2223 * metaslab that's loading, it can be safely skipped,
2224 * since we know it's very new and therefore not a
2225 * good eviction candidate. We check later once the
2226 * lock is held that the metaslab is fully loaded
2227 * before actually unloading it.
2228 */
2229 if (msp->ms_loading) {
2230 msp = next_msp;
65019062
MM
2231 inuse =
2232 spl_kmem_cache_inuse(zfs_btree_leaf_cache);
f09fda50
PD
2233 continue;
2234 }
2235 /*
2236 * We can't unload metaslabs with no spacemap because
2237 * they're not ready to be unloaded yet. We can't
2238 * unload metaslabs with outstanding allocations
2239 * because doing so could cause the metaslab's weight
2240 * to decrease while it's unloaded, which violates an
2241 * invariant that we use to prevent unnecessary
2242 * loading. We also don't unload metaslabs that are
2243 * currently active because they are high-weight
2244 * metaslabs that are likely to be used in the near
2245 * future.
2246 */
2247 mutex_enter(&msp->ms_lock);
2248 if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2249 msp->ms_allocating_total == 0) {
2250 metaslab_unload(msp);
2251 }
2252 mutex_exit(&msp->ms_lock);
2253 msp = next_msp;
65019062 2254 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
f09fda50
PD
2255 }
2256 }
14e4e3cb 2257#else
18168da7 2258 (void) mc, (void) zfs_metaslab_mem_limit;
f09fda50
PD
2259#endif
2260}
2261
b194fab0
SD
2262static int
2263metaslab_load_impl(metaslab_t *msp)
93cf2076
GW
2264{
2265 int error = 0;
93cf2076
GW
2266
2267 ASSERT(MUTEX_HELD(&msp->ms_lock));
b194fab0 2268 ASSERT(msp->ms_loading);
425d3237 2269 ASSERT(!msp->ms_condensing);
93cf2076 2270
a1d477c2 2271 /*
425d3237
SD
2272 * We temporarily drop the lock to unblock other operations while we
2273 * are reading the space map. Therefore, metaslab_sync() and
2274 * metaslab_sync_done() can run at the same time as we do.
2275 *
93e28d66
SD
2276 * If we are using the log space maps, metaslab_sync() can't write to
2277 * the metaslab's space map while we are loading as we only write to
2278 * it when we are flushing the metaslab, and that can't happen while
2279 * we are loading it.
2280 *
2281 * If we are not using log space maps though, metaslab_sync() can
2282 * append to the space map while we are loading. Therefore we load
2283 * only entries that existed when we started the load. Additionally,
2284 * metaslab_sync_done() has to wait for the load to complete because
2285 * there are potential races like metaslab_load() loading parts of the
2286 * space map that are currently being appended by metaslab_sync(). If
2287 * we didn't, the ms_allocatable would have entries that
2288 * metaslab_sync_done() would try to re-add later.
425d3237
SD
2289 *
2290 * That's why before dropping the lock we remember the synced length
2291 * of the metaslab and read up to that point of the space map,
2292 * ignoring entries appended by metaslab_sync() that happen after we
2293 * drop the lock.
a1d477c2 2294 */
425d3237 2295 uint64_t length = msp->ms_synced_length;
a1d477c2 2296 mutex_exit(&msp->ms_lock);
93cf2076 2297
93e28d66 2298 hrtime_t load_start = gethrtime();
ca577779
PD
2299 metaslab_rt_arg_t *mrap;
2300 if (msp->ms_allocatable->rt_arg == NULL) {
2301 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2302 } else {
2303 mrap = msp->ms_allocatable->rt_arg;
2304 msp->ms_allocatable->rt_ops = NULL;
2305 msp->ms_allocatable->rt_arg = NULL;
2306 }
2307 mrap->mra_bt = &msp->ms_allocatable_by_size;
2308 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2309
d2734cce 2310 if (msp->ms_sm != NULL) {
425d3237
SD
2311 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2312 SM_FREE, length);
ca577779
PD
2313
2314 /* Now, populate the size-sorted tree. */
2315 metaslab_rt_create(msp->ms_allocatable, mrap);
2316 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2317 msp->ms_allocatable->rt_arg = mrap;
2318
2319 struct mssa_arg arg = {0};
2320 arg.rt = msp->ms_allocatable;
2321 arg.mra = mrap;
2322 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2323 &arg);
d2734cce 2324 } else {
ca577779
PD
2325 /*
2326 * Add the size-sorted tree first, since we don't need to load
2327 * the metaslab from the spacemap.
2328 */
2329 metaslab_rt_create(msp->ms_allocatable, mrap);
2330 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2331 msp->ms_allocatable->rt_arg = mrap;
425d3237
SD
2332 /*
2333 * The space map has not been allocated yet, so treat
2334 * all the space in the metaslab as free and add it to the
2335 * ms_allocatable tree.
2336 */
d2734cce
SD
2337 range_tree_add(msp->ms_allocatable,
2338 msp->ms_start, msp->ms_size);
93e28d66 2339
793c958f 2340 if (msp->ms_new) {
93e28d66
SD
2341 /*
2342 * If the ms_sm doesn't exist, this means that this
2343 * metaslab hasn't gone through metaslab_sync() and
2344 * thus has never been dirtied. So we shouldn't
2345 * expect any unflushed allocs or frees from previous
2346 * TXGs.
93e28d66
SD
2347 */
2348 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2349 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2350 }
d2734cce 2351 }
93cf2076 2352
425d3237
SD
2353 /*
2354 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
93e28d66
SD
2355 * changing the ms_sm (or log_sm) and the metaslab's range trees
2356 * while we are about to use them and populate the ms_allocatable.
2357 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2358 * hold the ms_lock while writing the ms_checkpointing tree to disk.
425d3237
SD
2359 */
2360 mutex_enter(&msp->ms_sync_lock);
a1d477c2 2361 mutex_enter(&msp->ms_lock);
93e28d66 2362
425d3237 2363 ASSERT(!msp->ms_condensing);
93e28d66 2364 ASSERT(!msp->ms_flushing);
93cf2076 2365
8eef9976
SD
2366 if (error != 0) {
2367 mutex_exit(&msp->ms_sync_lock);
b194fab0 2368 return (error);
8eef9976 2369 }
4e21fd06 2370
b194fab0
SD
2371 ASSERT3P(msp->ms_group, !=, NULL);
2372 msp->ms_loaded = B_TRUE;
2373
2374 /*
93e28d66
SD
2375 * Apply all the unflushed changes to ms_allocatable right
2376 * away so any manipulations we do below have a clear view
2377 * of what is allocated and what is free.
2378 */
2379 range_tree_walk(msp->ms_unflushed_allocs,
2380 range_tree_remove, msp->ms_allocatable);
2381 range_tree_walk(msp->ms_unflushed_frees,
2382 range_tree_add, msp->ms_allocatable);
2383
93e28d66
SD
2384 ASSERT3P(msp->ms_group, !=, NULL);
2385 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2386 if (spa_syncing_log_sm(spa) != NULL) {
2387 ASSERT(spa_feature_is_enabled(spa,
2388 SPA_FEATURE_LOG_SPACEMAP));
2389
2390 /*
2391 * If we use a log space map we add all the segments
2392 * that are in ms_unflushed_frees so they are available
2393 * for allocation.
2394 *
2395 * ms_allocatable needs to contain all free segments
2396 * that are ready for allocations (thus not segments
2397 * from ms_freeing, ms_freed, and the ms_defer trees).
2398 * But if we grab the lock in this code path at a sync
2399 * pass later that 1, then it also contains the
2400 * segments of ms_freed (they were added to it earlier
2401 * in this path through ms_unflushed_frees). So we
2402 * need to remove all the segments that exist in
2403 * ms_freed from ms_allocatable as they will be added
2404 * later in metaslab_sync_done().
2405 *
2406 * When there's no log space map, the ms_allocatable
2407 * correctly doesn't contain any segments that exist
2408 * in ms_freed [see ms_synced_length].
2409 */
2410 range_tree_walk(msp->ms_freed,
2411 range_tree_remove, msp->ms_allocatable);
2412 }
2413
2414 /*
2415 * If we are not using the log space map, ms_allocatable
2416 * contains the segments that exist in the ms_defer trees
2417 * [see ms_synced_length]. Thus we need to remove them
2418 * from ms_allocatable as they will be added again in
425d3237 2419 * metaslab_sync_done().
93e28d66
SD
2420 *
2421 * If we are using the log space map, ms_allocatable still
2422 * contains the segments that exist in the ms_defer trees.
2423 * Not because it read them through the ms_sm though. But
2424 * because these segments are part of ms_unflushed_frees
2425 * whose segments we add to ms_allocatable earlier in this
2426 * code path.
b194fab0 2427 */
425d3237
SD
2428 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2429 range_tree_walk(msp->ms_defer[t],
2430 range_tree_remove, msp->ms_allocatable);
93cf2076 2431 }
425d3237 2432
928e8ad4
SD
2433 /*
2434 * Call metaslab_recalculate_weight_and_sort() now that the
2435 * metaslab is loaded so we get the metaslab's real weight.
2436 *
2437 * Unless this metaslab was created with older software and
2438 * has not yet been converted to use segment-based weight, we
2439 * expect the new weight to be better or equal to the weight
2440 * that the metaslab had while it was not loaded. This is
2441 * because the old weight does not take into account the
2442 * consolidation of adjacent segments between TXGs. [see
2443 * comment for ms_synchist and ms_deferhist[] for more info]
2444 */
2445 uint64_t weight = msp->ms_weight;
c81f1790 2446 uint64_t max_size = msp->ms_max_size;
928e8ad4
SD
2447 metaslab_recalculate_weight_and_sort(msp);
2448 if (!WEIGHT_IS_SPACEBASED(weight))
2449 ASSERT3U(weight, <=, msp->ms_weight);
c81f1790
PD
2450 msp->ms_max_size = metaslab_largest_allocatable(msp);
2451 ASSERT3U(max_size, <=, msp->ms_max_size);
93e28d66 2452 hrtime_t load_end = gethrtime();
d64c6a2e
MA
2453 msp->ms_load_time = load_end;
2454 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2455 "ms_id %llu, smp_length %llu, "
2456 "unflushed_allocs %llu, unflushed_frees %llu, "
2457 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2458 "loading_time %lld ms, ms_max_size %llu, "
2459 "max size error %lld, "
2460 "old_weight %llx, new_weight %llx",
8e739b2c
RE
2461 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2462 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2463 (u_longlong_t)msp->ms_id,
2464 (u_longlong_t)space_map_length(msp->ms_sm),
2465 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2466 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2467 (u_longlong_t)range_tree_space(msp->ms_freed),
2468 (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2469 (u_longlong_t)range_tree_space(msp->ms_defer[1]),
d64c6a2e
MA
2470 (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2471 (longlong_t)((load_end - load_start) / 1000000),
8e739b2c
RE
2472 (u_longlong_t)msp->ms_max_size,
2473 (u_longlong_t)msp->ms_max_size - max_size,
2474 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
93e28d66 2475
425d3237
SD
2476 metaslab_verify_space(msp, spa_syncing_txg(spa));
2477 mutex_exit(&msp->ms_sync_lock);
b194fab0
SD
2478 return (0);
2479}
2480
2481int
2482metaslab_load(metaslab_t *msp)
2483{
2484 ASSERT(MUTEX_HELD(&msp->ms_lock));
2485
2486 /*
2487 * There may be another thread loading the same metaslab, if that's
2488 * the case just wait until the other thread is done and return.
2489 */
2490 metaslab_load_wait(msp);
2491 if (msp->ms_loaded)
2492 return (0);
2493 VERIFY(!msp->ms_loading);
425d3237 2494 ASSERT(!msp->ms_condensing);
b194fab0 2495
93e28d66
SD
2496 /*
2497 * We set the loading flag BEFORE potentially dropping the lock to
2498 * wait for an ongoing flush (see ms_flushing below). This way other
2499 * threads know that there is already a thread that is loading this
2500 * metaslab.
2501 */
b194fab0 2502 msp->ms_loading = B_TRUE;
93e28d66
SD
2503
2504 /*
2505 * Wait for any in-progress flushing to finish as we drop the ms_lock
2506 * both here (during space_map_load()) and in metaslab_flush() (when
2507 * we flush our changes to the ms_sm).
2508 */
2509 if (msp->ms_flushing)
2510 metaslab_flush_wait(msp);
2511
2512 /*
2513 * In the possibility that we were waiting for the metaslab to be
2514 * flushed (where we temporarily dropped the ms_lock), ensure that
2515 * no one else loaded the metaslab somehow.
2516 */
2517 ASSERT(!msp->ms_loaded);
2518
f09fda50
PD
2519 /*
2520 * If we're loading a metaslab in the normal class, consider evicting
2521 * another one to keep our memory usage under the limit defined by the
2522 * zfs_metaslab_mem_limit tunable.
2523 */
2524 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2525 msp->ms_group->mg_class) {
2526 metaslab_potentially_evict(msp->ms_group->mg_class);
2527 }
2528
b194fab0 2529 int error = metaslab_load_impl(msp);
93e28d66
SD
2530
2531 ASSERT(MUTEX_HELD(&msp->ms_lock));
b194fab0 2532 msp->ms_loading = B_FALSE;
93cf2076 2533 cv_broadcast(&msp->ms_load_cv);
b194fab0 2534
93cf2076
GW
2535 return (error);
2536}
2537
2538void
2539metaslab_unload(metaslab_t *msp)
2540{
2541 ASSERT(MUTEX_HELD(&msp->ms_lock));
928e8ad4 2542
f09fda50
PD
2543 /*
2544 * This can happen if a metaslab is selected for eviction (in
2545 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2546 * metaslab_class_evict_old).
2547 */
2548 if (!msp->ms_loaded)
2549 return;
928e8ad4 2550
d2734cce 2551 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
93cf2076 2552 msp->ms_loaded = B_FALSE;
c81f1790 2553 msp->ms_unload_time = gethrtime();
928e8ad4 2554
679b0f2a 2555 msp->ms_activation_weight = 0;
93cf2076 2556 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
928e8ad4 2557
f09fda50
PD
2558 if (msp->ms_group != NULL) {
2559 metaslab_class_t *mc = msp->ms_group->mg_class;
2560 multilist_sublist_t *mls =
ffdf019c 2561 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
f09fda50
PD
2562 if (multilist_link_active(&msp->ms_class_txg_node))
2563 multilist_sublist_remove(mls, msp);
2564 multilist_sublist_unlock(mls);
d64c6a2e
MA
2565
2566 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2567 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2568 "ms_id %llu, weight %llx, "
2569 "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2570 "loaded %llu ms ago, max_size %llu",
8e739b2c
RE
2571 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2572 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2573 (u_longlong_t)msp->ms_id,
2574 (u_longlong_t)msp->ms_weight,
2575 (u_longlong_t)msp->ms_selected_txg,
2576 (u_longlong_t)(msp->ms_unload_time -
2577 msp->ms_selected_time) / 1000 / 1000,
2578 (u_longlong_t)msp->ms_alloc_txg,
2579 (u_longlong_t)(msp->ms_unload_time -
2580 msp->ms_load_time) / 1000 / 1000,
2581 (u_longlong_t)msp->ms_max_size);
f09fda50
PD
2582 }
2583
928e8ad4
SD
2584 /*
2585 * We explicitly recalculate the metaslab's weight based on its space
2586 * map (as it is now not loaded). We want unload metaslabs to always
2587 * have their weights calculated from the space map histograms, while
2588 * loaded ones have it calculated from their in-core range tree
2589 * [see metaslab_load()]. This way, the weight reflects the information
93e28d66 2590 * available in-core, whether it is loaded or not.
928e8ad4
SD
2591 *
2592 * If ms_group == NULL means that we came here from metaslab_fini(),
2593 * at which point it doesn't make sense for us to do the recalculation
2594 * and the sorting.
2595 */
2596 if (msp->ms_group != NULL)
2597 metaslab_recalculate_weight_and_sort(msp);
93cf2076
GW
2598}
2599
ca577779
PD
2600/*
2601 * We want to optimize the memory use of the per-metaslab range
2602 * trees. To do this, we store the segments in the range trees in
2603 * units of sectors, zero-indexing from the start of the metaslab. If
2604 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2605 * the ranges using two uint32_ts, rather than two uint64_ts.
2606 */
6774931d 2607range_seg_type_t
ca577779
PD
2608metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2609 uint64_t *start, uint64_t *shift)
2610{
2611 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2612 !zfs_metaslab_force_large_segs) {
2613 *shift = vdev->vdev_ashift;
2614 *start = msp->ms_start;
2615 return (RANGE_SEG32);
2616 } else {
2617 *shift = 0;
2618 *start = 0;
2619 return (RANGE_SEG64);
2620 }
2621}
2622
f09fda50
PD
2623void
2624metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2625{
2626 ASSERT(MUTEX_HELD(&msp->ms_lock));
2627 metaslab_class_t *mc = msp->ms_group->mg_class;
2628 multilist_sublist_t *mls =
ffdf019c 2629 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
f09fda50
PD
2630 if (multilist_link_active(&msp->ms_class_txg_node))
2631 multilist_sublist_remove(mls, msp);
2632 msp->ms_selected_txg = txg;
eef0f4d8 2633 msp->ms_selected_time = gethrtime();
f09fda50
PD
2634 multilist_sublist_insert_tail(mls, msp);
2635 multilist_sublist_unlock(mls);
2636}
2637
93e28d66 2638void
cc99f275
DB
2639metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2640 int64_t defer_delta, int64_t space_delta)
2641{
2642 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2643
2644 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2645 ASSERT(vd->vdev_ms_count != 0);
2646
2647 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2648 vdev_deflated_space(vd, space_delta));
2649}
2650
fb42a493 2651int
93e28d66
SD
2652metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2653 uint64_t txg, metaslab_t **msp)
34dc7c2f
BB
2654{
2655 vdev_t *vd = mg->mg_vd;
cc99f275
DB
2656 spa_t *spa = vd->vdev_spa;
2657 objset_t *mos = spa->spa_meta_objset;
fb42a493
PS
2658 metaslab_t *ms;
2659 int error;
34dc7c2f 2660
79c76d5b 2661 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
fb42a493 2662 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
a1d477c2 2663 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
fb42a493 2664 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
93e28d66 2665 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
f09fda50 2666 multilist_link_init(&ms->ms_class_txg_node);
619f0976 2667
fb42a493
PS
2668 ms->ms_id = id;
2669 ms->ms_start = id << vd->vdev_ms_shift;
2670 ms->ms_size = 1ULL << vd->vdev_ms_shift;
492f64e9
PD
2671 ms->ms_allocator = -1;
2672 ms->ms_new = B_TRUE;
34dc7c2f 2673
b2255edc
BB
2674 vdev_ops_t *ops = vd->vdev_ops;
2675 if (ops->vdev_op_metaslab_init != NULL)
2676 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2677
93cf2076
GW
2678 /*
2679 * We only open space map objects that already exist. All others
e39fe05b
FU
2680 * will be opened when we finally allocate an object for it. For
2681 * readonly pools there is no need to open the space map object.
425d3237
SD
2682 *
2683 * Note:
2684 * When called from vdev_expand(), we can't call into the DMU as
2685 * we are holding the spa_config_lock as a writer and we would
2686 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2687 * that case, the object parameter is zero though, so we won't
2688 * call into the DMU.
93cf2076 2689 */
e39fe05b
FU
2690 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2691 !spa->spa_read_spacemaps)) {
fb42a493 2692 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
a1d477c2 2693 ms->ms_size, vd->vdev_ashift);
fb42a493
PS
2694
2695 if (error != 0) {
2696 kmem_free(ms, sizeof (metaslab_t));
2697 return (error);
2698 }
2699
2700 ASSERT(ms->ms_sm != NULL);
425d3237 2701 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
93cf2076 2702 }
34dc7c2f 2703
ca577779 2704 uint64_t shift, start;
793c958f
SD
2705 range_seg_type_t type =
2706 metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
ca577779 2707
ca577779 2708 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
793c958f
SD
2709 for (int t = 0; t < TXG_SIZE; t++) {
2710 ms->ms_allocating[t] = range_tree_create(NULL, type,
2711 NULL, start, shift);
2712 }
2713 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2714 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2715 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2716 ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2717 start, shift);
2718 }
2719 ms->ms_checkpointing =
2720 range_tree_create(NULL, type, NULL, start, shift);
2721 ms->ms_unflushed_allocs =
2722 range_tree_create(NULL, type, NULL, start, shift);
2723
2724 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2725 mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2726 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2727 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2728 type, mrap, start, shift);
34dc7c2f 2729
ca577779 2730 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
1b939560
BB
2731
2732 metaslab_group_add(mg, ms);
65a91b16 2733 metaslab_set_fragmentation(ms, B_FALSE);
428870ff 2734
34dc7c2f
BB
2735 /*
2736 * If we're opening an existing pool (txg == 0) or creating
2737 * a new one (txg == TXG_INITIAL), all space is available now.
2738 * If we're adding space to an existing pool, the new space
2739 * does not become available until after this txg has synced.
4e21fd06
DB
2740 * The metaslab's weight will also be initialized when we sync
2741 * out this txg. This ensures that we don't attempt to allocate
2742 * from it before we have initialized it completely.
34dc7c2f 2743 */
425d3237 2744 if (txg <= TXG_INITIAL) {
fb42a493 2745 metaslab_sync_done(ms, 0);
425d3237
SD
2746 metaslab_space_update(vd, mg->mg_class,
2747 metaslab_allocated_space(ms), 0, 0);
2748 }
34dc7c2f
BB
2749
2750 if (txg != 0) {
34dc7c2f 2751 vdev_dirty(vd, 0, NULL, txg);
fb42a493 2752 vdev_dirty(vd, VDD_METASLAB, ms, txg);
34dc7c2f
BB
2753 }
2754
fb42a493
PS
2755 *msp = ms;
2756
2757 return (0);
34dc7c2f
BB
2758}
2759
93e28d66
SD
2760static void
2761metaslab_fini_flush_data(metaslab_t *msp)
2762{
2763 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2764
2765 if (metaslab_unflushed_txg(msp) == 0) {
2766 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2767 ==, NULL);
2768 return;
2769 }
2770 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2771
2772 mutex_enter(&spa->spa_flushed_ms_lock);
2773 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2774 mutex_exit(&spa->spa_flushed_ms_lock);
2775
2776 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
600a02b8
AM
2777 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2778 metaslab_unflushed_dirty(msp));
93e28d66
SD
2779}
2780
2781uint64_t
2782metaslab_unflushed_changes_memused(metaslab_t *ms)
2783{
2784 return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2785 range_tree_numsegs(ms->ms_unflushed_frees)) *
ca577779 2786 ms->ms_unflushed_allocs->rt_root.bt_elem_size);
93e28d66
SD
2787}
2788
34dc7c2f
BB
2789void
2790metaslab_fini(metaslab_t *msp)
2791{
93cf2076 2792 metaslab_group_t *mg = msp->ms_group;
cc99f275 2793 vdev_t *vd = mg->mg_vd;
93e28d66
SD
2794 spa_t *spa = vd->vdev_spa;
2795
2796 metaslab_fini_flush_data(msp);
34dc7c2f
BB
2797
2798 metaslab_group_remove(mg, msp);
2799
2800 mutex_enter(&msp->ms_lock);
93cf2076 2801 VERIFY(msp->ms_group == NULL);
793c958f 2802
aa755b35 2803 /*
793c958f 2804 * If this metaslab hasn't been through metaslab_sync_done() yet its
aa755b35
MA
2805 * space hasn't been accounted for in its vdev and doesn't need to be
2806 * subtracted.
2807 */
793c958f 2808 if (!msp->ms_new) {
aa755b35
MA
2809 metaslab_space_update(vd, mg->mg_class,
2810 -metaslab_allocated_space(msp), 0, -msp->ms_size);
cc99f275 2811
aa755b35 2812 }
93cf2076 2813 space_map_close(msp->ms_sm);
93e28d66 2814 msp->ms_sm = NULL;
93cf2076
GW
2815
2816 metaslab_unload(msp);
aa755b35 2817
d2734cce 2818 range_tree_destroy(msp->ms_allocatable);
793c958f
SD
2819 range_tree_destroy(msp->ms_freeing);
2820 range_tree_destroy(msp->ms_freed);
34dc7c2f 2821
793c958f
SD
2822 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2823 metaslab_unflushed_changes_memused(msp));
2824 spa->spa_unflushed_stats.sus_memused -=
2825 metaslab_unflushed_changes_memused(msp);
2826 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2827 range_tree_destroy(msp->ms_unflushed_allocs);
2828 range_tree_destroy(msp->ms_checkpointing);
2829 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2830 range_tree_destroy(msp->ms_unflushed_frees);
93e28d66 2831
793c958f
SD
2832 for (int t = 0; t < TXG_SIZE; t++) {
2833 range_tree_destroy(msp->ms_allocating[t]);
2834 }
2835 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2836 range_tree_destroy(msp->ms_defer[t]);
e51be066 2837 }
c99c9001 2838 ASSERT0(msp->ms_deferspace);
428870ff 2839
928e8ad4
SD
2840 for (int t = 0; t < TXG_SIZE; t++)
2841 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2842
1b939560
BB
2843 range_tree_vacate(msp->ms_trim, NULL, NULL);
2844 range_tree_destroy(msp->ms_trim);
2845
34dc7c2f 2846 mutex_exit(&msp->ms_lock);
93cf2076 2847 cv_destroy(&msp->ms_load_cv);
93e28d66 2848 cv_destroy(&msp->ms_flush_cv);
34dc7c2f 2849 mutex_destroy(&msp->ms_lock);
a1d477c2 2850 mutex_destroy(&msp->ms_sync_lock);
492f64e9 2851 ASSERT3U(msp->ms_allocator, ==, -1);
34dc7c2f
BB
2852
2853 kmem_free(msp, sizeof (metaslab_t));
2854}
2855
f3a7f661
GW
2856#define FRAGMENTATION_TABLE_SIZE 17
2857
93cf2076 2858/*
f3a7f661
GW
2859 * This table defines a segment size based fragmentation metric that will
2860 * allow each metaslab to derive its own fragmentation value. This is done
2861 * by calculating the space in each bucket of the spacemap histogram and
928e8ad4 2862 * multiplying that by the fragmentation metric in this table. Doing
f3a7f661
GW
2863 * this for all buckets and dividing it by the total amount of free
2864 * space in this metaslab (i.e. the total free space in all buckets) gives
2865 * us the fragmentation metric. This means that a high fragmentation metric
2866 * equates to most of the free space being comprised of small segments.
2867 * Conversely, if the metric is low, then most of the free space is in
2868 * large segments. A 10% change in fragmentation equates to approximately
2869 * double the number of segments.
93cf2076 2870 *
f3a7f661
GW
2871 * This table defines 0% fragmented space using 16MB segments. Testing has
2872 * shown that segments that are greater than or equal to 16MB do not suffer
2873 * from drastic performance problems. Using this value, we derive the rest
2874 * of the table. Since the fragmentation value is never stored on disk, it
2875 * is possible to change these calculations in the future.
2876 */
18168da7 2877static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
f3a7f661
GW
2878 100, /* 512B */
2879 100, /* 1K */
2880 98, /* 2K */
2881 95, /* 4K */
2882 90, /* 8K */
2883 80, /* 16K */
2884 70, /* 32K */
2885 60, /* 64K */
2886 50, /* 128K */
2887 40, /* 256K */
2888 30, /* 512K */
2889 20, /* 1M */
2890 15, /* 2M */
2891 10, /* 4M */
2892 5, /* 8M */
2893 0 /* 16M */
2894};
2895
2896/*
425d3237
SD
2897 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2898 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2899 * been upgraded and does not support this metric. Otherwise, the return
2900 * value should be in the range [0, 100].
93cf2076 2901 */
4e21fd06 2902static void
65a91b16 2903metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
93cf2076 2904{
f3a7f661
GW
2905 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2906 uint64_t fragmentation = 0;
2907 uint64_t total = 0;
2908 boolean_t feature_enabled = spa_feature_is_enabled(spa,
2909 SPA_FEATURE_SPACEMAP_HISTOGRAM);
93cf2076 2910
4e21fd06
DB
2911 if (!feature_enabled) {
2912 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2913 return;
2914 }
f3a7f661 2915
93cf2076 2916 /*
f3a7f661
GW
2917 * A null space map means that the entire metaslab is free
2918 * and thus is not fragmented.
93cf2076 2919 */
4e21fd06
DB
2920 if (msp->ms_sm == NULL) {
2921 msp->ms_fragmentation = 0;
2922 return;
2923 }
f3a7f661
GW
2924
2925 /*
4e21fd06 2926 * If this metaslab's space map has not been upgraded, flag it
f3a7f661
GW
2927 * so that we upgrade next time we encounter it.
2928 */
2929 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
3b7f360c 2930 uint64_t txg = spa_syncing_txg(spa);
93cf2076
GW
2931 vdev_t *vd = msp->ms_group->mg_vd;
2932
3b7f360c
GW
2933 /*
2934 * If we've reached the final dirty txg, then we must
2935 * be shutting down the pool. We don't want to dirty
2936 * any data past this point so skip setting the condense
2937 * flag. We can retry this action the next time the pool
65a91b16
SD
2938 * is imported. We also skip marking this metaslab for
2939 * condensing if the caller has explicitly set nodirty.
3b7f360c 2940 */
65a91b16
SD
2941 if (!nodirty &&
2942 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
8b0a0840
TC
2943 msp->ms_condense_wanted = B_TRUE;
2944 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
964c2d69 2945 zfs_dbgmsg("txg %llu, requesting force condense: "
8e739b2c
RE
2946 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2947 (u_longlong_t)msp->ms_id,
2948 (u_longlong_t)vd->vdev_id);
8b0a0840 2949 }
4e21fd06
DB
2950 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2951 return;
93cf2076
GW
2952 }
2953
1c27024e 2954 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
2955 uint64_t space = 0;
2956 uint8_t shift = msp->ms_sm->sm_shift;
4e21fd06 2957
f3a7f661
GW
2958 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2959 FRAGMENTATION_TABLE_SIZE - 1);
93cf2076 2960
93cf2076
GW
2961 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2962 continue;
2963
f3a7f661
GW
2964 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2965 total += space;
2966
2967 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2968 fragmentation += space * zfs_frag_table[idx];
93cf2076 2969 }
f3a7f661
GW
2970
2971 if (total > 0)
2972 fragmentation /= total;
2973 ASSERT3U(fragmentation, <=, 100);
4e21fd06
DB
2974
2975 msp->ms_fragmentation = fragmentation;
93cf2076 2976}
34dc7c2f 2977
f3a7f661
GW
2978/*
2979 * Compute a weight -- a selection preference value -- for the given metaslab.
2980 * This is based on the amount of free space, the level of fragmentation,
2981 * the LBA range, and whether the metaslab is loaded.
2982 */
34dc7c2f 2983static uint64_t
4e21fd06 2984metaslab_space_weight(metaslab_t *msp)
34dc7c2f
BB
2985{
2986 metaslab_group_t *mg = msp->ms_group;
34dc7c2f
BB
2987 vdev_t *vd = mg->mg_vd;
2988 uint64_t weight, space;
2989
2990 ASSERT(MUTEX_HELD(&msp->ms_lock));
c2e42f9d 2991
34dc7c2f
BB
2992 /*
2993 * The baseline weight is the metaslab's free space.
2994 */
425d3237 2995 space = msp->ms_size - metaslab_allocated_space(msp);
f3a7f661 2996
f3a7f661
GW
2997 if (metaslab_fragmentation_factor_enabled &&
2998 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2999 /*
3000 * Use the fragmentation information to inversely scale
3001 * down the baseline weight. We need to ensure that we
3002 * don't exclude this metaslab completely when it's 100%
3003 * fragmented. To avoid this we reduce the fragmented value
3004 * by 1.
3005 */
3006 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3007
3008 /*
3009 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3010 * this metaslab again. The fragmentation metric may have
3011 * decreased the space to something smaller than
3012 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3013 * so that we can consume any remaining space.
3014 */
3015 if (space > 0 && space < SPA_MINBLOCKSIZE)
3016 space = SPA_MINBLOCKSIZE;
3017 }
34dc7c2f
BB
3018 weight = space;
3019
3020 /*
3021 * Modern disks have uniform bit density and constant angular velocity.
3022 * Therefore, the outer recording zones are faster (higher bandwidth)
3023 * than the inner zones by the ratio of outer to inner track diameter,
3024 * which is typically around 2:1. We account for this by assigning
3025 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3026 * In effect, this means that we'll select the metaslab with the most
3027 * free bandwidth rather than simply the one with the most free space.
3028 */
fb40095f 3029 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
f3a7f661
GW
3030 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3031 ASSERT(weight >= space && weight <= 2 * space);
3032 }
428870ff 3033
f3a7f661
GW
3034 /*
3035 * If this metaslab is one we're actively using, adjust its
3036 * weight to make it preferable to any inactive metaslab so
3037 * we'll polish it off. If the fragmentation on this metaslab
3038 * has exceed our threshold, then don't mark it active.
3039 */
3040 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3041 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
428870ff
BB
3042 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3043 }
34dc7c2f 3044
4e21fd06
DB
3045 WEIGHT_SET_SPACEBASED(weight);
3046 return (weight);
3047}
3048
3049/*
3050 * Return the weight of the specified metaslab, according to the segment-based
3051 * weighting algorithm. The metaslab must be loaded. This function can
3052 * be called within a sync pass since it relies only on the metaslab's
3053 * range tree which is always accurate when the metaslab is loaded.
3054 */
3055static uint64_t
3056metaslab_weight_from_range_tree(metaslab_t *msp)
3057{
3058 uint64_t weight = 0;
3059 uint32_t segments = 0;
4e21fd06
DB
3060
3061 ASSERT(msp->ms_loaded);
3062
1c27024e
DB
3063 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3064 i--) {
4e21fd06
DB
3065 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3066 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3067
3068 segments <<= 1;
d2734cce 3069 segments += msp->ms_allocatable->rt_histogram[i];
4e21fd06
DB
3070
3071 /*
3072 * The range tree provides more precision than the space map
3073 * and must be downgraded so that all values fit within the
3074 * space map's histogram. This allows us to compare loaded
3075 * vs. unloaded metaslabs to determine which metaslab is
3076 * considered "best".
3077 */
3078 if (i > max_idx)
3079 continue;
3080
3081 if (segments != 0) {
3082 WEIGHT_SET_COUNT(weight, segments);
3083 WEIGHT_SET_INDEX(weight, i);
3084 WEIGHT_SET_ACTIVE(weight, 0);
3085 break;
3086 }
3087 }
3088 return (weight);
3089}
3090
3091/*
93e28d66
SD
3092 * Calculate the weight based on the on-disk histogram. Should be applied
3093 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3094 * give results consistent with the on-disk state
4e21fd06
DB
3095 */
3096static uint64_t
3097metaslab_weight_from_spacemap(metaslab_t *msp)
3098{
928e8ad4
SD
3099 space_map_t *sm = msp->ms_sm;
3100 ASSERT(!msp->ms_loaded);
3101 ASSERT(sm != NULL);
3102 ASSERT3U(space_map_object(sm), !=, 0);
3103 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
4e21fd06 3104
928e8ad4
SD
3105 /*
3106 * Create a joint histogram from all the segments that have made
3107 * it to the metaslab's space map histogram, that are not yet
3108 * available for allocation because they are still in the freeing
3109 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3110 * these segments from the space map's histogram to get a more
3111 * accurate weight.
3112 */
3113 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3114 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3115 deferspace_histogram[i] += msp->ms_synchist[i];
3116 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3117 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3118 deferspace_histogram[i] += msp->ms_deferhist[t][i];
3119 }
3120 }
3121
3122 uint64_t weight = 0;
1c27024e 3123 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
928e8ad4
SD
3124 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3125 deferspace_histogram[i]);
3126 uint64_t count =
3127 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3128 if (count != 0) {
3129 WEIGHT_SET_COUNT(weight, count);
3130 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
4e21fd06
DB
3131 WEIGHT_SET_ACTIVE(weight, 0);
3132 break;
3133 }
3134 }
3135 return (weight);
3136}
3137
3138/*
3139 * Compute a segment-based weight for the specified metaslab. The weight
3140 * is determined by highest bucket in the histogram. The information
3141 * for the highest bucket is encoded into the weight value.
3142 */
3143static uint64_t
3144metaslab_segment_weight(metaslab_t *msp)
3145{
3146 metaslab_group_t *mg = msp->ms_group;
3147 uint64_t weight = 0;
3148 uint8_t shift = mg->mg_vd->vdev_ashift;
3149
3150 ASSERT(MUTEX_HELD(&msp->ms_lock));
3151
3152 /*
3153 * The metaslab is completely free.
3154 */
425d3237 3155 if (metaslab_allocated_space(msp) == 0) {
4e21fd06
DB
3156 int idx = highbit64(msp->ms_size) - 1;
3157 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3158
3159 if (idx < max_idx) {
3160 WEIGHT_SET_COUNT(weight, 1ULL);
3161 WEIGHT_SET_INDEX(weight, idx);
3162 } else {
3163 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3164 WEIGHT_SET_INDEX(weight, max_idx);
3165 }
3166 WEIGHT_SET_ACTIVE(weight, 0);
3167 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
4e21fd06
DB
3168 return (weight);
3169 }
3170
3171 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3172
3173 /*
3174 * If the metaslab is fully allocated then just make the weight 0.
3175 */
425d3237 3176 if (metaslab_allocated_space(msp) == msp->ms_size)
4e21fd06
DB
3177 return (0);
3178 /*
3179 * If the metaslab is already loaded, then use the range tree to
3180 * determine the weight. Otherwise, we rely on the space map information
3181 * to generate the weight.
3182 */
3183 if (msp->ms_loaded) {
3184 weight = metaslab_weight_from_range_tree(msp);
3185 } else {
3186 weight = metaslab_weight_from_spacemap(msp);
3187 }
3188
3189 /*
3190 * If the metaslab was active the last time we calculated its weight
3191 * then keep it active. We want to consume the entire region that
3192 * is associated with this weight.
3193 */
3194 if (msp->ms_activation_weight != 0 && weight != 0)
3195 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3196 return (weight);
3197}
3198
3199/*
3200 * Determine if we should attempt to allocate from this metaslab. If the
7f319089
SD
3201 * metaslab is loaded, then we can determine if the desired allocation
3202 * can be satisfied by looking at the size of the maximum free segment
3203 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3204 * weight. For segment-based weighting we can determine the maximum
3205 * allocation based on the index encoded in its value. For space-based
3206 * weights we rely on the entire weight (excluding the weight-type bit).
4e21fd06 3207 */
65c7cc49 3208static boolean_t
c81f1790 3209metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
4e21fd06 3210{
c81f1790
PD
3211 /*
3212 * If the metaslab is loaded, ms_max_size is definitive and we can use
3213 * the fast check. If it's not, the ms_max_size is a lower bound (once
3214 * set), and we should use the fast check as long as we're not in
3215 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3216 * seconds since the metaslab was unloaded.
3217 */
3218 if (msp->ms_loaded ||
3219 (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3220 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
4e21fd06
DB
3221 return (msp->ms_max_size >= asize);
3222
679b0f2a 3223 boolean_t should_allocate;
4e21fd06
DB
3224 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3225 /*
3226 * The metaslab segment weight indicates segments in the
3227 * range [2^i, 2^(i+1)), where i is the index in the weight.
3228 * Since the asize might be in the middle of the range, we
3229 * should attempt the allocation if asize < 2^(i+1).
3230 */
3231 should_allocate = (asize <
3232 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3233 } else {
3234 should_allocate = (asize <=
3235 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3236 }
679b0f2a 3237
4e21fd06
DB
3238 return (should_allocate);
3239}
65a91b16 3240
4e21fd06 3241static uint64_t
65a91b16 3242metaslab_weight(metaslab_t *msp, boolean_t nodirty)
4e21fd06
DB
3243{
3244 vdev_t *vd = msp->ms_group->mg_vd;
3245 spa_t *spa = vd->vdev_spa;
3246 uint64_t weight;
3247
3248 ASSERT(MUTEX_HELD(&msp->ms_lock));
3249
65a91b16 3250 metaslab_set_fragmentation(msp, nodirty);
4e21fd06
DB
3251
3252 /*
c81f1790 3253 * Update the maximum size. If the metaslab is loaded, this will
4e21fd06 3254 * ensure that we get an accurate maximum size if newly freed space
c81f1790
PD
3255 * has been added back into the free tree. If the metaslab is
3256 * unloaded, we check if there's a larger free segment in the
3257 * unflushed frees. This is a lower bound on the largest allocatable
3258 * segment size. Coalescing of adjacent entries may reveal larger
3259 * allocatable segments, but we aren't aware of those until loading
3260 * the space map into a range tree.
4e21fd06 3261 */
c81f1790
PD
3262 if (msp->ms_loaded) {
3263 msp->ms_max_size = metaslab_largest_allocatable(msp);
3264 } else {
3265 msp->ms_max_size = MAX(msp->ms_max_size,
3266 metaslab_largest_unflushed_free(msp));
3267 }
4e21fd06
DB
3268
3269 /*
3270 * Segment-based weighting requires space map histogram support.
3271 */
3272 if (zfs_metaslab_segment_weight_enabled &&
3273 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3274 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3275 sizeof (space_map_phys_t))) {
3276 weight = metaslab_segment_weight(msp);
3277 } else {
3278 weight = metaslab_space_weight(msp);
3279 }
93cf2076 3280 return (weight);
34dc7c2f
BB
3281}
3282
928e8ad4
SD
3283void
3284metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3285{
679b0f2a
PD
3286 ASSERT(MUTEX_HELD(&msp->ms_lock));
3287
928e8ad4
SD
3288 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3289 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3290 metaslab_group_sort(msp->ms_group, msp,
65a91b16 3291 metaslab_weight(msp, B_FALSE) | was_active);
928e8ad4
SD
3292}
3293
34dc7c2f 3294static int
492f64e9
PD
3295metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3296 int allocator, uint64_t activation_weight)
3297{
32d805c3 3298 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
679b0f2a
PD
3299 ASSERT(MUTEX_HELD(&msp->ms_lock));
3300
492f64e9
PD
3301 /*
3302 * If we're activating for the claim code, we don't want to actually
3303 * set the metaslab up for a specific allocator.
3304 */
f09fda50
PD
3305 if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3306 ASSERT0(msp->ms_activation_weight);
3307 msp->ms_activation_weight = msp->ms_weight;
3308 metaslab_group_sort(mg, msp, msp->ms_weight |
3309 activation_weight);
492f64e9 3310 return (0);
f09fda50 3311 }
679b0f2a 3312
32d805c3
MA
3313 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3314 &mga->mga_primary : &mga->mga_secondary);
492f64e9 3315
492f64e9 3316 mutex_enter(&mg->mg_lock);
32d805c3 3317 if (*mspp != NULL) {
492f64e9
PD
3318 mutex_exit(&mg->mg_lock);
3319 return (EEXIST);
3320 }
3321
32d805c3 3322 *mspp = msp;
492f64e9
PD
3323 ASSERT3S(msp->ms_allocator, ==, -1);
3324 msp->ms_allocator = allocator;
3325 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
f09fda50
PD
3326
3327 ASSERT0(msp->ms_activation_weight);
3328 msp->ms_activation_weight = msp->ms_weight;
3329 metaslab_group_sort_impl(mg, msp,
3330 msp->ms_weight | activation_weight);
492f64e9
PD
3331 mutex_exit(&mg->mg_lock);
3332
3333 return (0);
3334}
3335
3336static int
3337metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
34dc7c2f 3338{
34dc7c2f
BB
3339 ASSERT(MUTEX_HELD(&msp->ms_lock));
3340
679b0f2a
PD
3341 /*
3342 * The current metaslab is already activated for us so there
3343 * is nothing to do. Already activated though, doesn't mean
3344 * that this metaslab is activated for our allocator nor our
3345 * requested activation weight. The metaslab could have started
3346 * as an active one for our allocator but changed allocators
3347 * while we were waiting to grab its ms_lock or we stole it
3348 * [see find_valid_metaslab()]. This means that there is a
3349 * possibility of passivating a metaslab of another allocator
3350 * or from a different activation mask, from this thread.
3351 */
3352 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3353 ASSERT(msp->ms_loaded);
3354 return (0);
3355 }
3356
3357 int error = metaslab_load(msp);
3358 if (error != 0) {
3359 metaslab_group_sort(msp->ms_group, msp, 0);
3360 return (error);
3361 }
3362
3363 /*
3364 * When entering metaslab_load() we may have dropped the
3365 * ms_lock because we were loading this metaslab, or we
3366 * were waiting for another thread to load it for us. In
3367 * that scenario, we recheck the weight of the metaslab
3368 * to see if it was activated by another thread.
3369 *
3370 * If the metaslab was activated for another allocator or
3371 * it was activated with a different activation weight (e.g.
3372 * we wanted to make it a primary but it was activated as
3373 * secondary) we return error (EBUSY).
3374 *
3375 * If the metaslab was activated for the same allocator
3376 * and requested activation mask, skip activating it.
3377 */
3378 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3379 if (msp->ms_allocator != allocator)
3380 return (EBUSY);
3381
3382 if ((msp->ms_weight & activation_weight) == 0)
7ab96299 3383 return (SET_ERROR(EBUSY));
9babb374 3384
679b0f2a
PD
3385 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3386 msp->ms_primary);
3387 return (0);
34dc7c2f 3388 }
679b0f2a 3389
fe0ea848
PD
3390 /*
3391 * If the metaslab has literally 0 space, it will have weight 0. In
3392 * that case, don't bother activating it. This can happen if the
3393 * metaslab had space during find_valid_metaslab, but another thread
3394 * loaded it and used all that space while we were waiting to grab the
3395 * lock.
3396 */
3397 if (msp->ms_weight == 0) {
3398 ASSERT0(range_tree_space(msp->ms_allocatable));
3399 return (SET_ERROR(ENOSPC));
3400 }
3401
679b0f2a
PD
3402 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3403 allocator, activation_weight)) != 0) {
3404 return (error);
3405 }
3406
93cf2076 3407 ASSERT(msp->ms_loaded);
34dc7c2f
BB
3408 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3409
3410 return (0);
3411}
3412
492f64e9
PD
3413static void
3414metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3415 uint64_t weight)
3416{
3417 ASSERT(MUTEX_HELD(&msp->ms_lock));
679b0f2a
PD
3418 ASSERT(msp->ms_loaded);
3419
492f64e9
PD
3420 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3421 metaslab_group_sort(mg, msp, weight);
3422 return;
3423 }
3424
3425 mutex_enter(&mg->mg_lock);
3426 ASSERT3P(msp->ms_group, ==, mg);
679b0f2a
PD
3427 ASSERT3S(0, <=, msp->ms_allocator);
3428 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3429
32d805c3 3430 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
492f64e9 3431 if (msp->ms_primary) {
32d805c3 3432 ASSERT3P(mga->mga_primary, ==, msp);
492f64e9 3433 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
32d805c3 3434 mga->mga_primary = NULL;
492f64e9 3435 } else {
32d805c3 3436 ASSERT3P(mga->mga_secondary, ==, msp);
679b0f2a 3437 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
32d805c3 3438 mga->mga_secondary = NULL;
492f64e9
PD
3439 }
3440 msp->ms_allocator = -1;
3441 metaslab_group_sort_impl(mg, msp, weight);
3442 mutex_exit(&mg->mg_lock);
3443}
3444
34dc7c2f 3445static void
4e21fd06 3446metaslab_passivate(metaslab_t *msp, uint64_t weight)
34dc7c2f 3447{
2a8ba608 3448 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
4e21fd06 3449
34dc7c2f
BB
3450 /*
3451 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3452 * this metaslab again. In that case, it had better be empty,
3453 * or we would be leaving space on the table.
3454 */
94d49e8f
TC
3455 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3456 size >= SPA_MINBLOCKSIZE ||
d2734cce 3457 range_tree_space(msp->ms_allocatable) == 0);
4e21fd06
DB
3458 ASSERT0(weight & METASLAB_ACTIVE_MASK);
3459
679b0f2a 3460 ASSERT(msp->ms_activation_weight != 0);
4e21fd06 3461 msp->ms_activation_weight = 0;
492f64e9 3462 metaslab_passivate_allocator(msp->ms_group, msp, weight);
679b0f2a 3463 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
34dc7c2f
BB
3464}
3465
4e21fd06
DB
3466/*
3467 * Segment-based metaslabs are activated once and remain active until
3468 * we either fail an allocation attempt (similar to space-based metaslabs)
3469 * or have exhausted the free space in zfs_metaslab_switch_threshold
3470 * buckets since the metaslab was activated. This function checks to see
e1cfd73f 3471 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
4e21fd06
DB
3472 * metaslab and passivates it proactively. This will allow us to select a
3473 * metaslab with a larger contiguous region, if any, remaining within this
3474 * metaslab group. If we're in sync pass > 1, then we continue using this
3475 * metaslab so that we don't dirty more block and cause more sync passes.
3476 */
65c7cc49 3477static void
4e21fd06
DB
3478metaslab_segment_may_passivate(metaslab_t *msp)
3479{
3480 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
4e21fd06
DB
3481
3482 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3483 return;
3484
3485 /*
3486 * Since we are in the middle of a sync pass, the most accurate
3487 * information that is accessible to us is the in-core range tree
3488 * histogram; calculate the new weight based on that information.
3489 */
1c27024e
DB
3490 uint64_t weight = metaslab_weight_from_range_tree(msp);
3491 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3492 int current_idx = WEIGHT_GET_INDEX(weight);
4e21fd06
DB
3493
3494 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3495 metaslab_passivate(msp, weight);
3496}
3497
93cf2076
GW
3498static void
3499metaslab_preload(void *arg)
3500{
3501 metaslab_t *msp = arg;
f09fda50
PD
3502 metaslab_class_t *mc = msp->ms_group->mg_class;
3503 spa_t *spa = mc->mc_spa;
1cd77734 3504 fstrans_cookie_t cookie = spl_fstrans_mark();
93cf2076 3505
080b3100
GW
3506 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3507
93cf2076 3508 mutex_enter(&msp->ms_lock);
b194fab0 3509 (void) metaslab_load(msp);
f09fda50 3510 metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
93cf2076 3511 mutex_exit(&msp->ms_lock);
1cd77734 3512 spl_fstrans_unmark(cookie);
93cf2076
GW
3513}
3514
3515static void
3516metaslab_group_preload(metaslab_group_t *mg)
3517{
3518 spa_t *spa = mg->mg_vd->vdev_spa;
3519 metaslab_t *msp;
3520 avl_tree_t *t = &mg->mg_metaslab_tree;
3521 int m = 0;
3522
3523 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
c5528b9b 3524 taskq_wait_outstanding(mg->mg_taskq, 0);
93cf2076
GW
3525 return;
3526 }
93cf2076 3527
080b3100 3528 mutex_enter(&mg->mg_lock);
a1d477c2 3529
93cf2076 3530 /*
080b3100 3531 * Load the next potential metaslabs
93cf2076 3532 */
4e21fd06 3533 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
a1d477c2
MA
3534 ASSERT3P(msp->ms_group, ==, mg);
3535
f3a7f661
GW
3536 /*
3537 * We preload only the maximum number of metaslabs specified
3538 * by metaslab_preload_limit. If a metaslab is being forced
3539 * to condense then we preload it too. This will ensure
3540 * that force condensing happens in the next txg.
3541 */
3542 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
f3a7f661
GW
3543 continue;
3544 }
93cf2076
GW
3545
3546 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
48d3eb40 3547 msp, TQ_SLEEP) != TASKQID_INVALID);
93cf2076
GW
3548 }
3549 mutex_exit(&mg->mg_lock);
3550}
3551
e51be066 3552/*
93e28d66
SD
3553 * Determine if the space map's on-disk footprint is past our tolerance for
3554 * inefficiency. We would like to use the following criteria to make our
3555 * decision:
e51be066 3556 *
93e28d66
SD
3557 * 1. Do not condense if the size of the space map object would dramatically
3558 * increase as a result of writing out the free space range tree.
e51be066 3559 *
93e28d66
SD
3560 * 2. Condense if the on on-disk space map representation is at least
3561 * zfs_condense_pct/100 times the size of the optimal representation
3562 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
e51be066 3563 *
93e28d66
SD
3564 * 3. Do not condense if the on-disk size of the space map does not actually
3565 * decrease.
b02fe35d 3566 *
b02fe35d
AR
3567 * Unfortunately, we cannot compute the on-disk size of the space map in this
3568 * context because we cannot accurately compute the effects of compression, etc.
3569 * Instead, we apply the heuristic described in the block comment for
3570 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3571 * is greater than a threshold number of blocks.
e51be066
GW
3572 */
3573static boolean_t
3574metaslab_should_condense(metaslab_t *msp)
3575{
93cf2076 3576 space_map_t *sm = msp->ms_sm;
d2734cce 3577 vdev_t *vd = msp->ms_group->mg_vd;
e506a0ce 3578 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
e51be066
GW
3579
3580 ASSERT(MUTEX_HELD(&msp->ms_lock));
93cf2076 3581 ASSERT(msp->ms_loaded);
93e28d66
SD
3582 ASSERT(sm != NULL);
3583 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
d2734cce
SD
3584
3585 /*
4d044c4c
SD
3586 * We always condense metaslabs that are empty and metaslabs for
3587 * which a condense request has been made.
e51be066 3588 */
ca577779 3589 if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
4d044c4c 3590 msp->ms_condense_wanted)
e51be066
GW
3591 return (B_TRUE);
3592
93e28d66
SD
3593 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3594 uint64_t object_size = space_map_length(sm);
4d044c4c
SD
3595 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3596 msp->ms_allocatable, SM_NO_VDEVID);
b02fe35d 3597
4d044c4c 3598 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
b02fe35d 3599 object_size > zfs_metaslab_condense_block_threshold * record_size);
e51be066
GW
3600}
3601
3602/*
3603 * Condense the on-disk space map representation to its minimized form.
93e28d66
SD
3604 * The minimized form consists of a small number of allocations followed
3605 * by the entries of the free range tree (ms_allocatable). The condensed
3606 * spacemap contains all the entries of previous TXGs (including those in
3607 * the pool-wide log spacemaps; thus this is effectively a superset of
3608 * metaslab_flush()), but this TXG's entries still need to be written.
e51be066
GW
3609 */
3610static void
93e28d66 3611metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
e51be066 3612{
93cf2076
GW
3613 range_tree_t *condense_tree;
3614 space_map_t *sm = msp->ms_sm;
93e28d66
SD
3615 uint64_t txg = dmu_tx_get_txg(tx);
3616 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
e51be066
GW
3617
3618 ASSERT(MUTEX_HELD(&msp->ms_lock));
93cf2076 3619 ASSERT(msp->ms_loaded);
93e28d66 3620 ASSERT(msp->ms_sm != NULL);
e51be066 3621
93e28d66
SD
3622 /*
3623 * In order to condense the space map, we need to change it so it
3624 * only describes which segments are currently allocated and free.
3625 *
3626 * All the current free space resides in the ms_allocatable, all
3627 * the ms_defer trees, and all the ms_allocating trees. We ignore
3628 * ms_freed because it is empty because we're in sync pass 1. We
3629 * ignore ms_freeing because these changes are not yet reflected
3630 * in the spacemap (they will be written later this txg).
3631 *
3632 * So to truncate the space map to represent all the entries of
3633 * previous TXGs we do the following:
3634 *
ca577779
PD
3635 * 1] We create a range tree (condense tree) that is 100% empty.
3636 * 2] We add to it all segments found in the ms_defer trees
93e28d66
SD
3637 * as those segments are marked as free in the original space
3638 * map. We do the same with the ms_allocating trees for the same
ca577779 3639 * reason. Adding these segments should be a relatively
93e28d66
SD
3640 * inexpensive operation since we expect these trees to have a
3641 * small number of nodes.
ca577779
PD
3642 * 3] We vacate any unflushed allocs, since they are not frees we
3643 * need to add to the condense tree. Then we vacate any
3644 * unflushed frees as they should already be part of ms_allocatable.
3645 * 4] At this point, we would ideally like to add all segments
93e28d66
SD
3646 * in the ms_allocatable tree from the condense tree. This way
3647 * we would write all the entries of the condense tree as the
dd4bc569 3648 * condensed space map, which would only contain freed
ca577779 3649 * segments with everything else assumed to be allocated.
93e28d66
SD
3650 *
3651 * Doing so can be prohibitively expensive as ms_allocatable can
ca577779
PD
3652 * be large, and therefore computationally expensive to add to
3653 * the condense_tree. Instead we first sync out an entry marking
3654 * everything as allocated, then the condense_tree and then the
3655 * ms_allocatable, in the condensed space map. While this is not
3656 * optimal, it is typically close to optimal and more importantly
3657 * much cheaper to compute.
93e28d66
SD
3658 *
3659 * 5] Finally, as both of the unflushed trees were written to our
3660 * new and condensed metaslab space map, we basically flushed
3661 * all the unflushed changes to disk, thus we call
3662 * metaslab_flush_update().
3663 */
3664 ASSERT3U(spa_sync_pass(spa), ==, 1);
3665 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
f3a7f661 3666
a887d653 3667 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
8e739b2c
RE
3668 "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3669 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3670 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3671 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3672 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
f3a7f661
GW
3673 msp->ms_condense_wanted ? "TRUE" : "FALSE");
3674
3675 msp->ms_condense_wanted = B_FALSE;
e51be066 3676
ca577779
PD
3677 range_seg_type_t type;
3678 uint64_t shift, start;
3679 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3680 &start, &shift);
3681
3682 condense_tree = range_tree_create(NULL, type, NULL, start, shift);
e51be066 3683
1c27024e 3684 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
d2734cce 3685 range_tree_walk(msp->ms_defer[t],
ca577779 3686 range_tree_add, condense_tree);
93cf2076 3687 }
e51be066 3688
93e28d66 3689 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
d2734cce 3690 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
ca577779 3691 range_tree_add, condense_tree);
93cf2076 3692 }
e51be066 3693
93e28d66
SD
3694 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3695 metaslab_unflushed_changes_memused(msp));
3696 spa->spa_unflushed_stats.sus_memused -=
3697 metaslab_unflushed_changes_memused(msp);
3698 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3699 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3700
e51be066 3701 /*
93e28d66
SD
3702 * We're about to drop the metaslab's lock thus allowing other
3703 * consumers to change it's content. Set the metaslab's ms_condensing
3704 * flag to ensure that allocations on this metaslab do not occur
3705 * while we're in the middle of committing it to disk. This is only
3706 * critical for ms_allocatable as all other range trees use per TXG
e51be066
GW
3707 * views of their content.
3708 */
93cf2076 3709 msp->ms_condensing = B_TRUE;
e51be066
GW
3710
3711 mutex_exit(&msp->ms_lock);
93e28d66
SD
3712 uint64_t object = space_map_object(msp->ms_sm);
3713 space_map_truncate(sm,
3714 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3715 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3716
3717 /*
3718 * space_map_truncate() may have reallocated the spacemap object.
3719 * If so, update the vdev_ms_array.
3720 */
3721 if (space_map_object(msp->ms_sm) != object) {
3722 object = space_map_object(msp->ms_sm);
3723 dmu_write(spa->spa_meta_objset,
3724 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3725 msp->ms_id, sizeof (uint64_t), &object, tx);
3726 }
e51be066
GW
3727
3728 /*
93e28d66
SD
3729 * Note:
3730 * When the log space map feature is enabled, each space map will
3731 * always have ALLOCS followed by FREES for each sync pass. This is
3732 * typically true even when the log space map feature is disabled,
3733 * except from the case where a metaslab goes through metaslab_sync()
3734 * and gets condensed. In that case the metaslab's space map will have
3735 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3736 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3737 * sync pass 1.
e51be066 3738 */
ca577779
PD
3739 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3740 shift);
3741 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3742 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
93e28d66 3743 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
ca577779 3744 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
93e28d66 3745
93cf2076
GW
3746 range_tree_vacate(condense_tree, NULL, NULL);
3747 range_tree_destroy(condense_tree);
ca577779
PD
3748 range_tree_vacate(tmp_tree, NULL, NULL);
3749 range_tree_destroy(tmp_tree);
a1d477c2 3750 mutex_enter(&msp->ms_lock);
93e28d66 3751
93cf2076 3752 msp->ms_condensing = B_FALSE;
93e28d66
SD
3753 metaslab_flush_update(msp, tx);
3754}
3755
93e28d66 3756static void
600a02b8 3757metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
93e28d66 3758{
600a02b8
AM
3759 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3760 ASSERT(spa_syncing_log_sm(spa) != NULL);
3761 ASSERT(msp->ms_sm != NULL);
93e28d66
SD
3762 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3763 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3764
600a02b8
AM
3765 mutex_enter(&spa->spa_flushed_ms_lock);
3766 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3767 metaslab_set_unflushed_dirty(msp, B_TRUE);
3768 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3769 mutex_exit(&spa->spa_flushed_ms_lock);
93e28d66 3770
600a02b8
AM
3771 spa_log_sm_increment_current_mscount(spa);
3772 spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3773}
93e28d66 3774
600a02b8
AM
3775void
3776metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3777{
3778 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
93e28d66
SD
3779 ASSERT(spa_syncing_log_sm(spa) != NULL);
3780 ASSERT(msp->ms_sm != NULL);
3781 ASSERT(metaslab_unflushed_txg(msp) != 0);
3782 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
600a02b8
AM
3783 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3784 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
93e28d66
SD
3785
3786 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3787
3788 /* update metaslab's position in our flushing tree */
3789 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
600a02b8 3790 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
93e28d66
SD
3791 mutex_enter(&spa->spa_flushed_ms_lock);
3792 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3793 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
600a02b8 3794 metaslab_set_unflushed_dirty(msp, dirty);
93e28d66
SD
3795 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3796 mutex_exit(&spa->spa_flushed_ms_lock);
3797
3798 /* update metaslab counts of spa_log_sm_t nodes */
3799 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3800 spa_log_sm_increment_current_mscount(spa);
3801
600a02b8
AM
3802 /* update log space map summary */
3803 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3804 ms_prev_flushed_dirty);
3805 spa_log_summary_add_flushed_metaslab(spa, dirty);
3806
93e28d66 3807 /* cleanup obsolete logs if any */
93e28d66 3808 spa_cleanup_old_sm_logs(spa, tx);
600a02b8 3809}
93e28d66 3810
600a02b8
AM
3811/*
3812 * Called when the metaslab has been flushed (its own spacemap now reflects
3813 * all the contents of the pool-wide spacemap log). Updates the metaslab's
3814 * metadata and any pool-wide related log space map data (e.g. summary,
3815 * obsolete logs, etc..) to reflect that.
3816 */
3817static void
3818metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3819{
3820 metaslab_group_t *mg = msp->ms_group;
3821 spa_t *spa = mg->mg_vd->vdev_spa;
3822
3823 ASSERT(MUTEX_HELD(&msp->ms_lock));
3824
3825 ASSERT3U(spa_sync_pass(spa), ==, 1);
3826
3827 /*
3828 * Just because a metaslab got flushed, that doesn't mean that
3829 * it will pass through metaslab_sync_done(). Thus, make sure to
3830 * update ms_synced_length here in case it doesn't.
3831 */
3832 msp->ms_synced_length = space_map_length(msp->ms_sm);
3833
3834 /*
3835 * We may end up here from metaslab_condense() without the
3836 * feature being active. In that case this is a no-op.
3837 */
3838 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3839 metaslab_unflushed_txg(msp) == 0)
3840 return;
3841
3842 metaslab_unflushed_bump(msp, tx, B_FALSE);
93e28d66
SD
3843}
3844
3845boolean_t
3846metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3847{
3848 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3849
3850 ASSERT(MUTEX_HELD(&msp->ms_lock));
3851 ASSERT3U(spa_sync_pass(spa), ==, 1);
3852 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3853
3854 ASSERT(msp->ms_sm != NULL);
3855 ASSERT(metaslab_unflushed_txg(msp) != 0);
3856 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3857
3858 /*
3859 * There is nothing wrong with flushing the same metaslab twice, as
3860 * this codepath should work on that case. However, the current
3861 * flushing scheme makes sure to avoid this situation as we would be
3862 * making all these calls without having anything meaningful to write
3863 * to disk. We assert this behavior here.
3864 */
3865 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3866
3867 /*
3868 * We can not flush while loading, because then we would
3869 * not load the ms_unflushed_{allocs,frees}.
3870 */
3871 if (msp->ms_loading)
3872 return (B_FALSE);
3873
3874 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3875 metaslab_verify_weight_and_frag(msp);
3876
3877 /*
3878 * Metaslab condensing is effectively flushing. Therefore if the
3879 * metaslab can be condensed we can just condense it instead of
3880 * flushing it.
3881 *
3882 * Note that metaslab_condense() does call metaslab_flush_update()
3883 * so we can just return immediately after condensing. We also
3884 * don't need to care about setting ms_flushing or broadcasting
3885 * ms_flush_cv, even if we temporarily drop the ms_lock in
3886 * metaslab_condense(), as the metaslab is already loaded.
3887 */
3888 if (msp->ms_loaded && metaslab_should_condense(msp)) {
3889 metaslab_group_t *mg = msp->ms_group;
3890
3891 /*
3892 * For all histogram operations below refer to the
3893 * comments of metaslab_sync() where we follow a
3894 * similar procedure.
3895 */
3896 metaslab_group_histogram_verify(mg);
3897 metaslab_class_histogram_verify(mg->mg_class);
3898 metaslab_group_histogram_remove(mg, msp);
3899
3900 metaslab_condense(msp, tx);
3901
3902 space_map_histogram_clear(msp->ms_sm);
3903 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3904 ASSERT(range_tree_is_empty(msp->ms_freed));
3905 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3906 space_map_histogram_add(msp->ms_sm,
3907 msp->ms_defer[t], tx);
3908 }
3909 metaslab_aux_histograms_update(msp);
3910
3911 metaslab_group_histogram_add(mg, msp);
3912 metaslab_group_histogram_verify(mg);
3913 metaslab_class_histogram_verify(mg->mg_class);
3914
3915 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3916
3917 /*
3918 * Since we recreated the histogram (and potentially
3919 * the ms_sm too while condensing) ensure that the
3920 * weight is updated too because we are not guaranteed
3921 * that this metaslab is dirty and will go through
3922 * metaslab_sync_done().
3923 */
3924 metaslab_recalculate_weight_and_sort(msp);
3925 return (B_TRUE);
3926 }
3927
3928 msp->ms_flushing = B_TRUE;
3929 uint64_t sm_len_before = space_map_length(msp->ms_sm);
3930
3931 mutex_exit(&msp->ms_lock);
3932 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3933 SM_NO_VDEVID, tx);
3934 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3935 SM_NO_VDEVID, tx);
3936 mutex_enter(&msp->ms_lock);
3937
3938 uint64_t sm_len_after = space_map_length(msp->ms_sm);
3939 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3940 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3941 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
8e739b2c
RE
3942 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3943 spa_name(spa),
3944 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3945 (u_longlong_t)msp->ms_id,
3946 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3947 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3948 (u_longlong_t)(sm_len_after - sm_len_before));
93e28d66
SD
3949 }
3950
3951 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3952 metaslab_unflushed_changes_memused(msp));
3953 spa->spa_unflushed_stats.sus_memused -=
3954 metaslab_unflushed_changes_memused(msp);
3955 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3956 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3957
3958 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3959 metaslab_verify_weight_and_frag(msp);
3960
3961 metaslab_flush_update(msp, tx);
3962
3963 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3964 metaslab_verify_weight_and_frag(msp);
3965
3966 msp->ms_flushing = B_FALSE;
3967 cv_broadcast(&msp->ms_flush_cv);
3968 return (B_TRUE);
e51be066
GW
3969}
3970
34dc7c2f
BB
3971/*
3972 * Write a metaslab to disk in the context of the specified transaction group.
3973 */
3974void
3975metaslab_sync(metaslab_t *msp, uint64_t txg)
3976{
93cf2076
GW
3977 metaslab_group_t *mg = msp->ms_group;
3978 vdev_t *vd = mg->mg_vd;
34dc7c2f 3979 spa_t *spa = vd->vdev_spa;
428870ff 3980 objset_t *mos = spa_meta_objset(spa);
d2734cce 3981 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
34dc7c2f 3982 dmu_tx_t *tx;
34dc7c2f 3983
428870ff
BB
3984 ASSERT(!vd->vdev_ishole);
3985
e51be066
GW
3986 /*
3987 * This metaslab has just been added so there's no work to do now.
3988 */
793c958f
SD
3989 if (msp->ms_new) {
3990 ASSERT0(range_tree_space(alloctree));
3991 ASSERT0(range_tree_space(msp->ms_freeing));
3992 ASSERT0(range_tree_space(msp->ms_freed));
3993 ASSERT0(range_tree_space(msp->ms_checkpointing));
3994 ASSERT0(range_tree_space(msp->ms_trim));
e51be066
GW
3995 return;
3996 }
3997
f3a7f661 3998 /*
d2734cce
SD
3999 * Normally, we don't want to process a metaslab if there are no
4000 * allocations or frees to perform. However, if the metaslab is being
475aa97c
PD
4001 * forced to condense, it's loaded and we're not beyond the final
4002 * dirty txg, we need to let it through. Not condensing beyond the
4003 * final dirty txg prevents an issue where metaslabs that need to be
4004 * condensed but were loaded for other reasons could cause a panic
4005 * here. By only checking the txg in that branch of the conditional,
4006 * we preserve the utility of the VERIFY statements in all other
4007 * cases.
f3a7f661 4008 */
d2734cce
SD
4009 if (range_tree_is_empty(alloctree) &&
4010 range_tree_is_empty(msp->ms_freeing) &&
4011 range_tree_is_empty(msp->ms_checkpointing) &&
475aa97c
PD
4012 !(msp->ms_loaded && msp->ms_condense_wanted &&
4013 txg <= spa_final_dirty_txg(spa)))
428870ff 4014 return;
34dc7c2f 4015
3b7f360c 4016
ca577779 4017 VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
3b7f360c 4018
34dc7c2f 4019 /*
425d3237
SD
4020 * The only state that can actually be changing concurrently
4021 * with metaslab_sync() is the metaslab's ms_allocatable. No
4022 * other thread can be modifying this txg's alloc, freeing,
d2734cce 4023 * freed, or space_map_phys_t. We drop ms_lock whenever we
425d3237
SD
4024 * could call into the DMU, because the DMU can call down to
4025 * us (e.g. via zio_free()) at any time.
a1d477c2
MA
4026 *
4027 * The spa_vdev_remove_thread() can be reading metaslab state
425d3237
SD
4028 * concurrently, and it is locked out by the ms_sync_lock.
4029 * Note that the ms_lock is insufficient for this, because it
4030 * is dropped by space_map_write().
34dc7c2f 4031 */
428870ff 4032 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
34dc7c2f 4033
93e28d66
SD
4034 /*
4035 * Generate a log space map if one doesn't exist already.
4036 */
4037 spa_generate_syncing_log_sm(spa, tx);
93cf2076 4038
93e28d66
SD
4039 if (msp->ms_sm == NULL) {
4040 uint64_t new_object = space_map_alloc(mos,
4041 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4042 zfs_metaslab_sm_blksz_with_log :
4043 zfs_metaslab_sm_blksz_no_log, tx);
93cf2076
GW
4044 VERIFY3U(new_object, !=, 0);
4045
93e28d66
SD
4046 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4047 msp->ms_id, sizeof (uint64_t), &new_object, tx);
4048
93cf2076 4049 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
a1d477c2 4050 msp->ms_start, msp->ms_size, vd->vdev_ashift));
93cf2076 4051 ASSERT(msp->ms_sm != NULL);
93e28d66
SD
4052
4053 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4054 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
425d3237 4055 ASSERT0(metaslab_allocated_space(msp));
34dc7c2f
BB
4056 }
4057
d2734cce
SD
4058 if (!range_tree_is_empty(msp->ms_checkpointing) &&
4059 vd->vdev_checkpoint_sm == NULL) {
4060 ASSERT(spa_has_checkpoint(spa));
4061
4062 uint64_t new_object = space_map_alloc(mos,
93e28d66 4063 zfs_vdev_standard_sm_blksz, tx);
d2734cce
SD
4064 VERIFY3U(new_object, !=, 0);
4065
4066 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4067 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4068 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4069
4070 /*
4071 * We save the space map object as an entry in vdev_top_zap
4072 * so it can be retrieved when the pool is reopened after an
4073 * export or through zdb.
4074 */
4075 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4076 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4077 sizeof (new_object), 1, &new_object, tx));
4078 }
4079
a1d477c2 4080 mutex_enter(&msp->ms_sync_lock);
428870ff
BB
4081 mutex_enter(&msp->ms_lock);
4082
96358617 4083 /*
4e21fd06
DB
4084 * Note: metaslab_condense() clears the space map's histogram.
4085 * Therefore we must verify and remove this histogram before
96358617
MA
4086 * condensing.
4087 */
4088 metaslab_group_histogram_verify(mg);
4089 metaslab_class_histogram_verify(mg->mg_class);
4090 metaslab_group_histogram_remove(mg, msp);
4091
93e28d66
SD
4092 if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4093 metaslab_should_condense(msp))
4094 metaslab_condense(msp, tx);
4095
4096 /*
4097 * We'll be going to disk to sync our space accounting, thus we
4098 * drop the ms_lock during that time so allocations coming from
4099 * open-context (ZIL) for future TXGs do not block.
4100 */
4101 mutex_exit(&msp->ms_lock);
4102 space_map_t *log_sm = spa_syncing_log_sm(spa);
4103 if (log_sm != NULL) {
4104 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
600a02b8
AM
4105 if (metaslab_unflushed_txg(msp) == 0)
4106 metaslab_unflushed_add(msp, tx);
4107 else if (!metaslab_unflushed_dirty(msp))
4108 metaslab_unflushed_bump(msp, tx, B_TRUE);
93e28d66
SD
4109
4110 space_map_write(log_sm, alloctree, SM_ALLOC,
4111 vd->vdev_id, tx);
4112 space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4113 vd->vdev_id, tx);
4114 mutex_enter(&msp->ms_lock);
4115
4116 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4117 metaslab_unflushed_changes_memused(msp));
4118 spa->spa_unflushed_stats.sus_memused -=
4119 metaslab_unflushed_changes_memused(msp);
4120 range_tree_remove_xor_add(alloctree,
4121 msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4122 range_tree_remove_xor_add(msp->ms_freeing,
4123 msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4124 spa->spa_unflushed_stats.sus_memused +=
4125 metaslab_unflushed_changes_memused(msp);
e51be066 4126 } else {
93e28d66
SD
4127 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4128
4d044c4c
SD
4129 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4130 SM_NO_VDEVID, tx);
4131 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4132 SM_NO_VDEVID, tx);
a1d477c2 4133 mutex_enter(&msp->ms_lock);
e51be066 4134 }
428870ff 4135
425d3237
SD
4136 msp->ms_allocated_space += range_tree_space(alloctree);
4137 ASSERT3U(msp->ms_allocated_space, >=,
4138 range_tree_space(msp->ms_freeing));
4139 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4140
d2734cce
SD
4141 if (!range_tree_is_empty(msp->ms_checkpointing)) {
4142 ASSERT(spa_has_checkpoint(spa));
4143 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4144
4145 /*
4146 * Since we are doing writes to disk and the ms_checkpointing
4147 * tree won't be changing during that time, we drop the
93e28d66
SD
4148 * ms_lock while writing to the checkpoint space map, for the
4149 * same reason mentioned above.
d2734cce
SD
4150 */
4151 mutex_exit(&msp->ms_lock);
4152 space_map_write(vd->vdev_checkpoint_sm,
4d044c4c 4153 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
d2734cce 4154 mutex_enter(&msp->ms_lock);
d2734cce
SD
4155
4156 spa->spa_checkpoint_info.sci_dspace +=
4157 range_tree_space(msp->ms_checkpointing);
4158 vd->vdev_stat.vs_checkpoint_space +=
4159 range_tree_space(msp->ms_checkpointing);
4160 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
425d3237 4161 -space_map_allocated(vd->vdev_checkpoint_sm));
d2734cce
SD
4162
4163 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4164 }
4165
93cf2076
GW
4166 if (msp->ms_loaded) {
4167 /*
a1d477c2 4168 * When the space map is loaded, we have an accurate
93cf2076
GW
4169 * histogram in the range tree. This gives us an opportunity
4170 * to bring the space map's histogram up-to-date so we clear
4171 * it first before updating it.
4172 */
4173 space_map_histogram_clear(msp->ms_sm);
d2734cce 4174 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4e21fd06
DB
4175
4176 /*
4177 * Since we've cleared the histogram we need to add back
4178 * any free space that has already been processed, plus
4179 * any deferred space. This allows the on-disk histogram
4180 * to accurately reflect all free space even if some space
4181 * is not yet available for allocation (i.e. deferred).
4182 */
d2734cce 4183 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4e21fd06 4184
93cf2076 4185 /*
4e21fd06
DB
4186 * Add back any deferred free space that has not been
4187 * added back into the in-core free tree yet. This will
4188 * ensure that we don't end up with a space map histogram
4189 * that is completely empty unless the metaslab is fully
4190 * allocated.
93cf2076 4191 */
1c27024e 4192 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4e21fd06 4193 space_map_histogram_add(msp->ms_sm,
d2734cce 4194 msp->ms_defer[t], tx);
4e21fd06 4195 }
93cf2076 4196 }
4e21fd06
DB
4197
4198 /*
4199 * Always add the free space from this sync pass to the space
4200 * map histogram. We want to make sure that the on-disk histogram
4201 * accounts for all free space. If the space map is not loaded,
4202 * then we will lose some accuracy but will correct it the next
4203 * time we load the space map.
4204 */
d2734cce 4205 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
928e8ad4 4206 metaslab_aux_histograms_update(msp);
4e21fd06 4207
f3a7f661
GW
4208 metaslab_group_histogram_add(mg, msp);
4209 metaslab_group_histogram_verify(mg);
4210 metaslab_class_histogram_verify(mg->mg_class);
34dc7c2f 4211
e51be066 4212 /*
93cf2076 4213 * For sync pass 1, we avoid traversing this txg's free range tree
425d3237
SD
4214 * and instead will just swap the pointers for freeing and freed.
4215 * We can safely do this since the freed_tree is guaranteed to be
4216 * empty on the initial pass.
93e28d66
SD
4217 *
4218 * Keep in mind that even if we are currently using a log spacemap
4219 * we want current frees to end up in the ms_allocatable (but not
4220 * get appended to the ms_sm) so their ranges can be reused as usual.
e51be066
GW
4221 */
4222 if (spa_sync_pass(spa) == 1) {
d2734cce 4223 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
425d3237 4224 ASSERT0(msp->ms_allocated_this_txg);
e51be066 4225 } else {
d2734cce
SD
4226 range_tree_vacate(msp->ms_freeing,
4227 range_tree_add, msp->ms_freed);
34dc7c2f 4228 }
425d3237 4229 msp->ms_allocated_this_txg += range_tree_space(alloctree);
f3a7f661 4230 range_tree_vacate(alloctree, NULL, NULL);
34dc7c2f 4231
d2734cce
SD
4232 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4233 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4234 & TXG_MASK]));
4235 ASSERT0(range_tree_space(msp->ms_freeing));
4236 ASSERT0(range_tree_space(msp->ms_checkpointing));
34dc7c2f
BB
4237
4238 mutex_exit(&msp->ms_lock);
4239
93e28d66
SD
4240 /*
4241 * Verify that the space map object ID has been recorded in the
4242 * vdev_ms_array.
4243 */
4244 uint64_t object;
4245 VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4246 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4247 VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4248
a1d477c2 4249 mutex_exit(&msp->ms_sync_lock);
34dc7c2f
BB
4250 dmu_tx_commit(tx);
4251}
4252
f09fda50
PD
4253static void
4254metaslab_evict(metaslab_t *msp, uint64_t txg)
893a6d62 4255{
f09fda50
PD
4256 if (!msp->ms_loaded || msp->ms_disabled != 0)
4257 return;
893a6d62 4258
f09fda50
PD
4259 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4260 VERIFY0(range_tree_space(
4261 msp->ms_allocating[(txg + t) & TXG_MASK]));
893a6d62 4262 }
f09fda50
PD
4263 if (msp->ms_allocator != -1)
4264 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4265
4266 if (!metaslab_debug_unload)
4267 metaslab_unload(msp);
893a6d62
PD
4268}
4269
34dc7c2f
BB
4270/*
4271 * Called after a transaction group has completely synced to mark
4272 * all of the metaslab's free space as usable.
4273 */
4274void
4275metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4276{
34dc7c2f
BB
4277 metaslab_group_t *mg = msp->ms_group;
4278 vdev_t *vd = mg->mg_vd;
4e21fd06 4279 spa_t *spa = vd->vdev_spa;
93cf2076 4280 range_tree_t **defer_tree;
428870ff 4281 int64_t alloc_delta, defer_delta;
4e21fd06 4282 boolean_t defer_allowed = B_TRUE;
428870ff
BB
4283
4284 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
4285
4286 mutex_enter(&msp->ms_lock);
4287
793c958f
SD
4288 if (msp->ms_new) {
4289 /* this is a new metaslab, add its capacity to the vdev */
cc99f275 4290 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
793c958f
SD
4291
4292 /* there should be no allocations nor frees at this point */
4293 VERIFY0(msp->ms_allocated_this_txg);
4294 VERIFY0(range_tree_space(msp->ms_freed));
34dc7c2f 4295 }
793c958f 4296
d2734cce
SD
4297 ASSERT0(range_tree_space(msp->ms_freeing));
4298 ASSERT0(range_tree_space(msp->ms_checkpointing));
34dc7c2f 4299
d2734cce 4300 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
93cf2076 4301
1c27024e 4302 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4e21fd06 4303 metaslab_class_get_alloc(spa_normal_class(spa));
a1d477c2 4304 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4e21fd06
DB
4305 defer_allowed = B_FALSE;
4306 }
4307
4308 defer_delta = 0;
425d3237
SD
4309 alloc_delta = msp->ms_allocated_this_txg -
4310 range_tree_space(msp->ms_freed);
93e28d66 4311
4e21fd06 4312 if (defer_allowed) {
d2734cce 4313 defer_delta = range_tree_space(msp->ms_freed) -
4e21fd06
DB
4314 range_tree_space(*defer_tree);
4315 } else {
4316 defer_delta -= range_tree_space(*defer_tree);
4317 }
cc99f275
DB
4318 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4319 defer_delta, 0);
34dc7c2f 4320
93e28d66
SD
4321 if (spa_syncing_log_sm(spa) == NULL) {
4322 /*
4323 * If there's a metaslab_load() in progress and we don't have
4324 * a log space map, it means that we probably wrote to the
4325 * metaslab's space map. If this is the case, we need to
4326 * make sure that we wait for the load to complete so that we
4327 * have a consistent view at the in-core side of the metaslab.
4328 */
4329 metaslab_load_wait(msp);
4330 } else {
4331 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4332 }
c2e42f9d 4333
1b939560
BB
4334 /*
4335 * When auto-trimming is enabled, free ranges which are added to
4336 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4337 * periodically consumed by the vdev_autotrim_thread() which issues
4338 * trims for all ranges and then vacates the tree. The ms_trim tree
4339 * can be discarded at any time with the sole consequence of recent
4340 * frees not being trimmed.
4341 */
4342 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4343 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4344 if (!defer_allowed) {
4345 range_tree_walk(msp->ms_freed, range_tree_add,
4346 msp->ms_trim);
4347 }
4348 } else {
4349 range_tree_vacate(msp->ms_trim, NULL, NULL);
4350 }
4351
c2e42f9d 4352 /*
93cf2076 4353 * Move the frees from the defer_tree back to the free
d2734cce
SD
4354 * range tree (if it's loaded). Swap the freed_tree and
4355 * the defer_tree -- this is safe to do because we've
4356 * just emptied out the defer_tree.
c2e42f9d 4357 */
93cf2076 4358 range_tree_vacate(*defer_tree,
d2734cce 4359 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4e21fd06 4360 if (defer_allowed) {
d2734cce 4361 range_tree_swap(&msp->ms_freed, defer_tree);
4e21fd06 4362 } else {
d2734cce
SD
4363 range_tree_vacate(msp->ms_freed,
4364 msp->ms_loaded ? range_tree_add : NULL,
4365 msp->ms_allocatable);
4e21fd06 4366 }
425d3237
SD
4367
4368 msp->ms_synced_length = space_map_length(msp->ms_sm);
34dc7c2f 4369
428870ff
BB
4370 msp->ms_deferspace += defer_delta;
4371 ASSERT3S(msp->ms_deferspace, >=, 0);
93cf2076 4372 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
428870ff
BB
4373 if (msp->ms_deferspace != 0) {
4374 /*
4375 * Keep syncing this metaslab until all deferred frees
4376 * are back in circulation.
4377 */
4378 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4379 }
928e8ad4 4380 metaslab_aux_histograms_update_done(msp, defer_allowed);
428870ff 4381
492f64e9
PD
4382 if (msp->ms_new) {
4383 msp->ms_new = B_FALSE;
4384 mutex_enter(&mg->mg_lock);
4385 mg->mg_ms_ready++;
4386 mutex_exit(&mg->mg_lock);
4387 }
928e8ad4 4388
4e21fd06 4389 /*
928e8ad4
SD
4390 * Re-sort metaslab within its group now that we've adjusted
4391 * its allocatable space.
4e21fd06 4392 */
928e8ad4 4393 metaslab_recalculate_weight_and_sort(msp);
4e21fd06 4394
d2734cce
SD
4395 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4396 ASSERT0(range_tree_space(msp->ms_freeing));
4397 ASSERT0(range_tree_space(msp->ms_freed));
4398 ASSERT0(range_tree_space(msp->ms_checkpointing));
f09fda50 4399 msp->ms_allocating_total -= msp->ms_allocated_this_txg;
425d3237 4400 msp->ms_allocated_this_txg = 0;
34dc7c2f
BB
4401 mutex_exit(&msp->ms_lock);
4402}
4403
428870ff
BB
4404void
4405metaslab_sync_reassess(metaslab_group_t *mg)
4406{
a1d477c2
MA
4407 spa_t *spa = mg->mg_class->mc_spa;
4408
4409 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1be627f5 4410 metaslab_group_alloc_update(mg);
f3a7f661 4411 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
6d974228 4412
428870ff 4413 /*
a1d477c2
MA
4414 * Preload the next potential metaslabs but only on active
4415 * metaslab groups. We can get into a state where the metaslab
4416 * is no longer active since we dirty metaslabs as we remove a
4417 * a device, thus potentially making the metaslab group eligible
4418 * for preloading.
428870ff 4419 */
a1d477c2
MA
4420 if (mg->mg_activation_count > 0) {
4421 metaslab_group_preload(mg);
4422 }
4423 spa_config_exit(spa, SCL_ALLOC, FTAG);
428870ff
BB
4424}
4425
cc99f275
DB
4426/*
4427 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4428 * the same vdev as an existing DVA of this BP, then try to allocate it
4429 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4430 */
4431static boolean_t
4432metaslab_is_unique(metaslab_t *msp, dva_t *dva)
34dc7c2f 4433{
cc99f275
DB
4434 uint64_t dva_ms_id;
4435
4436 if (DVA_GET_ASIZE(dva) == 0)
4437 return (B_TRUE);
34dc7c2f
BB
4438
4439 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
cc99f275 4440 return (B_TRUE);
34dc7c2f 4441
cc99f275
DB
4442 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4443
4444 return (msp->ms_id != dva_ms_id);
34dc7c2f
BB
4445}
4446
4e21fd06
DB
4447/*
4448 * ==========================================================================
4449 * Metaslab allocation tracing facility
4450 * ==========================================================================
4451 */
4e21fd06
DB
4452
4453/*
4454 * Add an allocation trace element to the allocation tracing list.
4455 */
4456static void
4457metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
492f64e9
PD
4458 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4459 int allocator)
4e21fd06
DB
4460{
4461 metaslab_alloc_trace_t *mat;
4462
4463 if (!metaslab_trace_enabled)
4464 return;
4465
4466 /*
4467 * When the tracing list reaches its maximum we remove
4468 * the second element in the list before adding a new one.
4469 * By removing the second element we preserve the original
4470 * entry as a clue to what allocations steps have already been
4471 * performed.
4472 */
4473 if (zal->zal_size == metaslab_trace_max_entries) {
4474 metaslab_alloc_trace_t *mat_next;
6d8da841 4475#ifdef ZFS_DEBUG
4e21fd06
DB
4476 panic("too many entries in allocation list");
4477#endif
ca577779 4478 METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4e21fd06
DB
4479 zal->zal_size--;
4480 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4481 list_remove(&zal->zal_list, mat_next);
4482 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4483 }
4484
4485 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4486 list_link_init(&mat->mat_list_node);
4487 mat->mat_mg = mg;
4488 mat->mat_msp = msp;
4489 mat->mat_size = psize;
4490 mat->mat_dva_id = dva_id;
4491 mat->mat_offset = offset;
4492 mat->mat_weight = 0;
492f64e9 4493 mat->mat_allocator = allocator;
4e21fd06
DB
4494
4495 if (msp != NULL)
4496 mat->mat_weight = msp->ms_weight;
4497
4498 /*
4499 * The list is part of the zio so locking is not required. Only
4500 * a single thread will perform allocations for a given zio.
4501 */
4502 list_insert_tail(&zal->zal_list, mat);
4503 zal->zal_size++;
4504
4505 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4506}
4507
4508void
4509metaslab_trace_init(zio_alloc_list_t *zal)
4510{
4511 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4512 offsetof(metaslab_alloc_trace_t, mat_list_node));
4513 zal->zal_size = 0;
4514}
4515
4516void
4517metaslab_trace_fini(zio_alloc_list_t *zal)
4518{
4519 metaslab_alloc_trace_t *mat;
4520
4521 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4522 kmem_cache_free(metaslab_alloc_trace_cache, mat);
4523 list_destroy(&zal->zal_list);
4524 zal->zal_size = 0;
4525}
4e21fd06 4526
3dfb57a3
DB
4527/*
4528 * ==========================================================================
4529 * Metaslab block operations
4530 * ==========================================================================
4531 */
4532
4533static void
dd66857d
AZ
4534metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4535 int flags, int allocator)
3dfb57a3 4536{
3dfb57a3 4537 if (!(flags & METASLAB_ASYNC_ALLOC) ||
492f64e9 4538 (flags & METASLAB_DONT_THROTTLE))
3dfb57a3
DB
4539 return;
4540
1c27024e 4541 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3dfb57a3
DB
4542 if (!mg->mg_class->mc_alloc_throttle_enabled)
4543 return;
4544
32d805c3
MA
4545 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4546 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
492f64e9
PD
4547}
4548
4549static void
4550metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4551{
32d805c3 4552 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
f8020c93
AM
4553 metaslab_class_allocator_t *mca =
4554 &mg->mg_class->mc_allocator[allocator];
492f64e9 4555 uint64_t max = mg->mg_max_alloc_queue_depth;
32d805c3 4556 uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
492f64e9 4557 while (cur < max) {
32d805c3 4558 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
492f64e9 4559 cur, cur + 1) == cur) {
f8020c93 4560 atomic_inc_64(&mca->mca_alloc_max_slots);
492f64e9
PD
4561 return;
4562 }
32d805c3 4563 cur = mga->mga_cur_max_alloc_queue_depth;
492f64e9 4564 }
3dfb57a3
DB
4565}
4566
4567void
dd66857d
AZ
4568metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4569 int flags, int allocator, boolean_t io_complete)
3dfb57a3 4570{
3dfb57a3 4571 if (!(flags & METASLAB_ASYNC_ALLOC) ||
492f64e9 4572 (flags & METASLAB_DONT_THROTTLE))
3dfb57a3
DB
4573 return;
4574
1c27024e 4575 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3dfb57a3
DB
4576 if (!mg->mg_class->mc_alloc_throttle_enabled)
4577 return;
4578
32d805c3
MA
4579 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4580 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
492f64e9
PD
4581 if (io_complete)
4582 metaslab_group_increment_qdepth(mg, allocator);
3dfb57a3
DB
4583}
4584
4585void
dd66857d 4586metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
492f64e9 4587 int allocator)
3dfb57a3
DB
4588{
4589#ifdef ZFS_DEBUG
4590 const dva_t *dva = bp->blk_dva;
4591 int ndvas = BP_GET_NDVAS(bp);
3dfb57a3 4592
1c27024e 4593 for (int d = 0; d < ndvas; d++) {
3dfb57a3
DB
4594 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4595 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
32d805c3
MA
4596 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4597 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
3dfb57a3
DB
4598 }
4599#endif
4600}
4601
34dc7c2f 4602static uint64_t
4e21fd06
DB
4603metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4604{
4605 uint64_t start;
d2734cce 4606 range_tree_t *rt = msp->ms_allocatable;
4e21fd06
DB
4607 metaslab_class_t *mc = msp->ms_group->mg_class;
4608
93e28d66 4609 ASSERT(MUTEX_HELD(&msp->ms_lock));
4e21fd06 4610 VERIFY(!msp->ms_condensing);
1b939560 4611 VERIFY0(msp->ms_disabled);
4e21fd06
DB
4612
4613 start = mc->mc_ops->msop_alloc(msp, size);
4614 if (start != -1ULL) {
4615 metaslab_group_t *mg = msp->ms_group;
4616 vdev_t *vd = mg->mg_vd;
4617
4618 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4619 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4620 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4621 range_tree_remove(rt, start, size);
1b939560 4622 range_tree_clear(msp->ms_trim, start, size);
4e21fd06 4623
d2734cce 4624 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4e21fd06
DB
4625 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4626
d2734cce 4627 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
f09fda50 4628 msp->ms_allocating_total += size;
4e21fd06
DB
4629
4630 /* Track the last successful allocation */
4631 msp->ms_alloc_txg = txg;
4632 metaslab_verify_space(msp, txg);
4633 }
4634
4635 /*
4636 * Now that we've attempted the allocation we need to update the
4637 * metaslab's maximum block size since it may have changed.
4638 */
c81f1790 4639 msp->ms_max_size = metaslab_largest_allocatable(msp);
4e21fd06
DB
4640 return (start);
4641}
4642
492f64e9
PD
4643/*
4644 * Find the metaslab with the highest weight that is less than what we've
4645 * already tried. In the common case, this means that we will examine each
4646 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4647 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4648 * activated by another thread, and we fail to allocate from the metaslab we
4649 * have selected, we may not try the newly-activated metaslab, and instead
4650 * activate another metaslab. This is not optimal, but generally does not cause
4651 * any problems (a possible exception being if every metaslab is completely full
e1cfd73f 4652 * except for the newly-activated metaslab which we fail to examine).
492f64e9
PD
4653 */
4654static metaslab_t *
4655find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
cc99f275 4656 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
c81f1790
PD
4657 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4658 boolean_t *was_active)
492f64e9
PD
4659{
4660 avl_index_t idx;
4661 avl_tree_t *t = &mg->mg_metaslab_tree;
4662 metaslab_t *msp = avl_find(t, search, &idx);
4663 if (msp == NULL)
4664 msp = avl_nearest(t, idx, AVL_AFTER);
4665
fdc2d303 4666 uint_t tries = 0;
492f64e9
PD
4667 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4668 int i;
be5c6d96
MA
4669
4670 if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4671 METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4672 return (NULL);
4673 }
4674 tries++;
4675
c81f1790 4676 if (!metaslab_should_allocate(msp, asize, try_hard)) {
492f64e9
PD
4677 metaslab_trace_add(zal, mg, msp, asize, d,
4678 TRACE_TOO_SMALL, allocator);
4679 continue;
4680 }
4681
4682 /*
1b939560
BB
4683 * If the selected metaslab is condensing or disabled,
4684 * skip it.
492f64e9 4685 */
1b939560 4686 if (msp->ms_condensing || msp->ms_disabled > 0)
492f64e9
PD
4687 continue;
4688
4689 *was_active = msp->ms_allocator != -1;
4690 /*
4691 * If we're activating as primary, this is our first allocation
4692 * from this disk, so we don't need to check how close we are.
4693 * If the metaslab under consideration was already active,
4694 * we're getting desperate enough to steal another allocator's
4695 * metaslab, so we still don't care about distances.
4696 */
4697 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4698 break;
4699
492f64e9 4700 for (i = 0; i < d; i++) {
cc99f275
DB
4701 if (want_unique &&
4702 !metaslab_is_unique(msp, &dva[i]))
4703 break; /* try another metaslab */
492f64e9
PD
4704 }
4705 if (i == d)
4706 break;
4707 }
4708
4709 if (msp != NULL) {
4710 search->ms_weight = msp->ms_weight;
4711 search->ms_start = msp->ms_start + 1;
4712 search->ms_allocator = msp->ms_allocator;
4713 search->ms_primary = msp->ms_primary;
4714 }
4715 return (msp);
4716}
4717
65c7cc49 4718static void
679b0f2a
PD
4719metaslab_active_mask_verify(metaslab_t *msp)
4720{
4721 ASSERT(MUTEX_HELD(&msp->ms_lock));
4722
4723 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4724 return;
4725
4726 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4727 return;
4728
4729 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4730 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4731 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4732 VERIFY3S(msp->ms_allocator, !=, -1);
4733 VERIFY(msp->ms_primary);
4734 return;
4735 }
4736
4737 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4738 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4739 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4740 VERIFY3S(msp->ms_allocator, !=, -1);
4741 VERIFY(!msp->ms_primary);
4742 return;
4743 }
4744
4745 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4746 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4747 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4748 VERIFY3S(msp->ms_allocator, ==, -1);
4749 return;
4750 }
4751}
4752
4e21fd06
DB
4753static uint64_t
4754metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
c81f1790
PD
4755 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4756 int allocator, boolean_t try_hard)
34dc7c2f
BB
4757{
4758 metaslab_t *msp = NULL;
4759 uint64_t offset = -1ULL;
34dc7c2f 4760
679b0f2a 4761 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
492f64e9
PD
4762 for (int i = 0; i < d; i++) {
4763 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4764 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
34dc7c2f 4765 activation_weight = METASLAB_WEIGHT_SECONDARY;
492f64e9
PD
4766 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4767 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
e38afd34 4768 activation_weight = METASLAB_WEIGHT_CLAIM;
9babb374
BB
4769 break;
4770 }
4771 }
34dc7c2f 4772
492f64e9
PD
4773 /*
4774 * If we don't have enough metaslabs active to fill the entire array, we
4775 * just use the 0th slot.
4776 */
e38afd34 4777 if (mg->mg_ms_ready < mg->mg_allocators * 3)
492f64e9 4778 allocator = 0;
32d805c3 4779 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
492f64e9
PD
4780
4781 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4782
1c27024e 4783 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4e21fd06
DB
4784 search->ms_weight = UINT64_MAX;
4785 search->ms_start = 0;
492f64e9
PD
4786 /*
4787 * At the end of the metaslab tree are the already-active metaslabs,
4788 * first the primaries, then the secondaries. When we resume searching
4789 * through the tree, we need to consider ms_allocator and ms_primary so
4790 * we start in the location right after where we left off, and don't
4791 * accidentally loop forever considering the same metaslabs.
4792 */
4793 search->ms_allocator = -1;
4794 search->ms_primary = B_TRUE;
34dc7c2f 4795 for (;;) {
492f64e9 4796 boolean_t was_active = B_FALSE;
9babb374 4797
34dc7c2f 4798 mutex_enter(&mg->mg_lock);
4e21fd06 4799
492f64e9 4800 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
32d805c3
MA
4801 mga->mga_primary != NULL) {
4802 msp = mga->mga_primary;
679b0f2a
PD
4803
4804 /*
4805 * Even though we don't hold the ms_lock for the
4806 * primary metaslab, those fields should not
e1cfd73f 4807 * change while we hold the mg_lock. Thus it is
679b0f2a
PD
4808 * safe to make assertions on them.
4809 */
4810 ASSERT(msp->ms_primary);
4811 ASSERT3S(msp->ms_allocator, ==, allocator);
4812 ASSERT(msp->ms_loaded);
4813
492f64e9 4814 was_active = B_TRUE;
f09fda50 4815 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
492f64e9 4816 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
32d805c3
MA
4817 mga->mga_secondary != NULL) {
4818 msp = mga->mga_secondary;
679b0f2a
PD
4819
4820 /*
4821 * See comment above about the similar assertions
4822 * for the primary metaslab.
4823 */
4824 ASSERT(!msp->ms_primary);
4825 ASSERT3S(msp->ms_allocator, ==, allocator);
4826 ASSERT(msp->ms_loaded);
4827
492f64e9 4828 was_active = B_TRUE;
f09fda50 4829 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
492f64e9
PD
4830 } else {
4831 msp = find_valid_metaslab(mg, activation_weight, dva, d,
c81f1790
PD
4832 want_unique, asize, allocator, try_hard, zal,
4833 search, &was_active);
34dc7c2f 4834 }
492f64e9 4835
34dc7c2f 4836 mutex_exit(&mg->mg_lock);
4e21fd06
DB
4837 if (msp == NULL) {
4838 kmem_free(search, sizeof (*search));
34dc7c2f 4839 return (-1ULL);
4e21fd06 4840 }
ac72fac3 4841 mutex_enter(&msp->ms_lock);
679b0f2a
PD
4842
4843 metaslab_active_mask_verify(msp);
4844
4845 /*
4846 * This code is disabled out because of issues with
4847 * tracepoints in non-gpl kernel modules.
4848 */
4849#if 0
4850 DTRACE_PROBE3(ms__activation__attempt,
4851 metaslab_t *, msp, uint64_t, activation_weight,
4852 boolean_t, was_active);
4853#endif
4854
34dc7c2f
BB
4855 /*
4856 * Ensure that the metaslab we have selected is still
4857 * capable of handling our request. It's possible that
4858 * another thread may have changed the weight while we
4e21fd06 4859 * were blocked on the metaslab lock. We check the
f09fda50 4860 * active status first to see if we need to set_selected_txg
4e21fd06 4861 * a new metaslab.
34dc7c2f 4862 */
4e21fd06 4863 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
679b0f2a 4864 ASSERT3S(msp->ms_allocator, ==, -1);
34dc7c2f
BB
4865 mutex_exit(&msp->ms_lock);
4866 continue;
4867 }
4868
492f64e9 4869 /*
679b0f2a
PD
4870 * If the metaslab was activated for another allocator
4871 * while we were waiting in the ms_lock above, or it's
4872 * a primary and we're seeking a secondary (or vice versa),
4873 * we go back and select a new metaslab.
492f64e9
PD
4874 */
4875 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4876 (msp->ms_allocator != -1) &&
4877 (msp->ms_allocator != allocator || ((activation_weight ==
4878 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
679b0f2a
PD
4879 ASSERT(msp->ms_loaded);
4880 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4881 msp->ms_allocator != -1);
492f64e9
PD
4882 mutex_exit(&msp->ms_lock);
4883 continue;
4884 }
4885
679b0f2a
PD
4886 /*
4887 * This metaslab was used for claiming regions allocated
4888 * by the ZIL during pool import. Once these regions are
4889 * claimed we don't need to keep the CLAIM bit set
4890 * anymore. Passivate this metaslab to zero its activation
4891 * mask.
4892 */
e38afd34 4893 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4894 activation_weight != METASLAB_WEIGHT_CLAIM) {
679b0f2a
PD
4895 ASSERT(msp->ms_loaded);
4896 ASSERT3S(msp->ms_allocator, ==, -1);
492f64e9
PD
4897 metaslab_passivate(msp, msp->ms_weight &
4898 ~METASLAB_WEIGHT_CLAIM);
34dc7c2f
BB
4899 mutex_exit(&msp->ms_lock);
4900 continue;
4901 }
4902
f09fda50 4903 metaslab_set_selected_txg(msp, txg);
679b0f2a
PD
4904
4905 int activation_error =
4906 metaslab_activate(msp, allocator, activation_weight);
4907 metaslab_active_mask_verify(msp);
4908
4909 /*
4910 * If the metaslab was activated by another thread for
4911 * another allocator or activation_weight (EBUSY), or it
4912 * failed because another metaslab was assigned as primary
4913 * for this allocator (EEXIST) we continue using this
4914 * metaslab for our allocation, rather than going on to a
4915 * worse metaslab (we waited for that metaslab to be loaded
4916 * after all).
4917 *
fe0ea848
PD
4918 * If the activation failed due to an I/O error or ENOSPC we
4919 * skip to the next metaslab.
679b0f2a
PD
4920 */
4921 boolean_t activated;
4922 if (activation_error == 0) {
4923 activated = B_TRUE;
4924 } else if (activation_error == EBUSY ||
4925 activation_error == EEXIST) {
4926 activated = B_FALSE;
4927 } else {
34dc7c2f
BB
4928 mutex_exit(&msp->ms_lock);
4929 continue;
4930 }
679b0f2a 4931 ASSERT(msp->ms_loaded);
4e21fd06
DB
4932
4933 /*
4934 * Now that we have the lock, recheck to see if we should
4935 * continue to use this metaslab for this allocation. The
679b0f2a
PD
4936 * the metaslab is now loaded so metaslab_should_allocate()
4937 * can accurately determine if the allocation attempt should
4e21fd06
DB
4938 * proceed.
4939 */
c81f1790 4940 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4e21fd06
DB
4941 /* Passivate this metaslab and select a new one. */
4942 metaslab_trace_add(zal, mg, msp, asize, d,
492f64e9 4943 TRACE_TOO_SMALL, allocator);
4e21fd06
DB
4944 goto next;
4945 }
4946
7a614407 4947 /*
679b0f2a
PD
4948 * If this metaslab is currently condensing then pick again
4949 * as we can't manipulate this metaslab until it's committed
619f0976
GW
4950 * to disk. If this metaslab is being initialized, we shouldn't
4951 * allocate from it since the allocated region might be
4952 * overwritten after allocation.
7a614407 4953 */
93cf2076 4954 if (msp->ms_condensing) {
4e21fd06 4955 metaslab_trace_add(zal, mg, msp, asize, d,
492f64e9 4956 TRACE_CONDENSING, allocator);
679b0f2a
PD
4957 if (activated) {
4958 metaslab_passivate(msp, msp->ms_weight &
4959 ~METASLAB_ACTIVE_MASK);
4960 }
7a614407
GW
4961 mutex_exit(&msp->ms_lock);
4962 continue;
1b939560 4963 } else if (msp->ms_disabled > 0) {
619f0976 4964 metaslab_trace_add(zal, mg, msp, asize, d,
1b939560 4965 TRACE_DISABLED, allocator);
679b0f2a
PD
4966 if (activated) {
4967 metaslab_passivate(msp, msp->ms_weight &
4968 ~METASLAB_ACTIVE_MASK);
4969 }
619f0976
GW
4970 mutex_exit(&msp->ms_lock);
4971 continue;
7a614407
GW
4972 }
4973
4e21fd06 4974 offset = metaslab_block_alloc(msp, asize, txg);
492f64e9 4975 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4e21fd06
DB
4976
4977 if (offset != -1ULL) {
4978 /* Proactively passivate the metaslab, if needed */
679b0f2a
PD
4979 if (activated)
4980 metaslab_segment_may_passivate(msp);
34dc7c2f 4981 break;
4e21fd06
DB
4982 }
4983next:
4984 ASSERT(msp->ms_loaded);
4985
679b0f2a
PD
4986 /*
4987 * This code is disabled out because of issues with
4988 * tracepoints in non-gpl kernel modules.
4989 */
4990#if 0
4991 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4992 uint64_t, asize);
4993#endif
4994
4e21fd06
DB
4995 /*
4996 * We were unable to allocate from this metaslab so determine
4997 * a new weight for this metaslab. Now that we have loaded
4998 * the metaslab we can provide a better hint to the metaslab
4999 * selector.
5000 *
5001 * For space-based metaslabs, we use the maximum block size.
5002 * This information is only available when the metaslab
5003 * is loaded and is more accurate than the generic free
5004 * space weight that was calculated by metaslab_weight().
5005 * This information allows us to quickly compare the maximum
5006 * available allocation in the metaslab to the allocation
5007 * size being requested.
5008 *
5009 * For segment-based metaslabs, determine the new weight
5010 * based on the highest bucket in the range tree. We
5011 * explicitly use the loaded segment weight (i.e. the range
5012 * tree histogram) since it contains the space that is
5013 * currently available for allocation and is accurate
5014 * even within a sync pass.
5015 */
679b0f2a 5016 uint64_t weight;
4e21fd06 5017 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
c81f1790 5018 weight = metaslab_largest_allocatable(msp);
4e21fd06 5019 WEIGHT_SET_SPACEBASED(weight);
679b0f2a
PD
5020 } else {
5021 weight = metaslab_weight_from_range_tree(msp);
5022 }
5023
5024 if (activated) {
4e21fd06
DB
5025 metaslab_passivate(msp, weight);
5026 } else {
679b0f2a
PD
5027 /*
5028 * For the case where we use the metaslab that is
5029 * active for another allocator we want to make
5030 * sure that we retain the activation mask.
5031 *
5032 * Note that we could attempt to use something like
5033 * metaslab_recalculate_weight_and_sort() that
5034 * retains the activation mask here. That function
5035 * uses metaslab_weight() to set the weight though
5036 * which is not as accurate as the calculations
5037 * above.
5038 */
5039 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5040 metaslab_group_sort(mg, msp, weight);
4e21fd06 5041 }
679b0f2a 5042 metaslab_active_mask_verify(msp);
34dc7c2f 5043
4e21fd06
DB
5044 /*
5045 * We have just failed an allocation attempt, check
5046 * that metaslab_should_allocate() agrees. Otherwise,
5047 * we may end up in an infinite loop retrying the same
5048 * metaslab.
5049 */
c81f1790 5050 ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
cc99f275 5051
34dc7c2f
BB
5052 mutex_exit(&msp->ms_lock);
5053 }
4e21fd06
DB
5054 mutex_exit(&msp->ms_lock);
5055 kmem_free(search, sizeof (*search));
5056 return (offset);
5057}
34dc7c2f 5058
4e21fd06
DB
5059static uint64_t
5060metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
c81f1790
PD
5061 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5062 int allocator, boolean_t try_hard)
4e21fd06
DB
5063{
5064 uint64_t offset;
5065 ASSERT(mg->mg_initialized);
34dc7c2f 5066
cc99f275 5067 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
c81f1790 5068 dva, d, allocator, try_hard);
34dc7c2f 5069
4e21fd06
DB
5070 mutex_enter(&mg->mg_lock);
5071 if (offset == -1ULL) {
5072 mg->mg_failed_allocations++;
5073 metaslab_trace_add(zal, mg, NULL, asize, d,
492f64e9 5074 TRACE_GROUP_FAILURE, allocator);
4e21fd06
DB
5075 if (asize == SPA_GANGBLOCKSIZE) {
5076 /*
5077 * This metaslab group was unable to allocate
5078 * the minimum gang block size so it must be out of
5079 * space. We must notify the allocation throttle
5080 * to start skipping allocation attempts to this
5081 * metaslab group until more space becomes available.
5082 * Note: this failure cannot be caused by the
5083 * allocation throttle since the allocation throttle
5084 * is only responsible for skipping devices and
5085 * not failing block allocations.
5086 */
5087 mg->mg_no_free_space = B_TRUE;
5088 }
5089 }
5090 mg->mg_allocations++;
5091 mutex_exit(&mg->mg_lock);
34dc7c2f
BB
5092 return (offset);
5093}
5094
5095/*
5096 * Allocate a block for the specified i/o.
5097 */
a1d477c2 5098int
34dc7c2f 5099metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
4e21fd06 5100 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
492f64e9 5101 zio_alloc_list_t *zal, int allocator)
34dc7c2f 5102{
f8020c93 5103 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
920dd524 5104 metaslab_group_t *mg, *fast_mg, *rotor;
34dc7c2f 5105 vdev_t *vd;
4e21fd06 5106 boolean_t try_hard = B_FALSE;
34dc7c2f
BB
5107
5108 ASSERT(!DVA_IS_VALID(&dva[d]));
5109
5110 /*
5111 * For testing, make some blocks above a certain size be gang blocks.
09b85f2d
BB
5112 * This will result in more split blocks when using device removal,
5113 * and a large number of split blocks coupled with ztest-induced
5114 * damage can result in extremely long reconstruction times. This
5115 * will also test spilling from special to normal.
34dc7c2f 5116 */
46adb282
RN
5117 if (psize >= metaslab_force_ganging &&
5118 metaslab_force_ganging_pct > 0 &&
5119 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
492f64e9
PD
5120 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5121 allocator);
2e528b49 5122 return (SET_ERROR(ENOSPC));
4e21fd06 5123 }
34dc7c2f
BB
5124
5125 /*
5126 * Start at the rotor and loop through all mgs until we find something.
f8020c93 5127 * Note that there's no locking on mca_rotor or mca_aliquot because
34dc7c2f
BB
5128 * nothing actually breaks if we miss a few updates -- we just won't
5129 * allocate quite as evenly. It all balances out over time.
5130 *
5131 * If we are doing ditto or log blocks, try to spread them across
5132 * consecutive vdevs. If we're forced to reuse a vdev before we've
5133 * allocated all of our ditto blocks, then try and spread them out on
5134 * that vdev as much as possible. If it turns out to not be possible,
5135 * gradually lower our standards until anything becomes acceptable.
5136 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5137 * gives us hope of containing our fault domains to something we're
5138 * able to reason about. Otherwise, any two top-level vdev failures
5139 * will guarantee the loss of data. With consecutive allocation,
5140 * only two adjacent top-level vdev failures will result in data loss.
5141 *
5142 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5143 * ourselves on the same vdev as our gang block header. That
5144 * way, we can hope for locality in vdev_cache, plus it makes our
5145 * fault domains something tractable.
5146 */
5147 if (hintdva) {
5148 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
428870ff
BB
5149
5150 /*
5151 * It's possible the vdev we're using as the hint no
a1d477c2
MA
5152 * longer exists or its mg has been closed (e.g. by
5153 * device removal). Consult the rotor when
428870ff
BB
5154 * all else fails.
5155 */
a1d477c2 5156 if (vd != NULL && vd->vdev_mg != NULL) {
aa755b35 5157 mg = vdev_get_mg(vd, mc);
428870ff 5158
ef55679a 5159 if (flags & METASLAB_HINTBP_AVOID)
428870ff
BB
5160 mg = mg->mg_next;
5161 } else {
f8020c93 5162 mg = mca->mca_rotor;
428870ff 5163 }
34dc7c2f
BB
5164 } else if (d != 0) {
5165 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5166 mg = vd->vdev_mg->mg_next;
920dd524 5167 } else if (flags & METASLAB_FASTWRITE) {
f8020c93 5168 mg = fast_mg = mca->mca_rotor;
920dd524
ED
5169
5170 do {
5171 if (fast_mg->mg_vd->vdev_pending_fastwrite <
5172 mg->mg_vd->vdev_pending_fastwrite)
5173 mg = fast_mg;
f8020c93 5174 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor);
920dd524 5175
34dc7c2f 5176 } else {
f8020c93
AM
5177 ASSERT(mca->mca_rotor != NULL);
5178 mg = mca->mca_rotor;
34dc7c2f
BB
5179 }
5180
5181 /*
428870ff
BB
5182 * If the hint put us into the wrong metaslab class, or into a
5183 * metaslab group that has been passivated, just follow the rotor.
34dc7c2f 5184 */
428870ff 5185 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
f8020c93 5186 mg = mca->mca_rotor;
34dc7c2f
BB
5187
5188 rotor = mg;
5189top:
34dc7c2f 5190 do {
4e21fd06 5191 boolean_t allocatable;
428870ff 5192
3dfb57a3 5193 ASSERT(mg->mg_activation_count == 1);
34dc7c2f 5194 vd = mg->mg_vd;
fb5f0bc8 5195
34dc7c2f 5196 /*
b128c09f 5197 * Don't allocate from faulted devices.
34dc7c2f 5198 */
4e21fd06 5199 if (try_hard) {
fb5f0bc8
BB
5200 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5201 allocatable = vdev_allocatable(vd);
5202 spa_config_exit(spa, SCL_ZIO, FTAG);
5203 } else {
5204 allocatable = vdev_allocatable(vd);
5205 }
ac72fac3
GW
5206
5207 /*
5208 * Determine if the selected metaslab group is eligible
3dfb57a3
DB
5209 * for allocations. If we're ganging then don't allow
5210 * this metaslab group to skip allocations since that would
5211 * inadvertently return ENOSPC and suspend the pool
ac72fac3
GW
5212 * even though space is still available.
5213 */
4e21fd06 5214 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3dfb57a3 5215 allocatable = metaslab_group_allocatable(mg, rotor,
7bf4c97a 5216 flags, psize, allocator, d);
3dfb57a3 5217 }
ac72fac3 5218
4e21fd06
DB
5219 if (!allocatable) {
5220 metaslab_trace_add(zal, mg, NULL, psize, d,
492f64e9 5221 TRACE_NOT_ALLOCATABLE, allocator);
34dc7c2f 5222 goto next;
4e21fd06 5223 }
fb5f0bc8 5224
3dfb57a3
DB
5225 ASSERT(mg->mg_initialized);
5226
34dc7c2f 5227 /*
4dcc2bde 5228 * Avoid writing single-copy data to an unhealthy,
4e21fd06
DB
5229 * non-redundant vdev, unless we've already tried all
5230 * other vdevs.
34dc7c2f 5231 */
4dcc2bde 5232 if (vd->vdev_state < VDEV_STATE_HEALTHY &&
4e21fd06
DB
5233 d == 0 && !try_hard && vd->vdev_children == 0) {
5234 metaslab_trace_add(zal, mg, NULL, psize, d,
492f64e9 5235 TRACE_VDEV_ERROR, allocator);
34dc7c2f
BB
5236 goto next;
5237 }
5238
5239 ASSERT(mg->mg_class == mc);
5240
1c27024e 5241 uint64_t asize = vdev_psize_to_asize(vd, psize);
34dc7c2f
BB
5242 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5243
cc99f275
DB
5244 /*
5245 * If we don't need to try hard, then require that the
e1cfd73f 5246 * block be on a different metaslab from any other DVAs
cc99f275
DB
5247 * in this BP (unique=true). If we are trying hard, then
5248 * allow any metaslab to be used (unique=false).
5249 */
1c27024e 5250 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
c81f1790 5251 !try_hard, dva, d, allocator, try_hard);
3dfb57a3 5252
34dc7c2f
BB
5253 if (offset != -1ULL) {
5254 /*
5255 * If we've just selected this metaslab group,
5256 * figure out whether the corresponding vdev is
5257 * over- or under-used relative to the pool,
5258 * and set an allocation bias to even it out.
bb3250d0
ED
5259 *
5260 * Bias is also used to compensate for unequally
5261 * sized vdevs so that space is allocated fairly.
34dc7c2f 5262 */
f8020c93 5263 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
34dc7c2f 5264 vdev_stat_t *vs = &vd->vdev_stat;
bb3250d0
ED
5265 int64_t vs_free = vs->vs_space - vs->vs_alloc;
5266 int64_t mc_free = mc->mc_space - mc->mc_alloc;
5267 int64_t ratio;
34dc7c2f
BB
5268
5269 /*
6d974228
GW
5270 * Calculate how much more or less we should
5271 * try to allocate from this device during
5272 * this iteration around the rotor.
6d974228 5273 *
bb3250d0
ED
5274 * This basically introduces a zero-centered
5275 * bias towards the devices with the most
5276 * free space, while compensating for vdev
5277 * size differences.
5278 *
5279 * Examples:
5280 * vdev V1 = 16M/128M
5281 * vdev V2 = 16M/128M
5282 * ratio(V1) = 100% ratio(V2) = 100%
5283 *
5284 * vdev V1 = 16M/128M
5285 * vdev V2 = 64M/128M
5286 * ratio(V1) = 127% ratio(V2) = 72%
6d974228 5287 *
bb3250d0
ED
5288 * vdev V1 = 16M/128M
5289 * vdev V2 = 64M/512M
5290 * ratio(V1) = 40% ratio(V2) = 160%
34dc7c2f 5291 */
bb3250d0
ED
5292 ratio = (vs_free * mc->mc_alloc_groups * 100) /
5293 (mc_free + 1);
5294 mg->mg_bias = ((ratio - 100) *
6d974228 5295 (int64_t)mg->mg_aliquot) / 100;
f3a7f661
GW
5296 } else if (!metaslab_bias_enabled) {
5297 mg->mg_bias = 0;
34dc7c2f
BB
5298 }
5299
920dd524 5300 if ((flags & METASLAB_FASTWRITE) ||
f8020c93 5301 atomic_add_64_nv(&mca->mca_aliquot, asize) >=
34dc7c2f 5302 mg->mg_aliquot + mg->mg_bias) {
f8020c93
AM
5303 mca->mca_rotor = mg->mg_next;
5304 mca->mca_aliquot = 0;
34dc7c2f
BB
5305 }
5306
5307 DVA_SET_VDEV(&dva[d], vd->vdev_id);
5308 DVA_SET_OFFSET(&dva[d], offset);
e3e7cf60
D
5309 DVA_SET_GANG(&dva[d],
5310 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
34dc7c2f
BB
5311 DVA_SET_ASIZE(&dva[d], asize);
5312
920dd524
ED
5313 if (flags & METASLAB_FASTWRITE) {
5314 atomic_add_64(&vd->vdev_pending_fastwrite,
5315 psize);
920dd524
ED
5316 }
5317
34dc7c2f
BB
5318 return (0);
5319 }
5320next:
f8020c93
AM
5321 mca->mca_rotor = mg->mg_next;
5322 mca->mca_aliquot = 0;
34dc7c2f
BB
5323 } while ((mg = mg->mg_next) != rotor);
5324
4e21fd06 5325 /*
be5c6d96 5326 * If we haven't tried hard, perhaps do so now.
4e21fd06 5327 */
be5c6d96
MA
5328 if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5329 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5330 psize <= 1 << spa->spa_min_ashift)) {
5331 METASLABSTAT_BUMP(metaslabstat_try_hard);
4e21fd06 5332 try_hard = B_TRUE;
fb5f0bc8
BB
5333 goto top;
5334 }
5335
861166b0 5336 memset(&dva[d], 0, sizeof (dva_t));
34dc7c2f 5337
492f64e9 5338 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
2e528b49 5339 return (SET_ERROR(ENOSPC));
34dc7c2f
BB
5340}
5341
a1d477c2
MA
5342void
5343metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
d2734cce 5344 boolean_t checkpoint)
a1d477c2
MA
5345{
5346 metaslab_t *msp;
d2734cce 5347 spa_t *spa = vd->vdev_spa;
a1d477c2 5348
a1d477c2
MA
5349 ASSERT(vdev_is_concrete(vd));
5350 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5351 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5352
5353 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5354
5355 VERIFY(!msp->ms_condensing);
5356 VERIFY3U(offset, >=, msp->ms_start);
5357 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5358 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5359 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5360
5361 metaslab_check_free_impl(vd, offset, asize);
d2734cce 5362
a1d477c2 5363 mutex_enter(&msp->ms_lock);
d2734cce
SD
5364 if (range_tree_is_empty(msp->ms_freeing) &&
5365 range_tree_is_empty(msp->ms_checkpointing)) {
5366 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5367 }
5368
5369 if (checkpoint) {
5370 ASSERT(spa_has_checkpoint(spa));
5371 range_tree_add(msp->ms_checkpointing, offset, asize);
5372 } else {
5373 range_tree_add(msp->ms_freeing, offset, asize);
a1d477c2 5374 }
a1d477c2
MA
5375 mutex_exit(&msp->ms_lock);
5376}
5377
a1d477c2
MA
5378void
5379metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5380 uint64_t size, void *arg)
5381{
14e4e3cb 5382 (void) inner_offset;
d2734cce
SD
5383 boolean_t *checkpoint = arg;
5384
5385 ASSERT3P(checkpoint, !=, NULL);
a1d477c2
MA
5386
5387 if (vd->vdev_ops->vdev_op_remap != NULL)
d2734cce 5388 vdev_indirect_mark_obsolete(vd, offset, size);
a1d477c2 5389 else
d2734cce 5390 metaslab_free_impl(vd, offset, size, *checkpoint);
a1d477c2
MA
5391}
5392
5393static void
5394metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
d2734cce 5395 boolean_t checkpoint)
a1d477c2
MA
5396{
5397 spa_t *spa = vd->vdev_spa;
5398
5399 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5400
d2734cce 5401 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
a1d477c2
MA
5402 return;
5403
5404 if (spa->spa_vdev_removal != NULL &&
9e052db4 5405 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
a1d477c2
MA
5406 vdev_is_concrete(vd)) {
5407 /*
5408 * Note: we check if the vdev is concrete because when
5409 * we complete the removal, we first change the vdev to be
5410 * an indirect vdev (in open context), and then (in syncing
5411 * context) clear spa_vdev_removal.
5412 */
d2734cce 5413 free_from_removing_vdev(vd, offset, size);
a1d477c2 5414 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
d2734cce 5415 vdev_indirect_mark_obsolete(vd, offset, size);
a1d477c2 5416 vd->vdev_ops->vdev_op_remap(vd, offset, size,
d2734cce 5417 metaslab_free_impl_cb, &checkpoint);
a1d477c2 5418 } else {
d2734cce 5419 metaslab_free_concrete(vd, offset, size, checkpoint);
a1d477c2
MA
5420 }
5421}
5422
5423typedef struct remap_blkptr_cb_arg {
5424 blkptr_t *rbca_bp;
5425 spa_remap_cb_t rbca_cb;
5426 vdev_t *rbca_remap_vd;
5427 uint64_t rbca_remap_offset;
5428 void *rbca_cb_arg;
5429} remap_blkptr_cb_arg_t;
5430
65c7cc49 5431static void
a1d477c2
MA
5432remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5433 uint64_t size, void *arg)
5434{
5435 remap_blkptr_cb_arg_t *rbca = arg;
5436 blkptr_t *bp = rbca->rbca_bp;
5437
5438 /* We can not remap split blocks. */
5439 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5440 return;
5441 ASSERT0(inner_offset);
5442
5443 if (rbca->rbca_cb != NULL) {
5444 /*
5445 * At this point we know that we are not handling split
5446 * blocks and we invoke the callback on the previous
5447 * vdev which must be indirect.
5448 */
5449 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5450
5451 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5452 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5453
5454 /* set up remap_blkptr_cb_arg for the next call */
5455 rbca->rbca_remap_vd = vd;
5456 rbca->rbca_remap_offset = offset;
5457 }
5458
5459 /*
5460 * The phys birth time is that of dva[0]. This ensures that we know
5461 * when each dva was written, so that resilver can determine which
5462 * blocks need to be scrubbed (i.e. those written during the time
5463 * the vdev was offline). It also ensures that the key used in
5464 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5465 * we didn't change the phys_birth, a lookup in the ARC for a
5466 * remapped BP could find the data that was previously stored at
5467 * this vdev + offset.
5468 */
5469 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5470 DVA_GET_VDEV(&bp->blk_dva[0]));
5471 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5472 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5473 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5474
5475 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5476 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5477}
5478
34dc7c2f 5479/*
a1d477c2
MA
5480 * If the block pointer contains any indirect DVAs, modify them to refer to
5481 * concrete DVAs. Note that this will sometimes not be possible, leaving
5482 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5483 * segments in the mapping (i.e. it is a "split block").
5484 *
5485 * If the BP was remapped, calls the callback on the original dva (note the
5486 * callback can be called multiple times if the original indirect DVA refers
5487 * to another indirect DVA, etc).
5488 *
5489 * Returns TRUE if the BP was remapped.
34dc7c2f 5490 */
a1d477c2
MA
5491boolean_t
5492spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
34dc7c2f 5493{
a1d477c2
MA
5494 remap_blkptr_cb_arg_t rbca;
5495
5496 if (!zfs_remap_blkptr_enable)
5497 return (B_FALSE);
5498
5499 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5500 return (B_FALSE);
5501
5502 /*
5503 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5504 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5505 */
5506 if (BP_GET_DEDUP(bp))
5507 return (B_FALSE);
5508
5509 /*
5510 * Gang blocks can not be remapped, because
5511 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5512 * the BP used to read the gang block header (GBH) being the same
5513 * as the DVA[0] that we allocated for the GBH.
5514 */
5515 if (BP_IS_GANG(bp))
5516 return (B_FALSE);
5517
5518 /*
5519 * Embedded BP's have no DVA to remap.
5520 */
5521 if (BP_GET_NDVAS(bp) < 1)
5522 return (B_FALSE);
5523
5524 /*
5525 * Note: we only remap dva[0]. If we remapped other dvas, we
5526 * would no longer know what their phys birth txg is.
5527 */
5528 dva_t *dva = &bp->blk_dva[0];
5529
34dc7c2f
BB
5530 uint64_t offset = DVA_GET_OFFSET(dva);
5531 uint64_t size = DVA_GET_ASIZE(dva);
a1d477c2
MA
5532 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5533
5534 if (vd->vdev_ops->vdev_op_remap == NULL)
5535 return (B_FALSE);
5536
5537 rbca.rbca_bp = bp;
5538 rbca.rbca_cb = callback;
5539 rbca.rbca_remap_vd = vd;
5540 rbca.rbca_remap_offset = offset;
5541 rbca.rbca_cb_arg = arg;
5542
5543 /*
5544 * remap_blkptr_cb() will be called in order for each level of
5545 * indirection, until a concrete vdev is reached or a split block is
5546 * encountered. old_vd and old_offset are updated within the callback
5547 * as we go from the one indirect vdev to the next one (either concrete
5548 * or indirect again) in that order.
5549 */
5550 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5551
5552 /* Check if the DVA wasn't remapped because it is a split block */
5553 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5554 return (B_FALSE);
5555
5556 return (B_TRUE);
5557}
5558
5559/*
5560 * Undo the allocation of a DVA which happened in the given transaction group.
5561 */
5562void
5563metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5564{
34dc7c2f 5565 metaslab_t *msp;
a1d477c2
MA
5566 vdev_t *vd;
5567 uint64_t vdev = DVA_GET_VDEV(dva);
5568 uint64_t offset = DVA_GET_OFFSET(dva);
5569 uint64_t size = DVA_GET_ASIZE(dva);
5570
5571 ASSERT(DVA_IS_VALID(dva));
5572 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
34dc7c2f 5573
34dc7c2f
BB
5574 if (txg > spa_freeze_txg(spa))
5575 return;
5576
7d2868d5 5577 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
34dc7c2f 5578 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
7d2868d5
BB
5579 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5580 (u_longlong_t)vdev, (u_longlong_t)offset,
5581 (u_longlong_t)size);
34dc7c2f
BB
5582 return;
5583 }
5584
a1d477c2
MA
5585 ASSERT(!vd->vdev_removing);
5586 ASSERT(vdev_is_concrete(vd));
5587 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5588 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
34dc7c2f
BB
5589
5590 if (DVA_GET_GANG(dva))
2b56a634 5591 size = vdev_gang_header_asize(vd);
34dc7c2f 5592
a1d477c2 5593 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
93cf2076 5594
a1d477c2 5595 mutex_enter(&msp->ms_lock);
d2734cce 5596 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
a1d477c2 5597 offset, size);
f09fda50 5598 msp->ms_allocating_total -= size;
34dc7c2f 5599
a1d477c2
MA
5600 VERIFY(!msp->ms_condensing);
5601 VERIFY3U(offset, >=, msp->ms_start);
5602 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
d2734cce 5603 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
a1d477c2
MA
5604 msp->ms_size);
5605 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5606 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
d2734cce 5607 range_tree_add(msp->ms_allocatable, offset, size);
34dc7c2f
BB
5608 mutex_exit(&msp->ms_lock);
5609}
5610
5611/*
d2734cce 5612 * Free the block represented by the given DVA.
34dc7c2f 5613 */
a1d477c2 5614void
d2734cce 5615metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
34dc7c2f
BB
5616{
5617 uint64_t vdev = DVA_GET_VDEV(dva);
5618 uint64_t offset = DVA_GET_OFFSET(dva);
5619 uint64_t size = DVA_GET_ASIZE(dva);
a1d477c2 5620 vdev_t *vd = vdev_lookup_top(spa, vdev);
34dc7c2f
BB
5621
5622 ASSERT(DVA_IS_VALID(dva));
a1d477c2 5623 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
34dc7c2f 5624
a1d477c2 5625 if (DVA_GET_GANG(dva)) {
2b56a634 5626 size = vdev_gang_header_asize(vd);
34dc7c2f
BB
5627 }
5628
d2734cce 5629 metaslab_free_impl(vd, offset, size, checkpoint);
34dc7c2f
BB
5630}
5631
3dfb57a3
DB
5632/*
5633 * Reserve some allocation slots. The reservation system must be called
5634 * before we call into the allocator. If there aren't any available slots
5635 * then the I/O will be throttled until an I/O completes and its slots are
5636 * freed up. The function returns true if it was successful in placing
5637 * the reservation.
5638 */
5639boolean_t
492f64e9
PD
5640metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5641 zio_t *zio, int flags)
3dfb57a3 5642{
f8020c93 5643 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
f8020c93 5644 uint64_t max = mca->mca_alloc_max_slots;
3dfb57a3
DB
5645
5646 ASSERT(mc->mc_alloc_throttle_enabled);
1b50749c
AM
5647 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5648 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
3dfb57a3 5649 /*
dd3bda39
AM
5650 * The potential race between _count() and _add() is covered
5651 * by the allocator lock in most cases, or irrelevant due to
5652 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5653 * But even if we assume some other non-existing scenario, the
5654 * worst that can happen is few more I/Os get to allocation
5655 * earlier, that is not a problem.
5656 *
3dfb57a3
DB
5657 * We reserve the slots individually so that we can unreserve
5658 * them individually when an I/O completes.
5659 */
5ba4025a 5660 zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
3dfb57a3 5661 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
1b50749c 5662 return (B_TRUE);
3dfb57a3 5663 }
1b50749c 5664 return (B_FALSE);
3dfb57a3
DB
5665}
5666
5667void
492f64e9
PD
5668metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5669 int allocator, zio_t *zio)
3dfb57a3 5670{
f8020c93
AM
5671 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5672
3dfb57a3 5673 ASSERT(mc->mc_alloc_throttle_enabled);
5ba4025a 5674 zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
3dfb57a3
DB
5675}
5676
a1d477c2
MA
5677static int
5678metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5679 uint64_t txg)
5680{
5681 metaslab_t *msp;
5682 spa_t *spa = vd->vdev_spa;
5683 int error = 0;
5684
5685 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
7ab96299 5686 return (SET_ERROR(ENXIO));
a1d477c2
MA
5687
5688 ASSERT3P(vd->vdev_ms, !=, NULL);
5689 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5690
5691 mutex_enter(&msp->ms_lock);
5692
7ab96299 5693 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
492f64e9 5694 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
7ab96299
TC
5695 if (error == EBUSY) {
5696 ASSERT(msp->ms_loaded);
5697 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5698 error = 0;
5699 }
5700 }
a1d477c2 5701
d2734cce
SD
5702 if (error == 0 &&
5703 !range_tree_contains(msp->ms_allocatable, offset, size))
a1d477c2
MA
5704 error = SET_ERROR(ENOENT);
5705
5706 if (error || txg == 0) { /* txg == 0 indicates dry run */
5707 mutex_exit(&msp->ms_lock);
5708 return (error);
5709 }
5710
5711 VERIFY(!msp->ms_condensing);
5712 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5713 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
d2734cce
SD
5714 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5715 msp->ms_size);
5716 range_tree_remove(msp->ms_allocatable, offset, size);
1b939560 5717 range_tree_clear(msp->ms_trim, offset, size);
a1d477c2 5718
76d04993 5719 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
f09fda50
PD
5720 metaslab_class_t *mc = msp->ms_group->mg_class;
5721 multilist_sublist_t *mls =
ffdf019c 5722 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
f09fda50
PD
5723 if (!multilist_link_active(&msp->ms_class_txg_node)) {
5724 msp->ms_selected_txg = txg;
5725 multilist_sublist_insert_head(mls, msp);
5726 }
5727 multilist_sublist_unlock(mls);
5728
d2734cce 5729 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
a1d477c2 5730 vdev_dirty(vd, VDD_METASLAB, msp, txg);
d2734cce
SD
5731 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5732 offset, size);
f09fda50 5733 msp->ms_allocating_total += size;
a1d477c2
MA
5734 }
5735
5736 mutex_exit(&msp->ms_lock);
5737
5738 return (0);
5739}
5740
5741typedef struct metaslab_claim_cb_arg_t {
5742 uint64_t mcca_txg;
5743 int mcca_error;
5744} metaslab_claim_cb_arg_t;
5745
a1d477c2
MA
5746static void
5747metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5748 uint64_t size, void *arg)
5749{
14e4e3cb 5750 (void) inner_offset;
a1d477c2
MA
5751 metaslab_claim_cb_arg_t *mcca_arg = arg;
5752
5753 if (mcca_arg->mcca_error == 0) {
5754 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5755 size, mcca_arg->mcca_txg);
5756 }
5757}
5758
5759int
5760metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5761{
5762 if (vd->vdev_ops->vdev_op_remap != NULL) {
5763 metaslab_claim_cb_arg_t arg;
5764
5765 /*
76d04993 5766 * Only zdb(8) can claim on indirect vdevs. This is used
a1d477c2
MA
5767 * to detect leaks of mapped space (that are not accounted
5768 * for in the obsolete counts, spacemap, or bpobj).
5769 */
5770 ASSERT(!spa_writeable(vd->vdev_spa));
5771 arg.mcca_error = 0;
5772 arg.mcca_txg = txg;
5773
5774 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5775 metaslab_claim_impl_cb, &arg);
5776
5777 if (arg.mcca_error == 0) {
5778 arg.mcca_error = metaslab_claim_concrete(vd,
5779 offset, size, txg);
5780 }
5781 return (arg.mcca_error);
5782 } else {
5783 return (metaslab_claim_concrete(vd, offset, size, txg));
5784 }
5785}
5786
5787/*
5788 * Intent log support: upon opening the pool after a crash, notify the SPA
5789 * of blocks that the intent log has allocated for immediate write, but
5790 * which are still considered free by the SPA because the last transaction
5791 * group didn't commit yet.
5792 */
5793static int
5794metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5795{
5796 uint64_t vdev = DVA_GET_VDEV(dva);
5797 uint64_t offset = DVA_GET_OFFSET(dva);
5798 uint64_t size = DVA_GET_ASIZE(dva);
5799 vdev_t *vd;
5800
5801 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5802 return (SET_ERROR(ENXIO));
5803 }
5804
5805 ASSERT(DVA_IS_VALID(dva));
5806
5807 if (DVA_GET_GANG(dva))
2b56a634 5808 size = vdev_gang_header_asize(vd);
a1d477c2
MA
5809
5810 return (metaslab_claim_impl(vd, offset, size, txg));
5811}
5812
34dc7c2f
BB
5813int
5814metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
4e21fd06 5815 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
492f64e9 5816 zio_alloc_list_t *zal, zio_t *zio, int allocator)
34dc7c2f
BB
5817{
5818 dva_t *dva = bp->blk_dva;
928e8ad4 5819 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
1c27024e 5820 int error = 0;
34dc7c2f 5821
b128c09f 5822 ASSERT(bp->blk_birth == 0);
428870ff 5823 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
b128c09f
BB
5824
5825 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5826
f8020c93
AM
5827 if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5828 /* no vdevs in this class */
b128c09f 5829 spa_config_exit(spa, SCL_ALLOC, FTAG);
2e528b49 5830 return (SET_ERROR(ENOSPC));
b128c09f 5831 }
34dc7c2f
BB
5832
5833 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5834 ASSERT(BP_GET_NDVAS(bp) == 0);
5835 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4e21fd06 5836 ASSERT3P(zal, !=, NULL);
34dc7c2f 5837
1c27024e 5838 for (int d = 0; d < ndvas; d++) {
34dc7c2f 5839 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
492f64e9 5840 txg, flags, zal, allocator);
93cf2076 5841 if (error != 0) {
34dc7c2f 5842 for (d--; d >= 0; d--) {
a1d477c2 5843 metaslab_unalloc_dva(spa, &dva[d], txg);
3dfb57a3 5844 metaslab_group_alloc_decrement(spa,
492f64e9
PD
5845 DVA_GET_VDEV(&dva[d]), zio, flags,
5846 allocator, B_FALSE);
861166b0 5847 memset(&dva[d], 0, sizeof (dva_t));
34dc7c2f 5848 }
b128c09f 5849 spa_config_exit(spa, SCL_ALLOC, FTAG);
34dc7c2f 5850 return (error);
3dfb57a3
DB
5851 } else {
5852 /*
5853 * Update the metaslab group's queue depth
5854 * based on the newly allocated dva.
5855 */
5856 metaslab_group_alloc_increment(spa,
492f64e9 5857 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
34dc7c2f
BB
5858 }
5859 }
5860 ASSERT(error == 0);
5861 ASSERT(BP_GET_NDVAS(bp) == ndvas);
5862
b128c09f
BB
5863 spa_config_exit(spa, SCL_ALLOC, FTAG);
5864
efe7978d 5865 BP_SET_BIRTH(bp, txg, 0);
b128c09f 5866
34dc7c2f
BB
5867 return (0);
5868}
5869
5870void
5871metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5872{
5873 const dva_t *dva = bp->blk_dva;
1c27024e 5874 int ndvas = BP_GET_NDVAS(bp);
34dc7c2f
BB
5875
5876 ASSERT(!BP_IS_HOLE(bp));
428870ff 5877 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
b128c09f 5878
d2734cce
SD
5879 /*
5880 * If we have a checkpoint for the pool we need to make sure that
5881 * the blocks that we free that are part of the checkpoint won't be
5882 * reused until the checkpoint is discarded or we revert to it.
5883 *
5884 * The checkpoint flag is passed down the metaslab_free code path
5885 * and is set whenever we want to add a block to the checkpoint's
5886 * accounting. That is, we "checkpoint" blocks that existed at the
5887 * time the checkpoint was created and are therefore referenced by
5888 * the checkpointed uberblock.
5889 *
5890 * Note that, we don't checkpoint any blocks if the current
5891 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5892 * normally as they will be referenced by the checkpointed uberblock.
5893 */
5894 boolean_t checkpoint = B_FALSE;
5895 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5896 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5897 /*
5898 * At this point, if the block is part of the checkpoint
5899 * there is no way it was created in the current txg.
5900 */
5901 ASSERT(!now);
5902 ASSERT3U(spa_syncing_txg(spa), ==, txg);
5903 checkpoint = B_TRUE;
5904 }
5905
b128c09f 5906 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
34dc7c2f 5907
a1d477c2
MA
5908 for (int d = 0; d < ndvas; d++) {
5909 if (now) {
5910 metaslab_unalloc_dva(spa, &dva[d], txg);
5911 } else {
d2734cce
SD
5912 ASSERT3U(txg, ==, spa_syncing_txg(spa));
5913 metaslab_free_dva(spa, &dva[d], checkpoint);
a1d477c2
MA
5914 }
5915 }
b128c09f
BB
5916
5917 spa_config_exit(spa, SCL_FREE, FTAG);
34dc7c2f
BB
5918}
5919
5920int
5921metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5922{
5923 const dva_t *dva = bp->blk_dva;
5924 int ndvas = BP_GET_NDVAS(bp);
1c27024e 5925 int error = 0;
34dc7c2f
BB
5926
5927 ASSERT(!BP_IS_HOLE(bp));
5928
b128c09f
BB
5929 if (txg != 0) {
5930 /*
5931 * First do a dry run to make sure all DVAs are claimable,
5932 * so we don't have to unwind from partial failures below.
5933 */
5934 if ((error = metaslab_claim(spa, bp, 0)) != 0)
5935 return (error);
5936 }
5937
5938 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5939
cc99f275
DB
5940 for (int d = 0; d < ndvas; d++) {
5941 error = metaslab_claim_dva(spa, &dva[d], txg);
5942 if (error != 0)
b128c09f 5943 break;
cc99f275 5944 }
b128c09f
BB
5945
5946 spa_config_exit(spa, SCL_ALLOC, FTAG);
5947
5948 ASSERT(error == 0 || txg == 0);
34dc7c2f 5949
b128c09f 5950 return (error);
34dc7c2f 5951}
920dd524 5952
d1d7e268
MK
5953void
5954metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
5955{
5956 const dva_t *dva = bp->blk_dva;
5957 int ndvas = BP_GET_NDVAS(bp);
5958 uint64_t psize = BP_GET_PSIZE(bp);
5959 int d;
5960 vdev_t *vd;
5961
5962 ASSERT(!BP_IS_HOLE(bp));
9b67f605 5963 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
5964 ASSERT(psize > 0);
5965
5966 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5967
5968 for (d = 0; d < ndvas; d++) {
5969 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5970 continue;
5971 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
5972 }
5973
5974 spa_config_exit(spa, SCL_VDEV, FTAG);
5975}
5976
d1d7e268
MK
5977void
5978metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
5979{
5980 const dva_t *dva = bp->blk_dva;
5981 int ndvas = BP_GET_NDVAS(bp);
5982 uint64_t psize = BP_GET_PSIZE(bp);
5983 int d;
5984 vdev_t *vd;
5985
5986 ASSERT(!BP_IS_HOLE(bp));
9b67f605 5987 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
5988 ASSERT(psize > 0);
5989
5990 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5991
5992 for (d = 0; d < ndvas; d++) {
5993 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5994 continue;
5995 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
5996 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
5997 }
5998
5999 spa_config_exit(spa, SCL_VDEV, FTAG);
6000}
30b92c1d 6001
a1d477c2
MA
6002static void
6003metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
6004 uint64_t size, void *arg)
6005{
14e4e3cb
AZ
6006 (void) inner, (void) arg;
6007
a1d477c2
MA
6008 if (vd->vdev_ops == &vdev_indirect_ops)
6009 return;
6010
6011 metaslab_check_free_impl(vd, offset, size);
6012}
6013
6014static void
6015metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
6016{
6017 metaslab_t *msp;
2a8ba608 6018 spa_t *spa __maybe_unused = vd->vdev_spa;
a1d477c2
MA
6019
6020 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6021 return;
6022
6023 if (vd->vdev_ops->vdev_op_remap != NULL) {
6024 vd->vdev_ops->vdev_op_remap(vd, offset, size,
6025 metaslab_check_free_impl_cb, NULL);
6026 return;
6027 }
6028
6029 ASSERT(vdev_is_concrete(vd));
6030 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6031 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6032
6033 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6034
6035 mutex_enter(&msp->ms_lock);
df72b8be
SD
6036 if (msp->ms_loaded) {
6037 range_tree_verify_not_present(msp->ms_allocatable,
6038 offset, size);
6039 }
a1d477c2 6040
93e28d66
SD
6041 /*
6042 * Check all segments that currently exist in the freeing pipeline.
6043 *
6044 * It would intuitively make sense to also check the current allocating
6045 * tree since metaslab_unalloc_dva() exists for extents that are
e1cfd73f 6046 * allocated and freed in the same sync pass within the same txg.
93e28d66
SD
6047 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6048 * segment but then we free part of it within the same txg
6049 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6050 * current allocating tree.
6051 */
df72b8be
SD
6052 range_tree_verify_not_present(msp->ms_freeing, offset, size);
6053 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6054 range_tree_verify_not_present(msp->ms_freed, offset, size);
a1d477c2 6055 for (int j = 0; j < TXG_DEFER_SIZE; j++)
df72b8be 6056 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
93e28d66 6057 range_tree_verify_not_present(msp->ms_trim, offset, size);
a1d477c2
MA
6058 mutex_exit(&msp->ms_lock);
6059}
6060
13fe0198
MA
6061void
6062metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6063{
13fe0198
MA
6064 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6065 return;
6066
6067 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1c27024e 6068 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
93cf2076
GW
6069 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6070 vdev_t *vd = vdev_lookup_top(spa, vdev);
6071 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
13fe0198 6072 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
13fe0198 6073
a1d477c2 6074 if (DVA_GET_GANG(&bp->blk_dva[i]))
2b56a634 6075 size = vdev_gang_header_asize(vd);
a1d477c2
MA
6076
6077 ASSERT3P(vd, !=, NULL);
13fe0198 6078
a1d477c2 6079 metaslab_check_free_impl(vd, offset, size);
13fe0198
MA
6080 }
6081 spa_config_exit(spa, SCL_VDEV, FTAG);
6082}
6083
1b939560
BB
6084static void
6085metaslab_group_disable_wait(metaslab_group_t *mg)
6086{
6087 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6088 while (mg->mg_disabled_updating) {
6089 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6090 }
6091}
6092
6093static void
6094metaslab_group_disabled_increment(metaslab_group_t *mg)
6095{
6096 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6097 ASSERT(mg->mg_disabled_updating);
6098
6099 while (mg->mg_ms_disabled >= max_disabled_ms) {
6100 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6101 }
6102 mg->mg_ms_disabled++;
6103 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6104}
6105
6106/*
6107 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6108 * We must also track how many metaslabs are currently disabled within a
6109 * metaslab group and limit them to prevent allocation failures from
6110 * occurring because all metaslabs are disabled.
6111 */
6112void
6113metaslab_disable(metaslab_t *msp)
6114{
6115 ASSERT(!MUTEX_HELD(&msp->ms_lock));
6116 metaslab_group_t *mg = msp->ms_group;
6117
6118 mutex_enter(&mg->mg_ms_disabled_lock);
6119
6120 /*
6121 * To keep an accurate count of how many threads have disabled
6122 * a specific metaslab group, we only allow one thread to mark
6123 * the metaslab group at a time. This ensures that the value of
6124 * ms_disabled will be accurate when we decide to mark a metaslab
6125 * group as disabled. To do this we force all other threads
6126 * to wait till the metaslab's mg_disabled_updating flag is no
6127 * longer set.
6128 */
6129 metaslab_group_disable_wait(mg);
6130 mg->mg_disabled_updating = B_TRUE;
6131 if (msp->ms_disabled == 0) {
6132 metaslab_group_disabled_increment(mg);
6133 }
6134 mutex_enter(&msp->ms_lock);
6135 msp->ms_disabled++;
6136 mutex_exit(&msp->ms_lock);
6137
6138 mg->mg_disabled_updating = B_FALSE;
6139 cv_broadcast(&mg->mg_ms_disabled_cv);
6140 mutex_exit(&mg->mg_ms_disabled_lock);
6141}
6142
6143void
f09fda50 6144metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
1b939560
BB
6145{
6146 metaslab_group_t *mg = msp->ms_group;
6147 spa_t *spa = mg->mg_vd->vdev_spa;
6148
6149 /*
6150 * Wait for the outstanding IO to be synced to prevent newly
6151 * allocated blocks from being overwritten. This used by
6152 * initialize and TRIM which are modifying unallocated space.
6153 */
6154 if (sync)
6155 txg_wait_synced(spa_get_dsl(spa), 0);
6156
6157 mutex_enter(&mg->mg_ms_disabled_lock);
6158 mutex_enter(&msp->ms_lock);
6159 if (--msp->ms_disabled == 0) {
6160 mg->mg_ms_disabled--;
6161 cv_broadcast(&mg->mg_ms_disabled_cv);
f09fda50
PD
6162 if (unload)
6163 metaslab_unload(msp);
1b939560
BB
6164 }
6165 mutex_exit(&msp->ms_lock);
6166 mutex_exit(&mg->mg_ms_disabled_lock);
6167}
6168
600a02b8
AM
6169void
6170metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6171{
6172 ms->ms_unflushed_dirty = dirty;
6173}
6174
93e28d66
SD
6175static void
6176metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6177{
6178 vdev_t *vd = ms->ms_group->mg_vd;
6179 spa_t *spa = vd->vdev_spa;
6180 objset_t *mos = spa_meta_objset(spa);
6181
6182 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6183
6184 metaslab_unflushed_phys_t entry = {
6185 .msp_unflushed_txg = metaslab_unflushed_txg(ms),
6186 };
6187 uint64_t entry_size = sizeof (entry);
6188 uint64_t entry_offset = ms->ms_id * entry_size;
6189
6190 uint64_t object = 0;
6191 int err = zap_lookup(mos, vd->vdev_top_zap,
6192 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6193 &object);
6194 if (err == ENOENT) {
6195 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6196 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6197 VERIFY0(zap_add(mos, vd->vdev_top_zap,
6198 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6199 &object, tx));
6200 } else {
6201 VERIFY0(err);
6202 }
6203
6204 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6205 &entry, tx);
6206}
6207
6208void
6209metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6210{
93e28d66
SD
6211 ms->ms_unflushed_txg = txg;
6212 metaslab_update_ondisk_flush_data(ms, tx);
6213}
6214
600a02b8
AM
6215boolean_t
6216metaslab_unflushed_dirty(metaslab_t *ms)
6217{
6218 return (ms->ms_unflushed_dirty);
6219}
6220
93e28d66
SD
6221uint64_t
6222metaslab_unflushed_txg(metaslab_t *ms)
6223{
6224 return (ms->ms_unflushed_txg);
6225}
6226
ab8d9c17 6227ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
03fdcb9a 6228 "Allocation granularity (a.k.a. stripe size)");
02730c33 6229
03fdcb9a
MM
6230ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6231 "Load all metaslabs when pool is first opened");
02730c33 6232
03fdcb9a
MM
6233ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6234 "Prevent metaslabs from being unloaded");
f4a4046b 6235
03fdcb9a
MM
6236ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6237 "Preload potential metaslabs during reassessment");
eef0f4d8 6238
fdc2d303 6239ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
03fdcb9a 6240 "Delay in txgs after metaslab was last used before unloading");
eef0f4d8 6241
fdc2d303 6242ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
03fdcb9a 6243 "Delay in milliseconds after metaslab was last used before unloading");
02730c33 6244
03fdcb9a 6245/* BEGIN CSTYLED */
fdc2d303 6246ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
03fdcb9a
MM
6247 "Percentage of metaslab group size that should be free to make it "
6248 "eligible for allocation");
f3a7f661 6249
fdc2d303 6250ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
03fdcb9a
MM
6251 "Percentage of metaslab group size that should be considered eligible "
6252 "for allocations unless all metaslab groups within the metaslab class "
6253 "have also crossed this threshold");
02730c33 6254
7ada752a
AZ
6255ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6256 ZMOD_RW,
03fdcb9a
MM
6257 "Use the fragmentation metric to prefer less fragmented metaslabs");
6258/* END CSTYLED */
02730c33 6259
fdc2d303 6260ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
7ada752a
AZ
6261 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6262
03fdcb9a
MM
6263ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6264 "Prefer metaslabs with lower LBAs");
4e21fd06 6265
03fdcb9a
MM
6266ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6267 "Enable metaslab group biasing");
4e21fd06 6268
03fdcb9a
MM
6269ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6270 ZMOD_RW, "Enable segment-based metaslab selection");
a1d477c2 6271
03fdcb9a
MM
6272ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6273 "Segment-based metaslab selection maximum buckets before switching");
d3230d76 6274
ab8d9c17 6275ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
46adb282
RN
6276 "Blocks larger than this size are sometimes forced to be gang blocks");
6277
6278ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
6279 "Percentage of large blocks that will be forced to be gang blocks");
d3230d76 6280
fdc2d303 6281ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
03fdcb9a 6282 "Max distance (bytes) to search forward before using size tree");
c81f1790 6283
03fdcb9a
MM
6284ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6285 "When looking in size tree, use largest segment instead of exact fit");
f09fda50 6286
ab8d9c17 6287ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
03fdcb9a 6288 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
cc99f275 6289
fdc2d303 6290ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
03fdcb9a 6291 "Percentage of memory that can be used to store metaslab range trees");
be5c6d96
MA
6292
6293ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6294 ZMOD_RW, "Try hard to allocate before ganging");
6295
fdc2d303 6296ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
be5c6d96 6297 "Normally only consider this many of the best metaslabs in each vdev");