]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/metaslab.c
Illumos #510: 'zfs get' enhancement - mountpoint as an argument
[mirror_zfs-debian.git] / module / zfs / metaslab.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
34dc7c2f
BB
23 */
24
34dc7c2f 25#include <sys/zfs_context.h>
34dc7c2f
BB
26#include <sys/dmu.h>
27#include <sys/dmu_tx.h>
28#include <sys/space_map.h>
29#include <sys/metaslab_impl.h>
30#include <sys/vdev_impl.h>
31#include <sys/zio.h>
32
22c81dd8
BB
33#define WITH_NDF_BLOCK_ALLOCATOR
34
34dc7c2f
BB
35uint64_t metaslab_aliquot = 512ULL << 10;
36uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
37
428870ff
BB
38/*
39 * Metaslab debugging: when set, keeps all space maps in core to verify frees.
40 */
41static int metaslab_debug = 0;
42
9babb374
BB
43/*
44 * Minimum size which forces the dynamic allocator to change
428870ff 45 * it's allocation strategy. Once the space map cannot satisfy
9babb374
BB
46 * an allocation of this size then it switches to using more
47 * aggressive strategy (i.e search by size rather than offset).
48 */
49uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
50
51/*
52 * The minimum free space, in percent, which must be available
53 * in a space map to continue allocations in a first-fit fashion.
54 * Once the space_map's free space drops below this level we dynamically
55 * switch to using best-fit allocations.
56 */
428870ff
BB
57int metaslab_df_free_pct = 4;
58
59/*
60 * A metaslab is considered "free" if it contains a contiguous
61 * segment which is greater than metaslab_min_alloc_size.
62 */
63uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
64
65/*
66 * Max number of space_maps to prefetch.
67 */
68int metaslab_prefetch_limit = SPA_DVAS_PER_BP;
69
70/*
71 * Percentage bonus multiplier for metaslabs that are in the bonus area.
72 */
73int metaslab_smo_bonus_pct = 150;
9babb374 74
34dc7c2f
BB
75/*
76 * ==========================================================================
77 * Metaslab classes
78 * ==========================================================================
79 */
80metaslab_class_t *
428870ff 81metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
34dc7c2f
BB
82{
83 metaslab_class_t *mc;
84
85 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
86
428870ff 87 mc->mc_spa = spa;
34dc7c2f 88 mc->mc_rotor = NULL;
9babb374 89 mc->mc_ops = ops;
34dc7c2f
BB
90
91 return (mc);
92}
93
94void
95metaslab_class_destroy(metaslab_class_t *mc)
96{
428870ff
BB
97 ASSERT(mc->mc_rotor == NULL);
98 ASSERT(mc->mc_alloc == 0);
99 ASSERT(mc->mc_deferred == 0);
100 ASSERT(mc->mc_space == 0);
101 ASSERT(mc->mc_dspace == 0);
34dc7c2f
BB
102
103 kmem_free(mc, sizeof (metaslab_class_t));
104}
105
428870ff
BB
106int
107metaslab_class_validate(metaslab_class_t *mc)
34dc7c2f 108{
428870ff
BB
109 metaslab_group_t *mg;
110 vdev_t *vd;
34dc7c2f 111
428870ff
BB
112 /*
113 * Must hold one of the spa_config locks.
114 */
115 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
116 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
34dc7c2f 117
428870ff
BB
118 if ((mg = mc->mc_rotor) == NULL)
119 return (0);
120
121 do {
122 vd = mg->mg_vd;
123 ASSERT(vd->vdev_mg != NULL);
124 ASSERT3P(vd->vdev_top, ==, vd);
125 ASSERT3P(mg->mg_class, ==, mc);
126 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
127 } while ((mg = mg->mg_next) != mc->mc_rotor);
128
129 return (0);
34dc7c2f
BB
130}
131
132void
428870ff
BB
133metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
134 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
34dc7c2f 135{
428870ff
BB
136 atomic_add_64(&mc->mc_alloc, alloc_delta);
137 atomic_add_64(&mc->mc_deferred, defer_delta);
138 atomic_add_64(&mc->mc_space, space_delta);
139 atomic_add_64(&mc->mc_dspace, dspace_delta);
140}
34dc7c2f 141
428870ff
BB
142uint64_t
143metaslab_class_get_alloc(metaslab_class_t *mc)
144{
145 return (mc->mc_alloc);
146}
34dc7c2f 147
428870ff
BB
148uint64_t
149metaslab_class_get_deferred(metaslab_class_t *mc)
150{
151 return (mc->mc_deferred);
152}
34dc7c2f 153
428870ff
BB
154uint64_t
155metaslab_class_get_space(metaslab_class_t *mc)
156{
157 return (mc->mc_space);
158}
34dc7c2f 159
428870ff
BB
160uint64_t
161metaslab_class_get_dspace(metaslab_class_t *mc)
162{
163 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
34dc7c2f
BB
164}
165
166/*
167 * ==========================================================================
168 * Metaslab groups
169 * ==========================================================================
170 */
171static int
172metaslab_compare(const void *x1, const void *x2)
173{
174 const metaslab_t *m1 = x1;
175 const metaslab_t *m2 = x2;
176
177 if (m1->ms_weight < m2->ms_weight)
178 return (1);
179 if (m1->ms_weight > m2->ms_weight)
180 return (-1);
181
182 /*
183 * If the weights are identical, use the offset to force uniqueness.
184 */
185 if (m1->ms_map.sm_start < m2->ms_map.sm_start)
186 return (-1);
187 if (m1->ms_map.sm_start > m2->ms_map.sm_start)
188 return (1);
189
190 ASSERT3P(m1, ==, m2);
191
192 return (0);
193}
194
195metaslab_group_t *
196metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
197{
198 metaslab_group_t *mg;
199
200 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
201 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
202 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
203 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
34dc7c2f 204 mg->mg_vd = vd;
428870ff
BB
205 mg->mg_class = mc;
206 mg->mg_activation_count = 0;
34dc7c2f
BB
207
208 return (mg);
209}
210
211void
212metaslab_group_destroy(metaslab_group_t *mg)
213{
428870ff
BB
214 ASSERT(mg->mg_prev == NULL);
215 ASSERT(mg->mg_next == NULL);
216 /*
217 * We may have gone below zero with the activation count
218 * either because we never activated in the first place or
219 * because we're done, and possibly removing the vdev.
220 */
221 ASSERT(mg->mg_activation_count <= 0);
222
34dc7c2f
BB
223 avl_destroy(&mg->mg_metaslab_tree);
224 mutex_destroy(&mg->mg_lock);
225 kmem_free(mg, sizeof (metaslab_group_t));
226}
227
428870ff
BB
228void
229metaslab_group_activate(metaslab_group_t *mg)
230{
231 metaslab_class_t *mc = mg->mg_class;
232 metaslab_group_t *mgprev, *mgnext;
233
234 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
235
236 ASSERT(mc->mc_rotor != mg);
237 ASSERT(mg->mg_prev == NULL);
238 ASSERT(mg->mg_next == NULL);
239 ASSERT(mg->mg_activation_count <= 0);
240
241 if (++mg->mg_activation_count <= 0)
242 return;
243
244 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
245
246 if ((mgprev = mc->mc_rotor) == NULL) {
247 mg->mg_prev = mg;
248 mg->mg_next = mg;
249 } else {
250 mgnext = mgprev->mg_next;
251 mg->mg_prev = mgprev;
252 mg->mg_next = mgnext;
253 mgprev->mg_next = mg;
254 mgnext->mg_prev = mg;
255 }
256 mc->mc_rotor = mg;
257}
258
259void
260metaslab_group_passivate(metaslab_group_t *mg)
261{
262 metaslab_class_t *mc = mg->mg_class;
263 metaslab_group_t *mgprev, *mgnext;
264
265 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
266
267 if (--mg->mg_activation_count != 0) {
268 ASSERT(mc->mc_rotor != mg);
269 ASSERT(mg->mg_prev == NULL);
270 ASSERT(mg->mg_next == NULL);
271 ASSERT(mg->mg_activation_count < 0);
272 return;
273 }
274
275 mgprev = mg->mg_prev;
276 mgnext = mg->mg_next;
277
278 if (mg == mgnext) {
279 mc->mc_rotor = NULL;
280 } else {
281 mc->mc_rotor = mgnext;
282 mgprev->mg_next = mgnext;
283 mgnext->mg_prev = mgprev;
284 }
285
286 mg->mg_prev = NULL;
287 mg->mg_next = NULL;
288}
289
34dc7c2f
BB
290static void
291metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
292{
293 mutex_enter(&mg->mg_lock);
294 ASSERT(msp->ms_group == NULL);
295 msp->ms_group = mg;
296 msp->ms_weight = 0;
297 avl_add(&mg->mg_metaslab_tree, msp);
298 mutex_exit(&mg->mg_lock);
299}
300
301static void
302metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
303{
304 mutex_enter(&mg->mg_lock);
305 ASSERT(msp->ms_group == mg);
306 avl_remove(&mg->mg_metaslab_tree, msp);
307 msp->ms_group = NULL;
308 mutex_exit(&mg->mg_lock);
309}
310
311static void
312metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
313{
314 /*
315 * Although in principle the weight can be any value, in
316 * practice we do not use values in the range [1, 510].
317 */
318 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
319 ASSERT(MUTEX_HELD(&msp->ms_lock));
320
321 mutex_enter(&mg->mg_lock);
322 ASSERT(msp->ms_group == mg);
323 avl_remove(&mg->mg_metaslab_tree, msp);
324 msp->ms_weight = weight;
325 avl_add(&mg->mg_metaslab_tree, msp);
326 mutex_exit(&mg->mg_lock);
327}
328
428870ff
BB
329/*
330 * ==========================================================================
331 * Common allocator routines
332 * ==========================================================================
333 */
334static int
335metaslab_segsize_compare(const void *x1, const void *x2)
336{
337 const space_seg_t *s1 = x1;
338 const space_seg_t *s2 = x2;
339 uint64_t ss_size1 = s1->ss_end - s1->ss_start;
340 uint64_t ss_size2 = s2->ss_end - s2->ss_start;
341
342 if (ss_size1 < ss_size2)
343 return (-1);
344 if (ss_size1 > ss_size2)
345 return (1);
346
347 if (s1->ss_start < s2->ss_start)
348 return (-1);
349 if (s1->ss_start > s2->ss_start)
350 return (1);
351
352 return (0);
353}
354
22c81dd8
BB
355#if defined(WITH_FF_BLOCK_ALLOCATOR) || \
356 defined(WITH_DF_BLOCK_ALLOCATOR) || \
357 defined(WITH_CDF_BLOCK_ALLOCATOR)
34dc7c2f 358/*
9babb374
BB
359 * This is a helper function that can be used by the allocator to find
360 * a suitable block to allocate. This will search the specified AVL
361 * tree looking for a block that matches the specified criteria.
34dc7c2f 362 */
34dc7c2f 363static uint64_t
9babb374
BB
364metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
365 uint64_t align)
34dc7c2f 366{
34dc7c2f
BB
367 space_seg_t *ss, ssearch;
368 avl_index_t where;
369
370 ssearch.ss_start = *cursor;
371 ssearch.ss_end = *cursor + size;
372
373 ss = avl_find(t, &ssearch, &where);
374 if (ss == NULL)
375 ss = avl_nearest(t, where, AVL_AFTER);
376
377 while (ss != NULL) {
378 uint64_t offset = P2ROUNDUP(ss->ss_start, align);
379
380 if (offset + size <= ss->ss_end) {
381 *cursor = offset + size;
382 return (offset);
383 }
384 ss = AVL_NEXT(t, ss);
385 }
386
387 /*
388 * If we know we've searched the whole map (*cursor == 0), give up.
389 * Otherwise, reset the cursor to the beginning and try again.
390 */
391 if (*cursor == 0)
392 return (-1ULL);
393
394 *cursor = 0;
9babb374
BB
395 return (metaslab_block_picker(t, cursor, size, align));
396}
22c81dd8 397#endif /* WITH_FF/DF/CDF_BLOCK_ALLOCATOR */
9babb374 398
9babb374 399static void
428870ff 400metaslab_pp_load(space_map_t *sm)
9babb374 401{
428870ff
BB
402 space_seg_t *ss;
403
9babb374
BB
404 ASSERT(sm->sm_ppd == NULL);
405 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
428870ff
BB
406
407 sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
408 avl_create(sm->sm_pp_root, metaslab_segsize_compare,
409 sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
410
411 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
412 avl_add(sm->sm_pp_root, ss);
9babb374
BB
413}
414
415static void
428870ff 416metaslab_pp_unload(space_map_t *sm)
9babb374 417{
428870ff
BB
418 void *cookie = NULL;
419
9babb374
BB
420 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
421 sm->sm_ppd = NULL;
9babb374 422
428870ff
BB
423 while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
424 /* tear down the tree */
425 }
9babb374 426
428870ff
BB
427 avl_destroy(sm->sm_pp_root);
428 kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
429 sm->sm_pp_root = NULL;
34dc7c2f
BB
430}
431
432/* ARGSUSED */
433static void
428870ff 434metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size)
34dc7c2f
BB
435{
436 /* No need to update cursor */
437}
438
439/* ARGSUSED */
440static void
428870ff 441metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size)
34dc7c2f
BB
442{
443 /* No need to update cursor */
444}
445
9babb374 446/*
428870ff 447 * Return the maximum contiguous segment within the metaslab.
9babb374 448 */
9babb374 449uint64_t
428870ff 450metaslab_pp_maxsize(space_map_t *sm)
9babb374
BB
451{
452 avl_tree_t *t = sm->sm_pp_root;
453 space_seg_t *ss;
454
455 if (t == NULL || (ss = avl_last(t)) == NULL)
456 return (0ULL);
457
458 return (ss->ss_end - ss->ss_start);
459}
460
22c81dd8 461#if defined(WITH_FF_BLOCK_ALLOCATOR)
428870ff
BB
462/*
463 * ==========================================================================
464 * The first-fit block allocator
465 * ==========================================================================
466 */
467static uint64_t
468metaslab_ff_alloc(space_map_t *sm, uint64_t size)
9babb374 469{
428870ff
BB
470 avl_tree_t *t = &sm->sm_root;
471 uint64_t align = size & -size;
472 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
9babb374 473
428870ff 474 return (metaslab_block_picker(t, cursor, size, align));
9babb374
BB
475}
476
428870ff
BB
477/* ARGSUSED */
478boolean_t
479metaslab_ff_fragmented(space_map_t *sm)
9babb374 480{
428870ff 481 return (B_TRUE);
9babb374
BB
482}
483
428870ff
BB
484static space_map_ops_t metaslab_ff_ops = {
485 metaslab_pp_load,
486 metaslab_pp_unload,
487 metaslab_ff_alloc,
488 metaslab_pp_claim,
489 metaslab_pp_free,
490 metaslab_pp_maxsize,
491 metaslab_ff_fragmented
492};
9babb374 493
22c81dd8
BB
494space_map_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
495#endif /* WITH_FF_BLOCK_ALLOCATOR */
496
497#if defined(WITH_DF_BLOCK_ALLOCATOR)
428870ff
BB
498/*
499 * ==========================================================================
500 * Dynamic block allocator -
501 * Uses the first fit allocation scheme until space get low and then
502 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
503 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
504 * ==========================================================================
505 */
9babb374
BB
506static uint64_t
507metaslab_df_alloc(space_map_t *sm, uint64_t size)
508{
509 avl_tree_t *t = &sm->sm_root;
510 uint64_t align = size & -size;
511 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
428870ff 512 uint64_t max_size = metaslab_pp_maxsize(sm);
9babb374
BB
513 int free_pct = sm->sm_space * 100 / sm->sm_size;
514
515 ASSERT(MUTEX_HELD(sm->sm_lock));
516 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
517
518 if (max_size < size)
519 return (-1ULL);
520
521 /*
522 * If we're running low on space switch to using the size
523 * sorted AVL tree (best-fit).
524 */
525 if (max_size < metaslab_df_alloc_threshold ||
526 free_pct < metaslab_df_free_pct) {
527 t = sm->sm_pp_root;
528 *cursor = 0;
529 }
530
531 return (metaslab_block_picker(t, cursor, size, 1ULL));
532}
533
428870ff
BB
534static boolean_t
535metaslab_df_fragmented(space_map_t *sm)
9babb374 536{
428870ff
BB
537 uint64_t max_size = metaslab_pp_maxsize(sm);
538 int free_pct = sm->sm_space * 100 / sm->sm_size;
9babb374 539
428870ff
BB
540 if (max_size >= metaslab_df_alloc_threshold &&
541 free_pct >= metaslab_df_free_pct)
542 return (B_FALSE);
543
544 return (B_TRUE);
9babb374
BB
545}
546
547static space_map_ops_t metaslab_df_ops = {
428870ff
BB
548 metaslab_pp_load,
549 metaslab_pp_unload,
9babb374 550 metaslab_df_alloc,
428870ff
BB
551 metaslab_pp_claim,
552 metaslab_pp_free,
553 metaslab_pp_maxsize,
554 metaslab_df_fragmented
34dc7c2f
BB
555};
556
22c81dd8
BB
557space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
558#endif /* WITH_DF_BLOCK_ALLOCATOR */
559
428870ff
BB
560/*
561 * ==========================================================================
562 * Other experimental allocators
563 * ==========================================================================
564 */
22c81dd8 565#if defined(WITH_CDF_BLOCK_ALLOCATOR)
428870ff
BB
566static uint64_t
567metaslab_cdf_alloc(space_map_t *sm, uint64_t size)
568{
569 avl_tree_t *t = &sm->sm_root;
570 uint64_t *cursor = (uint64_t *)sm->sm_ppd;
571 uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1;
572 uint64_t max_size = metaslab_pp_maxsize(sm);
573 uint64_t rsize = size;
574 uint64_t offset = 0;
575
576 ASSERT(MUTEX_HELD(sm->sm_lock));
577 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
578
579 if (max_size < size)
580 return (-1ULL);
581
582 ASSERT3U(*extent_end, >=, *cursor);
583
584 /*
585 * If we're running low on space switch to using the size
586 * sorted AVL tree (best-fit).
587 */
588 if ((*cursor + size) > *extent_end) {
589
590 t = sm->sm_pp_root;
591 *cursor = *extent_end = 0;
592
593 if (max_size > 2 * SPA_MAXBLOCKSIZE)
594 rsize = MIN(metaslab_min_alloc_size, max_size);
595 offset = metaslab_block_picker(t, extent_end, rsize, 1ULL);
596 if (offset != -1)
597 *cursor = offset + size;
598 } else {
599 offset = metaslab_block_picker(t, cursor, rsize, 1ULL);
600 }
601 ASSERT3U(*cursor, <=, *extent_end);
602 return (offset);
603}
604
605static boolean_t
606metaslab_cdf_fragmented(space_map_t *sm)
607{
608 uint64_t max_size = metaslab_pp_maxsize(sm);
609
610 if (max_size > (metaslab_min_alloc_size * 10))
611 return (B_FALSE);
612 return (B_TRUE);
613}
614
615static space_map_ops_t metaslab_cdf_ops = {
616 metaslab_pp_load,
617 metaslab_pp_unload,
618 metaslab_cdf_alloc,
619 metaslab_pp_claim,
620 metaslab_pp_free,
621 metaslab_pp_maxsize,
622 metaslab_cdf_fragmented
623};
624
22c81dd8
BB
625space_map_ops_t *zfs_metaslab_ops = &metaslab_cdf_ops;
626#endif /* WITH_CDF_BLOCK_ALLOCATOR */
627
628#if defined(WITH_NDF_BLOCK_ALLOCATOR)
428870ff
BB
629uint64_t metaslab_ndf_clump_shift = 4;
630
631static uint64_t
632metaslab_ndf_alloc(space_map_t *sm, uint64_t size)
633{
634 avl_tree_t *t = &sm->sm_root;
635 avl_index_t where;
636 space_seg_t *ss, ssearch;
637 uint64_t hbit = highbit(size);
638 uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1;
639 uint64_t max_size = metaslab_pp_maxsize(sm);
640
641 ASSERT(MUTEX_HELD(sm->sm_lock));
642 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
643
644 if (max_size < size)
645 return (-1ULL);
646
647 ssearch.ss_start = *cursor;
648 ssearch.ss_end = *cursor + size;
649
650 ss = avl_find(t, &ssearch, &where);
651 if (ss == NULL || (ss->ss_start + size > ss->ss_end)) {
652 t = sm->sm_pp_root;
653
654 ssearch.ss_start = 0;
655 ssearch.ss_end = MIN(max_size,
656 1ULL << (hbit + metaslab_ndf_clump_shift));
657 ss = avl_find(t, &ssearch, &where);
658 if (ss == NULL)
659 ss = avl_nearest(t, where, AVL_AFTER);
660 ASSERT(ss != NULL);
661 }
662
663 if (ss != NULL) {
664 if (ss->ss_start + size <= ss->ss_end) {
665 *cursor = ss->ss_start + size;
666 return (ss->ss_start);
667 }
668 }
669 return (-1ULL);
670}
671
672static boolean_t
673metaslab_ndf_fragmented(space_map_t *sm)
674{
675 uint64_t max_size = metaslab_pp_maxsize(sm);
676
677 if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift))
678 return (B_FALSE);
679 return (B_TRUE);
680}
681
682
683static space_map_ops_t metaslab_ndf_ops = {
684 metaslab_pp_load,
685 metaslab_pp_unload,
686 metaslab_ndf_alloc,
687 metaslab_pp_claim,
688 metaslab_pp_free,
689 metaslab_pp_maxsize,
690 metaslab_ndf_fragmented
691};
692
693space_map_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
22c81dd8 694#endif /* WITH_NDF_BLOCK_ALLOCATOR */
9babb374 695
34dc7c2f
BB
696/*
697 * ==========================================================================
698 * Metaslabs
699 * ==========================================================================
700 */
701metaslab_t *
702metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
703 uint64_t start, uint64_t size, uint64_t txg)
704{
705 vdev_t *vd = mg->mg_vd;
706 metaslab_t *msp;
707
708 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
709 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
710
711 msp->ms_smo_syncing = *smo;
712
713 /*
714 * We create the main space map here, but we don't create the
715 * allocmaps and freemaps until metaslab_sync_done(). This serves
716 * two purposes: it allows metaslab_sync_done() to detect the
717 * addition of new space; and for debugging, it ensures that we'd
718 * data fault on any attempt to use this metaslab before it's ready.
719 */
720 space_map_create(&msp->ms_map, start, size,
721 vd->vdev_ashift, &msp->ms_lock);
722
723 metaslab_group_add(mg, msp);
724
428870ff
BB
725 if (metaslab_debug && smo->smo_object != 0) {
726 mutex_enter(&msp->ms_lock);
727 VERIFY(space_map_load(&msp->ms_map, mg->mg_class->mc_ops,
728 SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
729 mutex_exit(&msp->ms_lock);
730 }
731
34dc7c2f
BB
732 /*
733 * If we're opening an existing pool (txg == 0) or creating
734 * a new one (txg == TXG_INITIAL), all space is available now.
735 * If we're adding space to an existing pool, the new space
736 * does not become available until after this txg has synced.
737 */
738 if (txg <= TXG_INITIAL)
739 metaslab_sync_done(msp, 0);
740
741 if (txg != 0) {
34dc7c2f 742 vdev_dirty(vd, 0, NULL, txg);
428870ff 743 vdev_dirty(vd, VDD_METASLAB, msp, txg);
34dc7c2f
BB
744 }
745
746 return (msp);
747}
748
749void
750metaslab_fini(metaslab_t *msp)
751{
752 metaslab_group_t *mg = msp->ms_group;
d6320ddb 753 int t;
34dc7c2f 754
428870ff
BB
755 vdev_space_update(mg->mg_vd,
756 -msp->ms_smo.smo_alloc, 0, -msp->ms_map.sm_size);
34dc7c2f
BB
757
758 metaslab_group_remove(mg, msp);
759
760 mutex_enter(&msp->ms_lock);
761
762 space_map_unload(&msp->ms_map);
763 space_map_destroy(&msp->ms_map);
764
d6320ddb 765 for (t = 0; t < TXG_SIZE; t++) {
34dc7c2f
BB
766 space_map_destroy(&msp->ms_allocmap[t]);
767 space_map_destroy(&msp->ms_freemap[t]);
768 }
769
d6320ddb 770 for (t = 0; t < TXG_DEFER_SIZE; t++)
428870ff
BB
771 space_map_destroy(&msp->ms_defermap[t]);
772
773 ASSERT3S(msp->ms_deferspace, ==, 0);
774
34dc7c2f
BB
775 mutex_exit(&msp->ms_lock);
776 mutex_destroy(&msp->ms_lock);
777
778 kmem_free(msp, sizeof (metaslab_t));
779}
780
781#define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
782#define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
783#define METASLAB_ACTIVE_MASK \
784 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
34dc7c2f
BB
785
786static uint64_t
787metaslab_weight(metaslab_t *msp)
788{
789 metaslab_group_t *mg = msp->ms_group;
790 space_map_t *sm = &msp->ms_map;
791 space_map_obj_t *smo = &msp->ms_smo;
792 vdev_t *vd = mg->mg_vd;
793 uint64_t weight, space;
794
795 ASSERT(MUTEX_HELD(&msp->ms_lock));
796
797 /*
798 * The baseline weight is the metaslab's free space.
799 */
800 space = sm->sm_size - smo->smo_alloc;
801 weight = space;
802
803 /*
804 * Modern disks have uniform bit density and constant angular velocity.
805 * Therefore, the outer recording zones are faster (higher bandwidth)
806 * than the inner zones by the ratio of outer to inner track diameter,
807 * which is typically around 2:1. We account for this by assigning
808 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
809 * In effect, this means that we'll select the metaslab with the most
810 * free bandwidth rather than simply the one with the most free space.
811 */
812 weight = 2 * weight -
813 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
814 ASSERT(weight >= space && weight <= 2 * space);
815
816 /*
428870ff
BB
817 * For locality, assign higher weight to metaslabs which have
818 * a lower offset than what we've already activated.
34dc7c2f 819 */
428870ff
BB
820 if (sm->sm_start <= mg->mg_bonus_area)
821 weight *= (metaslab_smo_bonus_pct / 100);
34dc7c2f 822 ASSERT(weight >= space &&
428870ff
BB
823 weight <= 2 * (metaslab_smo_bonus_pct / 100) * space);
824
825 if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) {
826 /*
827 * If this metaslab is one we're actively using, adjust its
828 * weight to make it preferable to any inactive metaslab so
829 * we'll polish it off.
830 */
831 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
832 }
833 return (weight);
834}
835
836static void
837metaslab_prefetch(metaslab_group_t *mg)
838{
839 spa_t *spa = mg->mg_vd->vdev_spa;
840 metaslab_t *msp;
841 avl_tree_t *t = &mg->mg_metaslab_tree;
842 int m;
843
844 mutex_enter(&mg->mg_lock);
34dc7c2f
BB
845
846 /*
428870ff 847 * Prefetch the next potential metaslabs
34dc7c2f 848 */
428870ff
BB
849 for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) {
850 space_map_t *sm = &msp->ms_map;
851 space_map_obj_t *smo = &msp->ms_smo;
34dc7c2f 852
428870ff
BB
853 /* If we have reached our prefetch limit then we're done */
854 if (m >= metaslab_prefetch_limit)
855 break;
856
857 if (!sm->sm_loaded && smo->smo_object != 0) {
858 mutex_exit(&mg->mg_lock);
859 dmu_prefetch(spa_meta_objset(spa), smo->smo_object,
860 0ULL, smo->smo_objsize);
861 mutex_enter(&mg->mg_lock);
862 }
863 }
864 mutex_exit(&mg->mg_lock);
34dc7c2f
BB
865}
866
867static int
9babb374 868metaslab_activate(metaslab_t *msp, uint64_t activation_weight, uint64_t size)
34dc7c2f 869{
428870ff 870 metaslab_group_t *mg = msp->ms_group;
34dc7c2f 871 space_map_t *sm = &msp->ms_map;
9babb374 872 space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
d6320ddb 873 int t;
34dc7c2f
BB
874
875 ASSERT(MUTEX_HELD(&msp->ms_lock));
876
877 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
428870ff
BB
878 space_map_load_wait(sm);
879 if (!sm->sm_loaded) {
880 int error = space_map_load(sm, sm_ops, SM_FREE,
881 &msp->ms_smo,
882 spa_meta_objset(msp->ms_group->mg_vd->vdev_spa));
883 if (error) {
884 metaslab_group_sort(msp->ms_group, msp, 0);
885 return (error);
886 }
d6320ddb 887 for (t = 0; t < TXG_DEFER_SIZE; t++)
428870ff
BB
888 space_map_walk(&msp->ms_defermap[t],
889 space_map_claim, sm);
890
891 }
892
893 /*
894 * Track the bonus area as we activate new metaslabs.
895 */
896 if (sm->sm_start > mg->mg_bonus_area) {
897 mutex_enter(&mg->mg_lock);
898 mg->mg_bonus_area = sm->sm_start;
899 mutex_exit(&mg->mg_lock);
34dc7c2f 900 }
9babb374
BB
901
902 /*
903 * If we were able to load the map then make sure
904 * that this map is still able to satisfy our request.
905 */
906 if (msp->ms_weight < size)
907 return (ENOSPC);
908
34dc7c2f
BB
909 metaslab_group_sort(msp->ms_group, msp,
910 msp->ms_weight | activation_weight);
911 }
912 ASSERT(sm->sm_loaded);
913 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
914
915 return (0);
916}
917
918static void
919metaslab_passivate(metaslab_t *msp, uint64_t size)
920{
921 /*
922 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
923 * this metaslab again. In that case, it had better be empty,
924 * or we would be leaving space on the table.
925 */
926 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
927 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
928 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
929}
930
931/*
932 * Write a metaslab to disk in the context of the specified transaction group.
933 */
934void
935metaslab_sync(metaslab_t *msp, uint64_t txg)
936{
937 vdev_t *vd = msp->ms_group->mg_vd;
938 spa_t *spa = vd->vdev_spa;
428870ff 939 objset_t *mos = spa_meta_objset(spa);
34dc7c2f
BB
940 space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
941 space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
942 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
943 space_map_t *sm = &msp->ms_map;
944 space_map_obj_t *smo = &msp->ms_smo_syncing;
945 dmu_buf_t *db;
946 dmu_tx_t *tx;
d6320ddb 947 int t;
34dc7c2f 948
428870ff
BB
949 ASSERT(!vd->vdev_ishole);
950
951 if (allocmap->sm_space == 0 && freemap->sm_space == 0)
952 return;
34dc7c2f
BB
953
954 /*
955 * The only state that can actually be changing concurrently with
956 * metaslab_sync() is the metaslab's ms_map. No other thread can
957 * be modifying this txg's allocmap, freemap, freed_map, or smo.
958 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
959 * We drop it whenever we call into the DMU, because the DMU
960 * can call down to us (e.g. via zio_free()) at any time.
961 */
428870ff
BB
962
963 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
34dc7c2f
BB
964
965 if (smo->smo_object == 0) {
966 ASSERT(smo->smo_objsize == 0);
967 ASSERT(smo->smo_alloc == 0);
34dc7c2f
BB
968 smo->smo_object = dmu_object_alloc(mos,
969 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
970 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
971 ASSERT(smo->smo_object != 0);
972 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
973 (sm->sm_start >> vd->vdev_ms_shift),
974 sizeof (uint64_t), &smo->smo_object, tx);
34dc7c2f
BB
975 }
976
428870ff
BB
977 mutex_enter(&msp->ms_lock);
978
34dc7c2f
BB
979 space_map_walk(freemap, space_map_add, freed_map);
980
981 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
982 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
983 /*
984 * The in-core space map representation is twice as compact
985 * as the on-disk one, so it's time to condense the latter
986 * by generating a pure allocmap from first principles.
987 *
988 * This metaslab is 100% allocated,
989 * minus the content of the in-core map (sm),
990 * minus what's been freed this txg (freed_map),
428870ff 991 * minus deferred frees (ms_defermap[]),
34dc7c2f
BB
992 * minus allocations from txgs in the future
993 * (because they haven't been committed yet).
994 */
995 space_map_vacate(allocmap, NULL, NULL);
996 space_map_vacate(freemap, NULL, NULL);
997
998 space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
999
1000 space_map_walk(sm, space_map_remove, allocmap);
1001 space_map_walk(freed_map, space_map_remove, allocmap);
1002
d6320ddb 1003 for (t = 0; t < TXG_DEFER_SIZE; t++)
428870ff
BB
1004 space_map_walk(&msp->ms_defermap[t],
1005 space_map_remove, allocmap);
1006
d6320ddb 1007 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
34dc7c2f
BB
1008 space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
1009 space_map_remove, allocmap);
1010
1011 mutex_exit(&msp->ms_lock);
1012 space_map_truncate(smo, mos, tx);
1013 mutex_enter(&msp->ms_lock);
1014 }
1015
1016 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
1017 space_map_sync(freemap, SM_FREE, smo, mos, tx);
1018
1019 mutex_exit(&msp->ms_lock);
1020
1021 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1022 dmu_buf_will_dirty(db, tx);
1023 ASSERT3U(db->db_size, >=, sizeof (*smo));
1024 bcopy(smo, db->db_data, sizeof (*smo));
1025 dmu_buf_rele(db, FTAG);
1026
1027 dmu_tx_commit(tx);
1028}
1029
1030/*
1031 * Called after a transaction group has completely synced to mark
1032 * all of the metaslab's free space as usable.
1033 */
1034void
1035metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1036{
1037 space_map_obj_t *smo = &msp->ms_smo;
1038 space_map_obj_t *smosync = &msp->ms_smo_syncing;
1039 space_map_t *sm = &msp->ms_map;
1040 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
428870ff 1041 space_map_t *defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
34dc7c2f
BB
1042 metaslab_group_t *mg = msp->ms_group;
1043 vdev_t *vd = mg->mg_vd;
428870ff 1044 int64_t alloc_delta, defer_delta;
d6320ddb 1045 int t;
428870ff
BB
1046
1047 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
1048
1049 mutex_enter(&msp->ms_lock);
1050
1051 /*
1052 * If this metaslab is just becoming available, initialize its
1053 * allocmaps and freemaps and add its capacity to the vdev.
1054 */
1055 if (freed_map->sm_size == 0) {
d6320ddb 1056 for (t = 0; t < TXG_SIZE; t++) {
34dc7c2f
BB
1057 space_map_create(&msp->ms_allocmap[t], sm->sm_start,
1058 sm->sm_size, sm->sm_shift, sm->sm_lock);
1059 space_map_create(&msp->ms_freemap[t], sm->sm_start,
1060 sm->sm_size, sm->sm_shift, sm->sm_lock);
1061 }
428870ff 1062
d6320ddb 1063 for (t = 0; t < TXG_DEFER_SIZE; t++)
428870ff
BB
1064 space_map_create(&msp->ms_defermap[t], sm->sm_start,
1065 sm->sm_size, sm->sm_shift, sm->sm_lock);
1066
1067 vdev_space_update(vd, 0, 0, sm->sm_size);
34dc7c2f
BB
1068 }
1069
428870ff
BB
1070 alloc_delta = smosync->smo_alloc - smo->smo_alloc;
1071 defer_delta = freed_map->sm_space - defer_map->sm_space;
1072
1073 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
34dc7c2f
BB
1074
1075 ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
1076 ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
1077
1078 /*
1079 * If there's a space_map_load() in progress, wait for it to complete
1080 * so that we have a consistent view of the in-core space map.
428870ff
BB
1081 * Then, add defer_map (oldest deferred frees) to this map and
1082 * transfer freed_map (this txg's frees) to defer_map.
34dc7c2f
BB
1083 */
1084 space_map_load_wait(sm);
428870ff
BB
1085 space_map_vacate(defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
1086 space_map_vacate(freed_map, space_map_add, defer_map);
34dc7c2f
BB
1087
1088 *smo = *smosync;
1089
428870ff
BB
1090 msp->ms_deferspace += defer_delta;
1091 ASSERT3S(msp->ms_deferspace, >=, 0);
1092 ASSERT3S(msp->ms_deferspace, <=, sm->sm_size);
1093 if (msp->ms_deferspace != 0) {
1094 /*
1095 * Keep syncing this metaslab until all deferred frees
1096 * are back in circulation.
1097 */
1098 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1099 }
1100
34dc7c2f
BB
1101 /*
1102 * If the map is loaded but no longer active, evict it as soon as all
1103 * future allocations have synced. (If we unloaded it now and then
1104 * loaded a moment later, the map wouldn't reflect those allocations.)
1105 */
1106 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1107 int evictable = 1;
1108
d6320ddb 1109 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
34dc7c2f
BB
1110 if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
1111 evictable = 0;
1112
428870ff 1113 if (evictable && !metaslab_debug)
34dc7c2f
BB
1114 space_map_unload(sm);
1115 }
1116
1117 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1118
1119 mutex_exit(&msp->ms_lock);
1120}
1121
428870ff
BB
1122void
1123metaslab_sync_reassess(metaslab_group_t *mg)
1124{
1125 vdev_t *vd = mg->mg_vd;
d6320ddb 1126 int m;
428870ff
BB
1127
1128 /*
1129 * Re-evaluate all metaslabs which have lower offsets than the
1130 * bonus area.
1131 */
d6320ddb 1132 for (m = 0; m < vd->vdev_ms_count; m++) {
428870ff
BB
1133 metaslab_t *msp = vd->vdev_ms[m];
1134
1135 if (msp->ms_map.sm_start > mg->mg_bonus_area)
1136 break;
1137
1138 mutex_enter(&msp->ms_lock);
1139 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1140 mutex_exit(&msp->ms_lock);
1141 }
1142
1143 /*
1144 * Prefetch the next potential metaslabs
1145 */
1146 metaslab_prefetch(mg);
1147}
1148
34dc7c2f
BB
1149static uint64_t
1150metaslab_distance(metaslab_t *msp, dva_t *dva)
1151{
1152 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1153 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1154 uint64_t start = msp->ms_map.sm_start >> ms_shift;
1155
1156 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1157 return (1ULL << 63);
1158
1159 if (offset < start)
1160 return ((start - offset) << ms_shift);
1161 if (offset > start)
1162 return ((offset - start) << ms_shift);
1163 return (0);
1164}
1165
1166static uint64_t
1167metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg,
1168 uint64_t min_distance, dva_t *dva, int d)
1169{
1170 metaslab_t *msp = NULL;
1171 uint64_t offset = -1ULL;
1172 avl_tree_t *t = &mg->mg_metaslab_tree;
1173 uint64_t activation_weight;
1174 uint64_t target_distance;
1175 int i;
1176
1177 activation_weight = METASLAB_WEIGHT_PRIMARY;
9babb374
BB
1178 for (i = 0; i < d; i++) {
1179 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
34dc7c2f 1180 activation_weight = METASLAB_WEIGHT_SECONDARY;
9babb374
BB
1181 break;
1182 }
1183 }
34dc7c2f
BB
1184
1185 for (;;) {
9babb374
BB
1186 boolean_t was_active;
1187
34dc7c2f
BB
1188 mutex_enter(&mg->mg_lock);
1189 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1190 if (msp->ms_weight < size) {
1191 mutex_exit(&mg->mg_lock);
1192 return (-1ULL);
1193 }
1194
9babb374 1195 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
34dc7c2f
BB
1196 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1197 break;
1198
1199 target_distance = min_distance +
1200 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
1201
1202 for (i = 0; i < d; i++)
1203 if (metaslab_distance(msp, &dva[i]) <
1204 target_distance)
1205 break;
1206 if (i == d)
1207 break;
1208 }
1209 mutex_exit(&mg->mg_lock);
1210 if (msp == NULL)
1211 return (-1ULL);
1212
1213 mutex_enter(&msp->ms_lock);
1214
1215 /*
1216 * Ensure that the metaslab we have selected is still
1217 * capable of handling our request. It's possible that
1218 * another thread may have changed the weight while we
1219 * were blocked on the metaslab lock.
1220 */
9babb374
BB
1221 if (msp->ms_weight < size || (was_active &&
1222 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1223 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
34dc7c2f
BB
1224 mutex_exit(&msp->ms_lock);
1225 continue;
1226 }
1227
1228 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1229 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1230 metaslab_passivate(msp,
1231 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1232 mutex_exit(&msp->ms_lock);
1233 continue;
1234 }
1235
9babb374 1236 if (metaslab_activate(msp, activation_weight, size) != 0) {
34dc7c2f
BB
1237 mutex_exit(&msp->ms_lock);
1238 continue;
1239 }
1240
1241 if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL)
1242 break;
1243
428870ff 1244 metaslab_passivate(msp, space_map_maxsize(&msp->ms_map));
34dc7c2f
BB
1245
1246 mutex_exit(&msp->ms_lock);
1247 }
1248
1249 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1250 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1251
1252 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1253
1254 mutex_exit(&msp->ms_lock);
1255
1256 return (offset);
1257}
1258
1259/*
1260 * Allocate a block for the specified i/o.
1261 */
1262static int
1263metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
b128c09f 1264 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
34dc7c2f
BB
1265{
1266 metaslab_group_t *mg, *rotor;
1267 vdev_t *vd;
1268 int dshift = 3;
1269 int all_zero;
fb5f0bc8
BB
1270 int zio_lock = B_FALSE;
1271 boolean_t allocatable;
34dc7c2f
BB
1272 uint64_t offset = -1ULL;
1273 uint64_t asize;
1274 uint64_t distance;
1275
1276 ASSERT(!DVA_IS_VALID(&dva[d]));
1277
1278 /*
1279 * For testing, make some blocks above a certain size be gang blocks.
1280 */
428870ff 1281 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
34dc7c2f
BB
1282 return (ENOSPC);
1283
1284 /*
1285 * Start at the rotor and loop through all mgs until we find something.
428870ff 1286 * Note that there's no locking on mc_rotor or mc_aliquot because
34dc7c2f
BB
1287 * nothing actually breaks if we miss a few updates -- we just won't
1288 * allocate quite as evenly. It all balances out over time.
1289 *
1290 * If we are doing ditto or log blocks, try to spread them across
1291 * consecutive vdevs. If we're forced to reuse a vdev before we've
1292 * allocated all of our ditto blocks, then try and spread them out on
1293 * that vdev as much as possible. If it turns out to not be possible,
1294 * gradually lower our standards until anything becomes acceptable.
1295 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1296 * gives us hope of containing our fault domains to something we're
1297 * able to reason about. Otherwise, any two top-level vdev failures
1298 * will guarantee the loss of data. With consecutive allocation,
1299 * only two adjacent top-level vdev failures will result in data loss.
1300 *
1301 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1302 * ourselves on the same vdev as our gang block header. That
1303 * way, we can hope for locality in vdev_cache, plus it makes our
1304 * fault domains something tractable.
1305 */
1306 if (hintdva) {
1307 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
428870ff
BB
1308
1309 /*
1310 * It's possible the vdev we're using as the hint no
1311 * longer exists (i.e. removed). Consult the rotor when
1312 * all else fails.
1313 */
1314 if (vd != NULL) {
34dc7c2f 1315 mg = vd->vdev_mg;
428870ff
BB
1316
1317 if (flags & METASLAB_HINTBP_AVOID &&
1318 mg->mg_next != NULL)
1319 mg = mg->mg_next;
1320 } else {
1321 mg = mc->mc_rotor;
1322 }
34dc7c2f
BB
1323 } else if (d != 0) {
1324 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1325 mg = vd->vdev_mg->mg_next;
1326 } else {
1327 mg = mc->mc_rotor;
1328 }
1329
1330 /*
428870ff
BB
1331 * If the hint put us into the wrong metaslab class, or into a
1332 * metaslab group that has been passivated, just follow the rotor.
34dc7c2f 1333 */
428870ff 1334 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
34dc7c2f
BB
1335 mg = mc->mc_rotor;
1336
1337 rotor = mg;
1338top:
1339 all_zero = B_TRUE;
1340 do {
428870ff
BB
1341 ASSERT(mg->mg_activation_count == 1);
1342
34dc7c2f 1343 vd = mg->mg_vd;
fb5f0bc8 1344
34dc7c2f 1345 /*
b128c09f 1346 * Don't allocate from faulted devices.
34dc7c2f 1347 */
fb5f0bc8
BB
1348 if (zio_lock) {
1349 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1350 allocatable = vdev_allocatable(vd);
1351 spa_config_exit(spa, SCL_ZIO, FTAG);
1352 } else {
1353 allocatable = vdev_allocatable(vd);
1354 }
1355 if (!allocatable)
34dc7c2f 1356 goto next;
fb5f0bc8 1357
34dc7c2f
BB
1358 /*
1359 * Avoid writing single-copy data to a failing vdev
1360 */
1361 if ((vd->vdev_stat.vs_write_errors > 0 ||
1362 vd->vdev_state < VDEV_STATE_HEALTHY) &&
1363 d == 0 && dshift == 3) {
1364 all_zero = B_FALSE;
1365 goto next;
1366 }
1367
1368 ASSERT(mg->mg_class == mc);
1369
1370 distance = vd->vdev_asize >> dshift;
1371 if (distance <= (1ULL << vd->vdev_ms_shift))
1372 distance = 0;
1373 else
1374 all_zero = B_FALSE;
1375
1376 asize = vdev_psize_to_asize(vd, psize);
1377 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1378
1379 offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d);
1380 if (offset != -1ULL) {
1381 /*
1382 * If we've just selected this metaslab group,
1383 * figure out whether the corresponding vdev is
1384 * over- or under-used relative to the pool,
1385 * and set an allocation bias to even it out.
1386 */
428870ff 1387 if (mc->mc_aliquot == 0) {
34dc7c2f 1388 vdev_stat_t *vs = &vd->vdev_stat;
428870ff 1389 int64_t vu, cu;
34dc7c2f
BB
1390
1391 /*
1392 * Determine percent used in units of 0..1024.
1393 * (This is just to avoid floating point.)
1394 */
1395 vu = (vs->vs_alloc << 10) / (vs->vs_space + 1);
428870ff 1396 cu = (mc->mc_alloc << 10) / (mc->mc_space + 1);
34dc7c2f
BB
1397
1398 /*
1399 * Bias by at most +/- 25% of the aliquot.
1400 */
428870ff 1401 mg->mg_bias = ((cu - vu) *
34dc7c2f
BB
1402 (int64_t)mg->mg_aliquot) / (1024 * 4);
1403 }
1404
428870ff 1405 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
34dc7c2f
BB
1406 mg->mg_aliquot + mg->mg_bias) {
1407 mc->mc_rotor = mg->mg_next;
428870ff 1408 mc->mc_aliquot = 0;
34dc7c2f
BB
1409 }
1410
1411 DVA_SET_VDEV(&dva[d], vd->vdev_id);
1412 DVA_SET_OFFSET(&dva[d], offset);
b128c09f 1413 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
34dc7c2f
BB
1414 DVA_SET_ASIZE(&dva[d], asize);
1415
1416 return (0);
1417 }
1418next:
1419 mc->mc_rotor = mg->mg_next;
428870ff 1420 mc->mc_aliquot = 0;
34dc7c2f
BB
1421 } while ((mg = mg->mg_next) != rotor);
1422
1423 if (!all_zero) {
1424 dshift++;
1425 ASSERT(dshift < 64);
1426 goto top;
1427 }
1428
9babb374 1429 if (!allocatable && !zio_lock) {
fb5f0bc8
BB
1430 dshift = 3;
1431 zio_lock = B_TRUE;
1432 goto top;
1433 }
1434
34dc7c2f
BB
1435 bzero(&dva[d], sizeof (dva_t));
1436
1437 return (ENOSPC);
1438}
1439
1440/*
1441 * Free the block represented by DVA in the context of the specified
1442 * transaction group.
1443 */
1444static void
1445metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1446{
1447 uint64_t vdev = DVA_GET_VDEV(dva);
1448 uint64_t offset = DVA_GET_OFFSET(dva);
1449 uint64_t size = DVA_GET_ASIZE(dva);
1450 vdev_t *vd;
1451 metaslab_t *msp;
1452
1453 ASSERT(DVA_IS_VALID(dva));
1454
1455 if (txg > spa_freeze_txg(spa))
1456 return;
1457
1458 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1459 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1460 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1461 (u_longlong_t)vdev, (u_longlong_t)offset);
1462 ASSERT(0);
1463 return;
1464 }
1465
1466 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1467
1468 if (DVA_GET_GANG(dva))
1469 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1470
1471 mutex_enter(&msp->ms_lock);
1472
1473 if (now) {
1474 space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
1475 offset, size);
1476 space_map_free(&msp->ms_map, offset, size);
1477 } else {
1478 if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
1479 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1480 space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
34dc7c2f
BB
1481 }
1482
1483 mutex_exit(&msp->ms_lock);
1484}
1485
1486/*
1487 * Intent log support: upon opening the pool after a crash, notify the SPA
1488 * of blocks that the intent log has allocated for immediate write, but
1489 * which are still considered free by the SPA because the last transaction
1490 * group didn't commit yet.
1491 */
1492static int
1493metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1494{
1495 uint64_t vdev = DVA_GET_VDEV(dva);
1496 uint64_t offset = DVA_GET_OFFSET(dva);
1497 uint64_t size = DVA_GET_ASIZE(dva);
1498 vdev_t *vd;
1499 metaslab_t *msp;
428870ff 1500 int error = 0;
34dc7c2f
BB
1501
1502 ASSERT(DVA_IS_VALID(dva));
1503
1504 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1505 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1506 return (ENXIO);
1507
1508 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1509
1510 if (DVA_GET_GANG(dva))
1511 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1512
1513 mutex_enter(&msp->ms_lock);
1514
428870ff
BB
1515 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map.sm_loaded)
1516 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY, 0);
1517
1518 if (error == 0 && !space_map_contains(&msp->ms_map, offset, size))
1519 error = ENOENT;
1520
b128c09f 1521 if (error || txg == 0) { /* txg == 0 indicates dry run */
34dc7c2f
BB
1522 mutex_exit(&msp->ms_lock);
1523 return (error);
1524 }
1525
34dc7c2f 1526 space_map_claim(&msp->ms_map, offset, size);
b128c09f 1527
fb5f0bc8 1528 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
b128c09f
BB
1529 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1530 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1531 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1532 }
34dc7c2f
BB
1533
1534 mutex_exit(&msp->ms_lock);
1535
1536 return (0);
1537}
1538
1539int
1540metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
b128c09f 1541 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
34dc7c2f
BB
1542{
1543 dva_t *dva = bp->blk_dva;
1544 dva_t *hintdva = hintbp->blk_dva;
d6320ddb 1545 int d, error = 0;
34dc7c2f 1546
b128c09f 1547 ASSERT(bp->blk_birth == 0);
428870ff 1548 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
b128c09f
BB
1549
1550 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1551
1552 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
1553 spa_config_exit(spa, SCL_ALLOC, FTAG);
34dc7c2f 1554 return (ENOSPC);
b128c09f 1555 }
34dc7c2f
BB
1556
1557 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1558 ASSERT(BP_GET_NDVAS(bp) == 0);
1559 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1560
d6320ddb 1561 for (d = 0; d < ndvas; d++) {
34dc7c2f 1562 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
b128c09f 1563 txg, flags);
34dc7c2f
BB
1564 if (error) {
1565 for (d--; d >= 0; d--) {
1566 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1567 bzero(&dva[d], sizeof (dva_t));
1568 }
b128c09f 1569 spa_config_exit(spa, SCL_ALLOC, FTAG);
34dc7c2f
BB
1570 return (error);
1571 }
1572 }
1573 ASSERT(error == 0);
1574 ASSERT(BP_GET_NDVAS(bp) == ndvas);
1575
b128c09f
BB
1576 spa_config_exit(spa, SCL_ALLOC, FTAG);
1577
428870ff 1578 BP_SET_BIRTH(bp, txg, txg);
b128c09f 1579
34dc7c2f
BB
1580 return (0);
1581}
1582
1583void
1584metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1585{
1586 const dva_t *dva = bp->blk_dva;
d6320ddb 1587 int d, ndvas = BP_GET_NDVAS(bp);
34dc7c2f
BB
1588
1589 ASSERT(!BP_IS_HOLE(bp));
428870ff 1590 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
b128c09f
BB
1591
1592 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
34dc7c2f 1593
d6320ddb 1594 for (d = 0; d < ndvas; d++)
34dc7c2f 1595 metaslab_free_dva(spa, &dva[d], txg, now);
b128c09f
BB
1596
1597 spa_config_exit(spa, SCL_FREE, FTAG);
34dc7c2f
BB
1598}
1599
1600int
1601metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1602{
1603 const dva_t *dva = bp->blk_dva;
1604 int ndvas = BP_GET_NDVAS(bp);
d6320ddb 1605 int d, error = 0;
34dc7c2f
BB
1606
1607 ASSERT(!BP_IS_HOLE(bp));
1608
b128c09f
BB
1609 if (txg != 0) {
1610 /*
1611 * First do a dry run to make sure all DVAs are claimable,
1612 * so we don't have to unwind from partial failures below.
1613 */
1614 if ((error = metaslab_claim(spa, bp, 0)) != 0)
1615 return (error);
1616 }
1617
1618 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1619
d6320ddb 1620 for (d = 0; d < ndvas; d++)
34dc7c2f 1621 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
b128c09f
BB
1622 break;
1623
1624 spa_config_exit(spa, SCL_ALLOC, FTAG);
1625
1626 ASSERT(error == 0 || txg == 0);
34dc7c2f 1627
b128c09f 1628 return (error);
34dc7c2f 1629}