]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/metaslab.c
Rebase master to b117
[mirror_zfs-debian.git] / module / zfs / metaslab.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
9babb374 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
23 * Use is subject to license terms.
24 */
25
34dc7c2f
BB
26#include <sys/zfs_context.h>
27#include <sys/spa_impl.h>
28#include <sys/dmu.h>
29#include <sys/dmu_tx.h>
30#include <sys/space_map.h>
31#include <sys/metaslab_impl.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio.h>
34
35uint64_t metaslab_aliquot = 512ULL << 10;
36uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
37
9babb374
BB
38/*
39 * Minimum size which forces the dynamic allocator to change
40 * it's allocation strategy. Once the space map cannot satisfy
41 * an allocation of this size then it switches to using more
42 * aggressive strategy (i.e search by size rather than offset).
43 */
44uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
45
46/*
47 * The minimum free space, in percent, which must be available
48 * in a space map to continue allocations in a first-fit fashion.
49 * Once the space_map's free space drops below this level we dynamically
50 * switch to using best-fit allocations.
51 */
52int metaslab_df_free_pct = 30;
53
34dc7c2f
BB
54/*
55 * ==========================================================================
56 * Metaslab classes
57 * ==========================================================================
58 */
59metaslab_class_t *
9babb374 60metaslab_class_create(space_map_ops_t *ops)
34dc7c2f
BB
61{
62 metaslab_class_t *mc;
63
64 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
65
66 mc->mc_rotor = NULL;
9babb374 67 mc->mc_ops = ops;
34dc7c2f
BB
68
69 return (mc);
70}
71
72void
73metaslab_class_destroy(metaslab_class_t *mc)
74{
75 metaslab_group_t *mg;
76
77 while ((mg = mc->mc_rotor) != NULL) {
78 metaslab_class_remove(mc, mg);
79 metaslab_group_destroy(mg);
80 }
81
82 kmem_free(mc, sizeof (metaslab_class_t));
83}
84
85void
86metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg)
87{
88 metaslab_group_t *mgprev, *mgnext;
89
90 ASSERT(mg->mg_class == NULL);
91
92 if ((mgprev = mc->mc_rotor) == NULL) {
93 mg->mg_prev = mg;
94 mg->mg_next = mg;
95 } else {
96 mgnext = mgprev->mg_next;
97 mg->mg_prev = mgprev;
98 mg->mg_next = mgnext;
99 mgprev->mg_next = mg;
100 mgnext->mg_prev = mg;
101 }
102 mc->mc_rotor = mg;
103 mg->mg_class = mc;
104}
105
106void
107metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg)
108{
109 metaslab_group_t *mgprev, *mgnext;
110
111 ASSERT(mg->mg_class == mc);
112
113 mgprev = mg->mg_prev;
114 mgnext = mg->mg_next;
115
116 if (mg == mgnext) {
117 mc->mc_rotor = NULL;
118 } else {
119 mc->mc_rotor = mgnext;
120 mgprev->mg_next = mgnext;
121 mgnext->mg_prev = mgprev;
122 }
123
124 mg->mg_prev = NULL;
125 mg->mg_next = NULL;
126 mg->mg_class = NULL;
127}
128
129/*
130 * ==========================================================================
131 * Metaslab groups
132 * ==========================================================================
133 */
134static int
135metaslab_compare(const void *x1, const void *x2)
136{
137 const metaslab_t *m1 = x1;
138 const metaslab_t *m2 = x2;
139
140 if (m1->ms_weight < m2->ms_weight)
141 return (1);
142 if (m1->ms_weight > m2->ms_weight)
143 return (-1);
144
145 /*
146 * If the weights are identical, use the offset to force uniqueness.
147 */
148 if (m1->ms_map.sm_start < m2->ms_map.sm_start)
149 return (-1);
150 if (m1->ms_map.sm_start > m2->ms_map.sm_start)
151 return (1);
152
153 ASSERT3P(m1, ==, m2);
154
155 return (0);
156}
157
158metaslab_group_t *
159metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
160{
161 metaslab_group_t *mg;
162
163 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
164 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
165 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
166 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
167 mg->mg_aliquot = metaslab_aliquot * MAX(1, vd->vdev_children);
168 mg->mg_vd = vd;
169 metaslab_class_add(mc, mg);
170
171 return (mg);
172}
173
174void
175metaslab_group_destroy(metaslab_group_t *mg)
176{
177 avl_destroy(&mg->mg_metaslab_tree);
178 mutex_destroy(&mg->mg_lock);
179 kmem_free(mg, sizeof (metaslab_group_t));
180}
181
182static void
183metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
184{
185 mutex_enter(&mg->mg_lock);
186 ASSERT(msp->ms_group == NULL);
187 msp->ms_group = mg;
188 msp->ms_weight = 0;
189 avl_add(&mg->mg_metaslab_tree, msp);
190 mutex_exit(&mg->mg_lock);
191}
192
193static void
194metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
195{
196 mutex_enter(&mg->mg_lock);
197 ASSERT(msp->ms_group == mg);
198 avl_remove(&mg->mg_metaslab_tree, msp);
199 msp->ms_group = NULL;
200 mutex_exit(&mg->mg_lock);
201}
202
203static void
204metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
205{
206 /*
207 * Although in principle the weight can be any value, in
208 * practice we do not use values in the range [1, 510].
209 */
210 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
211 ASSERT(MUTEX_HELD(&msp->ms_lock));
212
213 mutex_enter(&mg->mg_lock);
214 ASSERT(msp->ms_group == mg);
215 avl_remove(&mg->mg_metaslab_tree, msp);
216 msp->ms_weight = weight;
217 avl_add(&mg->mg_metaslab_tree, msp);
218 mutex_exit(&mg->mg_lock);
219}
220
221/*
9babb374
BB
222 * This is a helper function that can be used by the allocator to find
223 * a suitable block to allocate. This will search the specified AVL
224 * tree looking for a block that matches the specified criteria.
34dc7c2f 225 */
34dc7c2f 226static uint64_t
9babb374
BB
227metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
228 uint64_t align)
34dc7c2f 229{
34dc7c2f
BB
230 space_seg_t *ss, ssearch;
231 avl_index_t where;
232
233 ssearch.ss_start = *cursor;
234 ssearch.ss_end = *cursor + size;
235
236 ss = avl_find(t, &ssearch, &where);
237 if (ss == NULL)
238 ss = avl_nearest(t, where, AVL_AFTER);
239
240 while (ss != NULL) {
241 uint64_t offset = P2ROUNDUP(ss->ss_start, align);
242
243 if (offset + size <= ss->ss_end) {
244 *cursor = offset + size;
245 return (offset);
246 }
247 ss = AVL_NEXT(t, ss);
248 }
249
250 /*
251 * If we know we've searched the whole map (*cursor == 0), give up.
252 * Otherwise, reset the cursor to the beginning and try again.
253 */
254 if (*cursor == 0)
255 return (-1ULL);
256
257 *cursor = 0;
9babb374
BB
258 return (metaslab_block_picker(t, cursor, size, align));
259}
260
261/*
262 * ==========================================================================
263 * The first-fit block allocator
264 * ==========================================================================
265 */
266static void
267metaslab_ff_load(space_map_t *sm)
268{
269 ASSERT(sm->sm_ppd == NULL);
270 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
271 sm->sm_pp_root = NULL;
272}
273
274static void
275metaslab_ff_unload(space_map_t *sm)
276{
277 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
278 sm->sm_ppd = NULL;
279}
280
281static uint64_t
282metaslab_ff_alloc(space_map_t *sm, uint64_t size)
283{
284 avl_tree_t *t = &sm->sm_root;
285 uint64_t align = size & -size;
286 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
287
288 return (metaslab_block_picker(t, cursor, size, align));
34dc7c2f
BB
289}
290
291/* ARGSUSED */
292static void
293metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size)
294{
295 /* No need to update cursor */
296}
297
298/* ARGSUSED */
299static void
300metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size)
301{
302 /* No need to update cursor */
303}
304
305static space_map_ops_t metaslab_ff_ops = {
306 metaslab_ff_load,
307 metaslab_ff_unload,
308 metaslab_ff_alloc,
309 metaslab_ff_claim,
9babb374
BB
310 metaslab_ff_free,
311 NULL /* maxsize */
312};
313
314/*
315 * Dynamic block allocator -
316 * Uses the first fit allocation scheme until space get low and then
317 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
318 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
319 */
320
321uint64_t
322metaslab_df_maxsize(space_map_t *sm)
323{
324 avl_tree_t *t = sm->sm_pp_root;
325 space_seg_t *ss;
326
327 if (t == NULL || (ss = avl_last(t)) == NULL)
328 return (0ULL);
329
330 return (ss->ss_end - ss->ss_start);
331}
332
333static int
334metaslab_df_seg_compare(const void *x1, const void *x2)
335{
336 const space_seg_t *s1 = x1;
337 const space_seg_t *s2 = x2;
338 uint64_t ss_size1 = s1->ss_end - s1->ss_start;
339 uint64_t ss_size2 = s2->ss_end - s2->ss_start;
340
341 if (ss_size1 < ss_size2)
342 return (-1);
343 if (ss_size1 > ss_size2)
344 return (1);
345
346 if (s1->ss_start < s2->ss_start)
347 return (-1);
348 if (s1->ss_start > s2->ss_start)
349 return (1);
350
351 return (0);
352}
353
354static void
355metaslab_df_load(space_map_t *sm)
356{
357 space_seg_t *ss;
358
359 ASSERT(sm->sm_ppd == NULL);
360 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
361
362 sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
363 avl_create(sm->sm_pp_root, metaslab_df_seg_compare,
364 sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
365
366 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
367 avl_add(sm->sm_pp_root, ss);
368}
369
370static void
371metaslab_df_unload(space_map_t *sm)
372{
373 void *cookie = NULL;
374
375 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
376 sm->sm_ppd = NULL;
377
378 while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
379 /* tear down the tree */
380 }
381
382 avl_destroy(sm->sm_pp_root);
383 kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
384 sm->sm_pp_root = NULL;
385}
386
387static uint64_t
388metaslab_df_alloc(space_map_t *sm, uint64_t size)
389{
390 avl_tree_t *t = &sm->sm_root;
391 uint64_t align = size & -size;
392 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
393 uint64_t max_size = metaslab_df_maxsize(sm);
394 int free_pct = sm->sm_space * 100 / sm->sm_size;
395
396 ASSERT(MUTEX_HELD(sm->sm_lock));
397 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
398
399 if (max_size < size)
400 return (-1ULL);
401
402 /*
403 * If we're running low on space switch to using the size
404 * sorted AVL tree (best-fit).
405 */
406 if (max_size < metaslab_df_alloc_threshold ||
407 free_pct < metaslab_df_free_pct) {
408 t = sm->sm_pp_root;
409 *cursor = 0;
410 }
411
412 return (metaslab_block_picker(t, cursor, size, 1ULL));
413}
414
415/* ARGSUSED */
416static void
417metaslab_df_claim(space_map_t *sm, uint64_t start, uint64_t size)
418{
419 /* No need to update cursor */
420}
421
422/* ARGSUSED */
423static void
424metaslab_df_free(space_map_t *sm, uint64_t start, uint64_t size)
425{
426 /* No need to update cursor */
427}
428
429static space_map_ops_t metaslab_df_ops = {
430 metaslab_df_load,
431 metaslab_df_unload,
432 metaslab_df_alloc,
433 metaslab_df_claim,
434 metaslab_df_free,
435 metaslab_df_maxsize
34dc7c2f
BB
436};
437
9babb374
BB
438space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
439
34dc7c2f
BB
440/*
441 * ==========================================================================
442 * Metaslabs
443 * ==========================================================================
444 */
445metaslab_t *
446metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
447 uint64_t start, uint64_t size, uint64_t txg)
448{
449 vdev_t *vd = mg->mg_vd;
450 metaslab_t *msp;
451
452 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
453 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
454
455 msp->ms_smo_syncing = *smo;
456
457 /*
458 * We create the main space map here, but we don't create the
459 * allocmaps and freemaps until metaslab_sync_done(). This serves
460 * two purposes: it allows metaslab_sync_done() to detect the
461 * addition of new space; and for debugging, it ensures that we'd
462 * data fault on any attempt to use this metaslab before it's ready.
463 */
464 space_map_create(&msp->ms_map, start, size,
465 vd->vdev_ashift, &msp->ms_lock);
466
467 metaslab_group_add(mg, msp);
468
469 /*
470 * If we're opening an existing pool (txg == 0) or creating
471 * a new one (txg == TXG_INITIAL), all space is available now.
472 * If we're adding space to an existing pool, the new space
473 * does not become available until after this txg has synced.
474 */
475 if (txg <= TXG_INITIAL)
476 metaslab_sync_done(msp, 0);
477
478 if (txg != 0) {
479 /*
480 * The vdev is dirty, but the metaslab isn't -- it just needs
481 * to have metaslab_sync_done() invoked from vdev_sync_done().
482 * [We could just dirty the metaslab, but that would cause us
483 * to allocate a space map object for it, which is wasteful
484 * and would mess up the locality logic in metaslab_weight().]
485 */
486 ASSERT(TXG_CLEAN(txg) == spa_last_synced_txg(vd->vdev_spa));
487 vdev_dirty(vd, 0, NULL, txg);
488 vdev_dirty(vd, VDD_METASLAB, msp, TXG_CLEAN(txg));
489 }
490
491 return (msp);
492}
493
494void
495metaslab_fini(metaslab_t *msp)
496{
497 metaslab_group_t *mg = msp->ms_group;
498 int t;
499
500 vdev_space_update(mg->mg_vd, -msp->ms_map.sm_size,
501 -msp->ms_smo.smo_alloc, B_TRUE);
502
503 metaslab_group_remove(mg, msp);
504
505 mutex_enter(&msp->ms_lock);
506
507 space_map_unload(&msp->ms_map);
508 space_map_destroy(&msp->ms_map);
509
510 for (t = 0; t < TXG_SIZE; t++) {
511 space_map_destroy(&msp->ms_allocmap[t]);
512 space_map_destroy(&msp->ms_freemap[t]);
513 }
514
515 mutex_exit(&msp->ms_lock);
516 mutex_destroy(&msp->ms_lock);
517
518 kmem_free(msp, sizeof (metaslab_t));
519}
520
521#define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
522#define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
523#define METASLAB_ACTIVE_MASK \
524 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
525#define METASLAB_SMO_BONUS_MULTIPLIER 2
526
527static uint64_t
528metaslab_weight(metaslab_t *msp)
529{
530 metaslab_group_t *mg = msp->ms_group;
531 space_map_t *sm = &msp->ms_map;
532 space_map_obj_t *smo = &msp->ms_smo;
533 vdev_t *vd = mg->mg_vd;
534 uint64_t weight, space;
535
536 ASSERT(MUTEX_HELD(&msp->ms_lock));
537
538 /*
539 * The baseline weight is the metaslab's free space.
540 */
541 space = sm->sm_size - smo->smo_alloc;
542 weight = space;
543
544 /*
545 * Modern disks have uniform bit density and constant angular velocity.
546 * Therefore, the outer recording zones are faster (higher bandwidth)
547 * than the inner zones by the ratio of outer to inner track diameter,
548 * which is typically around 2:1. We account for this by assigning
549 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
550 * In effect, this means that we'll select the metaslab with the most
551 * free bandwidth rather than simply the one with the most free space.
552 */
553 weight = 2 * weight -
554 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
555 ASSERT(weight >= space && weight <= 2 * space);
556
557 /*
558 * For locality, assign higher weight to metaslabs we've used before.
559 */
560 if (smo->smo_object != 0)
561 weight *= METASLAB_SMO_BONUS_MULTIPLIER;
562 ASSERT(weight >= space &&
563 weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space);
564
565 /*
566 * If this metaslab is one we're actively using, adjust its weight to
567 * make it preferable to any inactive metaslab so we'll polish it off.
568 */
569 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
570
571 return (weight);
572}
573
574static int
9babb374 575metaslab_activate(metaslab_t *msp, uint64_t activation_weight, uint64_t size)
34dc7c2f
BB
576{
577 space_map_t *sm = &msp->ms_map;
9babb374 578 space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
34dc7c2f
BB
579
580 ASSERT(MUTEX_HELD(&msp->ms_lock));
581
582 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
9babb374 583 int error = space_map_load(sm, sm_ops, SM_FREE, &msp->ms_smo,
34dc7c2f
BB
584 msp->ms_group->mg_vd->vdev_spa->spa_meta_objset);
585 if (error) {
586 metaslab_group_sort(msp->ms_group, msp, 0);
587 return (error);
588 }
9babb374
BB
589
590 /*
591 * If we were able to load the map then make sure
592 * that this map is still able to satisfy our request.
593 */
594 if (msp->ms_weight < size)
595 return (ENOSPC);
596
34dc7c2f
BB
597 metaslab_group_sort(msp->ms_group, msp,
598 msp->ms_weight | activation_weight);
599 }
600 ASSERT(sm->sm_loaded);
601 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
602
603 return (0);
604}
605
606static void
607metaslab_passivate(metaslab_t *msp, uint64_t size)
608{
609 /*
610 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
611 * this metaslab again. In that case, it had better be empty,
612 * or we would be leaving space on the table.
613 */
614 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
615 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
616 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
617}
618
619/*
620 * Write a metaslab to disk in the context of the specified transaction group.
621 */
622void
623metaslab_sync(metaslab_t *msp, uint64_t txg)
624{
625 vdev_t *vd = msp->ms_group->mg_vd;
626 spa_t *spa = vd->vdev_spa;
627 objset_t *mos = spa->spa_meta_objset;
628 space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
629 space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
630 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
631 space_map_t *sm = &msp->ms_map;
632 space_map_obj_t *smo = &msp->ms_smo_syncing;
633 dmu_buf_t *db;
634 dmu_tx_t *tx;
635 int t;
636
637 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
638
639 /*
640 * The only state that can actually be changing concurrently with
641 * metaslab_sync() is the metaslab's ms_map. No other thread can
642 * be modifying this txg's allocmap, freemap, freed_map, or smo.
643 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
644 * We drop it whenever we call into the DMU, because the DMU
645 * can call down to us (e.g. via zio_free()) at any time.
646 */
647 mutex_enter(&msp->ms_lock);
648
649 if (smo->smo_object == 0) {
650 ASSERT(smo->smo_objsize == 0);
651 ASSERT(smo->smo_alloc == 0);
652 mutex_exit(&msp->ms_lock);
653 smo->smo_object = dmu_object_alloc(mos,
654 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
655 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
656 ASSERT(smo->smo_object != 0);
657 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
658 (sm->sm_start >> vd->vdev_ms_shift),
659 sizeof (uint64_t), &smo->smo_object, tx);
660 mutex_enter(&msp->ms_lock);
661 }
662
663 space_map_walk(freemap, space_map_add, freed_map);
664
665 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
666 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
667 /*
668 * The in-core space map representation is twice as compact
669 * as the on-disk one, so it's time to condense the latter
670 * by generating a pure allocmap from first principles.
671 *
672 * This metaslab is 100% allocated,
673 * minus the content of the in-core map (sm),
674 * minus what's been freed this txg (freed_map),
675 * minus allocations from txgs in the future
676 * (because they haven't been committed yet).
677 */
678 space_map_vacate(allocmap, NULL, NULL);
679 space_map_vacate(freemap, NULL, NULL);
680
681 space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
682
683 space_map_walk(sm, space_map_remove, allocmap);
684 space_map_walk(freed_map, space_map_remove, allocmap);
685
686 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
687 space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
688 space_map_remove, allocmap);
689
690 mutex_exit(&msp->ms_lock);
691 space_map_truncate(smo, mos, tx);
692 mutex_enter(&msp->ms_lock);
693 }
694
695 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
696 space_map_sync(freemap, SM_FREE, smo, mos, tx);
697
698 mutex_exit(&msp->ms_lock);
699
700 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
701 dmu_buf_will_dirty(db, tx);
702 ASSERT3U(db->db_size, >=, sizeof (*smo));
703 bcopy(smo, db->db_data, sizeof (*smo));
704 dmu_buf_rele(db, FTAG);
705
706 dmu_tx_commit(tx);
707}
708
709/*
710 * Called after a transaction group has completely synced to mark
711 * all of the metaslab's free space as usable.
712 */
713void
714metaslab_sync_done(metaslab_t *msp, uint64_t txg)
715{
716 space_map_obj_t *smo = &msp->ms_smo;
717 space_map_obj_t *smosync = &msp->ms_smo_syncing;
718 space_map_t *sm = &msp->ms_map;
719 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
720 metaslab_group_t *mg = msp->ms_group;
721 vdev_t *vd = mg->mg_vd;
722 int t;
723
724 mutex_enter(&msp->ms_lock);
725
726 /*
727 * If this metaslab is just becoming available, initialize its
728 * allocmaps and freemaps and add its capacity to the vdev.
729 */
730 if (freed_map->sm_size == 0) {
731 for (t = 0; t < TXG_SIZE; t++) {
732 space_map_create(&msp->ms_allocmap[t], sm->sm_start,
733 sm->sm_size, sm->sm_shift, sm->sm_lock);
734 space_map_create(&msp->ms_freemap[t], sm->sm_start,
735 sm->sm_size, sm->sm_shift, sm->sm_lock);
736 }
737 vdev_space_update(vd, sm->sm_size, 0, B_TRUE);
738 }
739
740 vdev_space_update(vd, 0, smosync->smo_alloc - smo->smo_alloc, B_TRUE);
741
742 ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
743 ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
744
745 /*
746 * If there's a space_map_load() in progress, wait for it to complete
747 * so that we have a consistent view of the in-core space map.
748 * Then, add everything we freed in this txg to the map.
749 */
750 space_map_load_wait(sm);
751 space_map_vacate(freed_map, sm->sm_loaded ? space_map_free : NULL, sm);
752
753 *smo = *smosync;
754
755 /*
756 * If the map is loaded but no longer active, evict it as soon as all
757 * future allocations have synced. (If we unloaded it now and then
758 * loaded a moment later, the map wouldn't reflect those allocations.)
759 */
760 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
761 int evictable = 1;
762
763 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
764 if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
765 evictable = 0;
766
767 if (evictable)
768 space_map_unload(sm);
769 }
770
771 metaslab_group_sort(mg, msp, metaslab_weight(msp));
772
773 mutex_exit(&msp->ms_lock);
774}
775
776static uint64_t
777metaslab_distance(metaslab_t *msp, dva_t *dva)
778{
779 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
780 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
781 uint64_t start = msp->ms_map.sm_start >> ms_shift;
782
783 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
784 return (1ULL << 63);
785
786 if (offset < start)
787 return ((start - offset) << ms_shift);
788 if (offset > start)
789 return ((offset - start) << ms_shift);
790 return (0);
791}
792
793static uint64_t
794metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg,
795 uint64_t min_distance, dva_t *dva, int d)
796{
797 metaslab_t *msp = NULL;
798 uint64_t offset = -1ULL;
799 avl_tree_t *t = &mg->mg_metaslab_tree;
800 uint64_t activation_weight;
801 uint64_t target_distance;
802 int i;
803
804 activation_weight = METASLAB_WEIGHT_PRIMARY;
9babb374
BB
805 for (i = 0; i < d; i++) {
806 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
34dc7c2f 807 activation_weight = METASLAB_WEIGHT_SECONDARY;
9babb374
BB
808 break;
809 }
810 }
34dc7c2f
BB
811
812 for (;;) {
9babb374
BB
813 boolean_t was_active;
814
34dc7c2f
BB
815 mutex_enter(&mg->mg_lock);
816 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
817 if (msp->ms_weight < size) {
818 mutex_exit(&mg->mg_lock);
819 return (-1ULL);
820 }
821
9babb374 822 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
34dc7c2f
BB
823 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
824 break;
825
826 target_distance = min_distance +
827 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
828
829 for (i = 0; i < d; i++)
830 if (metaslab_distance(msp, &dva[i]) <
831 target_distance)
832 break;
833 if (i == d)
834 break;
835 }
836 mutex_exit(&mg->mg_lock);
837 if (msp == NULL)
838 return (-1ULL);
839
840 mutex_enter(&msp->ms_lock);
841
842 /*
843 * Ensure that the metaslab we have selected is still
844 * capable of handling our request. It's possible that
845 * another thread may have changed the weight while we
846 * were blocked on the metaslab lock.
847 */
9babb374
BB
848 if (msp->ms_weight < size || (was_active &&
849 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
850 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
34dc7c2f
BB
851 mutex_exit(&msp->ms_lock);
852 continue;
853 }
854
855 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
856 activation_weight == METASLAB_WEIGHT_PRIMARY) {
857 metaslab_passivate(msp,
858 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
859 mutex_exit(&msp->ms_lock);
860 continue;
861 }
862
9babb374 863 if (metaslab_activate(msp, activation_weight, size) != 0) {
34dc7c2f
BB
864 mutex_exit(&msp->ms_lock);
865 continue;
866 }
867
868 if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL)
869 break;
870
871 metaslab_passivate(msp, size - 1);
872
873 mutex_exit(&msp->ms_lock);
874 }
875
876 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
877 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
878
879 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
880
881 mutex_exit(&msp->ms_lock);
882
883 return (offset);
884}
885
886/*
887 * Allocate a block for the specified i/o.
888 */
889static int
890metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
b128c09f 891 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
34dc7c2f
BB
892{
893 metaslab_group_t *mg, *rotor;
894 vdev_t *vd;
895 int dshift = 3;
896 int all_zero;
fb5f0bc8
BB
897 int zio_lock = B_FALSE;
898 boolean_t allocatable;
34dc7c2f
BB
899 uint64_t offset = -1ULL;
900 uint64_t asize;
901 uint64_t distance;
902
903 ASSERT(!DVA_IS_VALID(&dva[d]));
904
905 /*
906 * For testing, make some blocks above a certain size be gang blocks.
907 */
908 if (psize >= metaslab_gang_bang && (lbolt & 3) == 0)
909 return (ENOSPC);
910
911 /*
912 * Start at the rotor and loop through all mgs until we find something.
913 * Note that there's no locking on mc_rotor or mc_allocated because
914 * nothing actually breaks if we miss a few updates -- we just won't
915 * allocate quite as evenly. It all balances out over time.
916 *
917 * If we are doing ditto or log blocks, try to spread them across
918 * consecutive vdevs. If we're forced to reuse a vdev before we've
919 * allocated all of our ditto blocks, then try and spread them out on
920 * that vdev as much as possible. If it turns out to not be possible,
921 * gradually lower our standards until anything becomes acceptable.
922 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
923 * gives us hope of containing our fault domains to something we're
924 * able to reason about. Otherwise, any two top-level vdev failures
925 * will guarantee the loss of data. With consecutive allocation,
926 * only two adjacent top-level vdev failures will result in data loss.
927 *
928 * If we are doing gang blocks (hintdva is non-NULL), try to keep
929 * ourselves on the same vdev as our gang block header. That
930 * way, we can hope for locality in vdev_cache, plus it makes our
931 * fault domains something tractable.
932 */
933 if (hintdva) {
934 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
b128c09f 935 if (flags & METASLAB_HINTBP_AVOID)
34dc7c2f
BB
936 mg = vd->vdev_mg->mg_next;
937 else
938 mg = vd->vdev_mg;
939 } else if (d != 0) {
940 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
941 mg = vd->vdev_mg->mg_next;
942 } else {
943 mg = mc->mc_rotor;
944 }
945
946 /*
947 * If the hint put us into the wrong class, just follow the rotor.
948 */
949 if (mg->mg_class != mc)
950 mg = mc->mc_rotor;
951
952 rotor = mg;
953top:
954 all_zero = B_TRUE;
955 do {
956 vd = mg->mg_vd;
fb5f0bc8 957
34dc7c2f 958 /*
b128c09f 959 * Don't allocate from faulted devices.
34dc7c2f 960 */
fb5f0bc8
BB
961 if (zio_lock) {
962 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
963 allocatable = vdev_allocatable(vd);
964 spa_config_exit(spa, SCL_ZIO, FTAG);
965 } else {
966 allocatable = vdev_allocatable(vd);
967 }
968 if (!allocatable)
34dc7c2f 969 goto next;
fb5f0bc8 970
34dc7c2f
BB
971 /*
972 * Avoid writing single-copy data to a failing vdev
973 */
974 if ((vd->vdev_stat.vs_write_errors > 0 ||
975 vd->vdev_state < VDEV_STATE_HEALTHY) &&
976 d == 0 && dshift == 3) {
977 all_zero = B_FALSE;
978 goto next;
979 }
980
981 ASSERT(mg->mg_class == mc);
982
983 distance = vd->vdev_asize >> dshift;
984 if (distance <= (1ULL << vd->vdev_ms_shift))
985 distance = 0;
986 else
987 all_zero = B_FALSE;
988
989 asize = vdev_psize_to_asize(vd, psize);
990 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
991
992 offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d);
993 if (offset != -1ULL) {
994 /*
995 * If we've just selected this metaslab group,
996 * figure out whether the corresponding vdev is
997 * over- or under-used relative to the pool,
998 * and set an allocation bias to even it out.
999 */
1000 if (mc->mc_allocated == 0) {
1001 vdev_stat_t *vs = &vd->vdev_stat;
1002 uint64_t alloc, space;
1003 int64_t vu, su;
1004
1005 alloc = spa_get_alloc(spa);
1006 space = spa_get_space(spa);
1007
1008 /*
1009 * Determine percent used in units of 0..1024.
1010 * (This is just to avoid floating point.)
1011 */
1012 vu = (vs->vs_alloc << 10) / (vs->vs_space + 1);
1013 su = (alloc << 10) / (space + 1);
1014
1015 /*
1016 * Bias by at most +/- 25% of the aliquot.
1017 */
1018 mg->mg_bias = ((su - vu) *
1019 (int64_t)mg->mg_aliquot) / (1024 * 4);
1020 }
1021
1022 if (atomic_add_64_nv(&mc->mc_allocated, asize) >=
1023 mg->mg_aliquot + mg->mg_bias) {
1024 mc->mc_rotor = mg->mg_next;
1025 mc->mc_allocated = 0;
1026 }
1027
1028 DVA_SET_VDEV(&dva[d], vd->vdev_id);
1029 DVA_SET_OFFSET(&dva[d], offset);
b128c09f 1030 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
34dc7c2f
BB
1031 DVA_SET_ASIZE(&dva[d], asize);
1032
1033 return (0);
1034 }
1035next:
1036 mc->mc_rotor = mg->mg_next;
1037 mc->mc_allocated = 0;
1038 } while ((mg = mg->mg_next) != rotor);
1039
1040 if (!all_zero) {
1041 dshift++;
1042 ASSERT(dshift < 64);
1043 goto top;
1044 }
1045
9babb374 1046 if (!allocatable && !zio_lock) {
fb5f0bc8
BB
1047 dshift = 3;
1048 zio_lock = B_TRUE;
1049 goto top;
1050 }
1051
34dc7c2f
BB
1052 bzero(&dva[d], sizeof (dva_t));
1053
1054 return (ENOSPC);
1055}
1056
1057/*
1058 * Free the block represented by DVA in the context of the specified
1059 * transaction group.
1060 */
1061static void
1062metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1063{
1064 uint64_t vdev = DVA_GET_VDEV(dva);
1065 uint64_t offset = DVA_GET_OFFSET(dva);
1066 uint64_t size = DVA_GET_ASIZE(dva);
1067 vdev_t *vd;
1068 metaslab_t *msp;
1069
1070 ASSERT(DVA_IS_VALID(dva));
1071
1072 if (txg > spa_freeze_txg(spa))
1073 return;
1074
1075 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1076 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1077 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1078 (u_longlong_t)vdev, (u_longlong_t)offset);
1079 ASSERT(0);
1080 return;
1081 }
1082
1083 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1084
1085 if (DVA_GET_GANG(dva))
1086 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1087
1088 mutex_enter(&msp->ms_lock);
1089
1090 if (now) {
1091 space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
1092 offset, size);
1093 space_map_free(&msp->ms_map, offset, size);
1094 } else {
1095 if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
1096 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1097 space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
34dc7c2f
BB
1098 }
1099
1100 mutex_exit(&msp->ms_lock);
1101}
1102
1103/*
1104 * Intent log support: upon opening the pool after a crash, notify the SPA
1105 * of blocks that the intent log has allocated for immediate write, but
1106 * which are still considered free by the SPA because the last transaction
1107 * group didn't commit yet.
1108 */
1109static int
1110metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1111{
1112 uint64_t vdev = DVA_GET_VDEV(dva);
1113 uint64_t offset = DVA_GET_OFFSET(dva);
1114 uint64_t size = DVA_GET_ASIZE(dva);
1115 vdev_t *vd;
1116 metaslab_t *msp;
1117 int error;
1118
1119 ASSERT(DVA_IS_VALID(dva));
1120
1121 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1122 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1123 return (ENXIO);
1124
1125 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1126
1127 if (DVA_GET_GANG(dva))
1128 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1129
1130 mutex_enter(&msp->ms_lock);
1131
9babb374 1132 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY, 0);
b128c09f 1133 if (error || txg == 0) { /* txg == 0 indicates dry run */
34dc7c2f
BB
1134 mutex_exit(&msp->ms_lock);
1135 return (error);
1136 }
1137
34dc7c2f 1138 space_map_claim(&msp->ms_map, offset, size);
b128c09f 1139
fb5f0bc8 1140 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
b128c09f
BB
1141 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1142 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1143 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1144 }
34dc7c2f
BB
1145
1146 mutex_exit(&msp->ms_lock);
1147
1148 return (0);
1149}
1150
1151int
1152metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
b128c09f 1153 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
34dc7c2f
BB
1154{
1155 dva_t *dva = bp->blk_dva;
1156 dva_t *hintdva = hintbp->blk_dva;
34dc7c2f
BB
1157 int error = 0;
1158
b128c09f
BB
1159 ASSERT(bp->blk_birth == 0);
1160
1161 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1162
1163 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
1164 spa_config_exit(spa, SCL_ALLOC, FTAG);
34dc7c2f 1165 return (ENOSPC);
b128c09f 1166 }
34dc7c2f
BB
1167
1168 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1169 ASSERT(BP_GET_NDVAS(bp) == 0);
1170 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1171
b128c09f 1172 for (int d = 0; d < ndvas; d++) {
34dc7c2f 1173 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
b128c09f 1174 txg, flags);
34dc7c2f
BB
1175 if (error) {
1176 for (d--; d >= 0; d--) {
1177 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1178 bzero(&dva[d], sizeof (dva_t));
1179 }
b128c09f 1180 spa_config_exit(spa, SCL_ALLOC, FTAG);
34dc7c2f
BB
1181 return (error);
1182 }
1183 }
1184 ASSERT(error == 0);
1185 ASSERT(BP_GET_NDVAS(bp) == ndvas);
1186
b128c09f
BB
1187 spa_config_exit(spa, SCL_ALLOC, FTAG);
1188
1189 bp->blk_birth = txg;
1190
34dc7c2f
BB
1191 return (0);
1192}
1193
1194void
1195metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1196{
1197 const dva_t *dva = bp->blk_dva;
1198 int ndvas = BP_GET_NDVAS(bp);
34dc7c2f
BB
1199
1200 ASSERT(!BP_IS_HOLE(bp));
b128c09f
BB
1201 ASSERT(!now || bp->blk_birth >= spa->spa_syncing_txg);
1202
1203 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
34dc7c2f 1204
b128c09f 1205 for (int d = 0; d < ndvas; d++)
34dc7c2f 1206 metaslab_free_dva(spa, &dva[d], txg, now);
b128c09f
BB
1207
1208 spa_config_exit(spa, SCL_FREE, FTAG);
34dc7c2f
BB
1209}
1210
1211int
1212metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1213{
1214 const dva_t *dva = bp->blk_dva;
1215 int ndvas = BP_GET_NDVAS(bp);
b128c09f 1216 int error = 0;
34dc7c2f
BB
1217
1218 ASSERT(!BP_IS_HOLE(bp));
1219
b128c09f
BB
1220 if (txg != 0) {
1221 /*
1222 * First do a dry run to make sure all DVAs are claimable,
1223 * so we don't have to unwind from partial failures below.
1224 */
1225 if ((error = metaslab_claim(spa, bp, 0)) != 0)
1226 return (error);
1227 }
1228
1229 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1230
1231 for (int d = 0; d < ndvas; d++)
34dc7c2f 1232 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
b128c09f
BB
1233 break;
1234
1235 spa_config_exit(spa, SCL_ALLOC, FTAG);
1236
1237 ASSERT(error == 0 || txg == 0);
34dc7c2f 1238
b128c09f 1239 return (error);
34dc7c2f 1240}